View allAll Photos Tagged synthesis
Algae and riverweed soaking up the sun along the shore of the St. Lawrence River.
--------------------------------------------
This just in: NASA reports the discovery of actual water on Mars. The rover Curiosity found that the Martian soil contains 2% water!
www.nasa.gov/content/goddard/curiositys-sam-instrument-fi...
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
Brian Holt, 1988, near Center For Performing Arts, Downtown, San Jose, California, USA, sculpture. Photo 2 of 2.
(Last updated on January 18, 2025)
On the southern bank of the Wabash River, and facing westward. We're a few meters/yards from the upstream side of this prominent waterfront feature.
Please note that in this series I will not distinguish between the technical terms "reef"' and "bioherm." If the scientific literature is any guide, different specialists have somewhat different definitions of each, and I'm not going to get embroiled in that semantic debate. My apologies in advance if I seem to be imprecise in describing everything I'll cover as a reef.
I first heard of Hanging Rock long before the American Endarkenment had begun, i.e., in the early 1970s, when my invertebrate-paleontology professor at Purdue University mentioned it to me. The fact that there was an exhumed Silurian-period reef about 75 mi (121 km) up the Wabash River from where my school stood was to me a thrilling discovery demanding immediate exploratory action. But that locale was definitely out of the range of my only vehicular transportation system at that time, a ten-speed bicycle. It had taken me to some quarries about 20 mi (32 km) away, but that was about the limit. Fortunately, I was eventually able to cadge a ride to Hanging Rock from one of my car-owning friends.
For some reason, though, I didn't pay a return visit till the winter day I took this photo, two decades later. At that point I was working as a National Park Service ranger at Indiana Dunes National Lakeshore. I tried to convince some of my colleagues to go with me and learn some more Hoosier State geology. Alas, while they were only too happy to have me herd them around the Chicago Loop, they had no interest whatsoever in a trek to see a big hunk of rock sticking up in the middle of nowhere.
In fact, any ancient reef you find anywhere on Earth is the direct opposite of being "nowhere," but there was no convincing my fellow rangers of that. So I made the drive alone, which, I've learned since, is the best state to be in if you want to develop a good Ortsinn, the Clausewitzian concept of accurately assessing and appreciating the landscape you're traveling through.
Hanging Rock itself is actually only that portion of a reef that the Wabash River and the late-Pleistocene Maumee Megaflood have not removed. Stratigraphically speaking, it's composed of the predictably named Upper Silurian Wabash Formation, which dates to approximately 425 Ma ago.
This unit includes two members, the Liston Creek Limestone above and Mississinewa Shale below, as well as reef facies here and elsewhere in this region. All three of these have a tendency to interfinger in reefal zones, and it can be difficult to differentiate one from the other.
Supposedly the Mississinewa can be distinguished at the base of this reef. Or so E. R. Cumings and R. R. Shrock averred in a 1926 report ("The Silurian Coral Reefs of Northern Indiana and their Associated Strata,” Papers on Geology, Geography, and Archaeology 36).
Designated a National Natural Landmark back in 1986, this site offers the visitor willing to scramble up to its summit a wonderful view of the great, megaflood-scoured Wabash Valley. And underfoot there's the rather thin-bedded, slabby, and flaggy carbonate bedrock, which varies from limestone to dolostone. The latter of these, being somewhat less reactive, probably has contributed, along with the harder reefal texture, to the survival of the southern side of this hill.
Photos to follow, taken in 1993, 2001, and 2007, will show different aspects of this locale, including a shot or two of the good ol' Wabash at flood stage.
Addendum: A few days after writing this post I got my paws on the Geological Society of America Field Guide No. 56, Ancient Oceans, Orogenic Uplifts, and Glacial Ice. It contains a field-trip writeup, "The Maumee Megaflood and the Geomorphology, Environmental Geology, and Silurian–Holocene History of the Upper Wabash Valley and Vicinity, North-central Indiana," (Anthony H. Fleming et al., 2018).
The Fleming paper provides a good modern synthesis of research on both the Maumee Megaflood and the significance and stratigraphy of Hanging Rock. It divides the latter into three rock units, from bottom to top:
- Dolomitic siltstone resembling the Mississinewa Member; this was laid down before the reef began to form.
- Layers of dolomitic and calcitic siltstone that alternate with thin, fossiliferous, and southwestward-dipping strata of limestone resembling the Liston Creek Member.
- Hard, massive caprock of dolomitic limestone that also dips southwestward. According to this source, it's this section that most resembles true reef core, but it too was probably part of the reef's southern flank.
This will be stratigraphy I'll use in future Hanging Rock posts.
You'll find the other photos and descriptions of this series in my Ancient Reefs of Indiana album.
Image taken 08.06.2018 by David Moth. At Aérodrome de Biscarrosse - Parentis Rue Costes et Bellonte 40600 Biscarrosse (LFBS)..Aquitaine,France
The Postcard
A postcard bearing no publisher's name that was posted in Great Yarmouth on Thursday the 7th. August 1924 to:
Miss A. Morton,
2, Hyde Park Place,
Bayswater,
London.
The message on the divided back of the card was as follows:
"Just a card to let you
know we are having a
good time.
The weather is fair. I'm
at Yarmouth for the day.
Hoping you are quite
well.
From Edward".
Great Yarmouth
Great Yarmouth is a seaside resort and minster town in Norfolk straddling the River Yare, 20 miles (30 km) east of Norwich. A population of 38,693 in the 2011 Census made it Norfolk's third most populous place.
Its fishing industry, mainly for herring, fell steeply after the mid-20th. century, and has all but vanished. North Sea oil from the 1960's brought an oil-rig supply industry that now services offshore natural gas rigs. More recent offshore wind power and other renewable energy have created further support services.
Yarmouth has been a seaside resort since 1760, and a gateway from the Norfolk Broads to the North Sea. Tourism was boosted when a railway opened in 1844, which gave visitors easier, cheaper access and triggered some settlement.
Wellington Pier opened in 1854 and Britannia Pier in 1858. Through the 20th. century, Yarmouth was a booming resort, with a promenade, pubs, trams, fish-and-chip shops and theatres.
There is also the Pleasure Beach, the Sea Life Centre, the Hippodrome Circus and the Time and Tide Museum, as well as a surviving Victorian seaside Winter Garden in cast iron and glass.
Great Yarmouth in the Past
The town was the site of a bridge disaster and drowning tragedy on the 2nd. May 1845, when a suspension bridge crowded with children collapsed killing 79. They had gathered to watch a clown in a barrel being pulled by geese down the river. As he passed under the bridge the weight shifted, causing the chains on the south side to snap, tipping over the bridge deck.
Great Yarmouth had an electric tramway system from 1902 to 1933. From the 1880's until the Great War, the town was a regular destination for Bass Excursions, when 15 trains would take 8000–9000 employees of Bass's Burton brewery on an annual trip to the seaside.
During the Great War, Great Yarmouth suffered the first aerial bombardment in the UK, by Zeppelin L3 on the 19th. January 1915. That same year on the 15th. August, Ernest Jehan became the first and only man to sink a steel U-Boat with a sail-rigged Q-ship, off the coast of Great Yarmouth.
Great Yarmouth was bombarded by the German Navy on the 24th. April 1916. The town also suffered Luftwaffe bombing during World War II because it was the last significant place Germans could drop bombs before returning home.
Nevertheless despite war damage, much is left of the old town, including the original 2,000-metre (1.2 mi) protective medieval wall, of which two-thirds has survived. Of the 18 towers, 11 are left.
On the South Quay is a 17th.-century Merchant's House, as well as Tudor, Georgian and Victorian buildings. Behind South Quay is a maze of alleys and lanes known as 'The Rows'. Originally there were 145. Despite bombing, several have remained.
Great Yarmouth was badly affected by the North Sea flood of 1953. More recent flooding has also been a problem, with four floods in 2006, the worst being in September. Torrential rain caused drains to block and an Anglian Water pumping station to break down. This caused flash flooding in which 90 properties were flooded up to a depth of 5 ft (1.5 m).
Great Yarmouth Sights and Amenities
The Tollhouse with its dungeons, dating from the late 13th. century, is one of Britain's oldest former jails and oldest civic buildings. Major sections of the medieval town walls survive around the parish cemetery and in parts of the old town.
Great Yarmouth Minster (The Minster Church of St Nicholas, founded in the 12th. century as an act of penance) stands in Church Plain, just off the market place. It is the third-largest parish church in England, after Beverley Minster in East Yorkshire and Christchurch Priory in Dorset.
Church Plain also has the 17th.-century timber-framed house, in which Anna Sewell (1820–1878), author of Black Beauty, was born.
The market place, one of the largest in England, has been operating since the 13th. century. It is also home to the town's shopping sector and the famous Yarmouth chip stalls. The smaller area south of the market is used as a performance area for community events.
The Scroby Sands Wind Farm of 30 generators is within sight of the seafront. Also visible are grey seals during their breeding season. The country's only full-time circus, the Hippodrome Circus, is just off the seafront.
The Two Piers
Great Yarmouth has two piers, Britannia Pier (which is Grade II listed) and Wellington Pier. The theatre building on the latter was demolished in 2005 and reopened in 2008 as a family entertainment centre, including a ten-pin bowling alley overlooking the beach.
Britannia Pier holds the Britannia Theatre, which during the summer has featured acts such as Jim Davidson, the comedian Jethro, Basil Brush, Cannon and Ball, Chubby Brown, the Chuckle Brothers and the Searchers. It is one of the few end-of-the pier theatres surviving in England.
Great Yarmouth Winter Gardens
Great Yarmouth Winter Gardens (on the left) is a Grade II* listed building in Great Yarmouth, England. It was built of glass and iron in Torquay over the course of three years, starting in 1878.
It was moved by barge to Great Yarmouth in 1904, purportedly without the loss of a single pane of glass. Over the years, it has been used as ballroom, roller skating rink and beer garden.
In the 1990's it was converted into a nightclub by Jim Davidson, and has since been used as a family leisure venue.
In 2018, it was named among the top ten endangered buildings of the Victorian and Edwardian eras in a survey released by the Victorian Society.
In July 2021 it received a £10 million National Lottery Heritage Fund grant in order to support its repair and reopening.
The Marine Parade
Great Yarmouth's seafront, known as 'The Golden Mile' attracts millions of visitors each year to its sandy beaches, indoor and outdoor attractions and amusement arcades.
Great Yarmouth's Marine Parade has twelve Amusement Arcades within 2 square miles. Their names draw heavily on Las Vegas and include: The Flamingo, Circus Circus, The Golden Nugget, The Mint, The Silver Slipper, The Showboat, Magic City, Quicksilver and The Gold Rush.
In addition to the two piers, tourist attractions on Marine Parade include Joyland, Pirates' Cove Adventure Golf, Yesterday's World, the Marina Centre, Retroskate, the Arnold Palmer Putting Green, the Sea Life Centre, Merrivale Model Village and the Pleasure Beach and Gardens.
The Great Yarmouth Floral Clock
Alas, the clock in Marine Parade is no more - it had to be removed in 2005 following repeated attacks by mindless vandals.
The Yarmouth In Bloom group, who had regularly planted flowers and attended the displays, were dismayed by the continual trampling of plants and breakages to the clock hands, and decided that enough was enough.
The Venetian Waterways
In August 2019, the Venetian Waterways and gardens re-opened. The waterways, running parallel to the main beach, were a feature constructed as a work-creation scheme in 1926–1928, consisting of canals and formal gardens, with rowing boats, pedalos and gondolas.
The waterways had been allowed to silt up, decay and become abandoned. With a grant from the Heritage Lottery Fund of £1.7 m and the labour of volunteers, the flowerbeds have been restored with 20,000 plants, and the 1920's cafe has been restored. That and the boat hire are being run by a social enterprise.
The Nelson Monument
The South Denes area is home to the Grade I listed Norfolk Naval Pillar, known locally as the Britannia Monument or Nelson's Monument. This tribute to Nelson was completed in 1819, 24 years before the completion of Nelson's Column in London. The monument, designed by William Wilkins, shows Britannia standing atop a globe holding an olive branch in her right hand and a trident in her left.
There is a popular assumption in the town that the statue of Britannia was supposed to face out to sea but now faces inland due to a mistake during construction, although it is thought she is meant to face Nelson's birthplace at Burnham Thorpe.
The monument was originally planned to mark Nelson's victory at the Battle of the Nile, but fund-raising was not completed until after his death, and it was instead dedicated to England's greatest naval hero. It is currently surrounded by an industrial estate but there are plans to improve the area.
Charles Dickens
Charles Dickens used Great Yarmouth as a key location in his novel David Copperfield and described the town as 'The finest place in the universe'. The author stayed at the Royal Hotel on the Marine Parade while writing the novel.
