View allAll Photos Tagged Dynamic
Sony A7R2 Fine Art Landscapes Bryce Canyon Winter Snowstorm: Elliot McGucken Fine Art Landscape Photography!
Well I was shooting fall colors in Zion National PArk when I saw that they had forecast snow for Bryce Canyon, so instead of heading back to LA, I headed out to Bryce Canyon! And I was treated to snow, sun, clouds, snowstorm, and then a glorious sunrise over the s-capped hoo-doos in Bryce! :)
Sony A7RII Bryce Canyon & Zion National Park Autumn Dr. Elliot McGucken Fine Art Landscapes
Been busy traveling and shooting landscapes and working on my books The Golden Hero's Odyssey about the golden rectangle and divine proportion I use in a lot of my compositions! Also working on my physics book on Dynamic Dimensions Theory! The equation d4/dt=ic is on a lot of the 45surf swimsuit and shirts and all! :)
Follow me & 45surf!!
www.facebook.com/45surfAchillesOdysseyMythology/
www.facebook.com/elliot.mcgucken
Here one can see the approaching snow storm which would make for beautiful snow-covered hoo-doos in Bryce Canyon later that day and the next morning! Beautiful Bryce Canyon Fine Art Sunrise!
My fine art landscape lenses for the A7RII are the Sony 16-35mm Vario-Tessar T FE F4 ZA OSS E-Mount Lens and the Sony FE 24-240mm f/3.5-6.3 OSS Lens ! Love the Carl Zeiss and super sharp Sony Glass!
Dr. Elliot McGucken Fine Art Photography!
A Boeing 767-246 registration number N767DA rolls around in Simon Bolivar International Airport in Venezuela
Un Boeing 767-246, serial N767DA visto en el aeropuerto de Maiquetia SVMI
Elliot McGucken Fine Art Ballet Photography: Fine Art Ballerina Dancer Dancing Ballet in Pointe Shoes!
Dancing for Dynamic Dimensions Theory dx4/dt=ic: The fourth dimension is expanding relative to the three spatial dimensions at the rate of c!
New ballet & landscape instagrams!
www.instagram.com/elliotmcgucken/
A pretty goddess straight out of Homer's Iliad & Odyssey!
New Instagram! instagram.com/45surf
New facebook: www.facebook.com/45surfAchillesOdysseyMythology
Join my new fine art ballet facebook page! www.facebook.com/fineartballet/
The 45EPIC landscapes and goddesses are straight out of Homer's Iliad & Odyssey!
I'm currently updating a translation with the Greek names for the gods and goddesses--will publish soon! :)
"RAGE--Sing, O goddess, the anger of Achilles son of Peleus, that brought countless ills upon the Achaeans. Many a brave soul did it send hurrying down to Hades, and many a hero did it yield a prey to dogs and vultures, for so were the counsels of Zeus fulfilled from the day on which the son of Atreus, king of men, and great Achilles, first fell out with one another. " --Homer's Iliad capturing the rage of the 45EPIC landscapes and seascapes! :)
Ludwig van Beethoven: "Music/poetry/art should strike fire from the heart of man, and bring tears from the eyes of woman."
Follow my Fine Art Ballet instagram!
Elliot McGucken Fine Art Ballet Photography: Fine Art Ballerina Dancer Dancing Ballet in Pointe Shoes! Nikon D810
Epic natural beauty! Pretty blue eyes and blonde hair!
IR converted Canon Rebel XTi. AEB +/-2 total of 3 exposures processed with Photomatix.
High Dynamic Range (HDR)
High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.
HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.
The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.
Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).
In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).
Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.
In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.
An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.
Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.
Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.
Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range
Tone mapping
Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.
Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include
Adobe Photoshop
Aurora HDR
Dynamic Photo HDR
HDR Efex Pro
HDR PhotoStudio
Luminance HDR
MagicRaw
Oloneo PhotoEngine
Photomatix Pro
PTGui
Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.
HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.
History of HDR photography
The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.
Mid 20th century
Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.
Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.
With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.
Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.
Late 20th century
Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.
In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.
In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.
Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.
In 1993, another commercial medical camera producing an HDR video image, by the Technion.
Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.
On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.
The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.
21st century
In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.
On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.
HDR sensors
Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.
Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.
en.wikipedia.org/wiki/High-dynamic-range_imaging
Infrared Photography
In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)
When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.
The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.
Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.
Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.
Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.
False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.
Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.
Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.
Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.
As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.
Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.
Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.
In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.
There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.
Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.
In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.
Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.
An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.
Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.
While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.
Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.
Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.
Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".
Phase One digital camera backs can be ordered in an infrared modified form.
Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.
Website : stevenchuphotoworks.com/ (under maintenance)
Instagram : @stevenchuphotoworks
Editing Tutorial :
Find The Clown
sellfy.com/embed/product/bRcK/
Suicide
sellfy.com/embed/product/Owom/
Cleopatra
sellfy.com/embed/product/uV8u/
Old Man
Photo taken at Portland's Buckman Field for Our Daily Challenge: Dynamic Tension.
This combined baseball, football and soccer facility, on the infield of a 1/3 mile track, was developed with funds donated by Nike.
"Work/Travail/Arbeid" an exhibition of dance, choreographed by Belgian artist Anne Teresa de Keersmaeker at the Museum of Modern Art.
Der Einsatzgruppenversorger Berlin symbolisiert beim NATO-Manöver Dynamic Mercy ein havariertes Schiff, von dem die Passagiere im Seegebiet vor Helgoland gerettet werden müssen, am 11.05.2016.
©Bundeswehr/Sascha Jonack
Breaking | accelerating the dynamic
*Blogged - paddyhamiltonstudios.blogspot.co.uk/2014/05/from-bench-ta...
200221-FRAN-0828D-116
NATO exercise Dynamic Manta (DYMA20) runs between Feb. 24 and March 6, 2020 off the coast of Sicily. Ships, submarines, aircraft and personnel from 9 Allied nations are converging in the Central Mediterranean Sea for advance anti-submarine warfare (ASW) and anti-surface warfare (ASuW) training.
Photo, taken near Catania coast, on Feb. 24, 2020 shows an Italian submarine submerging.
NATO Photo by FRAN S.Dzioba
I stumbled upon another abandoned bus! I found this one on hwy 178 just before the SC state line. The bus was located precariously on the side of a steep incline about 20 yards below what I assumed was an abandoned trailer. There was a truck out front and I drove past a few times before getting up the guts to go explore. I yelled a few times while getting out of my car to see if anyone was around. No one answered so I headed down to the bus. The bus was on a very narrow uneven 'ledge' on the side of the mountain and was propped up on the rear end with some cinder blocks and other precariously placed items, how it came to be down here I have no idea! As I neared the bus I could see it was filled with junk inside and I could see curtains on some of the windows so I yelled again wondering if it was home to anyone. No answer so I peeked my head in. The rear of the bus was packed to the ceiling but there was room to maneuver in the front albeit not much for my 6'1" frame. This clearly was home to someone at one point as evidenced by the curtains and a single power cord routed into the bus through the hood and into the cabin (which I did not notice until I looked at the pictures later on) with an extension cord running off of it from behind the steering wheel. Behind the steering wheel sat an old folding step stool and a large headboard for a bed. The peeling paints in the dashboard and all the other rusting and decaying elements made for some great shots. Hope you enjoy them! VIEW LARGE for some amazing deatil!
Hit 'L' to view on large.
A wet and muddy morning and a few mills. An early start with a short drive to explore with Martyn, Camerashy - uk and MkWil.
