View allAll Photos Tagged system.

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The AH-1 Cobra was developed in the mid-1960s as an interim gunship for the U.S. Army for use during the Vietnam War. The Cobra shared the proven transmission, rotor system, and the T53 turboshaft engine of the UH-1 "Huey". By June 1967, the first AH-1G HueyCobras had been delivered. Bell built 1,116 AH-1Gs for the U.S. Army between 1967 and 1973, and the Cobras chalked up over a million operational hours in Vietnam.

The U.S. Marine Corps was very interested in the AH-1G Cobra, too, but it preferred a twin-engine version for improved safety in over-water operations, and also wanted a more potent turret-mounted weapon. At first, the Department of Defense had balked at providing the Marines with a twin-engine version of the Cobra, in the belief that commonality with Army AH-1Gs outweighed the advantages of a different engine fit. However, the Marines won out and awarded Bell a contract for 49 twin-engine AH-1J SeaCobras in May 1968. As an interim measure the U.S. Army passed on thirty-eight AH-1Gs to the Marines in 1969. The AH-1J also received a more powerful gun turret with a three-barrel 20 mm XM197 cannon based on the six-barrel M61 Vulcan cannon.

 

During the 1990s, the US forces gradually phased out its Cobra fleet. The withdrawn AH-1s were typically offered to other potential operators, usually NATO allies. Some were also given to the USDA's Forest Service for fire surveillance, and a handful AH-1s went into private hands, including the NASA. Among these airframes were some USMC AH-1Js, which had in part been mothballed in the Mojave Desert since their replacement through more powerful and modern AH-1 variants and the AH-64.

About twenty airframes were, after having been de-militarized, bought by the Kaman Corporation in 2003, in a bold move to quickly respond to more than 20 inquiries for the company’s K-1200 ‘K-Max’ crane synchropter since the type’s end of production in 2001 from firefighting, logging and industry transport requirements. While not such a dedicated medium lift helicopter as the K-1200, which had from the outset been optimized for external cargo load operations, the twin-engine AH-1J promised to be a very effective alternative and a powerful basis for a conversion into a crane helicopter.

 

The result of this conversion program was the Kaman K-1300, also known as the “K-Cobra” or “Crane Cobra”. While the basic airframe of the AH-1J was retained, extensive detail modifications were made. To reduce weight and compensate for the extensive hardware changes, the SeaCobra lost its armor, the chin turret, and the stub wings. Beyond that, many invisible changes were made; the internal structure between the engine mounts was beefed up with an additional cage structure and a cargo hook was installed under the fuselage in the helicopter’s center of lift.

 

To further optimize the K-Cobra’s performance, the dynamic components were modified and improved, too. While the engine remained the same, its oil cooler was enlarged and the original output limit to 1.500 shp was removed and the gearbox was strengthened to fully exploit the twin-engine’s available power of 1,800 shp (1,342 kW). The rotor system was also modified and optimized for the transport of underslung loads: the original UH-1 dual-blade rotors were replaced with new four-blade rotors. The new main rotor with rugged heavy-duty blades offered more lift at less rotor speed, and the blades’ lift sections were moved away from the hub so that downwash and turbulences directly under the helicopter’s CoG and man hook were reduced to keep the cargo load more stable. Due to the main rotor’s slightly bigger diameter the tail rotor was changed into a slightly smaller four-blade rotor, too. This new arrangement made the K-1300 more stable while hovering or during slow speed maneuvers and more responsive to steering input.

 

The Cobra’s crew of two was retained, but the cockpit was re-arranged and split into two compartments: the pilot retained the original rear position in the tandem cockpit under the original glazing, but the gunner’s station in front of him, together with the secondary dashboard, was omitted and replaced by a new, fully glazed cabin under the former gunner position. This cabin occupied the former gun station and its ammunition supply and contained a rearward-facing workstation for a second pilot with full controls. It was accessible via a separate door or a ladder from above, through a trap door in the former gunner’s station floor, where a simple foldable bench was available for a third person. This arrangement was chosen due to almost complete lack of oversight of the slung load from the normal cockpit position, despite a CCTV (closed circuit television) system with two cameras intended for observation of slung loads. The second pilot would control the helicopter during delicate load-handling maneuvers, while the primary pilot “above” would fly the helicopter during transfer flights, both sharing the workload.

 

To accommodate the cabin under the fuselage and improve ground handling, the AH-1J’s skids were replaced by a stalky, fixed four-wheel landing gear that considerably increased ground clearance (almost 7 feet), making the attachment of loads on the ground to the main ventral hook easier, as the K-1300 could be “rolled over” the cargo on the ground and did not have to hover above it to connect. However, an external ladder had to be added so that the pilot could reach his/her workstation almost 10 feet above the ground.

 

The bulky ventral cabin, the draggy landing gear and the new lift-optimized rotor system reduced the CraneCobra’s top speed by a third to just 124 mph (200 km/h), but the helicopter’s load-carrying capacity became 35% higher and the Cobra’s performance under “hot & high” conditions was markedly improved, too.

For transfer flights, a pair of external auxiliary tanks could be mounted to the lower fuselage flanks, which could also be replaced with cargo boxes of similar size and shape.

 

K-1300 buyers primarily came from the United States and Canada, but there were foreign operators, too. A major operator in Europe became Heliswiss, the oldest helicopter company in Switzerland. The company was founded as „Heliswiss Schweizerische Helikopter AG“, with headquarters in Berne-Belp on April 17, 1953, what also marked the beginning of commercial helicopter flying in Switzerland. During the following years Heliswiss expanded in Switzerland and formed a network with bases in Belp BE, Samedan GR, Domat Ems GR, Locarno TI, Erstfeld UR, Gampel VS, Gstaad BE and Gruyères FR. During the build-up of the rescue-company Schweizerische Rettungsflugwacht (REGA) as an independent network, Heliswiss carried out rescue missions on their behalf.

