View allAll Photos Tagged control_systems

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

Taken 21/04/23; According to Wikipedia the Class 455 "... was originally to be classified as the Class 510, at which point they were planned as a 750 V DC version of the Class 317. However, as the chopper control system at the time was not considered robust enough for the electrically rougher third rail Southern Region, they were fitted with second-hand camshaft control systems and thus classified as the 455 class.[

A total of 505 carriages were built by British Rail Engineering Limited's Holgate Road carriage works and together with 43 existing trailers from Class 508s, formed 137 four-car sets. The 455s allowed the Class 405 and Class 415 to be withdrawn, as well as allowing the Class 508s to be transferred to the Merseyside network for which they were originally intended. They also allowed other stock to be cascaded to the North London and Oxted lines.

There were three batches of Class 455s, all consisting of four cars: driving trailer vehicles at each end, an intermediate trailer vehicle and an intermediate motorised vehicle (powered by four EE507-20J of 185 kW carried on the bogies of the MSO vehicle, some recovered from Class 405s), all originally built to the standard class 3+2 seating arrangement with 316 seats. Technically, they are formed DTSO+MSO+TSO+DTSO.[2] They have the same bodyshell as the Class 317 and Class 318, but as they were designed for inner suburban services they do not feature first class seating, air conditioning or toilet facilities and are restricted to 75 mph (121 km/h).[3] Like the Class 317/318, as well as the diesel Class 150, they are based on the British Rail Mark 3, with a steel construction, unlike the earlier PEP based Class 313, Class 314, Class 315, Class 507 and Class 508, which had an aluminium alloy body"

 

South Western Railway (SWR) is owned by FirstGroup (70%) and MTR Corporation (30%) that operates the South Western franchise. It operates commuter services from its Central London terminus at London Waterloo to South West London. SWR provides suburban and regional services in the counties of Surrey, Hampshire and Dorset, as well as regional services in Devon, Somerset, Berkshire and Wiltshire. Its subsidiary Island Line operates services on the Isle of Wight. SWR was awarded the South Western franchise in March 2017, and took over from South West Trains on 20 August 2017.

The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.

To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.

 

The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.

 

304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.

 

It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.

 

No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.

 

In this photo, 304 is posed on the passing loop at the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; alongside is English Electric Balloon 701 which has gained its Routemaster livery which it worse for the 1991 and 1992 seasons after it received a refubishment - both are running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back. Conductor Cheryl has grabbed her smartphone to get a photo of all the enthusiasts taking pictures of these two trams together in 'active preservation'.

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.

To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.

 

The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.

 

304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.

 

It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.

 

No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.

 

In this photo, 304 is posed on the passing loop at the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; alongside is English Electric Balloon 701 which has gained its Routemaster livery which it worse for the 1991 and 1992 seasons after it received a refubishment - both are running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back.

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

26 dams are operated as a unit. Reservoir levels are balanced against power needs and flood dangers. An inexhaustible natural resource is put to use.

Object Details: On Wednesday evening November 2, 2022 Jupiter's moons Ganymede and Europa as well as both of their shadows transited across the Earth facing side of the planet. Fortunately it was clear here at the time enabling me to catch these events using one of the longer focal-length scopes.

 

The attached shows three sequences in three different wavelengths. As noted on the image key at bottom left

at the start of the sequences both Ganymede and Europa themselves were framed against the planet's cloud tops near the right limb, while Europa's shadow has just rotated on at left. The image key at lower right shows the position of Europa, Ganymede and their shadows during the relatively brief time that both shadows were transiting (coincidentally another of Jupiter's Galilean moons, Io, can be seen at far left).

 

At 3,122 kms (1,940 mi) in diameter, Europa is the smallest of Jupiter's four Galilean moons; while having a diameter of 5,268 km (3,274 mi.) Ganymede is the largest (and is actually bigger than the plant Mercury at 4,879 km (3,032 mi) ! ). Looking closely at images one can see the huge shadow of Ganymede appears elongated, lower-left to upper-right, as it falls upon the curved cloud tops of Jupiter's sphere.

 

As is often the case, the infrared images shows additional detail in the planet's cloud tops given that filter's ability to reduce the detrimental effects of poor seeing to some degree. As such many Jovian atmospheric phenomena such as festoons, barges, 'smaller' storms, etc. become more apparent in that wavelength. As can be seen by comparing the images taken at different times, the seeing varied quite a bit throughout the event. Being a methane blocking filter, Jupiter's moons, which contain little to no Methane, appear much brighter relative to the planet itself in that filter's images.

 

Image Details: Taken by Jay Edwards over the course of approximately three hours on the evening of November 2, 2022 and morning of the 3rd from the observatory I built at my home here in upstate NY; the data making up the attached composite was acquired using a vintage 1970, 8-inch, f/7 Criterion newtonian reflector and a 3X Televue barlow connected to a ZWO ASI290MC planetary camera / autoguider. As is often the case here the camera was controlled by SharpCap Pro & the scope was mounted and tracked using a Losmandy G-11 running a Gemini 2 control system.

 

Each image is a stack of several hundred frames selected from video clips which were kept fairly short due to Jupiter's fast rate of rotation. Since humans tend to see detail in an image via it's contrast and brightness, as opposed to it's color, I have extracted the lightness channel from each image and placed them in the second row. As shown here the data have been processed using a combination of Registax & Paint Shop Pro, and the entire composite has been resized down to 50% of it's original size (but is still rather large at 6881 x 3838).

 

Wishing clear, calm & dark skies to all !

 

Similar planetary & solar composites can be found in the albums at the attached links:

 

Jupiter:

www.flickr.com/photos/homcavobservatory/albums/7215760574...

 

Saturn:

www.flickr.com/photos/homcavobservatory/albums/7215760574...

 

Mars:

www.flickr.com/photos/homcavobservatory/albums/7215760574...

 

Solar:

www.flickr.com/photos/homcavobservatory/albums/7215760573...

 

This is the same kind of gun sight that is available in the left, right and center stations in the Aft Pressurized Compartment, and for the tail gunner in their Pressurized Compartment. The sighting part is at the top, one peers through the eyepiece. The gunner's hands might grip the heavily indented knobs at either side of the sight. (so much to know- does the gunner crank the knobs to aim? or horse the thing around by brute force?)

 

Anyway, the GE Fire Control system for the B-29 directly controls 4 gun turrets, front and back, top and bottom. In theory, any one gunner can control any one turret, or one gunner can control pairs of turrets, maybe even sets of 3 or all four. The nose sighting station, here, could use both front turrets to engage an enemy approaching from dead ahead.

If the enemy was in front but above, the upper front and back turrets would be a better choice.

 

The sighting head for the super-secret Norden bomb sight is below and to the left, mounted ahead of the floor so it can look down through the optically "flat" bomb aiming window. The sighting part of the Norden was developed by Mr. Norden for the US Navy. It was then combined with a Sperry Autopilot for USAAC service. It could not hit a pickle barrel from 20,000 feet.

 

Having the sighting head removed by the bombardier (aka bomb aminer) and kept under lock and key had some security value, but hid the crucial role of the autopilot, which was a box with gyroscopes, stabilizing a platform in 3d space, and firmly fastened to the plane. By sensing relative acceleration or motion between the stable platform and the airplane, the Sperry unit could steer the airplane on a course selected by the pilot. By changing the selected course that the Autopilot was flying, a curious pilot, a bombardier or a bomb-sight could effectively "fly" the airplane on a straight course, or by constantly varying the input, on a curved course.

 

The Norden bomb sight itself was a mechanical computer which could be synchronized with the path the bomber was flying over the surface of the earth. The bombardier adjusted

for bomber altitude above target, rotation of the earth, uncorrected crosswind drift etc.

 

Once it was tracking the bomber's path over the Earth, the free-falling path of an idealized bomb can be projected ahead of the spot being flown over. Then come corrections for: aerodynamic drag based true airspeed, density of the air at the bomber's altitude, increasing density down to the altitude of the target, terminal velocity of the bomb and adding any net crosswinds between bomber and target. There may be other facts to add. If the model is right, all this allows the sight picture to be extrapolated to where bombs would hit, if released ...now!

 

Looking ahead on the path that bombs dropped in the future will hit, the bombarder marks a target and the mechanical computer follows the track until it hits that mark, and that's when the bombs are dropped.

 

Now the bombs are falling and the action isn't in the plane.

The bombs come out, at the true airspeed of the plane, falling slowly, but accelerating downward every second.

 

Aerodynamic drag slows the bomb, initially, in the forward direction (it has to, they were inside the plane and not experiencing any drag, now, suddenly, they are experiencing drag) even as gravity accelerates them vertically. "Terminal velocity" for forward speed of a bomb released horizontally is 0. Terminal velocity in a vertical fall is when the acceleration of gravity balances the acceleration of drag. There is no horizontal acceleration that speeds up a bomb dropped horizontally. Just drag that slows it down.

