View allAll Photos Tagged samples

Samples of portrait photo shoots....

Tyrannosaurus Part 2 - for part 1 go to photo 1

______________________________________________

 

Those who argue that Tyrannosaurus was incapable of running estimate the top speed of Tyrannosaurus at about 17 kilometers per hour. This is still faster than its most likely prey species, hadrosaurids and ceratopsians. In addition, some advocates of the idea that Tyrannosaurus was a predator claim that tyrannosaur running speed is not important, since it may have been slow but still faster than its probable prey. Thomas Holtz would also note that Tyrannosaurus had proportionately longer feet than the animals it hunted: duck-billed dinosaurs and horned dinosaurs. However, Paul and Christiansen (2000) argued that at least the later ceratopsians had upright forelimbs and the larger species may have been as fast as rhinos. Healed Tyrannosaurus bite wounds on ceratopsian fossils are interpreted as evidence of attacks on living ceratopsians (see below). If the ceratopsians that lived alongside Tyrannosaurus were fast, that casts doubt on the argument that Tyrannosaurus did not have to be fast to catch its prey.

 

BRAIN AND SENSES

A study conducted by Lawrence Witmer and Ryan Ridgely of Ohio University added detail to the known sensory abilities of Tyrannosaurus, finding that they shared the heightened sensory abilities of other coelurosaurs, highlighting relatively rapid and coordinated eye and head movements, as well as an enhanced ability to sense low frequency sounds that would allow tyrannosaurs to track prey movements from long distances and an enhanced sense of smell. A study published by Kent Stevens of the University of Oregon concluded that Tyrannosaurus had keen vision. By applying modified perimetry to facial reconstructions of several dinosaurs including Tyrannosaurus, the study found that Tyrannosaurus had a binocular range of 55 degrees, surpassing that of modern hawks, and had 13 times the visual acuity of a human, thereby surpassing the visual acuity of an eagle which is only 3.6 times that of a person. This would have allowed Tyrannosaurus to discern objects as far as 6 km away, which is greater than the 1.6 km that a human can see.

 

Thomas Holtz Jr. would note that high depth perception of Tyrannosaurus may have been due to the prey it had to hunt; noting that it had to hunt horned dinosaurs such as Triceratops, armored dinosaurs such as Ankylosaurus and the duck-billed dinosaurs may have had complex social behaviors. He would suggest that this made precision more crucial for Tyrannosaurus enabling it to, "get in, get that blow in and take it down." In contrast, Acrocanthosaurus had limited depth perception because they hunted large sauropods, which were relatively rare during the time of Tyrannosaurus.

 

Tyrannosaurus had very large olfactory bulbs and olfactory nerves relative to their brain size, the organs responsible for a heightened sense of smell. This suggests that the sense of smell was highly developed, and implies that tyrannosaurs could detect carcasses by scent alone across great distances. The sense of smell in tyrannosaurs may have been comparable to modern vultures, which use scent to track carcasses for scavenging. Research on the olfactory bulbs has shown that Tyrannosaurus rex had the most highly developed sense of smell of 21 sampled non-avian dinosaur species.

 

Somewhat unusually among theropods, T. rex had a very long cochlea. The length of the cochlea is often related to hearing acuity, or at least the importance of hearing in behavior, implying that hearing was a particularly important sense to tyrannosaurs. Specifically, data suggests that Tyrannosaurus rex heard best in the low-frequency range, and that low-frequency sounds were an important part of tyrannosaur behavior.

 

A study by Grant R. Hurlburt, Ryan C. Ridgely and Lawrence Witmer would obtain estimates for Encephalization Quotients (EQs), based on reptiles and birds, as well as estimates for the ratio of cerebrum to brain mass. The study would conclude that Tyrannosaurus had the relatively largest brain of all adult non-avian dinosaurs with the exception of certain small maniraptoriforms (Bambiraptor, Troodon and Ornithomimus). The study would however find that Tyrannosaurus's relative brain size was still within the range of modern reptiles, being at most 2 standard deviations above the mean of non-avian reptile EQs. The estimates for the ratio of cerebrum mass to brain mass would range from 47.5 to 49.53 percent. According to the study, this is more than the lowest estimates for extant birds (44.6 percent), but still close to the typical ratios of the smallest sexually mature alligators which range from 45.9–47.9 percent.