Great Yarmouth Museums
The Norfolk Nelson Museum on South Quay houses the Ben Burgess collection of Nelson memorabilia and is the only dedicated Nelson museum in Britain, other than one in Monmouth. Its several galleries look at Nelson's life and personality, and at what life was like for men who sailed under him.
The Time and Tide Museum in Blackfriars Road was nominated in the UK Museums Awards in 2005. It was built as part of a regeneration of the south of the town in 2003. Its location in an old herring smokery harks back to the town's status as a major fishing port.
Sections of the historic town wall stand opposite the museum, next to the Great Yarmouth Potteries, part of which is housed in another former smoke house. The town wall is among the most complete medieval town walls in the country, with 11 of the 18 original turrets still standing.
Other museums in the town include the National Trust's Elizabethan House, the Great Yarmouth Row Houses, managed by English Heritage, and the privately owned Blitz and Pieces, based on the Home Front during World War II.
Kenneth Kendall
So what else happened on the day that Edward posted the card?
Well, the 7th. August 1924 marked the birth of the British journalist and TV presenter Kenneth Kendall.
Kenneth Kendall worked for many years as a newsreader for the BBC, where he was a contemporary of fellow newsreaders Richard Baker and Robert Dougall. He is also remembered as the host of the Channel 4 game show Treasure Hunt, which ran between 1982 and 1989, as well as the host of "The World Tonight" in the 1968 science fiction film 2001: A Space Odyssey.
Kenneth Kendall - The Early Years
Kenneth Kendall was born in British India where his father, Frederic William Kendall, who died on the 30th. May 1945, worked. He was brought up in Cornwall.
Kenneth was educated at Felsted School in Essex, England. He read Modern Languages at Corpus Christi College, Oxford, for one year before being called up to the British Army.
Kenneth Kendall's Military Service
Kendall joined the Coldstream Guards where he was commissioned as a lieutenant. He arrived in Normandy ten days after D Day but was wounded about a month later.
In 1945, he was among 100,000 British military personnel sent to Palestine. In 1946 he was demobilised from the Guards as a captain.
Kenneth Kendall's Broadcasting Career
After leaving the army, Kendall returned to Oxford to complete his Modern Language degree. He had hoped to join the Foreign Office, but instead joined the BBC in 1948 as a radio newsreader.
In 1954 he transferred to television. Although he was not the first newsreader on BBC television, in 1955 Kendall was the first to appear in front of a camera reading the news.
As he was employed on a freelance basis by the BBC, he also worked as an actor for a repertory company based in Crewe, and briefly at the menswear retailer Austin Reed in Regent Street, where he met actor John Inman and offered him a job in the Crewe theatre company.
Kendall became known for his elegant dress sense and was voted best-dressed newsreader by Style International, and No. 1 newscaster by Daily Mirror readers in 1979.
Kenneth left the BBC in 1961, and from 1961 to 1969 was a freelance newsreader, working occasionally for ITN and presenting Southern Television's Day By Day.
He appeared as himself in the Adam Adamant episode "The Doomsday Plan", in which he is kidnapped and impersonated. He also appeared in the Doctor Who serial "The War Machines".
Kenneth Kendall - The Later Years
Kenneth rejoined the BBC in 1969, and finally retired from news reading on the 23rd. December 1981.
Kendall's retirement allowed him to work on the popular Channel Four programme Treasure Hunt throughout its first run (1982–1989). The series featured Anneka Rice as a "Skyrunner". He also presented the television programme Songs of Praise.
Soon after retirement from news reading, Kendall lent his voice to the BBC Micro as part of Acorn Computers' hardware speech synthesis system.
In 2010 he took part in BBC series The Young Ones in which six well-known people in their 70's and 80's attempt to overcome some of the problems of ageing by harking back to the 1970's.
Kenneth Kendall's Personal Life
Kendall lived in Cowes on the Isle of Wight with his partner Mark Fear, whom he had been with since 1989. Fear was the owner of a marine art gallery and was also a beekeeper. The couple entered into a civil partnership in 2006.
The Death of Kenneth Kendall
Kenneth died in Cowes on the 14th. December 2012, following a stroke a few weeks earlier. He was 88 years of age when he died.
On the 29th. April 2013, his partner Mark Fear was found hanging from the bannisters in the house that they had shared. An inquest concluded that he had committed suicide because he was overcome by grief.
Quarta ed ultima parte di una piccola storia fotografica della Fai (Fabbrica Attrezzature Industriali) di Noventa Vicentina - Este.
La terna articolata prodotta dalla Fai (serie 5) viene migliorata con i nuovi modelli (serie 6) realizzati dal 1992.
Foto scattata in provincia di Pistoia, 24-02-2015
Storia dedicata all'amico Giorgio Mattiello, scomparso prematuramente, importante dipendente Fai e poi Komatsu.
Fai SynthEsis 692
Fourth and last part of a small photo story about Fai (Fabbrica Attrezzature Industriali) from Noventa Vicentina - Este.
The articulated backhoe loader produced by Fai (serie 5) is improved with new models (serie 6) manifactured since 1992.
Photo taken in the province of Pistoia, 24-feb-2015.
This story is dedicated to my friend Giorgio Mattiello died prematurely. He was a important employee of Fai and then Komatsu.
……………………………….
Poster (Locandina):
www.warnerbros.it/scheda-film/genere-romantico/me-you/
m.media-amazon.com/images/S/pv-target-images/b3eb47bb2236...
i0.wp.com/www.cinematik.it/wordpress/wp-content/uploads/2...
i0.wp.com/www.cinematik.it/wordpress/wp-content/uploads/2...
----------------------------------------------------------
click to activate the small icon of slideshow: the small triangle inscribed in the small rectangle, at the top right, in the photostream (it means the monitor);
or…. Press the “L” button to zoom in the image;
clicca sulla piccola icona per attivare lo slideshow: sulla facciata principale del photostream, in alto a destra c'è un piccolo rettangolo (rappresenta il monitor) con dentro un piccolo triangolo nero;
oppure…. premi il tasto “L” per ingrandire l'immagine;
www.worldphoto.org/sony-world-photography-awards/winners-...
www.fotografidigitali.it/gallery/2726/opere-italiane-segn...
………………………………………………………………………
Religious devotion, at times, in Sicily seems to take on the face of women, like that of the two Sicilian saints Agata and Lucia along the Ionian coast of Sicily, or the face of Rosalia, on the opposite side, in Palermo. The lives of Agata and Lucia are closely linked, even though they never met. Agata was martyred in 251, Lucia was not yet born, she was born 32 years later. On February 5, 301, she went to Catania to pray at Agata's tomb to invoke her intercession, hoping to obtain the healing of her mother, who was seriously ill. Agata appeared to her in a dream, confirmed her mother's healing (her mother was healed), but also confided in her that she would be martyred because of her faith in Christ: Lucia was martyred on December 13, 304, during the persecutions of Diocletian. What has been said as an incipit of the photographic story that I present here, created on the occasion of the celebration that Catania dedicates to its Patron Saint Agatha, described as the most important religious celebration in Catania, also considered the third Catholic religious celebration in the world (first are the “Semana Santa” in Seville, and the “Corpus Domini” in Cuzco in Peru), a ranking that takes into account the huge number of people who participate every year. The celebration of Saint Agatha takes place on several dates, from 3 to 6 February, on 12 February and on 17 August: the February celebration is linked to her martyrdom, the August celebration commemorates the return to Catania of her mortal remains, initially taken to Constantinople as spoils of war by the Byzantine general Maniaces, and remained there for 86 years. The young Agata lived in the 3rd century, she belonged to a rich patrician family of Catania, since she was young she had embraced the cult of the Christian religion, the governor Quinziano (or Quintiliano) fell in love with her, Agata to escape him hid in his house in Palermo, Quinziano managed to find out where she was hiding, so he had her taken to Catania, here his attempts to bend Agata's will and make her give in to his flattery were in vain, after her umpteenth refusal he changed his intentions, accused her of being of the Christian religion, condemned her to death, not without first having led her to martyrdom, he amputated her by tearing off both her breasts, in this way in addition to the torment of physical pain, the psychological one was added, humiliating the girl in her femininity, then he gave her death by dragging her on burning coals, Agata was 20 years old. After her death, the cult of her began to spread, even the pagans began to venerate her figure, there is news about her origins starting from 252, the year after her death: the inhabitants of Catania were proud of this young woman who rebelled against the will of the dictator. The feast of Saint Agatha begins on February 3, there is the procession "for the offering of wax", the two eighteenth-century carriages of the senate pulled by horses come out along the streets of the city, "the candelore" make their appearance; on February 4th the celebration begins with the “Mass of Dawn” which is celebrated in the cathedral, after the reliquary bust of the Saint and the silver casket, they are placed on the “vara” (or “fercolo”), to be carried in procession in its “external tour”, the procession begins by crossing the “Porta Uzeda” and thus reaching the arches of the marina, the procession then circumscribes the historic center of the city, going to the places where Agatha’s martyrdom took place; : On February 5th the “Pontifical Mass” is celebrated, on this occasion by lining up in the cathedral, you can go and see the reliquary bust of the Saint, as evening comes, the bust and the casket are placed back on the heavy float for the last procession, which goes along the “internal tour” (or “noble tour”), which crosses the historic center of Catania, a procession preceded by the passage of lit candles carried on the shoulders of devotees (of various weights and sizes, some reach exceptional dimensions and weight, historically these candles illuminated, when electricity did not exist, the passage of the Saint), then the “candelore” pass, they are gigantic and heavy wooden “candelabra”, in baroque style, painted in gold, each one represents an ancient corporation (butchers, fishmongers, bakers, pork butchers, greengrocers, etc.), finally the float with Saint Agatha passes, the long-awaited moment, with the reliquary bust that it contains inside some parts of her body, the other parts of her body are inside the casket, so, with both on the float, Agata's entire body can travel the streets of the city of Catania. The float is pulled by hand, by the many devotees who wish to participate spontaneously in this very particular rite, using two large cords more than 200 meters long, to the end of which are connected four handles. The photographs were taken on February 4 and 5, 2024 and 2025, they are not organized in series taking into account either the year or the days; I obtained a "bilocation effect" by using different shooting points in the two years, visible especially when the float passes through the Porta Uzeda; I made portraits of the devotees, posed and not, in particular the portrait of a devotee who seemed almost enraptured in ecstasy at the passage of Sant'Agata (and perhaps she really was), it represented for me the absolute, profound and concrete synthesis of the attachment of the "citizens" (synonym of "devotees") of Catania towards this young martyr, who has become a symbol of those who oppose violence against women, and protector of women suffering from breast cancer. I photographed two beautiful and sweet models who embodied the "two ages of Agata", with the aim of raising awareness among women in the prevention of breast cancer (the ceramic decorations corresponding to the breasts are the work of "Nenè sculptures of art by Nancy Coco); I captured in some images, the custom of some devotees, to carry with them images of loved ones who passed away too soon (photos placed on candles or printed on the characteristic white habit, called "sacco", which is part of the characteristic way of dressing of the devotees); finally I thank the owner of the Beniamin Art Gallery, in via Umberto, an artist himself, for giving me the opportunity to photograph the Pop icon exhibited in his gallery entitled "Aga Pop".
…………………………………………………….