 

The fins cause the bomb to "weathervane"- go nose-first into the sum of the fading forward velocity and growing vertical velocity. So the drag isn't all simply accelerating against forward momentum. Its accelerating the bomb backward relative to the air its passing through. If it falls for long enough, it will hit terminal velocity for the density its in, and that density will increase as altitude decreases.

 

But horizontal velocity will decrease to 0. There isn't anything speeding up the bomb horizontally. Just drag slowing it down. As a practical matter, the drag will win the day. Its not an asymptote, its a finite segment of a curve, and it stops.

The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.

To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.

 

The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.

 

304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.

 

It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.

 

No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.

 

In this photo, 304 is heading onto the passing loop at the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; it is running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The HAL Ajeet II (Sanskrit: अजित, for Invincible or Unconquerable) was a development of the British Folland Gnat fighter that was built under license in India by Hindustan Aeronautics Limited.

 

The Indian Air Force (IAF) operated the Folland Gnat light jet fighter from 1958, with over 200 aircraft being license built by Hindustan Aeronautics Limited (HAL). The aircraft proved successful in combat in both the 1965 and the 1971 War with Pakistan, both in the low-level air superiority role and for short range ground attack missions, while being cheap to build and operate. It had unreliable systems, though, particularly the control system, and was difficult to maintain.

 

The Indian Air Force therefore issued a requirement for an improved Gnat in 1972. Although the original requirement called for an interceptor, it was later modified to include a secondary ground-attack role.

The aircraft was given the name "Ajeet" and the changes from the original Gnat were considerable.

 

They included:

- Improvements to the hydraulics and control systems (these had been a source of difficulties in the Gnat).

- Fitting of improved Martin-Baker GF4 ejection seats.

- Upgraded avionics.

- The addition of slab tail control surfaces.

- Improvements to the landing gear.

- Additional internal fuel capacity with "wet wings" to free the original pair of underwing pylons for weapons.

- Installation of two more underwing hardpoints.

 

Hindustan Aeronautics Limited modified the final two Gnats on the production line as prototypes for the Ajeet, with the first one flying on 6 March 1975, with the second following on 5 November. Testing proved successful of the Ajeet, and it became the first production aircraft flew on 30 September 1976. Visually, the Ajeet appeared similar to the Gnat, with the presence of two extra hardpoints being the only obvious distinguishing features from the older aircraft.

 

The Ajeet entered service with the IAF in 1977, but this was not the end of the Gnat/Ajeet's development potential. A HAL project for a trainer based on the Ajeet was begun, leading to the initial flight of a prototype in 1982. Unfortunately this aircraft was lost in a crash later that year. A second prototype flew the following year, followed by a third. But a lack of government interest and the imminent phase-out of the aircraft meant no more examples were produced.

 

Another, more radical Gnat derivate was more successful, the supersonic Ajeet II. The development of this aircraft started in 1978, and while the Ajeet II outwardly looked very much like its 1st generation kin, it was an almost completely different aircraft.

 

Basic idea had been to get the Ajeet up to the performance of the Northrop F-5A Freedom Fighter - with major focus on speed and overall better performance. It was soon clear that the original, the single HAL/Bristol Siddeley Orpheus 701-01 turbojet with 20.0 kN (4,500 lbf) of thrust would not suffice. Consequently, HAL engineers worked on the internal structure of the Gnat/Ajeet to cramp two smaller Rolls Royce Viper engines with indigenous afterburners into the fuselage.

 

At full power the small aircraft was now powered with almost twice as much power, but modifications were considerable, including new air intakes with shock cones and new ducts, which necessitated a lower location of the Aden cannons under the intakes instead of their flanks.

 

The rear fuselage had to be widened and lengthened accordingly, and the wings were also completely new, with a thinner profile, less depth and a higher sweep at quarter chord. The wing area was ~30% bigger than before and also offered an increased internal space for fuel.

 

The elongated forward fuselage was used for an additional fuel tank as well as more sophisticated avionics - including a RP-21 radar that was also installed in the license-built Indian MiG-21. The new systems allowed the use of R-3S 'Atoll') AAMs (of Soviet or Chinese origin) or French Matra Magic AAMs, four of which could be carried under the wings.

 

The development of the engines was protracted, though, especially the afterburner went through a lot of teething troubles, so that development aircraft had to get by without th extra performance punch. The first Ajeet II prototype flew in 1984 and the type was ready for service in 1986 and adopted by two fighter squadrons which started to retire the 1st generation Gnats and also some Hunters. Anyway, upon commissioning it was already clear that the Ajeet II would not have a bright future, as the classic gun fighter had become more and more obsolete.

 

Nevertheless, the Ajeet II was built in 36 specimen (plus two prototypes and two static airframes) and proved to be a formidable air combat opponent at low to medium altitude. It could easily outmaneuver more powerful aircraft like the MiG-21, and the afterburner improved acceleration as well as rate of climb considerably. Its guided missile armament also meant that it could engage at longer ranges and did not have to rely on its cannons alone. The Ajeet II's ground attack capabilities were improved through a higher ordnance payload (3.000 lb vs. 2.000 lb of the Ajeet I)

 

But the light fighter concept was soon outdated. The Ajeet I was retired in 1991 and, unlike the IAF Gnats, never saw combat. The Ajeet II was kept in service only a little longer, and its retirement started in 1994. The remaining machines were concentrated in one single squadron, but this, too, was disbanded soon and switched to the MiG-29. The last Ajeet II flew in late 1997.

 

General characteristics:

Crew: 1

Length: 10,54 m (34 ft 6 2/3 in)

Wingspan: 8,57 m (28 ft 1 in)

Height: 2.80 m (9 ft 3 in)

Wing area: 16.4 m² (177 ft²)

Aspect ratio: 3.56

Empty weight: 3,100 kg (6,830 lb)

Loaded weight: 5,440 kg (11,990 lb)

Max. takeoff weight: 5,500 kg (12,100 lb)

 

Powerplant:

2× Rolls-Royce Viper 601-22 turbojets, rated at 3,750 lbf (16.7 kN) dry

and 4,500 lbf (20.0 kN) with afterburner

 

Performance:

Maximum speed: 1,152 km/h (622 knots, 716 mph) at sea level

Range: 1,150 km (621 nmi, 715 mi)

Service ceiling: 45,000 ft (13,720 m)

Wing loading: 331 kg/m² (67.8 lb/ft²)

Rate of clim: 12,150 ft/min (61.7 m/s)

 

Armament:

2× 30 mm ADEN cannons with 90 rounds each

Up to 3.000 lb (1.360 kg) of external stores on four underwing hardpoints

 

The kit and its assembly:

Well, this whiffy Gnat/Ajeet was actually born through an incomplete Matchbox kit that I bought in a lot a while ago. It lacked decals, but also the canopy... Vacu replacements are available, but I rather put the kit on the conversion list, potentially into a single seater.

 

Since I'd have to improvise and modify the fuselage anyway, I decided to take the idea further ans create a "supersonic Gnat". Folland actually had such designs on the drawing board, but I do not think that the company considered a twin jet layout? That idea struck me when I held a PM Model F-5A in my hands and looked at the small J85 engine nozzles. Could that...?

 

From there things evolved, a bit like what Fiat did with the G.91 that was turned into the G.91Y. I wanted the Gnat to become bigger, also in order to justify the two engines and the wider tail. Therefore I cut the fuselage in front of the air intakes and behind the wings and inserted plugs, each ~6mm. Not much, but it helps. I also found new wings and stabilizers in the scrap box: from a Revell Fiat G.91. More slender, more sweep, and a slightly bigger span so that the overall proportions were kept. A good addition to the sleek Gnat/Ajeet. The fin was left OOB.

 

Another personal addition is the radar nose - I found the Gnat trainer's nose to be rather pointed and long, and the radome (IIRC from an F-4E!) was more Ajeet-style, even though of different shape and suggesting a radar dish underneath.

 

The new canopy is a donation from a Mastercraft (ex KP/Kopro) LWS Iskra trainer. Even though the Ajeet II is a single seater I used the Iskra’s two-seater option in order to fill the gap above the Gnat's second seat. I just cut the Iskra canopy in two parts and used the rear half as a fuselage/spine plug – fit was pretty good.

 

The fuselage extension and the new tail section necessitated massive putty work, but the result is surprisingly organic and retains the Ajeet's profile - the whif factor is rather subtle. ^^

 

The landing gear was taken OOB, the cockpit interior was improvised after the fuselage was more or less finished with parts from the original kit, plus an extra dashboard.

 

Painting and markings:

Surely this was to become an Indian Air Force aircraft, and for the paint scheme I took inspiration from the manifold IAF MiG-21s and the garish combat training markings of Indian aircraft.

