View allAll Photos Tagged Manufacturing_process

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

Ferrari 166 MM, 1950

V-12, 2.0 litre, 140 hp, Chassis no. 0064

 

'Of all the cars I have driven, I can never forget my first Ferrari' declared Gianni Agnelli, the head of Fiat. This is his car.

The Ferrari 166 was a striking success for the emerging Ferrari company. The new body style, from the celebrated firm of Touring in Milan, was christened 'barchetta' (little boar) and revolutionised post-war sports car design. It was relatively easy to enlarge the capacity of Gioacchino Colombo's V-12 engine, so in 1948 Ferrari was able to create this new model with a two litre engine and more power.

[Design Museum]

 

Ferrari: Under the Skin (November 2017 to April 2018)

In an Italy ravaged by the Second World War, Enzo Ferrari and a small team decided to create the perfect racing machine. The exhibition will explore Ferrari’s powerful personality, the design and manufacturing process, the famous clientele and the future of the luxury car brand.

From the very first Ferrari to Michael Schumacher’s winning Formula One car and the newest hybrid model, the exhibition features rare cars and memorabilia displayed in public for the first time. Discover the Ferrari experience through original hand-drawn sketches, sculpture-like models and engines, alongside films and interviews telling one of the great design stories of all time.

[Design Museum]

 

In the Design Museum

A model of some manufacturing process

Cockington Court is the manor house in the centre of the estate and the oldest parts of the building date back to the times when it was owned by the Cary family who lived there from 1375 to 1654

 

The manor house is open to the public and now houses a community of craft workers including a potter and a blacksmith. There is also a popular tea room and the carriage rides start from here. Found in the stableyard is Our Glass, a glass-blowing working studio which is open daily. Here you are welcome to watch the traditional manufacturing process.

 

A more recent addition to the estate is the Drum Inn, designed by famous architect, Edwin Lutyens, and now a popular and friendly pub.

 

With tea rooms, gift shops and so much to see, a visit to the picture postcard village of Cockington offers a truly different holiday experience to the lively waterfront bustle of Torquay.

 

From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.

Alan Colclough "One day a caster came to me and said - Just look at what i have found in the skip - being thrown away - I was at the Alsager site then - Well it was a box of photos of the people and the manufacturing processes - at the factory that now is no longer - yes the one just gone up in smoke-

 

I said - I will keep them and may be one day people would want to see them - well i think now is the time -If you worked there and like me are so sad - that it as gone - maybe you are on one of the many photos i have - all are showing people doing a part of the casting process and dipping etc - you like me may have aged but - to us the photos are priceless

mytunstall.co.uk/2012/12/fire-old-twyfords-factory-stoke-...

Fresno State Industrial Technology Industrial Manufacturing Processes Class - Professor Don Austin, Jordan College of Agricultural Sciences and Technology, photo by Geoff Thurner, March 29, 2016, Copyright 2016.

The very first item in the specialty features of uPVC products is High Quality. The expertise of German Technologists is behind in evolving the manufacturing process of State-of-the-Art Technology Products. Visit - aparnavenster.com/blog/youll-exclaim-after-happily-using-... for more.

From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.

We, Ashwin Plastics, initiated our momentous lifework as producers and suppliers of plastic packaging products such as Laminated Pouches, Laminated Rolls, BOPP bags, BOPP rolls, HM bags and Rolls, PP Bags and Rolls etc. Offer diverse range of packaging products to meet varied requirements. Follow high quality parameters in business operation, manufacturing process and client servicing. Very particular about not using plastics and laminates that are safe and non-hazardous

 

www.plasticpackagingsolutions.com

 

Laser cut aluminium

Paused at 10%

 

"For the Olympic torch we created a curvilinear form from aluminium sheets making the most of the material's strong and light-weight properties. Paused as a flat sheet, the outline and perforated pattern make its final form instantly recognisable."

- Edward & Jay

 

Part of ‘In The Making’ exhibition - more than twenty objects during the manufacturing stage of their construction...curated by Edward Barber and Jay Osgerby, the design duo who are perhaps best known for designing the 2012 London Olympic torch.