 

FEEDING STRATEGIES

A 2012 study by scientists Karl Bates and Peter Falkingham suggested that the bite force of Tyrannosaurus could have been the strongest of any terrestrial animal that has ever lived. The calculations suggested that adult T. rex could have generated from 35,000 to 57,000 Newtons of force in the back teeth. However, even higher estimates were made by professor Mason B. Meers of the University of Tampa in 2003. In his study, Meers estimated a possible bite force of around 183,000 to 235,000 Newtons or 18.3 to 23.5 metric tons. Research done by Stephan Lautenschlager et al of the University of Bristol, also reveals Tyrannosaurus was also capable of a maximum jaw gape of around 63 degrees, a necessary adaptation for a wide range of jaw angles in order to power the creature's strong biteThe debate about whether Tyrannosaurus was a predator or a pure scavenger is as old as the debate about its locomotion. Lambe (1917) described a good skeleton of Tyrannosaurus close relative Gorgosaurus and concluded that it and therefore also Tyrannosaurus was a pure scavenger, because the Gorgosaurus teeth showed hardly any wear. This argument is no longer taken seriously, because theropods replaced their teeth quite rapidly. Ever since the first discovery of Tyrannosaurus most scientists have speculated that it was a predator; like modern large predators it would readily scavenge or steal another predator's kill if it had the opportunity. Paleontologist Jack Horner has been a major advocate of the idea that Tyrannosaurus was exclusively a scavenger and did not engage in active hunting at all, though Horner himself has claimed that he never published this idea in the peer-reviewed scientific literature and used it mainly as a tool to teach a popular audience, particularly children, the dangers of making assumptions in science (such as assuming T. rex was a hunter) without using evidence. Nevertheless, Horner presented several arguments in the popular literature to support the pure scavenger hypothesis:

 

Tyrannosaur arms are short when compared to other known predators. Horner argues that the arms were too short to make the necessary gripping force to hold on to prey.

Tyrannosaurs had large olfactory bulbs and olfactory nerves (relative to their brain size). These suggest a highly developed sense of smell which could sniff out carcasses over great distances, as modern vultures do. Research on the olfactory bulbs of dinosaurs has shown that Tyrannosaurus had the most highly developed sense of smell of 21 sampled dinosaurs. Opponents of the pure scavenger hypothesis have used the example of vultures in the opposite way, arguing that the scavenger hypothesis is implausible because the only modern pure scavengers are large gliding birds, which use their keen senses and energy-efficient gliding to cover vast areas economically. However, researchers from Glasgow concluded that an ecosystem as productive as the current Serengeti would provide sufficient carrion for a large theropod scavenger, although the theropod might have had to be cold-blooded in order to get more calories from carrion than it spent on foraging (see Metabolism of dinosaurs). They also suggested that modern ecosystems like the Serengeti have no large terrestrial scavengers because gliding birds now do the job much more efficiently, while large theropods did not face competition for the scavenger ecological niche from gliding birds.

 

Tyrannosaur teeth could crush bone, and therefore could extract as much food (bone marrow) as possible from carcass remnants, usually the least nutritious parts. Karen Chin and colleagues have found bone fragments in coprolites (fossilized feces) that they attribute to tyrannosaurs, but point out that a tyrannosaur's teeth were not well adapted to systematically chewing bone like hyenas do to extract marrow.

Since at least some of Tyrannosaurus‍ '​s potential prey could move quickly, evidence that it walked instead of ran could indicate that it was a scavenger. On the other hand, recent analyses suggest that Tyrannosaurus, while slower than large modern terrestrial predators, may well have been fast enough to prey on large hadrosaurs and ceratopsians.