La devozione religiosa, a volte, in Sicilia sembra assumere il volto delle donne, come quello delle due sante siciliane Agata e Lucia lungo la fascia Ionica della costa sicula, od il volto di Rosalia, sul versante opposto, in quel di Palermo. Le vite di Agata e Lucia sono tra loro legate in maniera strettamente indissolubile, pur non essendosi mai conosciute, Agata morì martirizzata nel 251, Lucia non era ancora nata, nascerà 32 anni dopo, il 5 febbraio del 301 si recherà a Catania a pregare sul sepolcro di Agata per invocare la sua intercessione sperando così di ottenere la guarigione di sua madre, gravemente malata, Agata le appare in sogno, le conferma la guarigione di sua madre (sua madre ebbe la guarigione), ma anche, le confida, che per lei ci sarà il martirio a causa della sua fede in Cristo: Lucia fu martirizzata il 13 dicembre del 304, durante le persecuzioni di Diocleziano. Quanto detto come incipit del racconto fotografico che qui presento, realizzato in occasione della festa che Catania dedica alla sua Santa Patrona Agata, descritta come la più importante festa religiosa di Catania, considerata anche la terza festa religiosa cattolica al mondo (prime la “Semana Santa” di Siviglia, ed il “Corpus Domini” di Cuzco in Perù), graduatoria che tiene conto del grandissimo numero di persone ogni anno vi partecipano. La festa di Santa’Agata si svolge in più date, dal 3 al 6 febbraio, il 12 febbraio ed il 17 agosto: la ricorrenza di febbraio è legata al suo martirio, quella di Agosto rievoca il ritorno a Catania delle sue spoglie mortali, portate inizialmente a Costantinopoli come bottino di guerra dal generale bizantino Maniace, e li rimaste per 86 anni. La giovane Agata visse nel 3° secolo, apparteneva ad una ricca famiglia patrizia di Catania, sin dalla giovane età aveva abbracciato il culto per la religione cristiana, di lei si invaghì il governatore Quinziano (o Quintiliano), Agata per sfuggirgli si nascose in una sua casa a Palermo, Quinziano riuscì a sapere dove si nascondeva, quindi la fece condurre a Catania, qui i suoi tentativi di piegare la volontà di Agata e farla cedere alle sue lusinghe furono vani, all’ennesimo suo rifiuto egli mutò i suoi propositi, la accusò di essere di religione cristiana, la condannò a morte, non senza averla prima condotta al martirio, le amputò strappandole entrambi i seni, in tal modo oltre allo strazio del dolore fisico, si aggiungeva quello psicologico, umiliando la ragazza nella sua femminilità, poi le diede la morte trascinandola sui carboni ardenti, Agata aveva 20 anni. Dopo la sua morte si iniziò a diffondere il culto verso di lei, anche i pagani iniziarono a venerare la sua figura, si hanno notizie sulle sue origini già a partire dal 252, anno successivo alla sua morte: gli abitanti di Catania erano orgogliosi di questa giovane donna che si ribellò al volere del dittatore. La festa per Sant’Agata inizia il 3 febbraio, si ha la processione “per l’offerta della cera”, escono lungo le vie della città le due settecentesche carrozze del senato trainate da cavalli, fanno la loro comparsa “le candelore”; il 4 febbraio la festa inizia con la “Messa dell’Aurora” che si celebra nella cattedrale, dopo il busto reliquiario della Santa e lo scrigno d’argento, vengono messi sulla “vara” (o “fercolo”), per essere portati in processione nel suo “giro esterno”, la processione inizia attraversando la "Porta Uzeda" e giungendo così agli archi della marina, la processione quindi circoscrive il centro storico della città, recandosi nei luoghi ove avvenne il martirio di Agata; il 5 febbraio si celebra la “Messa Pontificale”, in questa occasione mettendosi in fila nella cattedrale, si può andare a vedere il busto reliquiario della Santa, col sopraggiungere della sera, busto e scrigno, vengono nuovamente messi sulla pesante vara per l’ultima processione, che percorre il “giro interno” (o “giro nobile”), che attraversa il centro storico di Catania, processione preceduta dal passaggio dei ceri accesi portati in spalla dai devoti (di vario peso e dimensioni, alcuni raggiungono dimensioni e peso eccezionali, storicamente questi ceri illuminavano, quando non esisteva l’energia elettrica, il passaggio della Santa), poi passano le “candelore”, sono dei giganteschi e pesanti "candelabri" in legno, in stile barocco, dipinti in oro, ognuna rappresenta una antica corporazione (macellai, pescivendoli, panettieri, pizzicagnoli, fruttivendoli, ecc.), infine passa la vara con Sant’Agata, il momento tanto atteso, col busto reliquiario che racchiude al suo interno alcune parti del suo corpo, le altre parti del corpo si trovano all’interno dello scrigno, in tal modo, con entrambi sulla vara, tutto il corpo di Agata può percorrere le strade della città di Catania. La vara è trainata a mano, dai tantissimi devoti che desiderano partecipare spontaneamente a questo rito così particolare, tramite due grossi cordoni lunghi più di 200 metri, al cui capo sono collegate quattro maniglie. Le fotografie sono state realizzate il 4 ed il 5 febbraio del 2024 e del 2025, esse non sono organizzate in serie tenendo conto né dell’anno, nè delle giornate; ho ottenuto un “effetto di bilocazione” sfruttando differenti punti di ripresa nei due anni, visibile soprattutto quando la vara passa attraverso la Porta Uzeda; ho realizzato ritratti dei devoti, posati e non, in particolare il ritratto di una devota che sembrava quasi rapita in estasi al passaggio di Sant’Agata (e forse lo era veramente), ha rappresentato per me la sintesi assoluta, profonda e concreta dell’attaccamento dei “cittadini” (sinonimo di “devoti”) catanesi nei confronti di questa giovane martire, diventata simbolo di chi si oppone alla violenza sulle donne, e protettrice delle donne ammalate di cancro al seno. Ho fotografato due belle e dolci modelle che impersonavano le “due età di Agata”, con lo scopo di sensibilizzare le donne nella prevenzione delle neoplasie alla mammella (i decori in ceramica in corrispondenza dei seni, sono opera di “Nenè sculture d’arte di Nancy Coco); ho colto in alcune immagini, l’usanza di alcuni devoti, di recare con se immagini di persone care scomparse troppo presto (foto messe sui ceri o stampate sul caratteristico saio bianco, chiamato “sacco”, che fa parte del modo caratteristico di vestire dei devoti); infine ringrazio il proprietario della Beniamin Art Gallery, in via Umberto, artista egli stesso, per avermi dato la possibilità di fotografare l’icona Pop esposta nella sua galleria dal titolo “Aga Pop”.
a view of the town hall tower, the cathedral tower, the arts tower (university of sheffield) and park hill.
sheffield, england
Mars - Mars - Mars first person / human landing on Mars station tackling cutting-edge technology
Mars--Fangruida//science tech.
Enc:Special multi-purpose anti-radiation suit 50 million dollars
Aerospace Medical Emergency cabin 1.5 billion dollars
Multi-purpose intelligent life support system 10 billion dollars
Mars truck 300 million dollars
Aerospace / Water Planet synthesis 1.2 billion dollars
Cutting-edge aerospace technology transfer 50 million dollars of new rocket radiation material 10 billion dollars against drugs microgravity $ 2 billion contact: Fangda337svb125@gmail.com,banxin123 @ gmail.com, mdin.jshmith @ gmail.com technology entry fee / technical margin of 1 million dollars , signed on demand
Table of Contents
Fangruida: human landing on Mars 10 cutting-edge technology
[Fangruida- human landing on Mars 10 innovative and sophisticated technologies]
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
-------------------------------------------------- -------------
Aerospace Science Space Science and Technology on behalf of the world's most cutting-edge leader in high technology, materials, mechatronics, information and communication, energy, biomedical, marine, aviation aerospace, microelectronics, computer, automation, intelligent biochips, use of nuclear energy, light mechanical and electrical integration, astrophysics, celestial chemistry, astrophysics and so a series of geological science and technology. Especially after the moon landing, the further development of mankind to Mars and other planets into the powerful offensive, the world's major powers eager to Daxian hand of God, increase investment, vigorously develop new sophisticated technology projects for space to space. Satellite, space station, the new spacecraft, the new space suits, the new radiation protection materials, intelligent materials, new manufacturing technology, communications technology, computer technology, detector technology, rover, rover technology, biomedical technology, and so one after another, is expected to greater breakthroughs and leaps. For example, rocket technology, spacecraft design, large power spacecraft, spacesuits design improvements, radiation multifunctional composite materials, life health care technology and space medicine, prevention against microgravity microgravity applicable drugs, tracking control technology, landing and return technology. Mars lander and returned safely to Earth as a top priority. Secondly, Mars, the Moon base and the use of transforming Mars, the Moon and other development will follow. Whether the former or the latter, are the modern aerospace science, space science basic research, applied basic research and applied research in the major cutting-edge technology. These major cutting-edge technology research and innovation, not only for human landing on Mars and the safe return of great significance, but for the entire space science, impact immeasurable universe sciences, earth sciences and human life. Here the most critical of the most important research projects of several sophisticated technology research and development as well as its core technology brief. Limit non-scientific techniques include non-technical limits of technology, the key lies in technology research and development of technology maturity, advanced technology, innovative, practical, reliable, practical application, business value and investment costs, and not simply like the idea mature technology achievements, difficult to put into things. This is the high-tech research and development, testing, prototype, test application testing, until the outcome of industrialization. Especially in aerospace technology, advanced, novelty, practicality, reliability, economy, maturity, commercial value and so on. For technical and research purely science fiction and the like may be irrelevant depth, but not as aerospace engineering and technology practice. Otherwise, Mars will become a dream fantasy, and even into settling crashed out of danger.
Regardless of the moon or Mars, many technical difficulties, especially a human landing on Mars and return safely to Earth, technical difficulties mainly in the following aspects. (Transformation of Mars and the Moon and other planets and detect other livable technology more complex and difficult, at this stage it is difficult to achieve and therefore not discussed in detail in this study). In fact, Mars will be the safe return of a full set of technology, space science, aerospace crucial scientific research development, its significance is not confined to Mars simply a return to scientific value, great commercial value, can not be measure.
1. Powered rocket, the spacecraft overall structural design not be too complex large, otherwise, the safety factor to reduce the risk of failure accidents. Fusion rocket engine main problem to be solved is the high-temperature materials and fuel ignition chamber (reaction chamber temperatures of up to tens of millions of supreme billion degrees), fissile class rocket engine whose essence is the miniaturization of nuclear reactors, and placed on the rocket. Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues unresolved. Electrothermal rocket engine utilizing heat energy (resistance heating or electric arc heating) working medium (hydrogen, amines, hydrazine ), vaporized; nozzle expansion accelerated after discharged from the spout to generate thrust. Static rocket engine working fluid (mercury, cesium, hydrogen, etc.) from the tank enter the ionization chamber is formed thrust ionized into a plasma jet. Electric rocket engines with a high specific impulse (700-2500 sec), extremely long life (can be repeated thousands of times a starter, a total of up to thousands of hours of work). But the thrust of less than 100N. This engine is only available for spacecraft attitude control, station-keeping and the like. One nuclear - power rocket design is as follows: Firstly, the reactor heats water to make it into steam, and then the high-speed steam ejected, push the rocket. Nuclear rocket using hydrogen as working substance may be a better solution, it is one of the most commonly used liquid hydrogen rocket fuel rocket carrying liquid hydrogen virtually no technical difficulties. Heating hydrogen nuclear reactor, as long as it eventually reaches or exceeds current jet velocity hydrogen rocket engine jet speed, the same weight of the rocket will be able to work longer, it can accelerate the Rockets faster. Here there are only two problems: First, the final weight includes the weight of the rocket in nuclear reactors, so it must be as light as possible. Ultra-small nuclear reactor has been able to achieve. Furthermore, if used in outer space, we can not consider the problem of radioactive residues, simply to just one proton hydrogen nuclei are less likely to produce induced radioactivity, thus shielding layer can be made thinner, injected hydrogen gas can flow directly through the reactor core, it is not easy to solve, and that is how to get back at high speed heated gas is ejected.
Rocket engine with a nuclear fission reactor, based on the heating liquid hydrogen propellant, rather than igniting flammable propellant
High-speed heavy rocket is a major cutting-edge technology. After all, space flight and aircraft carriers, submarines, nuclear reactors differ greatly from the one hand, the use of traditional fuels, on the one hand can be nuclear reactor technology. From the control, for security reasons, the use of nuclear power rocket technology, safe and reliable overriding indicators. Nuclear atomic energy in line with the norms and rules of outer space. For the immature fetal abdominal hatchery technology, and resolutely reject use. This is the most significant development of nuclear-powered rocket principle.
Nuclear-powered spaceship for Use of nuclear power are three kinds:
The first method: no water or air space such media can not be used propeller must use jet approach. Reactor nuclear fission or fusion to produce a lot of heat, we will propellant (such as liquid hydrogen) injection, the rapid expansion of the propellant will be heated and then discharged from the engine speed tail thrust. This method is most readily available.
The second method: nuclear reactor will have a lot of fast-moving ions, these energetic particles moving very fast, so you can use a magnetic field to control their ejection direction. This principle ion rocket similar to the tail of the rocket ejected from the high-speed mobile ions, so that the recoil movement of a rocket. The advantage of this approach is to promote the unusually large ratio, without carrying any medium, continued strong. Ion engine, which is commonly referred to as "electric rocket", the principle is not complicated, the propellant is ionized particles,
Plasma Engine
Electromagnetic acceleration, high-speed spray. From the development trend, the US research scope covers almost all types of electric thrusters, but mainly to the development of ion engines, NASA in which to play the most active intake technology and preparedness plans. "
The third method: the use of nuclear explosions. It is a bold and crazy way, no longer is the use of a controlled nuclear reaction, but to use nuclear explosions to drive the ship, this is not an engine, and it is called a nuclear pulse rocket. This spacecraft will carry a lot of low-yield atomic bombs out one behind, and then detonated, followed by a spacecraft propulsion installation disk, absorbing the blast pushing the spacecraft forward. This was in 1955 to Orion (Project Orion) name of the project, originally planned to bring two thousand atomic bombs, Orion later fetal nuclear thermal rocket. Its principle is mounted on a small rocket reactor, the reactor utilizing thermal energy generated by the propellant is heated to a high temperature, high pressure and high temperature of the propellant from the high-speed spray nozzle, a tremendous impetus.
