View allAll Photos Tagged codon
L'autunno porta alle lagune venete stormi di anatidi dall'intero Continente europeo. Austeri moriglioni, diffidenti mestoloni, agilissime alzavole, compassate canapiglie e poi codoni, fischioni, moerette: popoli interi che si radunano, giocano, intrecciano voli in attesa che l'inverno transiti sugli specchi d'acqua. Tra questi anche regali germani nati tra i canneti e le barene e altri giunti dalle paludi sarmatiche, s'incontrano e intrecciano dialoghi, nella stessa lingua ancestrale della loro specie ..... ..
chega de inventariações, invenções, coleções... no final tudo se enterra e imagino-a consumida, mortinha, chupada, acabada e voando em outras galaxias...não tem esquina que nos proteja, você desencanto, canto errado e imagino wood em paris, podre de cansado e eu em bruxe-las apagado, andando lado a lado (o amigo e o amigo do amigo e eu educado) e digo chega, a abertura da exposição vou! guiado cego, cão pe /lado a lado, sem e codono, eduardo ou quase e graças e vamos meu amor e repito chega... e vejo no belas daqui o paulo da rocha genial mas o mesmo e de nada de discursos velhos...eu talvez mais feliz por passear no frio com sol na cara e brazil em exposições diarias e par/ques...beaucoup par/ques... quero muitos que te parquem e isso tudo no meu ritmo...
carlos pataca em visita.
On mileage accumulation testing prior to entering service for Great Western Railway, Bombardier-built Class 387/1 EMUs Nos. 378136 & 378134 speed south along the West Coast Mainline at Coton Lane, Tamworth forming 5K56 1404 Crewe - Wembley FOC on 30th August 2016. In the foreground are the composite pieces of what was once a temporary crossing point for vehicles, as there is gated access at this point for the engineers. Copyright Photograph John Whitehouse - all rights reserved
model: Emily
lago d'Orta, Italy
© All rights reserved. Use without my permission is illegal.
(wainting for Halloween)
Perchè uno si mette a fotografare le papere?!?
Lo so, mi potete accusare di essere "un marinaio d'acqua dolce", poichè scelgo la via del "vincere facile", ma, si sa, quando si è appassionati di ornitologia e di fotografia uno straccio di foto lo si vuole ardentemente portare a casa! Provate a fotografare un uccello della taglia di un cardellino oppure addirittura un rapace: vedrete quanto sia difficile ottenere dei risultati accettabili, dimensioni, luminosità, messa a fuoco, contrasto, scegliere il momento giusto... ho sprecato un numero considerevole di foto tentando di fotografare un animale (uccello, in questo caso) selvatico e alla fine mi sono accorto che per ottenere foto accettabili il modo migliore era di scattare a uccelli semi-domestici in un parco o in un giardino, dove gli animali sono abituati alla presenza dell'uomo e anzi sono curiosi nei confronti di quei buffi (senti chi parla di "buffo") esseri a due gambe (con i pantaloni, precisiamo!) che gironzolano con un arnese nero e lucido fra le mani cercando di fare dei ritratti il più possibile fotogenici...
Devo ammettere che per ottenere inquadrature più interessanti occorrerebbe fotografarli alla loro altezza, per enfatizzare la loro presenza e distinguersi dalla massa che fotografa le papere dall'alto in basso, per cambiare punto di vista... al solo fine di dare ai paperi l'importanza che meritano, .ma mi seccherebbe un pò sdraiarmi nell'erba bagnata e sporca degli escrementi delle stesse papere (oltre al dover fare attenzione agli steli d'erba - intrusi - che inevitabilmente spunterebbero nella foto finale)
Clangula Hyemalis, moretta codona (female) Finmark Norway
Scatto effettuato sempre dal gommone. Alcune morette, tra cui il maschio pubblicato nei giorni scorsi mi hanno deliziato con le loro frenetiche danze acquatiche. A dispetto delle temperatura e del ghiaccio presente a filo d'acqua!
