View allAll Photos Tagged forms

Form Factory

 

location: Poznań

category: store

 

// follow me on:

facebook

instagram

portfolio

 

Clouds form off the sea air as a January afternoon sun dances and sparkles on the sea around the Dutch city of Vlissingen (oft known as Flushing in yonder days).

The straight line of the Walcheren Canal can also be seen disappearing under the clouds as it heads towards the historic city of Middelburg.

 

Looks nice on black. Press 'L' for the lightbox :-)

Little practice before form-making ^___^

Au col des Angroniettes

Cut from a sheet of 1" 40# tooling board, these will be vac formed with .10" PETG plastic to make up the transparent parts of the Transistor

This sculpture is a reproduction of English artist Henry Moore’s mother and child abstract piece.

 

In my sculpture there are three recurring themes: mother with child; the reclining figure; large form protecting small form. In this sculpture I have united all three motifs. I draw on human feelings, on the primary feelings of man. The need of protection is one of these feelings or primary instincts.

 

~ Henry Moore quoted from an interview with Constanzo Costantini in Il Messagero, Rome, 10th April 1974

 

Reclining Connected Forms sculpture by Henry Moore is made of Roman travertine marble. It is located in The Park between ARIA Resort & Casino and Crystals retail and entertainment district. Henry Moore won the International Prize for Sculpture at the Venice Biennial in 1948. His signature form is a reclining figure of which he is said to have been influenced by the ancient cultures of Egypt and pre-Colombian Mexico.

 

Las Vegas: Aria - Henry Moore Sculpture

 

December 27, 2013, Aria Casino & Hotel, Las Vegas, Nevada.

Sony A7RII mated with Zoom-NIKKOR 43-86mm

processed with VSCO Film 07 in Lightroom CC

Molecule formed by an open back triangle twist, with the three arms pleated in 3D shape.

EH paper and 32 division grid.

Molécula formada por un giro triangular abierto, con sus tres brazos plegados en forma tridimensional.

Papel EH y trama de 32 divisiones.

 

am Potsdamer Platz - Kodachrome 25

dressform ATC for Ana Cristina ~ anacaldatto.blogspot.com/

 

The Altered Paper dress form swap

Garba is a form of dance that originated in the state of Gujarat in India. The name is derived from the Sanskrit term Garbha ("womb"). The circular and spiral figures of Garba have similarities to other spiritual dances, such as those of Sufi culture. Traditionally, it is performed during the nine-day Hindu festival Navarātrī. Either the lamp (the Garba Deep) or an image of the Goddess, Durga (also called Amba) is placed in the middle of concentric rings as an object of veneration.Both men and women usually wear colorful costumes while performing garba and dandiya. The girls and the women wear Chaniya choli, a three-piece dress with a choli, which is an embroidered and colorful blouse, teamed with chaniya, which is the flared, skirt-like bottom, and dupatta, which is usually worn in the traditional Gujarati manner. Chaniya Cholis are decorated with beads, shells, mirrors, stars, and embroidery work, mati, etc. Traditionally, women adorn themselves with jhumkas (large earrings), necklaces, bindi, bajubandh, chudas and kangans, kamarbandh, payal, and mojiris. Boys and men wear kafni pyjamas with a Ghagra - a short round kurta - above the knees and pagadi on the head with bandhini dupatta, kada, and mojiris. There is a huge interest in Garba among the youth of India and in particular, the Gujarati diaspora.

Courtesy- Wikipedia

Shot by Me using my Rebel T3i/Canon EOS 600D 55-250mm IS II. My first attempt in Full manual Mode at night with minimal post processing. Critics for improvement most welcomed. I am happy I got a chance to experience and explore this incredible Indian Garba dance.

 

If u like my photos, Like my page www.facebook.com/avikpaulphotography to stay updated

ArticleDiscussion

LireModifierModifier le codeVoir l’historique

Page d’aide sur l’homonymie

Pour les articles homonymes, voir Trou et Ver (homonymie).

 

Page d’aide sur les redirections

« Pont d'Einstein-Rosen » redirige ici. Pour les autres significations, voir Pont (homonymie).

 

Page d’aide sur l’homonymie

Ne doit pas être confondu avec un trou noir ni un trou blanc (fontaine blanche) ni le paradoxe d'Einstein-Podolsky-Rosen (EPR).

  

Exemple de trou de ver dans une métrique de Schwarzschild, tel qu'il serait vu par un observateur ayant franchi l'horizon du trou noir. La région d'où vient l'observateur est située à droite de l'image. Mise à part la région située près de l'ombre du trou noir, les effets de décalage vers le rouge gravitationnel rendent le fond du ciel très sombre. Celui-ci est en revanche très lumineux dans la seconde région, visible une fois l'horizon passé. Cette région ne sera cependant pas accessible, quelle que soit la trajectoire de l'observateur, car celui-ci est condamné à finir sur la singularité gravitationnelle en un temps relativement bref.

 

Schéma du principe du trou de ver.

Un trou de ver (en anglais : wormhole) est, en astrophysique, un objet hypothétique qui relierait deux feuillets distincts ou deux régions distinctes de l'espace-temps et se manifesterait, d'un côté, comme un trou noir et, de l'autre côté, comme un trou blanc1.

 

Un trou de ver formerait un raccourci à travers l'espace-temps. Pour le représenter plus simplement, on peut figurer l'espace-temps non en quatre dimensions mais en deux, à la manière d'un tapis ou d'une feuille de papier, dont la surface serait pliée sur elle-même dans un espace à trois dimensions. L'utilisation du raccourci « trou de ver » permettrait un voyage du point A directement au point B en un temps considérablement réduit par rapport au temps qu'il faudrait pour parcourir la distance séparant ces deux points de manière linéaire, à la surface de la feuille. Visuellement, il faut s'imaginer voyager non pas à la surface de la feuille de papier, mais à travers le trou de ver ; la feuille, étant repliée sur elle-même, permet au point A de toucher directement le point B, la rencontre des deux points correspondant au trou de ver.

 

L'utilisation d'un trou de ver permettrait théoriquement le voyage d'un point de l'espace à un autre (déplacement dans l'espace), le voyage d'un point à l'autre du temps (déplacement dans le temps), et le voyage d'un point de l'espace-temps à un autre (déplacement à travers l'espace et, simultanément, à travers le temps).

 

Les trous de ver sont des concepts purement théoriques : l'existence et la formation physique de tels objets dans l'Univers n'ont pas été vérifiées. Ils ne doivent pas être confondus avec les trous noirs, dont l'existence a été vérifiée en 2019 et dont le champ gravitationnel est si intense qu’il empêche toute forme de matière de s'en échapper.

 

Historique

Le physicien autrichien Ludwig Flamm (1885-1964) est parfois présenté comme étant le premier à avoir suggéré, dès 19162, l'existence des trous de ver. Mais la communauté scientifique s'accorde3 pour considérer que leur existence n'a été suggérée qu'en 1935, par Albert Einstein et Nathan Rosen4.

 

Les trous de ver (wormholes) doivent leur nom à Charles W. Misner et John A. Wheeler qui désignèrent ainsi en 1957 les propriétés de connexions des différents points de l'espace5. Le nom vient de l'analogie de l'asticot et de la pomme, symbole de la gravité depuis Isaac Newton : comme le ver, en rongeant la pomme, peut se rendre directement à un point diamétralement opposé, un vaisseau spatial pourrait utiliser le trou de ver, à la façon d'un raccourci, pour ressortir ailleurs dans l'espace et dans le temps6.

 

Quelques années plus tard à l’université Harvard, Stephen Hawking et Richard Coleman reprirent le concept de Wheeler et suggérèrent que l'espace-temps pouvait être soumis à l'effet tunnel précité, reprenant l'idée avancée par Hugh Everett. À l'instar des électrons qui peuvent sauter d'un point à l'autre de l'espace, l'Univers ferait de même. L'effet tunnel créerait des ouvertures dans l'espace-temps qui conduiraient à d'autres univers, des univers cul-de-sac ou tout aussi vastes que le nôtre.

 

En 2013, Juan Maldacena et Leonard Susskind ont proposé une conjecture qui établit un lien entre l'intrication quantique et le trou de ver7 : la conjecture ER=EPR8.

 

Présentation générale

 

Cette section ne cite pas suffisamment ses sources (octobre 2019).

 

Simulation d'un trou de ver permanent.

À l'heure actuelle, différents types de trous de ver ont été décrits de façon théorique :

 

le trou de ver de Schwarzschild, infranchissable ;

le trou de ver de Reissner-Nordstrøm ou de Kerr-Newman, franchissable mais dans un seul sens, pouvant contenir un trou de ver de Schwarzschild ;

le trou de ver de Lorentz à masse négative, franchissable dans les deux sens.

Tous sont des solutions mathématiques plutôt que des objets concrets.

 

Ont également été distingués des trous de ver à symétrie sphérique, tels ceux de Schwarzschild et de Reissner-Nordstrøm, qui ne sont pas en rotation, et des trous de ver tels ceux de Kerr-Newmann qui tournent sur eux-mêmes.

 

Si on essaie de fabriquer un trou de ver à partir de matière à masse positive, il explose et se désintègre. Si une matière à masse négative existe (matière exotique), on peut en principe élaborer un trou de ver statique en accumulant des masses négatives.[réf. souhaitée]

 

La théorie d'Einstein précise qu'on peut fabriquer n'importe quel type de géométrie spatio-temporelle, statique ou dynamique. Toutefois, une fois la géométrie définie, ce sont les équations d'Einstein qui diront quel devra être le tenseur énergie-impulsion de la matière pour obtenir cette géométrie spatiale. En général, les solutions de trous de ver statiques requièrent une masse négative.