Common nuclear fission technologies, including nuclear pulse rocket engines, nuclear rockets, nuclear thermal rocket and nuclear stamping rockets to nuclear thermal rocket, for example, the size of its land-based nuclear power plant reactor structure than the much smaller, more uranium-235 purity requirements high, reaching more than 90%, at the request of the high specific impulse engine core temperature will reach about 3000K, require excellent high temperature properties of materials.
Research and test new IT technologies and new products and new technology and new materials, new equipment, things are difficult, design is the most important part, especially in the overall design, technical solutions, technical route, technical process, technical and economic particularly significant. The overall design is defective, technology there are loopholes in the program, will be a major technical route deviation, but also directly related to the success of research trials. so, any time, under any circumstances, a good grasp of the overall control of design, technical design, is essential. otherwise, a done deal, it is difficult save. aerospace technology research and product development is true.
3, high-performance nuclear rocket
Nuclear rocket nuclear fission and fusion energy can rocket rocket two categories. Nuclear fission and fusion produce heat, radiation and shock waves and other large amounts of energy, but here they are contemplated for use as a thermal energy rocket.
Uranium and other heavy elements, under certain conditions, will split their nuclei, called nuclear fission reaction. The atomic bomb is the result of nuclear fission reactions. Nuclear fission reaction to release energy, is a million times more chemical rocket propellant combustion energy. Therefore, nuclear fission energy is a high-performance rocket rockets. Since it requires much less propellant than chemical rockets can, so to its own weight is much lighter than chemical rockets energy. For the same quality of the rocket, the rocket payload of nuclear fission energy is much greater than the chemical energy of the rocket. Just nuclear fission energy rocket is still in the works.
Use of nuclear fission energy as the energy of the rocket, called the atomic rockets. It is to make hydrogen or other inert gas working fluid through the reactor, the hydrogen after the heating temperature quickly rose to 2000 ℃, and then into the nozzle, high-speed spray to produce thrust.
A vision plan is to use liquid hydrogen working fluid, in operation, the liquid hydrogen tank in the liquid hydrogen pump is withdrawn through the catheter and the engine cooling jacket and liquid hydrogen into hydrogen gas, hydrogen gas turbine-driven, locally expansion. Then by nuclear fission reactors, nuclear fission reactions absorb heat released, a sharp rise in temperature, and finally into the nozzle, the rapid expansion of high-speed spray. Calculations show that the amount of atomic payload rockets, rocket high chemical energy than 5-8 times.
Hydrogen and other light elements, under certain conditions, their nuclei convergent synthesis of new heavy nuclei, and release a lot of energy, called nuclear fusion reaction, also called thermonuclear reaction.
Using energy generated by the fusion reaction for energy rocket, called fusion energy rocket or nuclear thermal rockets. But it is also not only take advantage of controlled nuclear fusion reaction to manufacture hydrogen bombs, rockets and controlled nuclear fusion reaction needs still studying it.
Of course there are various research and development of rocket technology and technical solutions to try.
It is envisaged that the rocket deuterium, an isotope of hydrogen with deuterium nuclear fusion reaction of helium nuclei, protons and neutrons, and release huge amounts of energy, just polymerized ionized helium to temperatures up to 100 million degrees the plasma, and then nozzle expansion, high-speed ejection, the exhaust speed of up to 15,000 km / sec, atomic energy is 1800 times the rocket, the rocket is the chemical energy of 3700 times.
Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. In a nuclear reactor, nuclear energy into heat to heat the working fluid, the working fluid is heated after expansion nozzle to accelerate to the speed of 6500 ~ 11,000 m / sec from the discharge orifice to produce thrust. Nuclear rocket engine specific impulse (250 to 1000 seconds) long life, but the technology is complex, apply only to long-term spacecraft. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues not resolved, is still in the midst of trials. Nuclear rocket technology is cutting-edge aerospace science technology, centralized many professional and technical sciences and aerospace, nuclear physics, nuclear chemistry, materials science, the long term future _-- wide width. The United States, Russia and Europe, China, India, Japan, Britain, Brazil and other countries in this regard have studies, in particular the United States and Russia led the way, impressive. Of course, at this stage of nuclear rocket technology, technology development there are still many difficulties. Fully formed, still to be. But humanity marching to the universe, nuclear reactor applications is essential.
Outer Space Treaty (International Convention on the Peaceful Uses of Outer Space) **
Use of Nuclear Power Sources in Outer Space Principle 15
General Assembly,
Having considered the report of its thirty-fifth session of the Committee on the Peaceful Uses of Outer Space and the Commission of 16 nuclear
It can be attached in principle on the use of nuclear power sources in outer space of the text of its report, 17
Recognize that nuclear power sources due to small size, long life and other characteristics, especially suitable for use even necessary
For some missions in outer space,
Recognizing also that the use of nuclear power sources in outer space should focus on the possible use of nuclear power sources
Those uses,
Recognizing also that the use of nuclear power sources should include or probabilistic risk analysis is complete security in outer space
Full evaluation is based, in particular, the public should focus on reducing accidental exposure to harmful radiation or radioactive material risk
risk,
Recognizing the need to a set of principles containing goals and guidelines in this regard to ensure the safety of outer space makes
With nuclear power sources,
Affirming that this set principles apply exclusively on space objects for non-power generation, which is generally characteristic
Mission systems and implementation of nuclear power sources in outer space on similar principles and used by,
Recognizing this need to refer to a new set of principles for future nuclear power applications and internationally for radiological protection
The new proposal will be revised
By the following principles on the use of nuclear power sources in outer space.
Principle 1. Applicability of international law
Involving the use of nuclear power sources in outer space activities should be carried out in accordance with international law, especially the "UN
Principles of the Charter "and" States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies Activities
Treaty "3
.
2. The principle terms
1. For the purpose of these principles, "launching State" and "launching State ......" two words mean, in related
Principles related to a time of nuclear power sources in space objects exercises jurisdiction and control of the country.
2. For the purpose of principle 9, wherein the definition of the term "launching State" as contained in that principle.
3. For the purposes of principle 3, the terms "foreseeable" and "all possible" two words are used to describe the actual hair
The overall likelihood of students that it is considered for safety analysis is credible possibilities for a class of things
Member or circumstances. "General concept of defense in depth" when the term applies to nuclear power sources in outer space refers to various settings
Count form and space operations replace or supplement the operation of the system in order to prevent system failures or mitigate thereafter
"Official Records of the General Assembly, Forty-seventh Session, Supplement No. 20" 16 (A / 47/20).
17 Ibid., Annex.
38
fruit. To achieve this purpose is not necessarily required for each individual member has redundant safety systems. Given space
Use and special requirements of various space missions, impossible to any particular set of systems or features can be specified as
Necessary to achieve this purpose. For the purpose of Principle 3 (d) of paragraph 2, "made critical" does not include
Including such as zero-power testing which are fundamental to ensuring system safety required.
Principle 3. Guidelines and criteria for safe use
To minimize the risk of radioactive material in space and the number involved, nuclear power sources in outer space
Use should be limited to non-nuclear power sources in space missions can not reasonably be performed
1. General goals for radiation protection and nuclear safety
(A) States launching space objects with nuclear power sources on board shall endeavor to protect individuals, populations and the biosphere
From radiation hazards. The design and use of space objects with nuclear power sources on board shall ensure that risk with confidence
Harm in the foreseeable operational or accidental circumstances, paragraph 1 (b) and (c) to define acceptable water
level.
Such design and use shall also ensure that radioactive material does not reliably significant contamination of outer space.
(B) the normal operation of nuclear power sources in space objects, including from paragraph 2 (b) as defined in foot
High enough to return to the track, shall be subject to appropriate anti-radiation recommended by the International Commission on Radiological Protection of the public
Protection goals. During such normal operation there shall be no significant radiation exposure;
(C) To limit exposure in accidents, the design and construction of nuclear power source systems shall take into account the international
Relevant and generally accepted radiological protection guidelines.
In addition to the probability of accidents with potentially serious radiological consequences is extremely low, the nuclear power source
Design systems shall be safely irradiated limited limited geographical area, for the individual radiation dose should be
Limited to no more than a year 1mSv primary dose limits. Allows the use of irradiation year for some years 5mSv deputy agent
Quantity limit, but the average over a lifetime effective dose equivalent annual dose not exceed the principal limit 1mSv
degree.
Should make these conditions occur with potentially serious radiological consequences of the probability of the system design is very
small.
Criteria mentioned in this paragraph Future modifications should be applied as soon as possible;
(D) general concept of defense in depth should be based on the design, construction and operation of systems important for safety. root
According to this concept, foreseeable safety-related failures or malfunctions must be capable of automatic action may be
Or procedures to correct or offset.
It should ensure that essential safety system reliability, inter alia, to make way for these systems
Component redundancy, physical separation, functional isolation and adequate independence.
It should also take other measures to increase the level of safety.
2. The nuclear reactor
(A) nuclear reactor can be used to:
39
(I) On interplanetary missions;
(Ii) the second high enough orbit paragraph (b) as defined;
(Iii) low-Earth orbit, with the proviso that after their mission is complete enough to be kept in a nuclear reactor
High on the track;
(B) sufficiently high orbit the orbital lifetime is long enough to make the decay of fission products to approximately actinides
Element active track. The sufficiently high orbit must be such that existing and future outer space missions of crisis
Risk and danger of collision with other space objects to a minimum. In determining the height of the sufficiently high orbit when
It should also take into account the destroyed reactor components before re-entering the Earth's atmosphere have to go through the required decay time
between.
(C) only 235 nuclear reactors with highly enriched uranium fuel. The design shall take into account the fission and
Activation of radioactive decay products.
(D) nuclear reactors have reached their operating orbit or interplanetary trajectory can not be made critical state
state.
(E) nuclear reactor design and construction shall ensure that, before reaching the operating orbit during all possible events
Can not become critical state, including rocket explosion, re-entry, impact on ground or water, submersion
In water or water intruding into the core.
(F) a significant reduction in satellites with nuclear reactors to operate on a lifetime less than in the sufficiently high orbit orbit
For the period (including during operation into the sufficiently high orbit) the possibility of failure, there should be a very
Reliable operating system, in order to ensure an effective and controlled disposal of the reactor.
3. Radioisotope generators
(A) interplanetary missions and other spacecraft out of Earth's gravitational field tasks using radioactive isotopes
Su generator. As they are stored after completion of their mission in high orbit, the Earth can also be used
track. We are required to make the final treatment under any circumstances.
(B) Radioisotope generators shall be protected closed systems, design and construction of the system should
Ensure that in the foreseeable conditions of the track to withstand the heat and aerodynamic forces of re-entry in the upper atmosphere, orbit
Conditions including highly elliptical or hyperbolic orbits when relevant. Upon impact, the containment system and the occurrence of parity
Physical morpheme shall ensure that no radioactive material is scattered into the environment so you can complete a recovery operation
Clear all radioactive impact area.
Principle 4. Safety Assessment
1. When launching State emission consistent with the principles defined in paragraphs 1, prior to the launch in applicable under the
Designed, constructed or manufactured the nuclear power sources, or will operate the space object person, or from whose territory or facility
Transmits the object will be to ensure a thorough and comprehensive safety assessment. This assessment shall cover
All relevant stages of space mission and shall deal with all systems involved, including the means of launching, the space level
Taiwan, nuclear power source and its equipment and the means of control and communication between ground and space.
2. This assessment shall respect the principle of 3 contained in the guidelines and criteria for safe use.
40
3. The principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
Results of about 11, this safety assessment should be published prior to each transmit simultaneously to the extent feasible
Note by the approximate intended time of launch, and shall notify the Secretary-General of the United Nations, how to be issued
This safety assessment before the shot to get the results as soon as possible.
Principle 5. Notification of re-entry
1. Any State launching a space object with nuclear power sources in space objects that failed to produce discharge
When radioactive substances dangerous to return to the earth, it shall promptly notify the country concerned. Notice shall be in the following format:
(A) System parameters:
(I) Name of launching State, including which may be contacted in the event of an accident to Request
Information or assistance to obtain the relevant authorities address;
(Ii) International title;
(Iii) Date and territory or location of launch;
(Iv) the information needed to make the best prediction of orbit lifetime, trajectory and impact region;
(V) General function of spacecraft;
(B) information on the radiological risk of nuclear power source:
(I) the type of power source: radioisotopes / reactor;
(Ii) the fuel could fall into the ground and may be affected by the physical state of contaminated and / or activated components, the number of
The amount and general radiological characteristics. The term "fuel" refers to as a source of heat or power of nuclear material.
This information shall also be sent to the Secretary-General of the United Nations.