Other evidence suggests hunting behavior in Tyrannosaurus. The eye sockets of tyrannosaurs are positioned so that the eyes would point forward, giving them binocular vision slightly better than that of modern hawks. Horner also pointed out that the tyrannosaur lineage had a history of steadily improving binocular vision. It is not obvious why natural selection would have favored this long-term trend if tyrannosaurs had been pure scavengers, which would not have needed the advanced depth perception that stereoscopic vision provides. In modern animals, binocular vision is found mainly in predators.

 

A skeleton of the hadrosaurid Edmontosaurus annectens has been described from Montana with healed tyrannosaur-inflicted damage on its tail vertebrae. The fact that the damage seems to have healed suggests that the Edmontosaurus survived a tyrannosaur's attack on a living target, i.e. the tyrannosaur had attempted active predation. There is also evidence for an aggressive interaction between a Triceratops and a Tyrannosaurus in the form of partially healed tyrannosaur tooth marks on a Triceratops brow horn and squamosal (a bone of the neck frill); the bitten horn is also broken, with new bone growth after the break. It is not known what the exact nature of the interaction was, though: either animal could have been the aggressor. Since the Triceratops wounds healed, it is most likely that the Triceratops survived the encounter and managed to overcome the Tyrannosaurus. Paleontologist Peter Dodson estimates that in a battle against a bull Triceratops, the Triceratops had the upper hand and would successfully defend itself by inflicting fatal wounds to the Tyrannosaurus using its sharp horns.

 

When examining Sue, paleontologist Pete Larson found a broken and healed fibula and tail vertebrae, scarred facial bones and a tooth from another Tyrannosaurus embedded in a neck vertebra. If correct, these might be strong evidence for aggressive behavior between tyrannosaurs but whether it would have been competition for food and mates or active cannibalism is unclear. However, further recent investigation of these purported wounds has shown that most are infections rather than injuries (or simply damage to the fossil after death) and the few injuries are too general to be indicative of intraspecific conflict. Some researchers argue that if Tyrannosaurus were a scavenger, another dinosaur had to be the top predator in the Amerasian Upper Cretaceous. Top prey were the larger marginocephalians and ornithopods. The other tyrannosaurids share so many characteristics that only small dromaeosaurs and troodontids remain as feasible top predators. In this light, scavenger hypothesis adherents have suggested that the size and power of tyrannosaurs allowed them to steal kills from smaller predators, although they may have had a hard time finding enough meat to scavenge, being outnumbered by smaller theropods. Most paleontologists accept that Tyrannosaurus was both an active predator and a scavenger like most large carnivores.

 

Tyrannosaurus may have had infectious saliva used to kill its prey. This theory was first proposed by William Abler. Abler examined the teeth of tyrannosaurids between each tooth serration; the serrations may have held pieces of carcass with bacteria, giving Tyrannosaurus a deadly, infectious bite much like the Komodo dragon was thought to have. However, Jack Horner regards Tyrannosaurus tooth serrations as more like cubes in shape than the serrations on a Komodo monitor's teeth, which are rounded. All forms of saliva contain possibly hazardous bacteria, so the prospect of it being used as a method of predation is disputable.

 

Tyrannosaurus, and most other theropods, probably primarily processed carcasses with lateral shakes of the head, like crocodilians. The head was not as maneuverable as the skulls of allosauroids, due to flat joints of the neck vertebrae.

 

CANNIBALISM

A study from Currie, Horner, Erickson and Longrich in 2010 has been put forward as evidence of cannibalism in the genus Tyrannosaurus. They studied some Tyrannosaurus specimens with tooth marks in the bones, attributable to the same genus. The tooth marks were identified in the humerus, foot bones and metatarsals, and this was seen as evidence for opportunistic scavenging, rather than wounds caused by intraspecific combat. In a fight, they proposed it would be difficult to reach down to bite in the feet of a rival, making it more likely that the bite marks were made in a carcass. As the bite marks were made in body parts with relatively scanty amounts of flesh, it is suggested that the Tyrannosaurus was feeding on a carcass in which the more fleshy parts had already been consumed. They were also open to the possibility that other tyrannosaurids practiced cannibalism. Other evidence for cannibalism has been unearthed.