 

Einstein et Rosen ont sérieusement suggéré que les singularités pouvaient mener à d'autres endroits de l'Univers, d'autres régions de l'espace et du temps. Ces connexions spatio-temporelles sont connues sous le nom de « ponts d'Einstein-Rosen ». Mais ni l'un ni l'autre n'entrevoyaient une possibilité d'entretenir ces connexions en raison du caractère instable des fluctuations quantiques. Selon la formule de John L. Friedman[Qui ?] de l'université de Californie à Santa Barbara, il s'agit d'une « censure topologique »[réf. nécessaire].

 

Ces trous de vers dits de Lorentz requièrent de la matière exotique pour rester ouverts car celle-ci demande moins d'énergie que le vide quantique, qui subit des fluctuations d'amplitude variables. Il peut s'agir d'énergie négative qui maintiendrait l'ouverture du trou de ver loin de l'horizon. L'ouverture elle-même présente une pression de surface positive [Négative?] qui la maintient ouverte durant les transferts et évite qu'elle ne s'effondre. Seulement, on ne sait comment stocker autant d'antimatière et suffisamment longtemps au même endroit pour entretenir ce tunnel dans l'espace-temps.[réf. nécessaire]

  

Vaisseau interstellaire empruntant un trou de ver (Vision d'artiste pour la NASA, 1998).

Pour approfondir les conséquences de la relativité générale, Kip Thorne et Richard Morris du Caltech ont tenté de découvrir par le biais de la physique quantique de nouvelles particules capables d'entretenir les trous de ver de Wheeler. Celles-ci ont fait apparaître d'hypothétiques « sas de liaisons » parcourus par des « voyageurs de Langevin ». La littérature de science-fiction s'en est grandement inspirée9.

 

Selon John Wheeler, deux singularités pourraient être reliées par un trou de ver, sorte de sas entre deux régions éloignées de l’univers. Entretenir un tel passage et lui donner une taille macroscopique reste un défi théorique. En effet ce « pont » est à l’échelle de Planck : il mesure 10−33 cm et est instable ; il se referme sur lui-même en l’espace de 10−43 s. Si on essaye de l’agrandir, il s'autodétruit. Le trou de ver appartient à la mousse quantique et obéit aux lois probabilistes.

 

Au contraire d’une singularité, un trou de ver est « nu », il demeure visible et, plus extraordinaire encore, il permet de voyager dans le temps en fonction du sens emprunté.

 

Exemple : le trou de ver de Morris-Thorne

Le trou de ver de Morris-Thorne (en anglais : Morris-Thorne wormhole)10 est un trou de ver traversable, décrit par la métrique du même nom.

 

Ses éponymes sont Michael S. Morris et Kip S. Thorne, qui ont publié leur solution en 198811,12 dans l'American Journal of Physics. Elle consiste en une adaptation du sujet de l'examen final d'un cours d'introduction à la relativité générale, donné au California Institute of Technology en 198513.

 

La métrique de Morris-Thorne s'écrit14,15 :

 

{\displaystyle \mathrm {d} s^{2}=-c^{2}\mathrm {d} t^{2}+\mathrm {d} l^{2}+\left(b_{0}^{2}+l^{2}\right)\left(\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}\right)}{\displaystyle \mathrm {d} s^{2}=-c^{2}\mathrm {d} t^{2}+\mathrm {d} l^{2}+\left(b_{0}^{2}+l^{2}\right)\left(\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}\right)},

où :

 

{\displaystyle \left(x^{\mu }\right)=\left(ct,l,\theta ,\phi \right)}{\displaystyle \left(x^{\mu }\right)=\left(ct,l,\theta ,\phi \right)} sont les coordonnées d'espace-temps :

{\displaystyle t}t est la coordonnée temporelle,

{\displaystyle l}l est la coordonnée radiale,

{\displaystyle \theta }\theta est la colatitude,

{\displaystyle \phi }\phi est la longitude,

{\displaystyle b_{0}^{2}}{\displaystyle b_{0}^{2}} est une constante,

{\displaystyle c}c est la vitesse de la lumière dans le vide.

En coordonnées de Schwarzschild, elle s'écrit16 :

 

{\displaystyle \mathrm {d} s^{2}=-c^{2}\mathrm {d} t^{2}+{\frac {\mathrm {d} r^{2}}{1-{\frac {b_{0}^{2}}{r^{2}}}}}+r^{2}\left(\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}\right)}{\displaystyle \mathrm {d} s^{2}=-c^{2}\mathrm {d} t^{2}+{\frac {\mathrm {d} r^{2}}{1-{\frac {b_{0}^{2}}{r^{2}}}}}+r^{2}\left(\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}\right)},

avec {\displaystyle r^{2}=b_{0}^{2}+l^{2}}{\displaystyle r^{2}=b_{0}^{2}+l^{2}}.

 

La « bouche » du trou de ver est une hypersurface ayant la topologie d'une sphère d'aire {\displaystyle A=4\pi \left(b_{0}^{2}+l^{2}\right)}{\displaystyle A=4\pi \left(b_{0}^{2}+l^{2}\right)}17.

 

La « gorge » du trou de ver est localisée en {\displaystyle l=0}{\displaystyle l=0}17.

 

Dans la fiction

Article détaillé : trou de ver dans la fiction.

Le concept des trous de ver est très utilisé dans la science-fiction pour autoriser le voyage dans l'espace, voire dans le temps. Il est souvent utilisé comme prétexte à la découverte de lieux inaccessibles par des moyens conventionnels, et donc à des rencontres avec diverses civilisations ou espèces inconnues. Voici des exemples d'œuvres traitant des trous de vers et de leur utilisation.

 

Littérature et bande dessinée

Dans la série des romans autour de Honor Harrington se passant dans l'Honorverse créé par David Weber, les trous de ver sont utilisés pour les trajets spatiaux et jouent un rôle important dans l'économie du royaume de Manticore.

 

Dans Lumière des jours enfuis, publié en 2000, Arthur C. Clarke et Stephen Baxter racontent qu'en 2033, une équipe de chercheurs parvient à transmettre des images par un trou de ver.

 

Dans la série de bande dessinée de science-fiction Universal War One, l’auteur, Denis Bajram, place la notion de trou de ver au centre de l’intrigue de son œuvre.

 

Dans la série La Saga du Commonwealth de Peter F. Hamilton, les trous de ver sont devenus, dans le futur, un moyen de transport courant pour se déplacer de planète en planète. Ils sont décrits comme étant très fins, composés d'énergie exotique et modulables en fonction de la quantité d'énergie utilisée pour les créer.

 

Cette notion est de plus en plus fréquente dans la littérature « Hard science-fiction » : on peut citer Stephen Baxter (Les Vaisseaux du temps, Retour sur Titan, Singularité) ou John Clute (Appleseed), qui offrent une approche romancée de la théorie. Ce concept se retrouve en particulier dans les romans de type néo space opéra. Dans la série de romans The Expanse écrite par Corey James S.A., un trou de ver fabriqué par une ancienne puissance extra-terrestre permet d'accéder à un espace vide entouré de trous de ver ouvrant sur des systèmes planétaires lointains.

 

Cinéma et séries télévisées

Dans la série Sliders, un tel passage est appelé par erreur « pont Einstein-Rosen-Podolski » au lieu de « ponts d’Einstein-Rosen », par confusion avec le paradoxe Einstein-Podolsky-Rosen, lequel n’a rien à voir avec les trous de ver. Curieusement, le nom est resté chez quelques vulgarisateurs. Podolsky a donc vu son nom associé à un objet particulier de la relativité générale sans avoir travaillé dans ce domaine.

 

Dans le film Contact est mentionnée une série de vortex appelée « pont d'Einstein-Rosen ».

 

Toute la série Farscape repose sur la découverte et la compréhension des trous de ver (wormholes en VO, vortex en VF), ceux-ci permettant de parcourir de très grandes distances, de voyager dans le temps et dans d’autres dimensions.

 

Dans Star Trek: Deep Space Nine, la traduction française utilise vortex pour le terme anglais wormhole, mais il s’agit bien d’un trou de ver utilisé pour voyager de et vers le Quadrant Gamma à 70 000 années-lumière de l'autre côté de la galaxie. La particularité de la station Deep Space Nine est d'être stratégiquement placée à proximité de ce trou de ver, d'où la grande importance de celui-ci dans la série.

 

Une porte des étoiles à Japan Expo 2009.

Une réplique de porte des étoiles à Japan Expo 2009.

Le film de science-fiction Stargate, la porte des étoiles et les séries Stargate SG-1, Stargate Atlantis et Stargate Universe font appel au concept de trou de ver. Un engin appelé porte des étoiles (en anglais stargate) y relie différentes planètes de l’univers en créant un trou de ver de Reissner-Nordstrøm (ou de Kerr-Newman) artificiel. Cependant un corps entier comme celui d'un homme ne survivrait pas au voyage dans le vortex, il est donc démolécularisé par la porte de départ et remolécularisé par la porte d'arrivée. En temps normal, la porte des étoiles ne permet pas de voyager dans le temps, sauf s'il y a un dysfonctionnement (dans un épisode, le vortex passe près d'une éruption solaire et est renvoyé vers la porte de départ mais dans une autre époque). De même, les trous de ver sont utilisés dans les séries Stargate pour faire traverser aux vaisseaux spatiaux de grandes distances en peu de temps en entrant en hyperespace, c'est-à-dire en créant un trou de ver de Reissner-Nordstrøm afin de voyager plus vite que la lumière.