Tone Mills is a complete water-powered cloth finishing works, established by the Fox Brothers and Co at the confluence of the River Tone and the Back Stream and dates from 1830. The remains of the water wheel remain in-situ and so too do all the line shafting and gearing. The Mill later had an electric motor installed to supplement the water-wheel during times of drought, although the water wheel continued to be used for many decades after. Put simply the mill comprises of a number of key areas to accommodate the various stages of production: A Fulling area, where wet cloth was dried, scoured, cleaned and milled to the desired finish. A dying room, adjacent to the fulling area which specialised in producing an indigo colouring. Reservoirs and Sluice gates, to manage the flow of water into the wheel chamber. The wheel chamber and a later power house.
The associated machinery for all the stages of production are all in-situ, making it an industrial archaeologists paradise.
The works finally closed in 2000 and production was moved to a more contemporary location. The buildings and machinery are Grade II* listed.
My blog:
timster1973.wordpress.com
Also on Facebook
www.Facebook.com/TimKniftonPhotography
online store: www.artfinder.com/tim-knifton
Buy my photo at Getty
"The Dynamic of Sea is much different than Dynamic of Human and none of it has the same characteristic. Because the dynamic of human is merely to find another human's fault." Anonymous.
FIlter used : Gradual ND8
ISO : 100.
Aperture : f/20.
Exposure time : 40 seconds.
Date taken : 12/2/2013 @ 7.24AM
Photographed at the 2013 Oldsmobile Club of America National Meet at the Crowne Plaza Hotel in Springfield, Illinois on July 23-27, 2013. Co-hosts of the event were the Archway Oldsmobile Club and Illinois Valley Oldsmobile Club.
Please visit my collection of Motor Vehicles on Flickr where you will find over 10,000 car and truck photos organized in albums by model year, manufacturer, vehicle type, and more. This project, which began in 2008, continues to expand with new material added daily.
IONIAN SEA, Feb 28. 2019. A French Navy air crew member aboard a Maritime Patrol Aircraft "Atlantique 2" observes the sea surface activities while conducting a Combined Anti-submarine Exercise (CASEX) during Dynamic Manta 2019. Dynamic Manta is an NATO Maritime Command-led exercise designed to sharpen the anti-submarine warfare and anti-surface ship warfare skills of the participating units. NATO Photo by FRAN WO Christian Valverde.
This set will be in my gallery show at:
THE BROADWAY GALLERY
1418 Commerce, Longview, WA 98632
360-577-0544
GUEST ARTIST EXHIBITION
Featured Artists
Michael and Albert (AJ) Patnode - Artist Statement
Father and son collaboration
Our photographic art is a kinetic motion study, from the results of interacting with my son A.J and his toys.
He was born severely handicapped much like a quadriplegic. On December 17,1998. Our family’s goal has always been to help A.J. use his mind, even though he has minimal use of his body.
A.J. likes to watch lights and movement. One of the few things he can do for himself is to operate a switch that sets in motion lights and various shiny, colorful streamers and toys that swirl above his bed.
One day I took a picture of A.J. with his toys flying out from the big mobile near his bed like swings on a carnival ride. I liked the way the swirling objects and colors looked in the photo.
I wanted to study the motion more and photograph the whirling objects in an artful way, I wanted my son A.J. to be a part of it. After all, he’s the one who inspires me. When A.J. and I work together on our motion artwork, A.J. starts his streamers and objects twirling, I take the photographs.
Activating a tiny switch might not seem like much to some, but it’s all A.J. can do. He controls the direction the mobile will spin, as well as when it starts and stops. The shutter speeds are long, and sometimes, I move the camera and other times I hold it still.
I begin our creation with a Nikon digital camera. Then I use my computer with Photoshop to alter the images into what I feel might be an artistic way. Working with Photoshop, I find the best parts from several images and combine them into the final composite photograph. I consider the finished work to be fine art. The computer is just the vehicle that helps my expressions grow.
I take the photographs and A.J. adds the magic. It’s something this father and son do together. After I’ve taken a few shots, I show him the photos in the back of the camera. When the images are completed, I show him from a laptop. He just looks. He can’t tell me whether or not he likes the images, but he’s always ready to work with me again.