Codone comune maschio in abito riproduttivo - Centro cicogne e anatidi - Racconigi (CN) - Canon 5D Mark III - Canon 400 f/5.6
Si tratta di un'anatra del genere Anas, di medie dimensioni, non c'è dimorfismo sessuale; guance e gola sono bianche, il resto del piumaggio del corpo è marrone chiaro chiazzato marrone scuro, il becco è grigio-azzurro con due vistose chiazze rosse attorno le narici, le zampe sono di color grigio. Rispetto al codone comune (Anas acuta), la coda è meno lunga e aguzza. Sia in natura che in cattività, vi sono esemplari caratterizzati dal piumaggio del corpo completamente bianco argenteo, mentre restano invariati i colori di becco e zampe. Per il bel aspetto è apprezzata ed allevata a scopo ornamentale, il suo carattere mite e socievole permette l'integrazione con altre specie di anatre. Sempre per fini ornamentali viene allevata anche la variante argentata, dal caratteristico piumaggio completamente bianco-argenteo, si tratta di esemplari leucistici. Lunghezza media: 46 cm. Apertura alare media: 87,5 cm. Peso medio adulto: 1.000 grammi. È originario del Centro America, in particolare delle isole dell'arcipelago delle Grandi e Piccole Antille, delle regioni settentrionali del Sudamerica e in misura minore è diffuso anche negli stati costieri del sud degli Stati Uniti, è inoltre presente una popolazione endemica delle isole Galapagos. Abita paludi, lagune salmastre, insenature marine, estuari, stagni occasionalmente d'acqua dolce e laghi poco profondi. La femmina depone dalle 6 alle 12 uova, la cova dura mediamente 25 giorni, gli anatroccoli impiegano circa 6 settimane per crescere e riuscire a volare. Si nutre di piante acquatiche, piccoli animali acquatici, semi, insetti e erba.
Moretta codona, Clangula hyemalis posa sul suo piedistallo al lago di Caldonazzo
Caldonazzo - Trentino - Italy
immagine ripresa presso il Centro Cicogne e Anatidi di Racconigi (CN) - 44°47'34.17"N - 7°39'46.89"E
2001 AAFES Exclusive Paratrooper Barbie #29474. I've named her Xyla.
I don't think I've ever had to think so hard for a theme! Had a lot of fun doing this :D
The mini papers in the background are Newton's Laws Of Motion, the Periodic Table, an Astrology Map and two of Einstein's formulas. Xyla's looking at a Codon Chart and I also have photos of Einstein, Newton and Tesla; three of my favourite scientists.
I thought the papers in the background would show up better, but the light from my window washed them out :c
In questa splendida giornata di sole e di inizio primavera, io penso a te...un fiore tra i fiori, la mia bellissima golden :)
Oggi avresti compiuto 15 anni, ma non sei più con noi...eppure riesco ancora a sentire sotto le mani il tocco morbido della tua testolina e il ticchettio delle unghie sul pavimento, vedo la tua bella codona frangiata che sbatte dappertutto festosa e il tuo bel muso piantato qua e là, intento a curiosare ed esplorare il mondo....tanti auguri piccola mia, sarai sempre con me...nel mio cuore ♥
L'area della laguna ha una superficie approssimativa di 125 ettari e, con le
circostanti sponde argilloso sabbiose (dune costiere, dossi e pineta
marittima), è popolata da una fauna ed una flora peculiari delle zone umide
rivierasche.
La flora sommersa è prevalentemente rappresentata da Zostera Marina e da
diverse specie di alghe. La parte terminale dello specchio acqueo, orientata
a sud ovest, presenta tratti di vegetazione a Phragmites australis e Juncus,
mentre le zone appena più lontane dalla laguna, in quello che è l'ex alveo del
fiume, ospitano specie più legate ad ambienti alofili e secchi, quali
Salicornia, Agropyron, Eryngium maritimum.
Nella vegetazione delle dune costiere, oltre ad un impianto artificiale di Pinus
e Juniperus, si trovano, soprattutto nella parte più esposta al mare, Cakile
maritima e Ammophila arenaria.
Nella medesima zona sono presenti la lepre indigena (Lepus europaeus),
introdotta ad uso venatorio nella contigua riserva di Valle Ossi, la donnola
(Mustela nivalis) e altri piccoli mammiferi come roditori e insettivori.
Ivi sono anche presenti anfibi e rettili come il rospo smeraldino (Bufo viridis),
il Ramarro (Lacerta viridis), il colubro liscio (Coronella austriaca), la biscia
d'acqua (Natrix Natrix), il Biacco (Coluber viridiflavus). Raramente è stata
avvistata la vipera (Vipera aspis).
L'intera zona umida è tappa di numerose specie di uccelli in migrazione.
È infatti punto di sosta per varie specie di Anseriformi come il Germano
Reale (Anas platyrhynchos), l'Alzavola (Anas crecca), la Marzaiola (Anas
querquedula), il Codone, il Fischione (Anas penelope), il Moriglione (Aythya
ferina).
Si possono trovare inoltre strolaghe, svassi e molti caradriformi. È sede di
nidificazione del Fratino (Charadrius alexandrinus), dell'Usignolo di fiume
(Cettia cetti), del Beccamoschino (Cisticola juncidis).
Saltuariamente vi sostano anche Ardeidi come l'Airone cenerino (Ardea
cinerea), l'Airone rosso (Ardea purpurea), la Garzetta (Egretta garzetta) e
Falconiformi come la Poiana (Buteo buteo) e il Falco pecchiaiolo (Pernis
apivorus).
Marina di Eraclea - Eraclea Mare - provincia di Venezia - Regione Veneto - Italia
Contributor(s): Nirenberg, Marshall W.