 

PACK BEHAVIOR

Philip J. Currie of the University of Alberta has suggested that Tyrannosaurus may have been pack animals. Currie compared Tyrannosaurus rex favorably to related species Tarbosaurus bataar and Albertosaurus sarcophagus, fossil evidence from which Currie had previously used to suggest that they lived in packs. Currie pointed out that a find in South Dakota preserved three Tyrannosaurus rex skeletons in close proximity to each other. After using CT scanning, Currie stated that Tyrannosaurus would have been capable of such complex behavior, because its brain size is three times greater than what would be expected for an animal of its size. Currie elaborated that Tyrannosaurus had a larger brain-to-body-size proportion than crocodiles and three times more than plant eating dinosaurs such as Triceratops of the same size. Currie believed Tyrannosaurus to be six times smarter than most dinosaurs and other reptiles. Currie stated that because the available prey, such as Triceratops and Ankylosaurus, were well-armored, and that others were fast-moving, it would have been necessary for Tyrannosaurus to hunt in groups. Currie speculated that juveniles and adults would have hunted together, with the faster juveniles chasing down the prey and the more powerful adults making the kill, by analogy to modern-day pack hunters where each member contributes a skill.

 

However, Currie's pack-hunting hypothesis has been harshly criticized by other scientists. Brian Switek, writing for The Guardian in 2011, noted that Currie's pack hypothesis has not been presented as research in a peer-reviewed scientific journal, but primarily in relation to a television special and tie-in book called Dino Gangs. Switek also noted that Currie's argument for pack hunting in Tyrannosaurus rex is primarily based on analogy to a different species, Tarbosaurus bataar, and that the supposed evidence for pack hunting in T. bataar itself has not yet been published and subjected to scientific scrutiny. According to Switek and other scientists who have participated in panel discussions about the Dino Gangs television program, the evidence for pack hunting in Tarbosaurus and Albertosaurus is weak, based primarily on the association of several skeletons, for which numerous alternative explanations have been proposed (e.g. drought or floods forcing numerous specimens together to die in one place). In fact, Switek notes that the Albertosaurus bonebed site, on which Currie has based most of the interpretations of supposed pack hunting in related species, preserves geological evidence of just such a flood. Switek said, "bones alone are not enough to reconstruct dinosaur behaviour. The geological context in which those bones are found – the intricate details of ancient environments and the pace of prehistoric time – are essential to investigating the lives and deaths of dinosaurs," and noted that Currie must first describe the geological evidence from other tyrannosaur bonebed sites before jumping to conclusions about social behavior. Switek described the sensational claims provided in press releases and news stories surrounding the Dino Gangs program as "nauseating hype" and noted that the production company responsible for the program, Atlantic Productions, has a poor record involving exaggerating claims about new fossil discoveries, most notably the controversial claim it published regarding the supposed early human ancestor Darwinius, which soon turned out to be a relative of lemurs instead.

 

Lawrence Witmer pointed out that social behavior can't be determined by brain endocasts and the brains of solitary leopards are identical to those of a cooperatively hunting lion; estimated brain sizes only show that an animal may have hunted in groups. In his opinion, the brains of tyrannosaurs were large enough for what he dubs "communal hunting", a semi-organized behavior that falls between solitary and cooperative hunting. Witmer claims that communal hunting is a step towards the evolution of cooperative hunting. He found it hard to believe that tyrannosaurs wouldn't have exploited the opportunity to join others in making a kill, and thus decrease risk and increase their chances of success.

 

On July 23, 2014, evidence, for the first time, in the form of fossilized trackways in Canada, showed that tyrannosaurs may have hunted in groups.