 

Dans le film Donnie Darko, sorti en 2001, le trou de ver est un élément central permettant un voyage vers le passé.

 

Dans la série Fringe, l'un des personnages principaux crée un « pont d'Einstein-Rosen » pour voyager dans un univers alternatif. Cet acte sera cause de plusieurs autres trous de vers intempestifs dans les deux univers.

 

Dans le film Thor, le personnage de Jane Foster parle du Bifröst comme d'un Pont Einstein-Rosen.

 

Dans l'épisode Le Fantôme de Caliburn de la série Doctor Who, la femme disparue est en fait enfermée dans un univers en perdition, et le seul moyen d'y parvenir est d'utiliser un de ces trous de ver. Ces trous de ver sont aussi cités dans un autre épisode de cette série, L'Invasion des cubes : sept sont éparpillés sur Terre pour mener vers un vaisseau spatial en orbite autour de la planète, alors que des cubes sont envoyés pour arrêter les cœurs humains.

 

Dans le film Interstellar réalisé par Christopher Nolan et sorti en 2014, un des thèmes principaux est la théorie des trous de ver et son utilisation pour atteindre des planètes potentiellement colonisables situées à des années-lumière de la Terre. Le thème de la distorsion temporelle due à un trou noir y est également important.

 

Dans le film d'horreur Event Horizon de Paul W.S Anderson sorti en 1997, le système de propulsion du vaisseau est un prototype utilisant une singularité à l'aide d'un trou noir artificiel qui lui permet de créer son propre trou de ver. Ce concept est vulgarisé par le personnage incarné par Sam Neill à l'aide d'un poster érotique emprunté à un des membres de l'équipage.

 

Dans la série animée Voltron, le défenseur légendaire, les trous de vers sont associés à la magie altéenne[Quoi ?] et ne semblent pas obéir aux lois de la physique.

 

Dans la série Dark, le destin des protagonistes est influencé par l'existence d'un trou de ver permettant de voyager dans le temps, car le passé, le présent et le futur sont liés formant une boucle temporelle.

 

Dans la deuxième saison de Star Trek: Discovery, la combinaison temporelle du Dr Burnham permet de voyager dans l'espace-temps au moyen de trous de ver générés par un cristal temporel embarqué.

 

Dans la saison 6 de the 100 apparaît « l’anomalie » dont on apprend dans la saison 7 qu’il s’agit de trous de ver permettant de se déplacer entre différentes planètes où le temps ne s’écoule pas à la même vitesse (sanctum, Bardo, la terre, etc.) ces trous de ver sont générés par un dispositif appelé la pierre, couverte de symboles et inventée par une civilisation disparue après leur ascension. parfois critiquée, l’influence évidente de stargate marque le scénario de la saison 7 de the 100.

 

Dans le jeu vidéo Chernobylite, le trou de ver permet au personnage principal de voyager d'un endroit à un autre de la région de Tchernobyl.

 

Les voyages dans le temps

Article connexe : Voyage dans le temps.

Notes et références

Entrée « trou de ver », dans Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Bruxelles, De Boeck Université, 2008, XI-672 p. (ISBN 978-2-8041-5688-6, BNF 41256105, lire en ligne [archive]), p. 507.

(de) Ludwig Flamm, « Beiträge zur Einsteinschen Gravitationstheorie », Physikalische Zeitschrift, vol. 17,‎ 1916, p. 448-454

(en) David Lindley, « Focus: The Birth of Wormholes », Physical Review, vol. 15,‎ 2005 (DOI 10.1103/PhysRevFocus.15.11)

(en) Albert Einstein et Nathan Rosen, « The Particle Problem in the General Theory of Relativity », Physical Review, vol. 48, no 1,‎ 1er juillet 1935, p. 73-77 (DOI 10.1103/PhysRev.48.73, Bibcode 1935PhRv...48...73E, lire en ligne [archive], consulté le 26 juillet 2014)

(en) Charles W. Misner et John A. Wheeler, « Classical physics as geometry », Annals of Physics, vol. 2, no 6,‎ 1957, p. 525-603 (DOI 10.1016/0003-4916(57)90049-0).

Jean-Pierre Luminet, « Trou noir : la porte des étoiles ? » [archive], sur France Inter.fr, 21 août 2019 (consulté le 19 septembre 2020).

(en) Juan Martín Maldacena et Leonard Susskind, « Cool horizons for entangled black holes », Fortschritte der Physik (de), vol. 61, no 9,‎ septembre 2013, p. 781-811 (DOI 10.1002/prop.201300020, Bibcode 2013ForPh..61..781M, arXiv 1306.0533, lire en ligne [archive] [PDF], consulté le 28 août 2014).

(en) Hrant Gharibyan et Robert F. Penna, « Are entangled particles connected by wormholes? Support for the ER=EPR conjecture from entropy inequalities », Physical Review D, vol. 89, no 6,‎ mars 2014, p. 066001 (DOI 10.1103/PhysRevD.89.066001, Bibcode 2014PhRvD..89f6001G, arXiv 1308.0289, lire en ligne [archive] [PDF], consulté le 28 août 2014).

« Voyage au centre d'un trou de ver » [archive], sur Astrosurf (consulté le 26 octobre 2019).

Müller 2008, résumé, p. 1.

Müller 2008, I, p. 1, col. 1.

Morris et Thorne 1988.

Morris et Thorne 1988, I, C, p. 398, col. 1.

Müller 2008, II, p. 2, col. 1 (1).

Morris et Thorne 1988, p. 398 (B2a).

Müller 2008, II, p. 2, col. 1 (2).

Müller 2008, II, p. 2, col. 1.

Annexes

Sur les autres projets Wikimedia :

 

Trou de ver, sur Wikimedia Commons

trou de ver, sur le Wiktionnaire

Bibliographie

(en) Andrew DeBenedictis et A. Das, « On a General Class of Wormhole Geometries », Classical and Quantum Gravity, vol. 18, no 7,‎ 2001, p. 1187-1204 (DOI 10.1088/0264-9381/18/7/304, Bibcode 2001CQGra..18.1187D, arXiv 0009072).

Stephen Hawking, Une brève histoire du temps. Du Big Bang aux trous noirs, Flammarion, 2005.

Stephen Hawking et Roger Penrose, La nature de l'espace et du temps, Gallimard, 2003.

Stephen Hawking, Trous noirs et bébés univers et autres essais, Odile Jacob, 2000.

Kip S. Thorne, Trous noirs et distorsions du temps : l'héritage sulfureux d'Einstein, trad. Alain Bouquet et Jean Kaplan, Flammarion, 2009. Avec une préface de Stephen Hawking. (ISBN 978-2081224964)

M. Begelmen et M. Rees, Gravity’s Fatal Attraction : Black Holes in the Universe, W.H.Freeman, 1996.

(en) Stuart L. Shapiro et Saul A. Teukolsky, « Formation of naked singularities: The violation of cosmic censorship », Physical Review Letters, vol. 66, no 8,‎ 25 février 1991, p. 994–997 (DOI 10.1103/PhysRevLett.66.994, lire en ligne [archive], consulté le 26 octobre 2019).

(en) Stuart L. Shapiro et Saul A. Teukolsky, « Building Black Holes: Supercomputer Cinema », Science, vol. 241, no 4864,‎ 22 juillet 1988, p. 421–425 (ISSN 0036-8075 et 1095-9203, PMID 17792605, DOI 10.1126/science.241.4864.421, lire en ligne [archive], consulté le 26 octobre 2019).

(en) Michael S. Morris, Kip Thorne et Ulvi Yurtsever, « Wormholes, Time Machines, and the Weak Energy Condition », Physical Review Letters, vol. 61, no 13,‎ 26 septembre 1988, p. 1446-1449 (DOI 10.1103/PhysRevLett.61.1446, Bibcode 1988PhRvL..61.1446M, lire en ligne [archive] [PDF], consulté le 29 août 2014)

H. Everett III, Reviews of Modern Physics, 29, 1958, p. 454[réf. incomplète].

Mika - "Akimmik" 1992 - p. 415-712[réf. incomplète].

(en) Thomas A. Roman, « Some thoughts on energy conditions and wormholes », The Tenth Marcel Grossmann Meeting,‎ février 2006 (DOI 10.1142/9789812704030_0236, Bibcode 2006tmgm.meet.1909R, arXiv gr-qc/0409090, lire en ligne [archive] [PDF], consulté le 29 août 2014)

(en) Edward Teo, « Rotating traversable wormholes », Physical Review D, vol. 58, no 2,‎ 15 juillet 1998 (DOI 10.1103/PhysRevD.58.024014, Bibcode 1998PhRvD..58b4014T, arXiv gr-qc/9803098, lire en ligne [archive] [PDF], consulté le 29 août 2014)

(en) Matt Visser, « Traversable wormholes: Some simple examples », Physical Review D, vol. 39, no 10,‎ 15 mai 1989, p. 3182-3184 (DOI 10.1103/PhysRevD.39.3182, Bibcode 1989PhRvD..39.3182V, arXiv 0809.0907, lire en ligne [archive] [PDF], consulté le 29 août 2014)

(en) Léo-Paul Euvé et Germain Rousseaux, « Classical analogue of an interstellar travel through a hydrodynamic wormhole », Physical Review D, vol. 96, no 6,‎ 25 septembre 2017 (DOI 10.1103/PhysRevD.96.064042)

[Taillet, Villain et Febvre 2013] R. Taillet, L. Villain et P. Febvre, Dictionnaire de physique, Louvain-la-Neuve, De Boeck Sup., hors coll., février 2013 (réimpr. 2015), 3e éd. (1re éd. mai 2008), X-899 p., ill. et fig., 17 × 24 cm (ISBN 978-2-8041-7554-2, EAN 9782804175542, OCLC 842156166, BNF 43541671, SUDOC 167932349, présentation en ligne [archive], lire en ligne [archive]), s.v.trou de ver, p. 701, col. 1.

