View allAll Photos Tagged SuperComputer
3-D structures of adenine riboswitch RNA calculated using RS3D, a computer program that runs on the supercomputer Mira. RNAs like adenine riboswitch are biological structures found in all human cells; they help control how and when genes are expressed.
Some of these structures are linked to cancer and other diseases, and by using RS3D to learn more about them, researchers can better understand how associated diseases evolve, which could lead to better treatments or cures.
Image credit: Wei Jiang, Argonne National Laboratory; Yuba Bhandari and Yun-Xing Wang, National Cancer Institute.
Zoom-in of the matter density field showing the complexity of cosmological structure formation as resolved in a 68-billion-particle simulation carried out on the early access Blue Gene/Q system at the Argonne Leadership Computing Facility. The simulation is based around the new HACC (Hardware/Hybrid Accelerated Cosmology Code) framework aimed at exploiting emerging supercomputer architectures such as the Blue Gene/Q.
Visualization:
Mark Hereld, Joseph A. Insley, Michael E. Papka, Thomas Uram, Venkatram Vishwanath
Argonne National Laboratory
Science:
Hal Finkel, Salman Habib, Katrin Heitmann, Kalyan Kumaran, Vitali Morozov, Tom Peterka, Adrian Pope, Tim Williams
Argonne National Laboratory
David Daniel, Patricia Fasel, Nicholas Frontiere
Los Alamos National Laboratory
Zarija Lukic
Lawrence Berkeley National Laboratory
The MessagePad was the first series of personal digital assistant devices developed by Apple Computer (now Apple Inc.) for the Newton platform in 1993. Some electronic engineering and the manufacture of Apple's MessagePad devices was done in Japan by the Sharp Corporation. The devices were based on the ARM 610 RISC processor and all featured handwriting recognition software and were developed and marketed by Apple. The devices ran the Newton OS.
en.wikipedia.org/wiki/MessagePad
Retrocomputing (a portmanteau of retro and computing) is the use of early computer hardware and software today. Retrocomputing is usually classed as a hobby and recreation rather than a practical application of technology; enthusiasts often collect rare and valuable hardware and software for sentimental reasons. However some do make use of it.[1] Retrocomputing often gets its start when a computer user realizes that expensive fantasy systems like IBM Mainframes, DEC Superminis, SGI workstations and Cray Supercomputers have become affordable on the used computer market, usually in a relatively short time after the computers' era of use.
en.wikipedia.org/wiki/Retrocomputing
Con il termine retrocomputing si indica una attività di "archeologia informatica" che consiste nel reperire, specialmente a costi minimi, computer di vecchie generazioni, che hanno rappresentato fasi importanti dell'evoluzione tecnologica, ripararli se sono danneggiati, metterli nuovamente in funzione e preservarli.
The Atlantis Shuttle is ensconced within, undergoing tile repair (you can see the landing gear and tiles in the bottom left corner)
When the analog display slips, the schedule goes into reverse hyperdrive
The Cray XT5 Jaguar features more than 224,000 processing cores, each with 2 gigabytes of local memory.
Would you have this guy messing about with a supercomputer - the most powerfull in the world at that time?
Would you have him writing raw machine code deep in the bowels of the operating system?
Would you have him fiddling in the guts of a compiler so that the code it generated for your program did arithmetic rounding just an eensy weensy bit eccentrically - especially if your program was calculating nuclear reactions or orbital variances or fuel consumption for the descent stage of a Lunar Lander...
Naaaah....
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
Pharmaceutical companies need a faster and more accurate way to identify promising drug compounds and evaluate the efficacy and safety of new drugs. Such a capability could reduce costs and risks, thus allowing companies to bring antibiotics and other drugs more quickly to market. The solution, according to Livermore researchers, may lie in supercomputer-based modeling and simulation.
NOTES | Ogilvie Colliery: 1921-1975 | Or, Dr Who and the Politics of Energy
[View north] The site of Ogilvie colliery, Parc Cwm Darran | This was a film location for Dr Who, The Green Death (1973)
===
Filmed at Ogilvie colliery in 1973 whilst this was still a working colliery, the science fiction drama Doctor Who: The Green Death, the tale of an abandoned coal mine and an alien supercomputer's technological alchemy of oil and coal, was not so far removed from the the political drama of the day as the questions of Energy, Ecology and The Future assumed an apocalyptic urgency.