 

PATHOLOGY

In 2001, Bruce Rothschild and others published a study examining evidence for stress fractures and tendon avulsions in theropod dinosaurs and the implications for their behavior. Since stress fractures are caused by repeated trauma rather than singular events they are more likely to be caused by regular behavior than other types of injuries. Of the 81 Tyrannosaurus foot bones examined in the study one was found to have a stress fracture, while none of the 10 hand bones were found to have stress fractures. The researchers found tendon avulsions only among Tyrannosaurus and Allosaurus. An avulsion injury left a divot on the humerus of Sue the T. rex, apparently located at the origin of the deltoid or teres major muscles. The presence of avulsion injuries being limited to the forelimb and shoulder in both Tyrannosaurus and Allosaurus suggests that theropods may have had a musculature more complex than and functionally different from those of birds. The researchers concluded that Sue's tendon avulsion was probably obtained from struggling prey. The presence of stress fractures and tendon avulsions in general provides evidence for a "very active" predation-based diet rather than obligate scavenging. A 2009 study showed that holes in the skulls of several specimens that were previously explained by intraspecific attacks might have been caused by Trichomonas-like parasites that commonly infect avians. Further evidence of intraspecific attack would however be found by Joseph Peterson and his colleagues in the juvenile Tyrannosaurus nicknamed Jane. Peterson and his team found that Jane's skull showed healed puncture wounds on the upper jaw and snout which they believe came from another juvenile Tyrannosaurus. Subsequent CT scans of Jane's skull would further confirm the team's hypothesis, showing that the puncture wounds came from a traumatic injury and that there was subsequent healing. The team would also state that Jane's injuries were structurally different from the parasite-induced lesions found in Sue and that Jane's injuries were on her face whereas the parasite that infected Sue caused lesions to the lower jaw.

 

PALEOECOLOGY

Tyrannosaurus lived during what is referred to as the Lancian faunal stage (Maastrichtian age) at the end of the Late Cretaceous. Tyrannosaurus ranged from Canada in the north to at least Texas and New Mexico in the south of Laramidia. During this time Triceratops was the major herbivore in the northern portion of its range, while the titanosaurian sauropod Alamosaurus "dominated" its southern range. Tyrannosaurus remains have been discovered in different ecosystems, including inland and coastal subtropical, and semi-arid plains.

 

Several notable Tyrannosaurus remains have been found in the Hell Creek Formation. During the Maastrichtian this area was subtropical, with a warm and humid climate. The flora consisted mostly of angiosperms, but also included trees like dawn redwood (Metasequoia) and Araucaria. Tyrannosaurus shared this ecosystem with Triceratops, related ceratopsian Torosaurus, hadrosaurid Edmontosaurus annectens, armored dinosaur Ankylosaurus, Pachycephalosaurus, hypsilophodont Thescelosaurus, and the theropods Ornithomimus and Troodon.

 

Another formation with tyrannosaur remains is the Lance Formation of Wyoming. This has been interpreted as a bayou environment similar to today's Gulf Coast. The fauna was very similar to Hell Creek, but with Struthiomimus replacing its relative Ornithomimus. The small ceratopsian Leptoceratops also lived in the area.

 

In its southern range Tyrannosaurus lived alongside Alamosaurus, Torosaurus, a species of Edmontosaurus, possibly the ankylosaur Glyptodontopelta, and the pterosaur Quetzalcoatlus. The region is thought to have been dominated by semi-arid inland plains, following the probable retreat of the Western Interior Seaway as global sea levels fell.

 

HISTORY

Henry Fairfield Osborn, president of the American Museum of Natural History, named Tyrannosaurus rex in 1905. The generic name is derived from the Greek words τυράννος (tyrannos, meaning "tyrant") and σαύρος (sauros, meaning "lizard"). Osborn used the Latin word rex, meaning "king", for the specific name. The full binomial therefore translates to "tyrant lizard the king" or "King Tyrant Lizard", emphasizing the animal's size and perceived dominance over other species of the time.

 

EARLIEST FINDS

Teeth from what is now documented as a Tyrannosaurus rex were found in 1874 by Arthur Lakes near Golden, Colorado. In the early 1890s, John Bell Hatcher collected postcranial elements in eastern Wyoming. The fossils were believed to be from a large species of Ornithomimus (O. grandis) but are now considered Tyrannosaurus rex remains. Vertebral fragments found by Edward Drinker Cope in western South Dakota in 1892 and assigned to Manospondylus gigas have also been recognized as belonging to Tyrannosaurus rex.

