View allAll Photos Tagged technique

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

I think you can never built in too many styles. This was really just a tablescrap I built around the weird track the barrel runs in to adjust elevation. It's probably impractical for any application more serious than this one, but I like stuff like that anyway. Plus, it's been ages since I built a tank.

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

techniques mixtes H 54cm. 1995

Hopefully others find these techniques as helpful as I have! :o)

The Witches Tower build techniques. When I make these large builds I usually try to come up with a technique I haven’t seen before or try something I haven’t done before. It helps make these projects more interesting to build and makes bulk ordering parts a lot simpler.

 

This build I wanted to try messing around with flex tube to get the correct spacing I wanted for the bricks. I did try mixel ball joints and hinges but I quickly realised the price would get expensive quick. Flex tube just ended up being the simpler option and gave me a lot of options to attach things to.

 

The technique I use for the framing in the rock has been used in all my show displays. It is the best solution I have come up with to help make elevated terrain. It is very strong and light for transport. Its also quick to build and easy to change if need be.

I needed to brace a DUPLO/QUATRO structure but didn't want to use the extra space that a layer of normal bricks would take up. Fortunately, the 2x2 brick with a Technic pin coming out of it will still take a DUPLO stud on the bottom.

 

This photo is just to illustrate the technique - in the final model, I'll need more bracing.

I made a master board for the die-cut snowflakes. I took recycled packaging cardboard, slathered it with paints, sprays, glimmers, embossed papers, gilding, molding paste through stencils, microbeads, etc. etc. etc. It looks like a big old mess until you cut out the shapes. But then you are left with wonderful details and texture.

 

January 2016

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

following Saffron Addict's tutorial...

IR HDR. IR converted Canon Rebel XTi. AEB +/-2 total of 3 exposures processed with Photomatix. Levels adjusted in PSE.

 

High Dynamic Range (HDR)

 

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

 

HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.

 

The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.

 

Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).

 

In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).

 

Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.

 

In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.

 

An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.

 

Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.

 

Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.

 

Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range

 

Tone mapping

Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.

 

Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include

 

Adobe Photoshop

Aurora HDR

Dynamic Photo HDR

HDR Efex Pro

HDR PhotoStudio

Luminance HDR

MagicRaw

Oloneo PhotoEngine

Photomatix Pro

PTGui

 

Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

 

HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.

 

History of HDR photography

The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.

 

Mid 20th century

Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.

 

Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.

 

With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.

 

Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.

 

Late 20th century

Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.

 

In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.

 

In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.

 

Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.

 

In 1993, another commercial medical camera producing an HDR video image, by the Technion.

 

Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.

 

On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.

 

The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.

 

21st century

In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.

 

On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.

 

HDR sensors

Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.

 

Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.

 

en.wikipedia.org/wiki/High-dynamic-range_imaging

 

Infrared Photography

 

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)

 

When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.

 

The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.

 

Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.

 

Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.

 

Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.

 

False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.

 

Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.

 

Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.

 

Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.

 

As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.

 

Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.

  

Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.

 

In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.

 

There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.

 

Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.

 

In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.

 

Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.

 

An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.

 

Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.

 

While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.

 

Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.

 

Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.

 

Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".

 

Phase One digital camera backs can be ordered in an infrared modified form.

 

Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.

 

en.wikipedia.org/wiki/Infrared_photography

 

A way of attaching a cape via the arms of a minifigure rather than the neck. I am not sure if this technique is mine, so please tell me if it is not. Instructions are provided in this post on Mocpages.

I figured out how to non-destructively open up a DUPLO figure. The key is to remove the bar like element. This bar is 2.75L and 3.0mm at the ends but 3.2mm in the middle. You can clip stuff to the middle and poke the ends into Modulex. See the whole writeup at www.dagsbricks.com/2014/07/lego-techniques-duplo-figure-b...

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

(based on Linus and Lucy’s house from ‘Peanuts’)

Color mixing chart from a paperback art techniques book published by Grumbacher, a respected manufacturer of artist supplies. I learned to paint oils with Grumbacher paints.

 

This scan is from 2010 so I need to find the book to get the publication date.

The MLD process involves a light vibratory touch to encourage the lymphatic fluid flow toward the main lymphatic ducts and back into the blood system.

When the flow of lymphatic elements is reduced, the immune system weakens. Lymphatic drainage can help improve the production and flow of antibodies, thus better empowering the immune system and assisting in detoxification and relaxation.

Ricoh XR7

Rikenon 50/1,4

Fujifilm Color 200 (exp)

Częstochowa - Elanex est. 1889

I decided to try a new river technique and this is the result! :D

these two men (rabbis i think) where leading the jewish party you see in my video!