2. Once you know the failure, the launching State shall provide information on the compliance with the above format. Information should as far as possible
To be updated frequently, and in the dense layers of the Earth's atmosphere is expected to return to a time when close to the best increase
Frequency of new data, so that the international community understand the situation and will have sufficient time to plan for any deemed necessary
National contingency measures.
3. It should also be at the same frequency of the latest information available to the Secretary-General of the United Nations.
Principle 6. consultation
5 According to the national principles provide information shall, as far as reasonably practicable, other countries
Requirements to obtain further information or consultations promptly reply.
Principle 7. Assistance to States
1. Upon receipt of expected with nuclear power sources on space objects and their components will return through the Earth's atmosphere
After know that all countries possessing space monitoring and tracking facilities, in the spirit of international cooperation, as soon as possible to
The Secretary-General of the United Nations and the countries they may have made space objects carrying nuclear power sources
A fault related information, so that the States may be affected to assess the situation and take any
It is considered to be the necessary precautions.
41
2. In carrying space objects with nuclear power sources back to the Earth's atmosphere after its components:
(A) launching State shall be requested by the affected countries to quickly provide the necessary assistance to eliminate actual
And possible effects, including nuclear power sources to assist in identifying locations hit the Earth's surface, to detect the re substance
Quality and recovery or cleanup activities.
(B) All countries with relevant technical capabilities other than the launching State, and with such technical capabilities
International organizations shall, where possible, in accordance with the requirements of the affected countries to provide the necessary co
help.
When according to the above (a) and subparagraph (b) to provide assistance, should take into account the special needs of developing countries.
Principle 8. Responsibility
In accordance with the States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies activities, including the principles of Article
About Article, States shall bear international responsibility for their use of nuclear power sources in outer space relates to the activities
Whether such activities are carried on by governmental agencies or non-governmental entities, and shall bear international responsibility to ensure that this
Such activities undertaken by the country in line with the principles of the Treaty and the recommendations contained therein. If it involves the use of nuclear power sources
Activities in outer space by an international organization, should be done by the international organizations and States to participate in the organization
Undertakes to comply with the principles of the Treaty and the recommendations contained in these responsibilities.
Principle 9. Liability and Compensation
1. In accordance with the principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
And the Convention on International Liability for Damage Caused by Space Objects covenant of Article 7
Provisions, which launches or on behalf of the State
Each State launching a space object and each State from which territory or facility a space object is launched
Kinds of space object or damage caused by components shall bear international liability. This fully applies to this
Kind of space object carrying a nuclear power source case. Two or more States jointly launch a space object,
Each launching State shall in accordance with the above Article of the Convention for any damages jointly and severally liable.
2. Such countries under the aforesaid Convention shall bear the damages shall be in accordance with international law and fair and reasonable
The principles set out in order to provide for damages to make a claim on behalf of its natural or juridical persons, national or
International organizations to restore to the state before the occurrence of the damage.
3. For the purposes of this principle, compensation should be made to include reimbursement of the duly substantiated expenses for search, recovery and clean
Cost management work, including the cost of providing assistance to third parties.
10. The principle of dispute settlement
Since the implementation of these principles will lead to any dispute in accordance with the provisions of the UN Charter, by negotiation or
Other established procedures to resolve the peaceful settlement of disputes.
Here quoted the important provisions of the United Nations concerning the use of outer space for peaceful nuclear research and international conventions, the main emphasis on the Peaceful Uses of provisions related constraints .2 the use of nuclear rockets in outer space nuclear studies, etc., can cause greater attention in nuclear power nuclear rocket ship nuclear research, manufacture, use and other aspects of the mandatory hard indicators. this scientists, engineering and technical experts are also important constraints and requirements. as IAEA supervision and management as very important.
2. radiation. Space radiation is one of the greatest threats to the safety of the astronauts, including X-rays, γ-rays, cosmic rays and high-speed solar particles. Better than aluminum protective effect of high polymer composite materials.
3. Air. Perhaps the oxygen needed to rely on oxidation-reduction reaction of hydrogen and ilmenite production of water, followed by water electrolysis to generate oxygen. Mars oxygen necessary for survival but also from the decomposition of water, electrolytically separating water molecules of oxygen and hydrogen, this oxygen equipment has been successfully used in the International Space Station. Oxygen is released into the air to sustain life, the hydrogen system into the water system.
4. The issue of food waste recycling. At present, the International Space Station on the use of dehumidifiers, sucked moisture in the air to be purified, and then changed back to drinkable water. The astronauts' urine and sweat recycling. 5. water. The spacecraft and the space station on purification system also makes urine and other liquids can be purified utilization. 6. microgravity. In microgravity or weightlessness long-term space travel, if protective measures shall not be treated, the astronauts will be muscle atrophy, bone softening health. 7. contact. 8. Insulation, 9 energy. Any space exploration are inseparable from the energy battery is a new super hybrid energy storage device, the asymmetric lead-acid batteries and supercapacitors in the same compound within the system - and the so-called inside, no additional separate electronic control unit, this is an optimal combination. The traditional lead-acid battery PbO2 monomer is a positive electrode plate and a negative electrode plate spongy Pb composition, not a super cell. : Silicon solar cells, multi-compound thin film solar cells, multi-layer polymer-modified electrode solar cells, nano-crystalline solar cells, batteries and super class. For example, the solar aircraft .10. To protect the health and life safety and security systems. Lysophosphatidic acid LPA is a growth factor-like lipid mediators, the researchers found that this substance can on apoptosis after radiation injury and animal cells was inhibited. Stable lysophosphatidic acid analogs having the hematopoietic system and gastrointestinal tract caused by acute radiation sickness protection, knockout experiments show that lysophosphatidic acid receptors is an important foundation for the protection of radiation injury. In addition to work under high pressure, the astronauts face a number of health threats, including motion sickness, bacterial infections, blindness space, as well as psychological problems, including toxic dust. In the weightless environment of space, the astronaut's body will be like in preadolescents, as the emergence of various changes.
Plantar molt
After the environment to adapt to zero gravity, the astronaut's body will be some strange changes. Weightlessness cause fluid flow around the main flow torso and head, causing the astronauts facial swelling and inflammation, such as nasal congestion. During long-term stay in space
Bone and muscle loss
Most people weightlessness caused by the impact may be known bone and muscle degeneration. In addition, the calcium bones become very fragile and prone to fracture, which is why some of the astronauts after landing need on a stretcher.
Space Blindness
Space Blindness refers astronaut decreased vision.
Solar storms and radiation is one of the biggest challenges facing the long-term space flight. Since losing the protection of Earth's magnetic field, astronauts suffer far more than normal levels of radiation. The cumulative amount of radiation exposure in low earth orbit them exceeded by workers close to nuclear reactors, thereby increasing the risk of cancer.
Prolonged space flight can cause a series of psychological problems, including depression or mood swings, vulnerability, anxiety and fear, as well as other sequelae. We are familiar with the biology of the Earth, the Earth biochemistry, biophysics, after all, the Earth is very different astrophysics, celestial chemistry, biophysics and astrophysics, biochemistry and other celestial bodies. Therefore, you must be familiar with and adapt to these differences and changes.
Osteoporosis and its complications ranked first in the space of disease risk.
Long-term health risks associated with flying Topics
The degree of influence long-term biological effects of radiation in human flight can withstand the radiation and the maximum limit of accumulated radiation on physiology, pathology and genetics.
Physiological effects of weightlessness including: long-term bone loss and a return flight after the maximum extent and severity of the continued deterioration of other pathological problems induced by the; maximum flexibility and severity of possible long-term Flight Center in vascular function.
Long-term risk of disease due to the high risk of flight stress, microbial variation, decreased immune function, leading to infections
Radiation hazards and protection
1) radiation medicine, biology and pathway effects Features
Radiation protection for interplanetary flight, since the lack of protective effect of Earth's magnetic field, and by the irradiation time is longer, the possibility of increased radiation hazard.
Analysis of space flight medical problems that may occur, loss of appetite topped the list, sleep disorders, fatigue and insomnia, in addition, space sickness, musculoskeletal system problems, eye problems, infections problems, skin problems and cardiovascular problems
---------------------------------------------------------
Development of diagnostic techniques in orbit, the development of the volume of power consumption, features a wide range of diagnostic techniques, such as applied research of ultrasound diagnostic techniques in the abdominal thoracic trauma, bone, ligament damage, dental / sinus infections and other complications and integrated;
Actively explore in orbit disposal of medical technology, weightlessness surgical methods, development of special surgical instruments, the role of narcotic drugs and the like.
——————————————————————————————-
However, space technology itself is integrated with the use of the most advanced technology, its challenging technical reserves and periodic demanding
With the continuous development of science and technology, space agencies plan a manned landing on the moon and Mars, space exploration emergency medicine current concern.
Space sickness
In the weightless environment of space, in the weightless environment of space, surgery may be extremely difficult and risky.
Robot surgeons
Space disease in three days after entering the space started to ease, although individual astronauts might subsequently relapse. January 2015 NASA declared working on a fast, anti-nausea and nasal sprays. In addition, due to the zero-gravity environment, and anti-nausea drugs can only be administered by injection or transdermal patches manner.
Manned spaceflight in the 21st century is the era of interplanetary flight, aerospace medicine is closely watched era is the era of China's manned space flourish. Only the central issue, and grasp the opportunity to open up a new world of human survival and development.
Various emergency contingency measures in special circumstances. Invisible accident risk prevention. Enhancing drugs and other screening methods immunity aerospace medicine and tissue engineering a microgravity environment. Drug mixture of APS, ginseng polysaccharides, Ganoderma lucidum polysaccharides, polysaccharides and Lentinan, from other compounds. Drug development space syndrome drug, chemical structure modification will be an important part.
These issues are very sensitive, cutting-edge technology is a major difficulty landing on Mars. Countries in the world, especially the world's major space powers in the country strategies and technical research, the results of all kinds continue to emerge. United States, Russia, China, Europe, India, Japan and other countries is different. United States, Russia extraordinary strength. Many patented technology and health, and most belong to the top-secret technology. Especially in aerospace engineering and technological achievements is different from the general scientific literature, practical, commercial, industrial great, especially the performance of patents, know-how, technical drawings, engineering design and other aspects. Present Mars and return safely to Earth, the first manned, significance, everything is hard in the beginning, especially the first person to land on Mars This Mars for Human Sciences Research Mars, the moon, the earth, the solar system and the universe, life and other significant. Its far greater than the value of direct investments and business interests.
In addition, it is the development of new materials, suitable for deep space operations universe, life, and other detection, wider field.
Many aerospace materials, continuous research and development of materials are key areas of aerospace development, including material rocket, the spacecraft materials, the suit materials, radiation materials, materials and equipment, instruments, materials and so on biochemistry.
Temperature metal-based compound with a metal matrix composite body with a more primordial higher temperature strength, creep resistance, impact resistance, thermal fatigue and other excellent high temperature performance.
In B, C, SiC fiber reinforced Ti3Al, TiAl, Ni3Al intermetallic matrix composites, etc.
W Fiber Reinforced with nickel-based, iron-based alloys as well as SiC, TiB2, Si3N4 and BN particle reinforced metal matrix composites
High temperature service conditions require the development of ceramic and carbon-based composite materials, etc., not in this eleven Cheung said.
Fuel storage
In order to survive in space, people need many things: food, oxygen, shelter, and, perhaps most importantly, fuel. The initial quality Mars mission somewhere around 80 percent of the space launch humans will be propellant. The fuel amount of storage space is very difficult.
This difference in low Earth orbit cause liquid hydrogen and liquid oxygen - rocket fuel - vaporization.
Hydrogen is particularly likely to leak out, resulting in a loss of about 4% per month.
When you want to get people to Mars speed to minimize exposure to weightlessness and space radiation hazards
Mars
Landings on the Martian surface, they realized that they reached the limit. The rapid expansion of the thin Martian atmosphere can not be very large parachute, such as those that will need to be large enough to slow down, carry human spacecraft.
Therefore, the parachute strong mass ratio, high temperature resistance, Bing shot performance and other aspects of textile materials used have special requirements, in order to make a parachute can be used in rockets, missiles, Yu arrows spacecraft and other spacecraft recovery, it is necessary to improve the canopy heat resistance, a high melting point polymeric fiber fabric used, the metal fabric, ceramic fiber fabrics, and other devices.
Super rigid parachute to help slow the landing vehicle.
Spacecraft entered the Martian atmosphere at 24,000 km / h. Even after slowing parachute or inflatable, it will be very
Once we have the protection of the Earth magnetic field, the solar radiation will accumulate in the body, a huge explosion threw the spacecraft may potentially lethal doses of radiation astronauts.
In addition to radiation, the biggest challenge is manned trip to Mars microgravity, as previously described.
The moon is sterile. Mars is another case entirely.
With dust treatment measures.
Arid Martian environment to create a super-tiny dust particles flying around the Earth for billions of years.
