View allAll Photos Tagged kitbash
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Bell XP-68A owed its existence to the manufacturer’s rather disappointing outcome of its first jet fighter design, the XP-59A Airacomet. The Airacomet was a twin jet-engined fighter aircraft, designed and built during World War II after Major General Henry H. "Hap" Arnold became aware of the United Kingdom's jet program when he attended a demonstration of the Gloster E.28/39 in April 1941. He requested, and was given, the plans for the aircraft's powerplant, the Power Jets W.1, which he took back to the U.S. He also arranged for an example of the engine, the Whittle W.1X turbojet, to be flown to the U.S., along with drawings for the more powerful W.2B/23 engine and a small team of Power Jets engineers. On 4 September 1941, he offered the U.S. company General Electric a contract to produce an American version of the engine, which subsequently became the General Electric I-A. On the following day, he approached Lawrence Dale Bell, head of Bell Aircraft Corporation, to build a fighter to utilize it. As a disinformation tactic, the USAAF gave the project the designation "P-59A", to suggest it was a development of the unrelated, canceled Bell XP-59 fighter project. The P-59A was the first design fighter to have its turbojet engine and air inlet nacelles integrated within the main fuselage. The jet aircraft’s design was finalized on 9 January 1942 and the first prototype flew in October of the same year.
The following 13 service test YP-59As had a more powerful engine than their predecessor, the General Electric J31, but the improvement in performance was negligible, with top speed increased by only 5 mph and a slight reduction in the time they could be used before an overhaul was needed. One of these aircraft, the third YP-59A, was supplied to the Royal Air Force, in exchange for the first production Gloster Meteor I for evaluation and flight-offs with domestic alternatives.
British pilots found that the YP-59A compared very unfavorably with the jets that they were already flying. The United States Army Air Forces were not impressed by its performance either and cancelled the contract when fewer than half of the originally ordered aircraft had been produced. No P-59s entered combat, but the type paved the way for the next design generation of U.S. turbojet-powered aircraft and helped to develop appropriate maintenance structures and procedures.
In the meantime, a new, more powerful jet engine had been developed in Great Britain, the Halford H-1, which became later better known as the De Havilland Goblin. It was another centrifugal compressor design, but it produced almost twice as much thrust as the XP-59A’s J31 engines. Impressed by the British Gloster Meteor during the USAAF tests at Muroc Dry Lake - performance-wise as well as by the aircraft’s simplicity and ruggedness - Bell reacted promptly and proposed an alternative fighter with wing-mounted engine nacelles, since the XP-59A’s layout had proven to be aerodynamically sub-optimal and unsuited for the installation of H-1 engines. In order to save development time and because the aircraft was rather regarded as a proof-of-concept demonstrator instead of a true fighter prototype, the new aircraft was structurally based on Bell’s current piston-engine P-63 “Kingcobra”. The proposal was accepted and, in order to maintain secrecy, the new jet aircraft inherited once more a designation of a recently cancelled project, this time from the Vultee XP-68 “Tornado” fighter. Similar to the Airacomet two years before, just a simple “A” suffix was added.
Bell’s development contract covered only three XP-68A aircraft. The H-1 units were directly imported from Great Britain in secrecy, suspended in the bomb bays of B-24 Liberator bombers. A pair of these engines was mounted in mid-wing nacelles, very similar to the Gloster Meteor’s arrangement. The tailplane was given a 5° dihedral to move it out of the engine exhaust. In order to bear the new engines and their power, the wing main spars were strengthened and the main landing gear wells were moved towards the aircraft’s centerline, effectively narrowing track width. The landing gear wells now occupied the space of the former radiator ducts for the P-63’s omitted Allison V-1710 liquid-cooled V12 engine. Its former compartment behind the cockpit was used for a new fuel tank and test equipment. Having lost the propeller and its long drive shaft, the nose section was also redesigned: the front fuselage became deeper and the additional space there was used for another fuel tank in front of the cockpit and a bigger weapon bay. Different armament arrangements were envisioned, one of each was to be tested on the three prototypes: one machine would be armed with six 0.5” machine guns, another with four 20mm Hispano M2 cannon, and the third with two 37mm M10 cannon and two 0.5” machine guns. Provisions for a ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb were made, but this was never fitted on any of the prototypes. Additional hardpoints under the outer wings for smaller bombs or unguided missiles followed the same fate.
The three XP-68As were built at Bell’s Atlanta plant in the course of early 1944 and semi-officially christened “Airagator”. After their clandestine transfer to Muroc Dry Lake for flight tests and evaluations, the machines were quickly nicknamed “Barrelcobra” by the test staff – not only because of the characteristic shape of the engine nacelles, but also due to the sheer weight of the machines and their resulting sluggish handling on the ground and in the air. “Cadillac” was another nickname, due to the very soft acceleration through the new jet engines and the lack of vibrations that were typical for piston-engine- and propeller-driven aircraft.
Due to the structural reinforcements and modifications, the XP-68A had become a heavy aircraft with an empty weight of 4 tons and a MTOW of almost 8 tons – the same as the big P-47 Thunderbolt piston fighter, while the P-63 had an MTOW of only 10,700 lb (4,900 kg). The result was, among other flaws, a very long take-off distance, especially in the hot desert climate of the Mojave Desert (which precluded any external ordnance) and an inherent unwillingness to change direction, its turning radius was immense. More than once the brakes overheated during landing, so that extra water cooling for the main landing gear was retrofitted.
Once in the air, the aircraft proved to be quite fast – as long as it was flying in a straight line, though. Only the roll characteristics were acceptable, but flying the XP-68A remained hazardous, esp. after the loss of one of the H-1s engines: This resulted in heavily asymmetrical propulsion, making the XP-68A hard to control at all and prone to spin in level flight.
After trials and direct comparison, the XP-68A turned out not to be as fast and, even worse, much less agile than the Meteor Mk III (the RAF’s then current, operational fighter version), which even had weaker Derwent engines. The operational range was insufficient, too, esp. in regard of the planned Pacific theatre of operations, and the high overall weight precluded any considerable external load like drop tanks.
However, compared with the XP-59A, the XP-68A was a considerable step forward, but it had become quickly clear that the XP-68A and its outfit-a-propeller-design-with jet-engines approach did not bear the potential for any service fighter development: it was already outdated when the prototypes were starting their test program. No further XP-68A was ordered or built, and the three prototypes fulfilled their test and evaluation program until May 1945. During these tests, the first prototype was lost on the ground due to an engine fire. After the program’s completion, the two remaining machines were handed over to the US Navy and used for research at the NATC Patuxent River Test Centre, where they were operated until 1949 and finally scrapped.
General characteristics.
Crew: 1
Length: 33 ft 9 in (10.36 m)
Wingspan: 38 ft 4 in (11.7 m)
Height: 13 ft (3.96 m)
Wing area: 248 sq ft (23 m²)
Empty weight: 8,799 lb (3,995 kg)
Loaded weight: 15,138 lb (6,873 kg)
Max. take-off weight: 17,246 lb (7,830 kg)
Powerplant:
2× Halford H-1 (De Havilland Goblin) turbojets, rated at 3,500 lbf (15.6 kN) each
Performance:
Maximum speed: 559 mph (900 km/h)
Range: 500 mi (444 nmi, 805 km)
Service ceiling: 37,565 ft (11,450 m)
Rate of climb: 3.930 ft/min (20 m/s)
Wing loading: 44.9 lb/ft² (218.97 kg/m²)
Thrust/weight: 0.45
Time to altitude: 5.0 min to 30,000 ft (9,145 m)
Armament:
4× Hispano M2 20 mm cannon with 150 rounds
One ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb
6× 60 lb (30 kg) rockets or 2× 500 lb (227 kg) bombs under the outer wings
The kit and its assembly:
This whiffy Kingcobra conversion was spawned by a post by fellow user nighthunter in January 2019 at whatifmodelers.com about a potential jet-powered variant. In found the idea charming, since the XP-59 had turned out to be a dud and the Gloster Meteor had been tested by the USAAF. Why not combine both into a fictional, late WWII Bell prototype?
The basic idea was simple: take a P-63 and add a Meteor’s engine nacelles, while keeping the Kingcobra’s original proportions. This sounds pretty easy but was more challenging than the first look at the outcome might suggest.
The donor kits are a vintage Airfix 1:72 Gloster Meteor Mk.III, since it has the proper, small nacelles, and an Eastern Express P-63 Kingcobra. The latter looked promising, since this kit comes with very good surface and cockpit details (even with a clear dashboard) as well as parts for several P-63 variants, including the A, C and even the exotic “pinball” manned target version. However, anything comes at a price, and the kit’s low price point is compensated by soft plastic (which turned out to be hard to sand), some flash and mediocre fit of any of the major components like fuselage halves, the wings or the clear parts. It feels a lot like a typical short-run kit. Nevertheless, I feel inclined to build another one in a more conventional fashion some day.
Work started with the H-1 nacelles, which had to be cut out from the Meteor wings. Since they come OOB only with a well-visible vertical plate and a main wing spar dummy in the air intake, I added some fine mesh to the plate – normally, you can see directly onto the engine behind the wing spar. Another issue was the fact that the Meteor’s wings are much thicker and deeper than the P-63s, so that lots of PSR work was necessary.
Simply cutting the P-63 OOB wings up and inserting the Meteor nacelles was also not possible: the P-63 has a very wide main landing gear, due to the ventral radiators and oil coolers, which were originally buried in the wing roots and under the piston engine. The only solution: move the complete landing gear (including the wells) inward, so that the nacelles could be placed as close as possible to the fuselage in a mid-span position. Furthermore, the - now useless - radiator openings had to disappear, resulting in a major redesign of the wing root sections. All of this became a major surgery task, followed by similarly messy work on the outer wings during the integration of the Meteor nacelles. LOTS of PSR, even though the outcome looks surprisingly plausible and balanced.
Work on the fuselage started in parallel. It was built mainly OOB, using the optional ventral fin for a P-63C. The exhaust stubs as well as the dorsal carburetor intake had to disappear (the latter made easy thanks to suitable optional parts for the manned target version). Since the P-63 had a conventional low stabilizer arrangement (unlike the Meteor with its cruciform tail), I gave them a slight dihedral to move them out of the engine efflux, a trick Sukhoi engineers did on the Su-11 prototype with afterburner engines in 1947, too.
Furthermore, the whole nose ahead of the cockpit was heavily re-designed, because I wanted the “new” aircraft to lose its propeller heritage and the P-63’s round and rather pointed nose. Somewhat inspired by the P-59 and the P-80, I omitted the propeller parts altogether and re-sculpted the nose with 2C putty, creating a deeper shape with a tall, oval diameter, so that the lower fuselage line was horizontally extended forward. In a profile view the aircraft now looks much more massive and P-80esque. The front landing gear was retained, just its side walls were extended downwards with the help of 0.5mm styrene sheet material, so that the original stance could be kept. Lots of lead in the nose ensured that the model would properly stand on its three wheels.
Once the rhinoplasty was done I drilled four holes into the nose and used hollow steel needles as gun barrels, with a look reminiscent of the Douglas A-20G.
Adding the (perfectly) clear parts of the canopy as a final assembly step also turned out to be a major fight against the elements.
Painting and markings:
With an USAAF WWII prototype in mind, there were only two options: either an NMF machine, or a camouflage in Olive Drab and Neutral Grey. I went for the latter and used Tamiya XF-62 for the upper surfaces and Humbrol 156 (Dark Camouflage Grey) underneath. The kit received a light black ink wash and some post shading in order to emphasize panels. A little dry-brushing with silver around the leading edges and the cockpit was done, too.
The cockpit interior became chromate green (I used Humbrol 150, Forest Green) while the landing gear wells were painted with zinc chromate yellow (Humbrol 81). The landing gear itself was painted in aluminum (Humbrol 56).
Markings/decals became minimal, puzzled together from various sources – only some “Stars and Bars” insignia and the serial number.
Somehow this conversion ended up looking a lot like the contemporary Soviet Sukhoi Su-9 and -11 (Samolyet K and LK) jet fighter prototype – unintentionally, though. But I am happy with the outcome – the P-63 ancestry is there, and the Meteor engines are recognizable, too. But everything blends into each other well, the whole affair looks very balanced and believable. This is IMHO furthermore emphasized by the simple paint scheme. A jet-powered Kingcobra? Why not…?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Bell XP-68A owed its existence to the manufacturer’s rather disappointing outcome of its first jet fighter design, the XP-59A Airacomet. The Airacomet was a twin jet-engined fighter aircraft, designed and built during World War II after Major General Henry H. "Hap" Arnold became aware of the United Kingdom's jet program when he attended a demonstration of the Gloster E.28/39 in April 1941. He requested, and was given, the plans for the aircraft's powerplant, the Power Jets W.1, which he took back to the U.S. He also arranged for an example of the engine, the Whittle W.1X turbojet, to be flown to the U.S., along with drawings for the more powerful W.2B/23 engine and a small team of Power Jets engineers. On 4 September 1941, he offered the U.S. company General Electric a contract to produce an American version of the engine, which subsequently became the General Electric I-A. On the following day, he approached Lawrence Dale Bell, head of Bell Aircraft Corporation, to build a fighter to utilize it. As a disinformation tactic, the USAAF gave the project the designation "P-59A", to suggest it was a development of the unrelated, canceled Bell XP-59 fighter project. The P-59A was the first design fighter to have its turbojet engine and air inlet nacelles integrated within the main fuselage. The jet aircraft’s design was finalized on 9 January 1942 and the first prototype flew in October of the same year.
The following 13 service test YP-59As had a more powerful engine than their predecessor, the General Electric J31, but the improvement in performance was negligible, with top speed increased by only 5 mph and a slight reduction in the time they could be used before an overhaul was needed. One of these aircraft, the third YP-59A, was supplied to the Royal Air Force, in exchange for the first production Gloster Meteor I for evaluation and flight-offs with domestic alternatives.
British pilots found that the YP-59A compared very unfavorably with the jets that they were already flying. The United States Army Air Forces were not impressed by its performance either and cancelled the contract when fewer than half of the originally ordered aircraft had been produced. No P-59s entered combat, but the type paved the way for the next design generation of U.S. turbojet-powered aircraft and helped to develop appropriate maintenance structures and procedures.
In the meantime, a new, more powerful jet engine had been developed in Great Britain, the Halford H-1, which became later better known as the De Havilland Goblin. It was another centrifugal compressor design, but it produced almost twice as much thrust as the XP-59A’s J31 engines. Impressed by the British Gloster Meteor during the USAAF tests at Muroc Dry Lake - performance-wise as well as by the aircraft’s simplicity and ruggedness - Bell reacted promptly and proposed an alternative fighter with wing-mounted engine nacelles, since the XP-59A’s layout had proven to be aerodynamically sub-optimal and unsuited for the installation of H-1 engines. In order to save development time and because the aircraft was rather regarded as a proof-of-concept demonstrator instead of a true fighter prototype, the new aircraft was structurally based on Bell’s current piston-engine P-63 “Kingcobra”. The proposal was accepted and, in order to maintain secrecy, the new jet aircraft inherited once more a designation of a recently cancelled project, this time from the Vultee XP-68 “Tornado” fighter. Similar to the Airacomet two years before, just a simple “A” suffix was added.
Bell’s development contract covered only three XP-68A aircraft. The H-1 units were directly imported from Great Britain in secrecy, suspended in the bomb bays of B-24 Liberator bombers. A pair of these engines was mounted in mid-wing nacelles, very similar to the Gloster Meteor’s arrangement. The tailplane was given a 5° dihedral to move it out of the engine exhaust. In order to bear the new engines and their power, the wing main spars were strengthened and the main landing gear wells were moved towards the aircraft’s centerline, effectively narrowing track width. The landing gear wells now occupied the space of the former radiator ducts for the P-63’s omitted Allison V-1710 liquid-cooled V12 engine. Its former compartment behind the cockpit was used for a new fuel tank and test equipment. Having lost the propeller and its long drive shaft, the nose section was also redesigned: the front fuselage became deeper and the additional space there was used for another fuel tank in front of the cockpit and a bigger weapon bay. Different armament arrangements were envisioned, one of each was to be tested on the three prototypes: one machine would be armed with six 0.5” machine guns, another with four 20mm Hispano M2 cannon, and the third with two 37mm M10 cannon and two 0.5” machine guns. Provisions for a ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb were made, but this was never fitted on any of the prototypes. Additional hardpoints under the outer wings for smaller bombs or unguided missiles followed the same fate.
The three XP-68As were built at Bell’s Atlanta plant in the course of early 1944 and semi-officially christened “Airagator”. After their clandestine transfer to Muroc Dry Lake for flight tests and evaluations, the machines were quickly nicknamed “Barrelcobra” by the test staff – not only because of the characteristic shape of the engine nacelles, but also due to the sheer weight of the machines and their resulting sluggish handling on the ground and in the air. “Cadillac” was another nickname, due to the very soft acceleration through the new jet engines and the lack of vibrations that were typical for piston-engine- and propeller-driven aircraft.
Due to the structural reinforcements and modifications, the XP-68A had become a heavy aircraft with an empty weight of 4 tons and a MTOW of almost 8 tons – the same as the big P-47 Thunderbolt piston fighter, while the P-63 had an MTOW of only 10,700 lb (4,900 kg). The result was, among other flaws, a very long take-off distance, especially in the hot desert climate of the Mojave Desert (which precluded any external ordnance) and an inherent unwillingness to change direction, its turning radius was immense. More than once the brakes overheated during landing, so that extra water cooling for the main landing gear was retrofitted.
Once in the air, the aircraft proved to be quite fast – as long as it was flying in a straight line, though. Only the roll characteristics were acceptable, but flying the XP-68A remained hazardous, esp. after the loss of one of the H-1s engines: This resulted in heavily asymmetrical propulsion, making the XP-68A hard to control at all and prone to spin in level flight.
After trials and direct comparison, the XP-68A turned out not to be as fast and, even worse, much less agile than the Meteor Mk III (the RAF’s then current, operational fighter version), which even had weaker Derwent engines. The operational range was insufficient, too, esp. in regard of the planned Pacific theatre of operations, and the high overall weight precluded any considerable external load like drop tanks.
However, compared with the XP-59A, the XP-68A was a considerable step forward, but it had become quickly clear that the XP-68A and its outfit-a-propeller-design-with jet-engines approach did not bear the potential for any service fighter development: it was already outdated when the prototypes were starting their test program. No further XP-68A was ordered or built, and the three prototypes fulfilled their test and evaluation program until May 1945. During these tests, the first prototype was lost on the ground due to an engine fire. After the program’s completion, the two remaining machines were handed over to the US Navy and used for research at the NATC Patuxent River Test Centre, where they were operated until 1949 and finally scrapped.
General characteristics.
Crew: 1
Length: 33 ft 9 in (10.36 m)
Wingspan: 38 ft 4 in (11.7 m)
Height: 13 ft (3.96 m)
Wing area: 248 sq ft (23 m²)
Empty weight: 8,799 lb (3,995 kg)
Loaded weight: 15,138 lb (6,873 kg)
Max. take-off weight: 17,246 lb (7,830 kg)
Powerplant:
2× Halford H-1 (De Havilland Goblin) turbojets, rated at 3,500 lbf (15.6 kN) each
Performance:
Maximum speed: 559 mph (900 km/h)
Range: 500 mi (444 nmi, 805 km)
Service ceiling: 37,565 ft (11,450 m)
Rate of climb: 3.930 ft/min (20 m/s)
Wing loading: 44.9 lb/ft² (218.97 kg/m²)
Thrust/weight: 0.45
Time to altitude: 5.0 min to 30,000 ft (9,145 m)
Armament:
4× Hispano M2 20 mm cannon with 150 rounds
One ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb
6× 60 lb (30 kg) rockets or 2× 500 lb (227 kg) bombs under the outer wings
The kit and its assembly:
This whiffy Kingcobra conversion was spawned by a post by fellow user nighthunter in January 2019 at whatifmodelers.com about a potential jet-powered variant. In found the idea charming, since the XP-59 had turned out to be a dud and the Gloster Meteor had been tested by the USAAF. Why not combine both into a fictional, late WWII Bell prototype?
The basic idea was simple: take a P-63 and add a Meteor’s engine nacelles, while keeping the Kingcobra’s original proportions. This sounds pretty easy but was more challenging than the first look at the outcome might suggest.
The donor kits are a vintage Airfix 1:72 Gloster Meteor Mk.III, since it has the proper, small nacelles, and an Eastern Express P-63 Kingcobra. The latter looked promising, since this kit comes with very good surface and cockpit details (even with a clear dashboard) as well as parts for several P-63 variants, including the A, C and even the exotic “pinball” manned target version. However, anything comes at a price, and the kit’s low price point is compensated by soft plastic (which turned out to be hard to sand), some flash and mediocre fit of any of the major components like fuselage halves, the wings or the clear parts. It feels a lot like a typical short-run kit. Nevertheless, I feel inclined to build another one in a more conventional fashion some day.
Work started with the H-1 nacelles, which had to be cut out from the Meteor wings. Since they come OOB only with a well-visible vertical plate and a main wing spar dummy in the air intake, I added some fine mesh to the plate – normally, you can see directly onto the engine behind the wing spar. Another issue was the fact that the Meteor’s wings are much thicker and deeper than the P-63s, so that lots of PSR work was necessary.
Simply cutting the P-63 OOB wings up and inserting the Meteor nacelles was also not possible: the P-63 has a very wide main landing gear, due to the ventral radiators and oil coolers, which were originally buried in the wing roots and under the piston engine. The only solution: move the complete landing gear (including the wells) inward, so that the nacelles could be placed as close as possible to the fuselage in a mid-span position. Furthermore, the - now useless - radiator openings had to disappear, resulting in a major redesign of the wing root sections. All of this became a major surgery task, followed by similarly messy work on the outer wings during the integration of the Meteor nacelles. LOTS of PSR, even though the outcome looks surprisingly plausible and balanced.
Work on the fuselage started in parallel. It was built mainly OOB, using the optional ventral fin for a P-63C. The exhaust stubs as well as the dorsal carburetor intake had to disappear (the latter made easy thanks to suitable optional parts for the manned target version). Since the P-63 had a conventional low stabilizer arrangement (unlike the Meteor with its cruciform tail), I gave them a slight dihedral to move them out of the engine efflux, a trick Sukhoi engineers did on the Su-11 prototype with afterburner engines in 1947, too.
Furthermore, the whole nose ahead of the cockpit was heavily re-designed, because I wanted the “new” aircraft to lose its propeller heritage and the P-63’s round and rather pointed nose. Somewhat inspired by the P-59 and the P-80, I omitted the propeller parts altogether and re-sculpted the nose with 2C putty, creating a deeper shape with a tall, oval diameter, so that the lower fuselage line was horizontally extended forward. In a profile view the aircraft now looks much more massive and P-80esque. The front landing gear was retained, just its side walls were extended downwards with the help of 0.5mm styrene sheet material, so that the original stance could be kept. Lots of lead in the nose ensured that the model would properly stand on its three wheels.
Once the rhinoplasty was done I drilled four holes into the nose and used hollow steel needles as gun barrels, with a look reminiscent of the Douglas A-20G.
Adding the (perfectly) clear parts of the canopy as a final assembly step also turned out to be a major fight against the elements.
Painting and markings:
With an USAAF WWII prototype in mind, there were only two options: either an NMF machine, or a camouflage in Olive Drab and Neutral Grey. I went for the latter and used Tamiya XF-62 for the upper surfaces and Humbrol 156 (Dark Camouflage Grey) underneath. The kit received a light black ink wash and some post shading in order to emphasize panels. A little dry-brushing with silver around the leading edges and the cockpit was done, too.
The cockpit interior became chromate green (I used Humbrol 150, Forest Green) while the landing gear wells were painted with zinc chromate yellow (Humbrol 81). The landing gear itself was painted in aluminum (Humbrol 56).
Markings/decals became minimal, puzzled together from various sources – only some “Stars and Bars” insignia and the serial number.
Somehow this conversion ended up looking a lot like the contemporary Soviet Sukhoi Su-9 and -11 (Samolyet K and LK) jet fighter prototype – unintentionally, though. But I am happy with the outcome – the P-63 ancestry is there, and the Meteor engines are recognizable, too. But everything blends into each other well, the whole affair looks very balanced and believable. This is IMHO furthermore emphasized by the simple paint scheme. A jet-powered Kingcobra? Why not…?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Soviet Laboratory of High-Speed Automobiles (LSA ChADI, today the Chardiv National Automobile and Highway University) was founded in 1953. One of the laboratory’s founders was Vladimir Nikitin, a famous racer not only inside the Soviet Union but also around the world. The main purpose of Vladimir Nikitin’s of was to build the fastest car in the world. This idea of creating race cars became the purpose of the laboratory and has been continued by students of Nikitin throughout the years, with research and prototypes in various fields of car propulsion.
The first car created in LSA by students was ChADI 2 in 1961. The body of the car was made of fiberglass, the first time that this material was used for a car body in the Soviet Union. This technology was improved and later used in mass-produced cars. Another famous LSA car was ChADI 7. To create it, Nikitin and his students used airplane wing elements as car body material and used the engine from a helicopter to power it. The highest speed of ChADI 7 – 400 kilometers per hour – was recorded on an airport runway near Chardiv in 1968, and it was at that time the fastest car in the Soviet Union, setting the national land speed record.
After this successful vehicle, Vladimir Nikitin started a new, even more ambitious project: a speed record car with the jet engine from a high performance airplane! The name of this project was ChADI 9, and it was ambitious. This time Nikitin and his team used a Tumansky RD-9 turbojet engine with a dry thrust of 25.5 kN (5,730 lbf), the same engine that powered the supersonic Mikoyan-Gurewich MiG-19 fighter plane. He expected that this needle-shaped car would be able to break the absolute land speed record, which meant supersonic speed at level zero of almost 1.200 kilometers an hour. The car was finished in 1981, but unfortunately ChADI 9 never participated in any race and no official top speed result was ever recorded. This had initially a very practical reason: in the 1980’s there were simply no tires in the USSR that could be safely used at the expected speeds in excess of 400 km/h, and there was furthermore no track long enough for a serious test drive in the Soviet Union! In consequence, ChADI 9 had to be tested on the runway of a military airport in the proximity of Chardiv, outfitted with wheels and tires from a MiG-19, but these were not ideal for prolonged high speeds. Film footage from these tests later appeared in a 1983 movie called “IgLa”.
The Automotive Federation of the United States even invited ChADI 9 to participate in an official record race in the USA, but this did not happen either, this time for political reasons. Nevertheless, the main contribution of this car was gathering experience with powerful jet engines and their operations in a ground vehicle, as well as experience with car systems that could withstand and operate at the expected high levels of speed, and the vehicle was frequently tested until it was destroyed in high speed tests in 1988 (see below).
ChADI 9 was not the end of Nikitin’s strife for speed (and the prestige associated with it). The know-how that the design team had gathered in the first years of testing ChADI 9 were subsequentially integrated into the LSA’s ultimate proposal not only to break the national, but also the absolute land speed record: with a new vehicle dubbed ChADI 9-II. This car was a completely new design, and its name was deliberately chosen in order to secure project budgets – it was easier to gain support for existing (and so far successful) projects rather than found new ones and convince superior powers of their value and success potential.
ChADI 9-II’s conceptual phase was launched in 1982 and it was basically a scaled-up evolution of ChADI 9, but it featured some significant differences. Instead of the RD-9 turbojet, the new vehicle was powered by a much more potent Tumansky R-25-300 afterburning turbojet with a dry thrust of 40.21 kN (9,040 lbf) and 69.62 kN (15,650 lbf) with full afterburner. This new engine (used and proven in the MiG-21 Mach 2 fighter) had already been thoroughly bench-tested by the Soviet Laboratory of High-Speed Automobiles in 1978, on an unmanned, tracked sled.