 

The scheme is inspired by MiG-21MF "C2776" of IAF 26 Sqn "Warriors“ and “C2283” of 3 Sqn “Cobras”: a basically all-grey aircraft, with added camouflage on the upper side, plus bright fin colors.

 

The camouflage consists of Humbrol 127 (FS 36375) for the lower surfaces and in some areas where it would show through the added paint: a basic coat of Humbrol 108 (a murky, dark olive drab) with large mottles in a mix of Humbrol 62 and a bit of 80 (Sand and Grass Green). Rather odd, but when you look at the pics (esp. in flight) this seems to be very effective!

 

The fin decoration actually comes from an ESCI Harrier GR.3 (RAF 4 Sqn flash), roundels and other markings were puzzled together, among others, from the Iskra donation kit.

 

The cockpit interior was kept in a very dark grey while the landing gear and the air intakes are Aluminum.

 

A small project, literally, and a subtle one. While this aircraft looks a lot like a simple IAF Ajeet, there's actually hardly anything left from the original aircraft! And the paint scheme is spectacular - India has a lot to offer! :)

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The HAL Ajeet II (Sanskrit: अजित, for Invincible or Unconquerable) was a development of the British Folland Gnat fighter that was built under license in India by Hindustan Aeronautics Limited.

 

The Indian Air Force (IAF) operated the Folland Gnat light jet fighter from 1958, with over 200 aircraft being license built by Hindustan Aeronautics Limited (HAL). The aircraft proved successful in combat in both the 1965 and the 1971 War with Pakistan, both in the low-level air superiority role and for short range ground attack missions, while being cheap to build and operate. It had unreliable systems, though, particularly the control system, and was difficult to maintain.

 

The Indian Air Force therefore issued a requirement for an improved Gnat in 1972. Although the original requirement called for an interceptor, it was later modified to include a secondary ground-attack role.

The aircraft was given the name "Ajeet" and the changes from the original Gnat were considerable.

 

They included:

- Improvements to the hydraulics and control systems (these had been a source of difficulties in the Gnat).

- Fitting of improved Martin-Baker GF4 ejection seats.

- Upgraded avionics.

- The addition of slab tail control surfaces.

- Improvements to the landing gear.

- Additional internal fuel capacity with "wet wings" to free the original pair of underwing pylons for weapons.

- Installation of two more underwing hardpoints.

 

Hindustan Aeronautics Limited modified the final two Gnats on the production line as prototypes for the Ajeet, with the first one flying on 6 March 1975, with the second following on 5 November. Testing proved successful of the Ajeet, and it became the first production aircraft flew on 30 September 1976. Visually, the Ajeet appeared similar to the Gnat, with the presence of two extra hardpoints being the only obvious distinguishing features from the older aircraft.

 

The Ajeet entered service with the IAF in 1977, but this was not the end of the Gnat/Ajeet's development potential. A HAL project for a trainer based on the Ajeet was begun, leading to the initial flight of a prototype in 1982. Unfortunately this aircraft was lost in a crash later that year. A second prototype flew the following year, followed by a third. But a lack of government interest and the imminent phase-out of the aircraft meant no more examples were produced.

 

Another, more radical Gnat derivate was more successful, the supersonic Ajeet II. The development of this aircraft started in 1978, and while the Ajeet II outwardly looked very much like its 1st generation kin, it was an almost completely different aircraft.

 

Basic idea had been to get the Ajeet up to the performance of the Northrop F-5A Freedom Fighter - with major focus on speed and overall better performance. It was soon clear that the original, the single HAL/Bristol Siddeley Orpheus 701-01 turbojet with 20.0 kN (4,500 lbf) of thrust would not suffice. Consequently, HAL engineers worked on the internal structure of the Gnat/Ajeet to cramp two smaller Rolls Royce Viper engines with indigenous afterburners into the fuselage.

 

At full power the small aircraft was now powered with almost twice as much power, but modifications were considerable, including new air intakes with shock cones and new ducts, which necessitated a lower location of the Aden cannons under the intakes instead of their flanks.

 

The rear fuselage had to be widened and lengthened accordingly, and the wings were also completely new, with a thinner profile, less depth and a higher sweep at quarter chord. The wing area was ~30% bigger than before and also offered an increased internal space for fuel.

 

The elongated forward fuselage was used for an additional fuel tank as well as more sophisticated avionics - including a RP-21 radar that was also installed in the license-built Indian MiG-21. The new systems allowed the use of R-3S 'Atoll') AAMs (of Soviet or Chinese origin) or French Matra Magic AAMs, four of which could be carried under the wings.

 

The development of the engines was protracted, though, especially the afterburner went through a lot of teething troubles, so that development aircraft had to get by without th extra performance punch. The first Ajeet II prototype flew in 1984 and the type was ready for service in 1986 and adopted by two fighter squadrons which started to retire the 1st generation Gnats and also some Hunters. Anyway, upon commissioning it was already clear that the Ajeet II would not have a bright future, as the classic gun fighter had become more and more obsolete.

 

Nevertheless, the Ajeet II was built in 36 specimen (plus two prototypes and two static airframes) and proved to be a formidable air combat opponent at low to medium altitude. It could easily outmaneuver more powerful aircraft like the MiG-21, and the afterburner improved acceleration as well as rate of climb considerably. Its guided missile armament also meant that it could engage at longer ranges and did not have to rely on its cannons alone. The Ajeet II's ground attack capabilities were improved through a higher ordnance payload (3.000 lb vs. 2.000 lb of the Ajeet I)

 

But the light fighter concept was soon outdated. The Ajeet I was retired in 1991 and, unlike the IAF Gnats, never saw combat. The Ajeet II was kept in service only a little longer, and its retirement started in 1994. The remaining machines were concentrated in one single squadron, but this, too, was disbanded soon and switched to the MiG-29. The last Ajeet II flew in late 1997.

 

General characteristics:

Crew: 1

Length: 10,54 m (34 ft 6 2/3 in)

Wingspan: 8,57 m (28 ft 1 in)

Height: 2.80 m (9 ft 3 in)

Wing area: 16.4 m² (177 ft²)

Aspect ratio: 3.56

Empty weight: 3,100 kg (6,830 lb)

Loaded weight: 5,440 kg (11,990 lb)

Max. takeoff weight: 5,500 kg (12,100 lb)

 

Powerplant:

2× Rolls-Royce Viper 601-22 turbojets, rated at 3,750 lbf (16.7 kN) dry

and 4,500 lbf (20.0 kN) with afterburner

 

Performance:

Maximum speed: 1,152 km/h (622 knots, 716 mph) at sea level

Range: 1,150 km (621 nmi, 715 mi)

Service ceiling: 45,000 ft (13,720 m)

Wing loading: 331 kg/m² (67.8 lb/ft²)

Rate of clim: 12,150 ft/min (61.7 m/s)

 

Armament:

2× 30 mm ADEN cannons with 90 rounds each

Up to 3.000 lb (1.360 kg) of external stores on four underwing hardpoints

 

The kit and its assembly:

Well, this whiffy Gnat/Ajeet was actually born through an incomplete Matchbox kit that I bought in a lot a while ago. It lacked decals, but also the canopy... Vacu replacements are available, but I rather put the kit on the conversion list, potentially into a single seater.

 

Since I'd have to improvise and modify the fuselage anyway, I decided to take the idea further ans create a "supersonic Gnat". Folland actually had such designs on the drawing board, but I do not think that the company considered a twin jet layout? That idea struck me when I held a PM Model F-5A in my hands and looked at the small J85 engine nozzles. Could that...?

 

From there things evolved, a bit like what Fiat did with the G.91 that was turned into the G.91Y. I wanted the Gnat to become bigger, also in order to justify the two engines and the wider tail. Therefore I cut the fuselage in front of the air intakes and behind the wings and inserted plugs, each ~6mm. Not much, but it helps. I also found new wings and stabilizers in the scrap box: from a Revell Fiat G.91. More slender, more sweep, and a slightly bigger span so that the overall proportions were kept. A good addition to the sleek Gnat/Ajeet. The fin was left OOB.

 

Another personal addition is the radar nose - I found the Gnat trainer's nose to be rather pointed and long, and the radome (IIRC from an F-4E!) was more Ajeet-style, even though of different shape and suggesting a radar dish underneath.

 

The new canopy is a donation from a Mastercraft (ex KP/Kopro) LWS Iskra trainer. Even though the Ajeet II is a single seater I used the Iskra’s two-seater option in order to fill the gap above the Gnat's second seat. I just cut the Iskra canopy in two parts and used the rear half as a fuselage/spine plug – fit was pretty good.

 

The fuselage extension and the new tail section necessitated massive putty work, but the result is surprisingly organic and retains the Ajeet's profile - the whif factor is rather subtle. ^^

 

The landing gear was taken OOB, the cockpit interior was improvised after the fuselage was more or less finished with parts from the original kit, plus an extra dashboard.