Apollo moon dust encountered. Ultra-sharp and abrasive lunar dust was named something that can clog the basic functions of mechanical damage. High chloride salt, which can cause thyroid problems in people.
Mars geological structure and geological structure of the moon, water on Mars geology, geology of the Moon is very important, because he, like the Earth's geology is related to many important issues. Water, the first element of life, air, temperature, and complex geological formations are geological structure. Cosmic geology research methods, mainly through a variety of detection equipment equipped with a space probe, celestial observations of atmospheric composition, composition and distribution of temperature, pressure, wind speed, vertical structure, composition of the solar wind, the water, the surface topography and Zoning, topsoil the composition and characteristics of the component surface of the rock, type and distribution, stratigraphic sequence, structural system and the internal shell structure.
Mars internal situation only rely on its surface condition of large amounts of data and related information inferred. It is generally believed that the core radius of 1700 km of high-density material composition; outsourcing a layer of lava, it is denser than the Earth's mantle some; outermost layer is a thin crust. Compared to other terrestrial planets, the lower the density of Mars, which indicates that the Martian core of iron (magnesium and iron sulfide) with may contain more sulfur. Like Mercury and the Moon, Mars and lack active plate movement; there is no indication that the crust of Mars occurred can cause translational events like the Earth like so many of folded mountains. Since there is no lateral movement in the earth's crust under the giant hot zone relative to the ground in a stationary state. Slight stress coupled with the ground, resulting in Tharis bumps and huge volcano. For the geological structure of Mars is very important, which is why repeated explorations and studies of Martian geological reasons.
Earth's surface
Each detector component landing site soil analysis:
Element weight percent
Viking 1
Oxygen 40-45
Si 18-25
Iron 12-15
K 8
Calcium 3-5
Magnesium 3-6
S 2-5
Aluminum 2-5
Cesium 0.1-0.5
Core
Mars is about half the radius of the core radius, in addition to the primary iron further comprises 15 to 17% of the sulfur content of lighter elements is also twice the Earth, so the low melting point, so that the core portion of a liquid, such as outside the Earth nuclear.
Mantle
Nuclear outer coating silicate mantle.
Crust
The outermost layer of the crust.
Crustal thickness obtained, the original thickness of the low north 40 km south plateau 70 kilometers thick, an average of 50 kilometers, at least 80 km Tharsis plateau and the Antarctic Plateau, and in the impact basin is thin, as only about 10 kilometers Greece plains.
Canyon of Mars there are two categories: outflow channels (outflow channel) and tree valley (valley network). The former is very large, it can be 100 km wide, over 2000 km long, streamlined, mainly in the younger Northern Hemisphere, such as the plain around Tyre Chris Canyon and Canyon jam.
In addition, the volcanic activity sometimes lava formation lava channels (lava channel); crustal stress generated by fissures, faults, forming numerous parallel extending grooves (fossa), such as around the huge Tharsis volcanic plateau radially distributed numerous grooves, which can again lead to volcanic activity.
Presumably, Mars has an iron as the main component of the nucleus, and contains sulfur, magnesium and other light elements, the nuclear share of Mars, the Earth should be relatively small. The outer core is covered with a thick layer of magnesium-rich silicate mantle, the surface of rocky crust. The density of Earth-like planets Mars is the lowest, only 3.93g / cc.
Hierarchy
The crust
Lunar core
The average density of the Moon is 3.3464 g / cc, the solar system satellites second highest (after Aiou). However, there are few clues mean lunar core is small, only about 350 km radius or less [2]. The core of the moon is only about 20% the size of the moon, the moon's interior has a solid, iron-rich core diameter of about 240 kilometers (150 miles); in addition there is a liquid core, mainly composed of iron outer core, about 330 km in diameter (205 miles), and for the first time compared with the core of the Earth, considered as the earth's outer core, like sulfur and oxygen may have lighter elements [4].
Chemical elements on the lunar surface constituted in accordance with its abundance as follows: oxygen (O), silicon (Si), iron (Fe), magnesium (Mg), calcium (Ca), aluminum (Al), manganese (Mn), titanium ( Ti). The most abundant is oxygen, silicon and iron. The oxygen content is estimated to be 42% (by weight). Carbon (C) and nitrogen (N) only traces seem to exist only in trace amounts deposited in the solar wind brings.
Lunar Prospector from the measured neutron spectra, the hydrogen (H) mainly in the lunar poles [2].
Element content (%)
Oxygen 42%
Silicon 21%
Iron 13%
Calcium 8%
Aluminum 7%
Magnesium 6%
Other 3%
Lunar surface relative content of each element (% by weight)
Moon geological history is an important event in recent global magma ocean crystallization. The specific depth is not clear, but some studies have shown that at least a depth of about 500 kilometers or more.
Lunar landscape
Lunar landscape can be described as impact craters and ejecta, some volcanoes, hills, lava-filled depressions.
Regolith
TABLE bear the asteroid and comets billions of years of bombardment. Over time, the impact of these processes have already broken into fine-grained surface rock debris, called regolith. Young mare area, regolith thickness of about 2 meters, while the oldest dated land, regolith thickness of up to 20 meters. Through the analysis of lunar soil components, in particular the isotopic composition changes can determine the period of solar activity. Solar wind gases possible future lunar base is useful because oxygen, hydrogen (water), carbon and nitrogen is not only essential to life, but also may be useful for fuel production. Lunar soil constituents may also be as a future source of energy.
Here, repeatedly stressed that the geological structure and geological structure of celestial bodies, the Earth, Moon, Mars, or that this human existence and development of biological life forms is very important, especially in a series of data Martian geological structure geological structure is directly related to human landing Mars and the successful transformation of Mars or not. for example, water, liquid water, water, oxygen, synthesis, must not be taken lightly.
__________________________________________________________----
Mars landing 10 Technology
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
[
"1" rocket propulsion technology ion fusion nuclear pulse propulsion rocket powered high-speed heavy rocket technology, space nuclear reactors spacecraft] brought big problems reflected in the nuclear reaction, nuclear radiation on spacecraft launch, control, brakes and other impact.
In particular, for the future of nuclear power spacecraft, the need to solve the nuclear reactor design, manufacture, control, cooling, radiation shielding, exhaust pollution, high thermoelectric conversion efficiency and a series of technical problems.
In particular, nuclear reactors produce radiation on astronauts' health will pose a great threat, which requires the spacecraft to be nuclear radiation shielding to ensure astronaut and ship the goods from radiation and heat from the reactor influence, but this will greatly increase the weight of the detector.
Space nuclear process applications, nuclear reaction decay is not a problem, but in a vacuum, ultra-low temperature environment, the nuclear reaction materials, energy transport materials have very high demands.
Space facing the reality of a nuclear reactor cooling cooling problems. To prevent problems with the reactor, "Washington" aircraft carrier to take four heavy protective measures for the radiation enclosed in the warship. These four measures are: the fuel itself, fuel storage pressure vessel, reactor shell and the hull. US Navy fuel all metal fuel, designed to take the impact resistance of the war, does not release fission product can withstand more than 50 times the gravity of the impact load; product of nuclear fission reactor fuel will never enter loop cooling water. The third layer of protection is specially designed and manufactured the reactor shell. The fourth layer is a very strong anti-impact combat ship, the reactor is arranged in the center of the ship, very safe. Engage in a reactor can only be loaded up to the aircraft, so as to drive the motor, and then drive the propeller. That is the core advantage of the heat generated by the heated gas flow, high temperature high pressure gas discharge backward, thereby generating thrust.
.
After installation AMPS1000 type nuclear power plant, a nuclear fuel assembly: He is a core member of the nuclear fuel chain reaction. Usually made into uranium dioxide, of which only a few percent uranium-235, and most of it is not directly involved in the nuclear fission of uranium 238. The uranium dioxide sintered into cylindrical pieces, into a stainless steel or a zirconium alloy do metal tubes called fuel rods or the original, then the number of fuel rods loaded metal cylinder in an orderly composition of the fuel assembly, and finally put a lot of vertical distribution of fuel assemblies in the reactor.
Nuclear reactor pressure vessel is a housing for containing nuclear fuel and reactor internals, for producing high-quality high-strength steel is made to withstand the pressure of dozens MPa. Import and export of the coolant in the pressure vessel.
The top of the pressure vessel closure, and can be used to accommodate the fixed control rod drive mechanism, pressure vessel head has a semi-circular, flat-topped.
Roof bolt: used to connect the locking pressure vessel head, so that the cylinder to form a completely sealed container.
Neutron Source: Plug in nuclear reactors can provide sufficient neutron, nuclear fuel ignition, to start to enhance the role of nuclear reactors and nuclear power. Neutron source generally composed of radium, polonium, beryllium, antimony production. Neutron source and neutron fission reactors are fast neutron, can not cause fission of uranium 235, in order to slow down, we need to moderator ---- full of pure water in a nuclear reactor. Aircraft carriers, submarines use nuclear reactor control has proven more successful.
Rod: has a strong ability to absorb neutrons, driven by the control rod drive mechanism, can move up and down in a nuclear reactor control rods within the nuclear fuel used to start, shut down the nuclear reactor, and maintain, regulate reactor power. Hafnium control rods in general, silver, indium, cadmium and other metals production.
Control rod drive mechanism: He is the executive body of nuclear reactors operating system and security protection systems, in strict accordance with requirements of the system or its operator control rod drives do move up and down in a nuclear reactor, nuclear reactor for power control. In a crisis situation, you also can quickly control rods fully inserted into the reactor in order to achieve the purpose of the emergency shutdown
Upper and lower support plate: used to secure the fuel assembly. High temperature and pressure inside the reactor is filled with pure water (so called pressurized water reactors), on the one hand he was passing through a nuclear reactor core, cooling the nuclear fuel, to act as a coolant, on the other hand it accumulates in the pressure vessel in play moderated neutrons role, acting as moderator.
Water quality monitoring sampling system:
Adding chemical system: under normal circumstances, for adding hydrazine, hydrogen, pH control agents to the primary coolant system, the main purpose is to remove and reduce coolant oxygen, high oxygen water suppression equipment wall corrosion (usually at a high temperature oxygen with hydrogen, especially at low temperatures during startup of a nuclear reactor with added hydrazine oxygen); when the nuclear reactor control rods stuck for some reason can not shutdown time by the the system can inject the nuclear reactor neutron absorber (such as boric acid solution), emergency shutdown, in order to ensure the safety of nuclear submarines.
Water system: a loop inside the water will be reduced at work, such as water sampling and analysis, equipment leaks, because the shutdown process cooling water and reduction of thermal expansion and contraction.
Equipment cooling water system:
Pressure safety systems: pressure reactor primary coolant system may change rapidly for some reason, the need for effective control. And in severe burn nuclear fuel rods, resulting in a core melt accident, it is necessary to promptly increase the pressure. Turn the regulator measures the electric, heating and cooling water. If necessary, also temporary startup booster pump.
Residual Heat Removal System: reactor scram may be due to an accident, such as when the primary coolant system of the steam generator heat exchanger tube is damaged, it must be urgently closed reactors.
Safety Injection System: The main components of this system is the high-pressure injection pump.
Radioactive waste treatment systems:
Decontamination Systems: for the removal of radioactive deposits equipment, valves, pipes and accessories, and other surfaces.
Europe, the United States and Russia and other countries related to aircraft carriers, submarines, icebreakers, nuclear-powered research aircraft, there are lots of achievements use of nuclear energy, it is worth analysis. However, nuclear reactor technology, rocket ships and the former are very different, therefore, requires special attention and innovative research. Must adopt a new new design techniques, otherwise, fall into the stereotype, it will avail, nothing even cause harm Aerospace.
[ "2" spacecraft structure]
[ "3"] radiation technology is the use of deep-sea sedimentation fabric fabrics deepwater technology development precipitated silver metal fibers or fiber lint and other materials and micronaire value between 4.1 to 4.3 fibers made from blends. For radiation protection field, it greatly enhances the effects of radiation and service life of clothing. Radiation resistant fiber) radiation resistant fiber - fiber polyimide polyimide fibers
60 years the United States has successfully developed polyimide fibers, it has highlighted the high temperature, radiation-resistant, fire-retardant properties.
[ "4" cosmic radiation resistant clothing design multifunctional anti-aging, wear underwear] ① comfort layer: astronauts can not wash clothes in a long flight, a lot of sebum, perspiration, etc. will contaminate underwear, so use soft, absorbent and breathable cotton knitwear making.
② warm layer: at ambient temperature range is not the case, warm layer to maintain a comfortable temperature environment. Choose warm and good thermal resistance large, soft, lightweight material, such as synthetic fibers, flakes, wool and silk and so on.