Sur le trou de ver de Morris-Thorne

[Ellis 1973] (en) H. G. Ellis, « Ether flow through a drainhole : a particle model in general relativity », J. Math. Phys., vol. 14, no 1,‎ janvier 1973, p. 104-118, article no 16 (OCLC 5542485827, DOI 10.1063/1.1666161, Bibcode 1973JMP....14..104E, résumé [archive], lire en ligne [archive]).

[Bronnikov 1973] (en) K. A. Bronnikov, « Scalar-tensor theory and scalar charge », Acta Phys. Pol. B (en), vol. 4, nos 3-4,‎ mars-avril 1973, p. 251-266, article no 10 (OCLC 4434848908, lire en ligne [archive]).

[Morris et Thorne 1988] (en) M. S. Morris et K. S Thorne, « Wormholes in spacetime and their use for interstellar travel : A tool for teaching general relativity » [« Les trous de ver dans l'espace-temps et leur utilisation pour les voyages interstellaires : un outil d'enseignement de la relativité générale »], American Journal of Physics, vol. 56, no 5,‎ mai 1988, p. 395-412, article no 1 (OCLC 4660684580, DOI 10.1119/1.15620, Bibcode 1988AmJPh..56..395M, résumé [archive], lire en ligne [archive] [PDF]).

[Müller 2008] (en) Th. Müller, « Exact geometric optics in a Morris-Thorne wormhole spacetime », Physical Review D, vol. 77, no 4,‎ février 2008, p. 2e part. (OCLC 4631578262, DOI 10.1103/PhysRevD.77.044043, Bibcode 2008PhRvD..77d4043M, résumé [archive], lire en ligne [archive] [PDF]).

[James, Tunzelmann, Franklin et Thorne 2015] (en) O. James, E. v. Tunzelmann, P. Franklin et K. S Thorne, « Visualizing Interstellar's wormhole » [« Visualiser le trou de ver d'Interstellar »], American Journal of Physics, vol. 83, no 6,‎ juin 2015, article no 1 pages= (OCLC 5856563581, DOI 10.1119/1.4916949, Bibcode 2015AmJPh..83..486J, arXiv 1502.03809, résumé [archive], lire en ligne [archive] [PDF]).

[Deza et Deza 2014] (en) M. M. Deza et E. Deza, Encyclopedia of distances [« Encyclopédie des distances »], Heidelberg, Springer, octobre 2014, 3e éd. (1re éd. mai 2009), XX-733 p., ill. et portr., 25 cm (ISBN 978-3-662-44341-5, EAN 9783662443415, OCLC 898123993, DOI 10.1007/978-3-662-44342-2, SUDOC 182433501, présentation en ligne [archive], lire en ligne [archive]), VIe part., chap. 26, § 26.2, s.v.Morris–Thorne metric [« Métrique de Morris-Thorne »], p. 580.

Articles connexes

Trou noir

Espace-temps

Voyage dans le temps

Liens externes

Notices d'autorité : Bibliothèque nationale de France (données)Système universitaire de documentationBibliothèque du CongrèsGemeinsame NormdateiBibliothèque nationale d’Israël

Notices dans des dictionnaires ou encyclopédies généralistes : Encyclopædia Britannica [archive]Store norske leksikon [archive]

Ressource relative à la littérature : (en) The Encyclopedia of Science Fiction [archive]

(fr) Un lien possible entre les trous de ver et l'intrication quantique [archive] a été découvert en 2013.

(en) White holes and Wormholes [archive], Andrew Hamilton, Université du Colorado

(en) Des méta matériaux permettent d'émuler un trou de ver, selon la théorie d'alcubierre jusqu'à 25 % de la vitesse de la lumière [archive]

[afficher]

v · m

Trou noir

[afficher]

v · m

Colonisation de l'espace Bon article

[afficher]

v · m

Science-fiction

icône décorative Portail de la cosmologie icône décorative Portail de la physique icône décorative Portail de l’astronomie icône décorative Portail de la science-fiction

Catégories : Relativité généraleConcept de la science-fictionVitesse supraluminiqueMatière exotiqueVer dans la culture[+]

  

fr.wikipedia.org/wiki/Trou_de_ver

With the vacuum cleaner running, push the frame and the hot plastic down onto the mould until the frame seals against the weather stripping -- and BAM, the plastic slams down onto the mould.

 

Turn off the vacuum and give the plastic a minute to cool.

 

Hey, this thing works pretty good. I got a couple ideas of stuff to make with it now, like custom model boat hulls, or maybe a storm trooper costume...

 

www.doublellama.net

Bluecube Information Technology(Bluecubeit) Provides Database Oracle 11g/10g DBA Certification Training, Forms and Reports 11g/10g R2, SQL Server Tuning Online IT Training/E-LearningSolutions on Program Applications of SAP, Java, Company Professional (BA), Oracle Apps, DataWarehouse (DWH),Testing Tools QA Testing QTP (Quick Test Professional), SAS, Expose Aspect, Dot Net Training etc., to all Working/Non Managing Candidates With Far away Technology through out USA, UAE, The US , Native indiana, UK, Quotes and Many Other Places

 

SQL Server Online Training | Oracle 11g/10g DBA Certification Training | Oracle Forms and Reports 11g/10g R2 | SAP Online Training|SAP ALL MODULES|SAP ABAP|No 1 Online Training|Online Training US|Bluecubeit|JAVA J2SE J2EE|Oracle|Microsoft Training|Courses|Testing Tools(QA/QTP)|People Soft|Data warehouse|Network and System Admin|Databases|Middleware Technologies|IBM Mainframes|WebSphere Admin|Oracle PL/SQL| Training

Heads Off To Heck Plasmor P S To Form The 6H86 18.20 Heck Plasmor P S To Peterborough West Yard

Heck Plasmor P S 18.20 . 18.15 5E

Shaftholme Jn 18.33 . 18.28 1/2 4E

Arksey Loop 18.37 . 18.31 1/2 5E

Donc. Marshgate Jn 18.40 . 18.33 1/2 6E

Doncaster 18.40 1/2 . 18.35 5E

Bridge Jn 18.42 1/2 No Report

Doncaster Up Decoy 18.46 To 19.55 No Report

Potteric Carr Jn 19.58 . 19.33 1/4 24E

Black Carr Jn (Doncaster) 20.00 . 19.33 3/4 26E

Loversall Carr Jn 20.01 1/2 . 19.36 1/4 25E

Ranskill Loop 20.10 1/2 . 19.46 24E

Retford Crossover 20.14 . 19.49 1/4 24E

Babworth Loop 20.14 1/2 No Report

Retford 20.15 1/2 . 20.01 14E

Carlton On Trent Loop 20.30 To 20.48 1/2 20.28 1/4 . 20.46 2E

Newark F.C. 20.55 1/2 . 20.53 1/4 2E

Newark North Gate 20.56 1/2 . 20.54 1/4 2E

Claypole Loop 21.04 To 21.10 1/2 21.00 . 21.08 1/4 2E

Barkston South Jn 21.18 1/2 . 21.15 1/2 3E

Nottingham Branch Jn 21.23 . 21.19 1/2 3E

Grantham 21.24 . 21.20 3/4 3E

Highdyke Jn 21.28 1/2 . 21.24 1/4 3E

Stoke Jn 21.30 1/2 . 21.26 1/4 4E

Tallington Jn 21.47 . 21.41 1/4 5E

Helpston Jn 21.52 . 21.44 7E

Werrington Jn 21.55 1/2 . 21.46 1/2 8E

New England Nth Jn 21.57 1/2 . 21.50 3/4 6E

P'boro Eastfield Jn [XPQ] 22.02 To 22.08 No Report

Peterborough West Yard [XWV] 22.11 1/2 . 22.05 6E

© copyrighted image; all rights reserved.

 

The Karlstad sofa, an Ikea sofa inspired by the Florence Knoll sofa.

 

I wanted to get back to the set I started earlier, Form @ Home, where I try to capture the mood and feeling of some things we’ve got at home. This time I tried to use a cooler, blueish toned color instead of the sepia. Again, I'm trying to find form and details, capturing the mood and feeling of the object. For this I used the 5D with the 100mm L IS macro lens. All shot handheld with available light.

The thistle is blooming and the butterflies are hitting it in our area. I had a great couple of hours chasing several species today. This dark form tiger is in great condition.

Form Factory

 

location: Poznań

category: store

 

// follow me on:

facebook

instagram

portfolio

 

I'm pleased that the distracting melted wax is the portion of the candle in focus, so it's not an eyesore.

Formando los colores sportinguistas en la grada

Exposition

Du 14/06/2017 au 10/09/2017

 

L’exposition Le Rêve des formes, présentée à l’occasion du vingtième anniversaire du Fresnoy – Studio national des arts contemporains, est conçue comme un paysage imaginaire, un jardin monstrueux où se cultivent des formes périssables et des surfaces en germination, des organismes protubérants et de plates silhouettes.