 

Painting and markings:

Surely this was to become an Indian Air Force aircraft, and for the paint scheme I took inspiration from the manifold IAF MiG-21s and the garish combat training markings of Indian aircraft.

 

The scheme is inspired by MiG-21MF "C2776" of IAF 26 Sqn "Warriors“ and “C2283” of 3 Sqn “Cobras”: a basically all-grey aircraft, with added camouflage on the upper side, plus bright fin colors.

 

The camouflage consists of Humbrol 127 (FS 36375) for the lower surfaces and in some areas where it would show through the added paint: a basic coat of Humbrol 108 (a murky, dark olive drab) with large mottles in a mix of Humbrol 62 and a bit of 80 (Sand and Grass Green). Rather odd, but when you look at the pics (esp. in flight) this seems to be very effective!

 

The fin decoration actually comes from an ESCI Harrier GR.3 (RAF 4 Sqn flash), roundels and other markings were puzzled together, among others, from the Iskra donation kit.

 

The cockpit interior was kept in a very dark grey while the landing gear and the air intakes are Aluminum.

 

A small project, literally, and a subtle one. While this aircraft looks a lot like a simple IAF Ajeet, there's actually hardly anything left from the original aircraft! And the paint scheme is spectacular - India has a lot to offer! :)

A conventional tractor and grain cart with an autonomous control system from Raven Industries is showcasing autonomous agricultural solutions at the Farm Progress show in Boone, IA, on August 31, 2022.

To address human and economic resource shortages, they are utilizing autonomy, wireless connectivity, sub-inch GPS accuracy, sensor technology, data-based information, control and guidance systems, and more to make existing farm tractors with grain carts more efficient. Here, farm equipment has been retrofitted to add autonomous control from a smart tablet. With a single button push, tractors pulling grain carts can be summoned into precise alignment and movement next to a moving harvester to increase safety and efficiency and reduce spillage. Autonomous equipment, equipped with sensors, cameras, and specialized controls, can operate in a field where other operators work and recognize fields not yet harvested and harvested. The black OMNiPOWER 3200 is an autonomous driverless cab-less applicator spreader, 120-food boom sprayer, and air seeder programed or controlled by a smart tablet. Its safety systems allow it to work in occupied fields. The four-wheel hydraulic drive and steer systems can utilize front, rear, or four-wheel steering to turn on a dime. USDA media by Lance Cheung.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The HAL Ajeet II (Sanskrit: अजित, for Invincible or Unconquerable) was a development of the British Folland Gnat fighter that was built under license in India by Hindustan Aeronautics Limited.

 

The Indian Air Force (IAF) operated the Folland Gnat light jet fighter from 1958, with over 200 aircraft being license built by Hindustan Aeronautics Limited (HAL). The aircraft proved successful in combat in both the 1965 and the 1971 War with Pakistan, both in the low-level air superiority role and for short range ground attack missions, while being cheap to build and operate. It had unreliable systems, though, particularly the control system, and was difficult to maintain.

 

The Indian Air Force therefore issued a requirement for an improved Gnat in 1972. Although the original requirement called for an interceptor, it was later modified to include a secondary ground-attack role.

The aircraft was given the name "Ajeet" and the changes from the original Gnat were considerable.

 

They included:

- Improvements to the hydraulics and control systems (these had been a source of difficulties in the Gnat).

- Fitting of improved Martin-Baker GF4 ejection seats.

- Upgraded avionics.

- The addition of slab tail control surfaces.

- Improvements to the landing gear.

- Additional internal fuel capacity with "wet wings" to free the original pair of underwing pylons for weapons.

- Installation of two more underwing hardpoints.

 

Hindustan Aeronautics Limited modified the final two Gnats on the production line as prototypes for the Ajeet, with the first one flying on 6 March 1975, with the second following on 5 November. Testing proved successful of the Ajeet, and it became the first production aircraft flew on 30 September 1976. Visually, the Ajeet appeared similar to the Gnat, with the presence of two extra hardpoints being the only obvious distinguishing features from the older aircraft.

 

The Ajeet entered service with the IAF in 1977, but this was not the end of the Gnat/Ajeet's development potential. A HAL project for a trainer based on the Ajeet was begun, leading to the initial flight of a prototype in 1982. Unfortunately this aircraft was lost in a crash later that year. A second prototype flew the following year, followed by a third. But a lack of government interest and the imminent phase-out of the aircraft meant no more examples were produced.

 

Another, more radical Gnat derivate was more successful, the supersonic Ajeet II. The development of this aircraft started in 1978, and while the Ajeet II outwardly looked very much like its 1st generation kin, it was an almost completely different aircraft.

 

Basic idea had been to get the Ajeet up to the performance of the Northrop F-5A Freedom Fighter - with major focus on speed and overall better performance. It was soon clear that the original, the single HAL/Bristol Siddeley Orpheus 701-01 turbojet with 20.0 kN (4,500 lbf) of thrust would not suffice. Consequently, HAL engineers worked on the internal structure of the Gnat/Ajeet to cramp two smaller Rolls Royce Viper engines with indigenous afterburners into the fuselage.

 

At full power the small aircraft was now powered with almost twice as much power, but modifications were considerable, including new air intakes with shock cones and new ducts, which necessitated a lower location of the Aden cannons under the intakes instead of their flanks.

 

The rear fuselage had to be widened and lengthened accordingly, and the wings were also completely new, with a thinner profile, less depth and a higher sweep at quarter chord. The wing area was ~30% bigger than before and also offered an increased internal space for fuel.

 

The elongated forward fuselage was used for an additional fuel tank as well as more sophisticated avionics - including a RP-21 radar that was also installed in the license-built Indian MiG-21. The new systems allowed the use of R-3S 'Atoll') AAMs (of Soviet or Chinese origin) or French Matra Magic AAMs, four of which could be carried under the wings.

 

The development of the engines was protracted, though, especially the afterburner went through a lot of teething troubles, so that development aircraft had to get by without th extra performance punch. The first Ajeet II prototype flew in 1984 and the type was ready for service in 1986 and adopted by two fighter squadrons which started to retire the 1st generation Gnats and also some Hunters. Anyway, upon commissioning it was already clear that the Ajeet II would not have a bright future, as the classic gun fighter had become more and more obsolete.

 

Nevertheless, the Ajeet II was built in 36 specimen (plus two prototypes and two static airframes) and proved to be a formidable air combat opponent at low to medium altitude. It could easily outmaneuver more powerful aircraft like the MiG-21, and the afterburner improved acceleration as well as rate of climb considerably. Its guided missile armament also meant that it could engage at longer ranges and did not have to rely on its cannons alone. The Ajeet II's ground attack capabilities were improved through a higher ordnance payload (3.000 lb vs. 2.000 lb of the Ajeet I)

 

But the light fighter concept was soon outdated. The Ajeet I was retired in 1991 and, unlike the IAF Gnats, never saw combat. The Ajeet II was kept in service only a little longer, and its retirement started in 1994. The remaining machines were concentrated in one single squadron, but this, too, was disbanded soon and switched to the MiG-29. The last Ajeet II flew in late 1997.

 

General characteristics:

Crew: 1

Length: 10,54 m (34 ft 6 2/3 in)

Wingspan: 8,57 m (28 ft 1 in)

Height: 2.80 m (9 ft 3 in)

Wing area: 16.4 m² (177 ft²)

Aspect ratio: 3.56

Empty weight: 3,100 kg (6,830 lb)

Loaded weight: 5,440 kg (11,990 lb)

Max. takeoff weight: 5,500 kg (12,100 lb)

 

Powerplant:

2× Rolls-Royce Viper 601-22 turbojets, rated at 3,750 lbf (16.7 kN) dry

and 4,500 lbf (20.0 kN) with afterburner

 

Performance:

Maximum speed: 1,152 km/h (622 knots, 716 mph) at sea level

Range: 1,150 km (621 nmi, 715 mi)

Service ceiling: 45,000 ft (13,720 m)

Wing loading: 331 kg/m² (67.8 lb/ft²)

Rate of clim: 12,150 ft/min (61.7 m/s)

 

Armament:

2× 30 mm ADEN cannons with 90 rounds each

Up to 3.000 lb (1.360 kg) of external stores on four underwing hardpoints

 

The kit and its assembly:

Well, this whiffy Gnat/Ajeet was actually born through an incomplete Matchbox kit that I bought in a lot a while ago. It lacked decals, but also the canopy... Vacu replacements are available, but I rather put the kit on the conversion list, potentially into a single seater.

 

Since I'd have to improvise and modify the fuselage anyway, I decided to take the idea further ans create a "supersonic Gnat". Folland actually had such designs on the drawing board, but I do not think that the company considered a twin jet layout? That idea struck me when I held a PM Model F-5A in my hands and looked at the small J85 engine nozzles. Could that...?

