View allAll Photos Tagged control_systems
Promotional campaign insert (1 of 5)
Designed by North
2006
"Exploring the aesthetics of function, utility, and structure"
The US Navy had begun planning a replacement for the F-4 Phantom II in the fleet air defense role almost as soon as the latter entered service, but found itself ordered by then-Secretary of Defense Robert McNamara to join the TFX program. The subsequent F-111B was a failure in every fashion except for its AWG-9 fire control system, paired with the AIM-54 Phoenix very-long range missile. It was subsequently cancelled and the competition reopened for a new fighter, but Grumman had anticipated the cancellation and responded with a new design.
The subsequent F-14A Tomcat, last of the famous Grumman “Cat” series of US Navy fighters, first flew in December 1970 and was placed in production. It used the same variable-sweep wing concept of the F-111B and its AWG-9 system, but the Tomcat was much sleeker and lighter. The F-14 was provided with a plethora of weapons, including the Phoenix, long-range AIM-7 Sparrow, short-range AIM-9 Sidewinder, and an internal M61A1 Vulcan 20mm gatling cannon. This was due to the Vietnam experience, in which Navy F-4s found themselves badly in need of internal armament. Despite its large size, it also proved itself an excellent dogfighter.
The only real drawback to the Tomcat proved to be its powerplant, which it also shared with the F-111B: the Pratt and Whitney TF30. The TF30 was found to be prone to compressor stalls and explosions; more F-14s would be lost to engine problems than any other cause during its career, including combat. The Tomcat was also fitted with the TARPS camera pod beginning in 1981, allowing the RA-5C Vigilante and RF-8G Crusader dedicated recon aircraft to be retired. In addition to the aircraft produced for the US Navy, 79 of an order of 100 aircraft were delivered to Iran before the Islamic Revolution of 1979.
The Tomcat entered service in September 1974 and first saw action covering the evacuation of Saigon in 1975, though it was not involved in combat. The Tomcat’s first combat is conjectural: it is known that Iranian F-14s saw extensive service in the 1980-1988 Iran-Iraq War, and that Iranian Tomcats achieved a number of kills; the only F-14 ace was Iranian. The first American combat with the F-14 came in September 1981, when two F-14As shot down a pair of Libyan Su-22 Fitters over the Gulf of Sidra. The Tomcat would add another two kills to its record in 1987, two Libyan MiG-23s once more over the Gulf of Sidra.
The high losses due to problems with the TF30 (fully 84 Tomcats would be lost to this problem over the course of its career) led to the Navy ordering the F-14A+ variant during the war. The A+, redesignated F-14B in 1991, incorporated all wartime refits and most importantly, General Electric F110 turbofans. Among the refits was the replacement of the early A’s simple undernose IR sensor with a TISEO long-range camera system, allowing the F-14’s pilot to identify targets visually beyond the range of unaided human eyesight.
The majority of F-14As were upgraded to B standard, along with 67 new-build aircraft. A mix of F-14As and Bs would see action during the First Gulf War, though only a single kill was scored by Tomcats.. Subsequent to this conflict, the Navy ordered the F-14D variant, with completely updated avionics and electronics, a combination IRST/TISEO sensor, replacement of the AWG-9 with the APG-71 radar, and a “glass” cockpit. Though the Navy had intended to upgrade the entire fleet to D standard, less than 50 F-14Ds ever entered service (including 37 new-builds), due to the increasing age of the design.
Ironically, the US Navy’s Tomcat swan song came not as a fighter, but a bomber. To cover the retirement of the A-6 Intruder and A-7 Corsair II from the fleet, the F-14’s latent bomb capability was finally used, allowing the “Bombcat” to carry precision guided weapons, and, after 2001, the GPS-guided JDAM series. By the time of the Afghanistan and Second Gulf Wars, the F-14 was already slated for replacement by the F/A-18E/F Super Hornet, and the Tomcat would be used mainly in the strike role, though TARPS reconnaissance sorties were also flown. The much-loved F-14 Tomcat was finally retired from US Navy service in September 2006, ending 36 years of operations. The aircraft remains in service with the Iranian Revolutionary Air Force.
This is 162912, a new-build F-14B delivered to the USN in 1988. She spent most of her career with VF-11 ("Red Rippers") serving in the Atlantic, and was a war veteran: 162912 was among the F-14s scrambled on September 11, 2001 from the USS John F. Kennedy to secure the airspace over the US Eastern Seaboard. She remained with VF-11 aboard both the Kennedy and the USS George Washington during the Second Gulf War (Operation Iraqi Freedom). When VF-11 retired its Tomcats in favor of F/A-18F Super Hornets in 2005, 162912 was painted in a commemorative scheme for the squadron's last war cruise. When the Kennedy returned home, 162912 was donated to the Grissom AFB Museum and flown there in 2005.
Since Grissom is a USAF base with not much connection to the US Navy, it was a surprise to find a F-14 Tomcat there--but a rather pleasant one, especially in a commemorative scheme. The camouflage scheme is a throwback to the F-14's first entry into service, with light gray over white. VF-11's shield is carried on the tail: the boar was taken from a World War II-era bottle of gin, the lightning bolt originally faced in the opposite direction (making it a bastard shield), and the two balls represent...well, use your imagination and remember you're dealing with naval aviators. The squadron's name is carried on the drop tanks.
Not well seen in this shot is the nose art for this last F-14 of VF-11. It shows the F-14's Tomcat mascot riding an AIM-54 Phoenix, with the inscription "Thanks for the Ride! 1980-2005."
The Berlin S-Bahn [ɛs.baːn] is a rapid transit railway system in and around Berlin, the capital city of Germany. It has been in operation under this name since December 1930, having been previously called the special tariff area Berliner Stadt-, Ring- und Vorortbahnen (Berlin city, orbital, and suburban railways). It complements the Berlin U-Bahn and is the link to many outer-Berlin areas, such as Berlin Schönefeld Airport.
While in the first decades of this tariff zone the trains were steam-drawn, and even after the electrification of large parts of the network, a number of lines remained under steam, today the term S-Bahn is used in Berlin only for those lines and trains with third-rail electrical power transmission and the special Berlin S-Bahn loading gauge. The third unique technical feature of the Berlin S-Bahn, the automated mechanical train control, is being phased out and replaced by a communications-based train control system, but which again is specific to the Berlin S-Bahn.
In other parts of Germany and other German-speaking countries, other trains are designated S-Bahn without those Berlin specific features. The Hamburg S-Bahn is the only other system using third-rail electrification.
Today, the Berlin S-Bahn is no longer defined as this special tariff area of the national railway company, but is instead just one specific means of transportation, defined by its special technical characteristics, in an area-wide tariff administered by a public transport authority. The Berlin S-Bahn is now an integral part of the Verkehrsverbund Berlin-Brandenburg, the regional tariff zone for all kinds of public transit in and around Berlin and the federal state (Bundesland) of Brandenburg.
INTRODUCTION
The brand name "S-Bahn" chosen in 1930 mirrored U-Bahn, which had become the official brand name for the Berlin city-owned rapid transit lines begun under the name of Berliner Hoch- und Untergrundbahnen (Berlin elevated and underground lines), where the word of mouth had abbreviated "Untergrundbahn" to "U-Bahn", in parallel to "U-Boot" formed from "Unterseeboot" ("undersea boat" – submarine).
Services on the Berlin S-Bahn have been provided by the Prussian or German national railway company of the respective time, which means the Deutsche Reichsbahn-Gesellschaft after the First World War, the Deutsche Reichsbahn of the GDR (in both East and West Berlin) until 1993 (except West Berlin from 1984 to 1994, the BVG period) and Deutsche Bahn after its incorporation in 1994.
The Berlin S-Bahn consists today of 15 lines serving 166 stations, and runs over a total route length of 332 kilometres. The S-Bahn carried 395 million passengers in 2012. It is integrated with the mostly underground U-Bahn to form the backbone of Berlin's rapid transport system. Unlike the U-Bahn, the S-Bahn crosses Berlin city limits into the surrounding state of Brandenburg, e.g. to Potsdam.
Although the S- and U-Bahn are part of a unified fare system, they have different operators. The S-Bahn is operated by S-Bahn Berlin GmbH, a subsidiary of Deutsche Bahn, whereas the U-Bahn is run by Berliner Verkehrsbetriebe (BVG), the main public transit company for the city of Berlin.
OPERATION
NETWORK
The S-Bahn routes all feed into one of three core lines: a central, elevated east-west line (the Stadtbahn), a central, mostly underground north-south line (the Nord-Süd Tunnel), and a circular line (the Ringbahn). Outside the Ringbahn, suburban routes radiate in all directions.
Lines S1, S2, S25 and S26 are north-south lines that use the North-South tunnel as their midsection. They were equally distributed into Oranienburg, Bernau and Hennigsdorf in the north, and Teltow Stadt, Lichtenrade and Wannsee.
Lines S3, S5, S7, S9 and S75 are east-west lines using the Stadtbahn cross-city railway. The western termini are located at Potsdam and Spandau, although the S5 only runs as far as Westkreuz and the S75 to Ostkreuz. The eastern termini are Erkner, Strausberg Nord, Ahrensfelde and Wartenberg. The S9 uses a connector curve (Südkurve) at Ostkreuz to change from Stadtbahn to the South-eastern leg of the Ringbahn. Another curve, the Nordkurve to the North-eastern Ringbahn, was originally served by the S86 line, but it was demolished in preparation of the rebuilding of Ostkreuz station and was not rebuilt afterwards. Both connector curves were heavily used in the time of the Berlin Wall, as trains coming from the North-Eastern routes couldn't use the West Berlin North-South route and the Southern leg of the pre- and post-Wall Ringbahn was in West Berlin.
Lines S41 and S42 continuously circle around the Ringbahn, the former clockwise, the latter anti-clockwise. Lines S45, S46 and S47 link destinations in the southeast with the southern section of the Ringbahn via the tangential link from the Görlitzer Bahn to the Ring via Köllnische Heide.
Lines S8 and S85 are north-south lines using the eastern section of the Ringbahn between Bornholmer Straße and Treptower Park via Ostkreuz, using the Görlitzer Bahn in the South.
SERVICE HOURS
The S-Bahn generally operates between 4am and 1am Monday to Friday, between 5am and 1am on Saturdays and between 6:30am and 1am on Sundays during normal daytime service. However, there is a comprehensive night-time service on most lines between 1am and 5am on Saturdays and 01:00 and 06:30 on Sundays, which means that most stations enjoy a continuous service between Friday morning and Sunday evening. One exception to this is the section of the S 8 between Blankenburg and Hohen Neuendorf which sees no service in these hours. Most other lines operate without route changes, but some are curtailed or extended during nighttime. Particularly, the S 1, S 2, S 25, S 3, S 41, S 42, S 5, S 7 are unchanged, and the S 45 and S 85 have no nighttime service. Westbound lines S 46, S 47, S 75, and northbound S 9 terminate at stations Südkreuz, Schöneweide, Lichtenberg and Treptower Park, respectively.
HISTORY
FROM THE BEGINNINGS TILL END OF WORLD WAR II
With individual sections dating from the 1870s, the S-Bahn was formed in time as the network of suburban commuter railways running into Berlin, then interconnected by the circular railway connecting the various terminal railway stations, and in 1882 enhanced by the east-west cross-city line (called the "Stadtbahn", "city railway"). The forming of a distinct identity for this network began with the establishment of a special tariff for the area which was then called the "Berliner Stadt-, Ring- und Vorortbahnen", and which differed from the normal railway tariff. While the regular railway tariff was based on multiplying the distance covered with a fixed price per kilometer, the special tariff for this Berlin tariff zone was based on a graduated tariff based on the number of stations touched during the travel.
The core of this network, that is the cross-city ("Stadtbahn") East-West line and the circular Ringbahn, and several suburban branches were converted from steam operation to a third-rail electric railway in the latter half of the 1920s. The Wannsee railway, the suburban line with the highest number of passengers, was electrified in 1932/33. A number of suburban trains remained steam-hauled, even after the Second World War.
After building the East-West cross-city line connecting western suburban lines, which until then terminated at Charlottenburg station with eastern suburban lines which had terminated at Frankfurter Bahnhof (later Schlesischer Bahnhof), the logical next step was a North-South cross-city line connecting the northern suburban lines terminating at Stettiner Bahnhof with the southern suburban lines terminating at the subsidiary stations of the Berlin Potsdamer Bahnhof. The first ideas for this project emerged only 10 years after the completion of the East-West cross-city line, with several concrete proposals resulting from a 1909 competition held by the Berlin city administration. Another concrete proposal, already very close to the final realisation, was put forward in 1926 by Professor Jenicke of Breslau university. Many sections of the S-Bahn were closed during the war, both through enemy action and flooding of the Nord-Süd-Bahn tunnel on 2 May 1945 during the final Battle of Berlin. The exact number of casualties is not known, but up to 200 people are presumed to have perished, since the tunnel was used as a public shelter and also served to house military wounded in trains on underground sidings. Service through the tunnel commenced again in 1947.
THE TIME OF EXPANSION
BEFORE THE CONSTR'UCTION OF BERLIN WALL
After hostilities ceased in 1945, Berlin was given special status as a "Four-Sector City," surrounded by the Soviet Occupation Zone, which later became the German Democratic Republic (GDR). The Allies had decided that S-Bahn service in the western sectors of Berlin should continue to be provided by the Reichsbahn (DR), which was by now the provider of railway services in East Germany. (Rail services in West Germany proper were provided by the new Deutsche Bundesbahn.)
Before the construction of the Berlin Wall in 1961, the Berlin S-Bahn had grown to about 335 kilometres. On the 13 August 1961, it was the biggest turning point in the operation and network for the S-Bahn.
As relations between East and West began to sour with the coming of the Cold War, it had become the victim of the hostilities. Although services continued operating through all occupation sectors, checkpoints were constructed on the borders with East Berlin and on-board "customs checks" were carried out on trains. From 1958 onward, some S-Bahn trains ran non-stop through the western sectors from stations in East Berlin to stations on outlying sections in East Germany so as to avoid the need for such controls. East German government employees were then forbidden to use the S-Bahn since it travelled through West Berlin.
AFTER THE CONSTRUCTION OF BERLIN WALL
The S-Bahn has also been operated in two separate subnets of the Deutsche Reichsbahn. In East Berlin, the S-Bahn retained a transport share of approximately 35 percent, the mode of transport with the highest passenger share. In the 1970s and 1980s the route network continued to grow. In particular, the new housing estates were connected to the grid in the northeast of the city (Marzahn and Hohenschönhausen).
The construction of the Berlin Wall led to West Berlin calling for the unions and politicians to boycott the S-Bahn. Subsequently, passenger numbers fell.
However, the Berlin S-Bahn strike brought the S-Bahn to the attention of the public, and aroused the desire to for West Berlin to manage its section of the S-Bahn itself. In 1983 negotiations of representatives of the Senate, the SNB and the Deutsche Reichsbahn took place. In December 1983, these were concluded with Allied consent to the agreement between the Deutsche Reichsbahn and the Berlin Senate for the transfer of operating rights of the S-Bahn in the area of West Berlin. The BVG received the oldest carriages from the DR; but the BVG was eager to quickly get to modern standards for a subway. Therefore, soon new S-Bahn trains were purchased on their behalf, which are still in use on the Berlin S-Bahn network as the 480 series.
Even before the Wall fell, there were efforts to substantial re-commissioning of the S-Bahn network in West Berlin.
REUNIFICATION
After the Berlin Wall came down in November 1989, the first broken links were re-established, with Friedrichstraße on 1 July 1990, as the first. The BVG and DR jointly marketed the services soon after the reunification. Administratively, the divided S-Bahn networks remained separate in this time of momentous changes, encompassing German reunification and reunification of Berlin into a single city, although the dividing line was no longer the former Berlin Wall. DR and BVG (of the whole of reunified Berlin from 1 January 1992, after absorbing BVB of East Berlin) operated individual lines end to end, both into the other party's territories. For example, S2 was all BVG even after it was extended northward and southward into Brandenburg/former East German territory. The main east-west route (Stadtbahn) was a joint operation. Individual trains were operated by either BVG or DR end-to-end on the same tracks. This arrangement ended on 1 January 1994, with the creation of Deutsche Bahn due to the merger between DR and the former West Germany's Deutsche Bundesbahn. All S-Bahn operations in Berlin were transferred to the newly formed S-Bahn Berlin GmbH as a subsidiary of Deutsche Bahn, and the BVG withdrew from running S-Bahn services.
Technically, a number of projects followed in the steps of re-establishing broken links in order to restore the former S-Bahn network to its 1961 status after 1990,
especially the Ringbahn. In December 1997 the connection between Neukölln and Treptower Park via Sonnenallee was reopened, enabling S4 trains to run 75% of the whole ring between Schönhauser Allee and Jungfernheide. On 16 June 2002, the section Gesundbrunnen – Westhafen also reopened, re-establishing the Ringbahn operations.
EXPANSION
REDEVELOPMENT PROJECTS
OSTKREUZ
In 1988, Deutsche Reichsbahn presented plans for the transformation of Ostkreuz station. The long postponed renovation of the station began in 2007.
With nine lines (four on the Stadtbahn and five on the Ringbahn), Ostkreuz is one of the busiest stations on the network. Since the reconstruction is taking place during full operations. Work under the current plans was original projected to be completed by 2016, but it has been delayed and it is now expected to be completed in 2018.
With the progress of construction work on 31 August 2009, the southern connection and platform A were decommissioned. This route had to be realigned as a result. The construction plans envisaged that the connection would be restored by 2014. After its completion, traffic will again be able to be run from the southern Ringbahn onto the Stadtbahn.
In October 2009, the new Regionalbahn station on the Ringbahn was sufficiently complete for S-Bahn trains on the Ringbahn to use it temporarily. Demolition of the Ringbahn platform could then start and the new platform, including a concourse, could be built. This was put into operation on 16 April 2012, after a 16-day possession.
WIKIPEDIA
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
Blow Out Preventer Control System (BOP)
Monitor System's BOP Blow Out Preventer Control System provides clients with a highly reliable interface to well control, comprising a unique slim-line panel design developed using the very latest in leading-edge technology for operating in hazardous areas. The panel unit provides easy front access for maintenance purposes and is specifically designed to enable straightforward integration into old or new pneumatic / hydraulic interfaces. The BOP Control System is custom designed to suit all individual requirements.
Case Study
Blow Out Preventer Control System (BOP)
Overview: The BOP Control System designed and installed for Transocean's 714 rig was developed to integrate with their existing onboard field equipment. The system included a Driller's BOP control panel, a Tool Pusher's mini control panel and an Interface Panel to the Koomy Unit. In addition, there were Control Stations fitted to the aft and forward lifeboat muster points. All control and alarm signals were also integrated to the rig's Data Management System.
By upgrading to Monitor's BOP Control System, the client incurred less cost as the integration utilised existing pneumatic control panels and most existing cabling. This critical piece of safety equipment also provides a high level of ongoing availability and essential reliability ensuring low levels of costly operational downtime. Customer: Transocean.
Further Reading
Overview: A blowout preventer control system (BOP) is a large, specialized valve used to seal, control and monitor oil and gas wells. Blowout preventer control systems (BOPs) were developed to cope with extreme erratic pressures and uncontrolled flow (formation kick) emanating from a well reservoir during drilling. Kicks can lead to a potentially catastrophic event known as a blowout. In addition to controlling the downhole (occurring in the drilled hole) pressure and the flow of oil and gas, blowout preventer control system (BOP) are intended to prevent tubing (e.g. drill pipe and well casing), tools and drilling fluid from being blown out of the wellbore (also known as bore hole, the hole leading to the reservoir) when a blowout threatens. Blowout preventer control systems (BOPs) are critical to the safety of crew, rig (the equipment system used to drill a wellbore) and environment, and to the monitoring and maintenance of well integrity; thus blowout preventer control systems (BOP's) are intended to be fail-safe devices.(Blow Out Preventer Control System BOP, oil and gas industry)
The term BOP (an initialism rather than a spoken acronym, i.e., pronounced B-O-P, not "bop") is used in oilfield vernacular to refer to blowout preventers.
The abbreviated term preventer, usually prefaced by a type (e.g. ram preventer), is used to refer to a single blowout preventer unit. A blowout preventer control systems (BOPs) may also simply be referred to by its type (e.g. ram).
The terms blowout preventer, blowout preventer stack and blowout preventer system are commonly used interchangeably and in a general manner to describe an assembly of several stacked blowout preventers of varying type and function, as well as auxiliary components. A typical subsea deepwater blowout preventer control systes (BOP) includes components such as electrical and hydraulic lines, control pods, hydraulic accumulators, test valve, kill and choke lines and valves, riser joint, hydraulic connectors, and a support frame. Two categories of blowout preventer are most prevalent: ram and annular. Blowout preventer control systems (BOPs) frequently utilize both types, typically with at least one annular BOP stacked above several ram BOPs.
(A related valve, called an inside blowout preventer, internal blowout preventer, or IBOP, is positioned within, and restricts flow up, the drillpipe. Blowout preventer control systems (BOPs) are used at land and offshore rigs, and subsea. Land and subsea BOPs are secured to the top of the wellbore, known as the wellhead. Blowout preventer control systems (BOPs) on offshore rigs are mounted below the rig deck. Subsea Blowout preventer control systems (BOPs) are connected to the offshore rig above by a drilling riser that provides a continuous pathway for the drill string and fluids emanating from the wellbore. In effect, a riser extends the wellbore to the rig. (Blow Out Preventer Control System BOP, oil and gas industry)
Use
The invention of Blowout preventer control systems (BOPs) was instrumental in reducing the incidence of oil gushers, blowouts, indicating that substantial improvement is needed. Blowout preventer control systems (BOPs) come in a variety of styles, sizes and pressure ratings. Several individual units serving various functions are combined to compose a blowout preventer stack. Multiple blowout preventers of the same type are frequently provided for redundancy, an important factor in the effectiveness of fail-safe devices.
The primary functions of a blowout preventer system are to:
Confine well fluid to the wellbore;
Provide means to add fluid to the wellbore;
Allow controlled volumes of fluid to be withdrawn from the wellbore.
Additionally, and in performing those primary functions, blowout preventer systems are used to:
Regulate and monitor wellbore pressure;
Center and hang off the drill string in the wellbore;
Shut in the well (e.g. seal the void, annulus, between drillpipe and casing);
“Kill” the well (prevent the flow of formation fluid, influx, from the reservoir into the wellbore) ;
Seal the wellhead (close off the wellbore);
Sever the casing or drill pipe (in case of emergencies).