The following notes on Ogilvie Colliery and the Rhymney Valley locate the tumultuous period 1974 - 1984; a final phase of class solidarity and industrial action, in which the South Wales Coalfield was locked in a struggle for survival.
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
Mira: The Argonne Leadership Computing Facility's Next-Generation Supercomputer
Mira will provide billions more processor-hours per year to the scientists, engineers, and researchers who use it to run complex simulations of everything from nuclear reactors to blood vessels through allocations awarded through INCITE, ALCC and Director's Discretionary programs.
These images show the merger of two neutron stars recently simulated using a new supercomputer model. Redder colors indicate lower densities. Green and white ribbons and lines represent magnetic fields. The orbiting neutron stars rapidly lose energy by emitting gravitational waves and merge after about three orbits, or in less than 8 milliseconds. The merger amplifies and scrambles the merged magnetic field. A black hole forms and the magnetic field becomes more organized, eventually producing structures capable of supporting the jets that power short gamma-ray bursts. Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible. Image credit: Carlos Jones/ORNL
Thunderbird supercomputer at Sandia National Laboratory.
Sandia computer scientists Ron Minnich (foreground) and Don Rudish have successfully run more than a million Linux kernels as virtual machines, an achievement that will allow cyber security researchers to more effectively observe behavior found in malicious botnets. They utilized Sandia's Thunderbird supercomputing cluster for the demonstration.
For more information or additional images, please contact 202-586-5251.
Part of the Busbar Power Distribution Systems by EAE Elektrik, which is a part of the infrastructure for the new Dutch petascale national supercomputer, "Cartesius", provided and built by Bull.
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
Intel's James Tullos gives the closing keynote remarks on  'Performance Tuning on Knights Landing (KNL) with Intel Parallel Studio XE 2017 Cluster Edition' at the Intel Xeon Phi User's Group (IXPUG) annual meeting at Argonne.
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
Arsenal (Vienna)
The Vienna Arsenal, object 1
(Pictures you can see by clicking on the link at the end of page!)
The Arsenal in Vienna is a former military complex in the southeast of the city, located in the 3rd district of Vienna. The mighty, consisting of several brick buildings facility is located on a rectangular plan on a hill south of the Country Road Belt (Landstraßer Gürtel).
Meaning
The Arsenal is the most important secular assembly of Romantic Historicism in Vienna and was conducted in Italian-Medieval and Byzantine-Moorish forms. Essentially the complex is preserved in its original forms; only the former workshop buildings within the bounding, from the the outside visible wings were replaced by new constructions.
History to 1945
Bird's eye view of the complex, arsenal, lithography Alexander Kaiser, 1855
Vienna Arsenal (Museum of Military History)
Arsenal, with HGM (Heeresgeschichtliches Museum) from the East
The complex, with a total of 31 "objects" (buildings) was built from 1849 to 1856 on the occasion of the March Revolution of 1848 and was the first building of the fortress triangle, replacing the old Vienna's city walls, with the Rossauer Barracks and the now-defunct Franz Joseph barracks at Stubenring. These buildings should not serve to deter foreign enemies from the city, but to secure state power in the event of revolutionary upheavals in Vienna. The decision to build the Arsenal, it came from the 19-year-old Emperor Franz Joseph I who on 2 December 1848 had come to the throne.
The design for the Imperial Artillery Arsenal came from General Artillery Director Vincenz Freiherr von Augustin, to which, subsequently, the site management had been transferred. Under his leadership, the buildings under assignment of sectors have been planned of the architects Carl Roesner, Antonius Pius de Riegel, August Sicard von Sicardsburg, Eduard van der Nüll, Theophil von Hansen and Ludwig Förster and built by the company of the architect Leopold Mayr.
From 1853 to 1856, Arsenal church was built by the architect Carl Roesner. The K.K. Court Weapon Museum, later K.K. Army Museum, now Museum of Military History, housed in a separate representative free-standing wing, was completed structurally in 1856, but was only in 1869 for the first time accessible.