Les artistes et chercheurs rassemblés dans Le Rêve des formes témoignent de leur rencontre avec de nouvelles possibilités de représentation, issues de découvertes scientifiques et techniques récentes, qui bouleversent notre façon de voir et de montrer. En renouvelant grâce à cela le champ du perceptible – nanotechnologies, imagerie de synthèse, scan 3D, stéréolithographie… –, ces nouvelles visualisations nous laissent présumer de géométries encore inconnues.

 

Des images, des transcriptions, des modélisations, des formes spéculatives produites par les inventeurs et savants des sciences prospectives, issues des mathématiques, de la physique, de la biologie, de l’optique ou de la chimie par exemple, rejoignent ou inspirent des œuvres qui résultent des greffes opérées entre art et science, entre spéculation et invention, par une vingtaine d’artistes contemporains.

 

Avec : Francis Alÿs, Hicham Berrada & Sylvain Courrech du Pont & Simon de Dreuille, Michel Blazy, Juliette Bonneviot, Dora Budor, Damien Cadio, Julian Charrière, Sylvie Chartrand, Clément Cogitore, Hugo Deverchère, Bertrand Dezoteux, Mimosa Echard, Alain Fleischer, Fabien Giraud & Raphaël Siboni, Bruno Gironcoli, Spiros Hadjidjanos, Patrick Jouin, Ryoichi Kurokawa, Annick Lesne & Julien Mozziconacci, Adrien Missika, Jean-Luc Moulène, Marie-Jeanne Musiol, Katja Novitskova, Jonathan Pêpe & Thibaut Rostagnat & David Chavalarias, Olivier Perriquet & Jean-Paul Delahaye, Arnaud Petit, Jean-François Peyret & Alain Prochiantz, Gaëtan Robillard, Gwendal Sartre, SMITH & Antonin-Tri Hoang, Anicka Yi

form |fôrm| noun

the visible shape or configuration of something : the form, color, and texture of the tree. • arrangement of parts; shape : the entities underlying physical form. • the body or shape of a person or thing : his eyes scanned her slender form. • arrangement and style in literary or musical composition : these videos are a triumph of form over content.

 

line |līn|

noun

[as adj. ] Printing & Computing denoting an illustration or graphic consisting of lines and solid areas, with no gradation of tone : a line block | line art.

Rapid strata formation in soft sand (field evidence).

Photo of strata formation in soft sand on a beach, created by tidal action of the sea.

Formed in a single, high tidal event. Stunning evidence which displays multiple strata/layers.

 

Why this is so important ....

It has long been assumed, ever since the 17th century, that layers/strata observed in sedimentary rocks were built up gradually, layer upon layer, over many years. It certainly seemed logical at the time, from just looking at rocks, that lower layers would always be older than the layers above them, i.e. that lower layers were always laid down first followed, in time, by successive layers on top.

This was assumed to be true and became known as the superposition principle.

It was also assumed that a layer comprising a different material from a previous layer, represented a change in environmental conditions/factors.

These changes in composition of layers or strata were considered to represent different, geological eras on a global scale, spanning millions of years. This formed the basis for the Geologic Column, which is used to date rocks and also fossils. The evolutionary, 'fossil record' was based on the vast ages and assumed geological eras of the Geologic Column.

There was also circular reasoning applied with the assumed age of 'index' fossils (based on evolutionary beliefs & preconceptions) used to date strata in the Geologic Column. Dating strata from the assumed age of (index) fossils is known as Biostratigraphy.

We now know that, although these assumptions seemed logical, they are not supported by the evidence.

At the time, the mechanics of stratification were not properly known or studied.

 

An additional factor was that this assumed superposition and uniformitarian model became essential, with the wide acceptance of Darwinism, for the long ages required for progressive microbes-to-human evolution. There was no incentive to question or challenge the superposition, uniformitarian model, because the presumed, fossil 'record' had become dependant on it, and any change in the accepted model would present devastating implications for Darwinism.

This had the unfortunate effect of linking the study of geology so closely to Darwinism, that any study independent of Darwinian considerations was effectively stymied. This link of geology with Darwinian preconceptions is known as biostratigraphy.

 

Some other field evidence can be observed here: www.flickr.com/photos/101536517@N06/sets/72157635944904973/

and also in the links to stunning, experimental evidence, carried out by sedimentologists, given later.

_______________________________________________

GEOLOGIC PRINCIPLES (established by Nicholas Steno in the 17th Century):

What Nicolas Steno believed about strata formation is the basis of the principle of Superposition and the principle of Original Horizontality.

dictionary.sensagent.com/Law_of_superposition/en-en/

“Assuming that all rocks and minerals had once been fluid, Nicolas Steno reasoned that rock strata were formed when particles in a fluid such as water fell to the bottom. This process would leave horizontal layers. Thus Steno's principle of original horizontality states that rock layers form in the horizontal position, and any deviations from this horizontal position are due to the rocks being disturbed later.”)

BEDDING PLANES.

'Bedding plane' describes the surface in between each stratum which are formed during sediment deposition.

science.jrank.org/pages/6533/Strata.html

“Strata form during sediment deposition, that is, the laying down of sediment. Meanwhile, if a change in current speed or sediment grain size occurs or perhaps the sediment supply is cut off, a bedding plane forms. Bedding planes are surfaces that separate one stratum from another. Bedding planes can also form when the upper part of a sediment layer is eroded away before the next episode of deposition. Strata separated by a bedding plane may have different grain sizes, grain compositions, or colours. Sometimes these other traits are better indicators of stratification as bedding planes may be very subtle.”

______________________________________________

 

Several catastrophic events, flash floods, volcanic eruptions etc. have forced Darwinian, influenced geologists to admit to rapid stratification in some instances. However they claim it is a rare phenomenon, which they have known about for many years, and which does nothing to invalidate the Geologic Column, the fossil record, evolutionary timescale, or any of the old assumptions regarding strata formation, sedimentation and the superposition principle. They fail to face up to the fact that rapid stratification is not an extraordinary phenonemon, but rather the prevailing and normal mechanism of sedimentary deposition whenever and wherever there is moving, sediment-laden water. The experimental evidence demonstrates the mechanism and a mass of field evidence in normal (non-catastrophic) conditions shows it is a normal everyday occurrence.

It is clear from the experimental evidence that the usual process of stratification is - that strata are not formed by horizontal layers being laid on top of each other in succession, as was assumed. But by sediment being sorted in the flowing water and laid down diagonally in the direction of flow. See diagram:

www.flickr.com/photos/truth-in-science/39821536092/in/dat...

 

The field evidence (in the image) presented here - of rapid, simultaneous stratification refutes the Superposition Principle and the Principle of Lateral Continuity.

 

We now know, the Superposition Principle only applies on a rare occasion where sedimentary deposits are laid down in still water.

Superposition is required for the long evolutionary timescale, but the evidence shows it is not the general rule, as was once believed. Most sediment is laid down in moving water, where particle segregation is the general rule, resulting in the simultaneous deposition of strata/layers as shown in the photo.

 

See many other examples of rapid stratification (with geological features): www.flickr.com/photos/101536517@N06/sets/72157635944904973/

 

Rapid, simultaneous formation of layers/strata, through particle segregation in moving water, is so easily created it has even been described by sedimentologists (working on flume experiments) as a law ...

"Upon filling the tank with water and pouring in sediments, we immediately saw what was to become the rule: The sediments sorted themselves out in very clear layers. This became so common that by the end of two weeks, we jokingly referred to Andrew's law as "It's difficult not to make layers," and Clark's law as "It's easy to make layers." Later on, I proposed the "law" that liquefaction destroys layers, as much to my surprise as that was." Ian Juby, www.ianjuby.org/sedimentation/

 

The example in the photo is the result of normal, everyday tidal action in a single incident. Where the water current or movement is more turbulent, violent, or catastrophic, great depths (many metres) of stratified sediment can be laid down in a short time. Certainly not the many millions of years assumed by evolutionists.

 

The composition of strata formed in any deposition event. is related to whatever materials are in the sediment mix, not to any particular timescale. Whatever is in the mix will be automatically sorted into strata/layers. It could be sand, or other material added from mud slides, erosion of chalk deposits, coastal erosion, volcanic ash etc. Any organic material (potential fossils), alive or dead, engulfed by, or swept into, a turbulent sediment mix, will also be sorted and buried within the rapidly, forming layers.

 

See many other examples of rapid stratification with geological features: www.flickr.com/photos/101536517@N06/sets/72157635944904973/

 

Stratified, soft sand deposit. demonstrates the rapid, stratification principle.

Important, field evidence which supports the work of the eminent, sedimentologist Dr Guy Berthault MIAS - Member of the International Association of Sedimentologists.

(Dr Berthault's experiments (www.sedimentology.fr/)

And also the experimental work of Dr M.E. Clark (Professor Emeritus, U of Illinois @ Urbana), Andrew Rodenbeck and Dr. Henry Voss, (www.ianjuby.org/sedimentation/)

 

Location: Sandown, Isle of Wight. Formed 06/06/2018, This field evidence demonstrates that multiple strata in sedimentary deposits do not need millions of years to form and can be formed rapidly. This natural example confirms the principle demonstrated by the sedimentation experiments carried out by Dr Guy Berthault and other sedimentologists. It calls into question the standard, multi-million year dating of sedimentary rocks, and the dating of fossils by depth of burial or position in the strata.

Mulltiple strata/layers are evident in this example.

 

Dr Berthault's experiments (www.sedimentology.fr/) and other experiments (www.ianjuby.org/sedimentation/) and field studies of floods and volcanic action show that, rather than being formed by gradual, slow deposition of sucessive layers superimposed upon previous layers, with the strata or layers representing a particular timescale, particle segregation in moving water or airborne particles can form strata or layers very quickly, frequently, in a single event.

youtu.be/wFST2C32hMQ

youtu.be/SE8NtWvNBKI

And, most importantly, lower strata are not older than upper strata, they are the same age, having been created in the same sedimentary episode.