Publication: Produced: 18 January 1965
Language(s): English
Format: Still image
Subject(s): Genetic Code
Genre(s): Archival Materials
Charts (graphic documents)
Negatives (photographic)
Abstract: By 1966, Nirenberg announced that he had deciphered the 64 RNA codons for all 20 amino acids. This chart from 1965 lists the correspondence between these codons and amino acids.. NOTE: Image obtained by scanning a negative of the genetic code chart.
Extent: 1 pages
NLM Unique ID: 101584910X471 (See in Profiles in Science)
Profiles in Science ID:
JJBCCR
Permanent Link: resource.nlm.nih.gov/101584910X471
That it it still possible to read the bodyside number on DB Cargo Class 66 No. 66187 is a good indicator that the 2016 Rail Head Treatment Train (RHTT) season has recently begun. In the weeks that follow the grime will just accumulate! On 31st October 2016, No. 66187 is top and tailing with No. 66206 as they squirt their way south through Coton Lane Tamworth with 3XXX Bescot to Bescot via Rugby, Stoke on Trent - Macclesfield (reverse) - Stoke on Trent Tamworth - Rugby - London Euston (reverse) - Bescot RHTT. Copyright Photograph John Whitehouse - all rights reserved
Is it possible to have "too many" mutations? What about "too few"? While mutations are necessary for evolution, they can damage existing adaptations as well. What is a mutation?
A photograph shows approximately 100 different species of beetle arranged in an oval pattern against a black background. The beetles vary in the size of their bodies, the length of their legs, their coloration, and the shape and size of their mandibles.
The diversity of beetle species.
Genetic mutation is the basis of species diversity among beetles, or any other organism.
© 2009 Courtesy of John C. Abbot, Abbott Nature Photography. All rights reserved. View Terms of Use
Mutations are changes in the genetic sequence, and they are a main cause of diversity among organisms. These changes occur at many different levels, and they can have widely differing consequences. In biological systems that are capable of reproduction, we must first focus on whether they are heritable; specifically, some mutations affect only the individual that carries them, while others affect all of the carrier organism's offspring, and further descendants. For mutations to affect an organism's descendants, they must: 1) occur in cells that produce the next generation, and 2) affect the hereditary material. Ultimately, the interplay between inherited mutations and environmental pressures generates diversity among species.
Although various types of molecular changes exist, the word "mutation" typically refers to a change that affects the nucleic acids. In cellular organisms, these nucleic acids are the building blocks of DNA, and in viruses they are the building blocks of either DNA or RNA. One way to think of DNA and RNA is that they are substances that carry the long-term memory of the information required for an organism's reproduction. This article focuses on mutations in DNA, although we should keep in mind that RNA is subject to essentially the same mutation forces.
If mutations occur in non-germline cells, then these changes can be categorized as somatic mutations. The word somatic comes from the Greek word soma which means "body", and somatic mutations only affect the present organism's body. From an evolutionary perspective, somatic mutations are uninteresting, unless they occur systematically and change some fundamental property of an individual--such as the capacity for survival. For example, cancer is a potent somatic mutation that will affect a single organism's survival. As a different focus, evolutionary theory is mostly interested in DNA changes in the cells that produce the next generation.
Are Mutations Random?
The statement that mutations are random is both profoundly true and profoundly untrue at the same time. The true aspect of this statement stems from the fact that, to the best of our knowledge, the consequences of a mutation have no influence whatsoever on the probability that this mutation will or will not occur. In other words, mutations occur randomly with respect to whether their effects are useful. Thus, beneficial DNA changes do not happen more often simply because an organism could benefit from them. Moreover, even if an organism has acquired a beneficial mutation during its lifetime, the corresponding information will not flow back into the DNA in the organism's germline. This is a fundamental insight that Jean-Baptiste Lamarck got wrong and Charles Darwin got right.
However, the idea that mutations are random can be regarded as untrue if one considers the fact that not all types of mutations occur with equal probability. Rather, some occur more frequently than others because they are favored by low-level biochemical reactions. These reactions are also the main reason why mutations are an inescapable property of any system that is capable of reproduction in the real world. Mutation rates are usually very low, and biological systems go to extraordinary lengths to keep them as low as possible, mostly because many mutational effects are harmful. Nonetheless, mutation rates never reach zero, even despite both low-level protective mechanisms, like DNA repair or proofreading during DNA replication, and high-level mechanisms, like melanin deposition in skin cells to reduce radiation damage. Beyond a certain point, avoiding mutation simply becomes too costly to cells. Thus, mutation will always be present as a powerful force in evolution.
Types of Mutations
So, how do mutations occur? The answer to this question is closely linked to the molecular details of how both DNA and the entire genome are organized. The smallest mutations are point mutations, in which only a single base pair is changed into another base pair. Yet another type of mutation is the nonsynonymous mutation, in which an amino acid sequence is changed. Such mutations lead to either the production of a different protein or the premature termination of a protein.