For the construction of the Arsenal 177 million bricks were used. Construction costs totaled $ 8.5 million guilders. In the following years, there have been extensions. During the two world wars, the complex served as a weapons factory and arsenal, especially as barracks.
The record number of employees in Arsenal was reached in the First World War, with around 20,000 staffers. After 1918, the military-industrial operation with own steel mill was transformed into a public service institution with the name "Austrian Factories Arsenal". However, there were almost insoluble conversion problems in the transition to peacetime production, the product range was too great and the mismanagement considerable. The number of employees declined steadily, and the company became one of the great economic scandals of the First Republic.
By the fall of 1938, the area belonged to the 10th District Favoriten. However, as was established during the "Third Reich" the Reich District of Greater Vienna, became the arsenal complex and the south-east of it lying areas in the wake of district boundary changes parts of the 3rd District.
During the Second World War, in the Arsenal tank repair workshops of the Waffen-SS were set up. In the last two years of the war several buildings were severely damaged by bombing. During the Battle of Vienna, in the days of 7 to 9 April 1945, was the arsenal, defended by the 3rd SS Panzer Division "Totenkopf", focus of the fighting, the Red Army before its victory facing heavy losses.
History since 1945
Ruins of the object 15 after the air raids 1944
Deposits at the Arsenal Street
After heavy bomb damages during the Second World War, the buildings of the Arsenal were largely restored to their original forms.
In the southern part and in the former courtyard of the arsenal several new buildings were added, among them 1959-1963 the decoration workshops of the Federal Theatre designed by the architects Erich Boltenstern and Robert Weinlich. From 1961 to 1963, the telecommunications central office was built by the architect Fritz Pfeffer. From 1973 to 1975 were built operation and office building of the Post and Telephone Head Office for Vienna, Lower Austria and Burgenland (now Technology Centre Arsenal of Telekom Austria) with the 150-meter high radio tower in Vienna Arsenal according to the plans of architect Kurt Eckel. In the 1990s, a rehearsal stage of the Castle Theater (Burgtheater) was built according to plans by Gustav Peichl.
Also the Austrian Research and Testing Centre Arsenal, now Arsenal Research, which has made itself wordwide a celebrity by one of the largest air chambers (now moved to Floridsdorf - 21st District), was housed in the complex. A smaller part of the complex is still used by the Austrian army as a barracks. Furthermore, the Central Institute for Disinfection of the City of Vienna and the Central Chemical Laboratory of the Federal Monuments Office are housed in the arsenal. The Military History Museum uses multiple objects as depots.
In one part of the area residential buildings were erected. The Arsenal is forming an own, two census tracts encompassing census district, which according to the census in 2001 had 2.058 inhabitants.
End of 2003, the arsenal in connection with other properties of the Federal Property Society (BIG - Bundesimmobiliengesellschaft) was sold to a private investor group. Since early 2006, the lawyer of Baden (Lower Austria, not far away from Vienna) Rudolf Fries and industrialist Walter Scherb are majority owners of the 72,000 m2 historic site that they want to refurbish and according to possibility rent new. Fries also plans to enlarge the existing living space by more than a half (about 40,000 m2).
An architectural design competition, whose jury on 28 and 29 in June 2007 met, provided proposals amounting to substantial structural changes in the complex. Such designed competition winner Hohensinn a futuristic clouds clip modeled after El Lissitzky's cloud bracket, a multi-level horizontal structure on slender stilts over the old stock on the outskirts of the Swiss Garden. The realization of these plans is considered unlikely.
Some objects are since 2013 adapted for use by the Technical University of Vienna: Object 227, the so-called "Panzerhalle" will house laboratories of the Institute for Powertrains and Automotive Technology. In object 221, the "Siemens hall", laboratories of the Institute for Energy Technology and Thermodynamics as well as of the Institute for Manufacturing Technology and High Power Laser Technology are built. In object 214 is besides the Technical Testing and Research Institute (TVFA) also the second expansion stage of the "Vienna Scientific Cluster" housed, of a supercomputer, which was built jointly by the Vienna University of Technology, the University of Vienna and the University of Agricultural Sciences.