 

Heliswiss carried out operations all over the world, e. g. in Greenland, Suriname, North Africa and South America. The first helicopter was a Bell 47 G-1, registered as HB-XAG on September 23, 1953. From 1963 Heliswiss started to expand and began to operate with medium helicopters like the Agusta Bell 204B with a turbine power of 1050 HP and an external load of up to 1500 kg. From 1979 Heliswiss operated a Bell 214 (external load up to 2.8 t).

Since 1991 Heliswiss operated a Russian Kamov 32A12 (a civil crane version of the Ka-27 “Helix”), which was joined by two K-1300s in 2004. They were frequently used for construction of transmission towers for overhead power lines and pylons for railway catenary lines, for selective logging and also as fire bombers with underslung water bags, the latter managed by the German Helog company, operating out of Ainring and Küssnacht in Germany and Switzerland until 2008, when Helog changed its business focus into a helicopter flight training academy in Liberia with the support of Germany's Federal Ministry of Education and Research.

A second Kamov 32A12 joined the fleet in 2015, which replaced one of the K-1300s, and Heliswiss’ last K-1300 was retired in early 2022.

  

General characteristics:

Crew: 2, plus space for a passenger

Length: 54 ft 3 in (16,56 m) including rotors

44 ft 5 in (13.5 m) fuselage only

Main rotor diameter: 46 ft 2¾ in (14,11 m)

Main rotor area: 1,677.64 sq ft (156,37 m2)

Width (over landing gear): 12 ft 6 in (3.85 m)

Height: 17 ft 8¼ in (5,40 m)

Empty weight: 5,810 lb (2,635 kg)

Max. takeoff weight: 9,500 lb (4,309 kg) without slung load

13,515 lb (6,145 kg) with slung load

 

Powerplant:

1× P&W Canada T400-CP-400 (PT6T-3 Twin-Pac) turboshaft engine, 1,800 shp (1,342 kW)

 

Performance:

Maximum speed: 124 mph (200 km/h, 110 kn)

Cruise speed: 105 mph (169 km/h, 91 kn)

Range: 270 mi (430 km, 230 nmi) with internal fuel only,

360 mi (570 km 310 nmi) with external auxiliary tanks

Service ceiling: 15,000 ft (4,600 m)

Hovering ceiling out of ground effect: 3,000 m (9,840 ft)

Rate of climb: 2,500 ft/min (13 m/s) at Sea Level with flat-rated torque

 

External load capacity (at ISA +15 °C (59.0 °F):

6,000 lb (2,722 kg) at sea level

5,663 lb (2,569 kg) at 5,000 ft (1,524 m)

5,163 lb (2,342 kg) at 10,000 ft (3,048 m)

5,013 lb (2,274 kg) at 12,100 ft (3,688 m)

4,313 lb (1,956 kg) at 15,000 ft (4,600 m)

  

The kit and its assembly:

This is/was the second contribution to the late 2022 “Logistics” Group Build at whatifmodellers.com, a welcome occasion and motivation to tackle a what-if project that had been on my list for a long while. This crane helicopter conversion of a HueyCobra was inspired by the Mil Mi-10K helicopter – I had built a 1:100 VEB Plasticart kit MANY years ago and still remembered the helicopter’s unique ventral cabin under the nose with a rearward-facing second pilot. I always thought that the AH-1 might be a good crane helicopter, too, esp. the USMC’s twin-engine variant. And why not combine everything in a fictional model?

 

With this plan the basis became a Fujimi 1:72 AH-1J and lots of donor parts to modify the basic hull into “something else”. Things started with the removal of the chin turret and part of the lower front hull to make space for the ventral glass cabin. The openings for the stub wings were faired over and a different stabilizer (taken from a Revell EC 135, including the end plates) was implanted. The attachment points for the skids were filled and a styrene tube was inserted into the rotor mast opening to later hold the new four-blade rotor. Another styrene tube with bigger diameter was inserted into the lower fuselage as a display holder adapter for later flight scene pictures. Lead beads filled the nose section to make sure the CraneCobra would stand well on its new legs, with the nose down. The cockpit was basically taken OOB, just the front seat and the respective gunner dashboard was omitted.

 

One of the big challenges of this build followed next: the ventral cabin. Over the course of several months, I was not able to find a suitable donor, so I was forced to scratch the cabin from acrylic and styrene sheet. Size benchmark became the gunner’s seat from the Cobra kit, with one of the OOB pilots seated. Cabin width was less dictated through the fuselage, the rest of the cabin’s design became a rather simple, boxy thing – not pretty, but I think a real-life retrofitted cabin would not look much different? Some PSR was done to hide the edges of the rather thick all-clear walls and create a 3D frame - a delicate task. Attaching the completed thing with the second pilot and a dashboard under the roof to the Cobra’s lower hull and making it look more or less natural without major accidents was also a tricky and lengthy affair, because I ignored the Cobra’s narrowing nose above the former chin turret.

 

With the cabin defining the ground helicopter’s clearance, it was time for the next donors: the landing gear from an Airfix 1:72 Kamow Ka-25, which had to be modified further to achieve a proper stance. The long main struts were fixed to the hull, their supporting struts had to be scratched, in this case from steel wire. The front wheels were directly attached to the ventral cabin (which might contain in real life a rigid steel cage that not only protects the second crew member but could also take the front wheels’ loads?). Looks pretty stalky!