The pair commented on the exhibition “‘We have always been fascinated by the making process as it is an integral part of our work. We have curated an exhibition that will provide a platform to capture and reveal a frozen moment in the manufacturing process and unveils an everyday object in its unfinished state. Often the object is as beautiful, if not more so, than the finished product!”

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

Made by Nexus Collections, "this bag is made from materials and fittings which are sustainable and biodegradable and using manufacturing processes which have a lower environmental impact."

The next sponsor was 3d Scanners who laser scanned the head and the rear leg. Laser scanning uses a beam of light to record points in space as it moves fractions of a millimetre around the objects.

 

A cloud of point data was collected and then surfaces were placed between the data points. The surfaces are made of tiny triangles and the more data captured then the smaller the triangles. The scanning has to capture every single point on the object as if there is the tiniest gap in the computer scan then the manufacturing process will not work. If your object is very detailed then this can take some time and some gaps need to be filled manually.

 

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

The PV industry will generate an enormous number of jobs. U.S. manufacturers are expanding their output to meet the growing demand for photovoltaic systems. This creates skilled jobs at production facilities in several states, such as Golden Photon's facility for manufacturing thin film cadmium telluride PV modules in Golden, Colorado. NREL is working with photovoltaic companies such as Golden Photon to improve manufacturing techniques and develop new products. Through the support of the PV Program, Golden Photon has improved the efficiency of its cadmium telluride modules and manufacturing process. Golden Photon, Inc., is one of 2 companies making cadmium telluride modules.

Templo Mayor Museum at site of Aztec Great Temple, Mexico City. Complete indexed photo collection at WorldHistoryPics.com.

Fresno State Industrial Technology Industrial Manufacturing Processes Class - Professor Don Austin, Jordan College of Agricultural Sciences and Technology, photo by Geoff Thurner, March 29, 2016, Copyright 2016.

Museu del Disseny / Design Museum Barcelona, Spain

The Museu del Disseny de Barcelona brings together, under one roof, the collections of the Museu de les Arts Decoratives, the Museu de Ceràmica, the Museu Tèxtil i d'Indumentària and the Gabinet de les Arts Gràfiques, to showcase its vast heritage of more than 70,000 objects.

 

The Museu del Disseny is based on a common theme «From the decorative arts to design», and is dedicated to the culture of the object, focusing on pieces that are often from the everyday sphere, their design, manufacturing process, use and distribution, aesthetic and functional obsolescence, all from a 21st-century perspective.

 

The Disseny Hub Barcelona building was designed by MBM architects. The building comprises two parts: an underground section made possible by the change in level caused by the redevelopment of the square; and a block at street level, which cantilevers out towards the Plaça de les Glòries, 14.5 metres above the ground. This block houses the venues for long- and short-term temporary exhibitions, as well as a hall for events and a large auditorium. Most of the building's floor space is located below this level and houses key areas such as the main exhibition gallery, the documentation centre, research rooms, the bar and restaurant and the shop. The entire project complies with high environmental quality and sustainability standards which are achieved through a large-scale, self-sufficient energy system.

 

From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

The black core is clearly visible where the yellow layer is broken away.

Bead made by the Akan people in Ghana, West Africa, using pulverized European beads. The precise manufacturing process has been lost.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Fresno State Industrial Technology Industrial Manufacturing Processes Class - Professor Don Austin, Jordan College of Agricultural Sciences and Technology, photo by Geoff Thurner, March 29, 2016, Copyright 2016.

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

Ferrari 166 MM, 1950

V-12, 2.0 litre, 140 hp, Chassis no. 0064

 

'Of all the cars I have driven, I can never forget my first Ferrari' declared Gianni Agnelli, the head of Fiat. This is his car.

The Ferrari 166 was a striking success for the emerging Ferrari company. The new body style, from the celebrated firm of Touring in Milan, was christened 'barchetta' (little boar) and revolutionised post-war sports car design. It was relatively easy to enlarge the capacity of Gioacchino Colombo's V-12 engine, so in 1948 Ferrari was able to create this new model with a two litre engine and more power.