Accessibility
The arsenal was historically especially over the Landstraßer Gürtel developed. Today passes southeast in the immediate proximity the Südosttangente called motorway A23 with it connection Gürtel/Landstraßer Hauptstrasse. Southwest of the site runs the Eastern Railway, the new Vienna Central Station closes to the west of the arsenal. Two new bridges over the Eastern Railway, the Arsenal Stay Bridge and the Southern Railway bridge and an underpass as part of Ghegastraße and Alfred- Adler-Straße establish a connection to the on the other side of the railway facilities located Sonnwendviertel in the 10th District, which is being built on the former site of the freight train station Vienna South Station.
On the center side is between Arsenal and Landstraßer Gürtel the former Maria Josefa Park located, now known as Swiss Garden. Here stands at the Arsenal street the 21er Haus, a branch of the Austrian Gallery Belvedere, on the center-side edge of the Swiss Garden has the busy suburban main railway route the stop Vienna Quartier Belvedere, next to it the Wiener Linien D (tram) and 69A (bus) run.
Directed by John Badham & Martin Brest
Starring Matthew Broderick, Dabney Coleman, John Wood, Ally Sheedy
2013. Senator Dick Durbin (Ill.) joined Argonne staff to celebrate the dedication of Mira, the lab's new supercomputer and the fifth fastest computer in the world.
From left to right: Joanna Livengood, Manager of the U.S. Department of Energy's Argonne Site Office; David Turek, Vice President for Exascale Computing at IBM; Rick Stevens, Associate Laboratory Director for Computing, Environment & Life Sciences; Sen. Dick Durbin (Ill.); Eric Isaacs, Argonne Director; Donald Levy, University of Chicago Vice President for Research and for National Laboratories.
30494D39
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible. Image credit: Carlos Jones/ORNL
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
Supercomputers are extremely useful in simulating huge events like supernovae—they help researchers model how our universe formed and evolves. Here's a type Ia supernova where the surface of the star is blue and the yellow shows the flame front (behind which there is ash from burning stellar material).
--more details--
FLASH simulation of the pure deflagration model of Type Ia Supernova. The blue surface approximates the surface of the star and the yellow surface shows the flame front behind which there is ash from burning stellar material.
Researchers: George Jordan and Donald Q. Lamb, University of Chicago
Visualization: Brad Gallagher, University of Chicago
Research supported by:
DOE/NNSA ASC Alliance Flash Center, DOE/Office of Science INCITE Program
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
PI: Thomas LeCompte, Argonne National Laboratory
With this project, Argonne researchers are showing that supercomputers like Mira can help drive future discoveries at CERN’s Large Hadron Collider (LHC). Running particle collision simulations on DOE leadership computing resources provides three key benefits to LHC experiments: increasing the amount of simulated data that can be produced; simulating more complex and realistic events than are currently possible; and helping to evolve LHC’s substantial code base for current and future supercomputing platforms.
A visualization of a simulated collision event in the ATLAS detector. This simulation, containing a Z boson and five hadronic jets, is an example of an event that is too complex to be simulated in bulk using ordinary PC-based computing grids.
Image credit: Taylor Childers, Argonne National Laboratory
Scientific discipline: Physics
This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.
Arsenal (Vienna)
The Vienna Arsenal, object 1
(Pictures you can see by clicking on the link at the end of page!)
The Arsenal in Vienna is a former military complex in the southeast of the city, in the 3rd District of Vienna located. The mighty, consisting of several brick buildings facility is located on a rectangular plan on a hill south of the country Strasser belt (Landstraßer Gürtel).
Meaning
The Arsenal is the most important secular assembly of Romantic Historicism in Vienna and was conducted in Italian-Medieval and Byzantine-Moorish forms. Essentially the system is preserved in its original forms; only the former workshop buildings within the bounding, from the the outside visible wings were replaced by new constructions.
History to 1945
Bird's eye view of the complex, arsenal, lithography Alexander Kaiser, 1855
Vienna Arsenal (Museum of Military History)
Arsenal, with HGM (Heeresgeschichtliches Museum) from the East
The plant, with a total of 31 "objects" (buildings) was built from 1849 to 1856 on the occasion of the March Revolution of 1848 and was the first building of the fortress triangle, the old Vienna's city walls replacing, with the Rossauerstrasse Barracks and the now-defunct Franz Joseph barracks at Stubenring. These buildings should not serve to deter foreign enemies from the city, but to secure state power in the event of revolutionary upheavals in Vienna. The decision to build the Arsenal, it came from the 19-year-old Emperor Franz Joseph I who on 2 December 1848 had come to the throne.