Under the hull, a massive hook and a fairing for the oil cooler were added. A PE brass ladder was mounted on the right side of the hull under the pilot’s cockpit, while a rear-view mirror was mounted for the ventral pilot on the left side.

 

The rotor system was created in parallel, I wanted “something different” from the UH-1 dual-blade rotors. The main rotor hub was taken from a Mistercraft 1:72 Westland Lynx (AFAIK a re-boxed ZTS Plastyk kit), which included the arms up to the blades. The hub was put onto a metal axis, with a spacer to make it sit well in the new styrene tube adapter inside of the hull, and some donor parts from the Revell EC 135. Deeper, tailored blades were glued to the Lynx hub, actually leftover parts from the aforementioned wrecked VEB Plasticart 1:100 Mi-10, even though their length had to be halved (what makes you aware how large a Mi-6/10 is compared with an AH-1!). The tail rotor was taken wholesale from the Lynx and stuck to the Cobra’s tail with a steel pin.

  

Painting and markings:

Another pushing factor for this build was the fact that I had a 1:72 Begemot aftermarket decal sheet for the Kamow Ka-27/32 in The Stash™, which features, among many military helicopters, (the) two civil Heliswiss machines – a perfect match!

Using the Swiss Helix’ as design benchmark I adapted their red-over-white paint scheme to the slender AH-1 and eventually ended up with a simple livery with a white belly (acrylic white from the rattle can, after extensive masking of the clear parts with Maskol/latex milk) and a red (Humbrol 19) upper section, with decorative counter-colored cheatlines along the medium waterline. A black anti-glare panel was added in front of the windscreen. The auxiliary tanks were painted white, too, but they were processed separately and mounted just before the final coat of varnish was applied. The PE ladder as well as the rotors were handled similarly.

 

The cockpit and rotor opening interior were painted in a very dark grey (tar black, Revell 06), while the interior of the air intakes was painted bright white (Revell 301). The rotor blades became light grey (Revell 75) with darker leading edges (Humbrol 140), dark grey (Humbrol 164) hubs and yellow tips.

 

For the “HELOG/Heliswiss” tagline the lower white section had to be raised to a medium position on the fuselage, so that they could be placed on the lower flanks under the cockpit. The white civil registration code could not be placed on the tail and ended up on the engine cowling, on red, but this does not look bad or wrong at all.

The cheatlines are also decals from the Ka-32 Begemot sheet, even though they had to be trimmed considerably to fit onto the Cobra’s fuselage – and unfortunately the turned out to be poorly printed and rather brittle, so that I had to improvise and correct the flaws with generic red and white decal lines from TL Modellbau. The white cross on the tail and most stencils came from the Begemot sheet, too. Black, engine soot-hiding areas on the Cobra’s tail were created with generic decal sheet material, too.

 

The rotor blades and the wheels received a black ink treatment to emphasize their details, but this was not done on the hull to avoid a dirty or worn look. After some final details like position lights the model was sealed with semi-matt acrylic varnish, while the rotors became matt.

  

A weird-looking what-if model, but somehow a crane-copter variant of the AH-1 looks quite natural – even more so in its attractive red-and-white civil livery. The stalky landing gear is odd, though, necessitated by the ventral cabin for the second pilot. I was skeptical, but scratching the latter was more successful than expected, and the cabin blend quite well into the AH-1 hull, despite its boxy shape.

 

Royal Air Force Museum

Flight Systems F-100F Super Sabre N418FS (243-272) at Mojave Airport.

Operated by: First Canada, Chilliwack, BC

Built in: 2013

Manufacturer: Grande West

Model: Vicinity (30')

Notes:

____________________________________________

3006 is seen at the route terminus for the 11 in Harrison Hot Springs, BC. This is one of 15 Vicinity buses that are found in various BC Transit systems.

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Please do not use this photo or any part of this photo without first asking for permission, thank you.

 

____________________________________________

TheTransitCamera on Blogger and YouTube

  

A project sponsored by the German kitchen manufacturer Miele. We designed a hydroponic cultivation system for growing vegetables in the home.

Updated 20230224:

 

Images of this object in an alternate narrowband palette can be found at the link attached here - www.flickr.com/photos/homcavobservatory/52708453617/

 

With the start of the new year today and the skies in our area remaining cloudy, I thought I'd make some time to process my first 'proper' image from a recently acquired ASI2600MC Pro one-shot-color cooled astronomy camera and an applicable narrow-band filter.

 

Although I still have a variety of data to process, including some globular clusters I shot last summer, previously I did manage to make the time to process the 'first-light' short test exposures from this camera that can be found at the link attached here -

www.flickr.com/photos/homcavobservatory/52566000859/

 

Given the object's proximity in our skies at the time (in addition to being 'relatively' bright), although it only covers approximately one-sixth the available field-of-view, and thus would benefit from a longer focal-length; I decided to try the first long exposure on the Pacman Nebula (NGC 281).

 

Object Details: NGC 281 is an emission nebula which can be found glowing at magnitude 7.4 in the constellation of Cassiopeia. it spans just over 1/2 degree in our sky (e.g. slightly larger than the apparent diameter of the full moon), and although visible in binoculars under a dark sky, it's a stunning object when viewed in larger instruments.

 

Known as 'The Pacman Nebula' due to it's resemblance to the video game character, it lies approximately 10,000 light-years from Earth in the Perseus spiral arm of our Milky Way galaxy and is about 80 light-years in diameter.

 

Embedded within the nebula, and providing the energy which causes the nebula itself to glow, is the young open star cluster IC 1590. The very dark areas visible within the nebula are known as 'Bok Globules' (i.e. relatively small, dense, dark clouds of dust and gas in which stars may be forming), examples of which are shown as 2x enlargements via the insets at lower left and right.