 

From there things evolved, a bit like what Fiat did with the G.91 that was turned into the G.91Y. I wanted the Gnat to become bigger, also in order to justify the two engines and the wider tail. Therefore I cut the fuselage in front of the air intakes and behind the wings and inserted plugs, each ~6mm. Not much, but it helps. I also found new wings and stabilizers in the scrap box: from a Revell Fiat G.91. More slender, more sweep, and a slightly bigger span so that the overall proportions were kept. A good addition to the sleek Gnat/Ajeet. The fin was left OOB.

 

Another personal addition is the radar nose - I found the Gnat trainer's nose to be rather pointed and long, and the radome (IIRC from an F-4E!) was more Ajeet-style, even though of different shape and suggesting a radar dish underneath.

 

The new canopy is a donation from a Mastercraft (ex KP/Kopro) LWS Iskra trainer. Even though the Ajeet II is a single seater I used the Iskra’s two-seater option in order to fill the gap above the Gnat's second seat. I just cut the Iskra canopy in two parts and used the rear half as a fuselage/spine plug – fit was pretty good.

 

The fuselage extension and the new tail section necessitated massive putty work, but the result is surprisingly organic and retains the Ajeet's profile - the whif factor is rather subtle. ^^

 

The landing gear was taken OOB, the cockpit interior was improvised after the fuselage was more or less finished with parts from the original kit, plus an extra dashboard.

 

Painting and markings:

Surely this was to become an Indian Air Force aircraft, and for the paint scheme I took inspiration from the manifold IAF MiG-21s and the garish combat training markings of Indian aircraft.

 

The scheme is inspired by MiG-21MF "C2776" of IAF 26 Sqn "Warriors“ and “C2283” of 3 Sqn “Cobras”: a basically all-grey aircraft, with added camouflage on the upper side, plus bright fin colors.

 

The camouflage consists of Humbrol 127 (FS 36375) for the lower surfaces and in some areas where it would show through the added paint: a basic coat of Humbrol 108 (a murky, dark olive drab) with large mottles in a mix of Humbrol 62 and a bit of 80 (Sand and Grass Green). Rather odd, but when you look at the pics (esp. in flight) this seems to be very effective!

 

The fin decoration actually comes from an ESCI Harrier GR.3 (RAF 4 Sqn flash), roundels and other markings were puzzled together, among others, from the Iskra donation kit.

 

The cockpit interior was kept in a very dark grey while the landing gear and the air intakes are Aluminum.

 

A small project, literally, and a subtle one. While this aircraft looks a lot like a simple IAF Ajeet, there's actually hardly anything left from the original aircraft! And the paint scheme is spectacular - India has a lot to offer! :)

Historic Environment Record for H BUILDING, Malvern, UK

The building, having military purposes and designated locally as H building, sits on a former Government Research site in Malvern, Worcestershire at Grid Ref SO 786 447. This site was the home of the Telecommunications Research Establishment (TRE) from 1946. It has been owned by QinetiQ since 2001 and is in the process (October 2017 to February 2018) of being sold for redevelopment.

This unique building has at its heart a ‘Rotor’ bunker with attached buildings to house radar screens and operators as well as plant such as emergency generators. Twenty nine Rotor operational underground bunkers were built in great urgency around Britain to modernise the national air defence network, following the Soviet nuclear test in 1949. Two factors make H building’s construction and purpose unique; this prototype is the only Rotor bunker built above ground and it was the home to National Air Defence government research for 30 years.This example of a ROTOR bunker is unique instead of being buried, it was built above ground to save time and expense, as it was not required to be below ground for its research purpose.

H Building was the prototype version of the Rotor project R4 Sector Operations Centre air defence bunkers. Construction began in August 1952 with great urgency - work went on 24 hours a day under arc lights. The main bunker is constructed from cross bonded engineering bricks to

form walls more than 2 feet thick in a rectangle approximately 65ft x 50ft. The two internal floors are suspended from the ceiling. The original surrounding buildings comprise, two radar control and operator rooms, offices and machine plant.

 

The building was in generally good order and complete. The internal layout of the bunker remains as originally designed. The internal surfaces and services have been maintained and modernised over the 55 years since its construction (Figure 3). The first floor has been closed over.

There are some later external building additions around the periphery to provide additional accommodation.

In parts of the building the suspended floor remains, with 1950s vintage fittings beneath such as patch panels and ventilation ducts.

The building has been empty since the Defence Science & Technology Laboratories [Dstl] moved out in October 2008

 

As lead for radar research, RRE was responsible for the design of both the replacement radars for the Chain Home radars and the command and control systems for UK National Air Defence.

Project Rotor was based around the Type 80 radar and Type 13 height finder. The first prototype type 80 was built at Malvern in 1953 code named Green Garlic. Live radar feeds against aircraft sorties, were fed into the building to carry out trials of new methods plotting and reporting air activity

 

A major upgrade of the UK radar network was planned in the late 1950s – Project ‘Linesman’ (military) / ‘Mediator’ (civil) – based around Type 84 / 85 primary radars and the HF200 height finder. A prototype type 85 radar (Blue Yeoman) was built adjacent to H Building in 1959. live radar returns were piped into H Building.

Subsequently a scheme to combine the military and civil radar networks was proposed. The building supported the research for the fully computerised air defence scheme known as Linesman, developed in the 1960s, and a more integrated and flexible system (United Kingdom Air Defence Ground Environment or UKADGE) in the 1970s.

The building was then used for various research purposes until the government relinquished the main site to QinetiQ in 2001. Government scientists continued to use the building until 2008. Throughout its life access was strictly controlled by a dedicated pass sytem.

Notable civil spin-offs from the research in this building include the invention of touch screens and the whole UK Civil Air Traffic Control system which set the standard for Europe.

 

Chronology

 

1952 - Construction work is begun. The layout of the bunker area duplicates the underground version built at RAF Bawburgh.

 

1953 - Construction work is largely completed.

 

1954 - The building is equipped and ready for experiments.

 

1956-1958 - Addition of 2nd storey to offices

 

1957-1960 - Experiments of automatic tracking, novel plot projection systems and data management and communications systems tested.

 

1960-1970 - Project Linesman mediator experiments carried out including a novel display technique known as a Touch screen ( A World First)

 

TOUCHSCREEN

 

A team led by Eric Johnson in H building at Malvern. RRE Tech Note 721 states: This device, the Touch Sensitive Electronic Data Display, or more shortly the ‘Touch Display’, appears to have the potential to provide a very efficient coupling between man and machine. (E A Johnson 1966). See also patent GB 1172222.

 

Information From Hugh Williams/mraths

  

1980-1990 - During this period experiments are moved to another building and H building is underused.

 

1990-1993 - The building was re-purposed and the bunker (room H57) had the first floor closed over to add extra floor area.

 

2008- The bunker was used until late 2008 for classified research / Joint intelligence centre

 

2019 - Visual Recording of the buildings interior by MRATHS. Be means of a LIDAR scan and photographs being taken. The exterior was mapped with a drone to allow a 3D Image of the building to be created via Photogrammetry. This was created in Autodesk Photo Recap.

 

2020 - Building demolished as part of the redevelopment of the site.

 

Information sourced from MRATHS

Original Caption: Exhibit of Pollution Control System. at Four Corners Power Plant.

 

U.S. National Archives’ Local Identifier: 412-DA-1604

 

Photographer: Eiler, Lyntha Scott, 1946-

 

Subjects:

Shiprock (Yavapai county, Arizona, United States) peak

Environmental Protection Agency

Project DOCUMERICA

 

Persistent URL: catalog.archives.gov/id/544097

 

Repository: Still Picture Records Section, Special Media Archives Services Division (NWCS-S), National Archives at College Park, 8601 Adelphi Road, College Park, MD, 20740-6001.

 

For information about ordering reproductions of photographs held by the Still Picture Unit, visit: www.archives.gov/research/order/still-pictures.html

 

Reproductions may be ordered via an independent vendor. NARA maintains a list of vendors at www.archives.gov/research/order/vendors-photos-maps-dc.html

   

Access Restrictions: Unrestricted

Use Restrictions: Unrestricted

 

14.septembrī Starptautiskajā lidostā “Rīga” nosēdās NATO agrīnās brīdināšanas un kontroles sistēmas (Airborne Warning & Control System) lidmašīna, kas ieradusies no Gaisa spēku bāzes Geilenkirhenē, Vācijā.

Latvijā ieradās Sabiedroto spēku augstākās virspavēlniecības Eiropā komandiera vietnieks ģenerālis sers Džeimss Everards (James Everard) un NATO agrīnās brīdināšanas un kontroles spēku komandiere ģenerālmajore Davna Danlopa (Dawn M. Dunlop), pirms tam veicot novērošanas un gaisa telpas kontroles lidojumu no Gaisa spēku bāzes Gailenkirhenē līdz Rīgai.

