View allAll Photos Tagged technique

HA S5317

HA CG150

HA CL493

 

For details, see my blog:

 

www.morningglorycardstudio.blogspot.com

Fab Feb Daily Challenge 2013/20

www.flickr.com/groups/fabfeb/pool/with/8436249692/#photo_...

 

52 Week Project: Wk 8: Focus to the right , not in the centre in manual or auto focus -technique

www.flickr.com/groups/52weeks2013/pool/with/8350360826/#p...

I've tried some new techniques of lighting effects on some of my discarded NG shots, and here's the result. Please tell me what you think.

 

Mount Washburn, Yellowstone National Park.

Found what I 'think' is a new technique. The black petals under the large flower uses 4 throwbot visors.

 

Technique: www.flickr.com/photos/38246614@N02/4268605088/

Seems like some guns and other tools have a 72 degree angled handle.

 

Useful? Don't know.

Technique photo ..Focus stacking avec Digicam Control et traitement dans Zerene Stacker

 

This photo + the traction engines was created by what i think is a technique which i think i have discovered.I have seen no other explanation as to how i have done this.It is done in Adobe ACR and takes seconds to create.On some Photo's,especially where there are people it creates a psuedo 3d HDR effect.

IR HDR. IR converted Canon Rebel XTi. AEB +/-2 total of 3 exposures processed with Photomatix. Levels adjusted in PSE.

 

High Dynamic Range (HDR)

 

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

 

HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.

 

The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.

 

Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).

 

In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).

 

Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.

 

In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.

 

An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.

 

Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.

 

Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.

 

Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range

 

Tone mapping

Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.

 

Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include

 

Adobe Photoshop

Aurora HDR

Dynamic Photo HDR

HDR Efex Pro

HDR PhotoStudio

Luminance HDR

MagicRaw

Oloneo PhotoEngine

Photomatix Pro

PTGui

 

Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

 

HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.

 

History of HDR photography

The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.

 

Mid 20th century

Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.

 

Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.

 

With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.

 

Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.

 

Late 20th century

Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.

 

In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.

 

In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.

 

Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.

 

In 1993, another commercial medical camera producing an HDR video image, by the Technion.

 

Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.

 

On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.

 

The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.

 

21st century

In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.

 

On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.

 

HDR sensors

Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.

 

Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.

 

en.wikipedia.org/wiki/High-dynamic-range_imaging

 

Infrared Photography

 

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)

 

When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.

 

The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.

 

Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.

 

Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.

 

Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.

 

False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.

 

Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.

 

Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.

 

Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.

 

As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.

 

Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.

  

Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.

 

In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.

 

There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.

 

Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.

 

In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.

 

Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.

 

An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.

 

Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.

 

While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.

 

Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.

 

Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.

 

Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".

 

Phase One digital camera backs can be ordered in an infrared modified form.

 

Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.

 

en.wikipedia.org/wiki/Infrared_photography

 

I'm not sure if anyone has come up with this technique for building square-lattice walls, but here's what I came up with while I was building the diorama.

The word ‘miniature’ describes a technique of painting in watercolour rather than the size of a painting. Miniature painting developed as a separate art in the 16th century and in Britain it became predominantly a portrait art.

 

Samuel Cooper had first set up established his independent miniature practice in London in 1642, the year that civil war broke out and King Charles I abandoned London for the safety of York. Cooper was not untouched personally by the years of war leading to the execution of Charles I in 1649. The poet Alexander Pope, the nephew of Cooper’s wife Christina, wrote that she ‘had three Brothers, one of whom was kill’d, another died in the service of King Charles’. Professionally, however, Cooper flourished, and during the Commonwealth period he was employed by Oliver Cromwell, the Lord Protector. At the Restoration of the monarchy in 1660 Cooper’s reputation as the foremost artist in England secured him the patronage of the returned royal family, to which he responded with an enriched style. His flesh painting became more full bodied, noticeably so to contemporaries such as Samuel Pepys, who thought ‘the colouring of the flesh to be a little forced’.