However, the development of ChADI 9-II and its details took more than two years of dedicated work by LSA ChADI’s students, and in 1984 the design was finally settled. The new vehicle was much bigger than its predecessor, 44 ft 10 in long, 15 ft 6¾ in wide, and 9 ft 10¾ in high (13.67 m by 4,75 m by 3,02 m), and it weighed around 9,000 lb (4 t). Its construction was based on a steel tube frame with an integrated security cell for the driver and an aluminum skin body, with some fibre glass elements. While ChADI 9’s slender cigar-shaped body with a circular diameter and the tricycle layout were basically retained, the front end of ChADI 9-II and its internal structure were totally different: instead of ChADI 9’s pointed nose, with the cockpit in the front and ahead of the vehicle’s front wheel and a pair of conformal (but not very efficient) side air intakes, ChADI 9-II featured a large, single orifice with a central shock cone. A small raked lower lip was to prevent FOD to the engine and act at the same time as a stabilizing front spoiler. The driver sat under a tight, streamlined canopy, the bifurcated air intake ducts internally flanking the narrow cockpit. Two steerable front wheels with a very narrow track were installed in front of the driver’s compartment. They were mounted side by side on a central steering pylon, which made them look like a single wheel. Behind the cockpit, still flanked by the air ducts, came two fuel tanks and finally, after a chamber where the air ducts met again, the engine compartment. Small horizontal stabilizers under the cockpit, which could be adjusted with the help of an electric actuator, helped keeping the vehicle’s nose section on the ground. Two small air brakes were mounted on the rear fuselage; these not only helped to reduce the vehicle’s speed, they could also be deployed in order to trim the aerodynamic downforce on the rear wheels. The latter ware carried on outriggers for a wide and stable track width and were covered in tight aerodynamic fairings, again made from fibre glass. The outriggers were furthermore swept back far enough so that the engine’s nozzle was placed in front of the rear wheel axis. This, together with a marked “nose-down” stance as well as a single swept fin on the rear above the afterburner nozzle with a brake parachute compartment, was to ensure stability and proper handling at expected speeds far in excess of 600 km/h (372 mph) without the use of the engine’s afterburner, and far more at full power.
Construction of ChADI 9-II lasted for more than another year, and in May 1986 the vehicle was rolled out and ready for initial trials at Chardiv, this time on the Chardiv State Aircraft Manufacturing Company’s runway. These non-public tests were successful and confirmed the soundness of the vehicle’s concept and layout. In the course of thorough tests until July 1987, ChADI 9-II was carefully pushed beyond the 400 km/h barrier and showed certain potential for more. This was the point when the vehicle was presented to the public (it could not be hidden due to the noisy trials within Chardiv’s city limits), and for this occasion (and marketing purposes) ChADI 9-II received a flashy livery in silver with red trim around the air intake and long the flanks and was officially christened with the more catchy title “„скорость“” (Skorost = Velocity).
Meanwhile, a potential area for serious high-speed trials had been identified with Lake Baskunchak, a salt sea near the Caspian Sea with flat banks that resembled the Bonneville Salt Flats in the USA. Lake Baskunchak became the site of further tests in 1988. Initially scheduled for May-July, the tests had to be postponed by six weeks due to heavy rain in the region, so that the sea would not build suitable dry salt banks for any safe driving tests. In late June the situation improved, and „скорость“ could finally take up its high speed tests.
During the following weeks the vehicle was gradually taken to ever higher speeds. During a test run on 8th of September, while travelling at roundabout 640 km/h (400 mph), one of the tail wheel fairings appeared to explode and the ensuing drag differences caused heavy oscillations that ended in a crash at 180 km/h (110 mph) with the vehicle rolling over and ripping the left rear wheel suspension apart.
The driver, LSA student and hobby rally driver Victor Barchenkov, miraculously left the vehicle almost unscathed, and the damage turned out to be only superficial. What had happened was an air pressure congestion inside of the wheel fairing, and the increasing revolutions of the wheels beyond 600 km/h caused small shock waves along the wheels, which eventually blew up the fairing, together with the tire. This accident stopped the 1988 trials, but not the work on the vehicle. Another disaster struck the LSA ChADI team when ChADI 9, which was still operated, crashed in 1988, too, and had to be written off completely.
In mid-1989 and with only a single high speed vehicle left, LSA team appeared again with „скорость“ at the shores of Lake Baskunchak – and this time the weather was more gracious and the track could be used from late June onwards. Analyzing last year’s accident and the gathered data, the vehicle had undergone repairs and some major modifications, including a new, anti-corrosive paintjob in light grey with red and white trim.
The most obvious change, though, was a completely re-shaped nose section: the original raked lower air intake lip had been considerably extended by almost 5 feet (the vehicle now had a total length of 49 ft 1 in/14,98 m) in order to enhance the downforce on the front wheels, and strakes along the lower nose ducted the airflow around the front wheels and towards the stabilizing fins. The central shock cone had been elongated and re-contoured, too, improving the airflow at high speeds.
New tireless all-aluminum wheels had been developed and mounted, because pressurized rubber tires, as formerly used, had turned out to be too unstable and unsafe. The central front wheels had received an additional aerodynamic fairing that prevented air ingestion into the lower fuselage, so that steering at high speeds became safer. The aerodynamic rear wheel fairings had by now been completely deleted and spoilers had been added to the rear suspension in order to keep the rear wheel on the ground at high speeds.
This time the goal was to push „скорость“ and the national land speed record in excess of 800 km/h (500 mph), and step by step the vehicle’s top speed was gradually increased. On August 15, an officially timed record attempt was made, again with Victor Barchenkov at the steering wheel. The first of the two obligatory runs within an hour was recorded at a very promising 846.961 km/h (526.277 mph), but, at the end of the second run, „скорость“ veered off and no time was measured. Even worse, the vehicle lost its parachute brakes and went out of control, skidding away from the dry race track into Lake Baskunchak’s wet salt sludge, where it hit a ground wave at around 200 mph (320 km/h) and was catapulted through the air into a brine pond where it landed on its right side and eventually sank. Again, pilot Victor Barchenkov remained mostly unharmed and was able to leave the car before it sank – but this fatal crash meant the end of the „скорость“ vehicle and the complete KhAGI 9-II project. Furthermore, the break-up of the Soviet Union at the same time prevented and further developments of high speed vehicles. The whereabouts of the „скорость“ wreck remain unclear, too, since no official attempt had been made to save the vehicle’s remains from Lake Baskunchak’s salt swamps.
The kit and its assembly:
This is another contribution to the late 2018 “Racing & Competition Group Build” at whatifmodelers.com. Since I primarily build aircraft in 1:72 scale, building a land speed record (LSR) vehicle from such a basis appeared like a natural choice. A slick streamliner? A rocket-powered prototype with Mach 1 potential? Hmmm… However, I wanted something else than the typical US or British Bonneville Salt Flats contender.
Inspiration struck when I remembered the real world high speed vehicle projects of LSA ChAGI in the former USSR, and especially the ill-fated, jet-powered ChADI 9, which looked a lot like Western, rocket-powered absolute LSR designs like The Blue Flame or Wingfoot Express 2. Another inspiration was a contemporary LSR vehicle called North American Eagle – basically a wingless F-104 Starfighter, put on wheels and sporting a garish, patriotic livery.
With this conceptual basis, the MiG-21 was quickly identified as the potential starting basis – but I wanted more than just a Fishbed sans wings and with some bigger wheels attached to it. I nevertheless wanted to retain the basic shape of the aircraft, but change the rest as good as possible with details that I have learned from reading about historic LSR vehicles (a very good source are the books by German author and LSR enthusiast Ferdinand C. W. Käsmann, which have, AFAIK, even been translated into English).
At the model’s core is a contemporary KP MiG-21MF, but it’s a hideous incarnation of the venerable Kovozávody Prostějov mold. While the wheels and the dashboard of this kit were surprisingly crisp, the fuselage halves did hardly match each other and some other parts like the landing gear covers could only be described as “blurred blobs”. Therefore it was no shame to slice the kit up, and the resulting kitbash with many donor parts and scratching almost became a necessity.
The MiG-21 fuselage and cockpit were more or less retained, the landing gear wells covered and PSR-ed. Fin, spine and the ventral stabilizer were cut away, and the attachment points for the wings and the horizontal stabilizers blended into the rest of the fuselage. Actually, only a few parts from the KP MiG-21 were eventually used.
The original shock cone in the air intake was used, but it was set further back into the nose opening – as an attachment point for a new, more organic shock cone which is actually the rear end of a drop tank from an Airfix 1:72 P-61 Black Widow. This detail was inspired by a real world benchmark: Art Arfons’ home-built “Green Monster” LSR car. This vehicle also inspired the highly modified air intake shape, which was scratched from the tail cone from a Matchbox 1:72 Blackburn Buccaneer – the diameter matched well with the MiG-21’s nose! With the new nose, I was able to retain the original MiG-21 layout, yet the shape and the extension forward changed the overall look enough to make it clear that this was not simply a MiG-21 on wheels.
With the spine gone, I also had to integrate a different, much smaller canopy, which came from an 1:144 Tornado. The cockpit opening had to be narrowed accordingly, and behind the canopy a new spine fairing was integrated – simply a piece from a streamlined 1:72 1.000 lb bomb plus lots of PSR.
Inside of the cockpit, a simpler seat was used, but the original cockpit tub and the dashboard were retained.
The large MiG-21 fin was replaced with a smaller piece, left over from an Amodel Kh-20 missile, with a scratched brake parachute fairing (cut from sprue material) placed under its rear. The exhaust nozzle was replaced, too, because the fit of the KP MiG-21’s rear end was abysmal. So I cut away a short piece and added an afterburner nozzle from a vintage 1:72 F-100, which fits well. Inside, the part’s rear wall was drilled open and extended inwards with a styrene tube.
The wheels of the vehicle come from an 1:72 Hasegawa “Panther with Schmalturm” tank kit – it comes not only with two turrets, but also with a second set of simplified track wheels. These had IMHO the perfect size and shape as massive aluminum wheels for the high speed vehicle.
For the front wheels, I used the thinner outer Panther wheels, and they were put, closely together, onto a central suspension pylon. This received a new “well” in the forward fuselage, with an internal attachment point. In order to streamline the front wheel installation (and also to change the overall look of the vehicle away from the MiG-21 basis), I added a scratched an aerodynamic fairing around it. This was made from tailored styrene strips, which were later filled and blended into the hull with putty.
The rear suspension was also fully scratched: the outriggers were made from styrene profiles while the wheel attachments were once part of an 1:35 tank kit suspension – I needed something to hold the three struts per side together. These parts look a bit large, but the vehicle is, after all, a Soviet design, so a little sturdiness may not be wrong, and I simply did not want to stick the wheels directly onto the outriggers. The rear wheels (in this case, the wider inner Panther track wheels with a central hub cover were used) also received a stabilizing notch around the contact surface, in an attempt to make them look slimmer than they actually are.
Final touches included the chines under the nose as well as spoilers on the rear suspension (both made from styrene profiles), and I added a pitot made from wire to the original MiG-21 angle of attack sensor fairing.
As an addition outside the model itself I also created a display base for the beauty pics, since I did not have anything at hand that would resemble the vastness of a flat and dry salt sea. The base is an 18x12” MDF board, on top of which I added a thin coat of white tile grout (which I normally use as a snow placebo, instead of plaster, which tends to absorb humidity over time and to become yellow). While the stuff was still wet I sprinkled some real salt onto the surface and wetted the whole affair with water sprays – hoping to create a flat yet structured surface with some glitter reflexes. And it actually worked!
Painting and markings:
I am not certain how ChADI 9 was painted (I assume overall silver), but I wanted for „скорость“ a little more color. Being a child of the Soviet era, red was a settled design element, but I thought that an all-red vehicle might have looked too cheesy. Other colors I considered were orange or white with blue trim, but did not find them to be appropriate for what I was looking. Eventually, I added some Russian Utilitarianism in the form of light grey for the upper hull (Humbrol 166, RAF Light Aircraft Grey), and the red (Humbrol 19) as a dark contrast around the complete air intake as well as the shock cone (somewhat inspired by the Green Monster #15 LSR vehicle), and then extended backwards into a narrowing cheatline along the flanks, which emphasizes the vehicle’s slender hull. For some more contrast between the two basic tones I later added thin white borders between them created with 2mm white decal stripes from TL Modellbau. Around the hull some bright red (Humbrol 238 Red Arrows Red) highlights as warning signs were added.
The vehicle’s afterburner section was painted with Modelmaster Steel Metallizer, the Panther wheels became Aluminum (Revell 99) with a black ink wash. Some black ink was also applied to the jet nozzle, so that the details became more pronounced, and some grinded graphite was used to enhance the burnt metal effect.
Since this would rather be an experimental car built and operated by a high school institute, and also operated in the Soviet Union, flashy sponsor markings would not be appropriate. Therefore I created some fictional marking at home with the help of PC software and printed them by myself. These designs included a fictional logo of the ChADI institute itself (created from a car silhouette drawing) and a logo for the vehicle’s title, “„скорость““. The latter was created from the cyrillic lettering, with some additions like the vehicle’s silhouette.
Unfortunately the production process for the home-made decals did not work properly – when coating the prints with gloss acrylic varnish the printer ink started to dissolve, bleeding magenta, so that the decals would look as if there was a red halo or glow around the otherwise black motifs. Thanks to the use of red in the vehicle’s overall design this flaw is not too apparent, so I stuck with the outcome and applied the decals to the car.
Beyond these basic markings, many stencils were added, including dull red inscriptions from an Italeri MiG-37 “Ferret” kit – finally, I found an expedient use for them! The Soviet flags on the fin came from an 1:144 Tu-144 airliner Braz Decal aftermarket sheet.
Finally, some panel lines were drawn onto the hull with a soft pencil and then the model was sealed with Italeri semi-gloss acrylic varnish. Just the black anti-glare panel in front of the windscreen became matt and the metallic rear section was left in “natural” finish.
I am very pleased with the outcome – the „скорость“ looks purposeful and does IMHO blend well into the line of spectacular USA and UK jet/rocket car designs that broke the 800 km/h barrier. I also find that, even though the MiG-21 ancestry is certainly there, the vehicle looks different enough so that the illusion that it was designed along the jet fighter’s lines (and not converted from one, like the real world “North American Eagle” which was built from an F-104 Starfighter) works well. I also think that the vehicle’s livery works well – it looks quite retro for a vehicle from the late Eighties, but that just adds to the “Soviet style”. An interesting project, outside of my normal comfort zone. :D
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Soviet Laboratory of High-Speed Automobiles (LSA ChADI, today the Chardiv National Automobile and Highway University) was founded in 1953. One of the laboratory’s founders was Vladimir Nikitin, a famous racer not only inside the Soviet Union but also around the world. The main purpose of Vladimir Nikitin’s of was to build the fastest car in the world. This idea of creating race cars became the purpose of the laboratory and has been continued by students of Nikitin throughout the years, with research and prototypes in various fields of car propulsion.
The first car created in LSA by students was ChADI 2 in 1961. The body of the car was made of fiberglass, the first time that this material was used for a car body in the Soviet Union. This technology was improved and later used in mass-produced cars. Another famous LSA car was ChADI 7. To create it, Nikitin and his students used airplane wing elements as car body material and used the engine from a helicopter to power it. The highest speed of ChADI 7 – 400 kilometers per hour – was recorded on an airport runway near Chardiv in 1968, and it was at that time the fastest car in the Soviet Union, setting the national land speed record.
After this successful vehicle, Vladimir Nikitin started a new, even more ambitious project: a speed record car with the jet engine from a high performance airplane! The name of this project was ChADI 9, and it was ambitious. This time Nikitin and his team used a Tumansky RD-9 turbojet engine with a dry thrust of 25.5 kN (5,730 lbf), the same engine that powered the supersonic Mikoyan-Gurewich MiG-19 fighter plane. He expected that this needle-shaped car would be able to break the absolute land speed record, which meant supersonic speed at level zero of almost 1.200 kilometers an hour. The car was finished in 1981, but unfortunately ChADI 9 never participated in any race and no official top speed result was ever recorded. This had initially a very practical reason: in the 1980’s there were simply no tires in the USSR that could be safely used at the expected speeds in excess of 400 km/h, and there was furthermore no track long enough for a serious test drive in the Soviet Union! In consequence, ChADI 9 had to be tested on the runway of a military airport in the proximity of Chardiv, outfitted with wheels and tires from a MiG-19, but these were not ideal for prolonged high speeds. Film footage from these tests later appeared in a 1983 movie called “IgLa”.
The Automotive Federation of the United States even invited ChADI 9 to participate in an official record race in the USA, but this did not happen either, this time for political reasons. Nevertheless, the main contribution of this car was gathering experience with powerful jet engines and their operations in a ground vehicle, as well as experience with car systems that could withstand and operate at the expected high levels of speed, and the vehicle was frequently tested until it was destroyed in high speed tests in 1988 (see below).
ChADI 9 was not the end of Nikitin’s strife for speed (and the prestige associated with it). The know-how that the design team had gathered in the first years of testing ChADI 9 were subsequentially integrated into the LSA’s ultimate proposal not only to break the national, but also the absolute land speed record: with a new vehicle dubbed ChADI 9-II. This car was a completely new design, and its name was deliberately chosen in order to secure project budgets – it was easier to gain support for existing (and so far successful) projects rather than found new ones and convince superior powers of their value and success potential.
ChADI 9-II’s conceptual phase was launched in 1982 and it was basically a scaled-up evolution of ChADI 9, but it featured some significant differences. Instead of the RD-9 turbojet, the new vehicle was powered by a much more potent Tumansky R-25-300 afterburning turbojet with a dry thrust of 40.21 kN (9,040 lbf) and 69.62 kN (15,650 lbf) with full afterburner. This new engine (used and proven in the MiG-21 Mach 2 fighter) had already been thoroughly bench-tested by the Soviet Laboratory of High-Speed Automobiles in 1978, on an unmanned, tracked sled.
However, the development of ChADI 9-II and its details took more than two years of dedicated work by LSA ChADI’s students, and in 1984 the design was finally settled. The new vehicle was much bigger than its predecessor, 44 ft 10 in long, 15 ft 6¾ in wide, and 9 ft 10¾ in high (13.67 m by 4,75 m by 3,02 m), and it weighed around 9,000 lb (4 t). Its construction was based on a steel tube frame with an integrated security cell for the driver and an aluminum skin body, with some fibre glass elements. While ChADI 9’s slender cigar-shaped body with a circular diameter and the tricycle layout were basically retained, the front end of ChADI 9-II and its internal structure were totally different: instead of ChADI 9’s pointed nose, with the cockpit in the front and ahead of the vehicle’s front wheel and a pair of conformal (but not very efficient) side air intakes, ChADI 9-II featured a large, single orifice with a central shock cone. A small raked lower lip was to prevent FOD to the engine and act at the same time as a stabilizing front spoiler. The driver sat under a tight, streamlined canopy, the bifurcated air intake ducts internally flanking the narrow cockpit. Two steerable front wheels with a very narrow track were installed in front of the driver’s compartment. They were mounted side by side on a central steering pylon, which made them look like a single wheel. Behind the cockpit, still flanked by the air ducts, came two fuel tanks and finally, after a chamber where the air ducts met again, the engine compartment. Small horizontal stabilizers under the cockpit, which could be adjusted with the help of an electric actuator, helped keeping the vehicle’s nose section on the ground. Two small air brakes were mounted on the rear fuselage; these not only helped to reduce the vehicle’s speed, they could also be deployed in order to trim the aerodynamic downforce on the rear wheels. The latter ware carried on outriggers for a wide and stable track width and were covered in tight aerodynamic fairings, again made from fibre glass. The outriggers were furthermore swept back far enough so that the engine’s nozzle was placed in front of the rear wheel axis. This, together with a marked “nose-down” stance as well as a single swept fin on the rear above the afterburner nozzle with a brake parachute compartment, was to ensure stability and proper handling at expected speeds far in excess of 600 km/h (372 mph) without the use of the engine’s afterburner, and far more at full power.
Construction of ChADI 9-II lasted for more than another year, and in May 1986 the vehicle was rolled out and ready for initial trials at Chardiv, this time on the Chardiv State Aircraft Manufacturing Company’s runway. These non-public tests were successful and confirmed the soundness of the vehicle’s concept and layout. In the course of thorough tests until July 1987, ChADI 9-II was carefully pushed beyond the 400 km/h barrier and showed certain potential for more. This was the point when the vehicle was presented to the public (it could not be hidden due to the noisy trials within Chardiv’s city limits), and for this occasion (and marketing purposes) ChADI 9-II received a flashy livery in silver with red trim around the air intake and long the flanks and was officially christened with the more catchy title “„скорость“” (Skorost = Velocity).
Meanwhile, a potential area for serious high-speed trials had been identified with Lake Baskunchak, a salt sea near the Caspian Sea with flat banks that resembled the Bonneville Salt Flats in the USA. Lake Baskunchak became the site of further tests in 1988. Initially scheduled for May-July, the tests had to be postponed by six weeks due to heavy rain in the region, so that the sea would not build suitable dry salt banks for any safe driving tests. In late June the situation improved, and „скорость“ could finally take up its high speed tests.
During the following weeks the vehicle was gradually taken to ever higher speeds. During a test run on 8th of September, while travelling at roundabout 640 km/h (400 mph), one of the tail wheel fairings appeared to explode and the ensuing drag differences caused heavy oscillations that ended in a crash at 180 km/h (110 mph) with the vehicle rolling over and ripping the left rear wheel suspension apart.
The driver, LSA student and hobby rally driver Victor Barchenkov, miraculously left the vehicle almost unscathed, and the damage turned out to be only superficial. What had happened was an air pressure congestion inside of the wheel fairing, and the increasing revolutions of the wheels beyond 600 km/h caused small shock waves along the wheels, which eventually blew up the fairing, together with the tire. This accident stopped the 1988 trials, but not the work on the vehicle. Another disaster struck the LSA ChADI team when ChADI 9, which was still operated, crashed in 1988, too, and had to be written off completely.
In mid-1989 and with only a single high speed vehicle left, LSA team appeared again with „скорость“ at the shores of Lake Baskunchak – and this time the weather was more gracious and the track could be used from late June onwards. Analyzing last year’s accident and the gathered data, the vehicle had undergone repairs and some major modifications, including a new, anti-corrosive paintjob in light grey with red and white trim.
The most obvious change, though, was a completely re-shaped nose section: the original raked lower air intake lip had been considerably extended by almost 5 feet (the vehicle now had a total length of 49 ft 1 in/14,98 m) in order to enhance the downforce on the front wheels, and strakes along the lower nose ducted the airflow around the front wheels and towards the stabilizing fins. The central shock cone had been elongated and re-contoured, too, improving the airflow at high speeds.
New tireless all-aluminum wheels had been developed and mounted, because pressurized rubber tires, as formerly used, had turned out to be too unstable and unsafe. The central front wheels had received an additional aerodynamic fairing that prevented air ingestion into the lower fuselage, so that steering at high speeds became safer. The aerodynamic rear wheel fairings had by now been completely deleted and spoilers had been added to the rear suspension in order to keep the rear wheel on the ground at high speeds.
This time the goal was to push „скорость“ and the national land speed record in excess of 800 km/h (500 mph), and step by step the vehicle’s top speed was gradually increased. On August 15, an officially timed record attempt was made, again with Victor Barchenkov at the steering wheel. The first of the two obligatory runs within an hour was recorded at a very promising 846.961 km/h (526.277 mph), but, at the end of the second run, „скорость“ veered off and no time was measured. Even worse, the vehicle lost its parachute brakes and went out of control, skidding away from the dry race track into Lake Baskunchak’s wet salt sludge, where it hit a ground wave at around 200 mph (320 km/h) and was catapulted through the air into a brine pond where it landed on its right side and eventually sank. Again, pilot Victor Barchenkov remained mostly unharmed and was able to leave the car before it sank – but this fatal crash meant the end of the „скорость“ vehicle and the complete KhAGI 9-II project. Furthermore, the break-up of the Soviet Union at the same time prevented and further developments of high speed vehicles. The whereabouts of the „скорость“ wreck remain unclear, too, since no official attempt had been made to save the vehicle’s remains from Lake Baskunchak’s salt swamps.
The kit and its assembly:
This is another contribution to the late 2018 “Racing & Competition Group Build” at whatifmodelers.com. Since I primarily build aircraft in 1:72 scale, building a land speed record (LSR) vehicle from such a basis appeared like a natural choice. A slick streamliner? A rocket-powered prototype with Mach 1 potential? Hmmm… However, I wanted something else than the typical US or British Bonneville Salt Flats contender.
Inspiration struck when I remembered the real world high speed vehicle projects of LSA ChAGI in the former USSR, and especially the ill-fated, jet-powered ChADI 9, which looked a lot like Western, rocket-powered absolute LSR designs like The Blue Flame or Wingfoot Express 2. Another inspiration was a contemporary LSR vehicle called North American Eagle – basically a wingless F-104 Starfighter, put on wheels and sporting a garish, patriotic livery.
With this conceptual basis, the MiG-21 was quickly identified as the potential starting basis – but I wanted more than just a Fishbed sans wings and with some bigger wheels attached to it. I nevertheless wanted to retain the basic shape of the aircraft, but change the rest as good as possible with details that I have learned from reading about historic LSR vehicles (a very good source are the books by German author and LSR enthusiast Ferdinand C. W. Käsmann, which have, AFAIK, even been translated into English).
At the model’s core is a contemporary KP MiG-21MF, but it’s a hideous incarnation of the venerable Kovozávody Prostějov mold. While the wheels and the dashboard of this kit were surprisingly crisp, the fuselage halves did hardly match each other and some other parts like the landing gear covers could only be described as “blurred blobs”. Therefore it was no shame to slice the kit up, and the resulting kitbash with many donor parts and scratching almost became a necessity.
The MiG-21 fuselage and cockpit were more or less retained, the landing gear wells covered and PSR-ed. Fin, spine and the ventral stabilizer were cut away, and the attachment points for the wings and the horizontal stabilizers blended into the rest of the fuselage. Actually, only a few parts from the KP MiG-21 were eventually used.
The original shock cone in the air intake was used, but it was set further back into the nose opening – as an attachment point for a new, more organic shock cone which is actually the rear end of a drop tank from an Airfix 1:72 P-61 Black Widow. This detail was inspired by a real world benchmark: Art Arfons’ home-built “Green Monster” LSR car. This vehicle also inspired the highly modified air intake shape, which was scratched from the tail cone from a Matchbox 1:72 Blackburn Buccaneer – the diameter matched well with the MiG-21’s nose! With the new nose, I was able to retain the original MiG-21 layout, yet the shape and the extension forward changed the overall look enough to make it clear that this was not simply a MiG-21 on wheels.
With the spine gone, I also had to integrate a different, much smaller canopy, which came from an 1:144 Tornado. The cockpit opening had to be narrowed accordingly, and behind the canopy a new spine fairing was integrated – simply a piece from a streamlined 1:72 1.000 lb bomb plus lots of PSR.
Inside of the cockpit, a simpler seat was used, but the original cockpit tub and the dashboard were retained.
The large MiG-21 fin was replaced with a smaller piece, left over from an Amodel Kh-20 missile, with a scratched brake parachute fairing (cut from sprue material) placed under its rear. The exhaust nozzle was replaced, too, because the fit of the KP MiG-21’s rear end was abysmal. So I cut away a short piece and added an afterburner nozzle from a vintage 1:72 F-100, which fits well. Inside, the part’s rear wall was drilled open and extended inwards with a styrene tube.
The wheels of the vehicle come from an 1:72 Hasegawa “Panther with Schmalturm” tank kit – it comes not only with two turrets, but also with a second set of simplified track wheels. These had IMHO the perfect size and shape as massive aluminum wheels for the high speed vehicle.
