View allAll Photos Tagged Dynamic

Salon de l' auto Genève

Such energy on the stage!

 

Had a great time last night watching my friend Mondo's band, Secret Wars, play at The Piston. I got put in charge of being key photographer. Some shots were blurry but I got some gems I think. :D

Dynamic Automotive - Where Customers Become Friends - for lots of videos also see: www.frederick.com/dynamic-automotive

REYKJAVICK (ICELAND), June, 26. 2017. Iceland and NATO Flags are waving on a warship mast as Dynamic Mongoose starts in Iceland.Dynamic Mongoose is a high-end multi-national exercise designed to sharpen existing NATO Anti-Submarine Warfare (ASW) skills in a deep water training area. Dynamic Mongoose 2017 showcases NATO Maritime capabilities and interoperability. This year, the exercise involves more than 2,000 military and maritime personnel from 10 NATO nations as well as 5 submarines,11 ships and 8 Maritime Patrol Aircraft (MPA). NATO Photo by FRAN CPO Christian Valverde

A British multiple launch rocket system assigned to 176th Battery, 19th Regiment Royal Artillery, waits in position for firing missions during Dynamic Front 18 in Grafenwoehr, Germany, March 7, 2018. Exercise Dynamic Front 18 includes approximately 3,700 participants from 26 nations training together from Feb. 23-March 10, 2018. Dynamic Front is an annual U.S. Army Europe (USAREUR) exercise focused on the interoperability of U.S. Army, joint service and allied nation artillery and fire support in a multinational environment, from theater-level headquarters identifying targets to gun crews pulling lanyards in the field. (U.S. Army photo by Spc. Dustin D. Biven / 22nd Mobile Public Affairs Detachment)

unedited into the sun

Nice flare and good dynamic range from a (2) small sensors

Sigonella (ITALY) Feb 27.2019. Maritime Patrol Aircrafts P8 "Poseidon", stationned at Sigonella Air Station during Dynamic Manta 2019.Dynamic Manta is an NATO Maritime Command-led exercise designed to sharpen the anti-submarine warfare and anti-surface ship warfare skills of the participating units. Dynamic Manta 2019 will be conducted in vicinity of Italy from 25 February to 8 March and include participants from 10 NATO Allies . Canada, France, Germany, Greece, Italy, Netherlands, Spain, Turkey, the United Kingdom and the United States provide in total 5 submarines, 9 ASW surface ships, 6 MPAs and 11 Rotary Wing Aircraft (Helicopters) to participate in this exercise. NATO Photo by FRAN WO Christian Valverde.

I wanted to know the usable dynamic range of my dSLRs. Here are the results of my Nikon D70 test. The results for Nikon D50 were pretty much identical. See also discussion in the strobist group.

 

Executive summary

 

Never shoot with higher ISO than 200. It is better to take underexposed shots with ISO200 than properly exposed shots at ISO800. The higher ISO will just reduce the dynamic range, whereas the same shadow details can be recovered from the underexposed low ISO shot with more highlight latitude.

 

The experiment

 

Here is how I did the test. I placed a camera on tripod and a piece of white tissue paper on the table. I set the exposure of the camera at 1/160 s and f/16, and illuminated the paper with a Nikon SB-800 flash bounced from the ceiling. I altered the light output of the flash to get darker and brighter exposures. The exposure in camera was kept constant, except for the four brightest frames, where I had to open up the aperture to f/2.8 and adjust the flash power accordingly to get every frame one stop brighter than the previous.

 

After having transferred the RAW images on a computer, I adjusted the brightness of each photo in the dcraw RAW converter so that the brightness of the piece of paper should be same for each exposure. That means the frame marked -1 EV was brightened one stop, -5 EV was brightened five stops and +3 EV was darkened three stops etc. I used the highlight recovery mode of the RAW converter to get the best possible amount of highlight detail from the brightest photos.

 

The patches shown are 100% crops from the images where the brightness has been adjusted.

 

Results for ISO200

 

At ISO200 there is about six stops of dynamic range with very little visible noise. The best dynamic range extends three stops up to +3 EV and three stops down to -3 EV from normal exposure.

 

Subjects more than three stops brighter than normal exposure will lose details because of clipping (at +4 EV or more). Subjects more than three stops darker than normal exposure will have visible noise. At -4 EV the noise is visible but not very bad. At -5 EV the details of the subject are barely visible because of noise, and at -6 EV the details are almost completely lost.

 

Results for ISO800

 

I repeated the same experiment also at ISO800. I was disappointed with the high ISO results.

 

The shadow details of the ISO800 photos were nearly identical to the shadow details of the ISO200 photos with the same exposure and same amount of light. The only effect of using a higher ISO was that the dynamic range was reduced by two stops.

 

That means the ISO800 mode is useless. It is better to shoot at ISO200 and underexpose the shots by two stops than switch to ISO800, expose normally and lose two stops of highlight details.