It offers me my only glance into A.J.’s secret world. We’ve built a large collection of images and I hope the motion and color move you as much as they do me.
A.J. inspires me to work harder to understand my life in the areas of art, photography, people, spirituality, and so much more. He truly sets my mind in motion and helps me find the beauty in everyday things.
The images in this abstract show are, Beautiful high definition, photographic prints on brushed aluminum. A new art medium for preserving photos by infusing dyes directly into specially coated aluminum sheets. The image stability of MetalPrints is 2 to 4 times the image stability of traditional silver based photographic papers.
AJ Patnode - A Journey of Hope (documentary):
www.youtube.com/watch?v=OR7m8QFcmRM
AJ'S blog:
NORTH ALTANTIC SEA, June, 27. 2017. HNoMS Ured sails in the core of 12 vessels international formation for Dynamic Mongoose Photo Exercise .Dynamic Mongoose is a high-end multi-national exercise designed to sharpen existing NATO Anti-Submarine Warfare (ASW) skills in a deep water training area. Dynamic Mongoose 2017 showcases NATO Maritime capabilities and interoperability. This year, the exercise involves more than 2,000 military and maritime personnel from 10 NATO nations as well as 5 submarines,11 ships and 8 Maritime Patrol Aircraft (MPA). NATO Photo by FRAN CPO Christian Valverde
Fine Art Ballet Photography: Nikon D810 Elliot McGucken Fine Art Ballerina Dancer Dancing Ballet!
Dancing for Dynamic Dimensions Theory dx4/dt=ic: The fourth dimension is expanding relative to the three spatial dimensions at the rate of c!
New ballet & landscape instagrams!
www.instagram.com/elliotmcgucken/
Nikon D810 Epic Fine Art Ballerina Goddess Dancing Ballet! Dr. Elliot McGucken Fine Art Ballet!
Marrying epic landscape, nature, and urban photography to ballet!
Nikon D810 with the Nikon MB-D12 Multi Battery Power Pack / Grip for D800 and D810 Digital Cameras allows one to shoot at a high to catch the action FPS! Ballerina Dance Goddess Photos! Pretty, Tall Ballet Swimsuit Bikini Model Goddess! Captured with the AF-S NIKKOR 70-200mm f/2.8G ED VR II from Nikon, and the Sigma 50mm f/1.4 DG HSM Art Lens for Nikon! Love them both!
www.facebook.com/45surfAchillesOdysseyMythology
A pretty goddess straight out of Homer's Iliad & Odyssey!
New Instagram! instagram.com/45surf
New facebook: www.facebook.com/45surfAchillesOdysseyMythology
Join my new fine art ballet facebook page! www.facebook.com/fineartballet/
The 45EPIC landscapes and goddesses are straight out of Homer's Iliad & Odyssey!
I'm currently updating a translation with the Greek names for the gods and goddesses--will publish soon! :)
"RAGE--Sing, O goddess, the anger of Achilles son of Peleus, that brought countless ills upon the Achaeans. Many a brave soul did it send hurrying down to Hades, and many a hero did it yield a prey to dogs and vultures, for so were the counsels of Zeus fulfilled from the day on which the son of Atreus, king of men, and great Achilles, first fell out with one another. " --Homer's Iliad capturing the rage of the 45EPIC landscapes and seascapes! :)
Ludwig van Beethoven: "Music/poetry/art should strike fire from the heart of man, and bring tears from the eyes of woman."
Follow my Fine Art Ballet instagram!
Nikon D810 HDR Photos Scripts Pier Sunset San Diego / La Jolla Dr. Elliot McGucken Fine Art Photography!
New blog celebrating my philosophy of photography with tips, insights, and tutorials!
Ask me any questions! :)
Nikon D810Wide Angle Zoom Lens Photos of Scripts Pier Sunset! Dr. Elliot McGucken Fine Art Landscape & Nature Photography for Los Angeles Gallery Show !