For the front wheels, I used the thinner outer Panther wheels, and they were put, closely together, onto a central suspension pylon. This received a new “well” in the forward fuselage, with an internal attachment point. In order to streamline the front wheel installation (and also to change the overall look of the vehicle away from the MiG-21 basis), I added a scratched an aerodynamic fairing around it. This was made from tailored styrene strips, which were later filled and blended into the hull with putty.
The rear suspension was also fully scratched: the outriggers were made from styrene profiles while the wheel attachments were once part of an 1:35 tank kit suspension – I needed something to hold the three struts per side together. These parts look a bit large, but the vehicle is, after all, a Soviet design, so a little sturdiness may not be wrong, and I simply did not want to stick the wheels directly onto the outriggers. The rear wheels (in this case, the wider inner Panther track wheels with a central hub cover were used) also received a stabilizing notch around the contact surface, in an attempt to make them look slimmer than they actually are.
Final touches included the chines under the nose as well as spoilers on the rear suspension (both made from styrene profiles), and I added a pitot made from wire to the original MiG-21 angle of attack sensor fairing.
As an addition outside the model itself I also created a display base for the beauty pics, since I did not have anything at hand that would resemble the vastness of a flat and dry salt sea. The base is an 18x12” MDF board, on top of which I added a thin coat of white tile grout (which I normally use as a snow placebo, instead of plaster, which tends to absorb humidity over time and to become yellow). While the stuff was still wet I sprinkled some real salt onto the surface and wetted the whole affair with water sprays – hoping to create a flat yet structured surface with some glitter reflexes. And it actually worked!
Painting and markings:
I am not certain how ChADI 9 was painted (I assume overall silver), but I wanted for „скорость“ a little more color. Being a child of the Soviet era, red was a settled design element, but I thought that an all-red vehicle might have looked too cheesy. Other colors I considered were orange or white with blue trim, but did not find them to be appropriate for what I was looking. Eventually, I added some Russian Utilitarianism in the form of light grey for the upper hull (Humbrol 166, RAF Light Aircraft Grey), and the red (Humbrol 19) as a dark contrast around the complete air intake as well as the shock cone (somewhat inspired by the Green Monster #15 LSR vehicle), and then extended backwards into a narrowing cheatline along the flanks, which emphasizes the vehicle’s slender hull. For some more contrast between the two basic tones I later added thin white borders between them created with 2mm white decal stripes from TL Modellbau. Around the hull some bright red (Humbrol 238 Red Arrows Red) highlights as warning signs were added.
The vehicle’s afterburner section was painted with Modelmaster Steel Metallizer, the Panther wheels became Aluminum (Revell 99) with a black ink wash. Some black ink was also applied to the jet nozzle, so that the details became more pronounced, and some grinded graphite was used to enhance the burnt metal effect.
Since this would rather be an experimental car built and operated by a high school institute, and also operated in the Soviet Union, flashy sponsor markings would not be appropriate. Therefore I created some fictional marking at home with the help of PC software and printed them by myself. These designs included a fictional logo of the ChADI institute itself (created from a car silhouette drawing) and a logo for the vehicle’s title, “„скорость““. The latter was created from the cyrillic lettering, with some additions like the vehicle’s silhouette.
Unfortunately the production process for the home-made decals did not work properly – when coating the prints with gloss acrylic varnish the printer ink started to dissolve, bleeding magenta, so that the decals would look as if there was a red halo or glow around the otherwise black motifs. Thanks to the use of red in the vehicle’s overall design this flaw is not too apparent, so I stuck with the outcome and applied the decals to the car.
Beyond these basic markings, many stencils were added, including dull red inscriptions from an Italeri MiG-37 “Ferret” kit – finally, I found an expedient use for them! The Soviet flags on the fin came from an 1:144 Tu-144 airliner Braz Decal aftermarket sheet.
Finally, some panel lines were drawn onto the hull with a soft pencil and then the model was sealed with Italeri semi-gloss acrylic varnish. Just the black anti-glare panel in front of the windscreen became matt and the metallic rear section was left in “natural” finish.
I am very pleased with the outcome – the „скорость“ looks purposeful and does IMHO blend well into the line of spectacular USA and UK jet/rocket car designs that broke the 800 km/h barrier. I also find that, even though the MiG-21 ancestry is certainly there, the vehicle looks different enough so that the illusion that it was designed along the jet fighter’s lines (and not converted from one, like the real world “North American Eagle” which was built from an F-104 Starfighter) works well. I also think that the vehicle’s livery works well – it looks quite retro for a vehicle from the late Eighties, but that just adds to the “Soviet style”. An interesting project, outside of my normal comfort zone. :D
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Both Imperial Japanese Army and Navy Aviation (IJA and IJN, respectively) were very aware of the developments of jet engines, esp. through close contact with Germany and mutual exchange of blueprints and even hardware. But it was the IJN which basically drove jet-powered aircraft, e. g. through the Kyūshū J7W2 Shinden or Nakajima J9Y1 Kikka fighters.
The IJA was far behind schedule. Its primary jet projects had been conversions of existing, piston-engine-driven bomber types, but the increasing threat through high and fast incoming B-29 bombers, as well as the potential danger of even faster, jet-powered types, stirred the development of fast and agile interceptors with a heavy armament.
Since no such indigenous design existed (the IJA rejected the logical option to adapt an IJN types!), German engineers and design had a strong impact on what was to become the Ki-202 - a parallel development to the two-engined, heavier Ki-201 "Karyu", which resembled much the German Me 262.
The Ki-202 was developed by the Nippon Kokusai Koku Kogyo in a very short time frame: initial work started in late 1944, and the prototype was ready in summer 1945. The Ki-202 was regarded as a light, dedicated interceptor for spot defence, which should be produced in large numbers and with less investment of sparse resources and work labor per unit than the Karyu.
The Ki-202 was a very compact and simple aircraft. Outwardly it bore a striking resemblance to Kurt Tank's Ta 183 "Huckebein" jet fighter that had been under development in Germany since 1942, but the Ki-202 was much more simplified, both concerning construction and aerodynamics, as it was so direly needed and, beyond the jet engine, no big development risk was to be dared.
For instance, in order to avoid trouble with swept wings (which had not been incorporated in Japanese aircraft design yet, even though some wind tunnel test results already existed, as well as scientific input from Germany), the Ki-202 featured straight wings with a laminar-flow profile. The tail section was also different from the Ta 183: instead of the Ta 183's highly swept tail fin and a T-tail arrangement, the Ki-202 featured a relatively slender, staright tail boom above the jet exhaust, carrying a conventional stabilizer arrangement with only moderate sweep.
The fuselage resembled much Hans Multhopp's Ta 183, with a nose air intake, the pressurized cockpit placed above the air duct. The cockpot featured a frameless bubble canopy with an armored windscreen that offered an excellent field of view. Another novelty for the IJA was a tricycle landing gear that retracted into the lower fuselage. The engine (initially a single Ishikawajima Ne-20 turbojet, rated at 4.66 kN/475 kgf) filled the whole lower fuselage half. It lay between the main landing gear wells, with fuel cells above them and in the wing roots.
The aircraft had a rather stubby appearance, but turned out to be easy to handle and highly agile. Its weak spot was the Ne-20 engine, which was based on the German BMW 003 turbojet. Its low power output limited the Ki-202's performance so much that the initial prototypes (two were built) could only take off with reduced fuel - in fact, one of these machines was lost when it overrun the runway and crashed beyond repair.
Hence, only basic flight testing without any military equipment on board could be done until April 1945, and after the starting crash the other prototype was actually towed into the air, where it would, at safe height, power up its engine and perform a very limited test program.
When it became available in May 1945, a slightly uprated Ne-20-Kai engine was installed, but this measure hardly made the aircraft suitable to serious military service.
Things changed dramatically with the introduction of the much improved Ne-230 and Ne-330 engines. The latter had a thrust rating at 12.75 kN/1.300 kgf of thrust - nearly three times of what the early Ne-20 could deliver and close to the German 2nd generation Heinkel HeS 011 turbojet.
This new engine necessitated a slightly widened exhaust nozzle, and in the course of this modifications many detail refinements on prototypes #3 and 4 were made, including anti-flutter weights on the horizontal stabilizers and small wing fences.
In September 1945 this "new" aircraft eventually entered IJA service as "Ki-202 Kai", officially called 'Goryō' (御霊 - "Vengeful ghost") but also nicknamed 'Nezumi' (ネズミ - "Mouse") by its crews
The new type proved to be an immediate success. The Ki-202 Kai had a very good rate of climb, the short wings, coupled with a center-heavy CG due to the compact "pod and boom" layout, offered a very high manouverybility that was on par with contemporary Allied piston-engined fighters. As a bonus, its small size made the 'Goryō' a target which was hard to acquire or hit.
On the other side, the aircraft sported a powerful cannon armament (two fuselage-mounted 20 mm Ho-5 cannons, each with 150 RPG, plus two fuselage-mounted 30 mm Ho-155-II cannons, each with 50 RPG), and it was able to carry unguided air-to-air missiles under its wings, or two 150 L (40 US gal) drop tanks on either wing or a pair of 250 kg (550 lb) bombs.
On the downside, the Ne-330 engine had a very high fuel consumption rate, its throttle response was marginal, and its reliability was poor, especially in the initial production batches which suffered from material failures and lack of engineering experience.
General characteristics
Crew: one
Length: 8.96 m (29 ft 4 in)
Wingspan: 9,74 m (31 ft 10 1/2 in)
Height: 3,69 m (12 ft 1 in)
Wing area: 17.5 m² (188 ft²)
Empty weight: 2,380 kg (5,247 lb)
Loaded weight: 4,300 kg (9,480 lb)
Powerplant:
1× Ishikawajima Ne-330 engine with 12.75 kN/1.300 kgf of thrust
Performance
Maximum speed: 855 km/h (531 mph)
Stall speed: 140 km/h (92 knots, 106 mph) (power off, flaps down)
Range: 1.250 km (673 nmi, 776 mi)
Service ceiling: 14.000 m (45,932 ft)
Rate of climb: 20,4 m/s (4,020 ft/min)
Wing loading: 196 kg/m² (41 lb/ft²)
Thrust/weight: 0.37
Armament
2× 20 mm Ho-5 cannons with 150 RPG
2× 30 mm Ho-155-II cannons with 50 RPG
2× underwing hardpoints for up to 250 kg (551 lb) each
(for racks with unguided missiles, drop tanks or bombs)
The kit and its assembly:
A spontaneous project, inspired by a similar build (in French livery, though) on whatifmodelers.com some time ago, and an interim project while I waited for ordered decals for another whif on the bench.
I had a surplus Ta 183 from PM Models in store, and eventually considered it for conversion. When I recently got hands on several PZL TS-11 'Iskra' trainers from Master Craft, I eventually got the inspiration (and parts!) I needed and decided to make a kitbash, retro-fitting the rather futuristic Ta 183 with straight wings and a tail boom.
Conversion was rather straightforward, even though little from the Ta 183 was left: just the fuselage halves, air intake, canopy and parts of the landing gear. The Iskra 'donated' its wings and tail, as well as the front wheel.
Main wheels, cockpit interior, exhaust pipe and pilot figure come from the scrap box - noteworthy is the landing gear well interior. The PM kit just has a shallow, blank fairing - I cut that away and inserted parts from a jet engine (from a Revell F-16, the old kit which comes with a truck, trolley and a spare engine as props) - finally got use for these rather crude parts!
Some putty work was necessary at the fuselage/tail intersection, as well as at the wing roots, but overall the body work was rather quick and simple.
The packs of unguided missiles under the wings actually belong to the Matchbox BAC Strikemaster - I found an illustration of a similar arrangement on a Japanese rocket fighter, and they suit the 'Vengeful Ghost' well.
Painting and markings:
By tendency, I rather keep whifs' liveries simple and unspectacular - but I already have built some and want to avoid repetition. So I settled for an improvised camouflage scheme on bare metal, which I kept for the lower sides. AFAIK, such makeshift paint schemes were pretty common, and since no primer was used, quickly deteriorated.
To keep things simple I painted the finished model with Metallizer from Modelmaster, with different tones in selected areas (e. g. Aluminum Plate, Steel). After that I applied a thin coat of Humbrol 172 with a soft, broad brush on the upper surfaces, the waterline on the flanks masked with Tamiya tape. The metal below was to shine through, streaks were welcome, so that the finish became willingly uneven (and more interesting). This was later enhanced with some dry-brushed Humbrol 102 on top of that.
For more contrast, I added white Homeland Defence bands under the Hinomaru markings on wings and fuselage. These were cut from white decal sheet, not painted, and the Hinomaru placed on top of that. The yellow bands on the wings' ledaing edges are decals, too, a very effective method! The other few markings came from AeroMaster Decals and Microscale sheets.
Weathering included, beyond a wash with thinned black ink, a light sand paper treatment on the leading edges and in areas with much external contact, for an even shaggier look, and some grinded graphite was rubbed onto the bare metal surfaces for a worn look and some extra metal shine.
Finally, everything was sealed under a coat of semi-gloss acryl varnish.
A 'quickie', and the result looks a bit odd, IMHO - like a Saab 29 hatchling, maybe?
Colors and markings:
As per usual, I rather keep complicated whiffs visually simple, so I used the standard RAF scheme of Dark Green/Dark Sea Grey/Light Aircraft Grey on the Barghest, with the Buccaneer’s typical pattern as benchmark. Humbrol enamels (163m 164 and 166) were used for basic painting.
The cockpit interior became Tar Black (Revell 06), while the landing gear and its respective wells were painted in Aluminum (Humbrol 56).
The kit received a light black ink washing and mild post-shading. The decals come primarily from an Xtradecal BAC Lightning sheet (roundels and 19 Sq. markings), most stencils and the tactical code come from an Airfix Venom trainer.
Finally, the kit was sealed with a matt acrylic varnish, a mix of matt and little semi-gloss Italeri varnish, for a sheen finish.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Alexander Martin Lippisch (November 2, 1894 – February 11, 1976) was a German aeronautical engineer, a pioneer of aerodynamics who made important contributions to the understanding of flying wings, delta wings and the ground effect.
After working intially for the Zeppelin company, Reichsluftfahrtsministerium (RLM, Reich Aviation Ministry) transferred Lippisch and his team in 1939 to work at the Messerschmitt factory, in order to design a high-speed fighter aircraft around the rocket engines then under development by Hellmuth Walter. The team quickly adapted their most recent design, the DFS 194, to rocket power, the first example successfully flying in early 1940. This successfully demonstrated the technology for what would become the Messerschmitt Me 163 Komet, his most famous design.
In 1943, Lippisch transferred to Vienna’s Aeronautical Research Institute (Luftfahrtforschungsanstalt Wien, LFW), to concentrate on the problems of high-speed flight.That same year, he was awarded a doctoral degree in engineering by the University of Heidelberg. However, his research work did not stop Lippisch from designing further, mostly jet-powered and tailless fighter aircraft, e. g. for Henschel.
In early 1944, the RLM became aware of Allied jet developments and the high altitude B-29 in the Pacific TO, which was expected to appear soon over Europe, too. In response, the RLM instituted the Emergency Fighter Program, which took effect on July 3, 1944, ending production of most bomber and multi-role aircraft in favour of fighters, especially jet fighters. Additionally, they accelerated the development of experimental designs that would guarantee a performance edge over the Allied opponents, and designs that would replace the first generation of the German jet fighters, namely the Messerschmitt Me 262 and Heinkel He 162.
One of these advanced designs was the Ta 183 fighter, built by Focke Wulf and developed by Kurt Tank. The Ta 183 had a short fuselage with the air intake passing under the cockpit and proceeding to the rear where the single engine was located. The wings were swept back at 40° and were mounted in the mid-fuselage position. The pilot sat in a pressurized cockpit with a bubble canopy, which provided excellent vision. The primary armament of the aircraft consisted of four 30 mm (1.18 in) MK 108 cannons arranged around the air intake. The Ta 183 had a planned speed of about 1,000 km/h (620 mph) at 7,000 m (22,970 ft) and was powered by a 2nd generation jet engine, the Heinkel HeS 011 turbojet with 13 kN (2,700 lbf) of thrust. Several, steadily improved variants of the Ta 183 entered service from mid 1945 onwards, and the type was also the basis for more thorough derivatives - including a high altitude jet fighter proposed by Alexander Lippisch.
The resulting aircraft mated the structural basis of the proven Ta 183 with advanced aerodynamics, namely a tailless design with a much increased wing and fin area, and the machine was also powered by the new BMW 018 jet engine which delivered at this early stage 25kN (5.200 lb) of thrust and was expected to achieve more than 36 kN (7.500 lb) soon, without bigger dimensions than the widely used HeS 011 at the time.
The resulting machine, designated Li 383 in order to honor the developer, sacrificed some of the Ta 183' agility and speed for sheer altitude and climb performance, and the new wings were mostly built from non-strategic material, what increased weight considerably - the Li 383 was 1.5 times as heavy as the nimble Ta 183 fighter, but the new wing was more than twice as large.
Nevertheless, the modifications were effective and the RLM quickly accepted the radical re-design, since no better options were available on short notice. While the Ta 183 fighter was able to reach 14.000m (45,935 ft) in a zoom climb, the Li 383 could easily operate at 16.000m (52.500 ft) and even above that. However, Alexander Lippisch's original design, the Li 383A, had, despite positive wind tunnel tests, turned out to be unstable and prone to spinning. The reason was quickly found to be a lack of latitudal surfaces, and this was quickly fixed with a bigger tail fin and a characteristic gull wing that gave it the inofficial nickname for the serial Li 383B, "Sturmvogel".
When the Allied Forces eventually added the high-flying B-29 bombers to their air raids over Germany in late 1945, the Li 383 B-1 serial production variant was just ready for service. The new machines were quickly delivered to front line units, primarily fighter squadrons that defended vital centers like Berlin, Munich or the Ruhrgebiet. However, even though the Li 383 B-1's performance was sufficient, the type suffered from an inherent weakness against the well-armed Allied bombers: the range of the MK 108 cannon. While this weapon was relatively light and compact, and the four guns delivered an impressive weight of fire, a close attack against massive bomber formations was highly hazardous for the pilots. As a consequence, since bigger guns could not be mounted in the compact Ta 183 airframe, several weapon sets for filed modifications (so-called Rüstsätze) were offered that added a variety of weapons with a longer range and a bigger punch to the Li 383 B-1's arsenal, including unguided and guided air-to-air missiles.
Anyway, the Li 383's overall impact was not significant. Production numbers remained low, and all in all, only a total of 80-100 machines were completed and made operational when the hostilities ended.
General characteristics:
Crew: one
Length: 7.78 m (25 ft 5 1/2 in)
Wingspan: 12.67 m (41 ft 6 in)
Height: 3.86 m (12 ft 8 in)
Wing area: 46.8 m² (502.1 ft²)
Empty weight: 4,600 kg (10,141 lb)
Loaded weight: 6,912 kg (15,238 lb)
Max. takeoff weight: 8,100 kg (17,857 lb)
Powerplant:
1× BMW 018A turbojet, 25kN (5.200 lb)
Performance:
Maximum speed: 977 km/h (estimated) (607 mph) at 12,000 meters (39,000 ft)
Service ceiling: 16,000 m (estimated) (52,000 ft)
Rate of climb: 22 m/s (estimated) (4,330 ft/min)
Wing loading: 147.7 kg/m² (20.2 lb/ft²)
Thrust/weight: 0.34
Armament:
4× 30 mm (1.18 in) MK 108 cannons around the air intake with 75 RPG
2x underwing hardpoints for two 300l drop tanks or 2x 250 kg (550 lb) bombs;
alternatively, various weapon sets (Rüstsätze) were available, including racks for 8× (R1) or 12× (R3)
R 65 “Föhn” or for 24x R4M unguided missiles (R2), or for 2× Ruhrstahl X-4 Wire Guided AAMs (R4)
The kit and its assembly:
This fictional Luft ’46 aircraft was inspired by the question what a further developed Ta 183 could have looked like, and it was also influenced by the many tailless Lippisch designs that never left the drawing board.
From the hardware perspective, the design is more or less the salvage of the most useable parts of the PM Model Horten IX/Go 229 kit – namely the outer wing sections. The PM Model Ta 183 is only marginally “better”, and I had one of these in the stash (Revell re-boxing), too. So, why not combine two dreadful kits into something …new?
Well, that was the plan, and building was rather straightforward. In the cockpit, I added simple side consoles, a dashboard, some oxygen flasks, a different seat and a pilot figure (seatbelts simulated with tape strips) – the kit would be finished with closed canopy.
An exhaust pipe was integrated and the air intake filled with a better compressor fan (from an Airfix D.H. Venom, IIRC, fits perfectly). The inner walls of the landing gear wells (well, they are not existent) were cut away and replaced with leftover jet engine parts, so that there was some structure and depth. The landing gear was taken OOB, though, I just used slightly bigger wheels, since the “new” aircraft would have considerably more mass than the Ta 183.
The highly swept, long Ta 183 tail was cut off and replaced by a surplus Me 262 fin and tail section (Matchbox). Despite the different shape and size, and the resulting side view profile reminds strangely of the Saab 29?
The original Ta 183 wings were not mounted and their attachment points on the fuselage cut/sanded away. Instead, I used the outer wing sections from the Go 229, with clipped wing tips for a different shape.
When I held the wings to the fuselage, the whole thing looked …boring. Something was missing, hard to pinpoint. After consulting some Luft ’46 literature I adapted a trick for better stability: a gull wing shape. This was achieved through simple cuts to the wings’ upper halves. Then the wings were bent down, the gap filled with a styrene strip, and finally PSRed away. Looks very dynamic, and also much better!
Another late addition was the underwing armament. I was about to start painting when I again found that something was missing… The new wings made the aircraft pretty large, so I considered some underwing ordnance. Anyway, I did not want to disrupt the relatively clean lines with ugly bombs or drop tanks, so I installed a pair of racks with six launch tubes for R 65 “Föhn” unguided AAMs into the lower wing surfaces, in a semi-recessed position and with a deflector plate for the rocket exhausts.
Painting and markings:
As a high altitude interceptor and late war design, this one was to receive a simple and relatively light livery, even though I stuck with classic RLM tones. The Li 383 was basically painted all-over RLM 76 (Humbrol 247), onto which RLM 75 (from Modelmaster) was added, in the form of highly thinned enamel paint for a cloudy and improvised effect, applied with a big and soft brush. On top of the wings, a typical two-tone scheme was created, while on the fuselage’s upper sides only some thin mottles were added.
In order to lighten the scheme up and add a unique twist, I added further mottles to the flanks and the fin, but this time with RLM 77. This is a very light grey – originally reserved for tactical markings, but also “abused” in the field for camouflage mods, e. g. on high-flying He 177 bombers. I used Humbrol 195 (RAL 7035), again applied with a brush and highly thinned for a rather cloudy finish.
The air intake section and the intake duct were painted in aluminum, while the engine exhaust section as well as the missile racks and the areas around the gun ports were painted with Revell 99 (Iron Metallic) and Steel Metallizer.
The cockpit interior became dark grey (RLM 66) while the landing gear, the wells and the visible engine parts inside became RLM 02.
The kit was lightly weathered with a thin black ink wash and some dry-brushing.
The markings were puzzled together; due to the light basic tones of the model, the upper crosses became black, with only a very small cross on the flanks due to the lack of space, and for the wings’ undersides I used “old school” full color markings in black and white. The red color for the tactical code was basically chosen because it would be a nice contrast to the bluish-grey overall livery.
Finally the kit was sealed with matt acrylic varnish and some gun soot stains added with grinded graphite, as well as some traces of flaked paint on the wings’ leading edges and around the cockpit.
Well, the attempt to bash two mediocre (at best) kits into something else and hopefully better worked out well – the Li 383 does not look totally out of place, even though it turned out to become a bigger aircraft than expected. However, the aircraft has this certain, futuristic Luft ’46 look – probably thanks to the gull wings, which really change the overall impression from a simple kitbash to a coherent design which-could-have-been. The livery also fits well and looks better than expected. Overall, a positive surprise.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Bell XP-68A owed its existence to the manufacturer’s rather disappointing outcome of its first jet fighter design, the XP-59A Airacomet. The Airacomet was a twin jet-engined fighter aircraft, designed and built during World War II after Major General Henry H. "Hap" Arnold became aware of the United Kingdom's jet program when he attended a demonstration of the Gloster E.28/39 in April 1941. He requested, and was given, the plans for the aircraft's powerplant, the Power Jets W.1, which he took back to the U.S. He also arranged for an example of the engine, the Whittle W.1X turbojet, to be flown to the U.S., along with drawings for the more powerful W.2B/23 engine and a small team of Power Jets engineers. On 4 September 1941, he offered the U.S. company General Electric a contract to produce an American version of the engine, which subsequently became the General Electric I-A. On the following day, he approached Lawrence Dale Bell, head of Bell Aircraft Corporation, to build a fighter to utilize it. As a disinformation tactic, the USAAF gave the project the designation "P-59A", to suggest it was a development of the unrelated, canceled Bell XP-59 fighter project. The P-59A was the first design fighter to have its turbojet engine and air inlet nacelles integrated within the main fuselage. The jet aircraft’s design was finalized on 9 January 1942 and the first prototype flew in October of the same year.
The following 13 service test YP-59As had a more powerful engine than their predecessor, the General Electric J31, but the improvement in performance was negligible, with top speed increased by only 5 mph and a slight reduction in the time they could be used before an overhaul was needed. One of these aircraft, the third YP-59A, was supplied to the Royal Air Force, in exchange for the first production Gloster Meteor I for evaluation and flight-offs with domestic alternatives.
British pilots found that the YP-59A compared very unfavorably with the jets that they were already flying. The United States Army Air Forces were not impressed by its performance either and cancelled the contract when fewer than half of the originally ordered aircraft had been produced. No P-59s entered combat, but the type paved the way for the next design generation of U.S. turbojet-powered aircraft and helped to develop appropriate maintenance structures and procedures.
In the meantime, a new, more powerful jet engine had been developed in Great Britain, the Halford H-1, which became later better known as the De Havilland Goblin. It was another centrifugal compressor design, but it produced almost twice as much thrust as the XP-59A’s J31 engines. Impressed by the British Gloster Meteor during the USAAF tests at Muroc Dry Lake - performance-wise as well as by the aircraft’s simplicity and ruggedness - Bell reacted promptly and proposed an alternative fighter with wing-mounted engine nacelles, since the XP-59A’s layout had proven to be aerodynamically sub-optimal and unsuited for the installation of H-1 engines. In order to save development time and because the aircraft was rather regarded as a proof-of-concept demonstrator instead of a true fighter prototype, the new aircraft was structurally based on Bell’s current piston-engine P-63 “Kingcobra”. The proposal was accepted and, in order to maintain secrecy, the new jet aircraft inherited once more a designation of a recently cancelled project, this time from the Vultee XP-68 “Tornado” fighter. Similar to the Airacomet two years before, just a simple “A” suffix was added.
Bell’s development contract covered only three XP-68A aircraft. The H-1 units were directly imported from Great Britain in secrecy, suspended in the bomb bays of B-24 Liberator bombers. A pair of these engines was mounted in mid-wing nacelles, very similar to the Gloster Meteor’s arrangement. The tailplane was given a 5° dihedral to move it out of the engine exhaust. In order to bear the new engines and their power, the wing main spars were strengthened and the main landing gear wells were moved towards the aircraft’s centerline, effectively narrowing track width. The landing gear wells now occupied the space of the former radiator ducts for the P-63’s omitted Allison V-1710 liquid-cooled V12 engine. Its former compartment behind the cockpit was used for a new fuel tank and test equipment. Having lost the propeller and its long drive shaft, the nose section was also redesigned: the front fuselage became deeper and the additional space there was used for another fuel tank in front of the cockpit and a bigger weapon bay. Different armament arrangements were envisioned, one of each was to be tested on the three prototypes: one machine would be armed with six 0.5” machine guns, another with four 20mm Hispano M2 cannon, and the third with two 37mm M10 cannon and two 0.5” machine guns. Provisions for a ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb were made, but this was never fitted on any of the prototypes. Additional hardpoints under the outer wings for smaller bombs or unguided missiles followed the same fate.
