View allAll Photos Tagged Device

Alessandro Volta, in full Conte Alessandro Giuseppe Antonio Anastasio Volta, (born February 18, 1745, Como, Lombardy [Italy]—died March 5, 1827, Como), Italian physicist whose invention of the electric battery provided the first source of continuous current.

Volta became professor of physics at the Royal School of Como in 1774. In 1775 his interest in electricity led him to improve the electrophorus, a device used to generate static electricity. He discovered and isolated methane gas in 1776. Three years later he was appointed to the chair of physics at the University of Pavia.

In 1791 Volta’s friend Luigi Galvani announced that the contact of two different metals with the muscle of a frog resulted in the generation of an electric current. Galvani interpreted that as a new form of electricity found in living tissue, which he called “animal electricity.” Volta felt that the frog merely conducted a current that flowed between the two metals, which he called “metallic electricity.” He began experimenting in 1792 with metals alone. (He would detect the weak flow of electricity between disks of different metals by placing them on his tongue.) Volta found that animal tissue was not needed to produce a current. That provoked much controversy between the animal-electricity adherents and the metallic-electricity advocates, but, with his announcement of the first electric battery in 1800, victory was assured for Volta.

Known as the voltaic pile or the voltaic column, Volta’s battery consisted of alternating disks of zinc and silver (or copper and pewter) separated by paper or cloth soaked either in salt water or sodium hydroxide. A simple and reliable source of electric current that did not need to be recharged like the Leyden jar, his invention quickly led to a new wave of electrical experiments. Within six weeks of Volta’s announcement, English scientists William Nicholson and Anthony Carlisle used a voltaic pile to decompose water into hydrogen and oxygen, thus discovering electrolysis (how an electric current leads to a chemical reaction) and creating the field of electrochemistry.

  

Como, Latin Comum, city, Lombardia regione (region), northern Italy, rimmed by mountains at the extreme southwest end of Lake Como, north of Milan. As the ancient Comum, perhaps of Gallic origin, it was conquered by the Romans in 196 bc and became a Roman colony under Julius Caesar. It was made a bishopric in ad 379. In the 11th century, after struggles with the Lombards and the Franks, it became a free commune. Shortly thereafter (1127), however, it was destroyed by the Milanese for having sided with the emperor Frederick I Barbarossa in his conflict with the Lombard League (an alliance of northern Italian towns). Como made peace with Milan in 1183 and after 1335 fell under the rule of the Visconti family and the Sforzas of Milan. During that period its silk industry and wool trade played an important role in the Milanese economy. Later, the city, following the fortunes of Lombardy, came successively under Spanish, French, and Austrian rule, until it was liberated by the Italian patriot Giuseppe Garibaldi in 1859 and became part of the Italian kingdom.

 

www.britannica.com/place/Como-Italy

 

IR HDR. IR converted Canon 40D. Canon 17-55 F2.8 IS lens. Shot at ISO 100, F16, AEB +/-3 total of 7 exposures processed with Photomatix. Levels adjusted in PSE. Blue and Red color channels swapped with GIMP.

 

High Dynamic Range (HDR)

 

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

 

HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.

 

The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.

 

Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).

 

In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).

 

Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.

 

In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.

 

An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.

 

Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.

 

Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.

 

Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range

 

Tone mapping

Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.

 

Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include

 

Adobe Photoshop

Aurora HDR

Dynamic Photo HDR

HDR Efex Pro

HDR PhotoStudio

Luminance HDR

MagicRaw

Oloneo PhotoEngine

Photomatix Pro

PTGui

 

Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

 

HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.

 

History of HDR photography

The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.

 

Mid 20th century

Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.

 

Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.

 

With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.

 

Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.

 

Late 20th century

Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.

 

In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.

 

In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.

 

Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.

 

In 1993, another commercial medical camera producing an HDR video image, by the Technion.

 

Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.

 

On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.

 

The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.

 

21st century

In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.