[Design Museum]

 

Ferrari: Under the Skin (November 2017 to April 2018)

In an Italy ravaged by the Second World War, Enzo Ferrari and a small team decided to create the perfect racing machine. The exhibition will explore Ferrari’s powerful personality, the design and manufacturing process, the famous clientele and the future of the luxury car brand.

From the very first Ferrari to Michael Schumacher’s winning Formula One car and the newest hybrid model, the exhibition features rare cars and memorabilia displayed in public for the first time. Discover the Ferrari experience through original hand-drawn sketches, sculpture-like models and engines, alongside films and interviews telling one of the great design stories of all time.

[Design Museum]

 

In the Design Museum

Alan Colclough "One day a caster came to me and said - Just look at what i have found in the skip - being thrown away - I was at the Alsager site then - Well it was a box of photos of the people and the manufacturing processes - at the factory that now is no longer - yes the one just gone up in smoke-

 

I said - I will keep them and may be one day people would want to see them - well i think now is the time -If you worked there and like me are so sad - that it as gone - maybe you are on one of the many photos i have - all are showing people doing a part of the casting process and dipping etc - you like me may have aged but - to us the photos are priceless

mytunstall.co.uk/2012/12/fire-old-twyfords-factory-stoke-...

WHO WE ARE

DANIELO & LE BEAU LTD.

As a result of melting point between Danielo del Rey designer and couterier and Le Beau Fashion Factories a new project arise Danielo and Le Beau, a new Spanish fashion brand dedicated to exclusive design, manufacturing, marketing and distribution of clothing and accessories. The brand goal is satisfy all women needs in search of distinguishing product

with competitive prices.

 

Fruto de la fusión entre el diseñador Danielo del Rey y las factorías Le Beau Fashion nace Danielo & Le Beau, una nueva firma de moda española dedicada al diseño exclusivo, fabricación, comercialización y distribución de prendas de vestir y complementos. El objetivo de la firma es satisfacer las necesidades de mujeres que buscan un producto diferenciado al alcance de su bolsillo.

 

WHAT WE PROVIDE

THE PRODUCT

Feminine clothing garments and accessories with exclusive design of Danielo del Rey, whose supervises in situ all manufacturing process inside out from the beginning of the concept to the end of finishing process. Supervising pattern cutting, modeling, emphasizing subtle difference in all lines of design and details as a identity of the product, providing innovation, guaranteeing marketing and previous global distribution.

 

EL PRODUCTO

Prendas de vestir y complementos femeninos con diseños exclusivos de Danielo del Rey, quien supervisa in situ todo el proceso de elaboración, partiendo del diseño, patrón base, tual, modelaje, corte y confección hasta el acabado final, marcando una sutil diferencia en las líneas de diseño, haciendo especial énfasis en los detalles como sello de identidad de la firma, ofertando innovación y garantizando la comercialización y previa distribución a nivel global.

 

THE DESIGNER

Designer and couterier with over 28 years of experience in the industry. Granted by Parsons School of Design, New York Altos de Chavón branch, Dominican Republic, mentored by the prestigious and unrivalled Mr. Oscar de la Renta with whom collaborated as assistant designer of his brand. After ending this collaboration he arrives to Madrid in 1989 becoming designer teacher and in the meantime, introducing his own collection in Europe, (Italy, France, just to name a few).

Subsequently he collaborates for several years with the designer Elio Bernhanyer, one of the most outstanding masters designers of Spanish high couture, among others.

At present he is co-founder of Danielo & Le Beau brand, carrying out design artistic director responsibilities. .

EL DISEÑADOR

Diseñador y modisto con más de 28 años de experiencia en el sector. Becado por la Parsons School of Design de New York, sucursal Altos de Chavón Escuela de Diseño, República Dominicana, intercediendo personalmente el prestigioso diseñador dominicano Oscar de la Renta, con quien más adelante colaborará como asistente diseñador de la firma. Completando un ciclo, llega a Madrid en el año 1989 siendo profesor de diseño y presentando sus propias colecciones en Europa (Italia, Autria, Francia, entre otros.)

Posteriormente, colabora durante años con el diseñador Elio Bernhanyer, uno de los más destacados maestros de la costura española, entre otros.