 

AWACS ir vienīgie NATO īpašumā esošie gaisakuģi. NATO neizmanto kopējo finansējumu, lai pirktu militāro spēju platformas, proti, kuģus un tankus, jo tā ir katras dalībvalsts individuāla izvēle un atbildība.

 

Geilenkirhene ir galvenā bāzes vieta Eiropā AWACS lidojumiem, jo no 19 lidmašīnām, kas Eiropā veic lidojumus, 16 bāzējas tieši Geilenkirhenē, vēl trīs atrodas Vašingtonā Lielbritānijā.

 

Kopš Krimas aneksijas 2014. gadā tiek novērota arī Latvijas gaisa telpa. Reaģējot uz situāciju Ukrainā, NATO Ziemeļatlantijas padome 2014. gada 10. martā ieviesa atbalsta pasākumu plānu, tādējādi demonstrējot alianses vienotību un apņēmību aizsargāt sabiedrotos. Trīs dienas vēlāk, 13. martā, NATO atbalsta pasākumu programmas ietvaros notika pirmais NATO agrīnās brīdināšanas un kontroles sistēmas lidojums no NATO bāzes Geilenkirhenē, Vācijā.

 

Latvijā AWACS lidmašīna viesojusies divas reizes — 2004. gadā, pirms Latvijas iestāšanās NATO. Savukārt 2016. gada 11. oktobrī, pirmo reizi kopš iestāšanās NATO, Starptautiskajā lidostā “Rīga” piezemējās AWACS lidmašīna, tādējādi demonstrējot pasaulei NATO klātbūtni un lojalitāti Latvijai, Lietuvai, Igaunijai, Polijai un Rumānijai.

 

AWACS lidmašīnas kopš 2014. gada pavasara ir veikušas vairāk nekā 1000 novērošanas un gaisa telpas kontroles lidojumus.

  

Par AWACS

 

“E-3A Sentry” uzbūvēta uz «Boeing 707» bāzes. Lidmašīnas astes galā atrodas radars (tā diametrs 9 m), kas apgādā apkalpi ar datiem, ko analizē datori un citas elektroniskās iekārtas lidmašīnā.

 

Parasti lidmašīnas lido astoņas stundas aptuveni 10 km augstumā, nosedzot vairāk nekā 400 km novērojamās platības.

 

Maksimālais ātrums — 853 km/h. Degvielas ietilpība — 89 610 litri. Spēja lidot bez papildu uzpildes — 11 h. Šī modeļa lidmašīnām iespējama uzpilde gaisā, ko veic ar gaisa tankkuģa KC-135 palīdzību. Arī šī lidmašīna izvietota Geilenkirhenē, nodrošinot ilgstošu AWACS uzdevumu izpildi.

 

Ekipāža — 2 piloti, 1 lidojuma inženieris, 1 navigators, 12 apkalpes locekļi, no kuriem vairāki atrodas taktiskajā operāciju centrā. Modernizētajā AWACS versijā pilotu kabīnē paredzētas 3 vietas, jo tehnoloģiskās inovācijas aizstāj navigatoru.

 

Gaisakuģa garums — 46,61 m, augstums — 12,73 m, tukšas lidmašīnas masa — 78 000 kg, ekipētas — 147 420 kg.

AWACS nodrošina plaša spektra uzdevumu izpildi, piemēram, gaisa kontroli, pretterorisma akciju atbalstu, evakuācijas, agrās brīdi¬nāšanas un krīzes reaģēšanas operācijas.

 

AWACS bija svarīga loma NATO operācijās ASV pēc 2001. gada 11. septembra terorakta, pēc viesuļvētras “Katrina” 2005. gadā. Arī 2010. gada zemestrīces Haiti un plūdu seku novēršanā Pakistānā 2010. gadā. AWACS sniedz gaisa atbalstu, lai padarītu drošākus NATO samitus un svarīgus starptautiskus pasākumus, piemēram, ASV prezidenta vizīti 2016. gadā Vācijā, arī Eiropas futbola čempionātu 2016. gadā Francijā.

 

Foto: Armīns Janiks (Jaunsardzes in informācijas centrs)

 

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

Zinnia plants from the Veggie ground control system are being harvested in the Flight Equipment Development Laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. In the foreground are some books which have been used to press some of the zinnia flowers. A similar zinnia harvest will be conducted by astronaut Scott Kelly on the International Space Station. Photo credit: NASA/Bill White

NASA image use policy.

 

The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.

To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.

 

The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.

 

304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.

 

It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.

 

No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.

 

In this photo, 304 is at the Pleasure Beach loop, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; alongside is English Electric Balloon 701 in its 1991 Routemaster livery that it aquired following refurbishment at the time. Originally designed to replace the Balloons, now Coronation and Balloon stand side by side in what I call 'active preservation'.

STS130-S-056 (8 Feb. 2010) CAPE CANAVERAL, Fla. --- Against a black night sky, space shuttle Endeavour and its six-member STS-130 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 4:14 a.m. (EST) on Feb. 8, 2010 from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts George Zamka, commander; Terry Virts, pilot; Robert Behnken, Kathryn Hire, Nicholas Patrick and Stephen Robinson, all mission specialists. This was the second launch attempt for Endeavour's STS-130 crew and the final scheduled space shuttle night launch. The first attempt on Feb. 7 was scrubbed due to unfavorable weather. The primary payload for the STS-130 mission to the International Space Station is the Tranquility node, a pressurized module that will provide additional room for crew members and many of the station's life support and environmental control systems. Attached to one end of Tranquility is the Cupola module, a unique work area with six windows on its sides and one on top. The Cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. For information on the STS-130 mission and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130.... Photo credit: Photo credit: NASA/Sandra Joseph and Kevin O'Connell

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

Object Details: The attached composite shows the huge sunspot group AR3038 as it was just rotating off the disk June 24th. As can been seen by the reference image of the Earth, it had a core (umbra) larger than our entire planet and was also accompanied by a larger amount of faculae (i.e. brighter, hotter regions surrounding the sunspots), the latter is especially evident in the UV image.

 

Image Details: The images making up this composite were taken by Jay Edwards on early afternoon of June 24, 2022 under average transparency & above average seeing from the RoR observatory I built at my home here in upstate, NY using:

 

At left: A vintage 1970, 8-inch, f/7 Criterion newtonian reflector with a home-made Baader (visual grade material) off-axis solar filter and an unmodded Canon 700D DSLR at prime focus controlled by APT, meant simply as a reference it is a stack of seven frames taken at ISO 100 and with a 1/100 second exposure;

 

At right and below: The same 8-inch, f/7 Criterion newtonian reflector and a home-made Baader off-axis solar filter but in these cases with a ZWO ASI290MC planetary camera / auto-guider and a set of specialized planetary filters. They are stacks of several hundred frames, at various exposures ranging from 4.73 to 13 milli-seconds and gain settings of 110 and 300, selected from short video clips consisting of several thousand.

 

The ASI290MC was placed at prime focus and was controlled by SharpCap Pro and the scope was tracked using a Losmandy G-11 goto mount running a Gemini 2 control system. The images also utilized a set of specialized planetary filters (Infrared, Ultraviolet & Methane) in addition to the over-the-aperture solar filter. As shown here the entire composite has been resized down to two X HD (i.e. 3840 x 2160 - approx. two-thirds of it's original resolution) and the bit depth lowered to 8 bits per channel.

 

Similar composites or various solar system objects, many using additional wavelengths, can be found at the links attached below:

 

Solar:

 

www.flickr.com/photos/homcavobservatory/52056574582/

www.flickr.com/photos/homcavobservatory/51992208177/

 

www.flickr.com/photos/homcavobservatory/51948806640/

 

www.flickr.com/photos/homcavobservatory/51747214403/

 

www.flickr.com/photos/homcavobservatory/50815383151/

 

www.flickr.com/photos/homcavobservatory/50657578913/

 

www.flickr.com/photos/homcavobservatory/51027134346/

 

www.flickr.com/photos/homcavobservatory/51295865404/

 

Saturn:

 

www.flickr.com/photos/homcavobservatory/51489515877/

 

www.flickr.com/photos/homcavobservatory/51345118465/

 

www.flickr.com/photos/homcavobservatory/51007634042/

 

www.flickr.com/photos/homcavobservatory/51316298333/

 

www.flickr.com/photos/homcavobservatory/50347485511/

 

www.flickr.com/photos/homcavobservatory/50088602376/

 

Jupiter:

 

www.flickr.com/photos/homcavobservatory/51405393195/

 

www.flickr.com/photos/homcavobservatory/51679394534/

 

www.flickr.com/photos/homcavobservatory/51307264271/

 

www.flickr.com/photos/homcavobservatory/50303645602/

 

www.flickr.com/photos/homcavobservatory/50052655691/

 

www.flickr.com/photos/homcavobservatory/50123276377/

 

www.flickr.com/photos/homcavobservatory/50185470067/

 

www.flickr.com/photos/homcavobservatory/50993968018/

 

www.flickr.com/photos/homcavobservatory/51090643939/

 

Mars:

 

www.flickr.com/photos/homcavobservatory/50425593297/

 

www.flickr.com/photos/homcavobservatory/50594729106/

 

www.flickr.com/photos/homcavobservatory/50069773341/

 

www.flickr.com/photos/homcavobservatory/50223682613/

Musée en Herbe 06/04/2017 14h02

The Invader has made it his mission to invade the world with his mosaic creations. They can be found all over the world, including the bottom of the ocean and even in Space! For his solo show the invasions can be tracked using an interactive platform.