Such field studies confirm experiments which have shown that there is no longer any reason to conclude that strata/layers in sedimentary rocks relate to different geological eras and/or a multi-million year timescale. www.youtube.com/watch?v=5PVnBaqqQw8&feature=share&amp.... they also show that the relative position of fossils in rocks is not indicative of an order of evolutionary succession. Obviously, the uniformitarian principle, on which the geologic column is based, can no longer be considered valid. And the multi-million, year dating of sedimentary rocks and fossils needs to be reassessed. Rapid deposition of stratified sediments also explains the enigma of polystrate fossils, i.e. large fossils that intersect several strata. In some cases, tree trunk fossils are found which intersect the strata of sedimentary rock up to forty feet in depth. upload.wikimedia.org/wikipedia/commons/thumb/0/08/Lycopsi... They must have been buried in stratified sediment in a short time (certainly not millions, thousands, or even hundreds of years), or they would have rotted away. youtu.be/vnzHU9VsliQ

 

In fact, the vast majority of fossils are found in good, intact condition, which is testament to their rapid burial. You don't get good fossils from gradual burial, because they would be damaged or destroyed by decay, predation or erosion. The existence of so many fossils in sedimentary rock on a global scale is stunning evidence for the rapid depostion of sedimentary rock as the general rule. It is obvious that all rock containing good intact fossils was formed from sediment laid down in a very short time, not millions, or even thousands of years.

 

See set of photos of other examples of rapid stratification: www.flickr.com/photos/101536517@N06/sets/72157635944904973/

 

Carbon dating of coal should not be possible if it is millions of years old, yet significant amounts of Carbon 14 have been detected in coal and other fossil material, which indicates that it is less than 50,000 years old. www.ldolphin.org/sewell/c14dating.html

 

www.grisda.org/origins/51006.htm

 

Evolutionists confidently cite multi-million year ages for rocks and fossils, but what most people don't realise is that no one actually knows the age of sedimentary rocks or the fossils found within them. So how are evolutionists so sure of the ages they so confidently quote? The astonishing thing is they aren't. Sedimentary rocks cannot be dated by radiometric methods*, and fossils can only be dated to less than 50,000 years with Carbon 14 dating. The method evolutionists use is based entirely on assumptions. Unbelievably, fossils are dated by the assumed age of rocks, and rocks are dated by the assumed age of fossils, that's right ... it is known as circular reasoning.

 

* Regarding the radiometric dating of igneous rocks, which is claimed to be relevant to the dating of sedimentary rocks, in an occasional instance there is an igneous intrusion associated with a sedimentary deposit -

Prof. Aubouin says in his Précis de Géologie: "Each radioactive element disintegrates in a characteristic and constant manner, which depends neither on the physical state (no variation with pressure or temperature or any other external constraint) nor on the chemical state (identical for an oxide or a phosphate)."

"Rocks form when magma crystallizes. Crystallisation depends on pressure and temperature, from which radioactivity is independent. So, there is no relationship between radioactivity and crystallisation.

Consequently, radioactivity doesn't date the formation of rocks. Moreover, daughter elements contained in rocks result mainly from radioactivity in magma where gravity separates the heavier parent element, from the lighter daughter element. Thus radiometric dating has no chronological signification." Dr. Guy Berthault www.sciencevsevolution.org/Berthault.htm

 

Visit the fossil museum:

www.flickr.com/photos/101536517@N06/sets/72157641367196613/

 

Just how good are peer reviews of scientific papers?

www.sciencemag.org/content/342/6154/60.full

www.examiner.com/article/want-to-publish-science-paper-ju...

 

The neo-Darwinian idea that the human genome consists entirely of an accumulation of billions of mutations is, quite obviously, completely bonkers. Nevertheless, it is compulsorily taught in schools and universities as 'science'.

www.flickr.com/photos/truth-in-science/35505679183

Durga

------

 

In Hinduism, Durga one who can redeem in situations of utmost distress; is a form of Devi, the supremely radiant goddess, depicted as having ten arms, riding a lion or a tiger, carrying weapons and a lotus flower, maintaining a meditative smile, and practising mudras, or symbolic hand gestures.

 

An embodiment of creative feminine force (Shakti), Durga exists in a state of tantrya (independence from the universe and anything/anybody else, i.e., self-sufficiency) and fierce compassion. Kali is considered by Hindus to be an aspect of Durga. Durga is also the mother of Ganesha and Kartikeya. She is thus considered the fiercer, demon-fighting form of Shiva's wife, goddess Parvati. Durga manifests fearlessness and patience, and never loses her sense of humor, even during spiritual battles of epic proportion.

 

The word Shakti means divine feminine energy/force/power, and Durga is the warrior aspect of the Divine Mother. Other incarnations include Annapurna and Karunamayi. Durga's darker aspect Kali is represented as the consort of the god Shiva, on whose body she is often seen standing.

Durga Slays Mahishasura, Mahabalipuram sculpture.

 

As a goddess, Durga's feminine power contains the energies of the gods. Each of her weapons was given to her by various gods: Rudra's trident, Vishnu's discus, Indra's thunderbolt, Brahma's kamandalu, Kuber's Ratnahar, etc.

 

According to a narrative in the Devi Mahatmya story of the Markandeya Purana text, Durga was created as a warrior goddess to fight an asura (an inhuman force/demon) named Mahishasura. He had unleashed a reign of terror on earth, heaven and the nether worlds, and he could not be defeated by any man or god, anywhere. The gods went to Brahma, who had given Mahishasura the power not to be defeated by a man. Brahma could do nothing. They made Brahma their leader and went to Vaikuntha — the place where Vishnu lay on Ananta Naag. They found both Vishnu and Shiva, and Brahma eloquently related the reign of terror Mahishasur had unleashed on the three worlds. Hearing this Vishnu, Shiva and all of the gods became very angry and beams of fierce light emerged from their bodies. The blinding sea of light met at the Ashram of a priest named Katyan. The goddess Durga took the name Katyaayani from the priest and emerged from the sea of light. She introduced herself in the language of the Rig-Veda, saying she was the form of the supreme Brahman who had created all the gods. Now she had come to fight the demon to save the gods. They did not create her; it was her lila that she emerged from their combined energy. The gods were blessed with her compassion.

 

It is said that upon initially encountering Durga, Mahishasura underestimated her, thinking: "How can a woman kill me, Mahishasur — the one who has defeated the trinity of gods?" However, Durga roared with laughter, which caused an earthquake which made Mahishasur aware of her powers.

 

And the terrible Mahishasur rampaged against her, changing forms many times. First he was a buffalo demon, and she defeated him with her sword. Then he changed forms and became an elephant that tied up the goddess's lion and began to pull it towards him. The goddess cut off his trunk with her sword. The demon Mahishasur continued his terrorizing, taking the form of a lion, and then the form of a man, but both of them were gracefully slain by Durga.

 

Then Mahishasur began attacking once more, starting to take the form of a buffalo again. The patient goddess became very angry, and as she sipped divine wine from a cup she smiled and proclaimed to Mahishasur in a colorful tone — "Roar with delight while you still can, O illiterate demon, because when I will kill you after drinking this, the gods themselves will roar with delight".[cite this quote] When Mahashaur had half emerged into his buffalo form, he was paralyzed by the extreme light emitting from the goddess's body. The goddess then resounded with laughter before cutting Mahishasur's head down with her sword.

 

Thus Durga slew Mahishasur, thus is the power of the fierce compassion of Durga. Hence, Mata Durga is also known as Mahishasurmardhini — the slayer of Mahishasur. According to one legend, the goddess Durga created an army to fight against the forces of the demon-king Mahishasur, who was terrorizing Heaven and Earth. After ten days of fighting, Durga and her army defeated Mahishasur and killed him. As a reward for their service, Durga bestowed upon her army the knowledge of jewelry-making. Ever since, the Sonara community has been involved in the jewelry profession [3].

 

The goddess as Mahisasuramardhini appears quite early in Indian art. The Archaeological Museum in Matura has several statues on display including a 6-armed Kushana period Mahisasuramardhini that depicts her pressing down the buffalo with her lower hands [4]. A Nagar plaque from the first century BC - first century AD depicts a 4-armed Mahisamardhini accompanied by a lion. But it is in the Gupta period that we see the finest representations of Mahisasuramardhini (2-, 4-, 6-, and at Udayagiri, 12-armed). The spear and trident are her most common weapons. a Mamallapuram relief shows the goddess with 8 arms riding her lion subduing a bufalo-faced demon (as contrasted with a buffalo demon); a variation also seen at Ellora. In later sculptures (post-seventh Century), sculptures show the goddess having decapitated the buffalo demon

 

Durga Puja

----------

 

Durga puja is an annual Hindu festival in South Asia that celebrates worship of the Hindu goddess Durga. It refers to all the six days observed as Mahalaya, Shashthi , Maha Saptami, Maha Ashtami, Maha Navami and Bijoya Dashami. The dates of Durga Puja celebrations are set according to the traditional Hindu calendar and the fortnight corresponding to the festival is called Devi Paksha and is ended on Kojagori Lokkhi Puja

 

Durga Puja is widely celebrated in the Indian states of West Bengal, Assam, Jharkhand, Orissa and Tripura where it is a five-day annual holiday.In West Bengal and Tripura which has majority of Bengali Hindus it is the Biggest festival of the year. Not only is it the biggest Hindu festival celebrated throughout the State, but it is also the most significant socio-cultural event in Bengali society. Apart from eastern India, Durga Puja is also celebrated in Delhi, Uttar Pradesh, Bihar, Maharashtra, Gujarat, Punjab, Kashmir, Karnataka and Kerala. Durga Puja is also celebrated as a major festival in Nepal and in Bangladesh where 10% population are Hindu. Nowadays, many diaspora Bengali cultural organizations arrange for Durgotsab in countries such as the United States, Canada, United Kingdom, Australia, Germany, France, The Netherlands, Singapore and Kuwait, among others. In 2006, a grand Durga Puja ceremony was held in the Great Court of the British Museum.