The three XP-68As were built at Bell’s Atlanta plant in the course of early 1944 and semi-officially christened “Airagator”. After their clandestine transfer to Muroc Dry Lake for flight tests and evaluations, the machines were quickly nicknamed “Barrelcobra” by the test staff – not only because of the characteristic shape of the engine nacelles, but also due to the sheer weight of the machines and their resulting sluggish handling on the ground and in the air. “Cadillac” was another nickname, due to the very soft acceleration through the new jet engines and the lack of vibrations that were typical for piston-engine- and propeller-driven aircraft.
Due to the structural reinforcements and modifications, the XP-68A had become a heavy aircraft with an empty weight of 4 tons and a MTOW of almost 8 tons – the same as the big P-47 Thunderbolt piston fighter, while the P-63 had an MTOW of only 10,700 lb (4,900 kg). The result was, among other flaws, a very long take-off distance, especially in the hot desert climate of the Mojave Desert (which precluded any external ordnance) and an inherent unwillingness to change direction, its turning radius was immense. More than once the brakes overheated during landing, so that extra water cooling for the main landing gear was retrofitted.
Once in the air, the aircraft proved to be quite fast – as long as it was flying in a straight line, though. Only the roll characteristics were acceptable, but flying the XP-68A remained hazardous, esp. after the loss of one of the H-1s engines: This resulted in heavily asymmetrical propulsion, making the XP-68A hard to control at all and prone to spin in level flight.
After trials and direct comparison, the XP-68A turned out not to be as fast and, even worse, much less agile than the Meteor Mk III (the RAF’s then current, operational fighter version), which even had weaker Derwent engines. The operational range was insufficient, too, esp. in regard of the planned Pacific theatre of operations, and the high overall weight precluded any considerable external load like drop tanks.
However, compared with the XP-59A, the XP-68A was a considerable step forward, but it had become quickly clear that the XP-68A and its outfit-a-propeller-design-with jet-engines approach did not bear the potential for any service fighter development: it was already outdated when the prototypes were starting their test program. No further XP-68A was ordered or built, and the three prototypes fulfilled their test and evaluation program until May 1945. During these tests, the first prototype was lost on the ground due to an engine fire. After the program’s completion, the two remaining machines were handed over to the US Navy and used for research at the NATC Patuxent River Test Centre, where they were operated until 1949 and finally scrapped.
General characteristics.
Crew: 1
Length: 33 ft 9 in (10.36 m)
Wingspan: 38 ft 4 in (11.7 m)
Height: 13 ft (3.96 m)
Wing area: 248 sq ft (23 m²)
Empty weight: 8,799 lb (3,995 kg)
Loaded weight: 15,138 lb (6,873 kg)
Max. take-off weight: 17,246 lb (7,830 kg)
Powerplant:
2× Halford H-1 (De Havilland Goblin) turbojets, rated at 3,500 lbf (15.6 kN) each
Performance:
Maximum speed: 559 mph (900 km/h)
Range: 500 mi (444 nmi, 805 km)
Service ceiling: 37,565 ft (11,450 m)
Rate of climb: 3.930 ft/min (20 m/s)
Wing loading: 44.9 lb/ft² (218.97 kg/m²)
Thrust/weight: 0.45
Time to altitude: 5.0 min to 30,000 ft (9,145 m)
Armament:
4× Hispano M2 20 mm cannon with 150 rounds
One ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb
6× 60 lb (30 kg) rockets or 2× 500 lb (227 kg) bombs under the outer wings
The kit and its assembly:
This whiffy Kingcobra conversion was spawned by a post by fellow user nighthunter in January 2019 at whatifmodelers.com about a potential jet-powered variant. In found the idea charming, since the XP-59 had turned out to be a dud and the Gloster Meteor had been tested by the USAAF. Why not combine both into a fictional, late WWII Bell prototype?
The basic idea was simple: take a P-63 and add a Meteor’s engine nacelles, while keeping the Kingcobra’s original proportions. This sounds pretty easy but was more challenging than the first look at the outcome might suggest.
The donor kits are a vintage Airfix 1:72 Gloster Meteor Mk.III, since it has the proper, small nacelles, and an Eastern Express P-63 Kingcobra. The latter looked promising, since this kit comes with very good surface and cockpit details (even with a clear dashboard) as well as parts for several P-63 variants, including the A, C and even the exotic “pinball” manned target version. However, anything comes at a price, and the kit’s low price point is compensated by soft plastic (which turned out to be hard to sand), some flash and mediocre fit of any of the major components like fuselage halves, the wings or the clear parts. It feels a lot like a typical short-run kit. Nevertheless, I feel inclined to build another one in a more conventional fashion some day.
Work started with the H-1 nacelles, which had to be cut out from the Meteor wings. Since they come OOB only with a well-visible vertical plate and a main wing spar dummy in the air intake, I added some fine mesh to the plate – normally, you can see directly onto the engine behind the wing spar. Another issue was the fact that the Meteor’s wings are much thicker and deeper than the P-63s, so that lots of PSR work was necessary.
Simply cutting the P-63 OOB wings up and inserting the Meteor nacelles was also not possible: the P-63 has a very wide main landing gear, due to the ventral radiators and oil coolers, which were originally buried in the wing roots and under the piston engine. The only solution: move the complete landing gear (including the wells) inward, so that the nacelles could be placed as close as possible to the fuselage in a mid-span position. Furthermore, the - now useless - radiator openings had to disappear, resulting in a major redesign of the wing root sections. All of this became a major surgery task, followed by similarly messy work on the outer wings during the integration of the Meteor nacelles. LOTS of PSR, even though the outcome looks surprisingly plausible and balanced.
Work on the fuselage started in parallel. It was built mainly OOB, using the optional ventral fin for a P-63C. The exhaust stubs as well as the dorsal carburetor intake had to disappear (the latter made easy thanks to suitable optional parts for the manned target version). Since the P-63 had a conventional low stabilizer arrangement (unlike the Meteor with its cruciform tail), I gave them a slight dihedral to move them out of the engine efflux, a trick Sukhoi engineers did on the Su-11 prototype with afterburner engines in 1947, too.
Furthermore, the whole nose ahead of the cockpit was heavily re-designed, because I wanted the “new” aircraft to lose its propeller heritage and the P-63’s round and rather pointed nose. Somewhat inspired by the P-59 and the P-80, I omitted the propeller parts altogether and re-sculpted the nose with 2C putty, creating a deeper shape with a tall, oval diameter, so that the lower fuselage line was horizontally extended forward. In a profile view the aircraft now looks much more massive and P-80esque. The front landing gear was retained, just its side walls were extended downwards with the help of 0.5mm styrene sheet material, so that the original stance could be kept. Lots of lead in the nose ensured that the model would properly stand on its three wheels.
Once the rhinoplasty was done I drilled four holes into the nose and used hollow steel needles as gun barrels, with a look reminiscent of the Douglas A-20G.
Adding the (perfectly) clear parts of the canopy as a final assembly step also turned out to be a major fight against the elements.
Painting and markings:
With an USAAF WWII prototype in mind, there were only two options: either an NMF machine, or a camouflage in Olive Drab and Neutral Grey. I went for the latter and used Tamiya XF-62 for the upper surfaces and Humbrol 156 (Dark Camouflage Grey) underneath. The kit received a light black ink wash and some post shading in order to emphasize panels. A little dry-brushing with silver around the leading edges and the cockpit was done, too.
The cockpit interior became chromate green (I used Humbrol 150, Forest Green) while the landing gear wells were painted with zinc chromate yellow (Humbrol 81). The landing gear itself was painted in aluminum (Humbrol 56).
Markings/decals became minimal, puzzled together from various sources – only some “Stars and Bars” insignia and the serial number.
Somehow this conversion ended up looking a lot like the contemporary Soviet Sukhoi Su-9 and -11 (Samolyet K and LK) jet fighter prototype – unintentionally, though. But I am happy with the outcome – the P-63 ancestry is there, and the Meteor engines are recognizable, too. But everything blends into each other well, the whole affair looks very balanced and believable. This is IMHO furthermore emphasized by the simple paint scheme. A jet-powered Kingcobra? Why not…?
Some background:
The Leyland “Type D” was one of several armoured vehicle types designed in 1940 on the orders of Lord Beaverbrook and Admiral Sir Edward Evans, as a part of the hasty measures taken by the British Government following the Dunkirk evacuation and the threat of invasion.
The “Type D” was a heavy scout car, intended to replace the Lanchester 6x4 and Rolls-Royce 4x2 armoured cars, which dated back to the WWI era and the early interwar period. While they were reliable vehicles and still in active service, their off-road capabilities, armament and armour left a lot to be desired – esp. in the face of the modern German army and its effective equipment.
Certainly inspired by the German SdKfz. 231/232 family of heavy 8x8 armoured reconnaissance vehicles, Leyland added a fourth axle to better distribute the vehicle’s weight and a drivetrain to the front axle to a modified “Retriever” 3-ton 6x4 lorry chassis, resulting in a 6x8 layout. The rigid axles were mounted on leaf springs front and rear with hydraulic dampers, both front axles were steerable. The engine, a water-cooled 6-litre, 4-cylinder overhead camshaft petrol engine with 73 hp, was, together with the gearbox, relocated to the rear, making room for a fully enclosed crew compartment in the front section with two access doors in the vehicle’s flanks. The crew consisted of four, with the driver seat at the front. The gunner and commander (the commander at the right and gunner at the left) stood behind them into the turret or were sitting on simple leather belts, and behind them was a working station for a radio operator.
The tall, cylindrical turret was welded and electrically traversed, but it lacked a commander cupola. All the armament was mounted in the turret and consisted of a quick-firing two-pounder (40mm) cannon and a coaxial 7.92 mm Besa machine gun. The faceted hull was, like the turret, welded from homogenous steel armour plates, and a straightforward design. Maximum armour thickness was 15 mm at the front, 8 mm on the sides, and 10 mm on the back, with 6 mm and 5 mm of armour on the top and bottom respectively. It had been designed to provide protection from small arms fire and HE fragments, but it was ineffective against heavier weapons. This armour was a compromise, since better protection had resulted in a higher weight and overstrained the Type D’s lorry chassis and engine. The armoured cabin was mounted to the chassis at only four points - front, rear and sides - to give some flexibility but with precautions against excessive movement.
The Type D’s prototype was designed, built, tested and approved just within 3 months. Deliveries of the first production vehicles commenced only 2 months later, just in time to become involved in the North Africa campaign. All early production vehicles were immediately sent to Egypt and took part in Operation Compass and the Western Desert Campaign.
It comes as no surprise that the Type D – developed and produced in a hurry and thrown into battle in an environment it had not been designed for – initially failed, and even when the worst deficits had been rectified the Type D’s performance remained mediocre at best. The biggest problems concerned the engine’s cooling system, its low power output and therefore poor speed, and the vehicle’s poor off-road performance, esp. on soft ground like sand. The vehicle’s suspension was quickly overburdened in heavy terrain and the tall turret placed its center of gravity very high, making the Type D prone to topple over to a side when slope angles were taken too slightly. Poor cabin ventilation was another problem that became even more apparent under the African sun.
Initial losses were high: more than half of the Type Ds lost in North Africa during the early months of 1941 were abandoned vehicles which got stuck or had to be left behind due to mechanical failures. The rest had fallen easy prey to German and Italian attacks – the Type D was not only very vulnerable even to the Panzer II’s 20 mm autocannon, its thin top armour made it in the open desert also very vulnerable to air attacks: German MG 131 machine gun rounds easily punched the vehicle’s shell, and even lighter weapons were a serious threat to the tall Type D.
As soon as the first sobering field reports returned back to Great Britain, Leyland immediately devised major improvements. These were introduced to newly produced Mk. II vehicles and partly retrofitted to the early Mk. I vehicles in field workshops. One of these general improvements were new desert wheels and tires, which were considerably wider than the original lorry wheels and featured a flat pattern that better distributed the vehicle’s weight on soft and unstable ground, what considerably improved the Type D’s performance on sand. A kit with a more effective radiator and a bigger engine cooling system was quickly developed and sent to the units in Africa, too. The kit did not fully solve the overheating problems of the early Mk. I, but improved the situation. From the outside, retrofitted Type Ds could be recognized by a raised engine cover with enlarged air intakes. Due to the limits of the chassis the armour level was not improved, even though the crews and field workshops tried to attach improvised additional protective measures like spare track links from tanks or sandbags – with mixed results, though. The armament was not updated either, except for an optional mount for an additional light anti-aircraft machine gun on the turret and kits for smoke dischargers on the turret’s flanks.
The Type D Mk. II, which gradually replaced the Mk. I on the production lines from March 1941 on, furthermore received a different and much more effective powerplant, a Leyland 7-litre six-cylinder diesel engine with an output of 95 hp (70 kW). It not only provided more power and torque, markedly improving the vehicle’s off-road performance, it also had a better fuel economy than the former lorry petrol engine (extending range by 25%), and the fuel itself was less prone to ignite upon hits or accidents.
During its short career the Leyland Type D was primarily used in the North African Campaign by the 11th Hussars and other units. After the invasion of Italy, a small number was also used in the Southern European theatre by reconnaissance regiments of British and Canadian infantry divisions. A few vehicles were furthermore used for patrol duty along the Iran supply route.
However, the Type D was not popular, quickly replaced by smaller and more agile vehicles like the Humber scout car, and by 1944 outdated and retired. Leyland built a total of 220 Type Ds of both versions until early 1943, whilst an additional 86 Mk. IIs were built by the London, Midland and Scottish Railway's Derby Carriage Works.
Specifications:
Crew: Four (commander, gunner, driver, co-driver/radio operator/loader)
Weight: 8.3 tons
Length: 20 ft 5 in (6,30 m)
Width: 7 ft 5 in (2,27 m)
Height: 9 ft 2¾ in (2,81 m)
Ground clearance: 12 in (30.5 cm)
Turning radius: 39 ft (12 m)
Suspension: Wheel, rigid front and rear axles;
4x8 rear-wheel drive with selectable additional 6x8 front axle drive
Fuel capacity: 31 imp gal (141 litres)
Armour:
5–15 mm (0.2 – 0.6 in)
Performance:
Maximum road speed: 35 mph (56 km/h)
Sustained road speed: 30 mph (48 km/h)
Cross country speed: up to 20 mph (32 km/h)
Operational range: 250 mi (400 km)
Power/weight: 11,44 hp/ton
Engine:
1× Leyland 7-litre six-cylinder diesel engine, 95 hp (70 kW)
Transmission:
4-speed, with a 2-speed auxiliary box
Armament:
1× QF Two-pounder (40 mm/1.57 in) cannon with 94 rounds
1× 7.92 mm Besa machine gun mounted co-axially with 2.425 rounds
2-4× smoke dischargers, mounted on the turret
The kit and its assembly:
This fictional British WWII vehicle might look weird, but it has a real-world inspiration: the Marmon Herrington Mk. VI armoured heavy scout car. This vehicle only existed as a prototype and is AFAIK still preserved in a museum in South Africa – and upon a cursory glance it looks like an SdKfz. 232 with the shrunk turret from a “Crusader” cruiser tank with a short-barreled six pounder gun. It looks like a fake! Another reason for this build was a credible “canvas” for the application of the iconic “Caunter Scheme”, so that I placed the Type D in a suitable historic time frame.
The Type D was not supposed to be a truthful Marmon Herrington Mk. VI copy, so I started with a 1:72 “First to Fight” SdKfz. 232. This is a simple and sturdy tabletop wargaming model, but it is quite accurate, goes together well, is cheap and even comes with a metal gun barrel. It’s good value for the money, even though the plastic is a little thick and soft.
However, from this basis things changed in many ways. I initially wanted to shorten the hull, but the new wheels (see below) made this idea impossible. Nevertheless, the front glacis plate was completely re-modeled with 2C putty in the style of the Humber scout car, and the crew cabin was extended backwards with the same method. New observation slits had to be scratched with styrene profile material. The engine bay received a raised cover, simulating extra air intakes. The turret was replaced with a resin piece for an A13 “Valentine” Mk.III tank (S&S Models), which had a perfect size and even came with a suitable gun.
The suspension was taken OOB, but the wheels were replaced with two aftermarket resin sets (Silesian Models) with special Allied desert wheels/tires from 1941, they originally belong to a Chevrolet truck and are markedly bigger and wider than the SdKfz. 232 wheels. However, they had to be modified to match the rest of the suspension, and their size necessitated a thorough modification of the mudguards. They were not only mounted 1mm higher on the flanks, their sides, normally consisting of closed skirts, were fully opened to make sufficient room for the new wheels to change the vehicle’s look. They were furthermore separated into four two-wheel covers and their front and rear ends were slightly bent upwards. Sufficient space for the side doors had to be made, too. The spare wheels that came with the respective sets were mounted to the front (again Humber-style) and onto the engine bay cover, under a scratched tarpaulin (made from paper tissue drenched with white glue).
To conceal the SdKfz. 232 heritage even more I added more equipment to the vehicle’s flanks. Tool boxed were added to the engine bay’s flanks, some more tools to the fenders, scratched tarpaulin rolls above the side doors and I tried to scratch PSP plates with aluminum foil rubbed against a flight stand diorama floor made from PSP. Not perfect, but all the stuff livens the Type D up. A new exhaust (IIRC from a Panzer IV) was added to the rear and bumpers scratched from wire and mounted low unto the hull.
Painting and markings:
Finally, the British, so-called “Caunter Scheme”, a great source of misinterpretation not only in museums but also by modelers who have painted their British tanks in dubious if not garish colors. I do not claim that my interpretation of the colors is authentic, but I did some legwork and tried to improvise with my resources some tones that appear plausible (at least to me), based on descriptions and contemporary references.
The pattern itself was well defined for each vehicle type, and I adapted a M3 “Stuart” pattern for the model. All three basic colors, “Light Stone”, “Silver Grey” and “Slate”, were guesstimated. “Slate” is a relatively dark and greenish tone, and I chose Tamiya XF-65 (Field Grey). “Light Stone” is rather yellow-ish, light sand tone, and I used Humbrol 103 (Cream). Some sources suggest the use of Humbrol 74 (linen) as basis, but that is IMHO too yellow-ish and lacks red. The most obscure tone is “Silver Grey”, and its depictions range from a pale and dull light olive drab over blue-grey, greenish grey to bright light blue and even turquoise. In fact, this tone must have had a greenish-blue hue, and so I mixed Humbrol 145 (FS 35237) with maybe Humbrol 94 in a 3:1 ratio to achieve an “in between” tone, which is hard to describe - maybe as a greenish sand-grey? A funny effect of the colors in direct contrast is that the XF-65 appeared with an almost bluish hue! Overall, the choice of colors seems to work, though, and the impression is good.
Painting was, as usual, done with brushes and, due to the vehicle’s craggy shape, free-handedly. After basic painting the model received a light washing with a mix of black ink and brown, and some post-shading was done with light grey (Revell 75) and Hemp (Humbrol 168). Decals came from the scrap box, and before an overall protective coat of matt acrylic varnish was applied, the model received an additional treatment with thinned Revell 82 (supposed to be RAF Dark Earth but it is a much paler tone).
A more demanding build than one would expect at first sight. The SdKafz. 232 is unfortunately still visible, but the desert wheels, including the spare wheels, change the look considerably, and the British replacement turret works well, too. Using the tabletop model basis was not a good move, though, because everything is rather solid and somewhat blurry, esp. the many molded surface details, which suffered under the massive body work. On the other side, the Counter Scheme IMHO turned out well, esp. the colors, even though the slender hull made the adaptation of the pattern from a (much shorter) tank not easy. But most of the critical areas were hidden under extra equipment, anyway. 😉
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Both Imperial Japanese Army and Navy Aviation (IJA and IJN, respectively) were very aware of the developments of jet engines, esp. through close contact with Germany and mutual exchange of blueprints and even hardware. But it was the IJN which basically drove jet-powered aircraft, e. g. through the Kyūshū J7W2 Shinden or Nakajima J9Y1 Kikka fighters.
The IJA was far behind schedule. Its primary jet projects had been conversions of existing, piston-engine-driven bomber types, but the increasing threat through high and fast incoming B-29 bombers, as well as the potential danger of even faster, jet-powered types, stirred the development of fast and agile interceptors with a heavy armament.
Since no such indigenous design existed (the IJA rejected the logical option to adapt an IJN types!), German engineers and design had a strong impact on what was to become the Ki-202 - a parallel development to the two-engined, heavier Ki-201 "Karyu", which resembled much the German Me 262.
The Ki-202 was developed by the Nippon Kokusai Koku Kogyo in a very short time frame: initial work started in late 1944, and the prototype was ready in summer 1945. The Ki-202 was regarded as a light, dedicated interceptor for spot defence, which should be produced in large numbers and with less investment of sparse resources and work labor per unit than the Karyu.
The Ki-202 was a very compact and simple aircraft. Outwardly it bore a striking resemblance to Kurt Tank's Ta 183 "Huckebein" jet fighter that had been under development in Germany since 1942, but the Ki-202 was much more simplified, both concerning construction and aerodynamics, as it was so direly needed and, beyond the jet engine, no big development risk was to be dared.
For instance, in order to avoid trouble with swept wings (which had not been incorporated in Japanese aircraft design yet, even though some wind tunnel test results already existed, as well as scientific input from Germany), the Ki-202 featured straight wings with a laminar-flow profile. The tail section was also different from the Ta 183: instead of the Ta 183's highly swept tail fin and a T-tail arrangement, the Ki-202 featured a relatively slender, staright tail boom above the jet exhaust, carrying a conventional stabilizer arrangement with only moderate sweep.
The fuselage resembled much Hans Multhopp's Ta 183, with a nose air intake, the pressurized cockpit placed above the air duct. The cockpot featured a frameless bubble canopy with an armored windscreen that offered an excellent field of view. Another novelty for the IJA was a tricycle landing gear that retracted into the lower fuselage. The engine (initially a single Ishikawajima Ne-20 turbojet, rated at 4.66 kN/475 kgf) filled the whole lower fuselage half. It lay between the main landing gear wells, with fuel cells above them and in the wing roots.
The aircraft had a rather stubby appearance, but turned out to be easy to handle and highly agile. Its weak spot was the Ne-20 engine, which was based on the German BMW 003 turbojet. Its low power output limited the Ki-202's performance so much that the initial prototypes (two were built) could only take off with reduced fuel - in fact, one of these machines was lost when it overrun the runway and crashed beyond repair.
Hence, only basic flight testing without any military equipment on board could be done until April 1945, and after the starting crash the other prototype was actually towed into the air, where it would, at safe height, power up its engine and perform a very limited test program.
When it became available in May 1945, a slightly uprated Ne-20-Kai engine was installed, but this measure hardly made the aircraft suitable to serious military service.
Things changed dramatically with the introduction of the much improved Ne-230 and Ne-330 engines. The latter had a thrust rating at 12.75 kN/1.300 kgf of thrust - nearly three times of what the early Ne-20 could deliver and close to the German 2nd generation Heinkel HeS 011 turbojet.
This new engine necessitated a slightly widened exhaust nozzle, and in the course of this modifications many detail refinements on prototypes #3 and 4 were made, including anti-flutter weights on the horizontal stabilizers and small wing fences.
In September 1945 this "new" aircraft eventually entered IJA service as "Ki-202 Kai", officially called 'Goryō' (御霊 - "Vengeful ghost") but also nicknamed 'Nezumi' (ネズミ - "Mouse") by its crews
The new type proved to be an immediate success. The Ki-202 Kai had a very good rate of climb, the short wings, coupled with a center-heavy CG due to the compact "pod and boom" layout, offered a very high manouverybility that was on par with contemporary Allied piston-engined fighters. As a bonus, its small size made the 'Goryō' a target which was hard to acquire or hit.
On the other side, the aircraft sported a powerful cannon armament (two fuselage-mounted 20 mm Ho-5 cannons, each with 150 RPG, plus two fuselage-mounted 30 mm Ho-155-II cannons, each with 50 RPG), and it was able to carry unguided air-to-air missiles under its wings, or two 150 L (40 US gal) drop tanks on either wing or a pair of 250 kg (550 lb) bombs.
On the downside, the Ne-330 engine had a very high fuel consumption rate, its throttle response was marginal, and its reliability was poor, especially in the initial production batches which suffered from material failures and lack of engineering experience.
General characteristics
Crew: one
Length: 8.96 m (29 ft 4 in)
Wingspan: 9,74 m (31 ft 10 1/2 in)
Height: 3,69 m (12 ft 1 in)
Wing area: 17.5 m² (188 ft²)
Empty weight: 2,380 kg (5,247 lb)
Loaded weight: 4,300 kg (9,480 lb)
Powerplant:
1× Ishikawajima Ne-330 engine with 12.75 kN/1.300 kgf of thrust
Performance
Maximum speed: 855 km/h (531 mph)
Stall speed: 140 km/h (92 knots, 106 mph) (power off, flaps down)
Range: 1.250 km (673 nmi, 776 mi)
Service ceiling: 14.000 m (45,932 ft)
Rate of climb: 20,4 m/s (4,020 ft/min)
Wing loading: 196 kg/m² (41 lb/ft²)
Thrust/weight: 0.37
Armament
2× 20 mm Ho-5 cannons with 150 RPG
2× 30 mm Ho-155-II cannons with 50 RPG
2× underwing hardpoints for up to 250 kg (551 lb) each
(for racks with unguided missiles, drop tanks or bombs)
The kit and its assembly:
A spontaneous project, inspired by a similar build (in French livery, though) on whatifmodelers.com some time ago, and an interim project while I waited for ordered decals for another whif on the bench.
I had a surplus Ta 183 from PM Models in store, and eventually considered it for conversion. When I recently got hands on several PZL TS-11 'Iskra' trainers from Master Craft, I eventually got the inspiration (and parts!) I needed and decided to make a kitbash, retro-fitting the rather futuristic Ta 183 with straight wings and a tail boom.
Conversion was rather straightforward, even though little from the Ta 183 was left: just the fuselage halves, air intake, canopy and parts of the landing gear. The Iskra 'donated' its wings and tail, as well as the front wheel.
Main wheels, cockpit interior, exhaust pipe and pilot figure come from the scrap box - noteworthy is the landing gear well interior. The PM kit just has a shallow, blank fairing - I cut that away and inserted parts from a jet engine (from a Revell F-16, the old kit which comes with a truck, trolley and a spare engine as props) - finally got use for these rather crude parts!
Some putty work was necessary at the fuselage/tail intersection, as well as at the wing roots, but overall the body work was rather quick and simple.
The packs of unguided missiles under the wings actually belong to the Matchbox BAC Strikemaster - I found an illustration of a similar arrangement on a Japanese rocket fighter, and they suit the 'Vengeful Ghost' well.
Painting and markings:
By tendency, I rather keep whifs' liveries simple and unspectacular - but I already have built some and want to avoid repetition. So I settled for an improvised camouflage scheme on bare metal, which I kept for the lower sides. AFAIK, such makeshift paint schemes were pretty common, and since no primer was used, quickly deteriorated.
To keep things simple I painted the finished model with Metallizer from Modelmaster, with different tones in selected areas (e. g. Aluminum Plate, Steel). After that I applied a thin coat of Humbrol 172 with a soft, broad brush on the upper surfaces, the waterline on the flanks masked with Tamiya tape. The metal below was to shine through, streaks were welcome, so that the finish became willingly uneven (and more interesting). This was later enhanced with some dry-brushed Humbrol 102 on top of that.
For more contrast, I added white Homeland Defence bands under the Hinomaru markings on wings and fuselage. These were cut from white decal sheet, not painted, and the Hinomaru placed on top of that. The yellow bands on the wings' ledaing edges are decals, too, a very effective method! The other few markings came from AeroMaster Decals and Microscale sheets.