Once the interactive button-controlled ‘Space Machine Control System’ is operated it displays the city on the large-scale map, lights up the corresponding alias (a copy of the life-size mosaic installed) and projects the photo of Invader’s street invasion on the huge screen, thus providing you a direct link between the alias in the museum to invasion on the street.

 

HELLO MY GAME IS...

My new personnal exhibition Hello my game is... has just oppened it's doors at the Musée en Herbe in Paris.

Specially designed for children, this exhibition presents a hundred of artworks and numerous interactive installations which enable the young visitors to enter into my world ! [ Invader ]

 

Musée en Herbe

23 Rue de l'Arbre Sec

75001 PARIS

Tél: +33 1 40 67 97 66

 

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

Six advisory signs will operate through a central control system to provide real-time train crossing information — indicating if the crossing is open or closed — so drivers can make informed decisions for travel in Langley, Surrey and the Township of Langley. The signs will specify the train’s location and travel direction, enabling drivers to use alternate crossing options at adjacent railway overpasses, in order to avoid traffic delays. In addition to reducing traffic congestion and minimizing greenhouse gas emissions due to decreased vehicle idling times, the signs will increase travel efficiency and mobility for emergency vehicles.

 

The YZF-R1 benefits from MotoGP® technology - a seven-level Traction Control system. The system has been developed so the rider does not feel any unnatural or harsh intervention from the system. In addition, traction control can aid in reducing tire wear due to less wheel spin. Coupled with the three level D-Mode electronic throttle response control, riders have 21 different choices available to tailor the YZF-R1 to their riding preference.

This R1 keeps all the technological superiorities developed for its predecessor: YCC-T® (Yamaha Chip Controlled Throttle) is a MotoGP® inspired fly-by- wire technology used to deliver instant throttle response. YCC-I® is Yamaha Chip Controlled Intake which is a variable intake system that broadens the spread of power. The fuel injection system provides optimum air/fuel mixtures for maximum power and smooth throttle repsonse.

In keeping with this machines exceptional cornering ability and crisp handling, the aluminum frame has been designed to offer exceptional rigidity balance.The rear frame is lightweigt Controlled-Fill die-cast magnesium, contributing the optimum mass centralization. Suspension includes YHSJ (Yamaha Hydraluic System Japan) front forks which use one of the tricks developed for our winning MotoGP® bikes: independent damping. The left fork handles compression damping and the right side handles rebound damping. And the rear shock adopts bottom linkage for optimum suspension characteristics.

The sound on the YZF-R1 is unlike any other inline-four cylinder production supersport. The precise and throaty pulse of the exhaust note will have riders enthused every time the thottle is opened.

The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons - being 50ft long and 8ft wide so larger than a normal one-car tram too), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.

To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.

 

The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.

 

304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.

 

It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.

 

No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.

 

This photo shows its first northbound journey in revenue-earning service from the Pleasure Beach in several years, posed on the centre line at the Bispham terminus. Special permission had been granted for enthusiasts to alight the tram on the centre line with care and get photos of the tram here - possibly the first time such permission has been granted.

New/more pics from an older (and dusty...) model

  

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.

The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.

Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.

Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.

Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction.

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

 

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

 

The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:

6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rearward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)

4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod

  

The model and its assembly:

This is a major kit conversion, or better a kitbashing with major scratch work involved. By the time I built this model, there were no convincing 1:100 kits of the so-called "Super / Strike Valkyries" around. These VF-1s carry rocket boosters for non-atmospherical use, so-called FAST packages ("Fuel And Sensor Trays"). However, parts for these space operation packages are included in some ARII Battroid kits.

 

This is the second of such conversions I did on the basis of a 1:100 Bandai (ex Arii) Gerwalk Valkyrie model, with additional leftover pieces from Super Valkyrie kits in Battroid mode and even from vintage Imai transformable kits.

 

The legs in retracted position were completely built through kitbashing, since the FAST packages would hardly fit under the body. The folded arms between the legs were improvised and heavily tailored to fit into the narrow space between the legs as good as possible. Real arm parts would not fit at all!

 

The "UUM-7" rocket launchers with 5 x 3 HMM-01missiles each were built from scratch. other added details include a pilot figure and better cockpit interior parts, plus some other details like antennae that the simple, original kits lack.

 

Painting and markings:

The color scheme is based on the standard VF-1A livery, even though I used a lighter tan (RAF "Hemp", B.S. 4800/10B21, e .g. used on Nimrod sea patrol aircrafts or VC-10 tankers - Humbrol 168) instead of brown. The lighter contrast areas were painted in ivory (Humbrol 41) instead of pure white, the FAST packs received a grey finish (FS 36081, Humbrol 32).

 

What's a bit special about the colored details of this semi-fictional Valkyrie is that the squadron insignia is original Japanese: The panda with the red lightning is the emblem of the 203rd hikotai, a real world JASDF fighter squadron that used to fly F-86 Sabre and F-104 Starfighters – with some fantasy, you can read the "203" in the lightning's outline! The kit's idea was to show what a machine from such a "real" squadron might look like if it was (still) existent in the Macross universe?

 

Four clusters of four reaction control system (RCS) thrusters were installed around the upper section of the service modeul every 90°. The sixteen-thruster arrangement provided rotation and translation control in all three spacecraft axes. Each thruster generated 100 pounds of thrust, and used mono-methyl hydrazine as fuel and nitrogen tetroxide as oxidizer. Each quad assembly measured 8 feet by 3 feet and had its own fuel tank, oxidizer tank, helium pressurant tank, and associated valves and regulators.

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

U.S. Air Force Fact Sheet

 

E-3 SENTRY (AWACS)

 

E-3 Sentry celebrates 30 years in Air Force's fleet

  

Mission

The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.

 

Features

The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.

 

Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.

 

The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.

 

In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.

 

As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.

 

AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.

 

With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.

 

Background

Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.

 

There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.

 

NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.

 

As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.

 

The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.

 

In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.

 

During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.

 

The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.

 

General Characteristics

Primary Function: Airborne battle management, command and control

Contractor: Boeing Aerospace Co.

Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines

Thrust: 20,500 pounds each engine at sea level

Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage

Wingspan: 145 feet, 9 inches (44.4 meters)

Length: 152 feet, 11 inches (46.6 meters)

Height: 41 feet, 9 inches (13 meters)

Weight: 205,000 pounds (zero fuel) (92,986 kilograms)

Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)

Fuel Capacity: 21,000 gallons (79,494 liters)

Speed: optimum cruise 360 mph (Mach 0.48)

Range: more than 5,000 nautical miles (9,250 kilometers)

Ceiling: Above 29,000 feet (8,788 meters)

Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)

Unit Cost: $270 million (fiscal 98 constant dollars)

Initial operating capability: April 1978

Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0

  

Point of Contact

Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil

 

www.af.mil/information/factsheets/factsheet.asp?fsID=98

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The HAL Ajeet II (Sanskrit: अजित, for Invincible or Unconquerable) was a development of the British Folland Gnat fighter that was built under license in India by Hindustan Aeronautics Limited.

 

The Indian Air Force (IAF) operated the Folland Gnat light jet fighter from 1958, with over 200 aircraft being license built by Hindustan Aeronautics Limited (HAL). The aircraft proved successful in combat in both the 1965 and the 1971 War with Pakistan, both in the low-level air superiority role and for short range ground attack missions, while being cheap to build and operate. It had unreliable systems, though, particularly the control system, and was difficult to maintain.

 

The Indian Air Force therefore issued a requirement for an improved Gnat in 1972. Although the original requirement called for an interceptor, it was later modified to include a secondary ground-attack role.

The aircraft was given the name "Ajeet" and the changes from the original Gnat were considerable.

 

They included:

- Improvements to the hydraulics and control systems (these had been a source of difficulties in the Gnat).

- Fitting of improved Martin-Baker GF4 ejection seats.

- Upgraded avionics.

- The addition of slab tail control surfaces.

- Improvements to the landing gear.

- Additional internal fuel capacity with "wet wings" to free the original pair of underwing pylons for weapons.

- Installation of two more underwing hardpoints.