 

Barnum Brown, assistant curator of the American Museum of Natural History, found the first partial skeleton of Tyrannosaurus rex in eastern Wyoming in 1900. H. F. Osborn originally named this skeleton Dynamosaurus imperiosus in a paper in 1905. Brown found another partial skeleton in the Hell Creek Formation in Montana in 1902. Osborn used this holotype to describe Tyrannosaurus rex in the same paper in which D. imperiosus was described. In 1906, Osborn recognized the two as synonyms, and acted as first revisor by selecting Tyrannosaurus as the valid name. The original Dynamosaurus material resides in the collections of the Natural History Museum, London.

 

In total, Brown found five Tyrannosaurus partial skeletons. In 1941, Brown's 1902 find was sold to the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania. Brown's fourth and largest find, also from Hell Creek, is on display in the American Museum of Natural History in New York.

 

MANOSPONDYLUS

The first named fossil specimen which can be attributed to Tyrannosaurus rex consists of two partial vertebrae (one of which has been lost) found by Edward Drinker Cope in 1892. Cope believed that they belonged to an "agathaumid" (ceratopsid) dinosaur, and named them Manospondylus gigas, meaning "giant porous vertebra" in reference to the numerous openings for blood vessels he found in the bone. The M. gigas remains were later identified as those of a theropod rather than a ceratopsid, and H.F. Osborn recognized the similarity between M. gigas and Tyrannosaurus rex as early as 1917. However, owing to the fragmentary nature of the Manospondylus vertebrae, Osborn did not synonymize the two genera.In June 2000, the Black Hills Institute located the type locality of M. gigas in South Dakota and unearthed more tyrannosaur bones there. These were judged to represent further remains of the same individual, and to be identical to those of Tyrannosaurus rex. According to the rules of the International Code of Zoological Nomenclature (ICZN), the system that governs the scientific naming of animals, Manospondylus gigas should therefore have priority over Tyrannosaurus rex, because it was named first. However, the Fourth Edition of the ICZN, which took effect on January 1, 2000, states that "the prevailing usage must be maintained" when "the senior synonym or homonym has not been used as a valid name after 1899" and "the junior synonym or homonym has been used for a particular taxon, as its presumed valid name, in at least 25 works, published by at least 10 authors in the immediately preceding 50 years ..." Tyrannosaurus rex may qualify as the valid name under these conditions and would most likely be considered a nomen protectum ("protected name") under the ICZN if it is ever formally published on, which it has not yet been. Manospondylus gigas could then be deemed a nomen oblitum ("forgotten name").

 

NOTABLE SPECIMENS

Sue Hendrickson, amateur paleontologist, discovered the most complete (approximately 85%) and largest Tyrannosaurus fossil skeleton known in the Hell Creek Formation near Faith, South Dakota, on August 12, 1990. This Tyrannosaurus, nicknamed Sue in her honor, was the object of a legal battle over its ownership. In 1997 this was settled in favor of Maurice Williams, the original land owner. The fossil collection was purchased by the Field Museum of Natural History at auction for $7.6 million, making it the most expensive dinosaur skeleton to date. From 1998 to 1999 Field Museum of Natural History preparators spent over 25,000 man-hours taking the rock off each of the bones. The bones were then shipped off to New Jersey where the mount was made. The finished mount was then taken apart, and along with the bones, shipped back to Chicago for the final assembly. The mounted skeleton opened to the public on May 17, 2000 in the great hall (Stanley Field Hall) at the Field Museum of Natural History. A study of this specimen's fossilized bones showed that Sue reached full size at age 19 and died at age 28, the longest any tyrannosaur is known to have lived. Early speculation that Sue may have died from a bite to the back of the head was not confirmed. Though subsequent study showed many pathologies in the skeleton, no bite marks were found. Damage to the back of the skull may have been caused by post-mortem trampling. Recent speculation indicates that Sue may have died of starvation after contracting a parasitic infection from eating diseased meat; the resulting infection would have caused inflammation in the throat, ultimately leading Sue to starve because she could no longer swallow food. This hypothesis is substantiated by smooth-edged holes in her skull which are similar to those caused in modern-day birds that contract the same parasite.