Weathering included, beyond a wash with thinned black ink, a light sand paper treatment on the leading edges and in areas with much external contact, for an even shaggier look, and some grinded graphite was rubbed onto the bare metal surfaces for a worn look and some extra metal shine.
Finally, everything was sealed under a coat of semi-gloss acryl varnish.
A 'quickie', and the result looks a bit odd, IMHO - like a Saab 29 hatchling, maybe?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the Second World War, France’s armored force consisted, almost entirely, of US-built vehicles, such as the M4 Sherman, M26 Pershing, and M24 Chaffee (among others). France received these vehicles as aid as part of the Marshall Plan and the Mutual Defense Assistance Act (MDAA). These aid pacts also financed the reconstruction of France’s economy and armed forces from 1948 until the late 1950s. In April 1949, the North Atlantic Treaty was signed, and NATO was born, resulting in the United States extending the MDAA. This resulted in France receiving newer vehicles, such as the M47 Patton II tank.
In total, France would operate around 1,250 M24s which were identical to their US counterparts. It was a small tank at 5.45 meters (16 ft 4 in) long, 2.84 meters (9ft 4in) wide, and 2.61 meters (9ft 3in) tall. It weighed 16.6 tonnes (18.37 tons), utilized a torsion bar suspension, and was armed with a 75 mm gun. The tank had a 5-men crew: Commander, Gunner, Loader, Driver, Bow Gunner. The ‘Chaffee’ was named after WWI US Army General, Adna R. Chaffee Jr.
In 1956, the French Army and the Direction des Etudes et Fabrications d’Armements (Directorate of Studies and Manufacture of Armaments, DEFA, an institution within the French Military) were looking into affordable methods of modernizing their fleet of aging M24 Chaffee light tanks, which had been operated since WWII. One method was to somehow combine France’s new domestic light tank, the AMX-13, with the M24.
Initially, this led to the mating of the AMX-13’s FL-10 oscillating turret to the hull of the Chaffee, as the most logical step to improve the M24s. While cheap and feasible, this configuration never went further than trials. This was largely due to a perceived safety issue with the High-Explosive (HE) rounds fired by the CN 75-50 cannon. Inside the FL-10 turret, the CN 75-50 gun was fed via an automatic loading system, which was reloaded externally. If an alternate shell-type needed to be fired, HE, for example, it had to be loaded into the breach manually by the Commander. This was a tricky task in the tight confines of the turret on the standard AMX, made worse by the notoriously sensitive fuze of the HE rounds. This process would be even more dangerous on the smaller hull of the Chaffee. As a result, the inverse of this mounting was decided upon, mounting the Chaffee’s turret on the AMX-13’s hull.
The officially designated AMX-US was a result of this, even though there were many other unofficial names, including ‘AMX-13 Chaffee’ – as it was known by troops – or ‘AMX-13 Avec Tourelle Chaffee (with Chaffee Turret)’. By 1957, work on the inverse of mounting the Chaffee turret to the AMX hull had begun, what was regarded as a safer and easier alternative, and it was also a convenient way of recycling useful Chaffee turrets by separating them from their worn hulls. It also created a vehicle lighter than the regular Chaffee, meaning it was easier to transport.
The M24 turrets went through very little modification for their installation, retaining all the same main features. The only modification necessary was the introduction of an adapter or ‘collar’ to the AMX hull’s turret ring. This was needed as the Chaffee turret had quite a deep basket. The collar granted the basket clearance from the hull floor for uninterrupted, full 360-degree rotation.
The Chaffee turret was a standard design with a typical 3-man crew of the time: Gunner, Loader, and Commander. The Commander sat at the left rear of the turret under a vision-cupola, the gunner sat in front of him. The loader was located at the right-rear of the turret under his own hatch. Armor on the turret was 25 mm (.98 in) thick on all sides, with the gun mantlet being 38 mm (1.49 in) thick.
The AMX-US was operated by a four-man crew, as opposed to the three-man crew of the standard Mle 51, due to the three-man turret of the Chaffee. Armament consisted of the 75 mm Lightweight Tank Gun M6 which had a concentric recoil system (this was a hollow tube around the barrel, a space-saving alternative to traditional recoil cylinders). Variants of this gun were also used on the B-25H Mitchell Bomber, and the T33 Flame Thrower Tank prototype. The shell velocity was 619 m/s (2,031 ft/s) and had a maximum penetration of 109 mm. The elevation range of the gun was around -10 to +13 degrees. Secondary weapons were also retained. This included the coaxial .30 Cal (7.62 mm) Browning M1919 Machine Gun, and the .50 Caliber (12.7 mm) M2 Browning Heavy Machine gun which was mounted on the rear of the turret roof.
Apart from the adaptor or ‘collar’, the AMX hull went through no alterations. It retained the same dimensions, and forward-mounted engine and transmission. The tank was powered by a SOFAM Model 8Gxb 8-cylinder, water-cooled petrol engine developing 250 hp, propelling the tank to a top speed of around 60 km/h (37 mph). The vehicle ran on a torsion bar suspension with five road-wheels, two return rollers, a rear-mounted idler, and a forward-mounted drive-sprocket. The driver was positioned at the front left of the hull, behind the transmission and next to the engine.
Trials with what would be designated the ‘AMX-US’ were undertaken between December 1959 and January 1960. The vehicle was well received, with an order for 150 conversions being placed by the French military in March 1960. Conversion work was carried out at a plant in Gien, North-Central France.
The AMX-US saw brief service in the War in Algeria – otherwise known as the Algerian War of Independence or Algerian Revolution. One known operator was the 9e Régiment de Hussards (9th Hussar Regiment) based in Oran. They served well, but a few were lost in combat, but there is no evidence to suggest they served in any other location with the French military, such as in France or West Germany based regiments.
After the conflict in Algeria, the vehicles were returned to France, but they did not last long in active service after this. Many vehicles were being repurposed into driver trainers. For this, the vehicles were disarmed, with the 75 mm gun and mantlet removed from the turret face and a large plexiglass windscreen was installed in its place.
About fifty surplus AMX-US were sold as scout tanks to Israel, because the AMX-13, which had been procured and operated by the IDF since 1956 in great numbers, was used as a battle tank, so that no IDF reconnaissance unit used the AMX 13. The AMX-US was a perfect and cheap alternative to fill this operational gap, and the vehicles, delivered in 1963, took actively part in the 1967 Six-Day-War.
During these battles, the IDF soon realized that the AMX-13 tank in general was too lightly armored and lacked firepower, and this was even more true for the AMX-US with its vintage WWII gun. Losses were heavy at places like Rafah Junction and Jiradi Pass with many tanks destroyed by heavier Arab-fielded Soviet armor, such as T-55 MBTs and IS-3 heavy tanks. After that, both the AMX-13 and the AMX-US were gradually phased out by the IDF, either sold to other nations (e. g. Thailand), broken up for spares or preserved and stored in depots.
In 1975, a handful of these mothballed AMX-US were, together with other outdated Six-Day-War M50 Sherman veterans, re-activated and handed over to the South Lebanese Army (SLA). The SLA was a Christian militia during the Lebanese Civil War, opposing Muslim militias supported by Syria. The SLA received a total of 15 AMX-US, plus 35 M50s, and all these tanks were painted in a characteristic light blue-grey color. The SLA kept these tanks operational and active for a surprisingly long period, the last confirmed appearance of an SLA AMX-US in battle was in 1988. Even after the retirement of the last operational specimen, the SLA still used the AMX-US for training and security duties.
In 2000, nearly ten years after the end of the civil war, the SLA disbanded, and the surviving former IDF tanks were returned to Israel to prevent them from falling into the wrong hands – spelling the end to the AMX-US long career, of which four were returned and subsequently scrapped.
Specifications:
Crew: Four (Commander, Loader, Gunner, Driver)
Weight: 15 tons
Length: 4.88 m (16 ft) overall
Width: 2.51 m (8 ft 2 in)
Height: 2.30 m (7 ft 5 in)
Suspension: Torsion arms; Tracked chassis, 5 roadwheels, drive sprocket front, idler rear,
3.00 m length, 0.35 width, 2.16 m track
Ground clearance: 0.37 m (1 ft 2½ in)
Fording depth: 2 ft (0.6 m) unprepared, 6.9 ft (2.1 m) with snorkel
Grade: 60%
Side slope: 60%
Trench crossing: 1.6 m (5 ft 3 in)
Vertical wall climb: 0.65 m (2 ft 1½ ft)
Fuel capacity: 480 l (127 gal)
Engine:
1× water-cooled Renault SOFAM Model 8Gxb 8-cylinder gasoline with 250 hp
Transmission:
Hydramatic automatic transmission; 8 speeds forward, 4 reverse
Armor:
Hull: 10 - 40 mm (1.57 in)
Turret: max. 38 mm (1.49 in)
Performance:
Speed: 60 km/h (40 mph) maximum, road
Operational range: 350 km (217 mi) on streets with internal fuel only
Power/weight: 17 hp/t
Armament:
1× 75 mm Lightweight Tank Gun M6 in Mount M64 with 48 rounds
1× co-axial 0.30 Cal. (7.62 mm) Browning M1919 machine gun, 2.200 rounds
1× 0.50 Caliber (12.7 mm) M2 Browning anti-aircraft heavy machine gun, 440 rounds
The kit and its assembly:
This fictional tank model is the result of recycling: After a T-34 conversion, which used an AMX-13 turret, I was left with the chassis of a 1:72 Heller kit. The latter is a rather simple and primitive affair, with many wrong details and a very weak running gear. From another, even older conversion project I also had an almost complete turret from a Hasegawa M24 Chaffee left over. When I stumbled in literature over the French AMX-US hybrid I decided to use these leftover bits to create one!
The AMX-13 chassis was taken OOB, because I did want to invest too much energy into this build, despite its many flaws. Its running gear is rubbish, the vinyl tracks featureless, and overall the detail level is rather soft. From a distance it looks like an AMX-13, but any closer inspection reveals the model's simplicity and toy-likeness. The Chaffee turret was also built with the original parts – but I had to replace the gun barrel and find a replacement for the gunner’s hatch.
Nevertheless, some scratch work had to be done. The biggest challenge was the AMX-US’ characteristic turret adapter ring, which markedly raises the M24 turret above the AMX-13 hull. My solution became a manually bent a piece of soft styrene profile - it’s not perfectly circular, but that’s not obvious when the turret is in place, and it looks the part. Furthermore, some small bits were added to hide flaws and distract. These include vertical bars in the exhaust opening, shallow storage boxes on the fenders (hiding the wacky distance ring) and tarpaulin/cammo net packs (created from paper tissue and nylon stockings drenched with white glue). The commander cupola’s hatch was left open and a figure (an ESCI German WWII tank commander) added, to make the model appear livelier. Since the M24’s AA machine gun had been gone, I had to replace it with one from an ESCI Merkava, its mount was moved in front of the cupola.
Painting and markings:
Initially, I just had the French army as potential operator for the AMX-US but found that rather boring due to the very limited livery options: any French tank from the era would have carried a dark olive-green livery, even those operated in North Africa! Some French M24s had been operated in South-East Asia in a sand/green/brown/green jungle scheme, but the time frame would not match well. So, I checked other AMX-13 operators and took liking in an IDF vehicle. However, while looking for potential liveries I came upon the SLA. The AMX-US, had it been handed over to the IDF, could have been among these donor tanks, and their unique (if not spectacular) light blue livery made them outstanding. I am not certain whether the blue tone was intended as serious camouflage or just as an IFF measure? However, among typical light rocks and mountains of the Lebenon and in dusty/hazy air, the bluish tone actually works quite fine, better than expected.
While a uniform livery is not complex, finding a suitable tone for the model took a while. Real life color pictures (of dubious quality) show a wide range of light blue and/or grey tones, ranging from a bright sky blue over pale grey (like FS 36375) to a medium bluish grey (FS 35237), frequently with severe signs of weathering/sun-bleaching which makes some tanks appear almost white. Some M50s also had olive drab or dark grey patches or patterns added on top as additional camouflage.
After testing several options I chose RLM78 (Modelmaster 2088) as basic tone. Odd choice, but it turned out to be light enough, is a rather blue tone (with a slight hint of green), but still dull enough to look like a military tone. An overall washing with a mix of grey, black and red brown followed, and then the model received a thorough, overall dry brushing treatment with various shades of light blue grey, including Modelmaster RLM76, FS 36320 and Revell 75, for a worn and bleached appearance.
The markings had to be completely improvised, though, and were created with Corel Draw on an ink jet printer and with white and clear decal paper. They include the SLA’s cedar tree emblem and the Arabic tactical codes. The white “X” markings were created with generic decal stripes.
After the model had been sealed with matt acrylic varnish, sand and dust residues were created with watercolors, and some beige mineral pigments were dusted into the running gear and over the upper surfaces.
A quick build and a good use of leftover parts from other projects, melded into a plausible result. The SLA livery adds a weird twist to this model, even though it is – in the end – just a mix of real-world elements: the AMX-US existed, and the SLA operated light blue tanks! Life is sometimes stranger than fiction.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background
The Hütter Hü 324 was the final development stage of BMW's 'Schnellbomber II' project, which had been designed around two mighty BMW 109-028 turboprops.
These innovative engines had been developed since February 1941, but did not receive fullest attention due to the more promising jet engines. Anyway, it soon became clear that no jet engine with the potential to drive a bomber-sized aircraft - considering both performance and fuel consumption - would be available on short notice. Consequently, the BMW 028 received more attention from the RLM from 1943 on.
Biggest pressure came from the fact that several obsolete types like the He 111 or Do 217 had to be replaced, and the ill-fated and complicated He 177 was another candidate with little future potential, since four-engined variants had been rejected. Additionally, the promising and ambitious Ju 288 had been stillborn, and a wide gap for a tactical medium bomber opned in the Luftwaffe arsenal.
In may 1943, new requirements for a medium bomber were concretised. Main objective was to design a fast, twin-engined bomber, primarily intended for horizontal bombing, which would be able to carry a 3.000 kilograms (6.600 lbs) payload at 800 kilometres per hour in a 1.500km (900 ml) radius. The plane had to be fast and to operate at great heights, limiting the threat of interception.
Since many major design bureaus’ resources were bound, Ulrich W. Hütter, an Austro-German engineer and university professor got involved in the RLM project and BMW's design team which had been working on appropriate designs. In July 1943, Hütter moved to the Research Institute of the Graf Zeppelin works (FGZ) convened in Ruit near Stuttgart, and as head of the engineering department he was also involved in the development of manned missiles, underwater towing systems and the Hü 211 high altitude interceptor/reconnaissance plane.
Under Ulrich W. Hütter and his brother, Wolfgang Hütter, BMW's original and highly innovative (if not over-ambitious) Schnellbomber designs gave way to a more conservative layout: the so-called BMW-Hütter Hü 324.
The plane was conventional in layout, with high, unswept laminar profile wings and a high twin tail. The engines were carried in nacelles slung directly under the wings. The nose wheel retracted rearwards, while the main wheels retracted forwards into the engine nacelles, rotating 90°, and laying flat under the engines. The crew of four (pilot, co-pilot/bombardier, navigator/radar operator and gunner/radio operator) were accommodated in a compact, pressurised "glass house" cockpit section – a popular design and morale element in Luftwaffe bomber and reconnaissance aircraft of that era.
Construction of the first prototype started in February 1945, and while the aircraft cell made good progress towards the hardware stage, the development suffered a serious setback in March when BMW admitted that the 109-028 turboprop engine would not be ready in time. It took until August to arrive, and the prototype did not fly until 6 November 1945.
Initial flight test of the four A-0 pre-production samples of the Hü 324 went surprisingly well. Stability and vibration problems with the aircraft were noted, though. One major problem was that the front glas elements were prone to crack at high speeds, and it took a while to trace the troubole source back to the engines and sort these problems out. Among others, contraprops were fitted to counter the vibration problems, the engines' power output had to be reduced by more than 500 WPS and the tail fins had to be re-designed.
Another innovative feature of this bomber was the “Elbegast” ground-looking navigation radar system, which allowed identification of targets on the ground for night and all-weather bombing. It was placed in a shallow radome behind the front wheel. Performance-wise, the system was comparable to the USAAF’s H2X radar, and similarly compact. Overall, the Hü 324 showed much promise and a convincing performance, was easy to build and maintain, and it was immediately taken to service.
Despite the relatively high speed and agility for a plane of its size, the Hü 324 bore massive defensive armament: the original equipment of the A-1 variant comprised two remotely operated FDL 131Z turrets in dorsal (just behind the cockpit) and ventral (behind the bomb bay) position with 2× 13 mm MG 131 machine guns each, plus an additional, unmanned tail barbette with a single 20mm canon. All these guns were aimed by the gunner through a sighting station at the rear of the cockpit, effectively covering the rear hemisphere of the bomber.
After first operational experience, this defence was beefed up with another remotely-controlled barbette with 2× 13 mm MG 131 machine guns under the cockpit, firing forwards. The reason was similar to the introduction of the chin-mounted gun turret in the B-17G: the plane was rather vulnerable to frontal attacks. In a secondary use, the chin guns could be used for strafing ground targets. This update was at first called /R1, but was later incorporated into series production, under the designation A-2.
Effectively, almost 4.500kg ordnance could be carried in- and externally, normally limited to 3.000kg in the bomb bay in order to keep the wings clean and reduce drag, for a high cruising speed. While simple iron bombs and aerial mines were the Hü 324's main payload, provisions were made to carry guided weapons like against small/heavily fortified targets. Several Rüstsätze (accessory packs) were developed, and the aircraft in service received an "/Rx" suffix to their designation, e. g. the R2 Rüstsatz for Fritz X bomb guidance or the R3 set for rocket-propelled Hs 293 bombs.
Trials were even carried out with a semi-recessed Fieseler Fi 103 missile, better known as the V1 flying bomb, hung under the bomber's belly and in an enlarged bomb bay, under deletion of the ventral barbette.
The Hü 324 bomber proved to be an elusive target for the RAF day and night fighters, especially at height. After initial attacks at low level, where fast fighters like the Hawker Tempest or DH Mosquito night fighters were the biggest threat, tactics were quickly changed. Approaching at great height and speed, bombing was conducted from medium altitudes of 10,000 to 15,000 feet (3,000 to 4,600 m).
The Hü 324 proved to be very successful, striking against a variety of targets, including bridges and radar sites along the British coast line, as well as ships on the North Sea.
From medium altitude, the Hü 324 A-2 proved to be a highly accurate bomber – thanks to its "Elbegast" radar system which also allowed the planes to act as pathfinders for older types or fast bombers with less accurate equipment like the Ar 232, Ju 388 or Me 410. Loss rates were far lower than in the early, low-level days, with the Hü 324 stated by the RLM as having the lowest loss rate in the European Theatre of Operations at less than 0.8 %.
BMW-Hütter Ha 324A-2, general characteristics:
Crew: 4
Length: 18.58 m (60 ft 10 in)
Wingspan: 21.45 m (70 ft 4½ in )
Height: 4.82 m (15 ft 9½ in)
Wing area: 60.80 m² (654.5 ft.²)
Empty weight: 12,890 kg (28,417 lb)
Loaded weight: 18,400 kg (40,565 lb)
Max. take-off weight: 21,200 kg (46,738 lb)
Performance:
Maximum speed: 810 km/h (503 mph) at optimum height
Cruising speed: 750 km/h (460 mph) at 10,000 m (32,800 ft)
Range: 3.500 km (2.180 ml)
Service ceiling: 11.400 m (37.500 ft)
Rate of climb: 34.7 m/s (6,820 ft/min)
Powerplant:
Two BMW 109-028 ‘Mimir’ turboprop engines, limited to 5.500 WPS (4.044 WkW) each plus an additional residual thrust of 650kg (1.433 lb), driving four-bladed contraprops.
Armament:
6× 13mm MG 131 in three FDL 131Z turrets
1× 20mm MG 151/20 in unmanned/remote-controlled tail barbette
Up to 4.500 kg (9.800 lbs) in a large enclosed bomb-bay in the fuselage and/or four underwing hardpoints.
Typically, bomb load was limited to 3.000 kg (6.500 lbs) internally.
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some enhanced panel lines (with a mix of matte varnish and Panzergrau), as well as some dry painting all over the fuselage.
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. Propeller spinners were painted RLM 70 (Schwarzgrün) on the front half, the rear half was painted half black and half white.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and squadron code were puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, "EV" marks the individual plane, the red "E" and the control letter "V" at the end designate a plane from the eleventh squadron of KG 210. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
So, after some more surgical work than expected, the Hü 324 medium bomber is ready to soar!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Bell XP-68A owed its existence to the manufacturer’s rather disappointing outcome of its first jet fighter design, the XP-59A Airacomet. The Airacomet was a twin jet-engined fighter aircraft, designed and built during World War II after Major General Henry H. "Hap" Arnold became aware of the United Kingdom's jet program when he attended a demonstration of the Gloster E.28/39 in April 1941. He requested, and was given, the plans for the aircraft's powerplant, the Power Jets W.1, which he took back to the U.S. He also arranged for an example of the engine, the Whittle W.1X turbojet, to be flown to the U.S., along with drawings for the more powerful W.2B/23 engine and a small team of Power Jets engineers. On 4 September 1941, he offered the U.S. company General Electric a contract to produce an American version of the engine, which subsequently became the General Electric I-A. On the following day, he approached Lawrence Dale Bell, head of Bell Aircraft Corporation, to build a fighter to utilize it. As a disinformation tactic, the USAAF gave the project the designation "P-59A", to suggest it was a development of the unrelated, canceled Bell XP-59 fighter project. The P-59A was the first design fighter to have its turbojet engine and air inlet nacelles integrated within the main fuselage. The jet aircraft’s design was finalized on 9 January 1942 and the first prototype flew in October of the same year.
The following 13 service test YP-59As had a more powerful engine than their predecessor, the General Electric J31, but the improvement in performance was negligible, with top speed increased by only 5 mph and a slight reduction in the time they could be used before an overhaul was needed. One of these aircraft, the third YP-59A, was supplied to the Royal Air Force, in exchange for the first production Gloster Meteor I for evaluation and flight-offs with domestic alternatives.
British pilots found that the YP-59A compared very unfavorably with the jets that they were already flying. The United States Army Air Forces were not impressed by its performance either and cancelled the contract when fewer than half of the originally ordered aircraft had been produced. No P-59s entered combat, but the type paved the way for the next design generation of U.S. turbojet-powered aircraft and helped to develop appropriate maintenance structures and procedures.
In the meantime, a new, more powerful jet engine had been developed in Great Britain, the Halford H-1, which became later better known as the De Havilland Goblin. It was another centrifugal compressor design, but it produced almost twice as much thrust as the XP-59A’s J31 engines. Impressed by the British Gloster Meteor during the USAAF tests at Muroc Dry Lake - performance-wise as well as by the aircraft’s simplicity and ruggedness - Bell reacted promptly and proposed an alternative fighter with wing-mounted engine nacelles, since the XP-59A’s layout had proven to be aerodynamically sub-optimal and unsuited for the installation of H-1 engines. In order to save development time and because the aircraft was rather regarded as a proof-of-concept demonstrator instead of a true fighter prototype, the new aircraft was structurally based on Bell’s current piston-engine P-63 “Kingcobra”. The proposal was accepted and, in order to maintain secrecy, the new jet aircraft inherited once more a designation of a recently cancelled project, this time from the Vultee XP-68 “Tornado” fighter. Similar to the Airacomet two years before, just a simple “A” suffix was added.
Bell’s development contract covered only three XP-68A aircraft. The H-1 units were directly imported from Great Britain in secrecy, suspended in the bomb bays of B-24 Liberator bombers. A pair of these engines was mounted in mid-wing nacelles, very similar to the Gloster Meteor’s arrangement. The tailplane was given a 5° dihedral to move it out of the engine exhaust. In order to bear the new engines and their power, the wing main spars were strengthened and the main landing gear wells were moved towards the aircraft’s centerline, effectively narrowing track width. The landing gear wells now occupied the space of the former radiator ducts for the P-63’s omitted Allison V-1710 liquid-cooled V12 engine. Its former compartment behind the cockpit was used for a new fuel tank and test equipment. Having lost the propeller and its long drive shaft, the nose section was also redesigned: the front fuselage became deeper and the additional space there was used for another fuel tank in front of the cockpit and a bigger weapon bay. Different armament arrangements were envisioned, one of each was to be tested on the three prototypes: one machine would be armed with six 0.5” machine guns, another with four 20mm Hispano M2 cannon, and the third with two 37mm M10 cannon and two 0.5” machine guns. Provisions for a ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb were made, but this was never fitted on any of the prototypes. Additional hardpoints under the outer wings for smaller bombs or unguided missiles followed the same fate.
The three XP-68As were built at Bell’s Atlanta plant in the course of early 1944 and semi-officially christened “Airagator”. After their clandestine transfer to Muroc Dry Lake for flight tests and evaluations, the machines were quickly nicknamed “Barrelcobra” by the test staff – not only because of the characteristic shape of the engine nacelles, but also due to the sheer weight of the machines and their resulting sluggish handling on the ground and in the air. “Cadillac” was another nickname, due to the very soft acceleration through the new jet engines and the lack of vibrations that were typical for piston-engine- and propeller-driven aircraft.
Due to the structural reinforcements and modifications, the XP-68A had become a heavy aircraft with an empty weight of 4 tons and a MTOW of almost 8 tons – the same as the big P-47 Thunderbolt piston fighter, while the P-63 had an MTOW of only 10,700 lb (4,900 kg). The result was, among other flaws, a very long take-off distance, especially in the hot desert climate of the Mojave Desert (which precluded any external ordnance) and an inherent unwillingness to change direction, its turning radius was immense. More than once the brakes overheated during landing, so that extra water cooling for the main landing gear was retrofitted.
Once in the air, the aircraft proved to be quite fast – as long as it was flying in a straight line, though. Only the roll characteristics were acceptable, but flying the XP-68A remained hazardous, esp. after the loss of one of the H-1s engines: This resulted in heavily asymmetrical propulsion, making the XP-68A hard to control at all and prone to spin in level flight.
After trials and direct comparison, the XP-68A turned out not to be as fast and, even worse, much less agile than the Meteor Mk III (the RAF’s then current, operational fighter version), which even had weaker Derwent engines. The operational range was insufficient, too, esp. in regard of the planned Pacific theatre of operations, and the high overall weight precluded any considerable external load like drop tanks.
However, compared with the XP-59A, the XP-68A was a considerable step forward, but it had become quickly clear that the XP-68A and its outfit-a-propeller-design-with jet-engines approach did not bear the potential for any service fighter development: it was already outdated when the prototypes were starting their test program. No further XP-68A was ordered or built, and the three prototypes fulfilled their test and evaluation program until May 1945. During these tests, the first prototype was lost on the ground due to an engine fire. After the program’s completion, the two remaining machines were handed over to the US Navy and used for research at the NATC Patuxent River Test Centre, where they were operated until 1949 and finally scrapped.
General characteristics.
Crew: 1
Length: 33 ft 9 in (10.36 m)
Wingspan: 38 ft 4 in (11.7 m)
Height: 13 ft (3.96 m)
Wing area: 248 sq ft (23 m²)
Empty weight: 8,799 lb (3,995 kg)
Loaded weight: 15,138 lb (6,873 kg)
Max. take-off weight: 17,246 lb (7,830 kg)
Powerplant:
2× Halford H-1 (De Havilland Goblin) turbojets, rated at 3,500 lbf (15.6 kN) each
Performance:
Maximum speed: 559 mph (900 km/h)
Range: 500 mi (444 nmi, 805 km)
Service ceiling: 37,565 ft (11,450 m)
Rate of climb: 3.930 ft/min (20 m/s)
Wing loading: 44.9 lb/ft² (218.97 kg/m²)
Thrust/weight: 0.45
Time to altitude: 5.0 min to 30,000 ft (9,145 m)
Armament:
4× Hispano M2 20 mm cannon with 150 rounds
One ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb
6× 60 lb (30 kg) rockets or 2× 500 lb (227 kg) bombs under the outer wings
The kit and its assembly:
This whiffy Kingcobra conversion was spawned by a post by fellow user nighthunter in January 2019 at whatifmodelers.com about a potential jet-powered variant. In found the idea charming, since the XP-59 had turned out to be a dud and the Gloster Meteor had been tested by the USAAF. Why not combine both into a fictional, late WWII Bell prototype?