 

Hindustan Aeronautics Limited modified the final two Gnats on the production line as prototypes for the Ajeet, with the first one flying on 6 March 1975, with the second following on 5 November. Testing proved successful of the Ajeet, and it became the first production aircraft flew on 30 September 1976. Visually, the Ajeet appeared similar to the Gnat, with the presence of two extra hardpoints being the only obvious distinguishing features from the older aircraft.

 

The Ajeet entered service with the IAF in 1977, but this was not the end of the Gnat/Ajeet's development potential. A HAL project for a trainer based on the Ajeet was begun, leading to the initial flight of a prototype in 1982. Unfortunately this aircraft was lost in a crash later that year. A second prototype flew the following year, followed by a third. But a lack of government interest and the imminent phase-out of the aircraft meant no more examples were produced.

 

Another, more radical Gnat derivate was more successful, the supersonic Ajeet II. The development of this aircraft started in 1978, and while the Ajeet II outwardly looked very much like its 1st generation kin, it was an almost completely different aircraft.

 

Basic idea had been to get the Ajeet up to the performance of the Northrop F-5A Freedom Fighter - with major focus on speed and overall better performance. It was soon clear that the original, the single HAL/Bristol Siddeley Orpheus 701-01 turbojet with 20.0 kN (4,500 lbf) of thrust would not suffice. Consequently, HAL engineers worked on the internal structure of the Gnat/Ajeet to cramp two smaller Rolls Royce Viper engines with indigenous afterburners into the fuselage.

 

At full power the small aircraft was now powered with almost twice as much power, but modifications were considerable, including new air intakes with shock cones and new ducts, which necessitated a lower location of the Aden cannons under the intakes instead of their flanks.

 

The rear fuselage had to be widened and lengthened accordingly, and the wings were also completely new, with a thinner profile, less depth and a higher sweep at quarter chord. The wing area was ~30% bigger than before and also offered an increased internal space for fuel.

 

The elongated forward fuselage was used for an additional fuel tank as well as more sophisticated avionics - including a RP-21 radar that was also installed in the license-built Indian MiG-21. The new systems allowed the use of R-3S 'Atoll') AAMs (of Soviet or Chinese origin) or French Matra Magic AAMs, four of which could be carried under the wings.

 

The development of the engines was protracted, though, especially the afterburner went through a lot of teething troubles, so that development aircraft had to get by without th extra performance punch. The first Ajeet II prototype flew in 1984 and the type was ready for service in 1986 and adopted by two fighter squadrons which started to retire the 1st generation Gnats and also some Hunters. Anyway, upon commissioning it was already clear that the Ajeet II would not have a bright future, as the classic gun fighter had become more and more obsolete.

 

Nevertheless, the Ajeet II was built in 36 specimen (plus two prototypes and two static airframes) and proved to be a formidable air combat opponent at low to medium altitude. It could easily outmaneuver more powerful aircraft like the MiG-21, and the afterburner improved acceleration as well as rate of climb considerably. Its guided missile armament also meant that it could engage at longer ranges and did not have to rely on its cannons alone. The Ajeet II's ground attack capabilities were improved through a higher ordnance payload (3.000 lb vs. 2.000 lb of the Ajeet I)

 

But the light fighter concept was soon outdated. The Ajeet I was retired in 1991 and, unlike the IAF Gnats, never saw combat. The Ajeet II was kept in service only a little longer, and its retirement started in 1994. The remaining machines were concentrated in one single squadron, but this, too, was disbanded soon and switched to the MiG-29. The last Ajeet II flew in late 1997.

 

General characteristics:

Crew: 1

Length: 10,54 m (34 ft 6 2/3 in)

Wingspan: 8,57 m (28 ft 1 in)

Height: 2.80 m (9 ft 3 in)

Wing area: 16.4 m² (177 ft²)

Aspect ratio: 3.56

Empty weight: 3,100 kg (6,830 lb)

Loaded weight: 5,440 kg (11,990 lb)

Max. takeoff weight: 5,500 kg (12,100 lb)

 

Powerplant:

2× Rolls-Royce Viper 601-22 turbojets, rated at 3,750 lbf (16.7 kN) dry

and 4,500 lbf (20.0 kN) with afterburner

 

Performance:

Maximum speed: 1,152 km/h (622 knots, 716 mph) at sea level

Range: 1,150 km (621 nmi, 715 mi)

Service ceiling: 45,000 ft (13,720 m)

Wing loading: 331 kg/m² (67.8 lb/ft²)

Rate of clim: 12,150 ft/min (61.7 m/s)

 

Armament:

2× 30 mm ADEN cannons with 90 rounds each

Up to 3.000 lb (1.360 kg) of external stores on four underwing hardpoints

 

The kit and its assembly:

Well, this whiffy Gnat/Ajeet was actually born through an incomplete Matchbox kit that I bought in a lot a while ago. It lacked decals, but also the canopy... Vacu replacements are available, but I rather put the kit on the conversion list, potentially into a single seater.

 

Since I'd have to improvise and modify the fuselage anyway, I decided to take the idea further ans create a "supersonic Gnat". Folland actually had such designs on the drawing board, but I do not think that the company considered a twin jet layout? That idea struck me when I held a PM Model F-5A in my hands and looked at the small J85 engine nozzles. Could that...?

 

From there things evolved, a bit like what Fiat did with the G.91 that was turned into the G.91Y. I wanted the Gnat to become bigger, also in order to justify the two engines and the wider tail. Therefore I cut the fuselage in front of the air intakes and behind the wings and inserted plugs, each ~6mm. Not much, but it helps. I also found new wings and stabilizers in the scrap box: from a Revell Fiat G.91. More slender, more sweep, and a slightly bigger span so that the overall proportions were kept. A good addition to the sleek Gnat/Ajeet. The fin was left OOB.

 

Another personal addition is the radar nose - I found the Gnat trainer's nose to be rather pointed and long, and the radome (IIRC from an F-4E!) was more Ajeet-style, even though of different shape and suggesting a radar dish underneath.

 

The new canopy is a donation from a Mastercraft (ex KP/Kopro) LWS Iskra trainer. Even though the Ajeet II is a single seater I used the Iskra’s two-seater option in order to fill the gap above the Gnat's second seat. I just cut the Iskra canopy in two parts and used the rear half as a fuselage/spine plug – fit was pretty good.

 

The fuselage extension and the new tail section necessitated massive putty work, but the result is surprisingly organic and retains the Ajeet's profile - the whif factor is rather subtle. ^^

 

The landing gear was taken OOB, the cockpit interior was improvised after the fuselage was more or less finished with parts from the original kit, plus an extra dashboard.

 

Painting and markings:

Surely this was to become an Indian Air Force aircraft, and for the paint scheme I took inspiration from the manifold IAF MiG-21s and the garish combat training markings of Indian aircraft.

 

The scheme is inspired by MiG-21MF "C2776" of IAF 26 Sqn "Warriors“ and “C2283” of 3 Sqn “Cobras”: a basically all-grey aircraft, with added camouflage on the upper side, plus bright fin colors.

 

The camouflage consists of Humbrol 127 (FS 36375) for the lower surfaces and in some areas where it would show through the added paint: a basic coat of Humbrol 108 (a murky, dark olive drab) with large mottles in a mix of Humbrol 62 and a bit of 80 (Sand and Grass Green). Rather odd, but when you look at the pics (esp. in flight) this seems to be very effective!

 

The fin decoration actually comes from an ESCI Harrier GR.3 (RAF 4 Sqn flash), roundels and other markings were puzzled together, among others, from the Iskra donation kit.

 

The cockpit interior was kept in a very dark grey while the landing gear and the air intakes are Aluminum.

 

A small project, literally, and a subtle one. While this aircraft looks a lot like a simple IAF Ajeet, there's actually hardly anything left from the original aircraft! And the paint scheme is spectacular - India has a lot to offer! :)

As a companion image to the wide-angle shot of the conjunction of the crescent moon & Aldebaran using an 80mm apo. posted previously; the attached is a quick shot taken concurrently using an 8-inch reflector (which the 80mm apo. was riding piggyback on at the time). This shot was exposed more for the lunar crescent itself, as opposed to the previous wide-angle image where the lunar crescent was purposely over-exposed in favor of displaying the Earthshine (a link to which can be found here: www.flickr.com/photos/homcavobservatory/28461877667/ ).

 

Image Details: The attached was taken by Jay Edwards at the HomCav Observatory on the morning of 10 Jul 2018 using an 8-inch, f/7 Criterion newtonian reflector and a Canon 700D (t5i) DSLR mounted on a Losmandy G-11 running a Gemini 2 control system. Since I had been imaging deep sky objects that night using a DSLR this is a single frame, and thus contains more noise than would have resulted from a 'stacked clip' using one of our planetary cameras. Shot using a 1/8 second exposure at ISO 100, it has been resized down here to HD resolution, slightly cropped for annotation and the bit depth lowered to 8 bits per channel to reduce the file size.

1 2 ••• 16 17 19 21 22 ••• 79 80