 

Today, albeit with fading, this portrait of the Duke of York does not seem unnaturally sanguine. Overall the effect is less austere than Cooper’s style during the Commonwealth period, the lighting less dramatic and so the relief of the sitter’s features is less marked. Its softer, lighter style, however, does not lessen the dignity and presence of the sitter. The Duke particularly retains a serious reserve appropriate for the second son of the ‘martyred’ Charles I.

 

Samuel Cooper (c. 1609-5 May 1672 in Covent Garden), English. Portrait painted in 1660-61, watercolor on vellum.

 

Height: 80 mm (3.15 in.)

Width: 64 mm (2.52 in.)

 

V&A Museum, South Kensington, London (P.45-1955)

You need:

 

2x r.brown cone

x amount of r.brown cylinders (depends on length of fibre-optics cable)

fibre-optics cable

r.brown headlight brick

green weed-ey plant stem things (any number)

 

I think the picture explains what you gotta do, and I can't be bothered to qrite up instructions.

 

I just thought this would be a cheaper way of making palm tree ;)

Techniques: aquarelle painting, collage

Idea: Beauty that is more than skin deep.

Tropical vibes...

GlVE ME CREDIT IF YOU USE THIS, GUYS

From playing around with the new Repair Lift, 30229. See my review here: www.dagsbricks.com/2014/06/set-review-repair-lift-30229.html

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

Technique: "Monochrome" effect in photography is a term generally used to describe a photograph in one color or shades of one color. Monochromatic light is light of a single wavelength, though in practice it can refer to light of a narrow wavelength range. A monochromatic object or image is one whose range of colors consists of shades of a single color or hue; monochrome images in neutral colors are also known as grayscale or black-and-white.

  

Folon was born on 1 March 1934 in Uccle, Brussels, Belgium in 1934. He studied architecture at the Institut Saint-Luc.

 

Career

The first exhibition of his watercolors was in New York in 1969 in the Lefebre Gallery. One year later he exhibited in Tokyo and in the Il Milione gallery in Milan. He also participated in the XXVth Venice Biennale. In 1973 he joined the selection of Belgian artists in the XXVth São Paulo Biennale, where he was granted the Grand Prize in Painting. Over the years his work concentrated on different techniques, including watercolor, etching, silkscreen, illustrations, mosaics, and stained glass, which showed the diversity of his art. His work Ein Baum stirbt - Un albero muore, 1974, is by Museo Cantonale d’Arte [de] of Lugano. He also designed numerous posters, often for humanitarian causes. Around 1988 he created his first sculptures made out of wood. He then moved on to creating sculptures in clay, plaster, bronze and marble, while continuing to paint.

 

Several museums dedicated exhibitions to him, among them the Musée des Arts Décoratifs in Paris in 1971, the Museum Boijmans Van Beuningen in Rotterdam in 1976, the Institute of Contemporary Arts in London in 1977, the Musée Picasso in Antibes in 1984, the Museo Correr in Venice in 1986, the Museo de Bellas Artes in Buenos Aires in 1987, the Metropolitan Museum of Art in New York in 1990, La Pedrera in Barcelona in 1993, the Bunkamura in Tokyo in 1995, the Olympic Museum in Lausanne in 1996 and the Museo Morandi [it] in Bologna in 1996–97. In 1999 an exhibition of large sculptures was presented in the Galerie Guy Pieters, in Saint-Paul de Vence. In 2000 he opened the Fondation Folon, which presents the essentials of his work in the region he grew up in. In 2001 the city of Lisbon held a large retrospective of his sculptures in the Castelo de São Jorge, which dominates the city. In 2003 he created the designs for Puccini's La Bohème for the Puccini Festival in Italy. The president of the French Republic, Jacques Chirac, awarded him the Legion of Honour in the Palais d'Elysée. In 2004 he became a UNICEF ambassador. In 2005 the city of Florence held a grand retrospective of his work at the Palazzo Vecchio and the Forte di Belvedere.