 

Image Details: The data for the attached image were taken by Jay Edwards on October 16, 22 & 29, 2022 using an Orion 80mm f/6 carbon-fiber triplet apochromatic refractor (i.e. an ED80T CF) connected to a Televue 0.8X field flattener / focal reducer and an IDAS NBZ dual band filter which has narrowband passes centered on the emissions of Hydrogen-alpha (656.3 nanometers) and Oxygen III (495.9 & 500.7 nanometers) on an ASI2600MC Pro cooled astronomical camera.

 

The 80mm was piggybacked on a vintage 1970, 8-inch, f/7, Criterion newtonian reflector and was tracked using a Losmandy G-11 mount running a Gemini 2 control system and guided using PHD2 to control a ZWO ASI290MC planetary camera / auto-guider in an 80mm f/5 Celestron 'short-tube' refractor, which itself was piggybacked on top of the 80mm apo.

 

The image consists of five hours of total integration time (not including applicable dark, flat and flat dark calibration frames) and was constructed using a stack of one-hundred 3 minutes sub-exposures. Although I am still working out an applicable workflow for this new camera, the data were processed using a combination of PixInsight and PaintShopPro. As presented here it has been cropped to a 2160 x 3840 resolution (approximately one-third the camera's field-of-view) and the bit depth has been lowered to 8 bits per channel.

 

Given that this data was taken using a dual-band filter; I'm hoping to split out the H-alpha & OIII data, synthesize a third channel and recombine them to produce a 'Hubble-palette' like version of this object in the future.

 

Wishing everyone clear, calm & dark skies; and of course a Happy New Year !!!

System Of A Down

9.25.05

Nationwide Arena

Columbus, Ohio

 

Got home late last night from the SOAD show and had to get up early for work. I'm gonna take a nap then work on the crazy backlog of interviews, reviews and photos for the site.

A little too sudsy in the sink!

 

This is the white System Kitchen sink.

Wings & Wheels 2010, Dunsfold Aerodrome, Surrey

dad salvaged $5 Olympus zoom from the junk box in a local shop.

but 100-200mm?

when, where, how I'll use it??

I couldn't think of anything except going to Oosaka Airport!

 

Olympus OM10 x OM-System S.Zuiko Auto-Zoom 5/100-200 x kodak ProFoto XL 100

Check out my Youtube Channel for reviews, stop motions, and slideshow!:

www.youtube.com/channel/UCVOgscBmeaZkvbD6nFlj11A

 

A mini educational video showing the orbits of the eight major Solar System planets.

This image shows the symbiotic system known as CH Cyg, located only about 800 light years from Earth. The large image shows an optical view of CH Cyg, using the Digitized Sky Survey, and the inset shows a composite image containing Chandra X-ray data in red, optical data from the Hubble Space Telescope (HST) in green, and radio data from the Very Large Array (VLA) in blue.

 

CH Cyg is a binary star system containing a white dwarf that feeds from the wind of a red giant star. The material from the wind forms a hot accretion disk around the white dwarf before crashing onto the star. CH Cyg is one of only a few hundred symbiotic systems known, and one of the closest to the Earth. Symbiotic systems are fascinating objects, where the components are codependent and influence each other's structure, daily life, and evolution. They are likely progenitors of bipolar planetary nebulas and they could make up some of the systems that later explode as Type Ia supernovas, spectacular explosions visible across cosmological distances.

 

The image in the inset shows a recent powerful jet in CH Cyg, caught in action by Chandra, HST and VLA. The material in the jet is moving with a speed of over three million miles per hour and is powered by material spinning in the accretion disk around the white dwarf. The detailed structure of the X-ray jet is seen for the first time in this system, showcasing the superb high-resolution capabilities of Chandra. The curved appearance of the jet, shown in the optical by the green arc in the lower right part of the inset, reveals evidence that the direction of the jet rotates. This precession may be caused by wobbling of the accretion disk, in a manner similar to a spinning top.

 

Clumps in the outer jet, seen in X-rays, optical and radio data, provide evidence for powerful mass ejections by the jet in the past, and for interactions with shells of gas formed by the red giant. The jet can be seen as close as 20 astronomical units (AU) from the binary system, where one AU corresponds to the average distance from the Earth to the Sun. The jet extends out to distances as large as 750 AU from the binary, which is about 20 times the distance between the Sun and Pluto.

 

The shape of the jet in CH Cyg shows striking parallels with jets seen in very different astrophysical contexts, such as young stars or supermassive black holes located at the centers of galaxies. Because of its proximity it may be used as a "toy model" to study jet formation and propagation in much more complex and distant systems.

 

In a biological setting, "symbiosis" was originally defined as the "living together of unlike organisms," and describes close and long- term interactions between different species. In this sense, the astrophysical usage is apt because white dwarfs and red giants are very different stars. A red giant is extremely large and bright, with a relatively low temperature, while a white dwarf is small and faint with a high temperature.

 

Symbiosis is usually beneficial or essential to the survival of at least one of the species in the system, for example bees and flowers, birds and rhinos and clownfish and anemones. In the astrophysical context of symbiotic systems, the survival of the hot disk around the white dwarf, where the jet originates, depends on the wind of the red giant. The power, mass and the speed of the jet is closely related to the white dwarf environment including the disk. Once formed, the jet disrupts and shapes the extended envelope and environment of the red giant, as the latter evolves toward the end point of its life as a planetary nebula. However, in some cases, if the white dwarf gains too much mass from the red giant, it may end up being completely destroyed in a spectacular Type Ia supernova explosion.