As opposed to nonsynonymous mutations, synonymous mutations do not change an amino acid sequence, although they occur, by definition, only in sequences that code for amino acids. Synonymous mutations exist because many amino acids are encoded by multiple codons. Base pairs can also have diverse regulating properties if they are located in introns, intergenic regions, or even within the coding sequence of genes. For some historic reasons, all of these groups are often subsumed with synonymous mutations under the label "silent" mutations. Depending on their function, such silent mutations can be anything from truly silent to extraordinarily important, the latter implying that working sequences are kept constant by purifying selection. This is the most likely explanation for the existence of ultraconserved noncoding elements that have survived for more than 100 million years without substantial change, as found by comparing the genomes of several vertebrates (Sandelin et al., 2004).
Mutations may also take the form of insertions or deletions, which are together known as indels. Indels can have a wide variety of lengths. At the short end of the spectrum, indels of one or two base pairs within coding sequences have the greatest effect, because they will inevitably cause a frameshift (only the addition of one or more three-base-pair codons will keep a protein approximately intact). At the intermediate level, indels can affect parts of a gene or whole groups of genes. At the largest level, whole chromosomes or even whole copies of the genome can be affected by insertions or deletions, although such mutations are usually no longer subsumed under the label indel. At this high level, it is also possible to invert or translocate entire sections of a chromosome, and chromosomes can even fuse or break apart. If a large number of genes are lost as a result of one of these processes, then the consequences are usually very harmful. Of course, different genetic systems react differently to such events.
Finally, still other sources of mutations are the many different types of transposable elements, which are small entities of DNA that possess a mechanism that permits them to move around within the genome. Some of these elements copy and paste themselves into new locations, while others use a cut-and-paste method. Such movements can disrupt existing gene functions (by insertion in the middle of another gene), activate dormant gene functions (by perfect excision from a gene that was switched off by an earlier insertion), or occasionally lead to the production of new genes (by pasting material from different genes together).
Effects of Mutations
A line graph shows the probability density of mutational effects. A log scale of mutational effects is shown on the x-axis, and probability density is shown on the y-axis. The line follows the shape of a right-skewed bell curve. Probability density increases as mutational effects increase from 10-10 to 10-4, where the curve peaks. As mutational effects increase from 10 4 to 1, probability density decreases. All mutational effects equal to or less than 10-10 are shown as a spike at 10-10 on the x-axis.
View Full-Size ImageFigure 1: The overwhelming majority of mutations have very small effects.
This example of a possible distribution of deleterious mutational effects was obtained from DNA sequence polymorphism data from natural populations of two Drosophila species. The spike at 10-10 includes all smaller effects, whereas effects are not shown if they induce a structural damage that is equivalent to selection coefficients that are 'super-lethal' (see Loewe and Charlesworth 2006 for more details).
© 2008 Nature Education All rights reserved. View Terms of Use
A single mutation can have a large effect, but in many cases, evolutionary change is based on the accumulation of many mutations with small effects. Mutational effects can be beneficial, harmful, or neutral, depending on their context or location. Most non-neutral mutations are deleterious. In general, the more base pairs that are affected by a mutation, the larger the effect of the mutation, and the larger the mutation's probability of being deleterious.
To better understand the impact of mutations, researchers have started to estimate distributions of mutational effects (DMEs) that quantify how many mutations occur with what effect on a given property of a biological system. In evolutionary studies, the property of interest is fitness, but in molecular systems biology, other emerging properties might also be of interest. It is extraordinarily difficult to obtain reliable information about DMEs, because the corresponding effects span many orders of magnitude, from lethal to neutral to advantageous; in addition, many confounding factors usually complicate these analyses. To make things even more difficult, many mutations also interact with each other to alter their effects; this phenomenon is referred to as epistasis. However, despite all these uncertainties, recent work has repeatedly indicated that the overwhelming majority of mutations have very small effects (Figure 1; Eyre-Walker & Keightley, 2007). Of course, much more work is needed in order to obtain more detailed information about DMEs, which are a fundamental property that governs the evolution of every biological system.
Estimating Rates of Mutation
Many direct and indirect methods have been developed to help estimate rates of different types of mutations in various organisms. The main difficulty in estimating rates of mutation involves the fact that DNA changes are extremely rare events and can only be detected on a background of identical DNA. Because biological systems are usually influenced by many factors, direct estimates of mutation rates are desirable. Direct estimates typically involve use of a known pedigree in which all descendants inherited a well-defined DNA sequence. To measure mutation rates using this method, one first needs to sequence many base pairs within this region of DNA from many individuals in the pedigree, counting all the observed mutations. These observations are then combined with the number of generations that connect these individuals to compute the overall mutation rate (Haag-Liautard et al., 2007). Such direct estimates should not be confused with substitution rates estimated over phylogenetic time spans.