The design for the Imperial Artillery Arsenal came from General Artillery Director Vincenz Freiherr von Augustin, which, subsequently, the site management had been transferred. Under his leadership, the buildings under allocation of sectors have been planned of the architects Carl Roesner, Antonius Pius de Riegel, August Sicard von Sicardsburg, Eduard van der Nüll, Theophil von Hansen and Ludwig Förster and built by the company of the architect Leopold Mayr.
From 1853 to 1856, Arsenal church was built by the architect Carl Roesner. The K.K. Court Weapon Museum, later K.K. Army Museum, now Museum of Military History, housed in a separate representative free-standing wing, was completed structurally in 1856, but was only in 1869 for the first time accessible.
For the construction of the Arsenal 177 million bricks were used. Construction costs totaled $ 8.5 million guilders. In the following years, there have been extensions. During the two world wars, the complex served as a weapons factory and arsenal, especially as barracks.
The record number of employees in Arsenal was reached in the First World War, with around 20,000 staffers. After 1918, the military-industrial operation with own steel mill was transformed into a public service institution with the name "Austrian art arsenal". However, there were almost insoluble conversion problems in the transition to peacetime production, the product range was too great and the mismanagement considerable. The number of employees declined steadily, and the company became one of the great economic scandals of the First Republic.
By the fall of 1938, the area belonged to the 10th District Favoriten. However, as was established during the "Third Reich" the Reich District of Greater Vienna the arsenal complex and the south-east of it lying areas in the wake of district boundary changes became parts of the 3rd District.
During the Second World War, in the Arsenal tank repair workshops of the Waffen-SS were set up. In the last two years of the war several buildings were severely damaged by bombing. During the Battle of Vienna, in the days of 7 to 9 April 1945, was the arsenal, defended by the 3rd SS Panzer Division "Totenkopf", focus of the fighting, the Red Army before their victory recording heavy losses.
History since 1945
Ruins of the object 15 after the air raids 1944
Deposits at the Arsenal Street
After heavy bomb damages during the Second World War, the buildings of the Arsenal were largely restored to their original forms.
In the southern part and in the former courtyard of the arsenal several new buildings were added, among them 1959-1963 the decoration workshops of the Federal Theatre designed by the architects Erich Boltenstern and Robert Weinlich. From 1961 to 1963, the telecommunications central office was built by the architect Fritz Pfeffer. From 1973 to 1975 were built plant and office building of the Post and Telephone Head Office for Vienna, Lower Austria and Burgenland (now Technology Centre Arsenal of Telekom Austria) with the 150-foot radio tower in Vienna Arsenal according to the plans of architect Kurt Eckel. In the 1990s, a rehearsal stage of the castle theater (Burgtheater) was built according to plans by Gustav Peichl.
Also the Austrian Research and Testing Centre Arsenal, now Arsenal Research, which has made itself wordwide a celebrity by one of the largest air chambers (now moved to Floridsdorf - 21st District ), was housed in the complex. A smaller part of the system is still used by the Austrian army as a barracks. Furthermore, the Central Institute for Disinfection of the City of Vienna and the Central Chemical Laboratory of the Federal Monuments Office are housed in the arsenal. The Military History Museum uses multiple objects as depots.
In one part of the area residential buildings were erected. The Arsenal is forming an own, two census tracts encompassing census district, which according to the census in 2001 2.058 inhabitants had.
End of 2003, the arsenal in connection with other properties of the Federal Property Society (BIG - Bundesimmobiliengesellschaft) was sold to a private investor group. Since early 2006, the lawyer of Baden (Lower Austria, not far away from Vienna) Rudolf Fries and industrialist Walter Scherb are majority owners of the 72,000 m2 historic site that they want to refurbish and according to possibility rent new. Fries also plans to enlarge the existing living space by more than half (about 40,000 m2).