 

On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.

 

HDR sensors

Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.

 

Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.

 

en.wikipedia.org/wiki/High-dynamic-range_imaging

 

Infrared Photography

 

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)

 

When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.

 

The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.

 

Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.

 

Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.

 

Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.

 

False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.

 

Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.

 

Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.

 

Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.

 

As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.

 

Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.

  

Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.

 

In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.

 

There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.

 

Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.

 

In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.

 

Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.

 

An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.

 

Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.

 

While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.

 

Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.

 

Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.

 

Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".

 

Phase One digital camera backs can be ordered in an infrared modified form.

 

Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.

 

en.wikipedia.org/wiki/Infrared_photography

 

This Cold War-Era intrusion detector was designed to blend in with the terrain. It can detect movement of people, animals, or objects up to 300 meters away. The device is powered by tiny power cells and has a built-in antenna. Its transmitter relays data from the device findings via coded impulses.

  

For more information on CIA history and this artifact please visit www.cia.gov

Matched to Denon 103 & a Sonic Masterpiece.

The default colour is PURPLE. Why? I don't know. But many people paint their Alphasmart devices, so I thought I'd give it a go with my Dana.

 

So, for $25 - $40 and postage, instead of buying a laptop, you can get an Alphasmart Dana or Neo or Neo 2 used on Ebay.

 

Alphasmarts are basically a portable, battery operated word processor.

 

The Dana has a larger screen, and runs on the old Palm OS, which means it can run a number of basic apps. However, you'd only really use any of the Alphasmarts for word processing these days.

 

It gives you room for approximately 80,000 words in memory, I think, and you can simultaneously have 8 documents open, toggling between them with the F1 to F8 keys. The Dana allows two 1 GB SD cards to insert in the back, so you can save your files - because whenever the battery goes completely flat, all in-system memory in cleared.

 

The Dana gives you 25 typing hours of battery life, with rechargeable batteries. So, not 25 hours lying around, but actual typing on the screen.

 

The screen isn't the greatest when indoors - it's an old type of screen, like that found in pocket calculators. The Neo 2 is easier to read, because the Dana has a touch-screen panel in front of the text screen, which makes it a bit glary and shiny, and the text is a bit muted.

 

The fantastic thing about the screen, though, is that in bright lighting or when outdoors, the screen is very, very readable. On a sunny day, the screen is very crisp and the text is fantastic! Compare that to my Ipad or gloss-screen laptop, where it's hard to even make out the screen on a sunny day, let alone read the text...

 

The Neo 2 which I am getting next, has a much smaller screen, no SD cards, and doesn't have the touch-screen Palm OS, but the text is easier to read when indoors compared with the Dana. In return, the Neo 2 Alphasmart can run for 700 hours on just 3 x AA batteries.

 

Yes, that's right: 700 hours of use! That's 70 x longer than a typical Ipad before needing the batteries to be changed.

 

Of course, all it does is word processing - but for writers, journallers, and so forth, it is rugged, super cheap, forget-about-having-to-check-battery-level-for-months, and so on.

 

To transfer your typing to a computer, you just plug the Dana or Neo 2 into the PC or Mac using a USB cable. Open a word processing program like Notepad or Microsoft Word on the PC, and press Send on the Dana / Neo 2.

 

The Alphasmart device will then 'auto type' your document from your Alphasmart onto the page on your computer, transferring it. It's kind of like printing out a document, but text is being sent to your word processor's page on your computer screen.

 

You can even plug it into an Ipad, and Send the text of your documents into any text IOS apps: just get the Camera Adapter for the Ipad, and instead of plugging a camera USB cable into the adapter, plug an unpowered USB Hub into it. Then plug your DANA or NEO into the USB Hub, and it is detected as an external keyboard! Now if you bring up something like Notes on the Ipad, and click Send, it will type your Alphasmart document onto your IOS device for you!