The basic idea was simple: take a P-63 and add a Meteor’s engine nacelles, while keeping the Kingcobra’s original proportions. This sounds pretty easy but was more challenging than the first look at the outcome might suggest.
The donor kits are a vintage Airfix 1:72 Gloster Meteor Mk.III, since it has the proper, small nacelles, and an Eastern Express P-63 Kingcobra. The latter looked promising, since this kit comes with very good surface and cockpit details (even with a clear dashboard) as well as parts for several P-63 variants, including the A, C and even the exotic “pinball” manned target version. However, anything comes at a price, and the kit’s low price point is compensated by soft plastic (which turned out to be hard to sand), some flash and mediocre fit of any of the major components like fuselage halves, the wings or the clear parts. It feels a lot like a typical short-run kit. Nevertheless, I feel inclined to build another one in a more conventional fashion some day.
Work started with the H-1 nacelles, which had to be cut out from the Meteor wings. Since they come OOB only with a well-visible vertical plate and a main wing spar dummy in the air intake, I added some fine mesh to the plate – normally, you can see directly onto the engine behind the wing spar. Another issue was the fact that the Meteor’s wings are much thicker and deeper than the P-63s, so that lots of PSR work was necessary.
Simply cutting the P-63 OOB wings up and inserting the Meteor nacelles was also not possible: the P-63 has a very wide main landing gear, due to the ventral radiators and oil coolers, which were originally buried in the wing roots and under the piston engine. The only solution: move the complete landing gear (including the wells) inward, so that the nacelles could be placed as close as possible to the fuselage in a mid-span position. Furthermore, the - now useless - radiator openings had to disappear, resulting in a major redesign of the wing root sections. All of this became a major surgery task, followed by similarly messy work on the outer wings during the integration of the Meteor nacelles. LOTS of PSR, even though the outcome looks surprisingly plausible and balanced.
Work on the fuselage started in parallel. It was built mainly OOB, using the optional ventral fin for a P-63C. The exhaust stubs as well as the dorsal carburetor intake had to disappear (the latter made easy thanks to suitable optional parts for the manned target version). Since the P-63 had a conventional low stabilizer arrangement (unlike the Meteor with its cruciform tail), I gave them a slight dihedral to move them out of the engine efflux, a trick Sukhoi engineers did on the Su-11 prototype with afterburner engines in 1947, too.
Furthermore, the whole nose ahead of the cockpit was heavily re-designed, because I wanted the “new” aircraft to lose its propeller heritage and the P-63’s round and rather pointed nose. Somewhat inspired by the P-59 and the P-80, I omitted the propeller parts altogether and re-sculpted the nose with 2C putty, creating a deeper shape with a tall, oval diameter, so that the lower fuselage line was horizontally extended forward. In a profile view the aircraft now looks much more massive and P-80esque. The front landing gear was retained, just its side walls were extended downwards with the help of 0.5mm styrene sheet material, so that the original stance could be kept. Lots of lead in the nose ensured that the model would properly stand on its three wheels.
Once the rhinoplasty was done I drilled four holes into the nose and used hollow steel needles as gun barrels, with a look reminiscent of the Douglas A-20G.
Adding the (perfectly) clear parts of the canopy as a final assembly step also turned out to be a major fight against the elements.
Painting and markings:
With an USAAF WWII prototype in mind, there were only two options: either an NMF machine, or a camouflage in Olive Drab and Neutral Grey. I went for the latter and used Tamiya XF-62 for the upper surfaces and Humbrol 156 (Dark Camouflage Grey) underneath. The kit received a light black ink wash and some post shading in order to emphasize panels. A little dry-brushing with silver around the leading edges and the cockpit was done, too.
The cockpit interior became chromate green (I used Humbrol 150, Forest Green) while the landing gear wells were painted with zinc chromate yellow (Humbrol 81). The landing gear itself was painted in aluminum (Humbrol 56).
Markings/decals became minimal, puzzled together from various sources – only some “Stars and Bars” insignia and the serial number.
Somehow this conversion ended up looking a lot like the contemporary Soviet Sukhoi Su-9 and -11 (Samolyet K and LK) jet fighter prototype – unintentionally, though. But I am happy with the outcome – the P-63 ancestry is there, and the Meteor engines are recognizable, too. But everything blends into each other well, the whole affair looks very balanced and believable. This is IMHO furthermore emphasized by the simple paint scheme. A jet-powered Kingcobra? Why not…?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
This build had many first. First time, airbrushing, kitbashing (kinda), and 3D printing/modelling (for gunpla), first use of decal solutions too.
I built the MG Dynames exactly a year ago planning to do this, but before starting the main customising, I had a Gunpla break (to focus on studies). I'm glad I did though, as that gave me more time to watch videos and observe how people do things.
Airbrushing was a pain. Found it hard to get a good consistency of paint and it kept coming out weird at times. I bought a cheap brush/compressor off Ebay and used Revel acrylic white for the base and Citadel Sybarite Green and Lahmian Medium for the green. Handpainted a few small details too. Probably will airbush again in the future with better results.
3D modelled some adaptors using Blender, for the thrusters to attach to the GN Drive and for the holster to back skirt attachment. Actually used some fake/3D printed Lego for the joint. First use of plastic cement too.
The Sword I found off Thingyverse and just scaled it up. Was this one: www.thingiverse.com/thing:2828010 if interested.
The decals are some Sazabi Ver.Ka + a few MG Dynames ones I bought of Aliexpress. The microsol.set is a godsend, I used just water on a few kits before hand and the decals are kinda flakey even with a topcoat.
In universe I see this as a close combat variation of the Dynames. The shields now act as bits/funnels. And in the knee are shotgun rounds so he can knee opponents and fire (similar to Kimaris Vidars Drill knees). The Grenades in the front skirt now have some smoke flares too for enemy distraction. Sword is GN powered and takes the best of the Exias real blade and a beam blade. It can be powered without connection, but it better if so. The pistols still the same and the head mounted site is more of a general different wavelength camera. I see this as my current Build Fighter/Diver suit.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the Second World War, France’s armored force consisted, almost entirely, of US-built vehicles, such as the M4 Sherman, M26 Pershing, and M24 Chaffee (among others). France received these vehicles as aid as part of the Marshall Plan and the Mutual Defense Assistance Act (MDAA). These aid pacts also financed the reconstruction of France’s economy and armed forces from 1948 until the late 1950s. In April 1949, the North Atlantic Treaty was signed, and NATO was born, resulting in the United States extending the MDAA. This resulted in France receiving newer vehicles, such as the M47 Patton II tank.
In total, France would operate around 1,250 M24s which were identical to their US counterparts. It was a small tank at 5.45 meters (16 ft 4 in) long, 2.84 meters (9ft 4in) wide, and 2.61 meters (9ft 3in) tall. It weighed 16.6 tonnes (18.37 tons), utilized a torsion bar suspension, and was armed with a 75 mm gun. The tank had a 5-men crew: Commander, Gunner, Loader, Driver, Bow Gunner. The ‘Chaffee’ was named after WWI US Army General, Adna R. Chaffee Jr.
In 1956, the French Army and the Direction des Etudes et Fabrications d’Armements (Directorate of Studies and Manufacture of Armaments, DEFA, an institution within the French Military) were looking into affordable methods of modernizing their fleet of aging M24 Chaffee light tanks, which had been operated since WWII. One method was to somehow combine France’s new domestic light tank, the AMX-13, with the M24.
Initially, this led to the mating of the AMX-13’s FL-10 oscillating turret to the hull of the Chaffee, as the most logical step to improve the M24s. While cheap and feasible, this configuration never went further than trials. This was largely due to a perceived safety issue with the High-Explosive (HE) rounds fired by the CN 75-50 cannon. Inside the FL-10 turret, the CN 75-50 gun was fed via an automatic loading system, which was reloaded externally. If an alternate shell-type needed to be fired, HE, for example, it had to be loaded into the breach manually by the Commander. This was a tricky task in the tight confines of the turret on the standard AMX, made worse by the notoriously sensitive fuze of the HE rounds. This process would be even more dangerous on the smaller hull of the Chaffee. As a result, the inverse of this mounting was decided upon, mounting the Chaffee’s turret on the AMX-13’s hull.
The officially designated AMX-US was a result of this, even though there were many other unofficial names, including ‘AMX-13 Chaffee’ – as it was known by troops – or ‘AMX-13 Avec Tourelle Chaffee (with Chaffee Turret)’. By 1957, work on the inverse of mounting the Chaffee turret to the AMX hull had begun, what was regarded as a safer and easier alternative, and it was also a convenient way of recycling useful Chaffee turrets by separating them from their worn hulls. It also created a vehicle lighter than the regular Chaffee, meaning it was easier to transport.
The M24 turrets went through very little modification for their installation, retaining all the same main features. The only modification necessary was the introduction of an adapter or ‘collar’ to the AMX hull’s turret ring. This was needed as the Chaffee turret had quite a deep basket. The collar granted the basket clearance from the hull floor for uninterrupted, full 360-degree rotation.
The Chaffee turret was a standard design with a typical 3-man crew of the time: Gunner, Loader, and Commander. The Commander sat at the left rear of the turret under a vision-cupola, the gunner sat in front of him. The loader was located at the right-rear of the turret under his own hatch. Armor on the turret was 25 mm (.98 in) thick on all sides, with the gun mantlet being 38 mm (1.49 in) thick.
The AMX-US was operated by a four-man crew, as opposed to the three-man crew of the standard Mle 51, due to the three-man turret of the Chaffee. Armament consisted of the 75 mm Lightweight Tank Gun M6 which had a concentric recoil system (this was a hollow tube around the barrel, a space-saving alternative to traditional recoil cylinders). Variants of this gun were also used on the B-25H Mitchell Bomber, and the T33 Flame Thrower Tank prototype. The shell velocity was 619 m/s (2,031 ft/s) and had a maximum penetration of 109 mm. The elevation range of the gun was around -10 to +13 degrees. Secondary weapons were also retained. This included the coaxial .30 Cal (7.62 mm) Browning M1919 Machine Gun, and the .50 Caliber (12.7 mm) M2 Browning Heavy Machine gun which was mounted on the rear of the turret roof.
Apart from the adaptor or ‘collar’, the AMX hull went through no alterations. It retained the same dimensions, and forward-mounted engine and transmission. The tank was powered by a SOFAM Model 8Gxb 8-cylinder, water-cooled petrol engine developing 250 hp, propelling the tank to a top speed of around 60 km/h (37 mph). The vehicle ran on a torsion bar suspension with five road-wheels, two return rollers, a rear-mounted idler, and a forward-mounted drive-sprocket. The driver was positioned at the front left of the hull, behind the transmission and next to the engine.
Trials with what would be designated the ‘AMX-US’ were undertaken between December 1959 and January 1960. The vehicle was well received, with an order for 150 conversions being placed by the French military in March 1960. Conversion work was carried out at a plant in Gien, North-Central France.
The AMX-US saw brief service in the War in Algeria – otherwise known as the Algerian War of Independence or Algerian Revolution. One known operator was the 9e Régiment de Hussards (9th Hussar Regiment) based in Oran. They served well, but a few were lost in combat, but there is no evidence to suggest they served in any other location with the French military, such as in France or West Germany based regiments.
After the conflict in Algeria, the vehicles were returned to France, but they did not last long in active service after this. Many vehicles were being repurposed into driver trainers. For this, the vehicles were disarmed, with the 75 mm gun and mantlet removed from the turret face and a large plexiglass windscreen was installed in its place.
About fifty surplus AMX-US were sold as scout tanks to Israel, because the AMX-13, which had been procured and operated by the IDF since 1956 in great numbers, was used as a battle tank, so that no IDF reconnaissance unit used the AMX 13. The AMX-US was a perfect and cheap alternative to fill this operational gap, and the vehicles, delivered in 1963, took actively part in the 1967 Six-Day-War.
During these battles, the IDF soon realized that the AMX-13 tank in general was too lightly armored and lacked firepower, and this was even more true for the AMX-US with its vintage WWII gun. Losses were heavy at places like Rafah Junction and Jiradi Pass with many tanks destroyed by heavier Arab-fielded Soviet armor, such as T-55 MBTs and IS-3 heavy tanks. After that, both the AMX-13 and the AMX-US were gradually phased out by the IDF, either sold to other nations (e. g. Thailand), broken up for spares or preserved and stored in depots.
In 1975, a handful of these mothballed AMX-US were, together with other outdated Six-Day-War M50 Sherman veterans, re-activated and handed over to the South Lebanese Army (SLA). The SLA was a Christian militia during the Lebanese Civil War, opposing Muslim militias supported by Syria. The SLA received a total of 15 AMX-US, plus 35 M50s, and all these tanks were painted in a characteristic light blue-grey color. The SLA kept these tanks operational and active for a surprisingly long period, the last confirmed appearance of an SLA AMX-US in battle was in 1988. Even after the retirement of the last operational specimen, the SLA still used the AMX-US for training and security duties.
In 2000, nearly ten years after the end of the civil war, the SLA disbanded, and the surviving former IDF tanks were returned to Israel to prevent them from falling into the wrong hands – spelling the end to the AMX-US long career, of which four were returned and subsequently scrapped.
Specifications:
Crew: Four (Commander, Loader, Gunner, Driver)
Weight: 15 tons
Length: 4.88 m (16 ft) overall
Width: 2.51 m (8 ft 2 in)
Height: 2.30 m (7 ft 5 in)
Suspension: Torsion arms; Tracked chassis, 5 roadwheels, drive sprocket front, idler rear,
3.00 m length, 0.35 width, 2.16 m track
Ground clearance: 0.37 m (1 ft 2½ in)
Fording depth: 2 ft (0.6 m) unprepared, 6.9 ft (2.1 m) with snorkel
Grade: 60%
Side slope: 60%
Trench crossing: 1.6 m (5 ft 3 in)
Vertical wall climb: 0.65 m (2 ft 1½ ft)
Fuel capacity: 480 l (127 gal)
Engine:
1× water-cooled Renault SOFAM Model 8Gxb 8-cylinder gasoline with 250 hp
Transmission:
Hydramatic automatic transmission; 8 speeds forward, 4 reverse
Armor:
Hull: 10 - 40 mm (1.57 in)
Turret: max. 38 mm (1.49 in)
Performance:
Speed: 60 km/h (40 mph) maximum, road
Operational range: 350 km (217 mi) on streets with internal fuel only
Power/weight: 17 hp/t
Armament:
1× 75 mm Lightweight Tank Gun M6 in Mount M64 with 48 rounds
1× co-axial 0.30 Cal. (7.62 mm) Browning M1919 machine gun, 2.200 rounds
1× 0.50 Caliber (12.7 mm) M2 Browning anti-aircraft heavy machine gun, 440 rounds
The kit and its assembly:
This fictional tank model is the result of recycling: After a T-34 conversion, which used an AMX-13 turret, I was left with the chassis of a 1:72 Heller kit. The latter is a rather simple and primitive affair, with many wrong details and a very weak running gear. From another, even older conversion project I also had an almost complete turret from a Hasegawa M24 Chaffee left over. When I stumbled in literature over the French AMX-US hybrid I decided to use these leftover bits to create one!
The AMX-13 chassis was taken OOB, because I did want to invest too much energy into this build, despite its many flaws. Its running gear is rubbish, the vinyl tracks featureless, and overall the detail level is rather soft. From a distance it looks like an AMX-13, but any closer inspection reveals the model's simplicity and toy-likeness. The Chaffee turret was also built with the original parts – but I had to replace the gun barrel and find a replacement for the gunner’s hatch.
Nevertheless, some scratch work had to be done. The biggest challenge was the AMX-US’ characteristic turret adapter ring, which markedly raises the M24 turret above the AMX-13 hull. My solution became a manually bent a piece of soft styrene profile - it’s not perfectly circular, but that’s not obvious when the turret is in place, and it looks the part. Furthermore, some small bits were added to hide flaws and distract. These include vertical bars in the exhaust opening, shallow storage boxes on the fenders (hiding the wacky distance ring) and tarpaulin/cammo net packs (created from paper tissue and nylon stockings drenched with white glue). The commander cupola’s hatch was left open and a figure (an ESCI German WWII tank commander) added, to make the model appear livelier. Since the M24’s AA machine gun had been gone, I had to replace it with one from an ESCI Merkava, its mount was moved in front of the cupola.
Painting and markings:
Initially, I just had the French army as potential operator for the AMX-US but found that rather boring due to the very limited livery options: any French tank from the era would have carried a dark olive-green livery, even those operated in North Africa! Some French M24s had been operated in South-East Asia in a sand/green/brown/green jungle scheme, but the time frame would not match well. So, I checked other AMX-13 operators and took liking in an IDF vehicle. However, while looking for potential liveries I came upon the SLA. The AMX-US, had it been handed over to the IDF, could have been among these donor tanks, and their unique (if not spectacular) light blue livery made them outstanding. I am not certain whether the blue tone was intended as serious camouflage or just as an IFF measure? However, among typical light rocks and mountains of the Lebenon and in dusty/hazy air, the bluish tone actually works quite fine, better than expected.
While a uniform livery is not complex, finding a suitable tone for the model took a while. Real life color pictures (of dubious quality) show a wide range of light blue and/or grey tones, ranging from a bright sky blue over pale grey (like FS 36375) to a medium bluish grey (FS 35237), frequently with severe signs of weathering/sun-bleaching which makes some tanks appear almost white. Some M50s also had olive drab or dark grey patches or patterns added on top as additional camouflage.
After testing several options I chose RLM78 (Modelmaster 2088) as basic tone. Odd choice, but it turned out to be light enough, is a rather blue tone (with a slight hint of green), but still dull enough to look like a military tone. An overall washing with a mix of grey, black and red brown followed, and then the model received a thorough, overall dry brushing treatment with various shades of light blue grey, including Modelmaster RLM76, FS 36320 and Revell 75, for a worn and bleached appearance.
The markings had to be completely improvised, though, and were created with Corel Draw on an ink jet printer and with white and clear decal paper. They include the SLA’s cedar tree emblem and the Arabic tactical codes. The white “X” markings were created with generic decal stripes.
After the model had been sealed with matt acrylic varnish, sand and dust residues were created with watercolors, and some beige mineral pigments were dusted into the running gear and over the upper surfaces.
A quick build and a good use of leftover parts from other projects, melded into a plausible result. The SLA livery adds a weird twist to this model, even though it is – in the end – just a mix of real-world elements: the AMX-US existed, and the SLA operated light blue tanks! Life is sometimes stranger than fiction.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Su-21 attack aircraft had its roots in the Su-15 interceptor, which itself was a development of Sukhoi's tailed-delta Su-9 and Su-11 interceptor fighters. Construction of the Su-15 (internal project designation T-58) began in mid-1960, state acceptance tests of the respective T-58-8M1 interception complex with radar and air-to-air missiles started in August 1963.
In 1966 series production at Novosibirsk began, the first pre-series Su-15 interceptor made its first flight from Novosibirsk on 6 March 1966. Once identified as a new service aircraft, NATO christened the type 'Flagon'. While the Su-15 was in series production, a number of improved design features were developed, tested and subsequently introduced with a new production series of the interceptor.
In 1969, under the influence of the Vietnam conflict and the conclusion that dedicated ground attack aircraft were needed in a modern battlefield, the Sukhoi OKB investigated options for a new close-support "mudfighter" aircraft. One option was a derivative of the Su-15, designated the "T-58Sh" -- the suffix "Sh" stood for "shturmovik (storm bird)", a general Soviet name for a close-support aircraft.
The T-58Sh design was based on the Su-15 fuselage and engine installation with two Tumansky R-13-300 turbojets, but with considerable modifications. These included totally new wings and stabilizers - the orginal delta wing for high speed gave way to tapered wings with a constant 40° sweep, and the horizontal stabilizers were modified, too. The original fin was kept, though, as well as most of the landing gear installation, even though the front wheel retracted backwards now, since the complete nose up until spar no. 10 had been redesigned: instead of the interceptor's large radome, a slanted, considerably shorter nose improved the field of view for the pilot. In its tip it housed a 'Fon' laser rangefinder as well as a missile guidance antenna. A Doppler radar was housed under the nose, too, and an ASP-PF gunsight and a PBK-2 bomb sight optimized for lob-bombing were installed. The cockpit was completely armored, as well as parts of the lower fuselage around the engine section. All internal tanks (holding 4.500kg/9.921lb of fuel in the fuselage as well as in the wings) were self-sealing.
Another novelty was the freshly developed, built-in Gatling cannon, the GSh-30A, also known as 9A-621. This formidable, six-barreled weapon had a pneumatic mechanism (instead of en electric system, which was used in US types like the M61 'Vulcan' gun), fired 30mm shells and achieved a staggering fire rate of 5.000rpm. The cannon's magazine held 280 rounds - a shift of fuel tanks from the fuselage into the new wings with more internal space allowed the belly installation behind the front wheel well. Furthermore, a total of nine external weapon hardpoints allowed an ordnance load of up to 5.500kg (12.115lb), which included laser-guided smart bombs/missiles as well as tactical nuclear weapons.
Two T-58Sh prototypes were completed, and the first of these flew on 6 April 1968, the second on 26 September 1968. After State Acceptance Trials the Su-15Sh entered service in 1970 - in parallel, OKB Mikoyan was also working on a ground attack variant of its MiG-23 VG fighter, the later MiG-27, which flew in 1971 for the first time.
This advantage in time to service worked in favor of the Suchoj aircraft, which was so different from its Su-15 origins that it received a new service-designation, Su-21 (which was, by Western observers, often miss-attributed to the late Su-15 interceptor versions with ogive radomes and new double-delta wings).
By 1972, four squadrons were equipped with the new aircraft. Interestingly, none of the Su-21 were deployed to Afghanistan. Instead, the new fighter bombers were exclusively allocated to Attack Regiments in the potential Western conflict theatre, two of them based in Poland and two in Eastern Germany.
The basic version of the aircraft was produced at Factory 31, at Tbilisi, in the Soviet Republic of Georgia. Between 1969 and 1975, 182 Su-21 were produced. Much like the Su-15 interceptor variants, there were no exports, the Soviet/Russian Air Force remained the only operator - the more versatile MiG-23/27 filled that role. Later, foreign customers would receive the Su-25K from Sukhoi's export program, as well as the Su-20 and 22 VG fighter bombers.
During its service career, the Su-21 was constantly upgraded. One of the most significant changes was an MLU programme which, among others, introduced the 'Shkval' optical TV and aiming system, which was coupled with a new 'Prichal' laser rangefinder and target designator in an enlarged nosecone. This system enabled the aircraft to carry out all-weather missions, day and night, and also allowed to deploy the new 'Vikhr' laser-guided, tube-launched missiles, which were very effective against armored vehicles.
These updated aircraft received the designation Su-21D ('dorabotanyy' = updated). Two respective prototypes were built in 1982–84, and all aircraft were brought to this standard until 1988.
The only engagement of the Su-21 in a real combat scenario was its employment during the First Chechen War - which also signalized the type's retirement, after the conflict was over. Together with other Russian Air Force air assets, The Su-21s achieved air supremacy for Russian Forces, destroying up to 266 Chechen aircraft on the ground. The entire Air Force assets committed to the Chechen campaign between 1994 and 1996 performed around 9,000 air sorties, with around 5,300 being strike sorties. The 4th Russian Air Army had 140 Su-17Ms, Su-21Ds, Su-24s and Su-25s in the warzone supported by an A-50 AWACS aircraft. The employed munitions were generally unguided bombs and rockets with only 2.3% of the strikes using precision-guided munitions.
The Su-21 was a controversial aircraft. It was relatively reliable, benefitting from its two engines and solid armor, which was seen as one of the most important features for a true battlefield aircraft - inofficially, it was nicknamed 'ома́р' ('lobster') among the crews.
It had a high payload and was a very stable weapon platform. But the type suffered from the fact that it was an interceptor derivate which had originally been designed for dashes at Mach 2.5 at high altitudes. Consequently, the airframe had to be enforced to withstand higher G loads at low level flight and with heavy external loads, so that it was basically overweight. The extra armor did not help much either.
Additionally, the R-13 jet engines (basically the same that powered the 3rd generation MiG-21MF) were thirsty, even when running without the afterburner extra power, so that the type's range was very limited. Its ability to dash beyond Mach 1 even at low altitudes was of little tactical use, even though its high rate of acceleration and climb made it ideal for suprise attacks and delivery of tactical nuclear weapons - the latter was the main reason why the type was kept in service for so long until it was replaced by Su-24 bombers in this role.
Another source of constant trouble was the GSh-30A cannon. While its firepower was overwhelming, the vibrations it caused while firing and the pressure blasts from the nozzles could badly damage the aircraft's lower fuselage. There had been several incidents when the front wheel covers had literally been blown apart, and in one case the gun itself detached from its fuselage mount while firing - hitting the aircraft itself from below!
In the end, the Su-21 could not live up to the expectations of its intended role - even though this was less the aircraft's fault: the military demands had been unclear from the beginning, and the T-58Sh had been a second- choice solution to this diffuse performance profile.
Eventually the MiG-27 and also the Su-17/22 family as well as the biggher Su-24 tactical bomber, thanks to their variable geometry wings, proved to be the more flexible aircraft for the ground attack/fighter bomber role. But the lessons learned from the Su-21 eventually found their way into the very successful, subsonic Su-25 ('Frogfoot') family. The last Su-21D was retired in January 1997, after a service career of 25 years.
General characteristics
Crew: 1
Length (with pitot): 17.57 m (57 ft 6 1/4 in)
Wingspan: 12.24 m (40 ft 1 in)
Height: 4.84 m (15 ft 10 in)
Empty weight: 11.225 kg (24.725 lb)
Loaded weight: 17.500 kg (38.580 lb)
Powerplant:
2× Tumansky R-13-300 turbojets,each rated at 40.21 kN (9,040 lbf) dry and at 70.0 kN (15,730 lbf) with afterburner
Performance
Maximum speed: 1.250km/h (777mph/674nm) at sea level
Range: 1.380 km (855 ml)
Ferry range: 1.850 km (1.146 mi)
Service ceiling: 17.000 m (55.665 ft)
Armament
1× GSh-30A gatling gun with 280 RPG in the lower fuselage
9× hardpoints (three under the fuselage, three under each wing) for a weapon load of up to 5.500kg (12.115lb),
including iron bombs, unguided missiles and rocket pods, guided weapons, napalm tanks or gun pods; two R-60 (AA-8 "Aphid") AAMs were typically carried for self-defense on the outer pylon pair
The kit and its assembly:
This whif actually has a real background, as outlined above - OKB Sukhoi actually worked in the late 60ies on a Su-15 derivate as a specialized attack aircraft, since the Soviet Forces lacked that type. The ground attack types then in service were the vintage MiG-17 and converted MiG-19 fighters, as well as the fast but very limited Su-7 - either outdated fighters or a fighter-bomber with insufficient range and payload.
Specifications for a ground attack aircraft were unclear at that time, though. Supersonic capability was still seen as a vital asset for any military aircraft, and WWII tactics were still the basis for close air support duties. The T-58Sh was eventually one design direction that would keep development time and costs low, starting with a proven basic airframe and adapting it to a new (and very different) role.
The Su-15, from which the T-58Sh was derived, originally was a Mach 2 interceptor, solely armed with missiles. Making THIS a ground attack aircraft surely was a huge step. The projected Su-15Sh, how the aircrfat was also called, was still to be supersonic, since this was seen as a vital asset at that time. This concept would eventually be a dead end, though, or, alternatively, result in the lighter and much cheaper MiG-27 tactical fighter in the 70ies. But it should still take some more years until a subsonic, simple and dedicated aircraft (the T-8, which made its maiden flight in 1975 and became later the Su-25 'Frogfoot') would be the 'right' direction for the new shturmovik. The Su-15Sh actually never left the drawing board, the swing-wing Su-17/20/22 more or less took its place in real life.