In drilling a typical high-pressure well, drill strings are routed through a blowout preventer control system (BOP) stack toward the reservoir of oil and gas. As the well is drilled, drilling fluid, "mud", is fed through the drill string down to the drill bit, "blade", and returns up the wellbore in the ring-shaped void, annulus, between the outside of the drill pipe and the casing (piping that lines the wellbore). The column of drilling mud exerts downward hydrostatic pressure to counter opposing pressure from the formation being drilled, allowing drilling to proceed. When a kick (influx of formation fluid) occurs, rig operators or automatic systems close the blowout preventer control system (BOP) units, sealing the annulus to stop the flow of fluids out of the wellbore. Denser mud is then circulated into the wellbore down the drill string, up the annulus and out through the choke line at the base of the blowout preventer control system (BOP) stack through chokes (flow restrictors) until downhole pressure is overcome. Once “kill weight” mud extends from the bottom of the well to the top, the well has been “killed”. If the integrity of the well is intact drilling may be resumed. Alternatively, if circulation is not feasible it may be possible to kill the well by "bullheading", forcibly pumping, in the heavier mud from the top through the kill line connection at the base of the stack. This is less desirable because of the higher surface pressures likely needed and the fact that much of the mud originally in the annulus must be forced into receptive formations in the open hole section beneath the deepest casing shoe. (Blow Out Preventer Control System BOP, oil and gas industry)
If the blowout preventers and mud do not restrict the upward pressures of a kick, a blowout results, potentially shooting tubing, oil and gas up the wellbore, damaging the rig, and leaving well integrity in question. (Blow Out Preventer Control System BOP, oil and gas industry)
Since blowout preventer control systems (BOPs) are important for the safety of the crew and natural environment, as well as the drilling rig and the wellbore itself, authorities recommend, and regulations require, that blowout preventer control systems (BOPs) be regularly inspected, tested and refurbished. Tests vary from daily test of functions on critical wells to monthly or less frequent testing on wells with low likelihood of control problems. Exploitable reservoirs of oil and gas are increasingly rare and remote, leading to increased subsea deepwater well exploration and requiring BOPs to remain submerged for as long as a year in extreme conditions. As a result, blowout preventer control system (BOP) assemblies have grown larger and heavier (e.g. a single ram-type BOP unit can weigh in excess of 30,000 pounds), while the space allotted for blowout preventer control system (BOP) stacks on existing offshore rigs has not grown commensurately. Thus a key focus in the technological development of blowout preventer control systems (BOPs) over the last two decades has been limiting their footprint and weight while simultaneously increasing safe operating capacity. (Blow Out Preventer Control System BOP, oil and gas industry).
Types
Blowout preventer control systems (BOPs) come in two basic types, ram and annular. Both are often used together in drilling rig blowout preventer control system (BOP) stacks, typically with at least one annular BOP capping a stack of several ram BOPs.
Ram Blowout Preventer
The ram blowout preventer control system (BOP) was invented by James Smither Abercrombie and Harry S. Cameron in 1922, and was brought to market in 1924 by Cameron Iron Works. A ram-type BOP is similar in operation to a gate valve, but uses a pair of opposing steel plungers, rams. The rams extend toward the center of the wellbore to restrict flow or retract open in order to permit flow. The inner and top faces of the rams are fitted with packers (elastomeric seals) that press against each other, against the wellbore, and around tubing running through the wellbore. Outlets at the sides of the blowout preventer control system (BOP) housing (body) are used for connection to choke and kill lines or valves. Rams, or ram blocks, are of four common types: pipe, blind, shear, and blind shear. (Blow Out Preventer Control System BOP, oil and gas industry)
Pipe rams close around a drill pipe, restricting flow in the annulus (ring-shaped space between concentric objects) between the outside of the drill pipe and the wellbore, but do not obstruct flow within the drill pipe. Variable-bore pipe rams can accommodate tubing in a wider range of outside diameters than standard pipe rams, but typically with some loss of pressure capacity and longevity.
Blind rams (also known as sealing rams), which have no openings for tubing, can close off the well when the well does not contain a drill string or other tubing, and seal it.
Blind shear rams (also known as shear seal rams, or sealing shear rams) are intended to seal a wellbore, even when the bore is occupied by a drill string, by cutting through the drill string as the rams close off the well. The upper portion of the severed drill string is freed from the ram, while the lower portion may be crimped and the “fish tail” captured to hang the drill string off the blowout preventer control system (BOP).
In addition to the standard ram functions, variable-bore pipe rams are frequently used as test rams in a modified blowout preventer device known as a stack test valve. Stack test valves are positioned at the bottom of a BOP stack and resist downward pressure (unlike BOPs, which resist upward pressures). By closing the test ram and a blowout preventer control system (BOP) ram about the drillstring and pressurizing the annulus, the BOP is pressure-tested for proper function. (Blow Out Preventer Control System BOP, oil and gas industry)
The original ram blowout preventer control systems (BOPs) of the 1920s were simple and rugged manual devices with minimal parts. The BOP housing (body) had a vertical well bore and horizontal ram cavity (ram guide chamber). Opposing rams (plungers) in the ram cavity translated horizontally, actuated by threaded ram shafts (piston rods) in the manner of a screw jack. Torque from turning the ram shafts by wrench or hand wheel was converted to linear motion and the rams, coupled to the inner ends of the ram shafts, opened and closed the well bore. Such screw jack type operation provided enough mechanical advantage for rams to overcome downhole pressures and seal the wellbore annulus. (Blow Out Preventer Control System BOP, oil and gas industry)
Hydraulic rams blowout preventer control systems (BOPs) were in use by the 1940s. Hydraulically actuated blowout preventers had many potential advantages. The pressure could be equalized in the opposing hydraulic cylinders causing the rams to operate in unison. Relatively rapid actuation and remote control were facilitated, and hydraulic rams were well-suited to high pressure wells. Because blowout preventer control systems (BOPs) are fail-safe devices, efforts to minimize the complexity of the devices are still employed to ensure ram blowout preventer control system (BOP) reliability and longevity. As a result, despite the ever-increasing demands placed on them, state of the art ram BOPs are conceptually the same as the first effective models, and resemble those units in many ways.
Ram BOPs for use in deepwater applications universally employ hydraulic actuation. Threaded shafts are often still incorporated into hydraulic ram BOPs as lock rods that hold the ram in position after hydraulic actuation. By using a mechanical ram locking mechanism, constant hydraulic pressure need not be maintained. Lock rods may be coupled to ram shafts or not, depending on manufacturer. Other types of ram locks, such as wedge locks, are also used.
Typical ram actuator assemblies (operator systems) are secured to the blowout preventer control system (BOP) housing by removable bonnets. Unbolting the bonnets from the housing allows BOP maintenance and facilitates the substitution of rams. In that way, for example, a pipe ram blowout preventer control system (BOP) can be converted to a blind shear ram BOP. (Blow Out Preventer Control System BOP, oil and gas industry)
Shear-type ram BOPs require the greatest closing force in order to cut through tubing occupying the wellbore. Boosters (auxiliary hydraulic actuators) are frequently mounted to the outer ends of a blowout preventer control systems (BOPs) hydraulic actuators to provide additional shearing force for shear rams.
Ram BOPs are typically designed so that well pressure will help maintain the rams in their closed, sealing position. That is achieved by allowing fluid to pass to pass through a channel in the ram and exert pressure at the ram’s rear and toward the center of the wellbore. Providing a channel in the ram also limits the thrust required to overcome well bore pressure.
Single ram and double ram blowout preventer control systems (BOPs) are commonly available. The names refer to the quantity of ram cavities (equivalent to the effective quantity of valves) contained in the unit. A double ram BOP is more compact and lighter than a stack of two single ram blowout preventer control systems (BOPs) while providing the same functionality, and is thus desirable in many applications. Triple ram BOPs are also manufactured, but not as common. (Blow Out Preventer Control System BOP, oil and gas industry)
Technological development of ram BOPs has been directed towards deeper and higher pressure wells, greater reliability, reduced maintenance, facilitated replacement of components, facilitated ROV intervention, reduced hydraulic fluid consumption, and improved connectors, packers, seals, locks and rams. In addition, limiting BOP weight and footprint are significant concerns to account for the limitations of existing rigs.
The highest-capacity large-bore ram blowout preventer on the market, as of July 2010, Cameron’s EVO 20K blowout preventer control system (BOP), has a hold-pressure rating of 20,000 psi, ram force in excess of 1,000,000 pounds, and a well bore diameter of 18.75 inches. (Blow Out Preventer Control System BOP, oil and gas industry)
The US Navy had begun planning a replacement for the F-4 Phantom II in the fleet air defense role almost as soon as the latter entered service, but found itself ordered by then-Secretary of Defense Robert McNamara to join the TFX program. The subsequent F-111B was a failure in every fashion except for its AWG-9 fire control system, paired with the AIM-54 Phoenix very-long range missile. It was subsequently cancelled and the competition reopened for a new fighter, but Grumman had anticipated the cancellation and responded with a new design.
The subsequent F-14A Tomcat, last of the famous Grumman “Cat” series of US Navy fighters, first flew in December 1970 and was placed in production. It used the same variable-sweep wing concept of the F-111B and its AWG-9 system, but the Tomcat was much sleeker and lighter. The F-14 was provided with a plethora of weapons, including the Phoenix, long-range AIM-7 Sparrow, short-range AIM-9 Sidewinder, and an internal M61A1 Vulcan 20mm gatling cannon. This was due to the Vietnam experience, in which Navy F-4s found themselves badly in need of internal armament. Despite its large size, it also proved itself an excellent dogfighter.
The only real drawback to the Tomcat proved to be its powerplant, which it also shared with the F-111B: the Pratt and Whitney TF30. The TF30 was found to be prone to compressor stalls and explosions; more F-14s would be lost to engine problems than any other cause during its career, including combat. The Tomcat was also fitted with the TARPS camera pod beginning in 1981, allowing the RA-5C Vigilante and RF-8G Crusader dedicated recon aircraft to be retired. In addition to the aircraft produced for the US Navy, 79 of an order of 100 aircraft were delivered to Iran before the Islamic Revolution of 1979.
The Tomcat entered service in September 1974 and first saw action covering the evacuation of Saigon in 1975, though it was not involved in combat. The Tomcat’s first combat is conjectural: it is known that Iranian F-14s saw extensive service in the 1980-1988 Iran-Iraq War, and that Iranian Tomcats achieved a number of kills; the only F-14 ace was Iranian. The first American combat with the F-14 came in September 1981, when two F-14As shot down a pair of Libyan Su-22 Fitters over the Gulf of Sidra. The Tomcat would add another two kills to its record in 1987, two Libyan MiG-23s once more over the Gulf of Sidra.
The high losses due to problems with the TF30 (fully 84 Tomcats would be lost to this problem over the course of its career) led to the Navy ordering the F-14A+ variant during the war. The A+, redesignated F-14B in 1991, incorporated all wartime refits and most importantly, General Electric F110 turbofans. Among the refits was the replacement of the early A’s simple undernose IR sensor with a TISEO long-range camera system, allowing the F-14’s pilot to identify targets visually beyond the range of unaided human eyesight.
The majority of F-14As were upgraded to B standard, along with 67 new-build aircraft. A mix of F-14As and Bs would see action during the First Gulf War, though only a single kill was scored by Tomcats.. Subsequent to this conflict, the Navy ordered the definitive F-14D variant, with completely updated avionics and electronics, a combination IRST/TISEO sensor, replacement of the AWG-9 with the APG-71 radar, and a “glass” cockpit. Though the Navy had intended to upgrade the entire fleet to D standard, less than 50 F-14Ds ever entered service (including 37 new-builds), due to the increasing age of the design.
Ironically, the US Navy’s Tomcat swan song came not as a fighter, but a bomber. To cover the retirement of the A-6 Intruder and A-7 Corsair II from the fleet, the F-14’s latent bomb capability was finally used, allowing the “Bombcat” to carry precision guided weapons, and, after 2001, the GPS-guided JDAM series. By the time of the Afghanistan and Second Gulf Wars, the F-14 was already slated for replacement by the F/A-18E/F Super Hornet, and the Tomcat would be used mainly in the strike role, though TARPS reconnaissance sorties were also flown. The much-loved F-14 Tomcat was finally retired from US Navy service in September 2006, ending 36 years of operations. The aircraft remains in service with the Iranian Revolutionary Air Force.
This F-14, BuNo 159025, sits on the stern of the USS Yorktown's flight deck. Like many of the aircraft aboard the ship--at least when I was aboard in May 2014--it had just undergone a repaint and did not have squadron markings applied yet. It was formerly displayed with VF-101 ("Grim Reapers") and VF-143 ("Pukin' Dogs") colors. I was about five feet from the F-14's nose; compare it in size with the A-4 Skyhawk to the right. The Yorktown could not operate F-14s, even if the ship was still active when the Tomcat arrived.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
From Wikipedia, the free encyclopedia
The Lockheed Martin F-22 Raptor is a fifth-generation, single-seat, twin-engine, all-weather stealth tactical fighter aircraft developed for the United States Air Force (USAF). The result of the USAF's Advanced Tactical Fighter (ATF) program, the aircraft was designed primarily as an air superiority fighter, but also has ground attack, electronic warfare, and signal intelligence capabilities. The prime contractor, Lockheed Martin, built most of the F-22's airframe and weapons systems and conducted final assembly, while Boeing provided the wings, aft fuselage, avionics integration, and training systems.
The aircraft was variously designated F-22 and F/A-22 before it formally entered service in December 2005 as the F-22A. Despite its protracted development and various operational issues, USAF officials consider the F-22 a critical component of the service's tactical air power. Its combination of stealth, aerodynamic performance, and situational awareness enable unprecedented air combat capabilities.
Service officials had originally planned to buy a total of 750 ATFs. In 2009, the program was cut to 187 operational production aircraft due to high costs, a lack of clear air-to-air missions due to delays in Russian and Chinese fighter programs, a ban on exports, and development of the more versatile F-35. The last F-22 was delivered in 2012.
Development
Origins
In 1981, the U.S. Air Force identified a requirement for an Advanced Tactical Fighter (ATF) to replace the F-15 Eagle and F-16 Fighting Falcon. Code named "Senior Sky", this air-superiority fighter program was influenced by emerging worldwide threats, including new developments in Soviet air defense systems and the proliferation of the Su-27 "Flanker"- and MiG-29 "Fulcrum"-class of fighter aircraft. It would take advantage of the new technologies in fighter design on the horizon, including composite materials, lightweight alloys, advanced flight control systems, more powerful propulsion systems, and most importantly, stealth technology. In 1983, the ATF concept development team became the System Program Office (SPO) and managed the program at Wright-Patterson Air Force Base. The demonstration and validation (Dem/Val) request for proposals (RFP) was issued in September 1985, with requirements placing strong emphasis on stealth and supercruise. Of the seven bidding companies, Lockheed and Northrop were selected on 31 October 1986. Lockheed teamed with Boeing and General Dynamics while Northrop teamed with McDonnell Douglas, and the two contractor teams undertook a 50-month Dem/Val phase, culminating in the flight test of two technology demonstrator prototypes, the YF-22 and the YF-23, respectively.
Dem/Val was focused on risk reduction and technology development plans over specific aircraft designs. Contractors made extensive use of analytical and empirical methods, including computational fluid dynamics, wind-tunnel testing, and radar cross-section calculations and pole testing; the Lockheed team would conduct nearly 18,000 hours of wind-tunnel testing. Avionics development was marked by extensive testing and prototyping and supported by ground and flying laboratories. During Dem/Val, the SPO used the results of performance and cost trade studies conducted by contractor teams to adjust ATF requirements and delete ones that were significant weight and cost drivers while having marginal value. The short takeoff and landing (STOL) requirement was relaxed in order to delete thrust-reversers, saving substantial weight. As avionics was a major cost driver, side-looking radars were deleted, and the dedicated infra-red search and track (IRST) system was downgraded from multi-color to single color and then deleted as well. However, space and cooling provisions were retained to allow for future addition of these components. The ejection seat requirement was downgraded from a fresh design to the existing McDonnell Douglas ACES II. Despite efforts by the contractor teams to rein in weight, the takeoff gross weight estimate was increased from 50,000 lb (22,700 kg) to 60,000 lb (27,200 kg), resulting in engine thrust requirement increasing from 30,000 lbf (133 kN) to 35,000 lbf (156 kN) class.
Each team produced two prototype air vehicles for Dem/Val, one for each of the two engine options. The YF-22 had its maiden flight on 29 September 1990 and in flight tests achieved up to Mach 1.58 in supercruise. After the Dem/Val flight test of the prototypes, on 23 April 1991, Secretary of the USAF Donald Rice announced the Lockheed team as the winner of the ATF competition. The YF-23 design was considered stealthier and faster, while the YF-22, with its thrust vectoring nozzles, was more maneuverable as well as less expensive and risky. The aviation press speculated that the Lockheed team's design was also more adaptable to the U.S. Navy's Navalized Advanced Tactical Fighter (NATF), but by 1992, the Navy had abandoned NATF.
Production and procurement
As the program moved to full-scale development, or the Engineering & Manufacturing Development (EMD) stage, the production version had notable differences from the YF-22, despite having a broadly similar shape. The swept-back angle of the leading edge was decreased from 48° to 42°, while the vertical stabilizers were shifted rearward and decreased in area by 20%. To improve pilot visibility, the canopy was moved forward 7 inches (18 cm), and the engine intakes moved rearward 14 inches (36 cm). The shapes of the wing and stabilator trailing edges were refined to improve aerodynamics, strength, and stealth characteristics. Increasing weight during development caused slight reductions in range and maneuver performance.
Prime contractor Lockheed Martin Aeronautics manufactured the majority of the airframe and performed final assembly at Dobbins Air Reserve Base in Marietta, Georgia; program partner Boeing Defense, Space & Security provided additional airframe components as well as avionics integration and training systems. The first F-22, an EMD aircraft with tail number 4001, was unveiled at Marietta, Georgia, on 9 April 1997, and first flew on 7 September 1997. Production, with the first lot awarded in September 2000, supported over 1,000 subcontractors and suppliers from 46 states and up to 95,000 jobs, and spanned 15 years at a peak rate of roughly two airplanes per month. In 2006, the F-22 development team won the Collier Trophy, American aviation's most prestigious award. Due to the aircraft's advanced nature, contractors have been targeted by cyberattacks and technology theft.
The USAF originally envisioned ordering 750 ATFs at a total program cost of $44.3 billion and procurement cost of $26.2 billion in fiscal year (FY) 1985 dollars, with production beginning in 1994. The 1990 Major Aircraft Review led by Secretary of Defense Dick Cheney reduced this to 648 aircraft beginning in 1996. By 1997, funding instability had further cut the total to 339, which was again reduced to 277 by 2003. In 2004, the Department of Defense (DoD) further reduced this to 183 operational aircraft, despite the USAF's preference for 381. A multi-year procurement plan was implemented in 2006 to save $15 billion, with total program cost projected to be $62 billion for 183 F-22s distributed to seven combat squadrons. In 2008, Congress passed a defense spending bill that raised the total orders for production aircraft to 187.
The first two F-22s built were EMD aircraft in the Block 1.0 configuration for initial flight testing, while the third was a Block 2.0 aircraft built to represent the internal structure of production airframes and enabled it to test full flight loads. Six more EMD aircraft were built in the Block 10 configuration for development and upgrade testing, with the last two considered essentially production quality jets. Production for operational squadrons consisted of 37 Block 20 training aircraft and 149 Block 30/35 combat aircraft; one of the Block 35 aircraft is dedicated to flight sciences at Edwards Air Force Base.
The numerous new technologies in the F-22 resulted in substantial cost overruns and delays. Many capabilities were deferred to post-service upgrades, reducing the initial cost but increasing total program cost. As production wound down in 2011, the total program cost is estimated to be about $67.3 billion, with $32.4 billion spent on Research, Development, Test and Evaluation (RDT&E) and $34.9 billion on procurement and military construction (MILCON) in then year dollars. The incremental cost for an additional F-22 was estimated at about $138 million in 2009.
Ban on exports
The F-22 cannot be exported under US federal law to protect its stealth technology and other high-tech features. Customers for U.S. fighters are acquiring earlier designs such as the F-15 Eagle and F-16 Fighting Falcon or the newer F-35 Lightning II, which contains technology from the F-22 but was designed to be cheaper, more flexible, and available for export. In September 2006, Congress upheld the ban on foreign F-22 sales. Despite the ban, the 2010 defense authorization bill included provisions requiring the DoD to prepare a report on the costs and feasibility for an F-22 export variant, and another report on the effect of F-22 export sales on U.S. aerospace industry.
Some Australian politicians and defense commentators proposed that Australia should attempt to purchase F-22s instead of the planned F-35s, citing the F-22's known capabilities and F-35's delays and developmental uncertainties. However, the Royal Australian Air Force (RAAF) determined that the F-22 was unable to perform the F-35's strike and close air support roles. The Japanese government also showed interest in the F-22 for its Replacement-Fighter program. The Japan Air Self-Defense Force (JASDF) would reportedly require fewer fighters for its mission if it obtained the F-22, thus reducing engineering and staffing costs. However, in 2009 it was reported that acquiring the F-22 would require increases to the Japanese government's defense budget beyond the historical 1 percent of its GDP. With the end of F-22 production, Japan chose the F-35 in December 2011. Israel also expressed interest, but eventually chose the F-35 because of the F-22's price and unavailability.
Production termination
Throughout the 2000s, the need for F-22s was debated, due to rising costs and the lack of relevant adversaries. In 2006, Comptroller General of the United States David Walker found that "the DoD has not demonstrated the need" for more investment in the F-22, and further opposition to the program was expressed by Secretary of Defense Donald Rumsfeld, Deputy Secretary of Defense Gordon R. England, Senator John McCain, and Chairman of U.S. Senate Committee on Armed Services Senator John Warner. The F-22 program lost influential supporters in 2008 after the forced resignations of Secretary of the Air Force Michael Wynne and the Chief of Staff of the Air Force General T. Michael Moseley.
In November 2008, Secretary of Defense Robert Gates stated that the F-22 was not relevant in post-Cold War conflicts such as irregular warfare operations in Iraq and Afghanistan, and in April 2009, under the new Obama Administration, he called for ending production in FY2011, leaving the USAF with 187 production aircraft. In July, General James Cartwright, Vice Chairman of the Joint Chiefs of Staff, stated to the Senate Committee on Armed Services his reasons for supporting termination of F-22 production. They included shifting resources to the multirole F-35 to allow proliferation of fifth-generation fighters for three service branches and preserving the F/A-18 production line to maintain the military's electronic warfare (EW) capabilities in the Boeing EA-18G Growler.[60] Issues with the F-22's reliability and availability also raised concerns. After President Obama threatened to veto further production, the Senate voted in July 2009 in favor of ending production and the House subsequently agreed to abide by the 187 production aircraft cap. Gates stated that the decision was taken in light of the F-35's capabilities, and in 2010, he set the F-22 requirement to 187 aircraft by lowering the number of major regional conflict preparations from two to one.
In 2010, USAF initiated a study to determine the costs of retaining F-22 tooling for a future Service Life Extension Program (SLEP).[66] A RAND Corporation paper from this study estimated that restarting production and building an additional 75 F-22s would cost $17 billion, resulting in $227 million per aircraft, or $54 million higher than the flyaway cost. Lockheed Martin stated that restarting the production line itself would cost about $200 million. Production tooling and associated documentation were subsequently stored at the Sierra Army Depot, allowing the retained tooling to support the fleet life cycle. There were reports that attempts to retrieve this tooling found empty containers, but a subsequent audit found that the tooling was stored as expected.
Russian and Chinese fighter developments have fueled concern, and in 2009, General John Corley, head of Air Combat Command, stated that a fleet of 187 F-22s would be inadequate, but Secretary Gates dismissed General Corley's concern. In 2011, Gates explained that Chinese fifth-generation fighter developments had been accounted for when the number of F-22s was set, and that the U.S. would have a considerable advantage in stealth aircraft in 2025, even with F-35 delays. In December 2011, the 195th and final F-22 was completed out of 8 test EMD and 187 operational aircraft produced; the aircraft was delivered to the USAF on 2 May 2012.