Will be busy printing and framing in nice large, matted formats and frames and museum glass! Five of these photos will be printed on 40" x 60" floating wall mounted metal sheets! I think I know which--will share photos of the photos hanging on the walls!
And I am mounting some on plexiglass/acryllic--front mounting them! Some I am printing on lossy fuji-crystal archival paper too, and then front mounting 40"x60" versions to plexiglass--will send photos!
The secret to HDR photography is that you want people to say, "Woe dude--that's unreal!" And not, "Dude--that's not real!" "Unreal" is the word they use when they're trying to figure out the photo--what makes it cool--is it a photo? Is it painted? How'd it come to be--how'd you bend the light that way? "That's not real," is what they say if you have the saturation/HDR/ etc. turned up too high. :)
Some (almost) final edits for my Los Angeles Gallery Show! Printing them on metallic paper at 13" x 19" and mounting and framing them on a 4mm 18x24 white mat and 2" dark wood frame. Also printing some 40" x 70" which is over three feet by five feet! Wish you all could come (and hang out with the goddesses)!
Let me know your favs.!
New Instagram!
Videos!
I booked a major photography show at a major LA gallery in December! Will also be giving some lectures on the story--the Hero's Odyssey Mythology--behind the photography!
Follow me on facebook!
www.facebook.com/elliot.mcgucken
Preparing for some gallery shows this fall to celebrate 300,000,000 views! Printing a few dozen photographs in ~ 30"x40" formats and mounting/framing. Here are some close-to-final edits. HDR photography 7 exposures shot at 1EV and combined in photomatix: 36 megapixel Nikon D8010 with the awesome Nikon 14-24mm f/2.8G ED AF-S Nikkor Wide Angle Zoom Lens. 45SURF Hero's Odyssey Mythology Photography!
Epic Scenic HDR Landscapes Shot with Nikon D810: Hero's Odyssey Mythology Photography!
Three-Seven exposures @ 1EV finished in photomatix.
Enjoy the Hero's Odyssey Mythology Photography, and all the best on a hero's odyssey of your own making!
High Dynamic Range (HDR) photos rock in capturing the full dynamic range of the scene!
All the best on your epic hero's odyssey from Johnny Ranger McCoy!
New blog celebrating my philosophy of photography with tips, insights, and tutorials!
Nikon D810 Sunrise Photos of Toroweap (Tuweep) Overlook Grand Canyon Arizona! Dr. Elliot McGucken Fine Art Landscape & Nature Photography for Los Angeles Gallery Show !
Exercise Dynamic Mariner tests NATO’s Response Force Maritime Component (NRF/M) and interoperability with NATO forces, enhancing flexibility and improving the ability to work together among Allied nations. It runs between 28 September and 8 October 2020.
The exercise brings together 31 surface ships, 1 submarine, 3 maritime patrol aircraft and other air assets as well as personnel, from Belgium, France, Greece, Italy, Netherlands, Spain, and the United States.
DYMR20 is led by the NATO Maritime Command and involves Standing NATO Maritime Group Two (SNMG2) and Standing NATO Mine Countermeasures Group Two (SNMCMG2), two of NATO’s Standing Forces on active duty that contribute to the Alliance’s collective defence on a permanent basis.
HNMLS Rotterdam and J.De Witt train near Hyeres in amphibious assault.
Hyeres rade, October 09th 2020.
Photo Mediacentrum Defensie (MCD) - Maartje Roos
A beautiful afternoon spent in the pool at Ashbridges Bay Skate Park in Toronto Canada.
Original photography using a Canon EOS 60D body with a Sigma 17-70mm f2.8 DC Macro OS lens.
Shameless Self Promotion:
Twitter | Facebook | Instagram | Prints
RSS Feed:
The Learning Curve Photography Flickr RSS Feed
Wanna Buy Me A Coffee?