An architectural design competition, whose jury on 28 and 29 in June 2007 met, provided proposals amounting to substantial structural changes in the system. Such designed competition winner Hohensinn a futuristic clouds clip modeled after El Lissitzky's cloud bracket, a multi-level horizontal structure on slender stilts over the old stock on the outskirts of the Swiss Garden. The realization of these plans is considered unlikely.
Some objects are since 2013 adapted for use by the Technical University of Vienna: Object 227, the so-called "Panzerhalle" will house laboratories of the Institute for Powertrains and Automotive Technology. In object 221, the "Siemens hall", laboratories of the Institute for Energy Technology and Thermodynamics as well as of the Institute for Manufacturing Technology and High Power Laser Technology are built. In object 214 is besides the Technical Testing and Research Institute (TVFA) also the second expansion stage of the "Vienna Scientific Cluster" housed, of a supercomputer, which was built jointly by the Vienna University of Technology, the University of Vienna and the University of Agricultural Sciences.
Accessibility
The arsenal was historically especially over the Landstraßer Gürtel developed. Today passes southeast in the immediate proximity the Südosttangente called motorway A23 with it connection Gürtel/Landstraßer Hauptstrasse. Southwest of the site runs the Eastern Railway, the new Vienna Central Station closes to the west of the arsenal. Two new bridges over the Eastern Railway, the Arsenal Stay Bridge and the Southern Railway bridge and an underpass as part of Ghegastraße and Alfred- Adler-Straße establish a connection to the on the other side of the railway facilities located Sonnwendviertel in the 10th District, which is being built on the former site of the freight train station Vienna South Station.
On the center side is between Arsenal and Landstraßer Gürtel the former Maria Josefa Park located, now known as Swiss Garden. Here stands at the Arsenalstraße the 21er Haus, a branch of the Austrian Gallery Belvedere, on the center-side edge of the Swiss Garden has the busy suburban main railway route the stop Vienna Quartier Belvedere, next to it the Wiener Linien D (tram) and 69A (bus) run.
(Preferred profile pic)
Rahul Sarpeshkar joined Thayer as a tenured full professor. He is also a professor in Dartmouth’s physics department and in Geisel School of Medicine’s microbiology and immunology department and physiology and neurobiology department.
His research interests include analog synthetic and systems biology; biological and bio-inspired supercomputers; medical devices; and low-power and energy-efficient systems.
This photo appeared in Q&A in the Winter 2016 issue of Dartmouth Engineer magazine.
Photo by Karen Endicott.
The first phase of the Department of Energy's National Energy Research Scientific Computing center's (NERSC) next-generation supercomputer was delivered to the Lawrence Berkeley National Laboratory's Oakland Science Facility this month. NERSC awarded the contract for this system to Cray Inc. in August 2009.
The system that was delivered is a Cray XT5â„¢ massively parallel processor supercomputer, which will be upgraded to a future-generation Cray supercomputer. When completed, the new system will deliver a peak performance of more than one petaflops, equivalent to more than one quadrillion calculations per second. This machine is named Hopper, after rear admiral Grace Murray Hopper who was an American computer scientist and United States Naval officer.
NERSC Center currently serves thousands of scientists at national laboratories and universities across the country researching problems in climate modeling, computational biology, environmental sciences, combustion, materials science, chemistry, geosciences, fusion energy, astrophysics, and other disciplines. NERSC is managed by Lawrence Berkeley National Laboratory under contract with DOE.
For more information about the system and the contract, please visit: www.lbl.gov/cs/Archive/news080509.html
For more information about computing sciences at Berkeley Lab, please visit: www.lbl.gov/cs
For more information about Science at NERSC, please visit: www.nersc.gov/projects
credit: Lawrence Berkeley Nat'l Lab - Roy Kaltschmidt, photographer
XBD200910-00886-055.TIF
The Apple IIc, the fourth model in the Apple II series of personal computers, was Apple Computer’s first endeavor to produce a portable computer. The end result was a luggable 7.5 lb (3.4 kg) notebook-sized version of the Apple II that could easily be transported from place to place.