In April 2016, the House Armed Services Committee (HASC) Tactical Air and Land Forces Subcommittee proposed legislation that would direct the Air Force to conduct a cost study and assessment associated with resuming production of the F-22. Since the production halt directed in 2009 by then Defense Secretary Gates, lawmakers and the Pentagon noted that air warfare systems of Russia and China were catching up to those of the U.S. Lockheed Martin has proposed upgrading the Block 20 training aircraft into combat-coded Block 30/35 versions as a way to increase numbers available for deployment. On 9 June 2017, the Air Force submitted their report to Congress stating they had no plans to restart the F-22 production line due to economic and operational issues; it estimated it would cost approximately $50 billion to procure 194 additional F-22s at a cost of $206–$216 million per aircraft, including approximately $9.9 billion for non-recurring start-up costs and $40.4 billion for aircraft procurement costs.
Upgrades
The first aircraft with combat-capable Block 3.0 software flew in 2001. Increment 2, the first upgrade program, was implemented in 2005 for Block 20 aircraft onward and enabled the employment of Joint Direct Attack Munitions (JDAM). Certification of the improved AN/APG-77(V)1 radar was completed in March 2007, and airframes from production Lot 5 onward are fitted with this radar, which incorporates air-to-ground modes. Increment 3.1 for Block 30 aircraft onward provided improved ground-attack capability through synthetic aperture radar mapping and radio emitter direction finding, electronic attack and Small Diameter Bomb (SDB) integration; testing began in 2009 and the first upgraded aircraft was delivered in 2011. To address oxygen deprivation issues, F-22s were fitted with an automatic backup oxygen system (ABOS) and modified life support system starting in 2012.
Increment 3.2 for Block 35 aircraft is a two-part upgrade process; 3.2A focuses on electronic warfare, communications and identification, while 3.2B includes geolocation improvements and a new stores management system to show the correct symbols for the AIM-9X and AIM-120D.[83][84] To enable two-way communication with other platforms, the F-22 can use the Battlefield Airborne Communications Node (BACN) as a gateway. The planned Multifunction Advanced Data Link (MADL) integration was cut due to development delays and lack of proliferation among USAF platforms. The F-22 fleet is planned to start receiving Increment 3.2B as well as a software upgrade for cryptography capabilities and avionics stability in May 2019. A Multifunctional Information Distribution System-Joint (MIDS-J) radio that replaces the current Link-16 receive-only box is expected to be operational by 2020. Subsequent upgrades are also focusing on having an open architecture to enable faster future enhancements.
In 2024, funding is projected to begin for the F-22 mid-life upgrade (MLU), which is expected to include new sensors and antennas, hardware refresh, cockpit improvements, and a helmet mounted display and cuing system. Other enhancements being developed include IRST functionality for the AN/AAR-56 Missile Launch Detector (MLD) and more durable stealth coating based on the F-35's.
The F-22 was designed for a service life of 8,000 flight hours, with a $350 million "structures retrofit program". Investigations are being made for upgrades to extend their useful lives further. In the long term, the F-22 is expected to be superseded by a sixth-generation jet fighter to be fielded in the 2030s.
Design
Overview
The F-22 Raptor is a fifth-generation fighter that is considered fourth generation in stealth aircraft technology by the USAF.[91] It is the first operational aircraft to combine supercruise, supermaneuverability, stealth, and sensor fusion in a single weapons platform. The F-22 has four empennage surfaces, retractable tricycle landing gear, and clipped delta wings with reverse trailing edge sweep and leading edge extensions running to the upper outboard corner of the inlets. Flight control surfaces include leading-edge flaps, flaperons, ailerons, rudders on the canted vertical stabilizers, and all-moving horizontal tails (stabilators); for speed brake function, the ailerons deflect up, flaperons down, and rudders outwards to increase drag.
The aircraft's dual Pratt & Whitney F119-PW-100 augmented turbofan engines are closely spaced and incorporate pitch-axis thrust vectoring nozzles with a range of ±20 degrees; each engine has maximum thrust in the 35,000 lbf (156 kN) class. The F-22's thrust-to-weight ratio at typical combat weight is nearly at unity in maximum military power and 1.25 in full afterburner. Maximum speed without external stores is approximately Mach 1.8 at military power and greater than Mach 2 with afterburners.
The F-22's high cruise speed and operating altitude over prior fighters improve the effectiveness of its sensors and weapon systems, and increase survivability against ground defenses such as surface-to-air missiles. The aircraft is among only a few that can supercruise, or sustain supersonic flight without using fuel-inefficient afterburners; it can intercept targets which subsonic aircraft would lack the speed to pursue and an afterburner-dependent aircraft would lack the fuel to reach. The F-22's thrust and aerodynamics enable regular combat speeds of Mach 1.5 at 50,000 feet (15,000 m). The use of internal weapons bays permits the aircraft to maintain comparatively higher performance over most other combat-configured fighters due to a lack of aerodynamic drag from external stores. The aircraft's structure contains a significant amount of high-strength materials to withstand stress and heat of sustained supersonic flight. Respectively, titanium alloys and composites comprise 39% and 24% of the structural weight.
The F-22's aerodynamics, relaxed stability, and powerful thrust-vectoring engines give it excellent maneuverability and energy potential across its flight envelope. The airplane has excellent high alpha (angle of attack) characteristics, capable of flying at trimmed alpha of over 60° while maintaining roll control and performing maneuvers such as the Herbst maneuver (J-turn) and Pugachev's Cobra. The flight control system and full-authority digital engine control (FADEC) make the aircraft highly departure resistant and controllable, thus giving the pilot carefree handling.
Stealth
The F-22 was designed to be highly difficult to detect and track by radar. Measures to reduce radar cross-section (RCS) include airframe shaping such as alignment of edges, fixed-geometry serpentine inlets and curved vanes that prevent line-of-sight of the engine faces and turbines from any exterior view, use of radar-absorbent material (RAM), and attention to detail such as hinges and pilot helmets that could provide a radar return. The F-22 was also designed to have decreased radio emissions, infrared signature and acoustic signature as well as reduced visibility to the naked eye. The aircraft's flat thrust-vectoring nozzles reduce infrared emissions of the exhaust plume to mitigate the threat of infrared homing ("heat seeking") surface-to-air or air-to-air missiles. Additional measures to reduce the infrared signature include special topcoat and active cooling of leading edges to manage the heat buildup from supersonic flight.
Compared to previous stealth designs like the F-117, the F-22 is less reliant on RAM, which are maintenance-intensive and susceptible to adverse weather conditions. Unlike the B-2, which requires climate-controlled hangars, the F-22 can undergo repairs on the flight line or in a normal hangar. The F-22 has a Signature Assessment System which delivers warnings when the radar signature is degraded and necessitates repair. While the F-22's exact RCS is classified, in 2009 Lockheed Martin released information indicating that from certain angles the aircraft has an RCS of 0.0001 m² or −40 dBsm – equivalent to the radar reflection of a "steel marble". Effectively maintaining the stealth features can decrease the F-22's mission capable rate to 62–70%.
The effectiveness of the stealth characteristics is difficult to gauge. The RCS value is a restrictive measurement of the aircraft's frontal or side area from the perspective of a static radar. When an aircraft maneuvers it exposes a completely different set of angles and surface area, potentially increasing radar observability. Furthermore, the F-22's stealth contouring and radar absorbent materials are chiefly effective against high-frequency radars, usually found on other aircraft. The effects of Rayleigh scattering and resonance mean that low-frequency radars such as weather radars and early-warning radars are more likely to detect the F-22 due to its physical size. However, such radars are also conspicuous, susceptible to clutter, and have low precision. Additionally, while faint or fleeting radar contacts make defenders aware that a stealth aircraft is present, reliably vectoring interception to attack the aircraft is much more challenging. According to the USAF an F-22 surprised an Iranian F-4 Phantom II that was attempting to intercept an American UAV, despite Iran's assertion of having military VHF radar coverage over the Persian Gulf.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
Update: 23Dec2023 - An image of this object using this and additional data, including that in Sulfur II wavelengths, and rendered in a combination of alternate palettes to produce the type of surreal imagery I tend to have an affinity for can be found at the link attached here: www.flickr.com/photos/homcavobservatory/53416452946/
Object Details: The Eagle Nebula (Messier 16 / NGC 6611) is a diffuse emission nebula in the constellation of Serpens. A star forming region located about 7000 light-years from Earth, it spans approximately 70 light-years in diameter along it's longest dimension. Visible in binoculars and a spectacular sight in larger telescopes. Although the extensive nebulosity is obvious in images, visually the embedded star cluster is dominate and the nebula can be greatly enhanced via the use of a proper filter. The center of the nebula contains huge columns of interstellar hydrogen gas and dust which were made famous in the Hubble 'Pillars of Creation' image (visible near the center of the attached image). Recent evidence indicates these pillars may actually have been destroyed by a supernova 8 to 9 thousand years ago, however the light confirming the event (i.e. the supernova's shock-wave destroying the columns) is not scheduled to reach Earth for another 1000 years (keep watching ;) ).
Image Details: Taken by Jay Edwards from the scope field of Cherry Springs State Park in PA during both CSSP's 2023 summer star party in June & the Black Forest SAtar Party held there in September. The image utilized an Orion ED80T CF (i.e. an 80mm, f/6 carbon-fiber, triplet apochromatic refractor) connected to a Televue 0.8x field flattener / focal reducer with a dual band IDAS Hydrogen-alpha / Oxygen III filter and an ASI2600MC Pro camera running at -10 degrees centigrade and controlled by an ASIair running on an IPad Air. Guided by an ASI290MC autoguider / planetary camera in an Orion 60mm, f/4 guidescope; they ride on a Losmandy G-11 mount running a Gemini 2 control system.
This is one of two Losmandy G-11's in my observatory and in June it was the first time this G-11 mount was away from the observatory I built at my home here in upstate, NY in the past 20 or so years. Since I have two G-11's I am leaving the newer one in my observatory while using this one as a new portable / transportable system for on-the-road events like this summer's trips to CSSP.
Due to the large brightness difference between the inner portions of the Eagle Nebula and the fainter nebulosity in the image I would normally use an HDR approach varying the exposure, but since I was also testing out a second IDAS dual-band (Sulfur II / Oxygen III) filter I recently purchased, I kept it somewhat simple and the data is just from two separate nights (months apart) using just the H-a / OIII filter and a stack of sixty, three minute exposures for a total integration time of three hours (not including applicable flat, dark, and flat dark calibration frames of course). I did manage to capture an hour of data on this object with the SII / OIII filter when there for BFSP in September but have not yet processed or incorporated it yet. Therefore the attached was processed in a more 'natural' palette mapping Hydrogen-alpha to the red channel and Oxygen III to green and blue channels. Using a combination PixInsight and PaintShopPro, as shown here the filed-of-0view has been cropped to emphasize the nebula itself and the entire composite has been re-sized down to HD resolution and the bit depth lowered to 8 bits per channel.
Having been going to Cherry Springs with many of my best friends for over 20 years now, for those not familiar it is a wonderful state park under Bortle 2 skies which also caters to amateur astronomers. In addition to viewing and imaging a plethora of objects there over the decades, I have also been fortunate to be there during some wonderful transient events
(e.g. As can be seen in the aurora images at the attached links that I took there back in 2002 - in that case using film of course -
www.flickr.com/photos/homcavobservatory/32749047085/in/al...
www.flickr.com/photos/homcavobservatory/32113365204/in/al...
while a shot from the 2023 CSSAP of the Lagoon & Trifid nebulae can be found at the link attached here :
www.flickr.com/photos/homcavobservatory/53012789409/
and a shot of the same area from 2019 that I also took at CSSP with the same scope but using a slightly different framing and utilizing an unmodded (and uncooled) Canon 700D DSLR on a SkyView Pro mount can be found here -
www.flickr.com/photos/homcavobservatory/48274270732/in/al...
During my trips to Cherry Springs this summer I also managed to capture Ha/OIII and SII/OIII data on a variety of other objects and am looking forward to seeing what details I can pull out of the data once processed as well as trying to process this and the other objects in alternate palettes.
Wishing clear, dark & calm skies to all !
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
BOEING B-17G-95-DL 44-83868/77233/N5237V
Jul 45 Built by Douglas Aircraft Corporation at Long Beach, California with
manufacturers' serial 32509, as part of the last block of B-17Gs built by
Douglas, `868 being the 17th from last of the block, part of contract
No.AC-1862.
04 Jul 45 First Flight - 1¼-hour test flight by Douglas test pilot Wally Tower.
05 Jul 45 50-minute test flight by Tower since the previous flight had been less than
the statutory 1½ hours.
06 Jul 45 Accepted at factory by USAAF as 44-83868.
08 Jul 45 Departed Long Beach en route to Syracuse Army Air Base, NY, via
Chanute Field IL - arrived 09 Jul.
14 Jul 45 Transferred from USAAF supply pool to US Navy as Bu No.77233. With
the advent of the Cadillac II programme (land-based long-range Airborne
Early Warning, command and control system) the USAAF set aside 20
brand new Douglas built B-17Gs serialled between 44-83855 and 44-
83884, including 44-83868, forming the nucleus of the US Navy radar
equipped PB-IW programme as US Navy serials 77225 to 77244. The
aircraft were transferred to the US Navy at Johnsville, Pennsylvania. See
Article - `The Navy and Coast Guard PB-1; A Summation. S A
Thompson, AAHS Journal Spring 1995. The US Navy obtained a total of
79 B-17s from various sources 1945-50, 21 as PB-IWs and 28 purely for
spares. On this date the aircraft left Syracuse Air Base for NAS
Johnsonville, a crew having been requested three days earlier.
Upon transfer 44-83868 and the other aircraft were ferried to the Naval
Aircraft Modification Unit (NAMU) at NAS Johnsville for conversion, the
major change being the installation of AN/APS-20 search radar in a
radome fitted below the bomb bay. Antennae were added to the fuselage.
Armament was usually deleted. Early PB-IWs flew in natural metal, later
changed to overall gloss sea blue with white codes and lettering. PB-IWs
entered Navy service for anti-submarine patrol and maritime
reconnaissance duties in Spring 1946.
26 Jul 45 Struck off charge by USAAF?
Aug 45- 44-83868 assigned to NAMU at Johnsville.
Mar 47
Apr 47-Mar 48 Air Test and Evaluation Squadron No.4 (VX-4), at NAS Quonset Point,2
Rhode Island on the eastern coast of the USA.
Apr 48 Assigned to Air Early Warning Squadron No.1 (VPW-1), Ream Field, San
Ysidro, near San Diego, California, as one of four VX4 Pb1-Ws assigned
to the unit. VPW-1 was the Navy’s first dedicated land based AEW
Squadron, with an authorised strength of six aircraft. Operated in support
of the Pacific Fleet. Due to limited facilities and short runways at Ream
Field, the Squadron moved to nearby NAAS Miramar for operations,
although Ream Field remained its assigned home base.
08 Sep 49- Under overhaul at Naval Air Material Centre (NAMC) Norfolk,
18 Jul 50 Virginia.
21 Jul 50 To VX-4, Patuxent River, Maryland. Carried squadron code ‘XD -5’ on
tail. Generally operated in support of the U.S. Atlantic Fleet.
May-Oct 52 Assigned to Airborne Early Warning Squadron 2 (VW-2) at NAS
Patuxent River, including August-Oct 52 detachment to VW-2
Detachment 1 at Gardamoen, Norway. The former VX-4 had disbanded in
June 1952 and reformed at the same base as VW-2 on 18 Jul 52, still
operating in support of the Atlantic fleet. It provided Airborne Early
Warning, scouting, weather reconnaissance and electronic
countermeasures support.
14 Oct 52- Under overhaul at NAMC Norfolk, Virginia.
19 May 53
03 Jun 53- To VW-2, Patuxent River. The unit retired its last PB1-W in March 1955,
Nov 54 replacing them with PO1-W Constellations.
08 Dec 54- Under overhaul at NAS Norfolk. During US Navy service carried
codes XD-2 and XD-24. Overhaul period ended May 1955.
26 May 55 Withdrawn and stored at NAF Litchfield Park, 20 miles west of Phoenix,
Arizona (where RAFM PBY-6A `L866' was also stored 1953-1957) US
Navy PB-IWs were the last front line US Military B-17s and were replaced
in 1955 by Lockheed WV-2 Constellation Warning Star aircraft.
10 Jul 56 Struck off US Navy charge along with the other remaining 15 US Navy B-
17s at Litchfield Park. (of these 16 aircraft, three survive today). The 16
PB-IWs were sold in three groups. At this time 77233 had logged 3,484
flying hours.
02 Dec 57 77233 was part of the third and final batch of thirteen PB-IWs sold, in this
case to the American Pressed Steel Corporation of Dallas, Texas for
$8,333.33 and given a registration block between N6460D and N6471D,
77233 being allotted N6466D, but this was not taken up - the company
also had a block of registrations between N5225V and N5237V, and
77233 became N5237V on 08 March 1958 when this block was used in
preference.
1958 Twelve of the 13 PB-IW aircraft were ferried from NAF Litchfield Park to
Dallas - Love Field and parked near the Dallas Aero Service ramp on the
north side of the airport and were gradually sold off as civil transports in
South America (6 aircraft) and a US fire bombers (3 aircraft). See article3
and photo of 77233 at Love Field c.1960 carrying basic US Navy colours
with white `2' and `Hell Wagon' Nose Art on starboard nose, and crude
white painted civil registration - AAHS Journal Summer 1964 p.141;
Flypast September 2004 p.44 and 46. Around this time local rumours had
it that these aircraft were earmarked for Cuban revolutionary Fidel Castro
in his attempt to overthrow the Batista regime, but when crews arrived to
fly them to Cuba they were prevented by Federal agents. American
Compressed Steel Corporation was later linked with CIA efforts to
smuggle surplus military aircraft to African and South American countries
so perhaps the rumour is not that farfetched. Most of the Love Field PBIWs quickly became derelict until rescued by civil operators in the 1960s.
Two flew to England in 1961 of the filming of `The War Lover' and were
scrapped there in 1962 after filming was completed.
26 Feb 60 Sold to Ashland Corporation of Tucson, Arizona.
07 Jul 60 Sold to Marson Equipment and Salvage Company, also of Tucson, but
remained at Love Field.
27 Sep 61 Sold to Aero Union of Anderson, California along with seven other B-17s
and restored to airworthy condition, despite being sunk up to the axles in
the ground.
c. Nov 61 Ferried to California, still in basic USN markings and colour scheme, with
‘XD’ code on fin.
28 Dec 61 Sold to Calvin Butler of Butler Aircraft Co, Redmond Oregon as Tanker
E15 in United States Forestry Service region 6 (Oregon and Washington
states). Fitted with a 2,200-gallon four-door tank installed for fire
bombing work to drop retardant 24 May 1962. See log books - airframes,
engines and propellers for 1962-83 period. DoRIS Ref.B3249. See also
article by Cpl Butler in Correspondence Files, entry 82.
21 Aug 62 Spray booms installed for aerial spraying.
Transferred through several of Butler’s companies, including the Butler
Rental Company (01 Mar 63); Butler Aircraft Company (29 Dec 1965);
Calvin Butler (29 Dec 1966); Butler Aircraft 06 May 1970, still tailmarked as tanker 15 in May 1971.
27 Jul 67 Accident at Carson, Washington – at 16.30hrs collided with trees whilst
pulling up from run during fire control flight, due to restricted vision
causing substantial damage. This was a fire retardant drop on Gifford
Pinchot National Forest, and visibility was greatly reduced by smoke.
27 Sep 75 Photographed operating from U.S. Forest Service Goleta Air Tanker Base,
Santa Barbara, California whilst being used to fight the Rattlesnake
Canyon fire in Los Padres National Forest. Colour scheme was overall
natural metal; chin turret removed and faired over; nose Plexiglass and tail
gunner’s windows overpainted silver; borate tank fitted into bomb bay and
extending slightly below it. Tail number ‘65’, horizontal tail surface, rear4
fuselage band and nacelle bands all faded Dayglo. See IPMS/USA Update
Vol.12 No.3 P.62.
N5237V operated regularly until 1981, as tanker 65 from Visalia,
California when DC-7s replaced the two B-17s in the Butler Aviation
Fleet. Usually dropped a phos-chek or fire-trol water mix fire retardant,
dyed for visibility on the ground. Colour photos as Tanker 65; Flypast
September 2004 p.49 and Flypast May 2009 p.70 (at Hemet, 1980).
1982-3 Retired, traded to TBM inc, and restored to military configuration by
TBM Inc. team led by engineer Ken Stubbs at Sequoia Field. Given
markings of 332nd Bombardment Squadron, 94th BG (H), 3rd Air
Division, USAAF 8th Air Force, England, 1945. Received bomb bay
doors, a new Plexiglas nose, and fibreglass replica turrets.
Aircraft donated to RAFM by US Air Force Museum who had acquired
the aircraft, in appreciation of a Vulcan donated by the RAF. Actual
restoration costs funded by RAFM. Ferry Flight arranged from California
to UK, piloted by Air Cdr Ron Dick, then Air Attache at the British
Embassy, Washington, Ken Stubbs of TBM Inc. as 2nd Pilot/Engineer and
Flt Lt Dave Fox of No.10 Squadron RAF as navigator. Photo of crew:
Aircraft Illustrated Dec 83 p.570.
Sep 83 At Sequoia Field, San Joaquin Valley, California, thence to Castle AFB for
repainting.
28 Sep 83 Post restoration test flight from Sequoia Field. Photo in USA as newly
restored; The Flying M February 1984 p.12.
03 Oct 83 Departed Fresno, California having previously been ferried from Sequoia.
Callsign ‘RAFAIR B17’ For account of delivery flight see Ron Dick’s
articles in Air Clues May 1984 and Jan/Feb 1985.
04 Oct 83 To Peterson AFB, Colorado Springs (including flypast at the nearby
USAF Academy).
05 Oct 83 To England AFB, Louisiana for refuelling.
06 Oct 83 To 8
th
AF HQ, Barksdale AFB, Louisiana.
07 Oct 83 To USAF Museum, Wright Patterson AFB, Ohio.
08 Oct 83 To Andrews AFB, Washington DC
11 Oct 83 To Gander, Newfoundland.
12 Oct 83 To Lajes, Azores.
13 Oct 83 Arrived at RAF Brize Norton, Oxon. Touched down at 5.30pm at the end
of the final 1120 nautical miles leg from Lajes, completed in 7 hours 20
minutes having flown some 7000 miles in 50 flying hours since leaving
California. Photos: Aviation News 18 Nov-1 Dec 83 p.586; FlyPast Dec
83 p.3; Air Pictorial Dec 83 p.446; Aviation News December 2002 p.952.5
25 Oct 83 Made flypast (two passes) at RAFM Hendon whilst temporarily based at
RAF Honington.
27 Oct 83 Flypast over former East Anglia USAAF bases in company with Duxfordbased B-17 `Sally B' –
Article and photos: FlyPast Jan 84 p.16-67; Aviation News 30 Dec 83 - 12
Jan 84 p.681; Sally B News Issue 37 Summer 2000. Colour photo at
Duxford; 8
th
Air Force (Flypast Special 2002) p.71
07 Nov 83 Final flight to Stansted Airport, Essex for dismantling by Civilian
contractor, J R Consultants. Again accompanied by Sally B. Photos:
Flypast Jan 84 p.17; Flypast May 2001 p.91. Engines exchanged with
higher hour examples from Sally B. Total flying hours 5,724.