Summary
Mutation rates can vary within a genome and between genomes. Much more work is required before researchers can obtain more precise estimates of the frequencies of different mutations. The rise of high-throughput genomic sequencing methods nurtures the hope that we will be able to cultivate a more detailed and precise understanding of mutation rates. Because mutation is one of the fundamental forces of evolution, such work will continue to be of paramount importance.
References and Recommended Reading
Drake, J. W., et al. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998)
Eyre-Walker, A., & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Reviews Genetics 8, 610–618 (2007) doi:10.1038/nrg2146 (link to article)
Haag-Liautard, C., et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82–85 (2007) doi:10.1038/nature05388 (link to article)
Loewe, L., & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biology Letters 2, 426–430 (2006)
Lynch, M., et al. Perspective: Spontaneous deleterious mutation. Evolution 53, 645–663 (1999)
Orr, H. A. The genetic theory of adaptation: A brief history. Nature Review Genetics 6, 119–127 (2005) doi:10.1038/nrg1523 (link to article)
Sandelin, A., et al. Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics 5, 99 (2004)
www.nature.com/scitable/topicpage/genetic-mutation-1127
"Consider, for example, the dragon. Basic physics will almost certainly combine with biological constraints to prevent the creation of flying or fire-breathing dragons.
But is it possible dragons could ever exist beyond the pages of Celtic mythology or the celluloid of fantasy film?
Academics have suggested in a recent essay the creation of large, winged dragons using cutting-edge genome editing is not beyond the realms of possibility.
Is the seemingly far-fetched idea a flier or, like dragon's breath, just hot air? The BBC asked the authors.
'Not impossible'
The essay in The American Journal of Bioethics said spectacular animals could be brought to life using a targeted gene-editing system known as CRISPR-CAS9.
Co-authors Prof Hank T Greely, director of the Centre for Law and the Biosciences at Stanford Law School, and Prof R Alta Charo, Professor of Bioethics and Law at Wisconsin Law School, said their dragon suggestion was "somewhat tongue-in-cheek" but "not impossible".
"There are the possibilities of spectacles," they wrote. "Animals and plants not created for personal use but to be exhibited.
"But a very large reptile that looks at least somewhat like the European or Asian dragon (perhaps with flappable if not flyable wings) could be someone's target of opportunity."
And it may not be as improbable as it seems at first blush.
CRISPR and other similar techniques involve DNA being inserted, replaced, or removed from a genome using artificially engineered nucleases.
The method has been adopted by scientists around the world.
CRISPRs (clustered regularly interspaced short palindromic repeats) are sections of DNA, while CAS-9 (CRISPR-associated protein 9) is an enzyme.
They are found in bacteria, which use them to disable attacks from viruses.
linebreak
They have led to the creation of patented "GloFish" that shine under UV light, the eradication of horns from certain cattle species, manipulation of crops and attempts to produce hypo-allergenic cats.
Artist Eduardo Kac even commissioned a French geneticist to create Alba, a genetically modified "glowing" rabbit.
Debate
Debate has raged over whether CRISPR, which occurs as part of a bacterial process, could be safely and ethically used on humans since 2012.
But professors Greely and Charo argue its potential to produce "CRISPR critters" is "likely to be overlooked" by legislators and regulators "because they are unexpected".
The method is "cheaper and easier" than older forms of genetic engineering and can be done "outside the traditional laboratory setting".
Their essay looks at the possible uses of CRISPR for de-extinction of wild species - such as 700,000-year-old horses - for domestic de-extinction - such as tomato species - and for making creatures of "personal whim".
They point out that Harvard geneticist George Church is using CRISPR to edit Asian elephant cell lines to give them some woolly mammoth genes.
Woolly mammothsImage copyrightTHINKSTOCK
Image caption
Geneticist are working on cloning or engineering woolly mammoths
Asked about the likelihood of dragons, the co-authors said: "We imagine it would be low although not impossible with respect to appearance (the fire-breathing and flying aspects are undoubtedly beyond any plausible genetic engineering).
"In the US, the determining factor is usually cost as compared to return-on-investment, where cost can be substantial given the regulatory hurdles.
"Does this mean some determined and well-funded geneticist might do this as an artistic experiment, similar to the work done on the fluorescing rabbit?
"Yes. But the operative word is 'might'."
A potential process could involve modifications to an existing large reptile - for instance, a Komodo dragon.
Problems
The professors said, even if scientists knew how to make them larger, there would likely be problems with the creature's mass increasing faster than its surface area or its bone cross-sections.
The first issue could make the animals overheat; the second might mean the edited reptile's bones would be too weak to hold its weight.
"If and when we actually come to understand in detail what every specific DNA sequence does and how they all fit together, though, all bets are off - things could move more quickly," they added.
linebreak
What does a CRISPR expert think?