En la actualidad, es co-fundador de la firma Danielo & Le Beau, desempeñando la función de diseñador y director artístico

 

CONTACT

Showroom

JUAN DE MENA 25, MADRID, 28014

Tel. (+34) 91 531 4177

 

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

From the planting of the seed to the end of the manufacturing process,Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

Linear Vibratory Bowl Feeders are the most advanced, dependable, and durable machines on the market today. RNA bowls gently feed and position your goods, ensuring a steady and correct flow of components into your manufacturing process. The demand for industrial electromagnetic vibrators has been increasing respectively.

 

link:https://vibratorybowlfeeder.com/linear-vibrators/

 

Universal Trailer Corporation Plant Opening Event on March 24, 2017 in Bristol, Indiana. On Friday, March 24, 2017, the Ribbon Cutting Celebration for Universal Trailer Corporation new $25 million, 200,000 sq. feet advanced technology cargo trailer manufacturing facility was held in Bristol, Indiana. The plant is located on 43 acres at the corner of C.R. 4 and Blakesley Parkway (C.R. 29), a half mile east of S.R. 15 on C.R. 4 north of the Indiana Toll Road. 200 new hires are expected over the next 18 months. The plant has new, automotive-style robotic manufacturing capabilities unheard of in the cargo trailer industry. Trailer “kits” will be manufactured here for other Universal Trailer plants across the country. The Plant is designed to be employee-friendly with an emphasis on employee empowerment to assure an efficient and quality manufacturing process. Plant tours were also held. With its innovative engineering and worker empowerment, the location of this new trailer technology in Elkhart County was the result of many public and private entities working together to provide such assistance as annexation for municipal services, tax incentives and industrial revenue bonds, among other aid. Just the Facts: Speakers: Jeff Howes, Universal VP Marketing; Universal CEO & President, Terry Carlson. Op Mgr. Keith Shockey; Indiana EDC President, Elaine Bedel; State Senator Blake Doriot; Elkhart Co. Commissioner, Suzie Weirick; Bristol Town Council President, Ron Norman; Unable to attend, 2nd Dist. Congresswoman, Jackie Walorski, sent a video of congratulations.

Universal Trailer Corporation Plant Opening Event on March 24, 2017 in Bristol, Indiana. On Friday, March 24, 2017, the Ribbon Cutting Celebration for Universal Trailer Corporation new $25 million, 200,000 sq. feet advanced technology cargo trailer manufacturing facility was held in Bristol, Indiana. The plant is located on 43 acres at the corner of C.R. 4 and Blakesley Parkway (C.R. 29), a half mile east of S.R. 15 on C.R. 4 north of the Indiana Toll Road. 200 new hires are expected over the next 18 months. The plant has new, automotive-style robotic manufacturing capabilities unheard of in the cargo trailer industry. Trailer “kits” will be manufactured here for other Universal Trailer plants across the country. The Plant is designed to be employee-friendly with an emphasis on employee empowerment to assure an efficient and quality manufacturing process. Plant tours were also held. With its innovative engineering and worker empowerment, the location of this new trailer technology in Elkhart County was the result of many public and private entities working together to provide such assistance as annexation for municipal services, tax incentives and industrial revenue bonds, among other aid. Just the Facts: Speakers: Jeff Howes, Universal VP Marketing; Universal CEO & President, Terry Carlson. Op Mgr. Keith Shockey; Indiana EDC President, Elaine Bedel; State Senator Blake Doriot; Elkhart Co. Commissioner, Suzie Weirick; Bristol Town Council President, Ron Norman; Unable to attend, 2nd Dist. Congresswoman, Jackie Walorski, sent a video of congratulations.

President Joe Biden is briefed on Intel’s CHIPS manufacturing process by technician Michelle Blackwell during a tour of the Intel Ocotillo Campus, Wednesday, March 20, 2024, in Chandler, Arizona. (Official White House Photo by Adam Schultz)

Nation : Czechoslovakia

Pavilion Name : Czechoslovakia Pavilion

Subject : Visual Works

Island : Ile Notre Dame

Description : Frescos depicting important religious figures.