08-9 Dec 83 Moved by road to RAFM Hendon and reassembled for display in the
Bomber Command Hall, the engines being fitted 21 Dec 83.
Jan 84 Placed on public display. Remains displayed in Bomber Command Hall at
present.
17 Apr 84 Official handover ceremony at RAFM - General William P Acker, Cdr of
US 3rd Air Force, handed the B-17 over to MRAF Sir Michael Beetham,
Chairman of the RAFM's board of Trustees, and received a cheque for
£35,000 from the Boeing Company to pay for restoration costs. Photo:
Air Pictorial Jul 84 p.272.
23 Nov 93 Registration N5237V cancelled by FAA-recorded in error as ‘destroyed’
Sources: USAAF/USAF -Individual Aircraft Record Cards, USAF Historical Research
Agency; Army Air Force Installations Directory = Continental United States,
Headquarters, Army Air Forces, Washington DC, 1 August 1945.
TEXT; ANDREW SIMPSON
ROYAL AIR FORCE MUSEUM 2009
From 1933 to 1990, Reimar Horten, assisted by his brother, Walter, designed and built a series of swept-wing aircraft without fuselages or tails and they did not use any other surfaces for control or stability that did not also contribute lift to the wing. The National Air and Space Museum owns a Horten II L, Horten III f, Horten III h, Horten VI V2, and the Horten IX V3 turbojet interceptor.
Reimar Horten continued to refine the all-wing sailplane with his third design, the Horten III. Compared to the H II, the wingspan grew about 4 m (13 ft 3 in) but the root chord decreased by .25 m (9 in). By narrowing the root chord and lengthening the wings, Horten increased aspect ratio and this trend continued with Horten's next two sailplane designs. Like the Horten II, the H III center section consisted of welded steel tubes covered with plywood and sheet metal. Horten built the wings entirely from wood. He refined the flight control system by adding a second set of elevons.
From July 1938 until October 1944, at least eighteen Horten III aircraft were constructed at Köln, Berlin, Fürth, Giebelstadt, Minden, Bonn, and Göttingen. This model was built in greater numbers than any other Horten design and both Horten brothers and other pilots flew Horten III gliders in the German national glider competition in 1938 and 1939. Reimar successfully motorized several Ho III sailplanes using a variety of powerplants including Walter Mikron and Volkswagen engines. Horten also modified an Ho III b to carry ammunition in support of Operation Sealion, the proposed invasion of England.
Horten fitted the NASM Horten III f with a flat-prone couch for the pilot. This wing, the Horten VI-V3, and the Wright brothers 1903 Flyer are the only aircraft in the NASM collection configured for prone pilotage. Other nations built aircraft to test this unique layout but these NASM artifacts are among the few examples known to exist today. Horten had experimented with seating position to reduce drag as early as 1935 when he designed the first Horten II with supine seating and flew it in May. At first the seatback in the Horten II was inclined just 18º to the horizon but a 23º position became standard. Even with the pilot's head more upright at this setting, visibility was dangerously limited particularly in the slow speed/high-angle-of-attack regime sailplane pilots often operated in. As Reimar put it, the "main drawbacks are poor forward visibility (even worse to the rear), the pilot's knees being in the field of vision, and difficulties developing proper [control] feel and coordination" (quoted in Reimar Horten, "Flying Wing Pilot Position and Design Options," "Soaring," August 1980, translated by Jan Scott, 23).
Supine seating proved a dead end until the postwar revival but in 1938, work at the Akademische Fliegergruppe Stuttgart led Horten in a new direction. The institute built the all-wood Fs 17 with a flat-prone cockpit to conduct aero medical research on pilots subjected to high-G maneuvers. Reimar saw in the new layout intriguing possibilities for drag reduction. In 1941 he completed the Horten IV, the first all-wing aircraft equipped for prone pilotage. Reimar and Walter Horten intended to acclimate pilots to the prone position by using gliders such as the NASM Horten III f. They hoped to smoothly transition pilots to high-performance Horten aircraft equipped with prone cockpits. These "hot rod" Hortens included the H IV and H VI sailplanes, and the jet-propelled H X.
In spring 1944 at Göttingen, a young mathematician named Karl Nickel sampled the prone layout when he flew a Horten III f (it is not known if this same airplane is now in the NASM collection). Nickel's skeptical friends sounded the alarm. How could a pilot maintain proper 'feel' for the aircraft, whether it was banking slightly left or right, while lying on his stomach? It would be impossible, they claimed, to fly instinctively! The controls could not be moved unless the pilot carefully considered each movement beforehand. What of the pilot's personal comfort? Cross-country glider flights often lasted for hours. Even a thick-necked flyer could not hold his head, particularly in high-G thermalling turns. Blood would pool and the limbs would fall asleep! After landing the stiff, immobile pilot would be unable to hoist himself from the prone couch!
Dr. Nickel's fascinating report appears in Karl Nickel and Michael Wohlfart, "Tailless Aircraft in Theory and Practice (AIAA, 1994) on pages 351-355. It conveys his thoughts and feelings as he flew an all-wing Horten glider from the prone position. "I climb from behind [the aircraft] on the center-section of the flying wing to step inside and lie down in it." His parachute hung across his chest and the packed canopy pillowed his torso. The "lying-trough," he continued, "is well-upholstered with foam rubber and artificial leather. . . there is the chinrest which is easily adjustable. The designer has thought of everything and wants to accommodate the pilot in comfort." Horten had fitted seat belts but their operation was unorthodox. "They are fastened over the back and are released automatically as soon as the cockpit is opened. How Practical!"
The prone position demanded a novel control system. Reimar designed one and installed it in all his prone aircraft. He used a yoke-type wheel to transmit pitch and roll inputs to the elevons. Nickel continues: "For fore and aft movements [the wheel] slides back and forth on almost frictionless bearings along a horizontal tube. Will it be possible," he wondered, "to get quickly accustomed to this?" Once airborne, Dr. Nickel had the answer.
"All of a sudden I am completely baffled: there is nothing unusual, it's exactly as flying while sitting in a seat! I feel the stick force, the sailplane reacts to the smallest control movements. I completely forget that I am lying horizontally in space, that the control column [wheel] looks so strange, that the H III is no normal aircraft."
"[It is as though] I had been flying in prone position for years. . . The first gusts are felt and are counteracted automatically, without thinking. I see my hands moving to act in the correct way, but there is no conscious command from the brain. The bird feels good . . . [and this] reaction comes so strong and unexpected that I wish to sing at once. . . I am so delighted . . . there is nothing to learn about prone flying and everything is so simple. But don't start celebrating too early! We [glider and towplane] just crossed the airport boundary as some heavy gusts arrived. No problem to counteract them, but the result is astonishing: suddenly the tow-rope approaches me at full speed, collides with the canopy and disappears aft [the towpilot released his end of the tow rope]. Instinctively my arm shoots up to protect my head, even though it's unnecessary. Next reaction, release the rope too. In front of me lies an "inviting" high-tension line. Hence push [the wheel to maintain speed], [execute a] 180° turn and with the aid of a tailwind, [fly] back over the fence [airport boundary]. Is there enough altitude for a second turn into the wind [to set up for landing]? There better be; carefully "scraping" the turf a flat turn [at very low altitude] is achieved, [landing] skid lowered, no brake necessary, hold off, and here we are back at the starting point of the flight. Ugh!!!"
A half-hour later he was back in the air: "I am floating again in the air . . . flying over the houses and streets of Göttingen. Wonderful, this marvelous view down through the acrylic glass pane. Exactly as on a street map I can track the roads and alleys with my finger. Seemingly just in front of my face there is that hive of activity. Magnificent to soar and glide high over the rooftops, horizontal in space like a bird. This sort of flying really is the only natural way, how could anybody doubt it ever? The view is unobstructed on all sides through the large canopy, but the most astonishing aspect is the excellent view downward. Slowly we are losing altitude. It's time for a thermal to appear. Oops, here it is. Rudder and aileron, slowly pull up, it's just the same as with any other sailplane. Only the banking at first seems to be excessively large . . ."
Nickel initially made excessively shallow, flat turns but after two hours of practice, he adjusted. His mind began to accept and trust the new sight-picture of a standard turn presented by the Horten III f prone position. Banking turns of 60° became easy and "remained the only difficulty I encountered and it didn't occur anymore during later flights." As he built time flying prone, Nickel considered the problem of pilot comfort on long flights.
"Well, after two hours no bodily strain could be felt, but this could perhaps come with longer flights? . . . on the 7th of August 1943, a comparision test was made. . . Hermann Strebel made the first motorless flight of more than 10 hours in prone position with the Horten H IV over the Wasserkuppe mountain. At the same time I myself [flew] for 7 ½ hours in the [Olympia Meise glider]. [Strebel and I were] quite happy together up there, even though he could often out-fly me because of the better performance of his sailplane. After landing I went to him limping with aching backside. But he approached me laughing and completely fresh and could only shake his head to my envious questions: "No, no bruises, no limbs which went to sleep, no stiffness of the neck, nothing!"
Nickel found other reasons to like the prone pilot position. " . . . for tailless sailplanes the prone position is appropriate. . . The main reason for this is the better view of the outside world . . . This is important in particular during aero-tow. Especially with tailless sailplanes a good view of the towing aircraft can be decisive against flying too low and, consequently, being dragged down by the downdraft behind the tow aircraft."
The H III also had good handling qualities and this no doubt boosted Nickel's enthusiasm for the prone layout. He often witnessed Heinz Schiedhauer putting the Horten III d motorglider through its paces at Göttingen in 1943-44. During Schiedhauer's routine, "he did a flyby a few meters above the ground and, just in front of the onlookers, pulled back the stick abruptly. This created a 'whip stall' with a nearly vertical attitude. There was no tail-slide or roll-off, but rather the flying wing fell down into the normal flying position without loss of altitude and continued her horizontal flight."
Horten assigned Werk Nr. 32 to a Horten III f built in 1944 at Göttingen. The NASM III f may be the last of three 'f' subtypes built. All three aircraft featured prone cockpits for minimum drag. The pilot stretched flat on his stomach, bent slightly at the waist and knees, feet resting on rudder pedals hinged above his heels. A padded chin rest supported his head, which projected into the leading edge of the wing. Clear plastic panels formed the leading edge for several feet above, below, and to either side of the pilot. Visibility was excellent and drag greatly reduced. The wing had a maximum speed of 210 km/h (130 mph) and a best glide speed of 63 km/h (39 mph).
Details about the operational history of this glider remain unknown. One month after the war ended, a team of aviation experts working for the C. I. O. S. (Combined Intelligence Objectives Subcommittee) found both the NASM H III f and the H III h. The gliders were recovered "in perfect condition in trailers, with a [sic] full set of instruments" at Rottweil, Germany, on the Neckar River, approximately 60 miles (100 km) southwest of Stuttgart on June 11, 1945.
For a time, the United States Army Air Forces' Air Technical Intelligence (ATI) branch was interested in Horten flying wing aircraft. ATI assigned inventory control numbers to track the thousands of pieces of German military aircraft, equipment, and hardware obtained during and after the war. The following numbers identified Horten gliders now part of the NASM collection:
Horten II L - T2-7
Horten III f - T2-5042
Horten III h - T2-5039
Horten VI V2 - T2-5040
Inexplicably, ATI lost interest and declared "the Horten Tailless Gliders are of no value to us," according to the "Weekly Activity Report - Technical Intelligence - Week Ending 26 June 1945." The H III f and 'III h vanish into an historical black hole for the next two years. The story resumes on October 22, 1947, when Stanley A. Hall wrote a report called "Horten Tailless Sailplanes." Hall explained that the U. S. Air Force loaned the Horten III f, III h, and VI V2 to the Northrop Aeronautical Institute, across the road from the Northrop Aircraft Company in Hawthorne, California. This loan answered a "joint petition of Northrop Aircraft Inc., and the Southern California Soaring Association [SCSA]." The two organizations wanted the sailplanes "for purposes of inspection by West Coast engineers who, in interests of the development of all-wing aircraft, sought for evidence of similarity between the design practices of American and German engineers."
Northrop personnel planned to test-fly the two Horten III gliders but they arrived "damaged beyond reasonable repair [and] too badly damaged to make photography worthwhile." Despite their condition, a throng of aeronautical professionals turned out to inspect them. Among the curious crowds were Northrop engineers and students of the Northrop Aeronautical Institute, members of the Society of Automotive Engineers and the Institute of Aeronautical Sciences. Many SCSA members turned out too, including engineers from Douglas, North American, Lockheed, and Consolidated. Much attention fell on the Horten VI V2. The sailplane was intact and in fair condition and Northrop considered flying it but decided not to because of safety issues.
The Air Force reclaimed the gliders in 1948 and stored them at the Chrysler's World War II aircraft assembly plant at Chicago Orchard Airport, Park Ridge, Illinois. This huge building also housed more than 80 other World War II Allied and Axis airplanes.
In 1950 hasty preparations for war in Korea forced the eviction of more than fifty of these priceless artifacts, including the Horten gliders. Air Force personnel shipped the aircraft by rail and any too large to fit a boxcar surrendered to the cutting-torch. The collection went to an open plot of land near Silver Hill, Maryland, across the Anacostia River south of Washington. For more than 10 years, most of the collection remained outdoors. In 1962, the site started to take the form we know today as the Paul E. Garber Restoration, Preservation, and Storage facility.
In January 1994, NASM shipped the Horten glider collection (H II L, III f, III h, and the VI V2) to the Museum für Verkehr und Technik Berlin, later renamed the Deutsches Technikmuseum (DTM), and that museum worked to restore and preserve these artifacts until 2004.
Wingspan 20 m (66 ft)
Center Section Length 5 m (16.4 ft)
Height 1.6 m (5.4 ft)
Weight Empty 250 kg (550 lb)
Weight Flying 360 kg (792 lb)
Reference Sources and Suggested Further Reading:
Horten, Reimar. "Flying Wing Pilot Position and Design Options," "Soaring," August 1980.
Lee, Russell. "The National Air and Space Museum Horten Sailplane Collection: Horten II L, III f, III h, and VI-V2," "Bungee Cord," Vol. XXIII No. 4, Winter 1997.
Myhra, David. "The Horten Brothers and Their All-Wing Aircraft." Atglen, Penn.: Schiffer Publishing Ltd., 1998.
Nickel, Karl, and Wohlfahrt, Michael. "Tailless Aircraft in Theory and Practice." Reston, Va.: American Institute of Aeronautics and Astronautics, 1994.
Selinger, Peter F., and Horten, Reimar. "Nurflugel: Die Geschichte der Horten-Flugzeuge 1933-1960." Graz, Germany: H. Weishaupt Verlag, 1983.
Beckh, Harald J. "The Development and Airborne Testing of the PALE Seat."
Horten, Reimar. "Flying Wing Pilot Position and Design Options," "Soaring," August 1980, 23.
Russ Lee, 9-2-04
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Douglas F3D Skyknight (later designated F-10 Skyknight) was a United States twin-engined, mid-wing jet fighter aircraft manufactured by the Douglas Aircraft Company in El Segundo, California. The F3D was designed as a carrier-based all-weather night fighter and saw service with the United States Navy and United States Marine Corps. The mission of the F3D-2 was to search out and destroy enemy aircraft at night.
The F3D was not intended to be a typical sleek and nimble dogfighter, but as a standoff night fighter, packing a powerful radar system and a second crew member. It originated in 1945 with a US Navy requirement for a jet-powered, radar-equipped, carrier-based night fighter. The Douglas team led by Ed Heinemann designed around the bulky air intercept radar systems of the time, with side-by-side seating for the pilot and radar operator. The result was an aircraft with a wide, deep, and roomy fuselage. Instead of ejection seats, an escape tunnel was used.
As a night fighter that was not expected to be as fast as smaller daylight fighters, the expectation was to have a stable platform for its radar system and the four 20 mm cannon mounted in the lower fuselage. The F3D was, however, able to outturn a MiG-15 in an inside circle. The fire control system in the F3D-1 was the Westinghouse AN/APQ-35.
The AN/APQ-35 was advanced for the time, a combination of three different radars, each performing separate functions: an AN/APS-21 search radar, an AN/APG-26 tracking radar, both located in the nose, and an AN/APS-28 tail warning radar. The complexity of this vacuum tube-based radar system, which was produced before the advent of semiconductor electronics, required intensive maintenance to keep it operating properly.
The F3D Skyknight was never produced in great numbers but it did achieve many firsts in its role as a night fighter over Korea. While it never achieved the fame of the North American F-86 Sabre, it did down several Soviet-built MiG-15s as a night fighter over Korea with only one air-to-air loss of its own against a Chinese MiG-15 on the night of 29 May 1953.
In the years after the Korean War, the F3D was gradually replaced by more powerful aircraft with better radar systems. The F3D's career was not over though; its stability and spacious fuselage made it easily adaptable to other roles. The Skyknight played an important role in the development of the radar-guided AIM-7 Sparrow missile in the 1950s which led to further guided air-to-air missile developments.
In 1954, the F3D-2M was the first U.S. Navy jet aircraft to be fitted with an operational air-to-air missile: the Sparrow I,an all weather day/night BVR missile that used beam riding guidance for the aircrew to control the flight of the missile. Only 38 aircraft (12 F3D-1Ms, and 16 F3D-2Ms) were modified to use the missiles, though.
One of the F3D's main flaws, which it shared with many early jet aircraft, was its lack of power and performance. Douglas tried to mend this through a radical redesign: The resulting F3D-3 was the designation assigned to a swept-winged version (36° sweep at quarter chord) of the Skyknight. It was originally to be powered by the J46 turbojet, rated at 4.080 lbf for takeoff, which was under development but suffered serious trouble.
This led to the cancellation of the J46, and calculated performance of the F3D-3 with the substitute J34 was deemed insufficient. As an alternative the aircraft had to be modified to carry two larger and longer J47-GE-2 engines, which also powered the USN's FJ-2 "Fury" fighter.
This engine's thrust of 6.000 pounds-force (27 kN) at 7,950 rpm appeared sufficient for the heavy, swept-wing aircraft, and in 1954 an order for 287 production F3D-3s was issued, right time to upgrade the new type with the Sparrow I.
While the F3D-3's outline resembled that of its straight wing predecessors, a lot of structural changes had to be made to accommodate the shifted main wing spar, and the heavy radar equipment also took its toll: the gross weight climbed by more than 3 tons, and as a result much of the gained performance through the stronger engines and the swept wings was eaten away.
Maximum internal fuel load was 1.350 US gallons, plus a further 300 in underwing drop tanks. Overall wing surface remained the same, but the swept wing surfaces reduced the wing span.
In the end, thrust-to-weight ratio was only marginally improved and in fact, the F3D-3 had a lower rate of climb than the F3D-2, its top speed at height was only marginally higher, and stall speed climbed by more than 30 mph, making carrier landings more complicated.
It's equipment was also the same - the AN/APQ-35 was still fitted, but mainly because the large radar dish offered the largest detection range of any carrier-borne type of that time, and better radars that could match this performance were still under construction. Anyway, the F3D-3 was able to carry Sparrow I from the start, and this would soon be upgraded to Sparrow III (which became the AIM-7), and it showed much better flight characteristics at medium altitude.
Despite the ,many shortcomings the "new" aircraft represented an overall improvement over the F3D-2 and was accepted for service. Production of the F3D-3 started in 1955, but technology advanced quickly and a serious competitor with supersonic capability appeared with the McDonnell F3H Demon and the F4D Skyray - much more potent aircraft that the USN immediately preferred to the slow F3Ds. As a consequence, the production contract was cut down to only 102 aircraft.
But it came even worse: production of the swept wing Skyknight already ceased after 18 months and 71 completed airframes. Ironically, the F3D-3's successor, the F3H and its J40 engine, turned out to be more capricious than expected, which delayed the Demon's service introduction and seriously hampered its performance, so that the F3D-3 kept its all weather/night fighter role until 1960, and was eventually taken out of service in 1964 when the first F-4 Phantom II fighters appeared in USN service.
In 1962 all F3D versions were re-designated into F-10, the swept wing F3D-3 became the F-10C. The straight wing versions were used as trainers and also served as an electronic warfare platform into the Vietnam War as a precursor to the EA-6A Intruder and EA-6B Prowler, while the swept-wing fighters were completely retired as their performance and mission equipment had been outdated. The last F-10C flew in 1965.
General characteristics
Crew: two
Length: 49 ft (14.96 m)
Wingspan: 42 feet 5 inches (12.95 m)
Height: 16 ft 1 in (4.90 m)
Wing area: 400 ft² (37.16 m²)
Empty weight: 19.800 lb (8.989 kg)
Loaded weight: 28,843 lb (13.095 kg)
Max. takeoff weight: 34.000 lb (15.436 kg)
Powerplant:
2× General Electric J47-GE-2 turbojets, each rated at 6.000 lbf (26,7 kN) each
Performance
Maximum speed: 630 mph (1.014 km/h) at sea level, 515 mph (829 km/h) t (6,095 m)
Cruise speed: 515 mph (829 km/h) at 40,000 feet
Stall speed: 128 mph (206 km/h)
Range: 890 mi (1.433 km) with internal fuel; 1,374 mi, 2,212 km with 2× 300 gal (1.136 l) tanks
Service ceiling: 43.000 ft (13.025 m)
Rate of climb: 2,640 ft/min (13,3 m/s)
Wing loading: 53.4 lb/ft² (383 kg/m²)
Thrust/weight: 0.353
Armament
4× 20 mm Hispano-Suiza M2 cannon, 200 rpg, in the lower nose
Four underwing hardpoints inboard of the wing folding points for up to 4.000 lb (1.816 kg)
ordnance, including AIM-7 Sparrow air-to-air missiles, 11.75 in (29.8cm) Tiny Tim rockets, two
150 or 300 US gal drop tanks or bombs of up to 2.000 lb (900 kg) caliber, plus four hardpoints
under each outer wing for a total of eight 5" HVARs or eight pods with six 2 3/4" FFARs each
The kit and its assembly:
Another project which had been on the list for some years now but finally entered the hardware stage. The F3D itself is already a more or less forgotten aircraft, and there are only a few kits available - there has been a vacu kit, the Matchbox offering and lately kits in 1:72 and 1:48 by Sword.
The swept wing F3D-3 remained on the drawing board, but would have been a very attractive evolution of the tubby Skyknight. In fact, the swept surfaces resemble those of the A3D/B-66 a Iot, and this was the spark that started the attempt to build this aircraft as a model through a kitbash.
This model is basically the Matchbox F3D coupled with wings from an Italeri B-66, even though, being much bigger, these had to be modified.
The whole new tail is based on B-66 material. The fin's chord was shortened, though, and a new leading edge (with its beautiful curvature) had to be sculpted from 2C putty. The vertical stabilizers also come from the B-66, its span was adjusted to the Skyknight's and a new root intersection was created from styrene and putty, so that a cross-shaped tail could be realized.
The tail radar dish was retained, even though sketches show the F3D-3 without it.