Iphone and Ipad, as it should be ;-)

technique of chlorination of the FP-100 color film Fuji

Alright, after weeks of no upload I come up with this... uh.. A rather mediocre picture of studs.

What, studs? Not just any studs... some sort of discussion on another pic got me thinking about

ways to make water in my future MOCs. I was thinking of using something similar to this

(the picture sucks pretty much so it doesn't look so good here, but it has been used in

this 'Last March of the Ents' MOC and some others I've seen) and I started to wonder whether

I should even think of using something like this at all, or perhaps move to something else...

 

This way of making water would be using lots of loose transparent studs, and maybe

cheese slopes as well. For Helm's Deep, I wanted to use either one of these:

a) just trans clear studs etc. or b) trans clear studs mixed with trans lt. blue.

 

So I wanted to know if you guys thought of this as a good idea,

or if I should start thinking of something else... this would otherwise also be used for water

and it would look better with some layers of blue colors under it, I suppose.

If you've got a suggestion or an idea for water, feel free to post something... I could go for

something like this in Helm's Deep,

and use the "Derfel Cadarn water" for other things, so to call it.

 

And yes, that is, or rather was, a Rohirrim...

 

NOTE: Osgiliath is still being made as of now. Planning to do a preview shot soon,

and I want to start some photography improvements in a bit before I post new MOCs of mine...

Has it been over a year since I last publicly posted an actual MOC, other than figures?!

Brausemund

Spout Mouth

1979

Schablonentechnik

Stencil technique

Albertina, Wien

 

On the occasion of her 85th birthday, the Albertina dedicates a large-scale retrospective to the Austrian artist Florentina Pakosta.

In the 1960s, Florentina Pakosta reacted with her drawings and prints to the discrimination of women in the art scene. For centuries, it was the male artist who portrayed the woman as an object or muse. Florentina Pakosta now looks at the man and dissects his facial expressions and body language. Her satirical work denounces patriarchal power structures by overemphasizing male behavior and reversing traditional roles.

The self-portrait also plays a central role in the work of Florentina Pakosta - she sometimes portrays herself serious, sometimes self-confident, sometimes combative. In her series Landscape of goods und Masses of people, Pakosta expresses the disappearance of the subject in capitalism. From about the mid-1980s, Florentina Pakosta turns away from the black-and-white and figurative works and turns towards the painting and an abstract language of forms. To this day, arise cycles of characteristic, geometric bar images.

The exhibition can be seen from 30th May to 26th August 2018.

 

Anlässlich ihres 85. Geburtstags widmet die ALBERTINA der österreichischen Künstlerin Florentina Pakosta eine groß angelegte Retrospektive.

In den 1960er Jahren reagiert Florentina Pakosta mit ihren Zeichnungen und Druckgrafiken auf die Diskriminierung von Frauen in der Kunstszene. Über Jahrhunderte hinweg war es der männliche Künstler, der die Frau als Objekt oder Muse porträtierte. Florentina Pakosta richtet nun folglich den Blick auf den Mann und seziert seine Gesichtsausdrücke und Körpersprache. Mit ihren satirischen Arbeiten prangert sie patriarchale Machtstrukturen an, indem sie männliches Verhalten überzeichnet und tradierte Rollen umkehrt.

Auch das Selbstporträt nimmt im Werk Florentina Pakostas eine zentrale Rolle ein – sie stellt sich mal ernsthaft, mal selbstbewusst, mal kämpferisch dar. In ihren Serien Warenlandschaften und Menschenmassen bringt Pakosta das Verschwinden des Subjekts im Kapitalismus zum Ausdruck. Ab etwa Mitte der 1980er Jahre wendet Florentina Pakosta sich von den schwarz-weiß gehaltenen und gegenständlichen Arbeiten ab und der Malerei und einer abstrakten Formensprache zu. Bis heute entstehen Zyklen der charakteristischen, geometrischen Balkenbilder.

Die Ausstellung ist von 30. Mai bis 26. August 2018 zu sehen.

www.albertina.at/ausstellungen/pakosta/

++++

Copyright : Philippe Clabots (#PhilippeCPhoto)

Facebook Page : www.facebook.com/PhilippeCPhotographie

Web Site : photos.philippec.be/

This work by #PhilipppeCPhoto (Philippe Clabots) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Permissions beyond the scope of this license may be available at photos.philippec.be/.

+++++

Another batch of these things. See the album (Circles and Cylinders) for more.