 

Another Tyrannosaurus, nicknamed Stan, in honor of amateur paleontologist Stan Sacrison, was found in the Hell Creek Formation near Buffalo, South Dakota, in the spring of 1987. It was not collected until 1992, as it was mistakenly thought to be a Triceratops skeleton. Stan is 63% complete and is on display in the Black Hills Institute of Geological Research in Hill City, South Dakota, after an extensive world tour during 1995 and 1996. This tyrannosaur, too, was found to have many bone pathologies, including broken and healed ribs, a broken (and healed) neck and a spectacular hole in the back of its head, about the size of a Tyrannosaurus tooth.

 

In the summer of 2000, Jack Horner discovered five Tyrannosaurus skeletons near the Fort Peck Reservoir in Montana. One of the specimens was reported to be perhaps the largest Tyrannosaurus ever found.

 

In 2001, a 50% complete skeleton of a juvenile Tyrannosaurus was discovered in the Hell Creek Formation in Montana, by a crew from the Burpee Museum of Natural History of Rockford, Illinois. Dubbed Jane, the find was initially considered the first known skeleton of the pygmy tyrannosaurid Nanotyrannus but subsequent research has revealed that it is more likely a juvenile Tyrannosaurus. It is the most complete and best preserved juvenile example known to date. Jane has been examined by Jack Horner, Pete Larson, Robert Bakker, Greg Erickson, and several other renowned paleontologists, because of the uniqueness of her age. Jane is currently on exhibit at the Burpee Museum of Natural History in Rockford, Illinois.

 

In a press release on April 7, 2006, Bozeman Campus, Montana State University, USA revealed that it possessed the largest Tyrannosaurus skull yet discovered. Discovered in the 1960s and only recently reconstructed, the skull measures 150 cm long compared to the 141 cm of Sue's skull, a difference of 6.5%.

 

WIKIPEDIA

I've been sewing protective, soft overlay pages for an artist book. Now I'm tempted to make them for all my stitched samples too.

karenannruane.typepad.com/karen_ruane/

Screenshot of LG TV LM9600 - 84 inch, 4K resolution. Distance approx. 2.5 m.

Illustrator from Library of Congress

 

Free download under CC Attribution (CC BY 4.0). Please credit the artist and rawpixel.com.

 

Higher resolutions with no attribution required can be downloaded: www.rawpixel.com/board/458510

 

Small budget equals less of quality logos, but I like this sample out of the 8 I delivered to the client.

 

This is not available for use. Under Copyright

Sahara Desert Camp

 

Erg Chebbi, Morocco 2015

 

Olympus OM-D E-M1

Olympus M Zuiko 12-40mm f2.8 PRO

Samples of portrait photo shoots....

Knox College students in Hydrology sample the recent snowfall for depth, water equivalency, and density outside of Umbeck Science and Mathematics center.

These are not real foods but fake foods samples, so not eatable. Most of these are made from plastic and wax.

Located : Nishiki-Ichiba Market, Kyoto.

Jun 13, 2010.

This sample photo is taken from Fuji's product page for the X10. www.fujifilm.com/products/digital_cameras/x/fujifilm_x10/

 

Shooting Mode: Aperture-Priority AUTO

Image Size: 4000 x 3000

Sensitivity: ISO 100

Dynamic Range: 100%

Aperture: f/2.0

Shutter Speed: 1/125

Lens Focal Length: 7.1mm

White Balance: AUTO

Film simulation: Velvia

Colourful Samples of Fabric

Sample cupcakes for Verve -

 

Chocolate Valrhona Cupcakes with Buttercream

76 images. Had to cut short because the clouds returned. Total images were about 180 in around an hour.