The wings were take 1:1 from the B-66 and match well. They just had to be shortened, I set the cut at maybe 5mm outwards of the engine pods' attachment points. They needed some re-engraving for the inner flaps, as these would touch the F3D-3's engines when lowered, but shape, depth and size are very good for the conversion.
On the fuselage, the wings' original "attachment bays" had to be filled, and the new wings needed a new position much further forward, directly behind the cockpit, in order to keep the CoG.
One big issue would be the main landing gear. On the straight wing aircraft it retracts outwards, and I kept this arrangement. No detail of the exact landing gear well position was available to me, so I used the Matchbox parts as stencils and placed the new wells as much aft as possible, cutting out new openings from the B-66 wings.
The OOB landing gear was retained, but I added some structure to the landing gear wells with plastic blister material - not to be realistic, just for the effect. A lot of lead was added in the kit's nose section, making sure it actually stands on the front wheel.
The Matchbox Skyknight basically offers no real problems, even though the air intake design leaves, by tendency some ugly seams and even gaps. I slightly pimped the cockpit with headrests, additional gauges and a gunsight, as well as two (half) pilot figures. I did not plan to present the opened cockpit and the bulbous windows do not allow a clear view onto the inside anyway, so this job was only basically done. In fact, the pilots don't have a lower body at all...
Ordnance comprises of four Sparrow III - the Sparrow I with its pointed nose could have been an option, too, but I think at the time of 1960 the early version was already phased out?
Painting and markings:
This was supposed to become a typical USN service aircraft of the 60ies, so a grey/white livery was predetermined. I had built an EF-10B many years ago from the Matchbox kit, and the grey/white guise suits the Whale well - and here it would look even better, with the new, elegant wings.
For easy painting I used semi matt white from the rattle can on the lower sides (painting the landing gear at the same time!), and then added FS 36440 (Light Gull Grey, Humbrol 129) with a brush to the upper sides. The radar nose became semi matt black (with some weathering), while the RHAWS dish was kept in tan (Humbrol 71).
In order to emphasize the landing gear and the respective wells I added a red rim to the covers.
The cockpit interior was painted in dark grey - another factor which made adding too many details there futile, too...
The aircraft's individual marking were to be authentic, and not flamboyant. In the mid 50ies the USN machines were not as colorful as in the Vietnam War era, that just started towards the 60ies.
The markings I used come primarily from an Emhar F3H Demon, which features no less than four(!) markings, all with different colors. I settled for a machine of VF-61 "Jolly Rogers", which operated from the USS Saratoga primarily in the Mediterranean from 1958 on - and shortly thereafter the unit was disbanded.
I took some of the Demon markings and modified them with very similar but somewhat more discrete markings from VMF-323, which flew FJ-4 at the time - both squadrons marked their aircraft with yellow diamonds on black background, and I had some leftover decals from a respective Xtradecal sheet in the stash.
IMHO a good result with the B-66 donation parts, even though I am not totally happy with the fin - it could have been more slender at the top, and with a longer, more elegant spine fillet, but for that the B-66 fin was just too thick. Anyway, I am not certain if anyone has ever built this aircraft? I would not call the F3D-3 elegant or beautiful, but the swept wings underline the fuselage's almost perfect teardrop shape, and the thing reminds a lot of the later Grumman A-6 Intruder?
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
If you are thinking about purchasing Adam Short's Niche Profit Full Control system, then this review is for you. Does it work? What kind of results should you expect? Is the program worth the money? Will you get the support you need to be successful? Don't worry – I'll answer all these questions. But first, let me give you some background information. I purchased NPFC's program at the end of 2015. I really resonated with Adam, and I especially loved the idea of getting prepackaged niches that I could take and run with. Not only did I buy Adam's program, but I also spent thousands of dollars on Facebook ads, contract labor, hosting and domains – and don't even get me started on all the time I invested. I really committed to my success, and I was determined to follow the program and excel. Right off the bat, I took Adam's first prebuilt niche and got it up and running. That was going to be my initial moneymaker, but just in case things didn't fall into place automatically, I hired a contractor to write my own teaser PDF and a series of emails. This didn't come cheap – and neither did the person I hired to help me turn the other premade niches into sites as they came out. I spent hours going through Adam's trainings, and I became very active on the forum. By Adam's word (his promises and instructions), I was doing everything I could to find success. But success never came. For example, I stopped building niches after I had created 5 different sites. None of them yielded any results! Not a single one of them! My first niche has been successful to a point. I reached 9,000 likes on Facebook with a $0.10 conversion through Facebook ads. Of those that came to my site, 20% turned into leads. The majority of them read my emails, but no one purchased any of my affiliate products. At this point, I was well past the money back guarantee timeframe. How convenient for Adam. I reached out for support on the forums, and I started asking poignant questions. That was when I realized my posts were getting deleted! What? I wasn't being too negative – I was just trying to ask questions about real struggles. And that was when another NPFC member reached out to me and suggested I join a private Facebook group where there were tons of other dissatisfied people. Wait – I wasn't alone? Oh, no. It turned out that there were a lot of people just like me. The other NPFC members and I felt like we'd been disregarded – not to mention downright lied to! We collected members' experiences and decided to make this video. There is a one-sided story out there about how great Adam's program is, and anyone who disagrees has their opinion deleted. My intention with this review is not to be overly negative, but to point out the other experiences people have had with Adam Short's Niche Profit Full Control program. #NPFCReview #NicheProfitFullControl #AdamShort #DontBuy #BadProgram #NoROI #WasteOfMoney
Object Details: With thunderstorms still plaguing our area and clear skies not predicted for the next several days I thought I'd take a first look at a few solar images I took back in May. Although the seeing and transparency were fairly poor at the time, the attached is a composite showing the relatively large sunspots / active regions: AR2824 (left) as it had just begun to rotate onto the Sun's visible side, and AR2822 (right) as it was just departing. In addition to the large dark central cores (known as an 'umbra' - in these cases both are larger than the entire Earth), a fair deal of faculae is also visible (i.e. the brighter and hotter areas surrounding the groups which are more easily detectable when an active region is near the limb and are quite apparent around both of these particular groups).
A close examination of AR2824 seems to also show somewhat of a light bridge intruding into & beginning to split, the upper left portion of the penumbra (the 'grayish' area surrounding the darker umbra), and whether coincidentally or not, that day AR2824 released a C1.1 class solar flare. I was also fortunate to catch AR2824 the following day, a composite of which can be found at the link attached here:
www.flickr.com/photos/homcavobservatory/51194703565/
As can be seen by comparing the attached with the shots from the following day, both sunspots here appear somewhat fore-shortened due to solar rotation. First noticed by Scottish astronomer
Alexander Wilson in 1769 during solar cycle 2, this observation of foreshortening as groups were near the limb proved that sunspots were actually features on the solar surface.
Interestingly AR2824 survived a complete rotation around the Sun and returned again to the visible side (and is traditional was renumbered - in this case to AR2833). A screen shot from June 17th in a composite showing it in comparison with the above can be found here:
www.flickr.com/photos/homcavobservatory/51260443645/
Image Details: The attached was taken by Jay Edwards at the HomCav Observatory at my home here in upstate, NY on May 18, 2021. The top images were taken with a lum filter, while those at the bottom used an ultraviolet (UV) filter (all in addition to an over-the-aperture' off-axis home-made Baader material white light solar filter).
The full disk image, utilized a Canon 700D controlled by APT & a full aperture Kendricks light light filter on an ED80T CF (i.e. an Orion 80mm, f/6 carbon-fiber triplet apochromatic refractor), and a 0.8X Televue field flattener / focal reducer, is meant merely as a reference for location and it is a single frame shot at 1/4000 and ISO 100. For additional reference a sample image of the Earth was added to show size comparison to the 8-inch shots.
The 'closeup' 8-inch shots were taken using an ASI290MC 'planetary camera / auto-guider' controlled by SharpCap Pro on a vintage 1970, 8-inch, f/7 Criterion newtonian reflector with the above mentioned homemade, off-axis Baader white-light solar filter. Taken as video clips, each is a stack of best several hundred frames out of several thousand thousand taken for each clip.
Both of these scopes are mounted on and tracked by a Losmandy G-11 running a Gemini 2 control system and the images were processed using a combination of Registax & PaintShopPro. As presented here the entire composite has been resized down to HD resolution and the bit depth lowered to 8 bits per channel.
As I write this it is two months to the day since the attached images, and the Sun had been releasing several backside CMEs. It is theorized that these may be related to a rather active region which, if still present, should be rotating onto the visible side over the next week.
For those interested in solar and any possible associated geomagnetic activity, close monitoring of solar weather over the next couple weeks may be beneficial (of course here in upstate, NY we are expecting at least another three consecutive days of thunderstorms & I apologize to all those in the Northeast US if the weather is a result of the new astro. things I purchased recently ;) ).
Wishing clear, dark & calm skies to all !
Similar composites can be found at the links attached here:
Solar:
www.flickr.com/photos/homcavobservatory/50815383151/
www.flickr.com/photos/homcavobservatory/50657578913/
www.flickr.com/photos/homcavobservatory/51027134346/
www.flickr.com/photos/homcavobservatory/51295865404/
Saturn:
www.flickr.com/photos/homcavobservatory/51316298333/
www.flickr.com/photos/homcavobservatory/50347485511/
www.flickr.com/photos/homcavobservatory/50088602376/
www.flickr.com/photos/homcavobservatory/51007634042/
Jupiter:
www.flickr.com/photos/homcavobservatory/50303645602/
www.flickr.com/photos/homcavobservatory/50052655691/
www.flickr.com/photos/homcavobservatory/50123276377/
www.flickr.com/photos/homcavobservatory/50185470067/
www.flickr.com/photos/homcavobservatory/50993968018/
www.flickr.com/photos/homcavobservatory/51090643939/
Mars:
www.flickr.com/photos/homcavobservatory/50425593297/
www.flickr.com/photos/homcavobservatory/50594729106/
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is heading onto Pharos Street from the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; it is running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back.
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
Object Details: The Elephant Trunk Nebula, catalogued as VdB 142 or IC 1396A, is a star forming region located in a much larger emission nebula (IC 1396) which can be found in the constellation of Cepheus. The entire nebulous complex spans several degrees in our sky and also contains a number of clouds of interstellar dust so dense they obscure the visible wavelengths of objects behind them.
Based upon a catalogue of 'Dark Markings in the Sky' created by astronomer E.E. Barnard in 1919, these dark dust clouds have become known as 'Barnard objects', with each carrying a unique numerical designation. The attached composite shows a wide-field image of several of these in the vicinity of the Elephant Trunk. Shot simultaneously using a twin, unfiltered, unmodded Canon 700D on the (vintage 1970) 8-inch, f/7 Criterion newt., the image from that rig, which isolates just the Elephant Trunk Nebula, can be found at the link attached here: www.flickr.com/photos/homcavobservatory/50700143931/
Image Details: The attached was taken by Jay Edwards at the HomCav Observatory on September 21, 2020 using an 80MM, f/6 carbon-fiber apochromatic refractor (i.e. an Orion ED80T CF) and a 0.8X Televue field flattener / focal reducer connected to an unfiltered, unmodded Canon 700D (t5i) DSLR managed by APT. This setup was piggybacked on an 8-inch, f/7 Criterion newtonian reflector tracked on a Losmandy G-11 mount running a Gemini 2 control system & autoguided using an 80MM, f/5 Celestron 'short-tube' doublet with an ASI290MC controlled by PHD2.
Since this was shot during a test I was doing with my 8-inch newt. on the Elephant Trunk itself, it is a short stack of only 13 three-minute subs at ISO 800; and their associated bias, darks & flat calibration frames processed using a combination of PixIsnight & PaintShopPro.
Given that humans tend to derive detail more from the luminance (brightness) data of an image, as opposed to the chrominance (color) data, the luminance channel of the OSC image has been extracted and then negated and placed to the right of the OSC. The dark Barnard objects then of course appear white, while the outline of the Elephant trunk, just right of center, appears much more distinct, being somewhat lost in the general reddish nebulosity of the OSC image.
As presented here, the entire composite has been resized down to twice HD resolution and the bit depth lowered to 8 bits per channel.
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is at the Pleasure Beach loop, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services, and awaiting time before running the closing service of the daytime heritage service for 2014: the final afternoon tour to Fleetwood and back.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Douglas F3D Skyknight (later designated F-10 Skyknight) was a United States twin-engined, mid-wing jet fighter aircraft manufactured by the Douglas Aircraft Company in El Segundo, California. The F3D was designed as a carrier-based all-weather night fighter and saw service with the United States Navy and United States Marine Corps. The mission of the F3D-2 was to search out and destroy enemy aircraft at night.
The F3D was not intended to be a typical sleek and nimble dogfighter, but as a standoff night fighter, packing a powerful radar system and a second crew member. It originated in 1945 with a US Navy requirement for a jet-powered, radar-equipped, carrier-based night fighter. The Douglas team led by Ed Heinemann designed around the bulky air intercept radar systems of the time, with side-by-side seating for the pilot and radar operator. The result was an aircraft with a wide, deep, and roomy fuselage. Instead of ejection seats, an escape tunnel was used.
As a night fighter that was not expected to be as fast as smaller daylight fighters, the expectation was to have a stable platform for its radar system and the four 20 mm cannon mounted in the lower fuselage. The F3D was, however, able to outturn a MiG-15 in an inside circle. The fire control system in the F3D-1 was the Westinghouse AN/APQ-35.
The AN/APQ-35 was advanced for the time, a combination of three different radars, each performing separate functions: an AN/APS-21 search radar, an AN/APG-26 tracking radar, both located in the nose, and an AN/APS-28 tail warning radar. The complexity of this vacuum tube-based radar system, which was produced before the advent of semiconductor electronics, required intensive maintenance to keep it operating properly.
The F3D Skyknight was never produced in great numbers but it did achieve many firsts in its role as a night fighter over Korea. While it never achieved the fame of the North American F-86 Sabre, it did down several Soviet-built MiG-15s as a night fighter over Korea with only one air-to-air loss of its own against a Chinese MiG-15 on the night of 29 May 1953.
In the years after the Korean War, the F3D was gradually replaced by more powerful aircraft with better radar systems. The F3D's career was not over though; its stability and spacious fuselage made it easily adaptable to other roles. The Skyknight played an important role in the development of the radar-guided AIM-7 Sparrow missile in the 1950s which led to further guided air-to-air missile developments.
In 1954, the F3D-2M was the first U.S. Navy jet aircraft to be fitted with an operational air-to-air missile: the Sparrow I,an all weather day/night BVR missile that used beam riding guidance for the aircrew to control the flight of the missile. Only 38 aircraft (12 F3D-1Ms, and 16 F3D-2Ms) were modified to use the missiles, though.
One of the F3D's main flaws, which it shared with many early jet aircraft, was its lack of power and performance. Douglas tried to mend this through a radical redesign: The resulting F3D-3 was the designation assigned to a swept-winged version (36° sweep at quarter chord) of the Skyknight. It was originally to be powered by the J46 turbojet, rated at 4.080 lbf for takeoff, which was under development but suffered serious trouble.
This led to the cancellation of the J46, and calculated performance of the F3D-3 with the substitute J34 was deemed insufficient. As an alternative the aircraft had to be modified to carry two larger and longer J47-GE-2 engines, which also powered the USN's FJ-2 "Fury" fighter.
This engine's thrust of 6.000 pounds-force (27 kN) at 7,950 rpm appeared sufficient for the heavy, swept-wing aircraft, and in 1954 an order for 287 production F3D-3s was issued, right time to upgrade the new type with the Sparrow I.
While the F3D-3's outline resembled that of its straight wing predecessors, a lot of structural changes had to be made to accommodate the shifted main wing spar, and the heavy radar equipment also took its toll: the gross weight climbed by more than 3 tons, and as a result much of the gained performance through the stronger engines and the swept wings was eaten away.
Maximum internal fuel load was 1.350 US gallons, plus a further 300 in underwing drop tanks. Overall wing surface remained the same, but the swept wing surfaces reduced the wing span.
In the end, thrust-to-weight ratio was only marginally improved and in fact, the F3D-3 had a lower rate of climb than the F3D-2, its top speed at height was only marginally higher, and stall speed climbed by more than 30 mph, making carrier landings more complicated.
It's equipment was also the same - the AN/APQ-35 was still fitted, but mainly because the large radar dish offered the largest detection range of any carrier-borne type of that time, and better radars that could match this performance were still under construction. Anyway, the F3D-3 was able to carry Sparrow I from the start, and this would soon be upgraded to Sparrow III (which became the AIM-7), and it showed much better flight characteristics at medium altitude.
Despite the ,many shortcomings the "new" aircraft represented an overall improvement over the F3D-2 and was accepted for service. Production of the F3D-3 started in 1955, but technology advanced quickly and a serious competitor with supersonic capability appeared with the McDonnell F3H Demon and the F4D Skyray - much more potent aircraft that the USN immediately preferred to the slow F3Ds. As a consequence, the production contract was cut down to only 102 aircraft.
But it came even worse: production of the swept wing Skyknight already ceased after 18 months and 71 completed airframes. Ironically, the F3D-3's successor, the F3H and its J40 engine, turned out to be more capricious than expected, which delayed the Demon's service introduction and seriously hampered its performance, so that the F3D-3 kept its all weather/night fighter role until 1960, and was eventually taken out of service in 1964 when the first F-4 Phantom II fighters appeared in USN service.
In 1962 all F3D versions were re-designated into F-10, the swept wing F3D-3 became the F-10C. The straight wing versions were used as trainers and also served as an electronic warfare platform into the Vietnam War as a precursor to the EA-6A Intruder and EA-6B Prowler, while the swept-wing fighters were completely retired as their performance and mission equipment had been outdated. The last F-10C flew in 1965.
General characteristics
Crew: two
Length: 49 ft (14.96 m)
Wingspan: 42 feet 5 inches (12.95 m)
Height: 16 ft 1 in (4.90 m)
Wing area: 400 ft² (37.16 m²)
Empty weight: 19.800 lb (8.989 kg)
Loaded weight: 28,843 lb (13.095 kg)
Max. takeoff weight: 34.000 lb (15.436 kg)
Powerplant:
2× General Electric J47-GE-2 turbojets, each rated at 6.000 lbf (26,7 kN) each
Performance
Maximum speed: 630 mph (1.014 km/h) at sea level, 515 mph (829 km/h) t (6,095 m)
Cruise speed: 515 mph (829 km/h) at 40,000 feet
Stall speed: 128 mph (206 km/h)
Range: 890 mi (1.433 km) with internal fuel; 1,374 mi, 2,212 km with 2× 300 gal (1.136 l) tanks
Service ceiling: 43.000 ft (13.025 m)
Rate of climb: 2,640 ft/min (13,3 m/s)
Wing loading: 53.4 lb/ft² (383 kg/m²)
Thrust/weight: 0.353
Armament
4× 20 mm Hispano-Suiza M2 cannon, 200 rpg, in the lower nose
Four underwing hardpoints inboard of the wing folding points for up to 4.000 lb (1.816 kg)
ordnance, including AIM-7 Sparrow air-to-air missiles, 11.75 in (29.8cm) Tiny Tim rockets, two
150 or 300 US gal drop tanks or bombs of up to 2.000 lb (900 kg) caliber, plus four hardpoints
under each outer wing for a total of eight 5" HVARs or eight pods with six 2 3/4" FFARs each
The kit and its assembly:
Another project which had been on the list for some years now but finally entered the hardware stage. The F3D itself is already a more or less forgotten aircraft, and there are only a few kits available - there has been a vacu kit, the Matchbox offering and lately kits in 1:72 and 1:48 by Sword.
The swept wing F3D-3 remained on the drawing board, but would have been a very attractive evolution of the tubby Skyknight. In fact, the swept surfaces resemble those of the A3D/B-66 a Iot, and this was the spark that started the attempt to build this aircraft as a model through a kitbash.
This model is basically the Matchbox F3D coupled with wings from an Italeri B-66, even though, being much bigger, these had to be modified.
The whole new tail is based on B-66 material. The fin's chord was shortened, though, and a new leading edge (with its beautiful curvature) had to be sculpted from 2C putty. The vertical stabilizers also come from the B-66, its span was adjusted to the Skyknight's and a new root intersection was created from styrene and putty, so that a cross-shaped tail could be realized.
The tail radar dish was retained, even though sketches show the F3D-3 without it.
The wings were take 1:1 from the B-66 and match well. They just had to be shortened, I set the cut at maybe 5mm outwards of the engine pods' attachment points. They needed some re-engraving for the inner flaps, as these would touch the F3D-3's engines when lowered, but shape, depth and size are very good for the conversion.
On the fuselage, the wings' original "attachment bays" had to be filled, and the new wings needed a new position much further forward, directly behind the cockpit, in order to keep the CoG.
One big issue would be the main landing gear. On the straight wing aircraft it retracts outwards, and I kept this arrangement. No detail of the exact landing gear well position was available to me, so I used the Matchbox parts as stencils and placed the new wells as much aft as possible, cutting out new openings from the B-66 wings.
The OOB landing gear was retained, but I added some structure to the landing gear wells with plastic blister material - not to be realistic, just for the effect. A lot of lead was added in the kit's nose section, making sure it actually stands on the front wheel.
The Matchbox Skyknight basically offers no real problems, even though the air intake design leaves, by tendency some ugly seams and even gaps. I slightly pimped the cockpit with headrests, additional gauges and a gunsight, as well as two (half) pilot figures. I did not plan to present the opened cockpit and the bulbous windows do not allow a clear view onto the inside anyway, so this job was only basically done. In fact, the pilots don't have a lower body at all...
Ordnance comprises of four Sparrow III - the Sparrow I with its pointed nose could have been an option, too, but I think at the time of 1960 the early version was already phased out?
Painting and markings:
This was supposed to become a typical USN service aircraft of the 60ies, so a grey/white livery was predetermined. I had built an EF-10B many years ago from the Matchbox kit, and the grey/white guise suits the Whale well - and here it would look even better, with the new, elegant wings.
For easy painting I used semi matt white from the rattle can on the lower sides (painting the landing gear at the same time!), and then added FS 36440 (Light Gull Grey, Humbrol 129) with a brush to the upper sides. The radar nose became semi matt black (with some weathering), while the RHAWS dish was kept in tan (Humbrol 71).
In order to emphasize the landing gear and the respective wells I added a red rim to the covers.
The cockpit interior was painted in dark grey - another factor which made adding too many details there futile, too...
The aircraft's individual marking were to be authentic, and not flamboyant. In the mid 50ies the USN machines were not as colorful as in the Vietnam War era, that just started towards the 60ies.
The markings I used come primarily from an Emhar F3H Demon, which features no less than four(!) markings, all with different colors. I settled for a machine of VF-61 "Jolly Rogers", which operated from the USS Saratoga primarily in the Mediterranean from 1958 on - and shortly thereafter the unit was disbanded.
I took some of the Demon markings and modified them with very similar but somewhat more discrete markings from VMF-323, which flew FJ-4 at the time - both squadrons marked their aircraft with yellow diamonds on black background, and I had some leftover decals from a respective Xtradecal sheet in the stash.
IMHO a good result with the B-66 donation parts, even though I am not totally happy with the fin - it could have been more slender at the top, and with a longer, more elegant spine fillet, but for that the B-66 fin was just too thick. Anyway, I am not certain if anyone has ever built this aircraft? I would not call the F3D-3 elegant or beautiful, but the swept wings underline the fuselage's almost perfect teardrop shape, and the thing reminds a lot of the later Grumman A-6 Intruder?