This version is not embossed, but has other photo program techniques I used, like oil paint. I started with a real photo that I took of a sea anenome at the Oregon Aquarium in Newport, Oregon. Original was taken with a low resolution camera (Sony Mavica FD-71) when digital was just kind of starting; so the size and resolution are not great. You might say it is best viewed very tiny, or not at all. LOL Delina

((090301aquarium and some in the 500 - 599s))

Two High is a new font in Swooshable's font directory. Variants have been floating around a long time, but I think the original version can be attributed to William Howard.

 

You can write with this font using Swooshable's Font Tester. I appreciate any feedback, yay/nay and links, so please let me know if you have any thoughts.

My travel technique is one often ridiculed by those who don't understand. Actually, i've ridiculed it myself! Ever since my first trip to Europe, my style has been that of the typical American I guess: See as much as possible and at a rapid pace. I actually spent about 4 hours in Venice my first trip there. FOUR HOURS! Jumped on a boat from the train station, headed to St. Marks, walked a few alleys, got back on the train, and bam....off to Florence. Silly, I know...

 

Fast forward a few years and I'm essentially the same guy, not quite AS bad, but still a bit hyper. All that being said, it was at first quite torturous to wait here for the slowly wandering tourists to clear out of the shot. Its kinda funny, when your waiting...they seem to move slow as molasses, don't they? Appearing to be studying nothing at all, one guy wandered in and out of my camera view for what seemed like hours!

 

Like a slap in the face, however, my focus changed. What in the hell was I in such a rush for. If I could only slow the pace down a few clips, I might actually be able to let my mind wander a bit and imagine the stories these walls might be able to tell. Almost like a scene from a bedtime story I might have read to my daughter, this place was magical. As I sat down on the cool stones in the corner, I allowed myself to sink into the music on the Ipod while noticing the details in the arches, the texture in the stones, the musty smell of years gone by, .......WOW. Its amazing what we let out minds filter out in the rush of the average day.

 

I sometimes wonder what value there is in spending so much time behind the lense, until I recall moments like this :)

Using the "mirrorred hypoteneuse" technique.

Iphonography Time Lapse - I've just recently discovered the technique behind time lapse. The I discovered the easy solution; an iPhone app, capturing, editing and rendering the whole thing. This is my 4.th iphone time lapse, but the first shared on flickr.

I think you can never built in too many styles. This was really just a tablescrap I built around the weird track the barrel runs in to adjust elevation. It's probably impractical for any application more serious than this one, but I like stuff like that anyway. Plus, it's been ages since I built a tank.

From playing around with the new Repair Lift, 30229. See my review here: www.dagsbricks.com/2014/06/set-review-repair-lift-30229.html

Roof technique is from Jaapxaap but with the round web from one of the first spider-man set (I was also inspired by jaapxaap for the colour).

For the wall, I was inspired by Luke Watkins Hutchinson.

 

For We're Here! who are visiting Books Reviewed.

 

For my 21st birthday Perry bought me this book.

 

Perry was someone I met when I first went to college and is someone I love. She was creative, artistic, fun, caring and a unique personality. Val and I shared a flat for a time with Perry and Simon in London. Perry died in a road accident. She was a teacher with young children.

 

I still think about Perry a lot. She had a big impact on me.

 

The book is a "sex manual" with drawings and photos that are not really explicit. The title "Sexual Techniques" says it all..

Just one of the speakers tonight

 

A portrait done for issue 5 of Pomp & Circumstance using only a razor and the ads within the magazine.

Resubmit for technique challenge. Distressed the edge of the circle.

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

Sedan.

Ample evidence still exists in Sedan and the district of the early building techniques used. The stone buildings show the work of the masons, while the country buildings show the use of mallee root walls, dry stone fences, thatched barns and even the occasional pine and pug hut. The native pine used was Callistris species which are resistant to termites. We will see one such cottage near Sedan. The last remaining mallee root fence in the district has now gone. The dry stone walls are a feature of the eastern side of the Mt Lofty Ranges as the area was scattered with granite boulders and other rocks. Most of these walls were constructed before the 1870s to divide the great pastoral runs. Generally the walls are one metre high, and almost one metre wide at the base tapering to 40 cms at the top. Some walls were built as recently as the Great Depression of the 1930s, especially along road edges of the Sedan Hill road. The mallee root fences were erected as a cheaper version of fencing wire. Sadly all the mallee root fences are now gone.

 

Pine and pug cottage near Sedan.