③ ventilation and cooling clothes clothes
Spacesuit
In astronaut body heat is too high, water-cooled ventilation clothing and clothing to a different way of heat. If the body heat production more than 350 kcal / h (ventilated clothes can not meet the cooling requirements, then that is cooled by a water-cooled suit. Ventilating clothing and water-cooled multi-use compression clothing, durable, flexible plastic tubing, such as polyvinyl chloride pipe or nylon film.
④ airtight limiting layer:
⑤ insulation: astronaut during extravehicular activities, from hot or cold insulation protection. It multilayer aluminized polyester film or a polyimide film and sandwiched between layers of nonwoven fabric to be made.
⑥ protective cover layer: the outermost layer of the suit is to require fire, heat and anti-space radiation on various factors (micrometeorites, cosmic rays, etc.) on the human body. Most of this layer with aluminized fabric.
New space suits using a special radiation shielding material, double design.
And also supporting spacesuit helmet, gloves, boots and so on.
[ "5" space - Aerospace biomedical technology, space, special use of rescue medication Space mental health care systems in space without damage restful sleep positions - drugs, simple space emergency medical system
]
[ "6" landing control technology, alternate control technology, high-performance multi-purpose landing deceleration device (parachute)]
[ "7" Mars truck, unitary Mars spacecraft solar energy battery super multi-legged (rounds) intelligent robot] multifunction remote sensing instruments on Mars, Mars and more intelligent giant telescope
[8 <> Mars warehouse activities, automatic Mars lander - Automatic start off cabin
]
[ "9" Mars - spacecraft docking control system, return to the system design]
Space flight secondary emergency life - support system
Spacecraft automatic, manual, semi-automatic operation control, remote control switch system
Automatic return spacecraft systems, backup design, the spacecraft automatic control operating system modular blocks of]
[10 lunar tracking control system
Martian dust storms, pollution prevention, anti-corrosion and other special conditions thereof
Electric light aircraft, Mars lander, Mars, living spaces, living spaces Mars, Mars entry capsule, compatible utilization technology, plant cultivation techniques, nutrition space - space soil]
Aerospace technology, space technology a lot, a lot of cutting-edge technology. Human landing on Mars technology bear the brunt. The main merge the human landing on Mars 10 cutting-edge technology, in fact, these 10 cutting-edge technology, covering a wide range, focused, and is the key to key technologies. They actually shows overall trends and technology Aerospace Science and Technology space technology. Human triumph Mars and safe return of 10 cutting-edge technology is bound to innovation. Moreover, in order to explore the human Venus, Jupiter satellites and the solar system, the Milky Way and other future development of science and laid the foundation guarantee. But also for the transformation of human to Mars, the Moon and other planets livable provides strong technical support. Aerospace Science and Technology which is a major support system.
Preparation of oxygen, water, synthesis, temperature, radiation, critical force confrontation. Regardless of the moon or Mars, survive three elements bear the brunt.
Chemical formula: H₂O
Formula: H-O-H (OH bond between two angle 104.5 °).
Molecular Weight: 18.016
Chemical Experiment: water electrolysis. Formula: 2H₂O = energized = 2H₂ ↑ + O₂ ↑ (decomposition)
Molecules: a hydrogen atom, an oxygen atom.
Ionization of water: the presence of pure water ionization equilibrium following: H₂O == == H⁺ + OH⁻ reversible or irreversible H₂O + H₂O = = H₃O⁺ + OH⁻.
NOTE: "H₃O⁺" hydronium ions, for simplicity, often abbreviated as H⁺, more accurate to say the H9O4⁺, the amount of hydrogen ion concentration in pure water material is 10⁻⁷mol / L.
Electrolysis of water:
Water at DC, decomposition to produce hydrogen and oxygen, this method is industrially prepared pure hydrogen and oxygen 2H₂O = 2H₂ ↑ + O₂ ↑.
. Hydration Reaction:
Water with an alkaline active metal oxides, as well as some of the most acidic oxide hydration reaction of unsaturated hydrocarbons.
Na₂O + H₂O = 2NaOH
CaO + H₂O = Ca (OH) ₂
SO₃ + H₂O = H₂SO₄
P₂O₅ + 3H₂O = 2H₃PO₄ molecular structure
CH₂ = CH₂ + H₂O ← → C₂H₅OH
6. The diameter of the order of magnitude of 10 water molecules negative power of ten, the water is generally believed that a diameter of 2 to 3 this organization. water
7. Water ionization:
In the water, almost no water molecules ionized to generate ions.
H₂O ← → H⁺ + OH⁻
Heating potassium chlorate or potassium permanganate preparation of oxygen
Pressurized at low temperatures, the air into a liquid, and then evaporated, since the boiling point of liquid nitrogen is -196 deg.] C, lower than the boiling point of liquid oxygen (-183 ℃), so the liquid nitrogen evaporated from the first air, remaining the main liquid oxygen.
Of course, the development
The Westerbork Synthesis Radio Telescope (WSRT) is an aperture synthesis interferometer near camp Westerbork, north of the village of Westerbork, Midden-Drenthe, in the northeastern Netherlands. It consists of a linear array of 14 antennas with a diameter of 25 metres arranged on a 2.7 km East-West line.
Entrance was prohibited, so had to use a telezoom. Would have loved to get closer and use my 14-24.
Oh well...:)
Press L for best view!
Follow me:
after synthesis (2015)
earlier drawings can be seen here: www.flickr.com/photos/badgerofmystery/albums/721576507333...
El artista Luis Macías juega con la imagen, el color y los mecanismos de visión del espectador en la obra que muestra desde hoy en la Blueproject Foundation de Barcelona, en la exposición "Spectral Synthesis", resultado de la tercera residencia artística llevada a cabo en el centro.
Anteriormente, la Blueproject había exhibido los proyectos "The Keeper", de Pedro Torres, y "Oh sween encounter of these other worlds", de las danesas Barbara Amalie Skovmand Thomsen y Marie-Louise Andersson.
La imagen, el color y los mecanismos de visión del espectador han sido los factores clave de su proyecto, que parecen representar "un retorno a la base de colores", y fue precisamente el tratamiento que les dio lo que le determinó su acceso a la fundación, ha asegurado hoy Aurélien Le Genissel, gestor artístico de Blueproject Foundation.
Mediante una visión analógica y un retorno al elemento físico y táctil de la representación del color, Macías presenta cinco esculturas cinemáticas basadas en intermitencias e incandescencias que muestran al espectador diversas representaciones de los colores primarios y secundarios.
La pieza "Screen Synthesis", que utiliza un fotograma de 35 milímetros como una pantalla de led intermitente de colores aleatorios frente a una proyección de 16 milímetros, comparte la entrada de la sala con "?" (infinito), que muestra un juego de sobreimpresión cromática con cuatro proyectores de diapositivas en constante movimiento.
"Spectrocopy" es un estudio de colores a partir de proyecciones enfrentadas en 16 milímetros que juegan con la ilusión de percepción, igual que las otras dos obras del artista, "Primary Synthesis" y "Secondary Synthesis", que se mezclan a partir de intermitencias estroboscópicas.
"Autodidacta" confeso, Luís Macías, nacido en Platja d'Aro pero criado en Alicante, desarrolla en paralelo a este proyecto su especialización en cine expandido, lo que le ha permitido participar en eventos como el festival Sónar, el Festival Internacional de VideoArte de Camagüey (Cuba), el Crossroads International Film Festival (San Francisco) o la Microscope Gallery (Brooklyn).
The shutter design of Canon S90 allows for some neat 6-rayed sunbursts. That coupled with its ultra-wide angle lens allows for some very cool perpectives.
This was one such experiment where I kept the camera level with the lawn so as to see the blades of grass up close and framed the sunlight and the water sprinklers with it. Let me know if you like the result.
Shot at UCSB.
Press L to view it large and on black
The lab focuses on the synthesis of well-defined homopolymers and copolymers with complex macromolecular architecture by using combinations of all available polymerization methodologies.
Frantisek Kupka (1871 -1957) Synthesis 1927-29 Oil on Canvas.
Seen in the Centre for Modern and Contemporary Art, Veletrzni (Trades Fair) Palace, Prague.
Brief synthesis
The Ħal Saflieni Hypogeum (underground cemetery) was discovered in 1902 on a hill overlooking the innermost part of the Grand Harbour of Valletta, in the town of Paola. It is a unique prehistoric monument, which seems to have been conceived as an underground cemetery, originally containing the remains of about 7,000 individuals. The cemetery was in use throughout the Żebbuġ, Ġgantija and Tarxien Phases of Maltese Prehistory, spanning from around 4000 B.C. to 2500 B.C.
Originally, one entered the Ħal Saflieni Hypogeum through a structure at ground level. Only a few blocks of this entrance building have been discovered, and its form and dimensions remain uncertain. The plan of the Hypogeum itself is a series of three superimposed levels of chambers cut into soft globigerina limestone, using only chert, flint and obsidian tools and antlers. The earliest of the three levels is the uppermost, scooped out of the brow of a hill. A number of openings and chambers for the burial of the dead were then cut into the sides of the cavity.
The two lower levels were also hewn entirely out of the natural rock. Some natural daylight reached the middle level through a small opening from the upper level, but artificial lighting must have been used to navigate through some of the middle level chambers and the lowest level, which is 10.60 m below the present ground level.
One of the most striking characteristics of the Ħal Saflieni Hypogeum is that some of the chambers appear to have been cut in imitation of the architecture of the contemporary, above-ground megalithic temples. Features include false bays, inspired by trilithon doorways, and windows. Most importantly, some of the chambers have ceilings with one ring of carved stone overhanging the one below to imitate a roof of corbelled masonry. This form echoes the way in which some of the masonry walls of the contemporary above-ground temple chambers are corbelled inwards, suggesting that they too were originally roofed over.
Some of the walls and ceilings of the chambers were decorated with spiral and honey-comb designs in red ochre, a mineral pigment. These decorations are the only prehistoric wall paintings found on the Maltese Islands. In one of these decorated chambers, there is a small niche which echoes when someone speaks into it. While this effect may not have been created intentionally, it may well have been exploited as part of the rituals that took place within the chambers.
Excavation of the Ħal Saflieni Hypogeum produced a wealth of archaeological material, including numerous human bones, which suggests that the burial ritual had more than one stage. It appears that bodies were probably left exposed until the flesh had decomposed and fallen off. The remaining bones and what appear to be some of the personal belongings were then gathered and buried within the chambers together with copious amounts of red ochre. The use of ochre seems to have been a part of the ritual, perhaps to infuse the bones with the colour of blood and life. Individuals were not buried separately, but piled onto each other.
Artefacts recovered from the site include pottery vessels decorated in intricate designs, shell buttons, stone and clay beads and amulets, as well as little stone carved animals and birds that may have originally been worn as pendants. The most striking finds are stone and clay figurines depicting human figures. The most impressive of these figures is that showing a woman lying on a bed or ‘couch’, popularly known as the ‘Sleeping Lady’. This figure is a work of art in itself, demonstrating a keen eye for detail.
Criterion (iii): The Ħal Saflieni Hypogeum is a unique monument of exceptional value. It is the only known European example of a subterranean ‘labyrinth’ from about 4,000 B.C. to 2,500 B.C. The quality of its architecture and its remarkable state of preservation make it an essential prehistoric monument.
Integrity
The Ħal Saflieni Hypogeum is one of the best preserved and most extensive environments that have survived from the Neolithic. With the exception of the fragmentary remains of the above-ground entrance, all the key attributes of the property, including the architectural details and painted wall decorations, have remained intact within the boundaries.
The main threats to the preservation of the Ħal Saflieni Hypogeum are the fluctuating temperature and relative humidity levels within the site, as well as water infiltration and biological infestations.
Authenticity
The Ħal Saflieni Hypogeum is one of the two most important prehistoric burial sites in the Maltese islands and is very well preserved, unlike the fragmentary remains that usually survive from the above-ground structures of this period.
The unusual preservation of the rock-cut chambers allows the study of a system of interconnecting spaces very much as they were conceived and experienced by a Neolithic mind. The imitation of the interior of a megalithic temple built above ground not only provides evidence on the corbelling system that was used to roof the temples, but is also important in terms of the development of human processes of cognition and representation.
The Ħal Saflieni Hypogeum has also yielded several important artefacts of great artistic significance. Foremost amongst these is the so-called ‘Sleeping Lady’, a miniature ceramic figurine that is widely held to be one of the great masterpieces of prehistoric anthropomorphic representation.
Protection and management requirements
The principal legal instrument for the protection of cultural heritage resources in Malta is the Cultural Heritage Act (2002), which provides for and regulates national bodies for the protection and management of cultural heritage resources. Building development and land use is regulated by the Environment and Development Planning Act (2010 and subsequent amendments), which provides for and regulates the Malta Environment and Planning Authority. The Ħal Saflieni Hypogeum is protected by a buffer zone, and both the Ħal Saflieni Hypogeum and its buffer zone are formally designated by the Malta Environment and Planning Authority as a Grade A archaeological site, which means they are subject to wide-ranging restrictions of building development.