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
M50335 - one of a relatively small number of Class 101 Metro-Cammell DMUs to be seen on the Western Region at the time - Midland region visitor M50335 is seen stabled at Swindon station. The 3-car set was TY409 from Tyseley depot.
Thanks to bystuart for the unit info. :)
Class 101 Metro-Cammell units - One of the most numerous and widely used types, built for the ScR, NER/ER and LMR, later also based in WR with access to the SR. They updated version of the earlier Yellow Diamond Met-Camm Lightweights with the blue square control system. Including these early types and the more powerful Rolls-Royce engined variants later (Class 111s) a total of 760 Met-Camm vehicles were built.
When class numbers were introduced the vehicles were initially divided into Class 101s (the vehicles with AEC engines) and Class 102s (those with Leyland engines). Later the classes were rationalised with all becoming Class 101s.
The type was used as the testbed for refurbishment scheme in the 1970s, which led to many types being given a life-extension at a time when BR had no replacements for the ageing vehicles.
Many sets were given an additional "facelift" to see them become one of the last types to be phased out of traffic in the early years of the 2000s, only surpassed by some bubble cars returned to traffic. Many vehicles saw further use as parcels, sandite and route learning units, and many entered preservation.
M50335 was one of a batch of 18 3-car sets built for the LMR DMBSs 50303-20, TCs 59114-31, DMCs 50321-38 which were delivered between February to April 1958.
Information courtesy of: railcar.co.uk/type/class-101/orders
Taken with my basic Kodak Brownie using 120 roll film.
You can see a random selection of my railway photos here on Flickriver: www.flickriver.com/photos/themightyhood/random/
Object Details: After imaging the conjunction of the planets Venus & Uranus on the evening of their closest approach last month, I had about an hour of partly cloudy skies and although the moon was 99.3 % full that evening, I thought I'd try to catch an image of the remaining 0.7% 'terminator'. (An image of the referenced planetary conjunction can be found at the link attached here: www.flickr.com/photos/homcavobservatory/49652088888/ ).
Since our 8-inch scope was already setup for a relatively narrow field using our 'planetary camera', with limited time available, rather than disconnecting that and switching to a DSLR with a wider FOV, and thus having to re-focus, I figured I'd just give our 'planetary camera' a shot (no pun intended ;) )
With such a limited size to the 'terminator' I found it somewhat difficult to determine where it began and ended. Therefore, in a continuing effort to over-achieve ;) I began taking several short video clips, starting from left of Tycho and ending right of Aristarchus. In this way I knew that if a terminator was discernible, it would lie somewhere between those two points. Attached is a 9 panel mosaic resulting from those clips.
Visible in the left hand portion is the prominent crater Tycho. With a very distinctive ray system, at 108 million years old, Tycho is fairly young (relatively speaking) and spans 85 km (53 mi) in diameter, is 4,800 m (15,700 ft or ~ 3 mi.) in depth and and has central peaks which rise 1,600 m (5,200 ft or nearly a mile) above the crater floor. Previously I processed the FOV containing this object separately applying a 'mineral moon' approach, a link to which is attached here:
www.flickr.com/photos/homcavobservatory/49674600246/ ).
As mentioned above, while somewhat difficult to perceive at the time the images were taken, the 0.7% 'terminator' seems to have lied at the upper right portion of the mosaic, centered on the slightly 'flatter' section of the limb. To it's lower right is the dark, flat floored crater Grimaldi. Appeared similar to a mare (lunar 'sea'), it is 222 km (134 mi.) in diameter and was formed during the Pre-Nectarian geologic period between ~ 4.55 and ~ 3.92 billion years ago.
At far right is the bright crater Aristarchus, spanning 40 km (24 mi.) in diameter, it is a 'mere'450 million years old. By comparison, lying to it's immediate right is the sinuous rille known as Schröter's Valley, the result of ancient volcanism 3.6 billion years ago. Often known by it's latinized name, Vallis Schröteri, it is the largest sinuous rille on the moon. With a maximum width of about 10 km (~6 mi.) it is the location of numerous reports of transient lunar phenomena.
Image Details: Taken by Jay Edwards at the HomCav Observatory on the evening of March 8, 2020, the attached was created using 9 panels from stack video clips shots using a vintage 1970 8-inch, f/7 Criterion newtonian reflector connected to a ZWO ASI290MC planetary camera / auto-guider at prime focus. With the transparency varying as high clouds began to move in and the seeing ranging from bad to poor (1 to 2 out of 5), I attempted to balance the exposures during acquisition, as well as the post processing of each FOV and it's manual alignment to adjacent frames, so as to provide as seamless of a panel-to-panel transition as possible.
This scope was mounted on a Losmandy G-11 running a Gemini 2 control system and had an ED80T CF (i.e. an 80MM, f/6 carbon-fiber triplet apochromatic refractor) mounted piggyback. The latter instrument being used for 'full disk' lunar images, and although I already processed the 80MM from the following night (linked here:
www.flickr.com/photos/homcavobservatory/49659990916/ ), I have yet to examine those taken simultaneously to the ones used for the attached mosaic and am looking forward to seeing what detail I can pull out of them.
Processed using a combination of AS3, Registax, & PSP, as presented here the mosaic has been resized down to 2x HD resolution and the bit depth has been lowered to 8 bits per channel.
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
A U.S. Air Force E-3 Sentry airborne warning and control system arrives to receive fuel from a KC-135 Stratotanker, assigned to the 350th Expeditionary Aircraft Refueling Squadron, during a mission over the U.S. Central Command area of responsibility Feb. 12, 2021. The AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied and coalition operations. (U.S. Air Force photo by Staff Sgt. Trevor T. McBride)
Monday, June 13, 2011
Arsht Center for the Performing Arts
Knight Concert Hall
1300 Biscayne Boulevard
Miami, Florida
Remarks by the President at a DNC Event
Adrienne Arsht Center, Miami, Florida
7:50 P.M. EDT
THE PRESIDENT: Hello, Miami! (Applause.) It's good to see you. (Applause.) It is good to be back in Miami. (Applause.) Thank you, thank you, everybody. Thank you. Everybody have a seat. Have a seat.
What do you guys think of our new DNC chair? (Applause.) Debbie Wasserman Schultz. We are so thrilled to have her. You want Debbie on your side. (Applause.) She's a mom, she's got that cute smile and all that, but she is tough. Don't mess with Debbie. (Laughter.) We are so glad of her leadership.
I know that a lot of folks have already been acknowledged. I want to make sure to mention resident commissioner Pedro Pierluisi of Puerto Rico. Where is he? Pedro, are you still here? There he is right there. (Applause.)
Adrienne Arsht, thank you so much for everything that you've done for the civic life in Miami. (Applause.) Our Florida finance chair, Kirk Wager, is here. (Applause.) Founding co-chair of Gen44, Andrew Korge, is here. (Applause.) Alonzo Mourning is in the house. (Applause.) And, look, he's not from Miami, but he's got 11 championships, so I've got to mention Bill Russell is in the house. (Applause.) Bill Russell -- greatest champion of all time in team sports in North America right here. (Applause.)
It is wonderful to be back. Many of you I've known for a very long time, some of you I'm getting a chance to see for the first time. And it got me thinking back to election night two and a half years ago, in Grant Park. It was a beautiful night in Chicago, and everybody was feeling pretty good who had supported me. And it was an incredibly hopeful time. And you will recall -- maybe you won't but I'm going to remind you -- (laughter) -- I said, this is not the end, this is the beginning. This is the beginning.
Because what I said to the American people that night was that for almost a decade too many Americans had felt as if the American Dream was slipping away. We had seen economic growth and corporate profits and a stock market that had gone up, but there were too many folks who were struggling each and every day, working as hard as they could, being responsible for their families, being responsible to their communities, but somehow they just couldn’t keep up. Wages and incomes had flat-lined, even though the cost of everything from health care to college tuitions to gas had all skyrocketed.
Around the world, the impression of America as a preeminent force for good had lost sway. We were in the midst of two wars. We didn’t seem to be able to tackle challenges that had confronted us for decades -- didn’t have an energy plan that was worthy of the greatness of America; didn’t have an immigration system that would allow us to be a nation of laws and a nation of immigrants; had a school system in which we had no longer -- we were no longer at the top and weren’t preparing our young people to meet the challenges and demands of the 21st century global interdependent economy.
And so when I started the race for President, what I said to all of you was, if you’re looking for easy answers, you’re looking in the wrong place. If you’re looking for just a bunch of partisan rhetoric, I’m probably not your guy. But if you want to join me on this journey,, to make sure that America is living up to its ideals, if you wanted to reclaim the that sense that in America anything is possible if we’re willing to work for it, and if you wanted to see if we could get beyond some of the politics of the past and point towards the future, then I wanted you to be a part of this process. And so all that culminated in Grant Park that night.
But then I said, you know what, this just gives us the opportunity to do what’s possible. This is not the end state. I didn't run for President just to be President. (Applause.) I ran for President to do things -- to do big things, to do hard things.
What we didn't know at the time -- I said this is going to be a steep climb to get to where we want to go, to achieve that summit. We didn't know how steep that climb was going to be because what we now know was we were already in the midst of what would turn out to be the worst recession since the Great Depression -- came this close to a financial meltdown that would have spun the global financial system out of control.
We lost 4 million jobs in the six months before I was sworn in, and we’d lose another 4 [million] before any of our economic initiatives had a chance to take effect. And all the challenges that ordinary families, working families, middle-class families had been feeling for years were suddenly compounded. Folks were losing their jobs, losing their homes, didn't know what the future held.
And so we’ve spent the last two and a half years trying to heal this country, trying to mend what was broken. And with the help of people like Debbie and Pedro, we’ve made enormous strides. With the help of you, we have made enormous strides. I mean, think about it. An economy that was contracting is now growing. An economy that was shedding millions of jobs, we’ve seen over 2 million jobs created in the last 15 months, in the private sector. (Applause.) The financial system stabilized. And some of the decisions that we made were not popular. Everybody acts now like, well, yeah, that was easy. (Laughter.) Think about it.
Just think for a moment about the U.S. auto industry. We were on the verge of the liquidation of two of the three big automakers in the United States -- Chrysler and GM. Now, there’s been some revisionist history that’s been offered lately about, well, they might have survived without our help -- except nobody at GM or Chrysler believes that. They were going to break that up and sell off the spare parts. And as a consequence, you would have seen a million people -- suppliers, dealerships -- all gone, in the midst of this incredible hardship that people were already experiencing. (Applause.) And we made tough decisions and we made the right decisions. And now we’ve got the big three automakers -- (applause) -- all profitable, all increasing market share, hiring back workers.
And we didn’t forget the promises that we had made during the campaign. We said we wanted to make sure that once again America would have the highest proportion of college graduates in the world. And so in pursuit of that goal, we said let’s stop subsidizing big banks as middlemen on the student loan program. (Applause.) Let’s take back billions of dollars and give it directly to young people so that millions of children -- a million of our kids are going to be able to go to college without $100,000 or $200,000 worth of debt.
We said we’re going to start building a genuine clean energy industry in this country, and made the largest investment in clean energy in our history. And we did that. We said that we’d begin the process of rebuilding our infrastructure in this country, and made the largest investment rebuilding our roads and our bridges and our ports since Eisenhower built the Interstate Highway System in the 1950s, putting hundreds of thousands of people to work all across America, doing the work that needs to be done.
We said we had to finally, after generations, deal with the travesty of the richest nation on Earth having people who went bankrupt because they went sick and couldn’t afford to provide health care to their families -- (applause) -- and we passed a historic health care law that is going to make sure that everybody in this country can get health care and is going to help drive prices down on health care in the bargain. (Applause.) We promised we’d do that, and we did it.
Oh, and along the way, we did a few other things, like pass equal pay for equal work legislation. (Applause.) And make sure that never again will you be barred from serving your country in uniform just because of the person that you love. (Applause.) And we appointed two women to the Supreme Court, one of them the first Latina in our history. (Applause.) And we expanded national service so that our young people would know what it means to give back to this country. (Applause.)
And we passed financial regulatory reform so that not only would we not see a reprise of the financial shenanigans that had gone on before, but we’d actually have a consumer bureau that would be able to look after folks when they take out credit cards and they take out mortgages, so that they wouldn’t be cheated. (Applause.)
And on the international front, we said we would end the war in Iraq -- and we have ended combat operations in Iraq and will be bringing our troops home this year. (Applause.) And we said that we would start refocusing our efforts in Afghanistan, and especially go after al Qaeda -- and we went after al Qaeda and we’re going after al Qaeda -- (applause) -- and beginning the transition process so that Afghans can take responsibility for their security.
And in the meantime, we dealt with a few other things -- like pirates. (Laughter.) And pandemic and oil spills. So there were a few other things that kept us occupied.
And I describe all this not for us to be complacent, but for all of us to remember that as hard as these battles have been, as much resistance as we’ve gotten, as much as the political debate has been distorted at times, that our basic premise -- the idea that when we put our minds to it, there’s nothing America can’t do -- that's been proven. (Applause.) That's been borne out. We have the evidence. We’ve brought about amazing change over the last two and a half years.
And we couldn’t have done it without you. We couldn’t -- we could not --
AUDIENCE MEMBER: Keep your promise, stop AIDS now!
THE PRESIDENT: That's all right. That's all right. We’re good. We’re good.
AUDIENCE MEMBERS: (Inaudible.)
THE PRESIDENT: Hold up. Hold up.
So -- now, here’s the thing. The reason we’re here today is because our work is not done. (Applause.) For all the progress we’ve made, our work is not complete. We’re not at the summit. We just -- we’re just partway up the mountain. There’s more to do. There is more to do.
We still don't have the kind of energy policy that America needs -- and all of you experience that at the pump each and every day. Our economy is still vulnerable to the spot oil market and us having to import billions of dollars, when we could be not only producing more energy right here at home, but we could be producing energy that's clean and renewable and what would ensure that we could pass on the kind of planet to the next generation that all of us long for. (Applause.)
We know that we’re not done when it comes to issues like immigration reform. I was down here at Miami Dade -- (applause) -- an amazing institution that embodies what America is all about. Young people who can trace their heritage to 181 different countries were represented. (Applause.) And some of you who may not be familiar with the ceremony, what they do is they bring out the flags of each country where somebody can trace their roots. And everybody cheers. The Cuban flag comes up and everybody goes crazy. (Applause.) The Jamaican flag comes up and everybody is hooting and hollering. (Applause.) See, sort of just like this.
But then there’s one flag that comes up, and that is the American flag, and everybody explodes -- (applause) -- because that’s the essence of who we are. Out of many, one. But we don’t have a system that reflects those values. It is still an issue that’s exploited, that’s used to divide instead of bringing people together. We’ve got more work to do.
We’ve got more work to do when it comes to rebuilding the infrastructure of this country. We’ve got a couple of trillion dollars worth of work that needs to be done. We were at a Jobs Council meeting up in North Carolina and the chairman of Southwest, the CEO of Southwest, he explained how because our air traffic control system is so archaic, we probably waste about 15 percent of fuel because planes are having to go this way and that. The whole system was designed back in the 1930s before you even had things like GPS. But think about -- what’s true for the airlines industry is true for our roads, it’s true for our ports, it’s true for our airports, it’s true for our power system. We’ve got more work to do.
We’ve made incredible progress on education, helping students to finance their college educations, but we still don’t have enough engineers. We still don’t have enough scientists. We still lag behind other countries when it comes to training our young people for the jobs, the high-skilled jobs that are going to provide high wages and allow them to support a family.
But we’ve made incredible progress K through 12 with something we call Race to the Top, which basically says -- (applause) -- to school districts and to states, you reform the system and we will show you the money, and so providing incentives. And 40 states across the country have made critical reforms as a consequence to this program. But we still have schools where half the kids drop out. We still consign too many of our young people to lives of desperation and despair. We’ve got more work to do.
And we’ve got so much work to do on our economy. We’ve got so much more work to do on our economy. Every night I get letters. We get about 40,000 pieces of mail at the White House every day, and I ask my team to select 10 letters for me to read that are representative of what people are feeling out there. And I will tell you these really are representative, because about half of them call me an idiot. (Laughter.) And -- but most of the stories are just some ordinary folks who have done the right thing, have worked hard all their lives. Some of them are small business owners who have poured their savings into a venture, and then when the recession hit they lost everything, and now they’re trying to get back on their feet.
You get letters from moms who are trying to figure out how to pay their bills at the end of the month, and they’re going back to school while they’re working to see if they can retrain for a better job. Sometimes you get folks who have sent out 100 resumes and haven’t gotten a response, and are trying to describe what it’s like to tell your child than nobody wants to hire you. Sometimes you get a letter from a kid who says, my parents are about to lose my home -- Mr. President, is there something you can do to help?
And in all those stories, what you see is incredible resilience and incredible stick-to-itiveness, and a sense on the part of people that no matter how down they are, they’re not out. And they don’t expect government to solve all their problems. All they’re looking for is that somebody cares and that we’re doing everything we can, trying every idea to make sure that this economy is moving. And they don’t understand how it is that good ideas get caught up in partisan politics, and why is it that people seem to be arguing all the time instead of trying to do the people’s business.
So we’ve got more work to do -- investing in our education system and making sure that -- (applause) -- making sure that our infrastructure is built and we’re putting people back to work, and helping the housing market recover, and dealing with our budget in a way that allows us to once again live within our means but doing so in a way that is consistent with our values.
You know, this budget debate that we’re having in Washington right now, it’s not just about numbers. It’s about values. It’s about what we believe and who we are as a people. The easiest thing to do to balance a budget is you just slash and burn and you cut and you don’t worry about the consequences. But that’s not who we are. We’re better than that. (Applause.)
I don’t want to live in a country where we’re no longer helping young people go to college, and so your fate is basically determined by where you were born and your circumstances. If that were the case, I wouldn’t be standing here today. I don't want to live in a country where we no longer believe that we can build the best airports or the best rail systems. I don't want to live in a country where we’re no longer investing in basic research and science so that we’re at the cutting edge of technology. I don't want to live in a country where we are abandoning our commitment to the most vulnerable among us -- the disabled, our seniors -- making sure that they’ve got a basic safety net so that they can live with dignity and respect in their golden years. (Applause.)
And so here’s the -- the good news is that we can bring down our deficit and we can work down our debt, and we can do so the same way families all across America do, by prioritizing and deciding what’s important to us. So we’re going to have to scrub the federal budget and get rid of every program that doesn't work, and get rid of every regulation that is outdated. And we’ve got to make sure that we build on all the tax cuts that we’ve provided to small businesses and to individuals over the last couple years so that they’re getting back on their feet.
But we’ve also got to make sure that whatever sacrifices we make, whatever burdens are borne are spread among all of us; that we’re not just doing it on the backs of the poor; that we’re not just doing it on the backs of our seniors; that we’re not just doing it on the backs of the most vulnerable. (Applause.)
And the other side say, well, you know what, we can just cut and cut and cut and cut -- and by the way, you, Mr. President, since you’ve been so lucky, we’re going to give you a $200,000 tax break. I’d love to have a tax break. I don’t like paying taxes -- I’m the President. (Laughter.) This notion somehow that I enjoy paying taxes or administering taxes, that makes no sense. Nothing is better for a politician than saying, you know what, forget about it, you will have everything you need and everything this country needs and you don’t have to pay for a thing.
But, you know what, I don’t want a $200,000 tax break if it means that 33 seniors are each going to have to pay $6,000 more a year for their Medicare. (Applause.) I don’t want that. I don’t want a tax break if it means hundreds of kids won’t be able to go to Head Start. (Applause.) That’s not a tradeoff I’m willing to make. That’s not a tradeoff most of Americans are willing to make. That’s not who we are. That’s not what we believe in.
And the reason I’m not willing to make a tradeoff, it’s not out of charity. It’s because my life is better when I know, as I’m driving by a school, you know what, those kids in there, they’ve got the best teachers, they’ve got the best equipment -- I know that they’re going to succeed. That makes me feel better about my life and about my country. (Applause.)
And if I’m seeing an elderly couple stroll by holding hands -- and I’m saying to myself, you know, that’s going to be Michelle and me in a few years -- and I know that whatever their circumstances, I know they’ve got Social Security and they’ve got Medicare that they can count on, that makes my life better. That makes my life richer. (Applause.)
So that's what this campaign is going to be about. It’s going to be about values. It’s the same thing that the 2008 campaign was about: What's important to you? Who are we? What is it about America that makes us so proud?
When I think about why our campaign drew so much excitement, it was because it tapped into those essential things that bind us together. I look out at this auditorium, and I see people from every walk of life, every age, every demographic -- but there’s something that binds us together, that says this is what makes our country so special.
And that's what’s at stake. That's the journey that we’re on. And the only way that we stay on track, the only way that we continue that journey is if all of you are involved. Because what also made the campaign special was it wasn’t about me -- it was never about me -- it was about us. It was about you. (Applause.) It was about you being willing to be involved, and you being willing to be engaged. Because that's also what makes America special -- ordinary people doing extraordinary things.
Now, two and a half years have passed since that night in Grant Park, and I’ve got a lot more gray hair. (Laughter.) And what seemed so fresh and new, now -- we’ve seen Obama so many times on TV, and we know all his quirks and all his tics and he’s been poked apart. And there’s some of you who probably have felt at times during the last two and a half years, gosh, why isn’t this happening faster? Why isn’t this easier? Why are we struggling? And why didn’t health care get done quicker? And why didn’t we get the public option? (Laughter and applause.) And what -- I know the conversation you guys are having. (Laughter.) "I’m not feeling as hopeful as I was." And I understand that. There have been frustrations, and I’ve got some dings to show for it over the last two and half years.
But I never said this was going to be easy. This is a democracy. It’s a big country and a diverse country. And our political process is messy. Yes, you don’t always get 100 percent of what you want, and you make compromises. That’s how the system was designed. But what I hope all of you still feel is that for all the frustrations, for all the setbacks, for all the occasional stumbles, that what motivates us, what we most deeply cherish, that that’s still within reach. That it’s still possible to bring about extraordinary change. That it’s still possible to make sure that the America we pass down to our kids and our grandkids is a better America than the one we inherited. (Applause.) I’m confident about that. I believe in that, because I believe in you.
And so I’m glad you guys came to the rally. But just like in 2008, if we want to bring about the change we believe in, we’re going to have to get to work. You’re going to have to make phone calls. (Applause.) You’re going to have to knock on doors. You’re going to have to talk to all your friends and all your neighbors, and you’re going to have to talk to the naysayers. And you’re going to have to go out there and say: We’ve got more work to do. And if they tell you, I don’t know, I’m not sure, I’m not convinced -- you just remind them of those three words that captured this campaign, captured the last campaign and will capture the 2012 campaign: Yes, we can.
Thank you, Miami. God bless you. (Applause.) God bless the United States of America.
END
8:20 P.M. EDT
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is at the Pleasure Beach loop, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services, and awaiting time before running the closing service of the daytime heritage service for 2014: the final afternoon tour to Fleetwood and back.