 

The prominence of Durga Puja increased gradually during the British Raj in Bengal. After the Hindu reformists identified Durga with India, she became an icon for the Indian independence movement. In the first quarter of the 20th century, the tradition of Baroyari or Community Puja was popularised due to this. After independence, Durga Puja became one of the largest celebrated festivals in the whole world.

 

Durga Puja also includes the worship of Shiva, Lakshmi, Ganesha, Saraswati and Kartikeya. Modern traditions have come to include the display of decorated pandals and artistically depicted idols (murti) of Durga, exchange of Bijoya Greetings and publication of Puja Annuals.

The beauty of an old wall. its colors and textures. Random, but yet not.

Form Factory

 

location: Poznań

category: store

 

// follow me on:

facebook

instagram

portfolio

 

spent the weekend at a workshop for studio lighting for the figure. 12 photographers, 3 models, 3 assistants, 1 instructor, and 2 days worth of images to process.

Airbus Industrie was formed in response to American domination of commercial aviation aircraft in the 1950s and 1960s. While several European aircraft companies built successful aircraft during this time period—namely British manufacturer deHavilland and French manufacturer Sud-Aviation—their production runs, even with the groundbreaking Comet and Caravelle, were nowhere near the American giants, Boeing, Lockheed and Douglas.

 

By the late 1960s, even these companies were struggling. Hawker-Siddeley had only mild success with the Trident, while Dassault’s entry, the Mercure, was a disaster; both were crushed by the Boeing 727 and 737. With this in mind, Hawker-Siddeley and Nord of France entered into talks about pooling their resources. At the same time, European airlines were also considering an aircraft that would be better suited for European routes—an “airbus” that would have the wide-body design of the McDonnell Douglas DC-10 but the fuel efficiency of a 737. Britain and France were already working on the supersonic Concorde project, so there was precedence.

 

Airbus Industrie was duly founded in 1970, formed by a consortium of Aerospatiale of France (which had acquired Nord), Deutsche Airbus (a German company specifically formed for the project), Hawker-Siddeley, Fokker-VFW of the Netherlands, and CASA of Spain. The French more or less took the lead for Airbus. The company’s first project was the development of the A300, which first flew in 1972. Orders were slow but steady, but Airbus would not truly be able to consider itself level with the American manufacturers until 1981, when the smaller A320, the world’s first fly-by-wire airliner utilizing microprocessor flight technology.

 

With the withdrawal of Lockheed from the commercial airliner business in the mid-1980s, McDonnell Douglas concentrating on smaller aircraft about the same time, and the fall of the Soviet Union in 1991, Airbus was poised to contest with Boeing over the future of commercial aviation. Airbus also pioneered the use of aerial transports to move components (namely fuselage pieces) between its factories in France and Germany, at first using Aero Spacelines Guppies (converted Boeing 377 Stratocruisers), then the purpose-built Airbus Beluga (a radical conversion of the A300 airframe).

 

Though the A310 and A320 were very successful on a regional basis, Airbus wanted to compete with Boeing’s long-range aircraft, the 747, 757, and 767. This was done with the introduction of the twin-engined A330 in 1994 (billed as a replacement for the A300), and two years earlier, the four-engined A340 (meant to compete with the 747). Once ETOPS was approved by the United States and the European Union in the mid-1990s, allowing two-engined aircraft to fly transatlantic routes, interest waned in the A340 to a certain extent for the A330.

 

However, Airbus’ primary focus shifted to the A380 by this time. Known initially as the A3XX, the A380 was a double-decked design that would be the largest airliner ever built. Development of such a radical design led to several cost overruns, and there was a real fear that the A380 would never fly. It did in 2005 and entered revenue service two years later. Airbus simultaneously announced the development of the A350, an aircraft meant to replace older A320s and compete directly with Boeing 787 Dreamliner.

 

Airbus was acquired by the British-German consortium EADS in 2006, following several years of negotiations, though it remains its own company under the Airbus name. It also began expanding into military contracts (another area dominated by non-European companies—in this case, Boeing, Lockheed, and Ilyushin) with the marketing of the A330 MRTT tanker and A400M Grizzly tactical transport. At the time of this writing, Airbus is one of the most powerful aviation companies in existence.

 

Stromboli is a small island in the Tyrrhenian Sea, off the north coast of Sicily, containing one of the three active volcanoes in Italy. It is one of the eight Aeolian Islands, a volcanic arc north of Sicily. This name is derived from the Ancient Greek name Strongulē which was given to it because of its round swelling form. The island's population is between 400 and 850. The volcano has erupted many times and is constantly active with minor eruptions, often visible from many points on the island and from the surrounding sea, giving rise to the island's nickname "Lighthouse of the Mediterranean". The most recent major eruption was on 13 April 2009. Stromboli stands 926 m (3,034 ft) above sea level, and over 2,700 m (8,860 ft) on average above the sea floor.There are three active craters at the peak. A significant geological feature of the volcano is the Sciara del Fuoco ("Stream of fire"), a big horseshoe-shaped depression generated in the last 13,000 years by several collapses on the northwestern side of the cone. Two kilometers to the northeast lies Strombolicchio, the volcanic plug remnant of the original volcano.Mt. Stromboli has been in almost continuous eruption for the past 2,000 years. A pattern of eruption is maintained in which explosions occur at the summit craters, with mild to moderate eruptions of incandescent volcanic bombs, at intervals ranging from minutes to hours. This Strombolian eruption, as it is known, is also observed at other volcanoes worldwide. Eruptions from the summit craters typically result in a few short, mild, but energetic bursts, ranging up to a few hundred meters in height, containing ash, incandescent lava fragments and stone blocks. Mt. Stromboli's activity is almost exclusively explosive, but lava flows do occur at times when volcanic activity is high: an effusive eruption occurred in 2002, the first in 17 years, and again in 2003, 2007, and 2013-14.The two villages San Bartolo and San Vincenzo lie in the northeast while the smaller village Ginostra lies in the southwest. Administratively, they are one of the frazione of Lipari.In the early 1900s a few thousand people inhabited the island, but after several emigrations the population numbered a few hundred by the mid-1950s.

 

Stromboli è un'isola dell'Italia appartenente all'arcipelago delle isole Eolie, in Sicilia. Si tratta di un vulcano attivo facente parte dell'Arco Eoliano. Posta nel bacino Tirreno del mare Mediterraneo occidentale, l'isola è la più settentrionale delle Eolie e si estende su una superficie di 12,2 km².L'edificio vulcanico è alto 926 m s.l.m. e raggiunge una profondità compresa tra 1300 m e 2400 m al di sotto del livello del mare. Stromboli ha una persistente attività esplosiva ed è uno dei vulcani più attivi del mondo. A poche centinaia di metri a nord-est dell'isola di Stromboli si trova il neck di Strombolicchio, residuo di un antico camino vulcanico. L'isolotto ospita un faro della Marina, disabitato e automatizzato.Lo Stromboli è un vulcano esplosivo e le sue eruzioni avvengono con una frequenza media di circa una ogni ora. La sua attività "ordinaria" ha luogo ad una quota di 750 m s.l.m. dalle diverse bocche eruttive presenti nell'area craterica e allineate in direzione NE-SW. Tale attività consiste in esplosioni intermittenti di media energia, della durata di pochi secondi ad intervalli di 10–20 minuti, durante le quali vengono emesse piccole quantità di bombe scoriacee incandescenti, lapilli, cenere e blocchi, con velocità di uscita compresa tra 20 a 120 metri al secondo ed altezze comprese tra poche decine fino ad alcune centinaia di metri. L'attività eruttiva è associata ad un degassamento pressoché continuo dall'area craterica, il cui volume stimato è di 6000-12000 t/gi, e che consiste principalmente di H2O (3200-6300 t/g), CO2 (2900-5800 t/g), SO2 (400-800 t/g) e quantità minori di HCl e HF.Periodi di totale inattività, senza lanci di materiale, sono piuttosto rari. Il più lungo tra quelli registrati si è protratto per circa due anni, dal 1908 al 1910. Periodi di prolungata quiescenza, della durata di qualche mese, sono stati registrati più volte.

L'attività normale può essere periodicamente interrotta da esplosioni di maggiore energia, dette "esplosioni maggiori". Questi eventi consistono di brevi ma violente esplosioni, durante le quali vengono prodotti lanci balistici di blocchi e bombe di dimensioni anche metriche a distanze di alcune centinaia di metri, associati a piogge di lapilli e cenere; la distribuzione dei prodotti è solitamente confinata all'interno dell'area craterica. Sono distribuite non omogeneamente nel tempo, ma si tratta mediamente di 2,1 eventi ogni anno.