With that background my idea was to build a model of the ground attack Su-15 derivate in front line service in the mid 80ies, at the Cold War's peak and used by the Group of Soviet Forces in (Eastern) Germany. The Su-21 designation is fictional. But since the aircraft would be SO different from the Su-15 interceptor I can hardly imagine that it would have been called Su-15Sh in service. Since its cousin, the MiG-27, also received a new designation, I decided to apply the Su-21 code (which was never applied to a real aircraft - those Su-15 versions called Su-21 are just misnomers or speculations of Western 'experts' when the Iron Curtain was still up).
As a coincidence, I had all 'ingredients' at hand:
● Fuselage and fin from a PM Model Su-15
● Nose section from an Academy MiG-27 (leftover from the Q-6 kitbach)
● Wings and horizontal stabilizers from an ESCI A-7
The A-7 wings have slightly more sweep than what the drafted T-58Sh had (45° vs. 40°), as far as I can tell from profiles, but otherwise they fit in shape and size. I just cut the orginal leading edge away, sculpted a new front from putty, and the result looked very good.
What became tricky were the landing gear wells. Part of the Su-15 landing gear retracts into the lower fuselage, and mating this with the Corsair's wings and the potential space for the landing gear there did not match up properly -the wings would end up much too far behind.
After some trials I decided to cut out the landing gear wells on the lower side of the wings, relatively far forward, and cut out a part of the lower fuselage, reversed it, so that the landing gear wells woukd be placed about 5mm further forward, and the wings were finally attached to the fuselage so that these would match the respective openings on the fuselage's bottom. This was more or less the only major and unexpected surgery, and the original Su-15 landing gear could be retained.
Using the A-7's stabilizers was also a bit off the original concept (the T-58Sh appeared to keep the original parts), but I found that the more slender but wider A-7 parts just made the aircraft look more homogenous?
Grafting the MiG-27 cockpit (which was taken OOB) onto the fuselage was not a big problem, since the intersection is of simple shape and fits well by height and width. I made a vertical cut on the Su-15 fuselage in the middle of the air intake area, which would later be hidden through the air intakes. The latter were taken from the Su-15, but simplified: the intake became simple and "vertical", and the large, orginal splitter plates were replaced by the shorter speiceimen from the MiG-27 kit. The fit almost perfectly, are just a bit short, so that a small hole had to be filled with styrene strips on the lower side.
The fin was taken OOB, just as on the propsed real aircraft. The resulting side profile reminds VERY much of a Dassault Étendard on steroids...? The whole thing also looks a bit like the missing link between the Su-15 and the later Su-24 fighter bomber - esp. when you know the Fencer's fixed-wing T-6 prototype.
Externally, the gatling gun (also taken from the leftoevr MiG-27) and a total of nine hardpoints were added - three under the fuselage, flanking the gun, and six under the outer wings.
Since the Su 15 is a pretty large aircraft, I used the opportunity to equip the aircraft with serious air-to-ground ordnance, a pair of TV-guided Kh-29T (AS-14 "Kedge") missiles from an ICM USSR weapon set and a pair of R-60 AAMs, leftover from an ESCI Ka-34. Furthermore, chaff/flare dispensers were added to the rear upper fuselage, as well as some antennae and the pitots.
Actually, this kitbash was less complicated as expected. Needed lots of putty, sure, but this would also have been needed on the OOB Su-15 from PM Models, as it is a primitive and crude model kit. Here, it found a good use. One drawback is, though, that the surface lacks detail: the PM Model Su-15 is bleak (to put it mildly), and the re-used A-7 wings lost much of their engraved details to leftover paint or sanding - paint tricks would have to mend this.
Painting and markings:
As a frontline service aircraft, this one would receive a tactical camouflage pattern. The Soviet Air Force offers a wide range of options, ranging from boring to bizarre, and I settled for a typical four-color camouflage with light blue undersides:
● Humbrol 119 (Light Earth)
● Humbrol 159 (Khaki Drab)
● Humbrol 195 (Chrome Oxide Green, RAL 6020)
● Testors 2005 (Burnt Umber)
● Humbrol 115 (Russian Blue) for the lower surfaces
The paint scheme was inspired by a East Germany-based Su-17, the colors are guesstimates, based on pictures of real-life Soviet aircraft.
Cockpit interior was painted in typical, infamous Soviet/Russian turqoise (*Argh*), the complete landing gear was painted in Aluminum (Humbrol 56); the wheel discs became bright green (Humbrol 131), di-electric panels (e .g. the fin tip) received a coat in Forest Green (Humbrol 149, FS 34092).
The model was weathered through some counter-shading with lighter tones of the five basic colors, a wash with black ink and some additional stains and blotches with different shades of green and brown, including Humbrol 98 118, 128, 151 - even some RLM 82 from Testors found its way onto the aircraft!
Decals and markings were puzzled together from various aftermarket sheets, and are based on real life pictures of Soviet/Russian aircraft based in Eastern Germany.
I also added some bare metal stains at the leading edges and soot stains around the gun. Since the kitbashed model was pretty bleak, I tried to add painted panel lines - using a thin brush and a mix of matt varnish and black. The counter-shading applied before enhances this effect, and if you do not look too closely at the model, the result is O.K.
Finally, everything was sealed under a coat of matt acrylic varnish.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the first years of the war, the Wehrmacht had only little interest in developing self-propelled anti-aircraft guns, but as the Allies developed air superiority and dedicated attack aircraft threatened the ground troops from above, the need for more mobile and better-armed self-propelled anti-aircraft guns increased. As a stopgap solution the Wehrmacht initially adapted a variety of wheeled, half-track and tracked vehicles to serve as mobile forward air defense positions. Their tasks were to protect armor and infantry units in the field, as well as to protect temporary forward area positions such as mobile headquarters and logistic points.
These vehicles were only lightly armored, if at all, and rather mobilized the anti-aircraft weapons. As Allied fighter bombers and other ground attack aircraft moved from machine gun armament and bombing to air-to-ground rockets and large-caliber cannons, the air defense positions were even more vulnerable. The answer was to adapt a tank chassis with a specialized turret that would protect the gun crews while they fired upon approaching Allied aircraft. Furthermore, the vehicle would have the same mobility as the battle tanks it protected.
Initial German AA-tank designs were the ‘Möbelwagen’ and the ‘Wirbelwind’, both conversions of refurbished Panzer IV combat tank chassis with open platforms or turrets with four 20mm cannon. Alternatively, a single 37mm AA gun was mounted, too – but all these vehicles were just a compromise and suffered from light armor, a high silhouette and lack of crew protection.
Further developments of more sophisticated anti-aircraft tank designs started in late 1943 and led into different directions. One development line was the ‘Kugelblitz’, another Panzer IV variant, but this time the ball-shaped turret, armed with very effective 30 mm MK 103 cannon, was fully integrated into the hull, resulting in a low silhouette and a protected crew. However, the ‘Kugelblitz’ only featured two of these guns and the tilting turret was very cramped and complicated. Venting and ammunition feed problems led to serious delays and a prolonged development stage.
The ‘Coelian’ family of bigger turrets with various weapon options for the Panzer V (the ‘Panther’) was another direction, especially as a response against the armored Il-2 attack aircraft at the Eastern front and against flying targets at medium altitude. Targets at high altitude, esp. Allied bombers, were to be countered with the very effective 8.8 cm Flak, and there were also several attempts to mount this weapon onto a fully armored hull.
The primary weapon for a new low/medium altitude anti-aircraft tank was to become the heavy automatic 55 mm MK 214. Like the 30 mm MK 103 it was a former aircraft weapon, belt-fed and adapted to continuous ground use. However, in early 1944, teething troubles with the ‘Kugelblitz’ suggested that a completely enclosed turret with one or (even better) two of these new weapons, mounted on a ‘Panther’ or the new E-50/75 tank chassis, would need considerable development time. Operational vehicles were not expected to enter service before mid-1945. In order to fill this operational gap, a more effective solution than the Panzer IV AA conversions, with more range and firepower than anything else currently in service, was direly needed.
This situation led to yet another hasty stopgap solution, the so-called ‘Ostwind II’ weapon system, which consisted primarily of a new turret, mated with a standard medium battle tank chassis. It was developed in a hurry in the course of 1944 and already introduced towards the end of the same year. The ‘Ostwind II’ was a compromise in the worst sense: even though it used two 37 mm FlaK 43 guns in a new twin mount and offered better firepower than any former German AA tank, it also retained many weaknesses from its predecessors: an open turret with only light armor and a high silhouette. But due to the lack of time and resources, the ‘Ostwind II’ was the best thing that could be realized on short notice, and with the perspective of more effective solutions within one year’s time it was rushed into production.
The ‘Ostwind II’ system was an open, roughly diamond-shaped, octagonal turret, very similar in design to the Panzer IV-based ‘Wirbelwind’ and ‘Ostwind’ (which was re-designated ‘Ostwind I’). As a novelty, in order to relieve the crew from work overload, traverse and elevation of the turret was hydraulic, allowing a full elevation (-4° to +90° was possible) in just over four seconds and a full 360° traverse in 15 seconds. This had become necessary because the new turret was bigger and heaver, both the weapons and their crews required more space, so that the Ostwind II complex could not be mounted onto the Panzer IV chassis anymore and movement by hand was just a fallback option.
In order to provide the ‘Ostwind II’ with a sufficiently large chassis, it was based on the SdKfz. 171 Panzer V medium battle tank, the ‘Panther’, exploiting its bigger turret ring, armor level and performance. The Panther chassis had, by late 1944, become available for conversions in considerable numbers through damaged and/or recovered combat tanks, and updated details like new turrets or simplified road wheels were gradually introduced into production and during refurbishments. Mounting the ‘Ostwind II’ turret on the Panzer VI (Tiger) battle tank chassis had been theoretically possible, too, but it never happened, because the Tiger lacked agility and its protection level and fuel consumption were considered impractical for an SPAAG that would typically protect battle tank groups.
The ‘Ostwind II’ turret was built around a motorized mount for the automatic 3.7 cm FlaK 43 twin guns. These proven weapons were very effective against aircraft flying at altitudes up to 4,200 m, but they also had devastating effect against ground targets. The FlaK 43’s armor penetration was considerable when using dedicated ammunition: at 100 m distance it could penetrate 36 mm of a 60°-sloped armor, and at 800 m distance correspondingly 24 mm. The FlaK 43’s theoretical maximum rate of fire was 250 shots/minute, but it was practically kept at ~120 rpm in order to save ammunition and prevent wear of the barrels. The resulting weight of fire was 76.8 kg (169 lb) per minute, but this was only theoretical, too, because the FlaK 43 could only be fed manually by 6-round clips – effectively, only single shots or short bursts could be fired, but a trained crew could maintain fire through using alternating gun use. A more practical belt feed was at the time of the Ostwind II's creation not available yet, even though such a mechanism was already under development for the fully enclosed Coelian turret, which could also take the FlaK 43 twin guns, but the armament was separated from the turret crew.
The new vehicle received the official designation ‘Sd.Kfz. 171/2 Flakpanzer V’, even though ‘Ostwind II’ was more common. When production actually began and how many were built is unclear. The conversion of Panther hulls could have started in late-1944 or early-1945, with sources disagreeing. The exact number of produced vehicles is difficult to determine, either. Beside the prototype, the number of produced vehicles goes from as little as 6 to over 40. The first completed Ostwind II SPAAGs were exclusively delivered to Eastern front units and reached them in spring 1945, where they were immediately thrown into action.
All Flakpanzer vehicles at that time were allocated to special anti-aircraft tank platoons (so-called Panzer Flak Züge). These were used primarily to equip Panzer Divisions, and in some cases given to special units. By the end of March 1945, there were plans to create mixed platoons equipped with the Ostwinds and other Flakpanzers. Depending on the source, they were either to be used in combination with six Kugelblitz, six Ostwinds and four Wirbelwinds or with eight Ostwinds and three Sd.Kfz. 7/1 half-tracks. Due to the war late stage and the low number of anti-aircraft tanks of all types built, this reorganization was never truly implemented, so that most vehicles were simply directly attached to combat units, primarily to the commanding staff.
The Ostwind II armament proved to be very effective, but the open turret (nicknamed ‘Keksdose’ = cookie tin) left the crews vulnerable. The crew conditions esp. during wintertime were abominable, and since aiming had to rely on vision the system's efficacy was limited, esp. against low-flying targets. The situation was slightly improved when the new mobile ‘Medusa’ and ‘Basilisk’ surveillance and target acquisition systems were introduced. These combined radar and powerful visual systems and guided the FlaK crews towards incoming potential targets, what markedly improved the FlaKs' first shot hit probability. However, the radar systems rarely functioned properly, the coordination of multiple SPAAGs in the heat of a low-level air attack was a challenging task, and - to make matters worse - the new mobile radar systems were even more rare than the new SPAAGs themselves.
All Ostwind II tanks were built from recovered ‘Panther’ battle tanks of various versions. The new Panther-based SPAAGs gradually replaced most of the outdated Panzer IV AA variants as well as the Ostwind I. Their production immediately stopped in the course of 1945 when the more sophisticated 'Coelian' family of anti-aircraft tanks with fully enclosed turrets became available. This system was based on Panzer V hulls, too, and it was soon followed by the first E-50 SPAAGs with the new, powerful twin-55 mm gun.
Specifications:
Crew: Six (commander, gunner, 2× loader, driver, radio-operator/hull machine gunner)
Weight: 43.8 tonnes (43.1 long tons; 48.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in)
Height: 3.53 m (11 ft 6 3/4 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 46 km/h (29 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
2× 37 mm (1.46 in) FlaK 43 cannon in twin mount with 1.200 rounds
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
The kit and its assembly:
This was a spontaneous build, more or less the recycling of leftover parts from a 1:72 Revell Ostwind tank on a Panzer III chassis that I had actually bought primarily for the chassis (it became a fictional Aufklärungspanzer III). When I looked at the leftover turret, I wondered about a beefed-up/bigger version with two 37 mm guns. Such an 'Ostwind II' was actually on the German drawing boards, but never realized - but what-if modelling can certainly change that. However, such a heavy weapon would have to be mounted on a bigger/heavier chassis, so the natural choice became the Panzer V, the Panther medium battle tank. This way, my ‘Ostwind II’ interpretation was born.
The hull for this fictional AA tank is a Hasegawa ‘Panther Ausf. G’ kit, which stems from 1973 and clearly shows its age, at least from today’s point of view. While everything fits well, the details are rather simple, if not crude (e. g. the gratings on the engine deck or the cupola on the turret). However, only the lower hull and the original wheels were used since I wanted to portray a revamped former standard battle tank.
The turret was a more complicated affair. It had to be completely re-constructed, to accept the enlarged twin gun and to fit onto the Panther hull. The first step was the assembly of the twin gun mount, using parts from the original Ostwind kit and additional parts from a second one. In order to save space and not to make thing uber-complicated I added the second weapon to the right side of the original gun and changed some accessories.
This, together with the distance between the barrels, gave the benchmark for the turret's reconstruction. Since the weapon had not become longer, I decided to keep things as simple as possible and just widen the open turret - I simply took the OOB Ostwind hexagonal turret (which consists of an upper and lower half), cut it up vertically and glued them onto the Panther turret's OOB base, shifting the sides just as far to the outside that the twin gun barrels would fit between them - a distance of ~0.4 inch (1 cm). At the rear the gap was simply closed with styrene sheet, while the front used shield parts from the Revell Ostwind kit that come from a ground mount for the FlaK 43. Two parts from this shield were glued together and inserted into the front gap. While this is certainly not as elegant as e. g. the Wirbelwind turret, I think that this solution was easier to integrate.
Massive PSR was necessary to blend the turret walls with the Panther turret base, and as a late modification the opening for the sight had to be moved, too. To the left of the weapons, I also added a raised protective shield for the commander.
Inside of the turret, details from the Ostwind kit(s), e. g. crew seats and ammunition clips, were recycled, too.
Painting and markings:
Since the Ostwind II would be based on a repaired/modified former Panzer V medium battle tank, I settled upon a relatively simple livery. The kit received a uniform finish in Dunkelgelb (RAL 7028), with a network of greenish-grey thin stripes added on top, to break up the tank's outlines and reminiscent of the British ‘Malta’ scheme, but less elaborate. The model and its parts were initially primed with matt sand brown from the rattle can (more reddish than RAL 7028) and then received an overall treatment with thinned RAL 7028 from Modelmaster, for an uneven, dirty and worn look. The stripes were created with thinned Tamiya XF-65 (Field Grey).
Once dry, the whole surface received a dark brown wash, details were emphasized with dry-brushing in light grey and beige. Decals were puzzled together from various German tank sheets, and the kit finally sealed with matt acrylic varnish.
The black vinyl tracks were also painted/weathered, with a wet-in-wet mix of black, grey, iron and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
A bit of recycling and less exotic than one would expect, but it’s still a whiffy tank model that fits well into the historic gap between the realized Panzer IV AA tanks and the unrealized E-50/75 projects. Quite subtle! Creating the enlarged turret was the biggest challenge, even, even more so because it was/is an open structure and the interior can be readily seen. But the new/bigger gun fits well into it, and it even remained movable!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The ZSU-62 (Zenitnaya Samokhodnaya Ustanovka = anti-aircraft self-propelled mount) was a potential successor for the Soviet ZSU-57-2 SPAAG, developed in parallel with the ZSU-23-4. But unlike its brethren, the ZSU-62 was only produced in limited numbers, but it received limited fame during its late operational second-line career when it was successfully deployed to Afghanistan.
The ZSU’62’s roots were laid down just after WWII with the ZSU-57-2. The first prototype (Objekt 500) was completed in the summer of 1950, production began in 1955. The vehicle was built using a modified chassis of the new T-54 tank and was armed with two S-68 57 mm cannons – at the time the most powerful guns mounted in an anti-aircraft system. The modification of the chassis included reducing the road wheels per side to four and using lighter armor. The ZSU-57-2 was powered by a V-54 12-cylinder diesel engine providing 520 hp. Despite the weight of 28 tons, thanks to the strong engine, the maximum speed was 50 km/h. With a fuel load of 850 liters, the operational range was 420 km.
Each cannon had a (theoretical) rate of fire of 240 rounds per minute with a muzzle velocity of 1,000 m/s. Maximum horizontal range was 12 km (with an effective range against ground targets of up to 4 km / 2.5 miles), maximum vertical range was 8.8 km (with a maximum effective vertical range of 4.5 km / 14,750 ft). The effective range, when used against flying targets, was 6 km. Armor-piercing rounds were able to penetrate 110 mm armor at 500 m or 70 mm armor at 2,000 m (at 90° impact angle).
Rate of fire was 120 RPM, but this was only a theoretical number, because each gun was fed with separate four-shot magazines so that only bursts and no continuous fire was possible. Both fragmentation and armor-piercing ammunition were available. The ZSU-57-2’s total ammunition load was 300 rounds, with 176 rounds being stored inside the turret and the remaining in the hull. To efficiently operate the vehicle, six crew members were needed: commander, gunner, loader, driver, and two sight adjusters.
The ZSU-57-2 had serious firepower that could easily destroy any aerial target but had many issues. The greatest weaknesses were the lack of modern range-finding and radar equipment, the impossibility of engaging targets at night or while on the move, the lack of protection for its crew (being open-topped), and low ammunition count. Nevertheless, more than 2.000 ZSU-57-2s were eventually built. While many would be sold to other Warsaw Pact countries, like East Germany, Romania, and Poland, its service within the Soviet Army was limited, because of its many operational deficiencies.
This led in 1957 to a new SPAAG program for the Soviet Army and initiated the development of the ZSU-23-4 "Shilka", the ZSU-37-2 "Yenisei" and a new ZSU-57-2 “Kama” (all baptized after Russian rivers) with the outlook to replace the original ZSU-57-2 by the mid to late Sixties. These vehicles were intended for AA defense of military facilities, troops, and mechanized columns on the march. “Shilka” was intended for close range defense (esp. against low-flying attack helicopters) while the more powerful guns of "Yenisei" and “Kama” were judged to be effective at covering the inner dead-zone of Soviet surface-to-air missile systems between 1.000 and 6.000 m altitude, with a focus on attack aircraft and more heavily armored targets.
All designs were based on existing tracked chassis’ and featured completely enclosed turrets as well as a proven radar system, the RPK-2 "Tobol" radar (NATO designator: "Gun Dish"). The ZSU-37-2 was soon dropped in favor of the higher firepower and range of the 57mm guns, so that both “Shilka” and “Kama” entered the hardware stage at Omsk Works No. 174.
However, “Kama” lagged behind the “Shilka” development because several technical and conceptual problems had to be solved. For instance, even though the armament still consisted of two proven S-68 cannon, the weapons’ mount had to be developed new to fit into the enclosed cast turret. To save space, both weapons were now mounted directly side-by-side. Their feeding system was furthermore changed from magazines to belts, what considerably improved the SPAAG’s firepower and now allowed continuous fire at a higher rate of fire of 150 RPM per gun. For sufficient flexibility, a belt-switching mechanism allowed to choose between two different ammunition supplies: each gun had supplies of 220 and 35 rounds, normally occupied with HE fragmentation and armor-piercing tracer (AP-T) shells, respectively, against aerial and armored ground targets. Changing between the two feeds just took a couple of seconds.
The twin S-68s were recoil-operated and the whole mount (without feeding mechanism) weighed 4,500 kg. The guns had a recoil of between 325 and 370 mm, and each air-cooled gun barrel, fitted with a muzzle brake, was 4365 mm long (76.6 calibers). The weapons could be elevated or depressed between −5° and +80° at a speed of between 0.3° and 32° per second, while the turret could traverse 360° at a speed of between 0.2° and 52° per second. Drive was from a direct current electric motor and universal hydraulic speed gears.
The “Kama” crew numbered four: driver (in the hull), commander, gunner and radar operator (all in the turret). The heavy guns, their ammunition supply and the radar system had to be housed in a turret, together with decent armor, and this resulted in a considerable volume and weight (a single 57 mm projectile alone already weighed 2.8 kg). Several layouts were tested, but weight and volume of the systems made it impossible to mate the “Kama” turret on the T-54/55 chassis, which was available in ample numbers for conversions. The limiting factor was the T-54/55’s relatively small turret bearing diameter.
To solve this problem, the “Kama” designers chose the more modern T-62 as chassis basis. It was outwardly very similar to the former T-54/55, but it featured a 2245 mm turret ring (250 mm more than the T-54/55’s bearing) that was able to take a much bigger/wider/heavier turret than its predecessor. Furthermore, the T-62 represented the Soviet Army’s “state of the art”. The choice of the T-62 ensured many component and maintenance communalities with the operational MBT and it also meant that the “Kama” SPAAG could operate in the same environment and the same pace as the T-62. In order to save costs and development time, the T-62 chassis was taken “as is”, with the same engine and armor level as the MBT. There were only minor changes in the electric components, e. g. a more powerful generator for the radar system.
In this combination, “Kama” eventually entered tests and state acceptance trials as “Object 503”. During these tests, some final changes to layout and equipment were made; for instance, the RPK-2’s dish-shaped radome received a retractable mount that allowed the antenna to be raised higher above the turret in order to avoid clutter and to protect the antenna when the vehicle was on the move.
The tests lasted until 1963 and were successful, so that an initial batch of 100 serial production tanks was ordered the same year. In order to avoid confusion with the old ZSU-57-2 from 1955, the new tank with the same armament was pragmatically designated ZSU-62.
Alas, while production of the “Kama” turrets ran up to be mated with T-62 hulls at the Uralvagonzavod factory in Nizhny Tagil, the ZSU-62’s future had already been sealed by the fast pace of technical developments: in the meantime MANPADS (Man Portable Air Defense System) had taken the medium-range SPAAG’s place and a foot soldier could now fulfill the same mission as an expensive and bulky 40 ton tank, so that the medium range/altitude gap between the ZSU-23-4 (which had already entered service) and heavier surface-to-air missile systems would not be filled with a dedicated vehicle anymore. The ZSU-62 had become superfluous the moment it had reached the first frontline units, and large-scale production was immediately stopped.
However, the initial production run was nevertheless completed until 1967, and the ZSU-62s were primarily sent to training units, where the vehicles were – due to their turrets’ shape – nicknamed “черепаха“ (turtle).
This could have been the ZSU-62’s fate, but the Soviet Union’s intervention in Afghanistan brought it back into frontline service. Since December 1978, the Afghan government called on Soviet forces, which were introduced in the spring and summer of 1979 to provide security and to assist in the fight against the mujaheddin rebels. After the killing of Soviet technicians in Herat by rioting mobs, the Soviet government sold several Mi-24 helicopters to the Afghan military and increased the number of military advisers in the country to 3,000. In April 1979, the Afghan government requested that the USSR send 15 to 20 helicopters with their crews to Afghanistan, and on June 16, the Soviet government responded and sent a detachment of tanks, BMPs, and crews to guard the government in Kabul and to secure the Bagram and Shindand airfields. In response to this request, an airborne battalion arrived at the Bagram Air Base on July 7, and ground forces were deployed from Turkmenistan territory into northern Afghanistan, securing the supply lines.
Experience in the mountainous Afghan landscape soon made the shortcomings of standard MBTs apparent, namely their lack of gun elevation, esp. when attacking hideouts and posts in high locations. While the ZSU-23-4 “Shilka” was readily available and used against such targets, it lacked range and firepower to take out protected posts at distances more than 2.000 m away. This led to the decision to send roundabout 40 ZSU-62s to the Afghan theatre of operations, where they were primarily used against ground targets – both fortifications as well as armored and unarmored vehicles. The weapons’ precision and range proved to be valuable assets, with devastating effect, and the vehicles remained in active service until 1985 when their role was more and more taken over by helicopters and aircraft like the new Su-25. The ZSU-62 were, nevertheless, still employed for aerial airfield defense and as a deterrent against ground attacks.
With the USSR’s withdrawal from Afghanistan in 1988 and 1989, the last operational ZSU-62s were retired. In the training units, the vehicles had already been replaced by ZSU-23-4s by 1984.
Specifications:
Crew: Four (commander, gunner, radar operator, driver)
Weight: 37 t (41 short tons; 36 long tons)
Length: 6.63 m (21 ft 9 in) hull only
9.22 m (30 ft 3½ in) with barrel in forward position
Width: 3.30 m (10 ft 10 in)
Height: 3.88 m (12 ft 9 in) with search radar fully extended,
2.84 m (9 ft 3¾ in) with search radar stowed
Suspension: Torsion bar
Ground clearance: 425 mm (16.7 in)
Fuel capacity: 960 l
Armor:
20 mm (hull bottom) – 102 mm (hull front)
Performance:
Speed: 50 km/h (31 mph) on roads,
40 km/h (25 mph) cross country)
Range: 450 km (280 mi) on road;
650 km (400 mi) with two 200 l (53 US gal; 44 imp gal) extra fuel tanks;
320 km (200 mi) cross-country
450 km (280 mi) with two 200-liter extra fuel tanks
Climbing ability: 0.7 m (2.3')
Maximum climb gradient: 30°
Trench crossing ability: 2.5 m (8.2')
Fording depth: 1.0 m (3.3')
Operational range: 500 km (310 mi)
Power/weight: 14.5 hp/tonne (10.8 kW/tonne)
Engine:
1x V-55 12-cylinder 4-stroke one-chamber 38.88 liter water-cooled diesel engine
with 581 hp (433 kW) at 2,000 rpm
Transmission:
Hydromechanical
Armament:
2× S-68 57mm (1.5 in) cannon with 255 rounds each
The kit and its assembly:
This fictional tank model came to be as a classic what-if, based on the question “what could have been a successor of the Soviet ZSU-57-2 SPAAG?”. Not an existential question that comes to your mind frequently, but it made me wonder – also because the real-world successor, the ZSU-23-4 “Shilka”, lacked the ZSU-57-2’s range and large-caliber firepower.