 

A paper describing the new observations of CH Cyg was published in the February 20, 2010 issue of the Astrophysical Journal Letters and was led by Margarita Karovska from the Harvard-Smithsonian Center for Astrophysics (CfA). The co-authors are Terrance Gaetz from CfA, Christopher Carilli from the National Radio Astronomy Observatory, Warren Hack from Space Telescope Science Institue, and John Raymond and Nicholas Lee, both from CfA.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2010/m82/

 

Image credit: Inset image: X-ray: NASA/CXC/SAO/M.Karovska et al; Optical: NASA/ STScI; Radio: NRAO/VLA Wide field: DSS

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

Ivey's "System Failure" haunted game is not only incredibly badass, she has got TONS of goodies, from amazing devs (including herself) all over the place. This hoodie from Auxiliary, which is their hooded coat in black with goat horns and ears (SO CUTE), and these jeans from Goth1c0 are just two of these wicked cool goodies. Match them with Sn@tch's black combat boots that she sells at her store and you have a great casual look to go explore all the October-y happiness going on in SL :D

oh and FORM82 !!!!

 

Dope wall fellaz !!

NASA's Space Launch System with Orion on top.

MD, Hunt Valley MD. System Source Computer Museum.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The TIE/LN starfighter, or TIE/line starfighter, simply known as the TIE Fighter or T/F, was the standard Imperial starfighter seen in massive numbers throughout most of the Galactic Civil War and onward.

The TIE Fighter was manufactured by Sienar Fleet Systems and led to several upgraded TIE models such as TIE/sa bomber, TIE/IN interceptor, TIE/D Defender, TIE/D automated starfighter, and many more.

 

The original TIEs were designed to attack in large numbers, overwhelming the enemy craft. The Imperials used so many that they came to be considered symbols of the Empire and its might. They were also very cheap to produce, reflecting the Imperial philosophy of quantity over quality.

 

However, a disadvantage of the fighter was its lack of deflector shields. In combat, pilots had to rely on the TIE/LN's maneuverability to avoid damage. The cockpit did incorporate crash webbing, a repulsorlift antigravity field, and a high-g shock seat to help protect the pilot, however these did next to nothing to help protect against enemy blaster fire.

 

Due to the lack of life-support systems, each TIE pilot had a fully sealed flight suit superior to their Rebel counterparts. The absence of a hyperdrive also rendered the light fighter totally dependent on carrier ships when deployed in enemy systems. TIE/LNs also lacked landing gear, another mass-reducing measure. While the ships were structurally capable of "sitting" on their wings, they were not designed to land or disembark their pilots without special support. On Imperial ships, TIEs were launched from racks in the hangar bays.

 

The high success rate of more advanced Rebel starfighters against standard Imperial TIE Fighters resulted in a mounting cost of replacing destroyed fighters and their pilots. That, combined with the realization that the inclusion of a hyperdrive would allow the fleet to be more flexible, caused the Imperial Navy to rethink its doctrine of using swarms of cheap craft instead of fewer high-quality ones, leading to the introduction of the TIE Advanced x1 and its successor, the TIE Avenger. The following TIE/D Defender as well as the heavy TIE Escort Fighter (or TIE/E) were touted as the next "logical advance" of the TIE Series—representing a shift in starfighter design from previous, expendable TIE models towards fast, well armed and protected designs, capable of hyperspace travel and long-term crew teams which gained experience and capabilities over time.

 

The TIE/E Escort, was a high-performance TIE Series starfighter developed for the Imperial Navy by Sienar Fleet Systems and it was introduced into service shortly before the Battle of Endor. It was a much heavier counterpart to the agile and TIE/D fighter, and more of an attack ship or even a light bomber than a true dogfighter. Its role were independent long range operations, and in order to reduce the work load and boost morale a crew of two was introduced (a pilot and a dedicated weapon systems officer/WSO). The primary duty profile included attack and escort task, but also reconnoiter missions. The TIE/E shared the general layout with the contemporary TIE/D fighter, but the cockpit section as well as the central power unit were much bigger, and the ship was considerably heavier.

 

The crew enjoyed – compared with previous TIE fighter designs – a spacious and now fully pressurized cockpit, so that no pressurized suits had to be worn anymore. The crew members sat in tandem under a large, clear canopy. The pilot in front had a very good field of view, while the WSO sat behind him, in a higher, staggered position with only a limited field of view. Both work stations had separate entries, though, and places could not be switched in flight: the pilot mounted the cockpit through a hatch on port side, while the WSO entered the rear compartment through a roof hatch.

 

In a departure from the design of previous TIE models, instead of two parallel wings to either side of the pilot module, the TIE Escort had three quadanium steel solar array wings mounted symmetrically around an aft section, which contained an I-s4d solar ionization reactor to store and convert solar energy collected from the wing panels. The inclusion of a third wing provided additional solar power to increase the ship's range and the ship's energy management system was designed to allow weapons and shields to be charged with minimum loss of power to the propulsion system.

 

Although it was based on the standard twin ion engine design, the TIE/E’s propulsion system was upgraded to the entirely new, powerful P-sz9.8 triple ion engine. This allowed the TIE/E a maximum acceleration of 4,220 G or 21 MGLT/s and a top speed of 144 MGLT, or 1,680 km/h in an atmosphere — almost 40 percent faster than a former standard TIE Fighter. With tractor beam recharge power (see below) redirected to the engines, the top speed could be increased to 180 MGLT in a dash.