 

General Description:

 

The two storey Czechoslovakia Pavilion consisted of two buildings linked by an entrance hall. A simple, clear architectural strategy provided a harmonious backdrop for the exhibition's exciting displays. The first building featured two levels of exhibition space with a central courtyard which drew some of the largest crowds at Expo. Czechoslovakian art, technology and industry were presented to visitors through an attractive mixture of light, sound and video. The Hall of Centuries exhibit showcased texts and artifacts from ancient royalty. In the Hall of Tradition, visitors could find old and new glass and crystal and learn about their manufacturing processes. The World of Children enchanted the pavilion's younger visitors featuring puppet shows performing traditional tales. The second building featured four restaurants; Le Bistro served light snacks; the Bratislava Inn was a wine tavern; the Castle Restaurant featured fine Czechoslovakian cuisine; and the Prague was home to the famous pilsener Urquell beer. Offices, a gift shop and a theatre could also be found in this second Czechoslovakian building.

At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.

 

Japanese food company Nissin operates this unique museum for Ramen.

 

The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.

 

They also recreate Mr. Ando Momofuku's humble research facility.

 

At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.

 

There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.

 

There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.

 

And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!

Ferrari 250 GTO, 1962

V-12, 3.0 litre, 300 hp, Chassis no.2643GT

 

The GTO is widely considered to be the most significant and iconic Ferrari of all. The car grew out of the highly successful 250 series, masterminded by the talented engineer Giotto Bizzarini. It had more power, better suspension and a modern aerodynamic design to deliver stability as well as speed - shown by the kicked-up tail. The car was refined by wind tunnel test at the University of Pisa.

The GTO tag stands for 'Grand Turismo Omologato' - meaning that Ferrari promised to homologate it by building 100 examples since the governing motorsport body, the FIA, excluded special racing cars from the Group 3 sports car championship.

[Design Museum]

 

Ferrari: Under the Skin (November 2017 to April 2018)

In an Italy ravaged by the Second World War, Enzo Ferrari and a small team decided to create the perfect racing machine. The exhibition will explore Ferrari’s powerful personality, the design and manufacturing process, the famous clientele and the future of the luxury car brand.

From the very first Ferrari to Michael Schumacher’s winning Formula One car and the newest hybrid model, the exhibition features rare cars and memorabilia displayed in public for the first time. Discover the Ferrari experience through original hand-drawn sketches, sculpture-like models and engines, alongside films and interviews telling one of the great design stories of all time.

[Design Museum]

 

In the Design Museum

Sandstone pavers are very unique in texture and body structure. Most common finishes for sandstone pavers are sawed and honed, or natural cleft and tumbled. Sand stone pavers are very attractive and color full. The colors of sandstone pavers are vibrant and everlasting. The cleft on the surface of the sandstone pavers are created by the natural split application in the manufacturing process. Many sandstone pavers color variations have a marbleized effect and many are also plain and solid colors. The thicknesses of sand stone pavers can be gaged if they are sawed and honed, if they have a natural cleft thickness can vary. Sandstone pavers can be used for patios, driveways step treads pool copings and wall caps. They can also be used as indoor tiles and wall veneers some sand stone pavers are very hard they can be cut one inch thick for patios but if used on driveways need to be two inches thick.

Paving Stone Select’s natural stone Selection includes pavers and veneers. A large verity of: Marble, Granite, Travertine, Sandstones, Limestone, Bluestones, Slates, Quartzite, Coral and Porphyry. For swimming pools, patios, driveways, porches and steps, walkways and retaining walls. All our natural stones are selected and first quality.

        

Main phone 631-670-6868

 

www.bardachawards.com

 

Bardach Awards of Greenwood

220 West Main Street

Greenwood, IN 46142

(317) 872-7444

 

At Bardach Awards, quality is at the heart of each item we create. From our sales team to our art department to the people who build the awards, etch the glass, and engrave the signs, every associate strives to exceed your expectations. We inspect every item before putting it into the manufacturing process; before you ever see your order, we've used our white gloves in a quality-assurance process that guarantees each piece meets our standard of excellence.

From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.

1 2 ••• 62 63 65 67 68 ••• 79 80