 

This is neat, because if you use auto-replacement features in programs like Word, you can set up auto-formatting, corrections, and so forth, as the transfer takes place onto your computer.

 

While writing, I typically transfer pages into Word, save it as a DocX file, then use Calibre to convert it to a Mobi, and I can put it onto my Kindle. Then I have all my current material, plotting, character design, planning notes, etc, referrable on my Kindle, while I continue writing on the Alphasmart.

Everyone has a right to access our public lands, but few of Glacier's trails were created with accessibility in mind.

 

A first step to addressing limits to accessibility is to identify them.

 

Glacier and the National Park Service are using tools—like the orange, one-wheeled device a ranger is pictured here using—to evaluate trails in the park using the High Efficiency Trail Assessment Process (HETAP).

 

HETAP identifies trail variables: grade, cross-slope, trail width, surface material, and more.

 

This data allows park managers to prioritize future trail improvements, and allow visitors in the future to make more informed decisions.

This device was used for a few years for skid training. It raised or lowered the wheels of the ambulance and reduced traction at front, rear or side - or all at once! No longer restricted to a skid pan, the service could train on large spaces such as airfields.

 

Leyland DAF Customline - this was the time of transition between the V8 petrol and the puny Diesel!

This square metal thing is used to hold up the sides of trenches when installing storm drains.

Inside the AT&T TSD-3600E Telephone Security Device, an encrypting telephone from 1993 based on the controversial Clipper Chip

 

The Clipper chip was the flagship component of a controversial National Security Agency-designed "key escrow" cryptography scheme, in which intercepted encrypted traffic could be decrypted easily by law enforcement or intelligence agencies for surveillance purposes. The program was extremely controversial and, in the end, not a success. Aside from the obvious fundamental problems (the security risks of having a large database of citizen's keys, the need to implement cryptography in expensive secret hardware, etc), the Clipper architecture had technical flaws that made it possible to circumvent the escrow features and preclude the possibility of law enforcement access. (See "Protocol Failure in the Escrowed Encryption Standard" [pdf format], for details.)

 

AT&T (my employer at the time) was the first (and ultimately only) company to build a commercial product based on the ill-fated system. The AT&T TSD-3600, announced in 1992, was a voice encryption device designed to be installed in a standard telephone (between the phone base and the handset). Calls placed to other TSD-3600-equipped telephones could be automatically digitized (at 4800bps) and encrypted, making eavesdropping on the conversation (by legal or illegal means) effectively infeasible. When the US government learned of AT&T's plans to market the device, it worried that criminals might used them to thwart wiretaps. Plans for a new encryption system with a wiretap backdoor were hurriedly drawn up by the NSA, and AT&T was persuaded to replace the regular (non-escrowed) DES-based encryption scheme in the original TSD product with the new system, called the Clipper chip. The Clipper-based model TSD-3600E hit the market in 1993. As incentive for AT&T's cooperation, the government agreed to purchase a significant quantity of Clipper-equipped TSD-3600Es, which sold for over $1000 each in quantity.

 

Hobbled by the controversial key escrow features and the high retail price, the government ended up being the TSD's only major customer, and even most of the units they bought sat unopened in storage for over ten years. AT&T, for its part, eventually sold off the division that produced the product.

 

I'm aware of five different TSD-3600 models produced between 1992 and the product's cancellation, differing in the cipher algorithm used. The TSD-3600D was the original, using standard DES with a 56 bit key. (These were quickly recalled and disappeared from the market after Clipper was announced). The 3600F was an exportable model that used a proprietary 40 bit cipher that, I was told, was "embarassingly" weak even given the short key. The 3600P used a proprietary 56 bit cipher similar to DES (but not inter-operable with the 3600D). The 3600E was the first controversial key escrowed model, with the then-classified Skipjack cipher and key escrow features implemented on a tamper-resistant MYK-78T Clipper chip. A later model, the 3600S, included a Clipper chip but would also downgrade (or upgrade, depending on your opinion of key escrow) to the F or P ciphers when communicating with those models. All five models use a Diffie-Hellman key exchange (768 bit, if I recall correctly) to establish a session key, a 4 character hash of which is displayed on each unit's LCD. To detect "man-in-the-middle" attacks, users could verify (by voice) that their displayed hashes matched.