In addition to the main thrusters located in the aft section, the TIE Escort's triple wing design allowed for three arrays of maneuvering jets and it featured an advanced F-s5x flight avionics system to process the pilot's instructions. Production models received a class 2, ND9 hyperdrive motivator, modified from the version developed for the TIE Avenger. The TIE/E also carried a Sienar N-s6 Navcon navigation computer with a ten-jump memory.

 

Special equipment included a small tractor beam projector, originally developed for the TIE Avenger, which could be easily fitted to the voluminous TIE Escort. Models produced by Ysanne Isard's production facility regularly carried such tractor beams and the technology found other uses, such as towing other damaged starfighters until they could achieve the required velocity to enter hyperspace. The tractor beam had limited range and could only be used for a short time before stopping to recharge, but it added new tactics, too. For instance, the beam allowed the TIE/E crews to temporarily inhibit the mobility of enemy fighters, making it easier to target them with the ship's other weapon systems, or prevent enemies from clear shots.

 

The TIE Escort’s weapons systems were primarily designed to engage bigger ships and armored or shielded targets, like armed freighters frequently used by the Alliance. Thanks to its complex weapon and sensor suite, it could also engage multiple enemy fighters at once. The sensors also allowed an effective attack of ground targets, so that atmospheric bombing was a potential mission for the TIE/E, too.

.

The TIE Escort Fighter carried a formidable array of weaponry in two modular weapon bays that were mounted alongside the lower cabin. In standard configuration, the TIE/E had two L-s9.3 laser cannons and two NK-3 ion cannons. The laser and ion cannons could be set to fire separately or, if concentrated power was required, to fire-linked in either pairs or as a quartet.

The ship also featured two M-g-2 general-purpose warhead launchers, each of which could be equipped with a standard load of three proton torpedoes or four concussion missiles. Depending on the mission profile, the ship could be fitted with alternative warheads such as proton rockets, proton bombs, or magnetic pulse warheads.

Additionally, external stores could be carried under the fuselage, which included a conformal sensor pallet for reconnaissance missions or a cargo bay with a capacity for 500 kg (1.100 lb).

 

The ship's defenses were provided by a pair of forward and rear projecting Novaldex deflector shield generators—another advantage over former standard TIE models. The shields were designed to recharge more rapidly than in previous Imperial fighters and were nearly as powerful as those found on capital ships, so that the TIE/E could engage other ships head-on with a very high survivability. The fighters were not equipped with particle shields, though, relying on the reinforced titanium hull to absorb impacts from matter. Its hull and wings were among the strongest of any TIE series Starfighter yet.

 

The advanced starfighter attracted the attention of several other factions, and the Empire struggled to prevent the spread of the technology. The ship's high cost, together with political factors, kept it from achieving widespread use in the Empire, though, and units were assigned only to the most elite crews.

 

The TIE/E played a central role in the Empire's campaign against rogue Grand Admiral Demetrius Zaarin, and mixed Defender and Escort units participated in several other battles, including the Battle of Endor. The TIE Escort continued to see limited use by the Imperial Remnant up to at least 44 ABY, and was involved in numerous conflicts, including the Yuuzhan Vong War..

  

The kit and its assembly:

Another group build contribution, this time to the Science Fiction GB at whatifmodelers.com during summer 2017. Originally, this one started as an attempt to build a vintage MPC TIE Interceptor kit which I had bought and half-heartedly started to build probably 20 years ago. But I did not have the right mojo (probably, The Force was not strong enough…?), so the kit ended up in a dark corner and some parts were donated to other projects.

 

The sun collectors were still intact, though, and in the meantime I had the idea of reviving the kit’s remains, and convert it into (what I thought was) a fictional TIE Fighter variant with three solar panels. For this plan I got myself another TIE Interceptor kit, and stashed it away, too. Mojo was still missing, though.

 

Well, then came the SF GB and I took it as an occasion to finally tackle the build. But when I prepared for the build I found out that my intended design (over the years) more or less actually existed in the Star Wars universe: the TIE/D Defender! I could have built it with the parts and hand and some improvisation, but the design similarity bugged me. Well, instead of a poor copy of something that was more or less clearly defined, I rather decided to create something more individual, yet plausible, from the parts at hand.

 

The model was to stay a TIE design, though, in order to use as much donor material from the MPC kits as possible. Doing some legwork, I settled for a heavy fighter – bigger than the TIE Interceptor and the TIE/D fighter, a two-seater.

Working out the basic concept and layout took some time and evolved gradually. The creative spark for the TIE/E eventually came through a Revell “Obi Wan’s Jedi Starfighter” snap fit kit in my pile – actually a prize from a former GB participation at phoxim.de (Thanks a lot, Wolfgang!), and rather a toy than a true model kit.

 

The Jedi Fighter was in so far handy as it carries some TIE Fighter design traits, like the pilot capsule and the characteristic spider web windscreen. Anyway, it’s 1:32, much bigger than the TIE Interceptor’s roundabout 1:50 scale – but knowing that I’d never build the Jedi Starfighter OOB I used it as a donor bank, and from this starting point things started to evolve gradually.

 

Work started with the cockpit section, taken from the Jedi Starfighter kit. The two TIE Interceptor cockpit tubs were then mounted inside, staggered, and the gaps to the walls filled with putty. A pretty messy task, and once the shapes had been carved out some triangular tiles were added to the surfaces – a detail I found depicted in SW screenshots and some TIE Fighter models.