 

Lighting info: See setup shot.

CATANIA, Italy (March 2, 2018) French frigate FS Languedoc coming alongside in the port of Catania, Sicily pior to the pre-sail conference for NATO Exercise Dynamic Manta. Dynamic Manta is NATO's premier anti-submarine warfare exercise in the Mediterranean. NATO photo by GBRN LPhot Paul Hall.

Dynamic Comics / Heft-Reihe

> Dynamic Man / "The Sea Horror"

Script: ?

art: ?

Chesler / Dynamic / USA 1944

Reprint / Comic-Club NK 2010

ex libris MTP

www.comics.org/issue/2603/

en.wikipedia.org/wiki/Harry_%22A%22_Chesler

 

Trójczyce, gm. Orły (Poland)

Wingnut and Screwloose

Dynamic Automotive Car Show 2018 - Dynamic Automotive - Where Customers Become Friends - for lots of videos also see: www.frederick.com/dynamic-automotive

Was lucky enough to get a shot of an Evoque for the evening. Amazing car.This one's the petrol version in Dynamic trim.Rather fast it was too....

CATANIA, Italy (March 1, 2018) HS Matrozos alongside in Catania prior to NATO exercise Dynamic Manta 2018. NATO photo by GBRN LPhot Paul Hall.

REYKJAVICK (ICELAND), June, 26. 2017.HNoMS Roald Amundsen gunners open fire on fast boat threat during a Force Protection demonstration for distinguish visitors and press journalists as Dynamic Mongoose exercise kicks off. Dynamic Mongoose is a high-end multi-national exercise designed to sharpen existing NATO Anti-Submarine Warfare (ASW) skills in a deep water training area. This year, the exercise is hosted by Iceland, involves more than 2,000 military and maritime personnel from 10 NATO nations as well as 5 submarines,11 ships and 8 Maritime Patrol Aircraft (MPA). NATO Photo by FRAN CPO Christian Valverde

Lithuanian target observers scout targets during exercise Dynamic Front at Grafenwoehr military base, Germany on March 6, 2018.

Dynamic Front is a U.S. Army-led exercise focusing on the integration of joint fires and allied artillery interoperability at the Grafenwoehr Training Area (Germany), Feb. 23 - March 10, 2018. The exercise features approximately 3,700 participants from 26 allied and partner nations.

Lithuanian target observer scouts for target during exercise Dynamic Front at Grafenwoehr military base, Germany on March 6, 2018.

Dynamic Front is a U.S. Army-led exercise focusing on the integration of joint fires and allied artillery interoperability at the Grafenwoehr Training Area (Germany), Feb. 23 - March 10, 2018. The exercise features approximately 3,700 participants from 26 allied and partner nations.

Experiment with converted IR camera using a polarizing filter and HDR software. AEB +/-2 total 3 exposures processed with Photomatix.

 

High Dynamic Range (HDR)

 

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

 

HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.

 

The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.

 

Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).

 

In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).

 

Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.

 

In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.

 

An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.

 

Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.

 

Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.

 

Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range

 

Tone mapping

Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.

 

Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include

 

Adobe Photoshop

Aurora HDR

Dynamic Photo HDR

HDR Efex Pro

HDR PhotoStudio

Luminance HDR

MagicRaw

Oloneo PhotoEngine

Photomatix Pro

PTGui

 

Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

 

HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.

 

History of HDR photography

The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.

 

Mid 20th century

Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.

 

Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.

 

With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.

 

Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.

 

Late 20th century

Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.

 

In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.

 

In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.

 

Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.

 

In 1993, another commercial medical camera producing an HDR video image, by the Technion.

 

Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.

 

On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.

 

The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.

 

21st century

In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.

 

On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.

 

HDR sensors

Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.

 

Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.

 

en.wikipedia.org/wiki/High-dynamic-range_imaging

 

Infrared Photography

 

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)

 

When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.

 

The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.

 

Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.

 

Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.

 

Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.

 

False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.

 

Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.

 

Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.

 

Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.

 

As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.

 

Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.

  

Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.

 

In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.

 

There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.

 

Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.

 

In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.

 

Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.

 

An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.

 

Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.

 

While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.

 

Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.

 

Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.

 

Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".

 

Phase One digital camera backs can be ordered in an infrared modified form.

 

Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.

 

en.wikipedia.org/wiki/Infrared_photography

 

This past weekend was dreary and besieged by rainfall in the Maryland metro area but it didn't matter because our window of opportunity with the latest Land Rover came to fruition and rightfully heated up the scenario. Active as usual we enjoyed ripping runways around town while exploring the impressive features of Terrain Response and its six adaptive suspension modes in our Firenze Red 2018 Range Rover Velar R-Dynamic HSE. Intelligent, exhilarating and accommodating are the words that come to mind after a full week test driving the enthusiastic, British SUV.

In full dynamic braking, a lot of heat is generated. The fans dissipate this heat sky word. In this shot, if viewed in full screen, you can count all the fasteners holding the roof on the autorack. Almost every thing in front of it looks like a Monet painting.