en.wikipedia.org/wiki/Apple_IIc
Retrocomputing (a portmanteau of retro and computing) is the use of early computer hardware and software today. Retrocomputing is usually classed as a hobby and recreation rather than a practical application of technology; enthusiasts often collect rare and valuable hardware and software for sentimental reasons. However some do make use of it.[1] Retrocomputing often gets its start when a computer user realizes that expensive fantasy systems like IBM Mainframes, DEC Superminis, SGI workstations and Cray Supercomputers have become affordable on the used computer market, usually in a relatively short time after the computers' era of use.
en.wikipedia.org/wiki/Retrocomputing
Con il termine retrocomputing si indica una attività di "archeologia informatica" che consiste nel reperire, specialmente a costi minimi, computer di vecchie generazioni, che hanno rappresentato fasi importanti dell'evoluzione tecnologica, ripararli se sono danneggiati, metterli nuovamente in funzione e preservarli.
The China Supercomputer.
Supercomputers perform operations billion times faster than a personal or minicomputers.
A revolutionary parallel-processing supercomputer pioneered by the brilliant Danny Hillis, is more powerful than the Cray, IBM, and Sun Microsystems models. The demonstration theatre created my PMDI shows off this awesome speed and power.
Design/ Production of murals + furniture + exhibits + retail displays + signage + light fixtures + architectural details
philmanker@comcast.net
Boston
617-291-8584
The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018.
With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. For certain scientific applications, Summit will also be capable of more than three billion billion mixed precision calculations per second, or 3.3 exaops. Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.
Credit: Genevieve Martin/ORNL
Learn more: www.olcf.ornl.gov/summit/
The Cambridge Computer Z88 is an A4-size, lightweight, portable Z80-based computer with a built-in combined word processing/spreadsheet/database application called PipeDream, along with several other applications and utilities, such as a Z80-version of the BBC BASIC programming language.
en.wikipedia.org/wiki/Cambridge_Z88
Retrocomputing (a portmanteau of retro and computing) is the use of early computer hardware and software today. Retrocomputing is usually classed as a hobby and recreation rather than a practical application of technology; enthusiasts often collect rare and valuable hardware and software for sentimental reasons. However some do make use of it.[1] Retrocomputing often gets its start when a computer user realizes that expensive fantasy systems like IBM Mainframes, DEC Superminis, SGI workstations and Cray Supercomputers have become affordable on the used computer market, usually in a relatively short time after the computers' era of use.
en.wikipedia.org/wiki/Retrocomputing
Con il termine retrocomputing si indica una attività di "archeologia informatica" che consiste nel reperire, specialmente a costi minimi, computer di vecchie generazioni, che hanno rappresentato fasi importanti dell'evoluzione tecnologica, ripararli se sono danneggiati, metterli nuovamente in funzione e preservarli.
Alameda County Computer Resource Center accepts unwanted computers, converting hazardous waste into usable computers and donating them to needy projects. They also use vegetable oil in their facility. At the Maker Faire, they connected donated, unwanted computer hardware to form a supercomputer. The cluster was powered by a vegetable oil fueled generator.
Wij weten nu dat er ongeveer 21.000 korrels in een pak zitten... Een leuke voordracht door Vincent van der Noort en Tammo Jan Dijkema.
Vincent van der Noort laat graag anderen kennis maken met de mooie en geheimzinnige kanten van de wiskunde. Hij studeerde wiskunde aan de Universiteit van Amsterdam en deed daarna onderzoek naar symmetrieën in oneindig-dimensionale ruimtes aan de Universiteit van Utrecht. Nu werkt hij aan het Nederlands Kanker Instituut waar hij zijn kennis over wiskunde inzet voor onderzoek naar kanker. Naast zijn onderzoek schreef Vincent verschillende populair wetenschappelijke artikelen en het boek ‘Getallen zijn je beste vrienden’, en begeleidde hij wiskunde-zomerkampen voor scholieren.
Tammo Jan Dijkema is numeriek wiskundige: hij lost met computers complexe wiskundige problemen op. Momenteel werkt hij als wetenschappelijk programmeur bij Astron, dat met nieuwe telescopen en supercomputers speurt naar onontdekte zaken in het heelal. Daarvoor deed hij aan de Universiteit Utrecht promotieonderzoek naar het snel oplossen van vergelijkingen in veel dimensies. (www.popupwetenschapper.nl)