 

Folon published his drawings in newspapers, mostly in the US, where he was recognized earlier than in Europe and illustrated books by Franz Kafka, Ray Bradbury, Jorge Luis Borges, Guillaume Apollinaire, Jacques Prévert, Boris Vian, Guy de Maupassant, Albert Camus, Herbert George Wells and Jean de La Fontaine. He never really changed his style, whose most famous emblem is the "bird-man" but used all kinds of supports; Folon made murals (Magic City for the Brussels subway, 1974; Waterloo Station for the London tube, 1975), posters for theater and opera (Spoleto Festival, 1978; Teatro Olimpicio, 1987) and cinema (The Purple Rose of Cairo, by Woody Allen, 1985), theater and opera scenery (Geneva and Brussels, 1981; Venice and Roma, 1989), short films for TV (opening and closing sections for the French channel Antenne 2, 1975–1984), wooden sculptures, logotypes (Bicentenary of the French Revolution, 1989; Philexfrance, 1989), tapestries (Congress Hall of Monaco, 1989), ships (1990), church windows (1992), sculptures (La mer, ce grand sculpteur, Knokke, 1997), and even a Palio flag (Siena, 1999). His artistic value was recognized by several exhibitions organized in the most famous galleries and museums in the world (Musée des Arts Décoratifs, Paris, 1971; Arts Club of Chicago, 1972; Museum Boijmans Van Beuningen, Rotterdam, 1976; Transworld Art, Washington, D.C., 1977; Musée d'Art Moderne de Liège, 1978; Musée Picasso, Antibes, 1984; Correr Museum, Venice, 1985; Metropolitan Museum of Art, New York, 1990; La Pedrera, Barcelona, 1993; Bunkamura Museum, Tokyo, 1995; Olympic Museum, Lausanne, 1996).

 

He credits Giorgio Soavi for publishing his first posters, which were designed for Olivetti in Milan: "As he has done for many artists, Soavi suggested to me, too, that I invent things that were out of the ordinary for me. This attitude has created such a fertile spirit of invention around him that one wonders if he is not the true author of the works that he has thus encouraged."

 

Soavi also was largely responsible for the 1975 book Lettres a Giorgio, which reproduces 40 envelopes, each an original watercolor addressed to Soavi—most to his Milan home—and delivered by the mail from various international addresses. Folon writes in a brief Afterword: "We build in our dreams a monument to the unknown postmen to thank them all for having allowed these images to reach their destination."[3]

 

He created a famous piece of television that was screened in France for almost 30 years. It was first made for the Italiques TV show, by Marc Gilbert (in French), which aired from 1971 to 1974. The music, originally the soundtrack of Gott mit uns, was composed by Ennio Morricone.

 

In the 1990s, Folon decided to create a foundation in the Solvay Castle, La Hulpe. In 2005, under the direction of Marilena Pasquali, Fabio Mochi organised the exhibition of Jean-Michel Folon in Florence which six years later gave rise to the creation of the permanent Folon exhibition in the Giardino delle Rose (Rose Garden) in Florence. Another piece of television quite famous and remembered is a commercial about methane for SNAM. The soundtrack is Dolorosa by Michel Colombier.

 

Personal life

Folon settled in the outskirts of Paris in 1955. In 1985, he moved to Monaco.

 

Milton Glasser describes an incident with Folon in the 1970s: "Last year a group of us were driving at dusk from Paris to Folon's house at Burcy. As we passed the forest of Fountainbleau, Jean-Michel mentioned that we were going to have rabbit for dinner. My wife, Shireley, recoiled and said, "I can't eat rabbit, I have a rabbit at home" (referring to Mr. Hoffman, our dwarf albino). Jean-Michel paused thoughtfully for a moment and said, "O.K., then we can have some nice cheese . . . unless you have a cheese at home."

aaaah, ASH YOU ARE FAST

but anyway, this is caoihme round three for australia's next top model @ SCF! I really love it besides that bloody hand, SO ANNOYING, i tried to fix it but just gave up. D: frank from 3 poses bahahah, i did try my new hair technique here though, quite like it.