 

Another issue became the crew – even though I had two MPC TIE Interceptors and, theorectically, two pilot figures, only one of them could be found and the second crewman had to be improvised. I normally do not build 1:48 scale things, but I was lucky (and happy) to find an SF driver figure, left over from a small Dougram hoovercraft kit (from Takara, as a Revell “Robotech” reboxing). This driver is a tad bigger than the 1:50 TIE pilot, but I went with it because I did not want to invest money and time in alternatives. In order to justify the size difference I decided to paint the Dougram driver as a Chiss, based on the expanded SW universe (with blue skin and hair, and glowing red eyes). Not certain if this makes sense during the Battle of Endor timeframe, but it adds some color to the project – and the cockpit would not be visible in much detail since it would be finished fully closed.

 

Reason behind the closed canopy is basically the poor fit of the clear part. OOB, this is intended as an action toy – but also the canopy’s considerable size in 1:50 would prevent its original opening mechanism.

Additional braces on the rel. large window panels were created with self-adhesive tape and later painted over.

 

The rear fuselage section and the solar panel pylons were scratched. The reactor behind the cockpit section is actually a plastic adapter for water hoses, found in a local DIY market. It was slightly modified, attached to the cockpit “egg” and both parts blended with putty. The tail opening was closed with a hatch from the OOB TIE Interceptor – an incidental but perfect match in size and style.

 

The three pylons are also lucky finds: actually, these are SF wargaming/tabletop props and would normally be low walls or barriers, made from resin. For my build, they were more or less halved and trimmed. Tilted by 90°, they are attached to the hull with iron wire stabilizers, and later blended to the hull with putty, too.

 

Once the cockpit was done, things moved more swiftly. The surface of the hull was decorated with many small bits and pieces, including thin styrene sheet and profiles, steel and iron wire in various strengths, and there are even 1:72 tank tracks hidden somewhere, as well as protective caps from syringes (main guns and under the rear fuselage). It’s amazing how much stuff you can add to such a model – but IMHO it’s vital in order to create some structure and to emulate the (early) Star Wars look.

  

Painting and markings:

The less spectacular part of the project, even though still a lot of work because of the sheer size of the model’s surface. Since the whole thing is fictional, I tried to stay true to the Imperial designs from Episode IV-VI and gave the TIE/E a simple, all-light grey livery. All basic painting was done with rattle cans.

Work started with a basic coat of grey primer. On top of that, an initial coat of RAL 7036 Platingrau was added, esp. to the lower surfaces and recesses, for a rough shading effect. Then, the actual overall tone, RAL 7047, called “Telegrau 4”, one of Deutsche Telekom’s corporate tones, was added - mostly sprayed from abone and the sides onto the model. Fuselage and panels were painted separately, overall assembly was one of the final steps.

 

The solar panels were to stand out from the grey rest of the model, and I painted them with Revell Acrylic “Iron Metallic” (91) first, and later applied a rather rich wash with black ink , making sure the color settled well into the many small cells. The effect is pretty good, and the contrast was slightly enhanced through a dry-brushing treatment.

 

Only a few legible stencils were added all around the hull (most from the scrap box or from mecha sheets), the Galactic Empire Seal were inkjet-printed at home, as well as some tactical markings on the flanks, puzzled together from single digits in "Aurebash", one of the Imperial SW languages/fonts.

For some variety and color highlights, dozens of small, round and colorful markings were die-punched from silver, yellow, orange, red and blue decal sheet and were placed all over the hull - together with the large panels they blur into the the overall appearance, though. The hatches received thin red linings, also made from generic decals strips.

 

The cockpit interior was a bit challenging, though. Good TIE Fighter cockpit interior pictures are hard to find, but they suggest a dark grey tone. More confusingly, the MPC instructions call for a “Dark Green” cockpit? Well, I did not like the all-grey option, since the spaceship is already monochrome grey on the outside.

 

As a compromise I eventually used Tamiya XF-65 "Field Grey". The interior recieved a black ink in and dry-brushing treatment, and some instruments ansd screens were created with black decal material and glossy black paint; some neon paint was used for sci-fi-esque conmtraol lamps everywhere - I did not pay too much intention on the interior, since the cockpit would stay closed, and the thick clear material blurs everything inside.

Following this rationale, the crew was also painted in arather minimal fashion - both wear a dark grey uniform, only the Chiss pilot stands aout with his light blue skin and the flourescent red eyes.

 

After an overall black ink wash the model received a dry brusing treatment with FS 36492 and FS 36495, for a weathered and battle-worn look. After all, the "Vehement" would not survive the Ballte of Endor, but who knows what became of TIE/E "801"'s mixed crew...?

Finally, the kit was sealed with matt acrylic varnish, and some final cosmetic corrections made.

 

The display is a DIY creation, too, made from a 6x6" piece of wood, it's edges covered with edgebonder, a steel wire as holder, and finally the display was paited with semi-matt black acrylic paint from the rattle can.

  

A complex build, and the TIE/E more or less evolved along the way, with only the overall layout in mind. Work took a month, but I think it was worth the effort. This fantasy creation looks pretty plausible and blends well into the vast canonical TIE Fighter family - and I am happy that I finally could finish this mummy project, including the surplus Jedi Starfighter kit which now also find a very good use!

 

An epic one, and far outside my standard comfort zone. But a wothwhile build!

 

A System of Possible Movements

2013

christopherlandin.com/

BFI Waste Systems of San Jose, CA.