Motion and emotion(3)

 

The longer is the distance between your eyes and PC displays ,The more remarkable is the effect of 3D image in your PC display.

 

Animation↓

CATANIA, Italy (March 02, 2018) SNMG2 and Allied Vessels gathered in Catania, Italy for Dynamic Manta 2018. Dynamic Manta is a NATO Maritime Command-led exercise designed to sharpen the anti-submarine warfare and anti-surface ship warfare skills of the participating units. Dynamic Manta 2018 will be conducted in vicinity of Italy from 5 March to 16 March 2018 and include participants from 10 NATO Allies.

Green River falls, Asheville

 

youtu.be/avTVhZv_Ip8

better in lightroom, please hit 'L'

SIGONELLA, Italy (March 12 , 2018) A Royal Canadian Air Force CP-140 Aurora starts engines for take off to conduct a Combined Anti-Submarine Exercise from Sigonella Air Station during Dynamic Manta18. NATO Photo by CPO FRAN Christian Valverde.

Compositionally Challenged Week 36 is SOOC With A Twist, where we are getting to know our cameras better by trying out in-camera features.

 

This petunia was shot using Dynamic Tone.

191014-FRAN-0828D-086

The NATO Maritime Command-led Dynamic Mariner/Flotex-19 (DYMR/FL19) is an exercise that tests NATO’s Response Force Maritime Component and enhances the flexibility and interoperability amongst allied nations. DYMR/FL19 involves ships, submarines, aircraft and personnel from fifteen allied nations converging off the coast of Spain between 8th and 18th September 2019.

Activities at sea, 14th October, on board spanish aircraft carrier L61 Juan Carlos I. Navigator on the bridge.

 

NATO photo by FRAN S.DZIOBA

Robin the boy wonder and two ladies in pink sports bras playing dodgeball at the 2013 Hong Kong Beach Rugby 5s, Repulse Bay, Hong Kong. For more of my rugby pictures, click here. I have more pictures from the Beach 5s, so if you played on Sunday get in touch with me as I may have taken your picture.

200221-FRAN-0828D-033

 

NATO exercise Dynamic Manta (DYMA20) runs between Feb. 24 and March 6, 2020 off the coast of Sicily. Ships, submarines, aircraft and personnel from 9 Allied nations are converging in the Central Mediterranean Sea for advance anti-submarine warfare (ASW) and anti-surface warfare (ASuW) training.

 

Photo, taken near Catania coast, on Feb. 24, 2020 shows participating surface ships and submarines posing for a photo, with FS Provence, in the foreground.

 

NATO Photo by FRAN S.Dzioba

I was invited by my friend Jos to tag along with his photoshoot at the Latin Deluxe Salsa dancing event by Salsa Contigo in CCOG eventspace in Duiven. It was my chance to try event photography without too much pressure, enjoy some salsa music and do something I had not done before, shooting fast-moving dancers in low light.

 

Lessons learned:

- Shoot with (bounced) flash and slow shutter speeds to freeze movement and show motion at the same time.

- Talk with orga and demand to be kept up-to-date on schedules and key moments

- Don't Panic.

These two cuttlefish were fantastic to watch. I rarely see them out in the open and there two were moving industriously between two pylons. I'm pretty sure they were a mated pair and suspect they were moving eggs.

 

Shot with a 10-20mm Sigma rectilinear.

 

South West Western Australia

Summer 2020.

191007-FRAN-0828D-075

The NATO Maritime Command-led Dynamic Mariner/Flotex-19 (DYMR/FL19) is an exercise that tests NATO’s Response Force Maritime Component and enhances the flexibility and interoperability amongst allied nations. DYMR/FL19 involves ships, submarines, aircraft and personnel from fifteen allied nations converging off the coast of Spain between 8th and 18th September 2019.

Aboard TCG Giresun during activities at sea, 9th October. Quarter officer on the bridge during the start of Rota naval base.

NATO Photo by FRAN S.DZIOBA

210305_SNMG2_ESPN_1527P_018

 

SNMG2 Staff and SNMG2 Flagship ESPS Cristobal Colon Flag Captain and officers attending NATO Exercise Dynamic Manta 21 Hot Wash Up Video Conference from Catania Port. On March 5, 2021.

 

DYMA 21 is a HQ MARCOM LIVEX designed to sharpen the ASW/ASUW skills of the participating units. DYMA21 LIVEX will be conducted in vicinity of Italy from 22 February to 5 March 2021, and Italy is the Host Nation of the exercise.

 

NATO Photo by SPAN L. Pons Miles

Dynamic Impact (outside, white bridle), defeats Midnight Hawk by a nose to win the Grade III Illinois Derby at Hawthorne Racecourse in Stickney, IL. 4.19.2014

1 2 ••• 16 17 19 21 22 ••• 79 80