Thinkstock
Dr Sam Sternberg - formerly of the University of California's Doudna Lab, which pioneered work with CRISPR-CAS9 - said his boundaries were stretched when Minnesota firm Recombinetics announced it had used a gene-editing technology to dehorn certain types of cattle.
However, he is not hopeful genetic engineers could ever cross the Rubicon to create dragons.
"You're talking about, not just one or a few changes, you're talking about massive changes and it gets to the point where, how much can you cut and paste the DNA that causes some of the traits of one species to another?
"I would say it's probably bordering on impossible/never going to happen."
linebreak
Even if the difficulties connected with gene editing could be overcome, there remains the tricky task of assisted reproduction with an existing lizard species.
Giving birth to any edited dragon would involve taking stem cells from, say, a Komodo dragon before inserting an altered nucleus into an egg for in vitro fertilization (IVF) in an adult komodo.
GloFish in an aquariumImage copyrightGETTY IMAGES
Image caption
Bright GloFish were genetically modified for fluorescence in aquariums
That would be no mean feat; in December scientists carried out the first successful IVF on dogs after decades of trying.
"If you got access to Komodo dragons and could quickly resolve the regulatory, stem cell, and assisted reproduction problems, you could start tinkering.
"But it would likely take a very long time before you could hope to get something that looked much like a dragon," Prof Greely and Prof Charo said.
So, how far off might all this be?
"A while," they said.
Trova l'intruso (Find the intruder)Le lunghe penne della coda gli hanno valso il nome inglese di Pintail, sono il segno distintivo del Codone, anatra piuttosto rara in inverno in Italia, rinvenibile soprattutto nelle Lagune di Venezia e del Friuli V.G. e in poche altre zone umide del Paese.
El oriolano don Fernando de Loazes, sucesivamente obispo de Elna, Lérida, Tortosa, arzobispo de Tarragona y arzobispo de Valencia- Patriarca de Antioquia, mandó levantar la grandiosa fábrica renacentista de Santo Domingo, por más que se finalizara transcurridos muchos años de su muerte, con la monumental portada barroca de de la universidad. Fue también él quien inició el largo y complicado itinerario que llevaría cien años después, en 1646, al logro completo de la Universidad de Orihuela; con esa finalidad hizo cuantiosas donaciones, legó sus bienes muebles e inmuebles y escogió como embrión del centro de estudios superiores al convento de dominicos de Nuestra Señora del Socorro y San José, intramuros de Orihuela.
Así pues, las obras de Santo Domingo, el edificio más emblemático del antiguo reino de Valencia y monumento nacional, dieron comienzo en 1553 y concluyeron mediados el setecientos. De la imponente construcción sobresale, en primer término, una grandiosa fachada, muy austera, con marcado predominio de de la línea horizontal, sólo interrumpida por ventanas y las portadas que dan acceso a la iglesia, convento y antigua universidad respectivamente; de éstas, las dos primeras, labradas en el quinientos, son las más antiguas, si bien la de mayor monumentalidad es la gran portada barroca de la universidad, diseñada a comienzos del siglo XVIII por Pedro Juan Codoñer.
En el interior, los elementos y dependencias principales son, además de los dos maravillosos claustros, la iglesia y su torre-campanario, la historiada portada de la sacristía y el refectorio. La iglesia, salvo la fachada, que es posterior, fue trazada en el seiscientos por Pedro Quintana, quien concibió una masa única con bóveda de medio cañón, capillas entre los contrafuertes y cúpula en la unión de crucero y nave. Más tardía es la torre, con rica decoración, que, a mediados del siglo XVIII, reemplazó al campanario renacentista. Por su parte, la puerta de la sacristía debida a Juan Inglés, a quien se ha atribuido sin plena seguridad la traza originaria de Santo Domingo, es del último tercio del XVI, concebida como un arco del triunfo sobre el que apoya un templete. El espléndido y espacioso refectorio del antiguo convento muestra nervaduras de gótico final, y fue reformado en el siglo XVIII, enriqueciéndolo con uno de los mejores zócalos de azulejería valenciana que han llegado a la actualidad.
Portada principal del convento-iglesia de Santo Domingo de Orihuela. En su origen fue un convento de dominicos, pero tras la bula de 1569, privilegio que le otorgó el Papa Pío V pasó a ser Universidad, hasta su clausura en 1824, por el ministro Calomarde. El convento tiene planta rectangular. La fachada principal se caracteriza por su austeridad, sobresaliendo los efectos horizontales, subrayados por cornisas, únicamente interrumpidos por vanos y la decoración de las portadas.
La fachada del convento tiene tres cuerpos, en los que se suceden los tres órdenes clásicos. La portada de la Universidad es barroca, construida por Pedro Juan Codoñer. Está formada por dos cuerpos rematados con la figura alegórica de la Sabiduría.