(Fun fact, these where the samer trucks used in the movie ''Men At Work'' BFI Los Angeles had the same type of trucks working as well)

Grazing is still allowed in certain areas of the Mojave National Preserve. This surprises some that grazing is allowed in a unit of the National Park System. At last count, livestock grazing is currently permitted in 32 units of the park system. In these cases, grazing occurred at the time of designation and in most cases has historical significance. In the case of Mojave, it is a Preserve not a National Park and preserves allow for limited activities like grazing , mining , etc. This is a comfort to the residents who want things to stay as they have known them. These folks lived in the area long before the Preserve was designated by an act of congress and resent government telling them what they can and can't do. However grazing ( and the other commercial activities) remains a disappointment to those, including some residents and visitors, who have long wanted a Mojave National Park. Neither side likes all of the compromises that were needed to reach agreement at the federal level to set the lands aside. Many on both sides of the issues consider compromise to be a "dirty word". However without it, we wouldn't have the protections that have been given to this beautiful and lonely landscape.

 

From a visitor's perspective, Mojave Preserve is a bit different from a typical large unit in the National Park System. There are no gas stations except at the edges in the preserve, no hotels, few places to eat;, and as I can testify, bathrooms are few and far between. Visiting the preserve takes planning (and a full tank of gas). But such has always been the case for desert adventures. With all this said, the eastern Mojave is a wonderful place to visit even with a few cows.

Waxing Gibbous Moon at 58%. 200 frames captured using a ZWO ASI071 camera attached to an Altair Wave 115ED scope. Captured using SharpCap Pro and edited using Autostakkert2, Registax6 and Photoshop CC.

How it looks like in separate parts as a sytems check is done to ensure that there are no missing pieces from the previous show.

 

Short notice but this will be displayed at the

Goryeb Children's Hospital Benefit

Sunday, June 10th 1:00 – 5:00 p.m.

Madison YMCA

111 King’s Road

Madison, NJ

A small light railway system, designed to be modular and for outdoor use. It is heavily inspired by the Egger-Bahn model series of the 60s. Locomotives use the same chassis (one with a little modification for headlights). Also wagons are based on the same chassis - in some cases slightly adapted. I designed this set with 9v train motors as a power source. If needed, the locomotives can be converted also to Battery power (PF or, better, PoweredUp).

Waste Management Moreno Valley

Unincorporated Perris/Riverside, CA

1/22/16

Autocar Heil Freedom Superlight Curotto can

Back in November, WMmaster626 and I went to Moreno Valley and found a truly one of a kind refuse truck, especially in SoCal! A Autocar Heil Freedom Superlight Curotto can, unfortunately we were not able to film it in November and often WMmaster626 and I would talk about the superlight and wanting to film it. So on 1/22/16 we went to Waste Managements Moreno Valley MRF, waited for the Superlight to arrive and followed it to Unincorporated Perris/Riverside. During our November visit we spoke to a real nice driver named Dave who has been with WM for 27 years. We talked to him for a while and eventually NEWCO Waste Systems got brought up and he talked about WM Moreno Valley getting some of their routes in 1999. Unincorporated Perris/Riverside is the area Dave must have been talking about. Many of the NEWCO carts WMmaster626 has filmed in Arcadia were in this area. There were NEWCO zarns, 96 gallon blue and black toters even black and blue Rehrigs and of course 96 gallon black Turn-Keys along with NEWCO dumpsters that were still blue with NEWCO logos on them. We also found a Heil Python on route that was fun to watch.

So between the Superlight, the Python and perhaps the biggest shock, a ex NEWCO route it was a great day full of surprises. Thank you WMmaster626 for coming and arranging today, Thank you John (Superlight) and Raul (Python), you are both very professional and efficient drivers. I would also like to Thank John Curotto and the Curotto staff who made this awesome carry can. AFL’s have always been my favorite refuse truck. I grew up with S.T.S. Autobuckets, Heil Autocans and of course Curotto cans, so thanks for making this amazing carry can!

Invented in 2009, the Superlight is a Curotto can that is lighter than the Slammin Eagle. The dumpter is primarily made of special high strength Kevlar fabric and weighs only 1,200 pounds (compared to a Slammin Eagle which is closer to 2,000 pounds).

  

Please check out my YouTube video:

www.youtube.com/watch?v=uFqTWNtFiJ0

Please check out WMmaster626 video of this truck:

www.youtube.com/watch?v=toAcPWFwEV0

  

This work is protected under copyright laws and agreements.

All rights reserved © 2014 Bernard Egger :: rumoto images

 

NO RELEASE • NO flickr API • No part of this photostream may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without my prior permission!

 

Todos los Derechos Reservados • Tous droits réservés • Todos os Direitos Reservados • Все права защищены • Tutti i diritti riservati

 

my profile.. |►collections.. |►my sets.. |► WOOD

 

Fine Art photography ★ landscapes | alpine & mediterranean ☆

Europe | Greece | Austria | Австрия | Армения ★ Россия | Russia

 

:: Берни Эггерян, Бернард Эггер, фото, rumoto, images, фотограф, photographer, 写真家, fine art, photography, Fotografie, Fotográfico, Fotografo, supershot, Nikon FX, full frame, Fotos, Bilder, images, pictures, カメラマン, stunning, gallery, Galerie, collection, collezione, Sammlung, Canvas Prints, canvas, printed, posters, Poster, prints, Print, quality, large, xxl, art print, Kunstdruck, Grußkarte, Europe, artist, beauty, beautiful, gorgeous, purchase, gift, present, enlarge, enlargement, calendar, Kalender, portfolio, photo-shooting, camera, high-key, low-key, light, shadow, contrast, bargain, opportunity, best, authentic, real, exclusive, original, NPS, Nikkor, wood, Holz, Lärche, larch, orange, Winter, snow, natürlich, Natur, nature,

 

Larch Wood (c) 2015 Bernrd Egger :: rumoto images 3181 ccx

0-6-0T N0. 29 lifts a load of loaded coal from Backworth Colliery. Circa 1969

1 2 ••• 5 6 8 10 11 ••• 79 80