 

Sedan lies in the Hundred of Bagot on the Murray Plains and was so-named by a farmer of Tanunda, Johann Pfeiffer when he purchased 306 acres of land in the vicinity in 1870. It is presumed he named his property sedan to commemorate the German victory over France in the Franco-Prussian war of 1870. At that time he was not able to foresee that other localities in the district would also end up being named after battles. There had been earlier lessees of the land in the area but the leases were forfeited back to the government in August 1860 when the Hundred of Bagot was proclaimed. The land was subsequently surveyed for closer settlement. The rivers of the district were named by the famed SA geologist Menge who called them the North and South Rhine Rivers after the rivers of his homeland in Germany.

 

The first white men to traverse the district were overlanders with flocks of sheep or cattle from NSW. One of their routes was to cross the Murray near Blanchtown and drive their flocks up the Marne River valley and into the Adelaide Hills. The first lessee of the district was George Melrose who took out a leasehold in 1845. He established his homestead at Rosebank, east of Mt Pleasant. The run was inherited by his third son George Melrose (1860-1938) who was born at Rosebank in 1860. He managed other family properties near Cowell and Hallett. He was an important pastoralist as he introduced to Australia the first Dorset sheep, the first French Percheron horses (the police greys) and Wensleydale sheep. He purchased Booborowie station where he lived from 1897. Sir John Stanley Murray (1884-1971) was born on 27 March 1884 at Rosebank and acquired the property from one of his uncles Sir George Murray, a benefactor of the University of Adelaide. He lived on the property and his managers were responsible for its development as a leading Aberdeen Angus stud. Through marriage the property went from the Murrays to the McLachlans. The three families have prominent headstones in the Mt Pleasant cemetery.

Land sales started in July 1869 and gentlemen speculators as well as genuine farmers bought the land. The latter group mainly came from the North Rhine district around Keyneton and Eden Valley, but also from other areas of the Barossa Valley. Most were of German descent wanting new agricultural lands for their second and third sons. The town itself was surveyed in 1875 and again in 1883 by C. von Bertouch and very soon the town had a flour miller, a baker, blacksmiths and wheelwrights, a builder –stone mason, hotel keeper, butcher, store keeper, saddler and banker. Today Sedan has few of those services. The map for the self guided walk around Sedan uses the 1883 town survey map. A local Truro contractor Mr. Teasdale-Smith constructed the Cambrai-Sedan railway in 1919. The arrival of the first train was cause for great celebration. The line closed in 1964. One of the more unusual local industries was the production of lime. Between 1890 and 1930 lime kilns out of the town burnt crushed limestone and heated it until it flaked into lime powder. Wool Bay on York Peninsula also had lime kilns like those at Sedan. Electricity reached Sedan in 1956; and reticulated water came in 1968.

As noted above many of the early settlers were of German descent and during World War I all German names were changed by law. Rhine Villa became Cambrai, and the North and South Rhine rivers became the Somme and the Marne. All of these names were from WWI battles. During The Battle of the Somme, 1 July 1916, the British suffered 57,470 casualties, including 19,240 dead. It was the bloodiest day in the history of the British Army yet despite terrible casualties it was a strategic success in the short term for the Allies against the Germans, as it halted the German advance. The Battle of the Marne, 1914, was a clearer victory for the Allies against the Germans. The Battle of Cambrai in 1917 allowed the British to open up the German lines but not for long. The battle was a stalemate like so many World War One battles. A second Battle of Cambrai in 1918 was a victory for the allies.

 

Here is a new set of LEGO ideas and techniques, made with LDD

I'm sure you'll find a use to this idea

I tried to make the explanation readable thanks to the colors as if we had a tutorial

 

Do not forget to watch the album with all the right techniques on your right =>

 

Find all my creations on Flickr group « News LEGO Techniques ».

This Flickr group includes:

 

- Ideas for new LEGO pieces

- Techniques for assembling bricks

- Tutorials for making accessories, objects, etc.

alondonmassage.co.uk/asianmassage-london/ - There are many different types of massages in the world, each with its own basic techniques and benefits for those who believe in taking up activities to nourish mind and body; among the most popular are Shiatsu, Acupressure, Amma (or anma), Ayurvedic and Champissage.

 

Nezashi takara

Ōsaka :Shibukawa Kiyoemon,Enkyō 2 [1745]

biodiversitylibrary.org/page/60936559

Nezashi takara

Ōsaka :Shibukawa Kiyoemon,Enkyō 2 [1745]

biodiversitylibrary.org/page/60936562

1 2 ••• 8 9 11 13 14 ••• 79 80