Orihuela (Alicante) 23/5/2009
________________________________________________
|| View On Black || Reflections on a black glass plate. The spiral mobile lies on the glass plate. || Photo - not processed ||
|| I-Ching - Hexagramm - 易經 || "Behind the door" or "Hexagramm" or "易經 ||
________________________________________________
Series: The orderly Chaos
________________________________________________
易經 = Book of Changes
________________________________________________
I Ching and the genetic code -
or how to heal the consciousness of the cell.
[ ... ] It wants to expand it discovered many similarities, which I represent in brief and yet some others.
1. Each genetic codon consists of 3 amino acid pairs.
A hexagram in the I Ching consists of 3 line pairs
The chaos research discovered that there is an order in the chaos. Life
developed after the so-called Period 3
2. A DNA molecule is inter alia of 4 nitrogen bases, the basic building blocks
the entire genetic code form. These are adenine, thymine, guanine
and cytosine.
The I Ching consists of the two polarities of Yin and Yang will be permanently
Change are understood and the changing yin and which
wandelndem yang.
In oriental medicine (acupuncture, acupressure) are the four elements
Metal (yang), earth (yin), fire (the changing yang) and water (the
changing yin), together with the wood element, the basis for the
Energy medicine and all other energetic healing methods.
3. Of the four nitrogen bases form the genetic code 2, a
fixed pair that is connected to 2 different ways.
It connects to adenine with thymine and cytosine with guanine.
Three pairs of genetic information result in a unit, whether or codon
Triplet called. These 3 couples can register for a total of 64 different
Codons or triplets (= units of information) interconnect. This
creates the diversity of human life, but also in animal and
plant life. The diversity of creation is based on these
Nitrogen bases.
When I Ching, there are the broken and the solid line on 4
are different ways to form a solid pair of linked
Three of these pairs form a hexagram. This results in the 64
Hexagrams of the I Ching, each with a wisdom and guidance for the
Life of the enlightened people in different situations.
Include Fire, water, earth, metal: Each of these basic elements is equivalent to 2
Channel pairs, a yin and a yang meridian. The Yin meridians show how
that energy applied to the people, the Yang meridians, as he
responds to the outside.
4. The genetic code is a double helix that we are in a
winding rope ladder can compare. The strands are from a 5
C sugar and phosphates, the rungs of this ladder of the nitrogen bases
the codons formed. This double helix is self-contained, has
is no definable beginning and no definable end. The beginning
and the end of a sequence of information is called off and
Stop codons appear.
The I Ching is also known as the Book of Changes. It describes
processes in human life, it as cyclical, always
recurring cycles recognizes that with the right attitude
and approach is not helpless. Again, there are
Hexagrams, the right of the beginning or the end or change
information of enterprises.
Among the four basic elements are used in Eastern medicine more than 5
Element of the wood element, which stands for vitality, and the
Protection system that allows the 5 elements, their shape and structure
and keep to keep them under different conditions of life, added. Man
they could thus also with the strands of the conductor and the basic elements
compare their shoots. Here too, the working of the life energy meridians
as cyclical, often embedded in a circuit. Those
the treatment and healing with the energy meridians or
Energy points aligned.
Of the hexagrams of the I Ching can be direct connections to the
Elements in Eastern medicine and acupuncture meridians to certain
(= Channel in which life energy flows) produce. [...]
___________________________________________________________________________
I Ging und genetischer Code –
oder wie man das Bewußtsein der Zelle heilen kann.
[…] Dabei entdeckte sie viele verschiedene Gemeinsamkeiten, die ich im Folgenden kurz darstellen und noch um einige andere erweitern möchte.
1. Jedes genetische Codon besteht aus 3 Aminosäure-Paaren.
Ein Hexagramm im I Ging besteht aus 3 Strichpaaren
Die Chaosforschung entdeckte, daß es im Chaos eine Ordnung gibt. Leben
entwickelt sich nach der so genannten Periode 3
2. Ein DNA-Molekül besteht u.a. aus 4 Stickstoffbasen, die die Grundbausteine
des gesamten genetischen Codes bilden. Dies sind Adenin, Thymin, Guanin
und Cytosin.
Das I Ging besteht aus den beiden Polaritäten Yin, und Yang die in ständigem
Wandel begriffen sind und dem sich wandelnden yin und dem sich
wandelndem yang.
In der östlichen Medizin (Akupunktur, Akupressur) bilden die 4 Elemente
Metall (yang), Erde (yin), Feuer (das sich wandelnde yang) und Wasser (das
sich wandelnde yin) zusammen mit dem Holz-Element die Basis für die
Energiemedizin und alle anderen energetischen Heilweisen.
3. Von den vier Stickstoffbasen des genetischen Codes bilden 2 jeweils ein
feststehendes Paar, das auf 2 verschiedene Weisen verbunden ist.