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is at the Pleasure Beach loop, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services, and awaiting time before running the closing service of the daytime heritage service for 2014: the final afternoon tour to Fleetwood and back. Alongside is Centenary car 648. 648 was restored in 2013 back to its as-new condition from the 1980's, a one-man-operated tram built by East Lancs which resembled a bus on rails with a design which seemed a cross of an Atlantean and a Duple Dominant - and it also has an unconventional lever-operator driving control system. Whilst the Coronation class landed the system with huge debts to the point it almost faced closure, the Centenary class helped the system during a really tough time to remain open and in use by saving costs due to only requiring a single crewman.
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
The development of the T10 was marked by considerable problems, leading to a fatal crash of the second prototype T10-2 on 7 July 1978 due to shortcomings in the FBW control system. Extensive redesigns followed (T10-3 through T10-15) and a revised version of the T10-7, now designated the T10S, made its first flight on 20 April 1981. It also crashed due to stability control problems and was replaced by T10-2, which became T10S-2. This aircraft also crashed on 23 December 1981 during a high-speed test, killing the pilot. Eventually, the T10-15 demonstrator, the T10S-3, evolved into the definitive Su-27 configuration.
The first Su-27 built to full production specifications was the T10-17 (“17 Blue”, f/n 05-02) and flew on 26 May 1982 at the Soviet Ministry of Aircraft Industry (MAP) aircraft factory No. 126 at Komsomol’sk-on-Amur/Dyzomgi (KnAAPO). 17 Blue flew the brunt of the state acceptance trials program, including live firing exercises. The aircraft sported a non-standard paint scheme with a pale blue forward fuselage contrasted with a deep blue for the wings, upper fuselage, and vertical tails. The aircraft was equipped with the Phasotron N001 Myech coherent Pulse-Doppler radar and necessitated a recontoured radome profile, which became the standard profile for all production Flankers. Stage A of the acceptance trials was officially completed on 21 August 1983. Over the course of three years and nine months, the ten aircraft involved (the “old style” T10-3, T10-4, T10-5, T10-9, T10-10, T10-11, and the “new style” T10-7, T10-12, T10-15, and T10-17) completed a total of 1,420 flight tests with the 267th Center for Testing Aviation Equipment and Training Test Pilots (267th TSPLI) at Akhtubinsk Air Base, Astrkhan Oblast.
In this image, T10-17 sits on the apron after arriving at Akhtubinsk Air Base from Sukhoi’s KnAAPO far-east factory for evaluation. Note a full load of inert (coloured red) missiles—six R-27ER (NATO reporting name: AA-10 “Alamo”) and four R-73 (NATO reporting name: AA-11 “Archer”)—and the opaque fairing ahead of the windshield indicates that the OLS-27 infrared search and track/laser rangefinding (IRST/LR) unit is not fitted.
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
This photo shows its first northbound journey in revenue-earning service from the Pleasure Beach in several years, posed on the centre line at the Bispham terminus.
Prior to the new bridges, Durham had a traffic problem. It was claimed that the first ever CCTV traffic control system (worldwide?) was installed to help the policeman on "Point Duty" in the Police Box in the Market Place. He waved traffic on in the traditional way, and also controlled the traffic lights regulating the incoming traffic, if I remember correctly.
Checking this out, I found: "Die erste fest installierte (elektronische) Kamera im öffentlichen Raum wurde im August 1956 probeweise in Durham aufgestellt; sie diente der Lenkung und Kontrolle des Straßenverkehrs. Im Juni 1957 wurde aus dem Testlauf eine dauerhafte Einrichtung" (Dietmar Kammerer, Looking Out For You, in Zeithistorische Forschungen 3/2010).
So this photo. was taken perhaps 5 or 6 years after the installation of the CCTV system, which was
>> the first ever fixed installation of an electronic camera in a public space.
The first of a long line . . .
Taken on Ilford FP3 using an Ilford Sportsman camera.
Westland Sea King
From Wikipedia, the free encyclopedia
Jump to: navigation, search
For the original Viking use of the name, see Sea-King.
Westland Sea King
A Royal Navy Sea King onboard the aircraft carrier HMS Illustrious
Type Medium-lift transport/utility helicopter
Manufacturer Westland
Maiden flight 1969
Status Active service
Primary users Royal Navy
Royal Air Force
Australian Navy
German Navy a fully computerised control system. The Westland Sea King was also designed for a wider range of missions than the Sikorsky Sea King.
Contents
[hide]
* 1 General history
* 2 Users
o 2.1 Australian Experience
* 3 Operational history
o 3.1 Falklands War
o 3.2 Gulf War I and II
o 3.3 Balkans
o 3.4 Lebanon
* 4 Variants
o 4.1 Westland Sea King ASaC7
* 5 FOAEW
* 6 Specifications (Sea King HAS.5)
* 7 References
* 8 External links
* 9 Related content
[edit]
General history
The first flight of the Westland Sea King, a Mk. 1, took place on 7 May 1969, with the first production aircraft entering Royal Navy service that same year. The basic ASW Sea King has been upgraded numerous times, becoming the HAS. Mk 2, 5 and 6, the latter of which has been replaced by probably the most advanced ASW helicopter currently in the world, the Westland Merlin.
Other versions of the Sea King have also been produced. The HC.Mk 4 variant is still in service and remains an important asset for amphibious assaults. It is capable of transporting 28 fully equipped troops with a range of 400 miles (640 km). Some Mk. 5s of the ASW Sea King were adapted for Search and Rescue or SAR.
One of the most vital variants of the Sea King is the ASaC (Airborne Surveillance and Area Control), formally known as Airborne Early Warning (AEW). The AEW capability had been lost when the Fairey Gannet was withdrawn after the last of the RN's Fleet carriers, HMS Ark Royal, was decommissioned in 1978. During the Falklands War a number of warships were lost, with casualties, due to the lack of an indigenous AEW presence - the RAF Shackleton AEW.2 proposed fleet cover was too unresponsive and at too great a distance to be practical. The first of this Sea King variant came into operational service in 1985, being deployed by No. 849 Squadron FAA. The current ASaC Sea King is the Mk. 7, which is deployed on the RN's aircraft carriers.
A dedicated Search and Rescue version (Sea King HAR3) was developed for the Royal Air Force, and the first of 15 entered service from September 1977 to replace the Westland Whirlind HAR10. In 1992 six further aircraft were ordered to replace the last remaining Westland Wessex helicopters in the Search and Rescue role. The six (Sea King HAR3A) had updated systems and digital engine control.
[edit]
Users
The Westland version has been exported to Australia, Belgium, Egypt, Germany, India, Norway, Pakistan and Qatar. The last Sea King to be built by Westland was at Yeovil in 1990 and the last of the Royal Navy Sea King ASW helicopters was retired in 2003, being replaced by the Westland Merlin HM.1. The ASaC or AEW variant is expected to be replaced in time for the two Queen Elizabeth-class aircraft carriers. The types in contention is a Merlin derivative, a V-22 Osprey variant or a derivative of the E-2C Hawkeye. The HC4 commando variant is also expected to be replaced within the next decade along with SAR variants. 330 were produced in total.
[edit]
Australian Experience
Royal Australian Navy Sea Kings, Shark 07 and Shark 02
Enlarge
Royal Australian Navy Sea Kings, Shark 07 and Shark 02
The Sea King replaced the Westland Wessex HAS.31 as the RAN's ASW helicopter from 1974. A typical fit included Racal ARI 5955/2 lightweight radar, Racal Navigation System RNS252, Racal Doppler 91, ADF Bendix/King KDF 806A and Tacan AN/ARN 118. All serving Mk50 airframes were upgraded to Mk50A standard, through a mid-life extension. In 1995, the AQS-13B sonar was removed and since then, the Sea King's main role changed to maritime utility support. During the first five years of operation, a number of aircraft were lost due primarily to a loss of main gearbox oil.
The future of the Fleet Air Arm's Sea King fleet is in question after what is speculated to be mechanical failure (investigation pending) caused an Australian Sea King providing humanitarian aid in Indonesia in April, 2005, to crash. The crash resulted in the deaths of nine Australian military personnel. Australian Sea Kings played an integral part in the relief effort for the December 2004 Indian Ocean Tsunami, particularly in Indonesia's Aceh province where they delivered medical teams and aid supplies from Royal Australian Navy ships.
[edit]
Operational history
[edit]
Falklands War
The Sea King proved her remarkable versatility and endurance during the Falklands War, performing mainly anti-submarine search and attack, also replenishment, troop transport and Special Forces insertions into the occupied islands. On 23 April 1982, a Sea King HC4 was ditched while performing a risky vertical replenishment mission, at night, while operating from the flagship HMS Hermes.
Another Sea King was lost, again from ditching into the sea, due to a systems malfunction. All of the Sea King's crew were rescued. Five days later another Sea King, again from Hermes, crashed into the sea due to an altimeter problem; all crew were rescued.
Royal Air Force Westland Sea King HAR3A search and rescue variant, seen at Ilfracombe, north Devon, England
Enlarge
Royal Air Force Westland Sea King HAR3A search and rescue variant, seen at Ilfracombe, north Devon, England
One of the most mysterious events of the war occurred on 17th May, when a Sea King HC Mk4 landed at Punta Arenas, Chile and was subsequently destroyed by its crew. The three crew later gave themselves up to Chilean authorities. They were returned to the UK and were given gallantry awards for the numerous dangerous missions that they had undertaken. (Link to Naval History website with full explanation & photographs)
One of the most tragic accidents during the Falklands War came on 19 May. A helicopter had been transporting SAS troops to HMS Intrepid from Hermes and was attempting to land on Intrepid. A thump was heard, and the Sea King dipped and crashed into the sea, killing 22 men. However, nine survived this accident, but only after jumping out of the Sea King just before the helicopter crashed. Bird feathers were found in the debris of the crash, which appeared to suggest that this accident was the result of a bird, though this theory is debated. The SAS lost 18 men in that crash, their highest number of casualties on one day since World War II. The Royal Signals lost one man and the RAF one man.
[edit]
Gulf War I and II
A Sea King in service with the Royal Norwegian Navy
Enlarge
A Sea King in service with the Royal Norwegian Navy
The Sea Kings during the 1991 Gulf War had a limited role, compared to their wide ranging task during the Falklands War. Its roles included air-sea rescue, inter-ship transporting duties and transporting Royal Marines onto any suspect ships that refused to turn around during the enforced embargo on Iraq.
During the 2003 invasion of Iraq, Sea King ASaC Mk7 from 849 NAS operated off the flagship of the Royal Navy Task Force HMS Ark Royal. Sea King HC Mk4s also deployed from HMS Ocean (operated by 845 NAS) landing the lead invasion forces on the Al Faw peninsula, as well as Sea King HAS Mk6 from RFA Argus (operated by No. 820 NAS).
On March 22, 2003, two AEW Sea Kings from 849 NAS operating from Ark Royal collided over the Persian Gulf, killing six Britons and one American.
During the Gulf Wars the Sea Kings provided logistical support, transporting Royal Marines from their off-shore bases on Ark Royal, Ocean and other ships on to land in Kuwait.
[edit]
Balkans
The Sea King participated in the UN's intervention in Bosnia, with Sea Kings operated by No. 820 NAS, No. 845 NAS. The Sea Kings from 820 NAS were deployed from Royal Fleet Auxiliary ships Fort Grange and Olwen. They provided logistical support, rather than the ASW role that the Squadron was geared towards, ferrying troops as well as supplies across the Adriatic Sea. They performed over 1,400 deck landings, flying in excess of 1,900 hours. The Sea Kings from 845 NAS performed vital casualty evacuation and other tasks. Their aircraft were hit numerous times, though no casualties were incurred.
During NATO's intervention in Kosovo, a British led operation, Sea Kings from No. 814 Squadron FAA, operated aboard HMS Ocean and RFA Argus and also on destroyers and frigates. They provided search and rescue (SAR), as well as transporting troops and supplies.
[edit]
Lebanon
In July 2006 Sea King HC.4 helicopters from RNAS Yeovilton were deployed to Cyprus to assist with the evacuation of British citizens from Lebanon.
[edit]
Variants
German Sea King
Enlarge
German Sea King
Indian Navy Sea King 42B on INS Mumbai at Portsmouth, UK
Enlarge
Indian Navy Sea King 42B on INS Mumbai at Portsmouth, UK
* Sea King HAS.Mk 1 - The first anti-submarine version for the Royal Navy. The Westland Sea King first flew in 1969.
* Sea King HAS.Mk 2 - Upgraded anti-submarine version for the Royal Navy. Some were later converted for AEW (Airborne Early Warning) duties.
o Sea King AEW.Mk 2A - Originally two Sea King HAC.2s helicopters were later converted into AEW aircraft, after shortcomings in that role were revealed with tragic consequences during the 1982 Falklands War.
* Sea King HAR.3 - Search and rescue version for the Royal Air Force. The first search and rescue versions of the Sea King were produced for the Royal Norwegian Air Force, and the German Navy, and later for the Belgian Air Force. The Sea King HAR.Mk 3 is in UK service with 22, and 202 Squadrons of the RAF.
* Sea King HAR.3A - Upgraded search and rescue version of the Sea King HAR.Mk 3 for the Royal Air Force.
* Sea King HC.Mk 4 - Commando assault, utility transport version for the Royal Navy and is still in service with 845, 846 and 848 squadrons based at RNAS Yeovilton. The Sea King HC.Mk 4 is capable of transporting 28 fully equipped troops. (Also referred to as Westland Commando).
* Sea King Mk.41 - Search and rescue version of the Sea King HAS.Mk 1 for the German Navy. 23 built.
* Sea King Mk.4X - Two helicopters for trials at the Royal Aircraft Establishment at Farnborough.
* Sea King Mk.42 - Anti-submarine warfare version of the Sea King HAS.Mk 1 for the Indian Navy. 12 built.
* Sea King Mk.42A - Anti-submarine warfare version of the Sea King HAS.Mk 2 for the Indian Navy. 3 built.
* Sea King Mk.42B - Anti-ship warfare version for the Indian Navy.
* Sea King Mk.42C - Search and rescue, utility transport version for the Indian Navy.
* Sea King Mk.43 - Search and rescue version of the Sea King HAS.Mk 1 for the Royal Norwegian Air Force. 10 built.
* Sea King Mk.43A - Uprated version of the Sea King Mk.43 for the Royal Norwegian Air Force.
* Sea King Mk.43B - Upgraded version of the Sea King Mk.43 for the Royal Norwegian Air Force.
* Commando Mk.1 - Assault and utility transport version for the Egyptian Air Force.
* Commando Mk.2 - Assault and utility transport version for the Egyptian Air Force.
* Commando Mk.2A - Assault and utility transport version for the Qatar Emiri Air Force.
* Sea King Mk.45 - Anti-submarine and anti-ship warfare version of the Sea King HAS.Mk 1 for the Pakistan Navy. 6 built.
* Sea King Mk.45A - One Sea King Mk.45A helicopter was sold to Pakistan as part of a follow-on order.
* Commando Mk.2B - VIP transport helicopter for the Egyptian Air Force.
* Sea King Mk.47 - Anti-submarine version of the Sea King HAS.Mk 2 for the Egyptian Navy. 6 built.
* Commando Mk.2C - VIP transport helicopter for the Qatar Emiri Air Force.
* Commando Mk.2E - Electronic warfare version for the Egyptian air force.
* Commando Mk.3 - Anti-ship warfare version for the Qatar Emiri Air Force.
* Sea King Mk.48 - Search and rescue version for the Belgian Air Force. 5 built.
* Sea King Mk.50 - Multi-role version for the Royal Australian Navy. 10 built.
* Sea King Mk.50A - Two Sea King Mk.50As were sold to the Royal Australian Navy as part of a follow-on order.
* Sea King Mk.50B -Upgraded multi-role version for the Royal Australian Navy.
* Sea King HAS.Mk 5 - Upgraded anti-submarine warfare version for the Royal Navy, and later converted into the Sea King HAR.Mk 5 for SAR (Search and Rescue) duties.
* Sea King HAR.Mk 5 - Search and rescue version for the Royal Navy.
* Sea King AEW.Mk 5 - Three Sea King HAS.Mk 5s were converted into AEW helicopters for the Royal Navy.
* Sea King HAS.Mk 6 - Upgraded Anti-submarine warfare version for the Royal Navy.
* Westland Sea King AEW 7 - Upgraded AEW version for the Royal navy.
[edit]
Westland Sea King ASaC7
The Westland Sea King ASaC7 (called the 'Bag' by its crew) is a Royal Navy helicopter operated in the Airborne Surveillance and Area Control (ASaC) role, previously the Airborne Early Warning (AEW) role. The type operates from the Royal Navy's Invincible class aircraft carriers.
The ASaC7 is a further upgrade of the AEW7, itself an upgraded version of the original Westland Sea King AEW2A, which entered service as a result of the lessons learned during the Falklands War. A crash programme saw two Sea Kings modified and flying within eleven weeks. The first AEW2As were deployed to the South Atlantic soon after the war aboard the newly commissioned HMS Illustrious. 13 Sea Kings were eventually modified. The main modification is the addition of the Thales Searchwater radar which is attached to the side of the fuselage on a swivel arm. This allows the helicopter to lower the radar below the fuselage in flight and to raise it for landing. The main role of the ASaC Sea King is detection of low flying attack aircraft. It also provides interception/attack control and Over-the-Horizon targeting for surface launched weapon systems. In comparison to older versions, the new radar enables the ASaC7 to simultaneously track 400 targets instead of the earlier 250 targets.
[edit]
FOAEW
The replacement for the fleet will be the Future Organic Airborne Early Warning (FOAEW) aircraft, which will operate from the UK's future carrier, CVF. The large size of these ships (three times the displacement of the current Invincible class) allow a greater choice in aircraft to fulfil the requirement. Current options include:
* Merlin (EH101) helicopter
* E-2C Hawkeye
* UAVs
[edit]
Specifications (Sea King HAS.5)
General characteristics
* Crew: Two to four, depending on the mission
* Length: 54 ft 9 in (16.69 m)
* Rotor diameter: 61 ft 0 in (18.90 m)
* Height: 16 ft 10 in (5.13 m)
* Disc area: 3,020 ft² (280 m²)
* Empty weight: 13,672lb (6,202kg)
* Loaded weight: 21,000lb (9,525kg)
* Max takeoff weight: 21,400 lb (9,707 kg)
* Powerplant: 2× Rolls-Royce Gnome H1400-2 turboshafts, 1,660 shp (1,238 kW each) each
Performance
* Maximum speed: 144 mph (232 km/h)
* Range: 764 miles (1,230 km)
* Service ceiling: 10,000 ft (3,050 m)
* Rate of climb: 2,020 ft/min (10.3 m/s)
* Disc loading: lb/ft² (kg/m²)
* Power/mass: hp/lb (kW/kg)
For an explanation of the units and abbreviations in this list, please see aviation-related units.
[edit]
References
* John Chartres, Westland Sea King: Modern Combat Aircraft 18, first edition 1984, Ian Allen, Surrey UK, ISBN 0-7110-1394-2.
[edit]
External links
* helis.com Section on the Westland Sea King
* RAN Sea King
* Royal Navy Sea Kings
* RAF Sea Kings
* July 2006 BBC News article on Sea King deployment to assist with the evacuation from Lebanon
[edit]
Related content
Related development
H-3 Sea King
Related lists
* List of active United Kingdom military aircraft
Object Details: The attached composite shows the Sun as it appeared on November 8, 2020 through two of the scopes in our observatory at my home here in upstate, NY. Although it's been snowing & cloudy for months and one of the 'origami-style' outriggers of our RoR observatory remains locked in a two foot thick block of ice & snow, early last November we had a highly unusual streak of 7
days containing at least some time when the sun was visible.
As luck would have it, during that time at huge active region / sunspot group was transiting the
visible surface. Although the seeing was horrible this particular day I was fortunate to have enough of time to utilize all wavelengths I've been using lately. Therefore taking advantage of the fact that it is now raining, I'd thought I'd check them out and try some quick processing.
As can been seen, at this time AR2781 consisted of a huge single spot, larger in diameter than the Earth, trailing down through smaller active regions to end in two additional large spots. Comparing it quickly to a shots taken a few days earlier, although the seeing was much worse this day, it appears the group may be elongating, with the two larger spots near the bottom also separating in the horizontal direction and the core of the largest spot at the top seems to be developing a 'bulls-eye like' appearance. The latter being most evident in the color version of the Infrared image, I'm assuming this is related to, or a result of, the light-bridges mentioned in the shots taken two days earlier, a link to which is attached here:
www.flickr.com/photos/homcavobservatory/50657578913/
Image Details: The attached was taken by Jay Edwards at the HomCav Observatory at my home here in upstate, NY on November 8, 2020. The top images were taken with a lum filter, while those at the bottom used infrared (IR), ultraviolet (UV) and methane (CH4) filters (all in addition to an over-the-aperture' off-axis home-made Baader material white light solar filter).
The full disk image, utilizing a Canon 700D controlled by APT & a full aperture Kendricks light light filter on an ED80T CF (i.e. an Orion 80mm, f/6 carbon-fiber triplet apochromatic refractor), and a 0.8X Televue field flattener / focal reducer, is meant merely as a reference for location and it is a single frame shot at 1/4000 and ISO 100.
The 'closeup' 8-inch shots were taken using an ASI290MC 'planetary camera / auto-guider' controlled by SharpCap Pro on a vintage 1970, 8-inch, f/7 Criterion newtonian reflector with the above mentioned homemade, off-axis Baader white-light solar filter. Taken as video clips, each is a stack of best several hundred frames out of a few thousand taken for each clip.
Both of these scopes are mounted on and tracked by a Losmandy G-11 running a Gemini 2 control system and the images were processed using a combination of AS3, Registax & PSP. The UV, IR & CH4 images have also been duplicated and having then had their luminance channels extracted, are placed next to their corresponding 'one-shot-color' images.
Processed in a combination of Astrostakkert, Registax, PixInsight & PaintShopPro, as presented here the composite has been resized down to HD resolution and the bit depth lowered to 8 bits per channel.
Object Details: This time of year in the Northern Hemisphere brings what many astrophotographers refer to as 'Spring Galaxy Season'. Having taken some shots of M65 & M66 at this time last year, as the first test images since re-opening the RoR observatory I built at my home here in upstate, NY after it's long winter slumber, I thought I'd try to complete the images required for the attached composite.
The Leo Triplet is a group of three gravitationally interacting galaxies consisting of NGC 3628 (left, aka 'The Hamburger Galaxy'), M65 (upper right) and M66 (lower right). All three galaxies are classified as spirals, and their structures are being disrupted as they gravitationally interact with each other. From Earth's perspective each is tilted at a different angle, with NGC 3628 oriented nearly 'edge-on' and thus showing a very prominent central dust lane bisecting the galaxy.
The group lies approximately 35 million light-years from Earth, and at that distance, the wide-field view shown at center covers approximately 2 million light-years in diameter, edge-to-edge. M65 has a diameter of approximately 90,000 light-years, M66 is slightly larger at 95,000 light-years while NGC 3628 is about 100,000 light-years in diameter (comparable to the diameter of our own Milky-Way).
Among other effects, their gravitational interaction results in the asymmetric spiral arms and off-center core of M66, caused by the combined pull of M65 & NGC 3628; as well as a 300,000 light-year long 'tidal stream' of stars trailing from NGC 3628, part of which is faintly visible to the lower left of the galaxy in the wide-field image. M65 & M66 each contain about 200 billion stars while NGC 3628 contains over 300 billion, with it's tidal stream alone consisting of approximately 500 million solar masses.