 

This photo shows an open unit with its main circuit board exposed. The MYK-78T Clipper chip is visible in the far right of the board. The gray handset module at the front is a removable part that matches the unit to the audio and electrical levels of particular telephones.

 

Rodenstock Gerogon 240mm/9, Sinar P, BetterLight Super 6K-HS. Full resolution (6000x8000) version available.

 

Disclaimer: No emulsions were harmed in the making of this image.

I was invited to spend two days at Europe’s most comprehensive IoT Event. This leading forum focused on case studies that show today’s Industry and Enterprises leveraging IoT technologies to transform their business through creating value and efficiencies.

 

The Internet of things (stylised Internet of Things or IoT) is the internetworking of physical devices, vehicles (also referred to as "connected devices" and "smart devices"), buildings and other items—embedded with electronics, software, sensors, actuators, and network connectivity that enable these objects to collect and exchange data.

 

"Things," in the IoT sense, can refer to a wide variety of devices such as heart monitoring implants, biochip transponders on farm animals, electric clams in coastal waters,[16] automobiles with built-in sensors, DNA analysis devices for environmental/food/pathogen monitoring or field operation devices that assist firefighters in search and rescue operations.[18] Legal scholars suggest to look at "Things" as an "inextricable mixture of hardware, software, data and service". These devices collect useful data with the help of various existing technologies and then autonomously flow the data between other devices. Current market examples include home automation (also known as smart home devices) such as the control and automation of lighting, heating (like smart thermostat), ventilation, air conditioning (HVAC) systems, and appliances such as washer/dryers, robotic vacuums, air purifiers, ovens or refrigerators/freezers that use Wi-Fi for remote monitoring.

  

Wikipedia:

The flashing rear-end device, "F.R.E.D. or "FRED," (also called an end-of-train device, ETD or EOT) is an electronic device mounted on the end of freight trains in lieu of a caboose. They are divided into two categories: 'dumb' units which only provide a visible indication of the rear of the train with a flashing red taillight; and 'smart' units which also send back data to the crew in the locomotive via radio-based telemetry.[1] They originated in North America, and are used elsewhere in the world.

Device : Nikon D7200 with 18-140 mm lens.

Location : Curzon Hall, Dhaka University.

Captured Date : 07 june 2016

Responding correctly

Prospective rationality

Causal determination

 

In preparation for the FAFM photo for "Smoke", I had to make this make-shift 'smoke producing device' to create the smoke for the photo. As always, I have the correct 'supervision' so as to prevent accidents. The string produced a longer trail of smoke so I could take multiple photos and then choose the best one for the FAFM group. While not 'perfect' (and even a two-wick candle didn't suffice with sufficient smoke after extinguishing) this string would smolder for over a minute. The can is a clean tuna can, and the wire is 14-gauge copper wire.

Sent from my T-Mobile 4G LTE Device

This Upside-Down Church is located in Calgary, Alberta at 803 – 24 Ave. S.E.

Dedication plaque reads:

 

Title: Device To Root Out Evil, 1997

Artist: Dennis Oppenheim

Material: Galvanized Structural Steel, Anodized Perforated Aluminum, Red Venetian Glass

 

This exhibit has been facilitated by the Glenbow Museum with the generous support of the Benefic Foundation, Vancouver, B.C., owner of the work.

 

THE TORODE GROUP IS PROUD TO EXHIBIT

'THE DEVICE TO ROOT OUT EVIL'

 

The TORODE Group of Companies.