A programme of monitoring and research, launched in order to understand the microclimate of the Hypogeum, was followed by a project for the conservation of the property, designed and implemented in the 1990s. Houses directly above the site were acquired and dismantled; light levels within the property are strictly controlled; and visitor numbers limited. These measures have helped to maintain stable temperature and humidity levels, which continue to be monitored closely.
Evanescence at the SEC Armadillo Glasgow on their Synthesis Live tour.
Thanks to Uber Rock for arranging the pass for me.
JURY DISTINCTION FOR CATEGORY 1. OBJECT OF STUDY
Copyright CC-BY-NC-ND: Salome Püntener
We are looking at a preparative thin-layer chromatography plate – a technique to spatially separate the components of a mixture. It was produced while purifying a complex fluorophore, a fluorescent compound. We design and synthesise novel fluorescent dyes in our laboratory that can be controlled by light, enzymes or other small biomolecules in order to improve fluorescence microscopy, an invaluable tool for observing live biological samples. This helps to elucidate biochemical processes and leads to a deeper understanding of cells and biology in general, potentially contributing to developments in medical or material sciences.
The image was taken spontaneously with a phone camera because it reminded me of an abstract work of art. The colourful lines might look pretty, but they indicate numerous – and unwanted – side reactions during the synthesis of the fluorophore, which were revealed in the chromatography analysis.
Comment of the jury │ A showcase for serendipity in research: an experimental hiccup leads to an abstract painting-like image with strong aesthetic appeal – instead of a useful result. Taken with little pretention and a rare admission of one’s fallibility, the photo unveils day-to-day life in a lab, reminding us that failure is an essential element of the scientific process.
--
Nous voyons une plaque de chromatographie en couche mince, une technique pour séparer spatialement les composants d’un mélange. Elle a été réalisée lors d’une étape de purification d’un fluorophore, un composé fluorescent. Dans notre laboratoire, nous concevons et synthétisons de nouveaux colorants fluorescents pouvant être contrôlés par la lumière, par des enzymes ou par d’autres petites biomolécules. L’objectif est d’améliorer la microscopie à fluorescence, un outil précieux pour observer des échantillons biologiques vivants, élucider des processus biochimiques, améliorer la compréhension de mécanismes cellulaires et biologiques et contribuer ainsi à des développements dans les sciences biomédicales.
J’ai pris cette image spontanément avec mon téléphone car elle me faisait penser à une œuvre d’art abstraite. Les lignes colorées peuvent avoir l’air jolies, mais elles sont le signe de nombreuses réactions secondaires et indésirables ayant eu lieu durant la synthèse du fluorophore et qui ont été révélées par l’analyse chromatographique.
Commentaire du jury │ Une belle incarnation de la sérendipité en science: au lieu du résultat scientifique espéré, un pépin expérimental conduit à une image très esthétique digne d’une peinture abstraite. Prise sans prétention et avec un rare aveu de faillibilité, la photo dévoile le quotidien au laboratoire et nous rappelle que l’échec constitue un élément essentiel du processus scientifique.
--
Wir sehen eine Platte für die präparative Dünnschichtchromatografie, eine Methode zur räumlichen Trennung der Bestandteile einer Mischung. Sie wurde zur Reinigung eines Fluorophors, einer fluoreszierenden Verbindung, durchgeführt. In unserem Labor entwickeln und synthetisieren wir neue Fluoreszenzfarbstoffe, die durch Licht, Enzyme oder andere kleine Biomoleküle gesteuert werden können. Ziel ist es, die Fluoreszenzmikroskopie zu verbessern. Sie ist ein wertvolles Instrument zur Beobachtung lebender biologischer Proben, zur Analyse biochemischer Prozesse und zum besseren Verständnis biologischer Mechanismen auf Zellebene. Damit leisten wir einen Beitrag zu neuen Erkenntnissen in der Biomedizin.
Ich habe dieses Bild spontan mit meinem Handy aufgenommen, weil es mich an ein abstraktes Kunstwerk erinnerte. Die farbigen Linien sehen hübsch aus, sind aber ein Zeichen für verschiedene unerwünschte sekundäre Reaktionen während der Synthese des Fluorophors. Diese Reaktionen haben wir mit der chromatographischen Analyse sichtbar gemacht.
Kommentar der Jury │ Eine schöne Verkörperung zufälliger Entdeckungen in der Wissenschaft: Statt das erhoffte Ergebnis tragen unerwünschte Nebenprodukte zu einem sehr ästhetischen Bild bei, das an ein abstraktes Gemälde erinnert. Bescheiden und mit einem selten zu findenden Eingeständnis des Scheiterns veranschaulicht das Foto den Laboralltag und erinnert uns daran, dass Misserfolge ein wesentlicher Bestandteil des wissenschaftlichen Prozesses sind.
Many of my works - like this one - are produced entirely digitally. I sometimes re-use older works as art elements and also drawing objects - usually rectangles. These are combined together using Serif PagePlus X3.
Next I mesh warp the image and finally photographically over process the image with Paint Shop Pro.
Olympus mju 9010 - f/4.9 - 1/200sec - 12 mm - ISO 64
spaceflower
Westerbork Synthesis Radio Telescope
ASTRON
"In synthesis, the Lenten journey, in which we are invited to contemplate the Mystery of the Cross, is meant to reproduce within us “the pattern of his death” (Ph 3: 10), so as to effect a deep conversion in our lives; that we may be transformed by the action of the Holy Spirit, like St. Paul on the road to Damascus; that we may firmly orient our existence according to the will of God; that we may be freed of our egoism, overcoming the instinct to dominate others and opening us to the love of Christ. The Lenten period is a favorable time to recognize our weakness and to accept, through a sincere inventory of our life, the renewing Grace of the Sacrament of Penance, and walk resolutely towards Christ."
- from Pope Benedict XVI's Message for Lent 2011.
Innovations: 1) they attach oligos of DNA to beads to maximize surface area (vs a 2D DNA synthesis chip) and 2) they can bubble up the beads from the bottom of each well for selective pooling into gene constructs. This affords a cost reduction over Affy platform, where 10’s of thousands of oligos are separated from the Custom Array chip at once.
Lino Enea Spilimbergo (born Lino Claro Honorio Enea Spilimbergo) was an Argentine artist and engraver, and he is considered to be one of the country's most important painters.
He was born in Buenos Aires in 1896, the son of Italian immigrants, Antonio Enea Spilimbergo and María Giacoboni, and his full name was Lino Claro Honorio Enea Spilimbergo. His early years were spent in the Buenos Aires neighborhood of Palermo. Whilst visiting his mother's relatives in northern Italy with his family he contracted pneumonia, which in later years caused him to suffer from asthma. Returning to Buenos Aires in 1902 he started his schooling, which ended in 1910, when he began working for the post office to support himself. From then on, until 1924, he kept this job in parallel with his painting. In 1917, he graduated from the Academia Nacional de Bellas Artes and in September of that year his father died.
At the age of 22, he began writing his autobiography, and in 1920 he wrote a booklet about his thoughts, in order to arrange and organize his life and work. In 1921 the Salón Nacional de Bellas Artes accepted, for the first time, one of his pieces and later that year, following the recommendation of his doctor to live in a place with a drier climate, his employer agreed to relocate him to Desamparados in San Juan Province. He stayed there until he resigned his job in 1924, and it was during this period that he had his first individual exhibition.
Using prize money he had won in an art exhibition, he traveled to Europe in 1925 and visited Florence, Venice, Palermo and other Italian cities in search of classical art sources, paying particular attention to frescos. He then moved to Paris where he studied in the studio of the French painter, sculptor and writer André Lhote and came under the influence of post-cubism and the work of Paul Cézanne.
In 1928, he returned to Argentina to live in Las Lomitas, San Juan Province, and in 1929, his son Antonio was born. A year later, he moved back to Buenos Aires and in 1933, together with the Mexican artist David Alfaro Siqueiros and the Argentine artists Antonio Berni and Lozano produced the mural entitled Ejercicio Plástico. To explain their principles and ideas, the group produced a document under the same title. The involvement in this work was a decisive event in Spilimbergo's life and marked the start of his career as a muralist.
In 1945, together with Berni, Juan Carlos Castagnino, Manuel Colmeiro Guimarás and Demetrio Urruchúa, he was one of the contributors to the frescos which decorate the large central cupola of Galerías Pacífico on pedestrian Florida Street, Buenos Aires.
During his years as a painter, Spilimbergo developed a very personal synthesis of diverse styles, in particular the classical and the modern. From the post-impressionism of his first period, dominated by landscapes and local scenes, he later passed on to a study of the human figure. His figures were solid and monumental and the surreal and metaphorical often found its way into his works. His subjects included the marginalised and the disinherited, from the slum dwellers of Buenos Aires to the rural workers of the northern provinces.
He taught art at Instituto de Arte Gráfico during the period 1934–1939 where his students included Medardo Pantoja (1906–1976), Eolo Pons (1914), Luis Lusnich (1911–1995), and Leopoldo Presas (1915). At the National University of Cuyo, he his students included Carlos Alonso. Spilimbergo's pictures were widely exhibited in Latin America, the United States and Europe during this period.
Spilimbergo died in 1964 in the small town of Unquillo in Córdoba Province, where he had lived since 1952.
Westerbork, Drenthe province of Netherlands.
It is now a site of a powerful radio telescope (en.wikipedia.org/wiki/Westerbork_Synthesis_Radio_Telescope).
In WWII a transit concentration camp lied on this site
安平古堡 - 荷蘭人所建造的熱蘭遮城殘蹟 / 我的小姪女安安 - 小安安看魚眼鏡頭
The Fort Anping - The Dutch constructs the wall of the Zeelandia it is broken / My little niece Ann Ann - The little Ann Ann was Looked at the fish eye lens
La fortaleza Anping - El holandés construye la pared del Zeelandia que está quebrada / Mi pequeña sobrina Ana Ana - La pequeña Ann Ann se analizó la lente ojo de pez
安平城砦-オランダ人はによって壊れているZeelandiaの壁を組み立てる / 私の小さい姪は安らかです - 小さく安らかで魚眼レンズを見ます
Das Fort Anping - Die Holländer konstruiert die Wand aus dem Zeelandia, das sie defekt ist / Meine kleine Nichte Ann Ann - Die kleine Ann Ann wurde auf der Fischaugen-Objektiv betrachtet
Le fort Anping - Le Néerlandais construit le mur avec du Zeelandia qu'il est cassé / Ma petite nièce Ann Ann - La petite Ann Ann a été vu comme la lentille fish eye
Anping Tainan Taiwan / Anping Tainan Taiwán / 台灣台南安平
夏川里美 作詩 作曲 / Satomi Natsukawa poetry & composition
{The Love story of Tayouan - Anping melody of the memorise 2009}
{La historia de amor de Tayouan - Melodía de Anping de la memorización 2009}
{Die Liebesgeschichte von Tayouan - Anping-Melodie merken 2009}
{My Blog / The Never Ending Times - Japanese Times}
{Mi blog / Los tiempos interminables - épocas japonesas}
{Mein Blog / Die immer währenden Zeiten - japanische Zeiten}
{My Blog / 2009 Zeelandia city-Anping melody of the sword Lions}
{Mi ciudad blog / 2009 de Zeelandia - melodía de Anping de los leones de la espada}
{My Blog / 2009熱の蘭遮城-剣の獅子は曲を追憶します}
{Meine Blog / 2009 Zeelandia Stadt - Anping-Melodie der Klinge Löwen}
{My Blog / The Big Dipper empress birth day 2009-The prefectural city makes 16 years old}
{Mein Blog / Der Wagenkaiseringeburtstag 2009 - Die Präfekturstadt bildet 16 Jahre alt}
{My Blog / The Deer ear door of the Taiwan - The north sandbank character and style picture}
{Mein Blog / Die Rotwildohrtür des Taiwans - Die Nordsandbankbuchstaben- und -artabbildung}
原圖JPG直出無後製
Original picture JPG is straight has no children the system
El JPG original del cuadro es recto no tiene ninguÌn niño el sistema
原図JPGはずっと跡継ぎがいなくてつくることを出します
Ursprünglicher Abbildung JPG ist hat keine Kinder das System gerade
本圖無合成無折射
This chart does not have the refraction without the synthesis
Esta carta no tiene la refracción sin la síntesis
当合成がないことを求めて屈折がありません
Dieses Diagramm hat die Brechung nicht ohne die Synthese
可用放大鏡開1:1原圖
The available magnifying glass opens 1:1 original picture
La lupa disponible abre el cuadro de la original del 1:1
利用できる拡大鏡は1:1の原物映像を開ける
Die vorhandene Lupe öffnet 1:1vorlagenabbildung