 

Tamron 24-70mm @ 24mm. 13 seconds, f2.8, ISO 800. Interval of 7 seconds between photo's.

 

Using Magic Lantern custom firmware to give my 550D an Intervalometer. Sadly the clouds moved in and rendered the remaining 100 images useless.

 

I've got a taste for this now......

 

Dan's Daily Photo

Sample image taken with a Nikon Z 58mm f0.95 S Noct. If you find my reviews and samples useful, please treat me to a coffee at www.paypal.me/cameralabs

  

These samples and comparisons are part of my Nikon Z 58mm f0.95 S Noct review at:

  

www.cameralabs.com/nikon-z-58mm-f0-95-noct-review/

  

Feel free to download the original image for evaluation on your own computer or printer, but please don't use it on another website or publication without permission from www.cameralabs.com/

Sample page from the new book by Brendan Powell Smith: Assassination! The Brick Chronicle of Twelve Attempts on the Lives of US Presidents www.assassinationbook.com

Samples of portrait photo shoots....

A girl hands out samples to a mother while the son curiously looks on.

Samples of portrait photo shoots....

tech info:

Leica SL + Summicron-R 90mm f/2

SAMPLES

Nikon D800 Sample

View Large at 4912 x 7360px

ISO100 | f/10 |1/200s | 200mm

source: www.nikon.com

 

Read more on D800 www.kentyuphotography.com/blog/2012/02/nikon-d800d800e-of...

Nikon D800 New Features Explained www.kentyuphotography.com/blog/2012/02/nikon-d800d800e-ne...

Pre-order yours at B&H Photo (Nikon D800 and D800E)

 

Subscribe us to see more of our work

---------------------------------------------------

Blog | Facebook | Twitter | Google+

for the FQ retreat sample swap...

Tried to think of something "me" which was also small & also useful. I think these tick all the boxes...

Spring has arrived in force upon the Rio Grande Valley -- and here are a few samples.

 

Pincushion cactus blossom.

It's just over three years since I opened my Flickr site and the total number of views has reached 500,000. I'd like to say a huge thank-you to everyone for looking at my work, both the photographs and the stories I write to accompany them.

 

Many of you have contacted me to say how much you enjoy my efforts, and especially in promoting Lothian Buses which is my passion. I have been an Edinburgh bus enthusiast since I was ten years old and the digital age has totally transformed this hobby. In the olden days the expense of film and development has been swept away by cameras today that can take any number of 'point and shoot' shots without a thought. The Internet, and sites like Flickr, make it possible to show our work to the whole world and in 2012 my enthusiasm is at an all time high.

 

The technical quality that can be achieved nowadays is something not known before and we can be truly inspired by others around us. The public sharing of our exhibits gives us fresh ideas and we can make new and lasting acquaintances.

 

As everyone knows the new world of digital photography, just as in audio production, means we can become professionals in our own bedroom or studio. I heard someone say recently 'there's no such thing as an amateur photographer anymore'.

 

I'm happy to continue my project of photographing and writing about every Lothian bus in service today. My energy and enthusiasm is spurred on by the half million of you who have visited my site. It's always been my aspiration to improve on technique and I still have much to learn. It's a pleasure to study and observe the great work of others around me, many of you I count as friends.

 

Lothian's Environmental Manager Steve Johnson says "many congrats on passing the 500,000 views on your site - and they say bus enthusiasm is a "minority interest".

 

Stuart Montgomery's Lothian Buses continues then with this collage of a sample of my photos I laid out on the kitchen table. 'Strictly Lothian' is my motto you all know that and here's to the climb up to a million.

   

Thanks guys and keep in touch.

Stuart.

 

Looking for a book to save paper samples. This one was pretty easy to make - it's an accordion folded strip of paper. I put double stick tape between the folds on one side, leaving the other side free so I can glue on my sample. I put a museum board cover on this one. I think this would work better for my needs.

 

Sample using the "Nature's mask"

Model is courtesy of Faestock

1 2 ••• 4 5 7 9 10 ••• 79 80