 

yiiiyiyiyiyiii everyone join gaffe for milk n cookiez n models n sims n luv

GAFFE

anyone up for modding? i need someone who will be hella active <3

 

-------------

 

EDIT

so um, i clearly do not know what ash blond is XD

finished version with corrected hair colour, oops

Last Sunday my friend Bianca came over for a stamping together party. And this is my result

 

I first sponged the background with several distress inks. Stamped the music background with crushed olive distress ink. Stamped the leave with versamagic sahara sand and clear embossed. Heated the embossed imaage again and added salt and heated it again so that the salt is melted in the embossing powder.

 

Stamps used all Hero Arts:

Music Background CG222

Real Leaves LL684

Quill Sentiments LL127

Antique Engravings CL383

 

The trouble with kissing gates is that you get forced through one narrow section which is either extremely muddy, extremely icy or both, as in this case!

You find faces in the oddest places.

TECHNIQUE | TÉCNICA: silkscreen - 6 inks | Serigrafía - 6 tintas

PAPER SIZE | TAMAÑO DEL PAPEL: 17,716‘’ x 13,779’’ | 45cm x 35cm

SUPPORT | SOPORTE: Magnani Bianca 220gr. 50% cotton paper | papel Magnani Bianca 220gr. 50% algodón

EDITION SIZE | EDICIÓN: 100 copies | 100 ejemplares

PLATE DESTROYED | PLANCHA O MATRIZ ANULADA: Yes | Sí

EDITOR(S) | EDITOR(ES): Malevo Estampa • Editores de Obra Gráfica Original

PRINT WORKSHOP | TALLER DE IMPRESIÓN: Malevo Estampa

MASTER PRINTER | MAESTRO IMPRESOR: Luciano Murúa Tolcachier

EDITION DATE | FECHA DE EDICIÓN: January - 2010 | Enero - 2010

Techniques for a spoon and a cake with serving tray. On the right, the spoon is actually a broken robot claw from a series 3 Space Villain. One of the sides snapped off, so I figured it'd work well as a utensil.

 

On the left is a self-explanatory cake with the gladiator shield as a tray. :)

The Witches Tower build techniques. When I make these large builds I usually try to come up with a technique I haven’t seen before or try something I haven’t done before. It helps make these projects more interesting to build and makes bulk ordering parts a lot simpler.

 

This build I wanted to try messing around with flex tube to get the correct spacing I wanted for the bricks. I did try mixel ball joints and hinges but I quickly realised the price would get expensive quick. Flex tube just ended up being the simpler option and gave me a lot of options to attach things to.

 

The technique I use for the framing in the rock has been used in all my show displays. It is the best solution I have come up with to help make elevated terrain. It is very strong and light for transport. Its also quick to build and easy to change if need be.

Stays on by itself, at a slight angle, not "flush" with the tailpiece but snug.

Black Card Technique. No HDR.

 

Find higher resolution images like these and others at my official website - many available as showcase prints:

Official Website | My Blog | Facebook | Twitter | Design Portfolio

I read 2 very nice articles on photography/photoshop techniques this week, and tried them both today! Can I call this online literature? For me it is ;-)

 

The first one was about playing with the white balance on your camera. See the SOOC result in the comments, I only added some contrast to the photo.

content.photojojo.com/diy/create-in-camera-white-balance-...

 

The second is called "How to Convert Photos to Black and White Using Image Calculations", and I used this PS technique in my main photo. I like the subtle way of converting a photo to b&w, and am very happy that I discovered it!!

www.mcpactions.com/blog/2013/01/18/how-to-convert-photos-...

 

Oh, and I also excercised my panning techniques again. It's been a very fruitful afternoon!

 

ODC2 - LITERATURE, and as sleighing pics in winter are very cliché; HCS!

 

Brazilian Jiu Jitsu Techniques are offered by #Bansktown_Martial_Arts in Sydney. Our trained professionals help you in learning techniques better. Know more about us by visiting us online today. Call us to know more. Get yourself enrolled in Brazilian Jiu Jitsu Sydney program today.

 

Inlet to mobile CO2 Sensor on roof of car. This system is using the prototype DIYSCO2 sensor on car-sharing vehicles. Photo by Andreas Christen, UBC.