M65 & M66 lie about 160,000 light-years apart, which is comparable to the distance between our own Milky-Way and it's satellite galaxy The Large Magellanic Cloud. NGC 3682 lies over 300,000 light-years from the M65 / M66 pair and simulations of their movement though time suggest that NGC 3628 & M66 came within 80,000 light-years of each other 800 million years ago. The asymmetry of M66 & it's off-center core and the stellar tidal stream of NGC 3628 as well as other disruptions and asymmetries maybe be remnants of the result of this close encounter.
When I first noticed the 'mottled' appearance faintly visible though-out the wide-field image after stacking (most prominent on the lower right and the left sides), I thought it might be noise, yet it looked somewhat suspicious. When comparing it's relative location with very deep images of this region, it seems to align with the Integrated Flux Nebula (IFN) surrounding this area, which until then I did not know was even present in this region of the sky. For more detail regarding IFN, probably most often imaged around the M81 / M82 galaxy pair, please see the shot at the following link where it is much more prominent and thus 'easier' to image
(relatively speaking of course) - www.flickr.com/photos/homcavobservatory/48762740192/in/al...
Image Details: The attached images were taken Jay Edwards on March 21, 2020 and April 8th & 9th, 2021 and consist of a total of over four hours of integration time (in addition to the associated bias, flat & dark calibration frames).
Since I often shoot simultaneously using twin unmodded Canon 700D (t5i) DSLRs, the wide-field shot at center was imaged with an 80mm f/6 carbon-fiber triplet apochromatic refractor (i.e. an Orion ED80T CF) connected to a Televue 0.8X field flattener / focal reducer; while the individual shots of NGC 3628 (left) and M65/M66 (right) were taken with a vintage 1970 8-inch, f/7 Criterion newtonian reflector at prime focus. The 80mm was piggybacked on the 8-inch, and the cameras were controlled by APT. These optics were tracked using a Losmandy G-11 mount running a Gemini 2 control system and guided using PHD2 to control a ZWO ASI290MC planetary camera / auto-guider in an 80mm f/6 Celestron 'short-tube' refractor which itself was piggybacked on top of the 80mm apo.
Processed using a combination of DSS, PixInsight and PaintShopPro, as presented here the wide-field and 'close-up' images have only had their edges cropped slightly, and since they utilized identical cameras, they show the FOVs relative to each other for the 80mm & 8-inch rigs. After assembly the entire composite has been re-sized down to HD resolution (less than 1/6th it's original resolution) and the bit depth has been lowered to 8 bits per channel.
I'm hoping to re-visit this area in the future using one of my CCDs to emphasize the IFN permeating this region & the various gravitational disruption features within the galaxies themselves.
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is posed on the passing loop at the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; alongside is English Electric Balloon 701 which has gained its Routemaster livery which it worse for the 1991 and 1992 seasons after it received a refubishment - both are running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back. Conductor Cheryl has grabbed her smartphone to get a photo of all the enthusiasts taking pictures of these two trams together in 'active preservation'.
Posted via email to ☛ HoloChromaCinePhotoRamaScope‽: cdevers.posterous.com/enterprise-0. See the full gallery on Posterous ...
• • • • •
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Space Shuttle Enterprise:
Manufacturer:
Rockwell International Corporation
Country of Origin:
United States of America
Dimensions:
Overall: 57 ft. tall x 122 ft. long x 78 ft. wing span, 150,000 lb.
(1737.36 x 3718.57 x 2377.44cm, 68039.6kg)
Materials:
Aluminum airframe and body with some fiberglass features; payload bay doors are graphite epoxy composite; thermal tiles are simulated (polyurethane foam) except for test samples of actual tiles and thermal blankets.
The first Space Shuttle orbiter, "Enterprise," is a full-scale test vehicle used for flights in the atmosphere and tests on the ground; it is not equipped for spaceflight. Although the airframe and flight control elements are like those of the Shuttles flown in space, this vehicle has no propulsion system and only simulated thermal tiles because these features were not needed for atmospheric and ground tests. "Enterprise" was rolled out at Rockwell International's assembly facility in Palmdale, California, in 1976. In 1977, it entered service for a nine-month-long approach-and-landing test flight program. Thereafter it was used for vibration tests and fit checks at NASA centers, and it also appeared in the 1983 Paris Air Show and the 1984 World's Fair in New Orleans. In 1985, NASA transferred "Enterprise" to the Smithsonian Institution's National Air and Space Museum.
Transferred from National Aeronautics and Space Administration
• • •
Quoting from Wikipedia | Space Shuttle Enterprise:
The Space Shuttle Enterprise (NASA Orbiter Vehicle Designation: OV-101) was the first Space Shuttle orbiter. It was built for NASA as part of the Space Shuttle program to perform test flights in the atmosphere. It was constructed without engines or a functional heat shield, and was therefore not capable of spaceflight.
Originally, Enterprise had been intended to be refitted for orbital flight, which would have made it the second space shuttle to fly after Columbia. However, during the construction of Columbia, details of the final design changed, particularly with regard to the weight of the fuselage and wings. Refitting Enterprise for spaceflight would have involved dismantling the orbiter and returning the sections to subcontractors across the country. As this was an expensive proposition, it was determined to be less costly to build Challenger around a body frame (STA-099) that had been created as a test article. Similarly, Enterprise was considered for refit to replace Challenger after the latter was destroyed, but Endeavour was built from structural spares instead.
Service
Construction began on the first orbiter on June 4, 1974. Designated OV-101, it was originally planned to be named Constitution and unveiled on Constitution Day, September 17, 1976. A write-in campaign by Trekkies to President Gerald Ford asked that the orbiter be named after the Starship Enterprise, featured on the television show Star Trek. Although Ford did not mention the campaign, the president—who during World War II had served on the aircraft carrier USS Monterey (CVL-26) that served with USS Enterprise (CV-6)—said that he was "partial to the name" and overrode NASA officials.
The design of OV-101 was not the same as that planned for OV-102, the first flight model; the tail was constructed differently, and it did not have the interfaces to mount OMS pods. A large number of subsystems—ranging from main engines to radar equipment—were not installed on this vehicle, but the capacity to add them in the future was retained. Instead of a thermal protection system, its surface was primarily fiberglass.
In mid-1976, the orbiter was used for ground vibration tests, allowing engineers to compare data from an actual flight vehicle with theoretical models.
On September 17, 1976, Enterprise was rolled out of Rockwell's plant at Palmdale, California. In recognition of its fictional namesake, Star Trek creator Gene Roddenberry and most of the principal cast of the original series of Star Trek were on hand at the dedication ceremony.
Approach and landing tests (ALT)
Main article: Approach and Landing Tests
On January 31, 1977, it was taken by road to Dryden Flight Research Center at Edwards Air Force Base, to begin operational testing.
While at NASA Dryden, Enterprise was used by NASA for a variety of ground and flight tests intended to validate aspects of the shuttle program. The initial nine-month testing period was referred to by the acronym ALT, for "Approach and Landing Test". These tests included a maiden "flight" on February 18, 1977 atop a Boeing 747 Shuttle Carrier Aircraft (SCA) to measure structural loads and ground handling and braking characteristics of the mated system. Ground tests of all orbiter subsystems were carried out to verify functionality prior to atmospheric flight.
The mated Enterprise/SCA combination was then subjected to five test flights with Enterprise unmanned and unactivated. The purpose of these test flights was to measure the flight characteristics of the mated combination. These tests were followed with three test flights with Enterprise manned to test the shuttle flight control systems.
Enterprise underwent five free flights where the craft separated from the SCA and was landed under astronaut control. These tests verified the flight characteristics of the orbiter design and were carried out under several aerodynamic and weight configurations. On the fifth and final glider flight, pilot-induced oscillation problems were revealed, which had to be addressed before the first orbital launch occurred.
On August 12, 1977, the space shuttle Enterprise flew on its own for the first time.
Preparation for STS-1
Following the ALT program, Enterprise was ferried among several NASA facilities to configure the craft for vibration testing. In June 1979, it was mated with an external tank and solid rocket boosters (known as a boilerplate configuration) and tested in a launch configuration at Kennedy Space Center Launch Pad 39A.
Retirement
With the completion of critical testing, Enterprise was partially disassembled to allow certain components to be reused in other shuttles, then underwent an international tour visiting France, Germany, Italy, the United Kingdom, Canada, and the U.S. states of California, Alabama, and Louisiana (during the 1984 Louisiana World Exposition). It was also used to fit-check the never-used shuttle launch pad at Vandenberg AFB, California. Finally, on November 18, 1985, Enterprise was ferried to Washington, D.C., where it became property of the Smithsonian Institution.
Post-Challenger
After the Challenger disaster, NASA considered using Enterprise as a replacement. However refitting the shuttle with all of the necessary equipment needed for it to be used in space was considered, but instead it was decided to use spares constructed at the same time as Discovery and Atlantis to build Endeavour.
Post-Columbia
In 2003, after the breakup of Columbia during re-entry, the Columbia Accident Investigation Board conducted tests at Southwest Research Institute, which used an air gun to shoot foam blocks of similar size, mass and speed to that which struck Columbia at a test structure which mechanically replicated the orbiter wing leading edge. They removed a fiberglass panel from Enterprise's wing to perform analysis of the material and attached it to the test structure, then shot a foam block at it. While the panel was not broken as a result of the test, the impact was enough to permanently deform a seal. As the reinforced carbon-carbon (RCC) panel on Columbia was 2.5 times weaker, this suggested that the RCC leading edge would have been shattered. Additional tests on the fiberglass were canceled in order not to risk damaging the test apparatus, and a panel from Discovery was tested to determine the effects of the foam on a similarly-aged RCC leading edge. On July 7, 2003, a foam impact test created a hole 41 cm by 42.5 cm (16.1 inches by 16.7 inches) in the protective RCC panel. The tests clearly demonstrated that a foam impact of the type Columbia sustained could seriously breach the protective RCC panels on the wing leading edge.
The board determined that the probable cause of the accident was that the foam impact caused a breach of a reinforced carbon-carbon panel along the leading edge of Columbia's left wing, allowing hot gases generated during re-entry to enter the wing and cause structural collapse. This caused Columbia to spin out of control, breaking up with the loss of the entire crew.
Museum exhibit
Enterprise was stored at the Smithsonian's hangar at Washington Dulles International Airport before it was restored and moved to the newly built Smithsonian's National Air and Space Museum's Steven F. Udvar-Hazy Center at Dulles International Airport, where it has been the centerpiece of the space collection. On April 12, 2011, NASA announced that Space Shuttle Discovery, the most traveled orbiter in the fleet, will be added to the collection once the Shuttle fleet is retired. When that happens, Enterprise will be moved to the Intrepid Sea-Air-Space Museum in New York City, to a newly constructed hangar adjacent to the museum. In preparation for the anticipated relocation, engineers evaluated the vehicle in early 2010 and determined that it was safe to fly on the Shuttle Carrier Aircraft once again.
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is posed on the passing loop at the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; alongside is English Electric Balloon 701 which has gained its Routemaster livery which it worse for the 1991 and 1992 seasons after it received a refubishment - both are running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back.
The highlight of the late summer bank holiday weekend was that of 1952 Roberts-built Coronation tramcar 304 making a much-anticipated return to the Blackpool Promenade, the result of a years' work by Brian Lyndop to jump through all the necessary hoops such as electricial safety, engineering assesments and training due to the different control system inside this tram, as well as type training for the drivers (of which several drivers gave up their own free time to train up to drive this tram). 304 starred on TV in Channel 4's 'Salvage Squad' program where it underwent a full restoration back to original condition, and was originally one of 25 from this class of graceful tram built by Charles Roberts & Co between 1952-1954 (this being built in 1952) for use along the promenade. What makes this tram special is that it still retains its original VAMBAC control system (Variable Automatic Multinotch Braking and Acceleration Control) which was a British development of an American design which had been used in trams such as, I believe, the PCC cars in San Francisco - and worthy of note is that the equipment from 304 went on show for the Festival of Britain in 1951... whilst I am not sure how the system actually works, the concept was to provide smoother acceleration and braking all through just a single control lever. The problem though was that the system required lots of ventilation, and open vents to electrical systems beside a west-facing seafront isn't a particularly good combination - sand and water would enter the mechanism and would short circuit on the acceleration side, whilst at other times there were issues with the brakes not working (though this might have been caused more by something else, read on...). The Coronation trams (or 'Spivs' as the platform staff called them) had four motors instead of the usual two seen on other trams - these were not just to haul around the exceptionally heavy tramcar around (each tram weighed in at a staggering 20 Tons), but also to provide enough power for good acceleration and a good top speed - the problem though was that this could never really be utilised because the trams got caught behind the previous service (the original idea had been to replace Balloons with these on a higher frequency service - sounds familiar to modern day bus route planning)... the other problem with the four motors was how thirsy they were on the electricity; many time they would draw so much current they would trip the breakers in the substations, rendering a whole section of the tramway (and therefore any trams on it) dead and immobile. The heavy body led to several axles fracturing in addition to wheelsets breaking (these being rubber-sandwiched sets and so needed specialist attention and more frequent maintenance), whilst the roofs were prone to leaking - 304 was the very first Coronation delivered, and it was even said at the time that the roof was leaking even whilst it was being taken off the low-loader on delivery.
To cut down on their weight, the steel panels of the trams (which, it should be noted, were built by a company more familiar with railway wagons) were replaced by aluminium ones, and I believe there may have been upward-facing skylights which were panelled over too, whilst the heavyweight batteries providing backup power to the VAMBAC system were removed entirely to save further weight... the problem with this idea was that the batteries kept the system ticking over when the tram was on a neutral section of unpowered track (a neutral section being the divide between the overhead power coming from different substations), and by removing them the VAMBAC system reset everytime the tram went through a neutral section; what this meant was that if the tram went through the section whilst braking, the system reset and the brakes came off regardless of the position of the control lever - to get the brakes to work again, the control lever had to put back to position 0 and then put back ninto the braking positions: in some cases there simply wasn't enough time to do this, and on other occasions the driver was unaware of this and so the tram was reported as having a full brake failure. All of these problems led to most trams losing their VAMBAC controls in about 1963-65 in favour of more traditional Z-type controllers salvaged from English Electric Railcoaches, the converted Coronations being referred to as "Z Cars". In 1968 the class were renumbered, and 304 became 641 (the series was 641-664) but by this time were already being withdrawn and some of them scrapped; by 1971 only 660, 641 and 663 remained (the latter two having gone off to museums whilst 660 had been preserved by Blackpool Transport). 313 had been the first to be scrapped, in 1965 and so never saw itself renumbered. The last Coronation ran in normal service in 1975.
The Coronations were by far the most luxurious trams on the Blackpool system, but were also by far the most expensive. due to problems with the control system and specialised equipment, repair bills went through the roof; meanwhile the debt to buy these trams in the first place was still not even paid off when the entire class had been withdrawn from service! And all the problems associated with these trams brought the system to its knees and almost saw it off. However, the class had still remained popular with passengers and so forward-thinking preservation groups managed to save representatives from the group so future generations could enjoy their good looks and smooth ride.
304 was stored at Blackpool until 1975 when it was moved to the National Tramway Museum store at Clay Cross. Later it moved to Burtonwood after being acquired by the Merseyside Tramcar Preservation Society for use on a possible heritage tramway in Bewsey, Warrington. No progress was made and in 1984 the MTPS decided to concentrate resources on their preserved Liverpool trams and No. 304 passed to the Lancastrian Transport Group.
It was moved to the St.Helens Transport Museum in 1986 and restoration work started in 1993. This involved underframe overhaul, new flooring and a complete rewiring, partly funded by the Fylde Tramway Society. Work stalled following access restrictions at the St. Helens site but in 2002 the tram was selected as a project to feature in Channel 4's "Salvage Squad" series.
No. 304 returned to Blackpool Transport's depot in June 2002 for an intensive period of restoration work that culminated in the tram returning to the Promenade rails on 6th January 2003 for the finale of the Salvage Squad filming. The programme was broadcast on 17th February 2003 and was watched by over 2.5 million viewers.
In this photo, 304 is posed on the passing loop at the Fleetwood ferry terminal, back on the tramway for the very first time in several years in revenue-earning service on Heritage special services; alongside is English Electric Balloon 701 which has gained its Routemaster livery which it worse for the 1991 and 1992 seasons after it received a refubishment - both are running the final daytime Heritage service to close down the 2014 season, this being the late afternoon trip to Fleetwood and back.
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil
U.S. Air Force Fact Sheet
E-3 SENTRY (AWACS)
E-3 Sentry celebrates 30 years in Air Force's fleet
Mission
The E-3 Sentry is an airborne warning and control system, or AWACS, aircraft with an integrated command and control battle management, or C2BM, surveillance, target detection, and tracking platform. The aircraft provides an accurate, real-time picture of the battlespace to the Joint Air Operations Center. AWACS provides situational awareness of friendly, neutral and hostile activity, command and control of an area of responsibility, battle management of theater forces, all-altitude and all-weather surveillance of the battle space, and early warning of enemy actions during joint, allied, and coalition operations.
Features
The E-3 Sentry is a modified Boeing 707/320 commercial airframe with a rotating radar dome. The dome is 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and is held 11 feet (3.33 meters) above the fuselage by two struts. It contains a radar subsystem that permits surveillance from the Earth's surface up into the stratosphere, over land or water. The radar has a range of more than 250 miles (375.5 kilometers). The radar combined with an identification friend or foe, or IFF, subsystem can look down to detect, identify and track enemy and friendly low-flying aircraft by eliminating ground clutter returns that confuse other radar systems.
Major subsystems in the E-3 are avionics, navigation, communications, sensors (radar and passive detection) and identification tools (IFF/SIF). The mission suite includes consoles that display computer-processed data in graphic and tabular format on video screens. Mission crew members perform surveillance, identification, weapons control, battle management and communications functions.
The radar and computer subsystems on the E-3 Sentry can gather and present broad and detailed battlefield information. This includes position and tracking information on enemy aircraft and ships, and location and status of friendly aircraft and naval vessels. The information can be sent to major command and control centers in rear areas or aboard ships. In time of crisis, this data can also be forwarded to the president and secretary of defense.
In support of air-to-ground operations, the Sentry can provide direct information needed for interdiction, reconnaissance, airlift and close-air support for friendly ground forces. It can also provide information for commanders of air operations to gain and maintain control of the air battle.
As an air defense system, E-3s can detect, identify and track airborne enemy forces far from the boundaries of the United States or NATO countries. It can direct fighter-interceptor aircraft to these enemy targets. Experience has proven that the E-3 Sentry can respond quickly and effectively to a crisis and support worldwide military deployment operations.
AWACS may be employed alone or horizontally integrated in combination with other C2BM and intelligence, surveillance, and reconnaissance elements of the Theater Air Control System. It supports decentralized execution of the air tasking order/air combat order. The system provides the ability to find, fix, track and target airborne or maritime threats and to detect, locate and ID emitters. It has the ability to detect threats and control assets below and beyond the coverage of ground-based command and control or C2, and can exchange data with other C2 systems and shooters via datalinks.
With its mobility as an airborne warning and control system, the Sentry has a greater chance of surviving in warfare than a fixed, ground-based radar system. Among other things, the Sentry's flight path can quickly be changed according to mission and survival requirements. The E-3 can fly a mission profile approximately 8 hours without refueling. Its range and on-station time can be increased through in-flight refueling and the use of an on-board crew rest area.
Background
Engineering, test and evaluation began on the first E-3 Sentry in October 1975. In March 1977 the 552nd Airborne Warning and Control Wing (now 552nd Air Control Wing, Tinker Air Force Base, Okla.), received the first E-3s.
There are 32 aircraft in the U.S. inventory. Air Combat Command has 27 E-3s at Tinker. Pacific Air Forces has four E-3 Sentries at Kadena AB, Japan and Elmendorf AFB, Alaska. There is also one test aircraft at the Boeing Aircraft Company in Seattle.
NATO has 17 E-3A's and support equipment. The first E-3 was delivered to NATO in January 1982. The United Kingdom has seven E-3s, France has four, and Saudi Arabia has five. Japan has four AWACS built on the Boeing 767 airframe.
As proven in operations Desert Storm, Allied Force, Enduring Freedom, Iraqi Freedom, and Odyssey Dawn/Unified Protector the E-3 Sentry is the world's premier C2BM aircraft. AWACS aircraft and crews were instrumental to the successful completion of operations Northern and Southern Watch, and are still engaged in operations Noble Eagle and Enduring Freedom. They provide radar surveillance and control in addition to providing senior leadership with time-critical information on the actions of enemy forces. The E-3 has also deployed to support humanitarian relief operations in the U.S. following Hurricanes Rita and Katrina, coordinating rescue efforts between military and civilian authorities.
The data collection capability of the E-3 radar and computer subsystems allowed an entire air war to be recorded for the first time in the history of aerial warfare.
In March 1996, the Air Force activated the 513th Air Control Group, an AWACS Reserve Associate Program unit which performs duties on active-duty aircraft.
During the spring of 1999, the first AWACS aircraft went through the Radar System Improvement Program. RSIP is a joint U.S./NATO development program that involved a major hardware and software intensive modification to the existing radar system. Installation of RSIP enhanced the operational capability of the E-3 radar electronic counter-measures and has improved the system's reliability, maintainability and availability.
The AWACS modernization program, Block 40/45, is currently underway. Bock 40/45 represents a revolutionary change for AWACS and worldwide Joint Command and Control, Battle Management, and Wide Area Surveillance. It is the most significant counter-air battle management improvement in Combat Air Forces tactical Command and Control history. The Block 40/45 Mission Computer and Display upgrade replaces current 1970 vintage mission computing and displays with a true open system and commercial off-the-shelf hardware and software, giving AWACS crews the modern computing tools needed to perform, and vastly improve mission capability. Estimated fleet upgrades completion in ~2020.
General Characteristics
Primary Function: Airborne battle management, command and control
Contractor: Boeing Aerospace Co.
Power Plant: Four Pratt and Whitney TF33-PW-100A turbofan engines
Thrust: 20,500 pounds each engine at sea level
Rotodome: 30 feet in diameter (9.1 meters), 6 feet thick (1.8 meters), mounted 11 feet (3.33 meters) above fuselage
Wingspan: 145 feet, 9 inches (44.4 meters)
Length: 152 feet, 11 inches (46.6 meters)
Height: 41 feet, 9 inches (13 meters)
Weight: 205,000 pounds (zero fuel) (92,986 kilograms)
Maximum Takeoff Weight: 325,000 pounds (147,418 kilograms)
Fuel Capacity: 21,000 gallons (79,494 liters)
Speed: optimum cruise 360 mph (Mach 0.48)
Range: more than 5,000 nautical miles (9,250 kilometers)
Ceiling: Above 29,000 feet (8,788 meters)
Crew: Flight crew of four plus mission crew of 13-19 specialists (mission crew size varies according to mission)
Unit Cost: $270 million (fiscal 98 constant dollars)
Initial operating capability: April 1978
Inventory: Active force, 32 (1 test); Reserve, 0; Guard, 0
Point of Contact
Air Combat Command, Public Affairs Office; 130 Andrews St., Suite 202; Langley AFB, VA 23665-1987; DSN 574-5007 or 757-764-5007; e-mail: accpa.operations@langley.af.mil