Le eruzioni stromboliane più violente mai accadute in tempi storici risalgono al 1919 e al 1930, ed entrambe (pare) furono causate da grandi infiltrazioni d'acqua marina nel camino vulcanico: il magma, a contatto con l'acqua, avrebbe causato violente esplosioni con grande emissione di vapori e scorie, accompagnate da violenti terremoti. Per la prima e finora unica volta nella storia del vulcano, delle colate laviche si riversarono anche al di fuori della Sciara del Fuoco, arrivando a lambire i centri abitati (Piscità fu sfiorata ad appena 20 metri), causando ingenti danni e numerose vittime, e causando un piccolo tsunami che generò un'onda di 2–3 m che arrivò a far danni fino a Capo Vaticano, in Calabria.I parossismi rappresentano le manifestazioni più energetiche del vulcano di Stromboli; consistono in violente ed improvvise esplosioni "tipo cannonata", durante le quali avviene l'emissione sostenuta di scorie incandescenti, ceneri, bombe e blocchi litici a distanze considerevoli, fino ad interessare le zone abitate dell'isola. Tali esplosioni possono produrre nubi convettive che raggiungono quote di 10 km. Durante i parossismi sono emessi volumi sensibilmente maggiori di materiali rispetto alle eruzioni normali e a quelle maggiori e frequentemente possono avvenire profonde modificazioni dell'area craterica. L'ultimo evento parossistico è avvenuto il 15 marzo 2007 all'interno dell'eruzione di febbraio-aprile 2007.Il 27 febbraio 2007, con un'iniziale effusione di lava dal cratere di NE, durata alcune ore e seguita dall'apertura di una bocca effusiva nella Sciara del Fuoco, a quota 400 m s.l.m. circa. Il 9 marzo 2007 si è aperta una seconda bocca sempre sulla Sciara del Fuoco, ma posizionata a circa 500 m s.l.m.; l'attività di questa bocca è stata comunque breve (circa 24 ore). Il 2 aprile 2007 è infine terminata anche l'effusione di lava dalla bocca di quota 400 m s.l.m. Il 4 maggio 2009 il vulcano ha ripreso l'attività eruttiva.

Nell'ultimo secolo sono riportati circa 26 episodi durante i quali si sono avute emissioni laviche. I prodotti emessi sono rappresentati principalmente da colate di spessore variabile; la morfologia del vulcano obbliga le colate di lava a riversarsi sul versante nord-occidentale, dove sono confinate all'interno della Sciara di Fuoco e quindi non rappresentano un pericolo per la popolazione dell'isola. Le colate fuoriescono generalmente attraverso fratture eruttive nella zona craterica o all'interno della Sciara del Fuoco, ma possono generarsi anche per tracimazione dal bordo craterico.La storia geologica dell'isola di Stromboli comincia circa 200.000 anni fa, quando un primo vulcano attivo di grandi dimensioni emerge dal mare, in posizione NE rispetto all'isola; di questo vulcano antico rimane soltanto il condotto solidificato (neck) rappresentato da Strombolicchio (vedi sotto).Il vero e proprio vulcano di Stromboli emerge dal mare circa 160.000 anni fa. Inizialmente i centri di emissione sono nella parte meridionale dell'isola, dove affiorano le unità più antiche appartenenti ai complessi del Paleostromboli I e II.Circa 35.000 anni fa il centro di emissione migra leggermente verso nord e le emissioni di lava e i depositi piroclastici legati a eruzioni esplosive danno origine ad un cono che raggiunge quota 700 m s.l.m. (Paleostromboli III).Le fasi successive della storia di Stromboli vedono la formazione ed il collasso calderico di vari edifici vulcanici. In particolare, a circa 34.600 anni fa risale il complesso eruttivo di Scari, osservabile presso Scari e a sud del paese sotto forma di spesse sequenze di bombe vulcaniche, lapilli e lahar. Mentre successivo (circa 26.000 anni fa) è il complesso del Vancori, caratterizzato da depositi piroclastici e basalti shoshonitici. In questa fase, la cima del vulcano era occupata probabilmente da una grande caldera. Il ciclo Scari-Vancori si conclude con il collasso laterale (una grande frana) del settore occidentale e nordoccidentale dell'edificio vulcanico.La fase successiva, a partire da circa 13.800 anni fa, vede la ricostruzione dell'edificio nel settore nordoccidentale. Il nuovo centro eruttivo, detto Neostromboli, è ubicato a nord del costone dei Vancori. Contemporaneamente, alcuni centri eruttivi secondari danno origine al "Timpone del Fuoco" presso Ginostra, alle lave di San Bartolo e di San Vincenzo.All'incirca tra 10000 e 5000 anni fa il settore nordoccidentale subisce nuovi collassi laterali (frane), lasciando una profonda depressione a forma di ferro di cavallo che si estende dalla cima fino ad una profondità di circa 2.000 m sotto il livello del mare: la Sciara del Fuoco. Lentamente la depressione viene riempita da materiale piroclastico e colate di lava. Il centro eruttivo attuale è rappresentato da un grande cono piroclastico che si trova nella parte sommitale della Sciara del Fuoco, a quota inferiore rispetto al Pizzo Sopra la Fossa, ed è caratterizzato, come detto sopra, dalla presenza di tre crateri allineati parallelamente alla Sciara, in direzione NE-SW.

Stromboli è nota, frequentata ed abitata fin dall'antichità remota, e la sua economia si è sempre fondata sulle produzioni agricole tipicamente mediterranee: olivo, vite (malvasia coltivato basso in giardini terrazzati), fichi - e poi sulla pesca e sulla marineria. Fino al XIX secolo questa economia fu fiorente e Stromboli arrivò a contare circa 2700 abitanti, precisamente nel 1891, secondo i dati ufficiali a disposizione (fonte Mastriani e ISTAT ).Il peggioramento delle condizioni economiche seguito all'unità d'Italia, il ripetersi di eruzioni e terremoti (in particolare l'eruzione del 1930) e infine l'attacco della peronospora che negli anni trenta sterminò la più redditizia coltura locale, quella della vite, fecero sì che una grandissima maggioranza degli strombolani prendesse la via dell'emigrazione, soprattutto verso l'Australia e l'America e l'isola rischiò seriamente di restare abbandonata.Venne riscoperta dopo la guerra da Roberto Rossellini che, con il film del 1949 Stromboli terra di Dio (con protagonista femminile la giovane Ingrid Bergman), portò l'isola e la sua straordinarietà all'attenzione del pubblico.Il vulcano è chiamato dai suoi abitanti (gli stombolani) Struògnoli, o anche Iddu (Lui in siciliano), in riferimento alla natura divina che un tempo era attribuita ai fenomeni naturali incontrollabili.Il nome proviene dal greco antico Στρογγύλη (rotondo) per via della sua forma. In siciliano strummulu significa trottola.Stromboli dà il nome a un tipo di vulcani caratterizzati da un'attività vulcanica effusiva detta Stromboliana.I principali borghi abitati sono San Vincenzo (o semplicemente il paese di Stromboli, anticamente era borgo degli agricoltori) con l'approdo storico di Scari, Piscità e Ficogrande, che anticamente era il borgo degli armatori.A sudovest, raggiungibile solo via mare, c'è Ginostra dove d'inverno restano circa 30 o 40 abitanti e dove l'unico mezzo di trasporto è il mulo.A Stromboli c'è una scuola elementare e media per i pochi ragazzi abitanti dell'isola. Dopo le scuole solitamente i ragazzi vanno a Lipari dove sono presenti alcune scuole secondarie di secondo grado.Da Napoli, Lipari, Milazzo e Messina Stromboli è raggiungibile col traghetto e, d'estate, anche in aliscafo da Messina, Reggio Calabria, Vibo Valentia e Tropea.Il flusso turistico verso l'isola, che costituisce la principale risorsa economica di Stromboli, fino agli anni settanta fu rappresentato soprattutto da persone alla ricerca di un ambiente particolare, naturale ed integro e non privo di scomodità come mancanza di elettricità, scarsità d'acqua. Nei decenni successivi le scomodità sono molto diminuite e il turismo è molto cresciuto, anche se resta limitato prevalentemente ai mesi centrali estivi.L'isola è meta di turisti in cerca di tranquillità: anche per questo nei locali dell'isola è vietato diffondere musica oltre le due di notte.Giornalmente, inoltre, si organizzano escursioni al vulcano con guide esperte, che portano ad oltre 900 metri sul livello del mare. Tramite imbarcazioni è inoltre possibile raggiungere nelle ore notturne la vicina e movimentata Panarea, lo scoglio di Strombolicchio e Ginostra, caratteristica località sull'isola di Stromboli dove l'unico mezzo di trasporto sono i muli (ne sono presenti una decina in tutto) e che è irraggiungibile per via terrestre dall'altra parte abitata dell'isola.Stromboli è anche meta, seppur in misura minore, di molti giovani, che si recano nei locali e nelle feste sulla spiaggia periodicamente organizzate nella stagione estiva.Caratteristica dell'isola, oltre alle stradine strette percorribili solo dal motocarro e dai motorini elettrici, che i turisti affittano sull'isola stessa, è la mancata illuminazione notturna nelle strade, che il Comune a cui l'isola fa riferimento, ovvero quello di Lipari, vuol mantenere come importante attrattiva turistica. Dall'Osservatorio, infine, si può vedere la lava del vulcano, l'unico delle Isole Eolie perennemente in attività e il cielo stellato evidenziato dalla mancanza di illuminazione.Durante la stagione turistica partono imbarcazioni per permettere ai turisti di fare il bagno presso lo scoglio di Strombolicchio.

 

Font : Wikipedia

 

Work inspired by Peter Randall Page

1 2 ••• 37 38 40 42 43 ••• 79 80