 

OnlyContest - Upside down - 2020-11-16

ClickContest - 3561 - 2021-01-30

Ankle monitoring device used by correctional officeres in Santa Cruz County. (Dan Coyro/Sentinel)

I spent half an hour in the BBC Oxford studio in front of this device. I failed.

• by Masterskaya Imagination •

improves the patient's well-being, reduces inflammation and restores the function of the prostate.

rheoscopic fluid constantly agitated by a magnetic stirring base covered in glitter felt, pieces of which were also used to decorate the flask containing the fluid. SOLD

Ceated with Mandelbulb 3d. Tweak of a param by cikkolata2000g.

Sutter Street + Octavia Street, Pacific Heights, San Francisco, California

25 August 2013

  

"This lively corner structure is enriched with a wide assortment of Queen Anne devices, including a three tiered corner tower with both hexagonal and round sections, angled bays, multiple gables with window-lit gable-ends, assertive cornice lines, a dormer and an oriel, not to mention garlands, fishscale shingles, dentils, and assorted brackets. Much of the interior also remains, having been restored and refitted when the building became the Queen Anne Hotel in 1980. The original central hallway survives, with its oak paneling, as does the squared spiral staircase beneath a large stained glass skylight. The most important elements that have been lost include the bell-shaped roof to the corner tower and the grand exterior granite staircase to a massively arched open vestibule before the main door. Miss Mary Lake's School for Young Ladies was a fashionable , non-sectarian seminary that grew from Miss Zeiska's Young Ladies Seminary in South Park in the 1860s. Enrollment was probably about 120 students, ranging in age from "infants" through high school. There was room for 65-70 boarders in the building. James G. Fair, of Comstock Lode fame, and the father of girls, was the major benefactor of the school having the school built in 1889, sparing no expense, for $45,000.00. The school survived only seven years at this site. The building was then leased to the Cosmos Club which counted such local moghuls (sic) as James Flood and Governor George Pardee among its members. From 1909 to 1926, it was used as a boarding house. In 1926 the building became the Girl's Friendly Society Lodge, a home for young working women. From 1950 to 1975 it was used as a guest house called The Lodge. Henry Schulze practiced from 1887 through 1908."

 

Sutter Street, San Francisco, California

  

2016-05-14_05-59-11

Collection:

Images from the History of Medicine (IHM)

 

Format:

Still image

 

Extent:

1 photoprint.

 

NLM Unique ID:

101405905

 

NLM Image ID:

A022411

 

Permanent Link:

resource.nlm.nih.gov/101405905

Lynx Optare Tempo FD54JYF, snapped in Hunstanton bus station and framed appropriately by trees in the park opposite

I have a couple of these Realistic Quatravox units from the 1970s. They convert two-channel stereo into four-channel for a surround sound effect. When these units were out quadraphonic sound was the latest fad, Radio Shack marketed these as a low cost alternative to get into four-channel sound. They require no external power, just a simple circuit with switches and resistors.

'Orrible little things the 12s. Their only redeeming feature being that you could prefix the fleet number with a buffer grease 3 and giggle childishly. (3)1216 arrives at some shack I didn't write down on some train I didn't board. Portugal May 1993ish.

P1060985PSXstrtn

 

For maximum effect, click the image, to go into the Lightbox, to view at the largest size; or, perhaps, by clicking the expansion arrows at top right of the page for a Full Screen view.

Don't use or reproduce this image on Websites/Blog or any other media without my explicit permission.

© All Rights Reserved - Jim Goodyear 2017.

petitions.moveon.org/sign/change-flickr-back

 

For my coming Jabba's palace I've built some technical device. I've made an instruction to see how I used some SNOT-techniques.

Two-car Class 156 'Super Sprinter' DMU 156 480 rumbles through Kirkby-in-Furness station, a deserted request stop, whilst forming Northern Rail's 07.41 (SaO) Barrow-Sellafield service. @07.52

1 2 3 4 6 ••• 79 80