Es verbindet sich Adenin mit Thymin und Guanin mit Cytosin.
Drei Paare ergeben eine genetische Informationseinheit, auch Codon oder
Triplet genannt. Diese 3 Paare können sich zu insgesamt 64 verschiedenen
Codons oder Triplets (= Informationseinheiten) miteinander verbinden. Daraus
entsteht die Vielfalt des menschlichen Lebens, aber auch des tierischen und
pflanzlichen Lebens. Die Vielfalt der Schöpfung basiert auf diesen
Stickstoffbasen.
Beim I Ging gibt es die unterbrochene und die durchgezogene Linie, die auf 4
verschiedene Weisen zu einem festen Paar verknüpft werden
Drei dieser Paare ergeben ein Hexagramm. Dadurch entstehen die 64
Hexagramme des I Ging, die jeweils eine Weisheit und eine Anleitung für die
Lebensweise des erleuchteten Menschen in unterschiedlichen Lebenslagen
beinhalten.
Feuer; Wasser; Erde; Metall: Jedem dieser Grundelemente entsprechen 2
Meridianpaare, ein yin und ein yang Meridian. Die Yin Meridiane zeigen, wie
die jeweilige Energie auf den Menschen einwirkt, die Yang Meridiane, wie er
darauf nach außen reagiert.
4. Der genetische Code bildet eine Doppelhelix, die wir mit einer in sich
gewundenen Strickleiter vergleichen können. Die Stränge werden von einem 5
C Zucker und Phosphaten, die Sprossen dieser Leiter von den Stickstoffbasen
der Codons gebildet. Diese Doppelhelix ist jedoch in sich geschlossen, besitzt
also keinen definierbaren Anfang und kein definierbares Ende. Der Anfang
und das Ende einer Informationssequenz wird durch so genannte Start und
Stop Codons angezeigt.
Das I Ging wird auch als das Buch der Wandlungen bezeichnet. Es beschreibt
die Abläufe im menschlichen Leben, die es als zyklische, immer
wiederkehrende Kreisläufe erkennt, denen man mit der rechten Einstellung
und Herangehensweise nicht hilflos ausgeliefert ist. Auch hier gibt es
Hexagramme, die über den rechten Beginn oder den Abschluss bzw. Wandel
von Unternehmungen informieren.
Zu den 4 Grundelementen kommen in der östlichen Medizin noch als 5.
Element das Holz-Element, das für Lebendigkeit steht, sowie das
Schutzsystem, das den 5 Elementen ermöglicht ihre Form und Struktur zu
bewahren und unter verschiedenen Lebensbedingungen zu halten, hinzu. Man
könnte sie also auch mit den Strängen der Leiter und die Grundelemente mit
ihren Sprossen vergleichen. Auch hier wird das Wirken der Lebensenergiemeridiane
als zyklisch, in einem Kreislauf eingebettet angesehen. Danach ist
auch die Behandlung und Heilung mit den Energiemeridianen oder
Energiepunkten ausgerichtet.
Von den Hexagrammen des I Ging kann man direkte Verbindungen zu den
Elementen in der östlichen Medizin und damit zu bestimmten Akupunkturmeridianen
(= Bahnen in denen unsere Lebensenergie fließt) herstellen. […]
________________________________________________
Source: I Ching and the genetic Code
Visitors translate a DNA sequence (a row of wooden blocks) into a sequence of amino acids using wooden “translator blocks”. They then use a static version of the FASTA database to look up a set of prescribed amino acid sequences to find out which organism the amino acid sequence is from.
www.ebi.ac.uk/training/schools/relate/ (unfortunately a dead link from the EBI)
www.yourgenome.org/downloads/function_finder_forweb.pdf (dead link from yourgenome.org) see www.yourgenome.org/activities/function-finders
at DNA, Diversity and You via www.sanger.ac.uk and www.ebi.ac.uk
L'amaranto era già apprezzato dai nativi americani. I Cherokee usavano l'amaranto comune come erba cerimoniale religiosa, come astringente per un ciclo femminile troppo abbondante e medicamento ginecologico, i Keres gli riconoscevano proprietà curative per l'apparato gastrointestinale, i Mohegan ne facevano un infuso per il mal di gola. I Navajo ne ricavavano pane e dolci. Amaranthus retroflexus è stata mostrata essere in grado di immagazzinare l'isotopo radioattivo cesio. In Sardegna lè conosciuto come Codone, al pari del Chenopodium album, mentre il Chenopodium quinoa è un importante pianta alimentare che si è iniziato a coltivare anche in Italia.
Another, closer view down over Carllngford Lough from the Cooley Mountains, as the cloud started to descend. Omeath in Co. Louth can be seen on the southern side of the lough while the larger town of Warrenpoint in Co. Down lies on the northern shore.