 

Part of album Urban CO2 Emission Mapping.

 

This method to map carbon dioxide emissions using mobile sensors on vehicles is described in: Lee J.K., Christen A., Ketler R., Nesic Z. (2017): 'A mobile sensor network to map carbon dioxide emissions in urban environments'. Atmospheric Measurement Techniques, doi:10.5194/amt-2016-200.

My new favorite modified plate.

Playing with some new found filters I dragged up this old shot from a shoot I did for The Vintage Clothing company a couple of yrs ago. I didn't think it worked that well until I came across this effect:

 

www.flickr.com/groups/technique/discuss/72157601062925085...

 

High Contrast

A neat thing I discovered yesterday and thought it would be something interesting to share. To me, I think this is more appropriate than FullAutoPyro's Colt Navy Revolver, which is still a good trick but I find in some cases too chunky. I also think it's more realistic because the the sides are pretty much the same length.

Look at that technique! A future soccer star? Balled fists and arms out for balance, standing foot planted, good follow through and eyes obviously were right on the ball(oon). Perfect! A future David Beckham or Ronaldo? Lets hope so for England's sake! :D

 

This is another shot from the Christening I shot. I had to rely on autofocus because of the action and low light and it is a bit off. I had to post it though because I love his posture and his look of concentration! His outfit is pretty cool too :)

Technique:

Nikon d600

Nikkor 24 - 85

Aucun filtre

F/8 - 6s - iso 100

 

Traitement:

Photoshop cs5

 

All right reserved © Franco Palumbo.

 

Follow me on facebook

I am so excited about this discovery and think you will be too.

I love this crackle because it is easy to do with easy to find materials that don't cost an arm and a leg.

The tutorial is available here

beadcomber.artfire.com

 

or you can read about it on my blog

beadcomber.blogspot.com

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

Managed to buy the final accessories for my Monthly Project outfit, which will be shown in all it's glory in December!

This blingy belt came from the Chest Heart and Stroke Charity shop in Hawick. Teamed with the jumper, trousers and cap for the overall effect.

Treasure Hunt Monthly Project 10: October Knickers Model's Own shot

massage techniques napa includes an unusual massage found at Napa Restorative Bodywork.

just fooling around -- this is a composite of an image converted to grayscale and manipulated with artificial filtration (make the blue areas darker for instance) overlaid with a unmanipulated color image.

 

Lens used is the Retina DKL 50mm f/2.8. This is a panoramic stitch.

 

I thought it looks odd if the car goes around the corner with the wheels straight... So I gave Indy a 6w steering for the looks.

Feel free to use, I am not the best car builder, so I just pimped Indy's and i think it worked out nice!

I need to add that this is not for "swooshing", the wheels have too much friction on the pins.

CAMP HANSEN, OKINAWA, Japan (July 8, 2020) - Cpl. Austin Roberts, a scout sniper with Battalion Landing Team, 2nd Battalion, 4th Marines, 31st Marine Expeditionary Unit (MEU) and a Salt Lake City, Utah native, engages targets with an M40 A6 Sniper Rifle during a static live fire range at Camp Hansen, Okinawa, Japan, July 8, 2020. The training allowed Marines to improve their proficiency in the fundamentals of marksmanship and to work on advanced techniques including long range precision shooting through barricades and improvised positions. The 31st MEU, the Marine Corps’ only continuously forward-deployed MEU, provides a flexible and lethal force ready to perform a wide range of military operations as the premier crisis response force in the Indo-Pacific region. (U.S. Marine Corps photo by Lance Cpl. Brienna Tuck) 200708-M-WH885-1016

 

** Interested in following U.S. Indo-Pacific Command? Engage and connect with us at www.facebook.com/indopacom | twitter.com/INDOPACOM |

www.instagram.com/indopacom | www.flickr.com/photos/us-pacific-command; | www.youtube.com/user/USPacificCommand | www.pacom.mil/ **

 

1 2 ••• 11 12 14 16 17 ••• 79 80