From this conceptual basis I decided to retain the 57mm twin guns, add an RPK-2 radar and mount these into a fully enclosed turret. The latter became a leftover M48 turret, which was suitably bulky, and the gun mount was taken from a Modelcollect E-75 SPAAG. However, both were heavily modified: the gun mount lost its boxy armor protection, just the brass barrels and the joint at the base were retained, the rest was scratched from styrene bits and wire. To accept the much taller weapon mount, the turret front had to be re-sculpted with putty, resulting in a boxier shape with steeper side walls – but the whole affair looks very organic. A simpler commander cupola was used and the whole radar dish arrangement on the rear roof was scratched, too.
The hull came from a Trumpeter T-62, just for the reasons explained in the background: the T-54/55 had a relatively small turret ring, and this caused severe development problems, because the MBT could not take a bigger turret and with it a more powerful cannon. Since this SPAAG would have been developed a couple of years later than the T-54/55, its successor, the T-62, appeared logical, and the “marriage” with the M48 turret worked like a charm. Even the turret’s adapter had the same diameter as the hull opening, I just had to modify the notches that hold it in place! The hull itself remained unmodified.
Painting and markings:
I wanted to place this SPAAG into the Afghanistan theatre of operations, and this was historically not very easy since I had to bridge some fifteen years of service to make this idea work. However, I found a story for the background, and the model received an appropriate paint scheme, based on real world vehicles around 1980 (actually from a BMP-1 operated in northern Afghanistan).
The camouflage consists of three tones, a pale/greyish sand, an olive drab tone and some contrasts in a dark, dull brown – it reminds of the US Army’s more complex MERDC scheme. The paints became Humbrol 167 (Hemp), Tamiya XF-62 (Olive Drab) and Humbrol 98 (Chocolate), even though the green appears darker than expected due to the high contrast with the sand tone.
The model received an overall washing with dark brown, highly thinned acrylic paint, and some dry-brushing with cream, faded olive drab and light grey. The few markings/decals were taken from the T-62 kit, and everything was sealed with matt acrylic varnish before the lower areas were finally dusted with a greyish-sand brown mix of artist pigments, simulating dust.
A plausible result, even though a cast turret might not appear to be a natural choice for a SPAAG? But the AMX-30 SPAAG from 1969 had a very similar design and there was a German prototype called “MATADOR” (a Gepard forerunner from 1968) that had a turret of similar shape, too. However, the kitbashed/scratched turret looks really good and convincing, and the T-62 hull is a great match for it in shape, size and timeframe. The ZSU-62 turned out way better than hoped for! :D
I kitbashed the Power Girl figure using the Jiaou doll instead of using the Tbleague body since the Jiaou seems much more curvey than the Tbleague bodies , especially the lower half of the bodies and she filled her suit a whole lot better .
Some background:
The Leyland “Type D” was one of several armoured vehicle types designed in 1940 on the orders of Lord Beaverbrook and Admiral Sir Edward Evans, as a part of the hasty measures taken by the British Government following the Dunkirk evacuation and the threat of invasion.
The “Type D” was a heavy scout car, intended to replace the Lanchester 6x4 and Rolls-Royce 4x2 armoured cars, which dated back to the WWI era and the early interwar period. While they were reliable vehicles and still in active service, their off-road capabilities, armament and armour left a lot to be desired – esp. in the face of the modern German army and its effective equipment.
Certainly inspired by the German SdKfz. 231/232 family of heavy 8x8 armoured reconnaissance vehicles, Leyland added a fourth axle to better distribute the vehicle’s weight and a drivetrain to the front axle to a modified “Retriever” 3-ton 6x4 lorry chassis, resulting in a 6x8 layout. The rigid axles were mounted on leaf springs front and rear with hydraulic dampers, both front axles were steerable. The engine, a water-cooled 6-litre, 4-cylinder overhead camshaft petrol engine with 73 hp, was, together with the gearbox, relocated to the rear, making room for a fully enclosed crew compartment in the front section with two access doors in the vehicle’s flanks. The crew consisted of four, with the driver seat at the front. The gunner and commander (the commander at the right and gunner at the left) stood behind them into the turret or were sitting on simple leather belts, and behind them was a working station for a radio operator.
The tall, cylindrical turret was welded and electrically traversed, but it lacked a commander cupola. All the armament was mounted in the turret and consisted of a quick-firing two-pounder (40mm) cannon and a coaxial 7.92 mm Besa machine gun. The faceted hull was, like the turret, welded from homogenous steel armour plates, and a straightforward design. Maximum armour thickness was 15 mm at the front, 8 mm on the sides, and 10 mm on the back, with 6 mm and 5 mm of armour on the top and bottom respectively. It had been designed to provide protection from small arms fire and HE fragments, but it was ineffective against heavier weapons. This armour was a compromise, since better protection had resulted in a higher weight and overstrained the Type D’s lorry chassis and engine. The armoured cabin was mounted to the chassis at only four points - front, rear and sides - to give some flexibility but with precautions against excessive movement.
The Type D’s prototype was designed, built, tested and approved just within 3 months. Deliveries of the first production vehicles commenced only 2 months later, just in time to become involved in the North Africa campaign. All early production vehicles were immediately sent to Egypt and took part in Operation Compass and the Western Desert Campaign.
It comes as no surprise that the Type D – developed and produced in a hurry and thrown into battle in an environment it had not been designed for – initially failed, and even when the worst deficits had been rectified the Type D’s performance remained mediocre at best. The biggest problems concerned the engine’s cooling system, its low power output and therefore poor speed, and the vehicle’s poor off-road performance, esp. on soft ground like sand. The vehicle’s suspension was quickly overburdened in heavy terrain and the tall turret placed its center of gravity very high, making the Type D prone to topple over to a side when slope angles were taken too slightly. Poor cabin ventilation was another problem that became even more apparent under the African sun.
Initial losses were high: more than half of the Type Ds lost in North Africa during the early months of 1941 were abandoned vehicles which got stuck or had to be left behind due to mechanical failures. The rest had fallen easy prey to German and Italian attacks – the Type D was not only very vulnerable even to the Panzer II’s 20 mm autocannon, its thin top armour made it in the open desert also very vulnerable to air attacks: German MG 131 machine gun rounds easily punched the vehicle’s shell, and even lighter weapons were a serious threat to the tall Type D.
As soon as the first sobering field reports returned back to Great Britain, Leyland immediately devised major improvements. These were introduced to newly produced Mk. II vehicles and partly retrofitted to the early Mk. I vehicles in field workshops. One of these general improvements were new desert wheels and tires, which were considerably wider than the original lorry wheels and featured a flat pattern that better distributed the vehicle’s weight on soft and unstable ground, what considerably improved the Type D’s performance on sand. A kit with a more effective radiator and a bigger engine cooling system was quickly developed and sent to the units in Africa, too. The kit did not fully solve the overheating problems of the early Mk. I, but improved the situation. From the outside, retrofitted Type Ds could be recognized by a raised engine cover with enlarged air intakes. Due to the limits of the chassis the armour level was not improved, even though the crews and field workshops tried to attach improvised additional protective measures like spare track links from tanks or sandbags – with mixed results, though. The armament was not updated either, except for an optional mount for an additional light anti-aircraft machine gun on the turret and kits for smoke dischargers on the turret’s flanks.
The Type D Mk. II, which gradually replaced the Mk. I on the production lines from March 1941 on, furthermore received a different and much more effective powerplant, a Leyland 7-litre six-cylinder diesel engine with an output of 95 hp (70 kW). It not only provided more power and torque, markedly improving the vehicle’s off-road performance, it also had a better fuel economy than the former lorry petrol engine (extending range by 25%), and the fuel itself was less prone to ignite upon hits or accidents.
During its short career the Leyland Type D was primarily used in the North African Campaign by the 11th Hussars and other units. After the invasion of Italy, a small number was also used in the Southern European theatre by reconnaissance regiments of British and Canadian infantry divisions. A few vehicles were furthermore used for patrol duty along the Iran supply route.
However, the Type D was not popular, quickly replaced by smaller and more agile vehicles like the Humber scout car, and by 1944 outdated and retired. Leyland built a total of 220 Type Ds of both versions until early 1943, whilst an additional 86 Mk. IIs were built by the London, Midland and Scottish Railway's Derby Carriage Works.
Specifications:
Crew: Four (commander, gunner, driver, co-driver/radio operator/loader)
Weight: 8.3 tons
Length: 20 ft 5 in (6,30 m)
Width: 7 ft 5 in (2,27 m)
Height: 9 ft 2¾ in (2,81 m)
Ground clearance: 12 in (30.5 cm)
Turning radius: 39 ft (12 m)
Suspension: Wheel, rigid front and rear axles;
4x8 rear-wheel drive with selectable additional 6x8 front axle drive
Fuel capacity: 31 imp gal (141 litres)
Armour:
5–15 mm (0.2 – 0.6 in)
Performance:
Maximum road speed: 35 mph (56 km/h)
Sustained road speed: 30 mph (48 km/h)
Cross country speed: up to 20 mph (32 km/h)
Operational range: 250 mi (400 km)
Power/weight: 11,44 hp/ton
Engine:
1× Leyland 7-litre six-cylinder diesel engine, 95 hp (70 kW)
Transmission:
4-speed, with a 2-speed auxiliary box
Armament:
1× QF Two-pounder (40 mm/1.57 in) cannon with 94 rounds
1× 7.92 mm Besa machine gun mounted co-axially with 2.425 rounds
2-4× smoke dischargers, mounted on the turret
The kit and its assembly:
This fictional British WWII vehicle might look weird, but it has a real-world inspiration: the Marmon Herrington Mk. VI armoured heavy scout car. This vehicle only existed as a prototype and is AFAIK still preserved in a museum in South Africa – and upon a cursory glance it looks like an SdKfz. 232 with the shrunk turret from a “Crusader” cruiser tank with a short-barreled six pounder gun. It looks like a fake! Another reason for this build was a credible “canvas” for the application of the iconic “Caunter Scheme”, so that I placed the Type D in a suitable historic time frame.
The Type D was not supposed to be a truthful Marmon Herrington Mk. VI copy, so I started with a 1:72 “First to Fight” SdKfz. 232. This is a simple and sturdy tabletop wargaming model, but it is quite accurate, goes together well, is cheap and even comes with a metal gun barrel. It’s good value for the money, even though the plastic is a little thick and soft.
However, from this basis things changed in many ways. I initially wanted to shorten the hull, but the new wheels (see below) made this idea impossible. Nevertheless, the front glacis plate was completely re-modeled with 2C putty in the style of the Humber scout car, and the crew cabin was extended backwards with the same method. New observation slits had to be scratched with styrene profile material. The engine bay received a raised cover, simulating extra air intakes. The turret was replaced with a resin piece for an A13 “Valentine” Mk.III tank (S&S Models), which had a perfect size and even came with a suitable gun.
The suspension was taken OOB, but the wheels were replaced with two aftermarket resin sets (Silesian Models) with special Allied desert wheels/tires from 1941, they originally belong to a Chevrolet truck and are markedly bigger and wider than the SdKfz. 232 wheels. However, they had to be modified to match the rest of the suspension, and their size necessitated a thorough modification of the mudguards. They were not only mounted 1mm higher on the flanks, their sides, normally consisting of closed skirts, were fully opened to make sufficient room for the new wheels to change the vehicle’s look. They were furthermore separated into four two-wheel covers and their front and rear ends were slightly bent upwards. Sufficient space for the side doors had to be made, too. The spare wheels that came with the respective sets were mounted to the front (again Humber-style) and onto the engine bay cover, under a scratched tarpaulin (made from paper tissue drenched with white glue).
To conceal the SdKfz. 232 heritage even more I added more equipment to the vehicle’s flanks. Tool boxed were added to the engine bay’s flanks, some more tools to the fenders, scratched tarpaulin rolls above the side doors and I tried to scratch PSP plates with aluminum foil rubbed against a flight stand diorama floor made from PSP. Not perfect, but all the stuff livens the Type D up. A new exhaust (IIRC from a Panzer IV) was added to the rear and bumpers scratched from wire and mounted low unto the hull.
Painting and markings:
Finally, the British, so-called “Caunter Scheme”, a great source of misinterpretation not only in museums but also by modelers who have painted their British tanks in dubious if not garish colors. I do not claim that my interpretation of the colors is authentic, but I did some legwork and tried to improvise with my resources some tones that appear plausible (at least to me), based on descriptions and contemporary references.
The pattern itself was well defined for each vehicle type, and I adapted a M3 “Stuart” pattern for the model. All three basic colors, “Light Stone”, “Silver Grey” and “Slate”, were guesstimated. “Slate” is a relatively dark and greenish tone, and I chose Tamiya XF-65 (Field Grey). “Light Stone” is rather yellow-ish, light sand tone, and I used Humbrol 103 (Cream). Some sources suggest the use of Humbrol 74 (linen) as basis, but that is IMHO too yellow-ish and lacks red. The most obscure tone is “Silver Grey”, and its depictions range from a pale and dull light olive drab over blue-grey, greenish grey to bright light blue and even turquoise. In fact, this tone must have had a greenish-blue hue, and so I mixed Humbrol 145 (FS 35237) with maybe Humbrol 94 in a 3:1 ratio to achieve an “in between” tone, which is hard to describe - maybe as a greenish sand-grey? A funny effect of the colors in direct contrast is that the XF-65 appeared with an almost bluish hue! Overall, the choice of colors seems to work, though, and the impression is good.
Painting was, as usual, done with brushes and, due to the vehicle’s craggy shape, free-handedly. After basic painting the model received a light washing with a mix of black ink and brown, and some post-shading was done with light grey (Revell 75) and Hemp (Humbrol 168). Decals came from the scrap box, and before an overall protective coat of matt acrylic varnish was applied, the model received an additional treatment with thinned Revell 82 (supposed to be RAF Dark Earth but it is a much paler tone).
A more demanding build than one would expect at first sight. The SdKafz. 232 is unfortunately still visible, but the desert wheels, including the spare wheels, change the look considerably, and the British replacement turret works well, too. Using the tabletop model basis was not a good move, though, because everything is rather solid and somewhat blurry, esp. the many molded surface details, which suffered under the massive body work. On the other side, the Counter Scheme IMHO turned out well, esp. the colors, even though the slender hull made the adaptation of the pattern from a (much shorter) tank not easy. But most of the critical areas were hidden under extra equipment, anyway. 😉
I kitbashed the Power Girl figure using the Jiaou doll instead of using the Tbleague body since the Jiaou seems much more curvey than the Tbleague bodies , especially the lower half of the bodies and she filled her suit a whole lot better .
Some background:
The idea for a heavy infantry support vehicle capable of demolishing heavily defended buildings or fortified areas with a single shot came out of the experiences of the heavy urban fighting in the Battle of Stalingrad in 1942. At the time, the Wehrmacht had only the Sturm-Infanteriegeschütz 33B available for destroying buildings, a Sturmgeschütz III variant armed with a 15 cm sIG 33 heavy infantry gun. Twelve of them were lost in the fighting at Stalingrad. Its successor, the Sturmpanzer IV, also known by Allies as Brummbär, was in production from early 1943. This was essentially an improved version of the earlier design, mounting the same gun on the Panzer IV chassis with greatly improved armour protection.
While greatly improved compared to the earlier models, by this time infantry anti-tank weapons were improving dramatically, too, and the Wehrmacht still saw a need for a similar, but more heavily armoured and armed vehicle. Therefore, a decision was made to create a new vehicle based on the Tiger tank and arm it with a 210 mm howitzer. However, this weapon turned out not to be available at the time and was therefore replaced by a 380 mm rocket launcher, which was adapted from a Kriegsmarine depth charge launcher.
The 380 mm Raketen-Werfer 61 L/5.4 was a breech-loading barrel, which fired a short-range, rocket-propelled projectile roughly 1.5 m (4 ft 11 in) long. The gun itself existed in two iterations at the time. One, the RaG 43 (Raketenabschuss-Gerät 43), was a ship-mounted anti-aircraft weapon used for firing a cable-spooled parachute-anchor creating a hazard for aircraft. The second, the RTG 38 (Raketen Tauch-Geschoss 38), was a land-based system, originally planned for use in coastal installations by the Kriegsmarine firing depth-charges against submarines with a range of about 3.000 m. For use in a vehicle, the RTG 38 was to find use as a demolition gun and had to be modified for that role. This modification work was carried out by Rheinmetall at their Sommerda works.
The design of the rocket system caused some problems. Modified for use in a vehicle, the recoil from the modified rocket-mortar was enormous, about 40-tonnes, and this meant that only a heavy chassis could be used to mount the gun. The hot rocket exhaust could not be vented into the fighting compartment nor could the barrel withstand the pressure if the gasses were not vented. Therefore, a ring of ventilation shafts was put around the barrel which channeled the exhaust and gave the weapon something of a pepperbox appearance.
The shells for the weapon were extremely heavy, far too heavy for a man to load manually. As a result, each of them had to be carried by means of a ceiling-mounted trolley from their rack to a roller-mounted tray at the breech. Once on the tray, four soldiers could then push it into the breech to load it. The whole process took 10 minutes per shot from loading, aiming, elevating and, finally, to firing.
There were a variety of rocket-assisted round types with a weight of up to 376 kg (829 lb), and a maximum range of up to 6,000 m (20,000 ft), which either contained a high explosive charge of 125 kg (276 lb) or a shaped charge for use against fortifications, which could penetrate up to 2.5 m (8 ft 2 in) of reinforced concrete. The stated range of the former was 5,650 m (6,180 yd). A normal charge first accelerated the projectile to 45 m/s (150 ft/s) to leave the short, rifled barrel, the 40 kg (88 lb) rocket charge then boosted this to about 250 m/s (820 ft/s).
In September 1943 plans were made for Krupp to fabricate new Tiger I armored hulls for the Sturmtiger. The Tiger I hulls were to be sent to Henschel for chassis assembly and then to Alkett, where the superstructures would be mounted. The first prototype was ready and presented in October 1943. By May 1944, the Sturmtiger prototype had been kept busy with trials and firing tests for the development of range tables, but production had still not started yet and the concept was likely to be scrapped. Rather than ditch the idea though, orders were given that, instead of interrupting the production of the Tiger I, the Sturmtigers would be built on the chassis of Tiger I tanks which had already been in action and suffered serious damage. Twelve superstructures and RW 61 weapons were prepared and mounted on rebuilt Tiger I chassis. However, by August 1944 the dire need for this kind of vehicle led to the adaptation of another chassis to the 380 mm Sturmmörser: the SdKfz. 184, better known as “Ferdinand” (after its designer’s forename) and later, in an upgraded version, “Elefant”.
The Elefant (German for "elephant") was actually a heavy tank destroyer and the result of mismanagement and poor planning: Porsche GmbH had manufactured about 100 chassis for their unsuccessful proposal for the Tiger I tank, the so-called "Porsche Tiger". Both the successful Henschel proposal and the Porsche design used the same Krupp-designed turret—the Henschel design had its turret more-or-less centrally located on its hull, while the Porsche design placed the turret much closer to the front of the superstructure. Since the competing Henschel Tiger design was chosen for production, the Porsche chassis were no longer required for the Tiger tank project, and Porsche was left with 100 unfinished heavy tank hulls.
It was therefore decided that the Porsche chassis were to be used as the basis of a new heavy tank hunter, the Ferdinand, mounting Krupp's newly developed 88 mm (3.5 in) Panzerjägerkanone 43/2 (PaK 43) anti-tank gun with a new, long L71 barrel. This precise long-range weapon was intended to destroy enemy tanks before they came within their own range of effective fire, but in order to mount the very long and heavy weapon on the Porsche hull, its layout had to be completely redesigned.
Porsche’s SdKfz. 184’s unusual petrol-electric transmission made it much easier to relocate the engines than would be the case on a mechanical-transmission vehicle, since the engines could be mounted anywhere, and only the length of the power cables needed to be altered, as opposed to re-designing the driveshafts and locating the engines for the easiest routing of power shafts to the gearbox. Without the forward-mounted turret of the Porsche Tiger prototype, the twin engines were relocated to the front, where the turret had been, leaving room ahead of them for the driver and radio operator. As the engines were placed in the middle, the driver and the radio operator were isolated from the rest of the crew and could be addressed only by intercom. The now empty rear half of the hull was covered with a heavily armored, full five-sided casemate with slightly sloped upper faces and armored solid roof, and turned into a crew compartment, mounting a single 8.8 cm Pak 43 cannon in the forward face of the casemate.
From this readily available basis, the SdKfz. 184/1 was hurriedly developed. It differed from the tank hunter primarily through its new casemate that held the 380 mm Raketenwerfer. Since the SdKfz. 184/1 was intended for use in urban areas in close range street fighting, it needed to be heavily armoured to survive. Its front plate had a greater slope than the Ferdinand while the sides were more vertical and the roof was flat. Its sloped (at 47° from vertical) frontal casemate armor was 150 mm (5.9 in) thick, while its superstructure side and rear plates had a strength of 82 mm (3.2 in). The SdKfz.184/1 also received add-on armor of 100 mm thickness, bolted to the hull’s original vertical front plates, increasing the thickness to 200 mm but adding 5 tons of weight. All these measures pushed the weight of the vehicle up from the Ferdinand’s already bulky 65 t to 75 t, limiting the vehicle’s manoeuvrability even further. Located at the rear of the loading hatch was a Nahverteidigungswaffe launcher which was used for close defense against infantry with SMi 35 anti-personnel mines, even though smoke grenades or signal flares could be fired with the device in all directions, too. For close-range defense, a 7.92 mm MG 34 machine gun was carried in a ball mount in the front plate, an addition that was introduced to the Elefant tank hunters, too, after the SdKfz. 184 had during its initial deployments turned out to be very vulnerable to infantry attacks.
Due to the size of the RW 61 and the bulkiness of the ammunition, only fourteen rounds could be carried internally, of which one was already loaded, with another stored in the loading tray, and the rest were carried in two storage racks, leaving only little space for the crew of four in the rear compartment. To help with the loading of ammunition into the vehicle, a loading crane was fitted at the rear of the superstructure next to the loading hatch on the roof.
Due to the internal limits and the tactical nature of the vehicle, it was intended that each SdKfz. 184/1 (as well as each Sturmtiger) would be accompanied by an ammunition carrier, typically based on the Panzer IV chassis, but the lack of resources did not make this possible. There were even plans to build a dedicated, heavily armored ammunition carrier on the Tiger I chassis, but only one such carrier was completed and tested, it never reached production status.
By the time the first RW 61 carriers had become available, Germany had lost the initiative, with the Wehrmacht being almost exclusively on the defensive rather than the offensive, and this new tactical situation significantly weakened the value of both Sturmtiger and Sturmelefant, how the SdKfz 184/1 was semi-officially baptized. Nevertheless, three new Panzer companies were raised to operate the Sturmpanzer types: Panzer Sturmmörser Kompanien (PzStuMrKp) ("Armored Assault Mortar Company") 1000, 1001 and 1002. These originally were supposed to be equipped with fourteen vehicles each, but this figure was later reduced to four each, divided into two platoons, consisting of mixed vehicle types – whatever was available and operational.
PzStuMrKp 1000 was raised on 13 August 1944 and fought during the Warsaw Uprising with two vehicles, as did the prototype in a separate action, which may have been the only time the Sturmtiger was used in its intended role. PzStuMrKp 1001 and 1002 followed in September and October. Both PzStuMrKp 1000 and 1001 served during the Ardennes Offensive, with a total of four Sturmtiger and three Sturmelefanten.
After this offensive, the Sturmpanzer were used in the defence of Germany, mainly on the Western Front. During the battle for the bridge at Remagen, German forces mobilized Sturmmörserkompanie 1000 and 1001 (with a total of 7 vehicles, five Sturmtiger and two Sturmelefanten) to take part in the battle. The tanks were originally tasked with using their mortars against the bridge itself, though it was discovered that they lacked the accuracy needed to hit the bridge and cause significant damage with precise hits to vital structures. During this action, one of the Sturmtigers in Sturmmörserkompanie 1001 near Düren and Euskirchen allegedly hit a group of stationary Shermans tanks in a village with a 380mm round, resulting in nearly all the Shermans being put out of action and their crews killed or wounded - the only recorded tank-on-tank combat a Sturmtiger was ever engaged in. After the bridge fell to the Allies, Sturmmörserkompanie 1000 and 1001 were tasked with bombardment of Allied forces to cover the German retreat, as opposed to the bunker busting for which they had originally been designed for. None was actually destroyed through enemy fire, but many vehicles had to be given up due to mechanical failures or the lack of fuel. Most were blown up by their crews, but a few fell into allied hands in an operational state.
Total production numbers of the SdKfz. 184/1 are uncertain but, being an emergency product and based on a limited chassis supply, the number of vehicles that left the Nibelungenwerke in Austria was no more than ten – also because the tank hunter conversion had top priority and the exotic RW 61 launcher was in very limited supply. As a consequence, only a total of 18 Sturmtiger had been finished by December 1945 and put into service, too. However, the 380 mm Raketen-Werfer 61 remained in production and was in early 1946 adapted to the new Einheitspanzer E-50/75 chassis.
Specifications:
Crew: Six (driver, radio operator/machine gunner in the front cabin,
commander, gunner, 2× loader in the casemate section)
Weight: 75 tons
Length: 7,05 m (23 ft 1½ in)
Width: 3,38 m (11 ft 1 in)
Height w/o crane: 3,02 m (9 ft 10¾ in)
Ground clearance: 1ft 6¾ in (48 cm)
Climbing: 2 ft 6½ in (78 cm)
Fording depth: 3 ft 3¼ (1m)
Trench crossing: 8 ft 7 ¾ in (2,64 m)
Suspension: Longitudinal torsion-bar
Fuel capacity: 1.050 liters
Armour:
62 to 200 mm (2.44 to 7.87 in)
Performance:
30 km/h (19 mph) on road
15 km/h (10 miles per hour () off road
Operational range: 150 km (93 mi) on road
90 km (56 mi) cross-country
Power/weight: 8 hp/ton
Engine:
2× Maybach HL120 TRM petrol engines with 300 PS (246 hp, 221 kW) each, powering…
2× Siemens-Schuckert D1495a 500 Volt electric engines with 320 PS (316 hp, 230 kW) each
Transmission:
Electric
Armament:
1x 380 mm RW 61 rocket launcher L/5.4 with 14 rounds
1x 7.92 mm (0.312 in) MG 34 machine gun with 600 rounds
1x 100 mm grenade launcher (firing anti-personnel mines, smoke grenades or signal flares)
The kit and its assembly:.
This fictional tank model is not my own idea, it is rather based on a picture of a similar kitbashing of an Elefant with a Sturmtiger casemate and its massive missile launcher – even though it was a rather crude model, with a casemate created from cardboard. However, I found the idea charming, even more so because the Ferdinand/Elefant was rather a rolling bunker than an agile tank hunter, despite its powerful weapon. Why not use the same chassis as a carrier for the Sturmtiger’s huge mortar as an assault SPG?
The resulting Sturmelefant was created as a kitbashing: the chassis is an early boxing of the Trumpeter Elefant, which comes not only with IP track segments but also alternative vinyl tracks (later boxing do not feature them), and casemate parts come from a Trumpeter Sturmtiger.
While one would think that switching the casemate would be straightforward affair, the conversion turned out to be more complex than expected. Both Elefant and Sturmtiger come with separate casemate pieces, but they are not compatible. The Sturmtiger casemate is 2mm wider than the Elefant’s hull, and its glacis plate is deeper than the Elefant’s, leaving 4mm wide gaps at the sides and the rear. One option could have been to trim down the glacis plate, but I found the roofline to become much too low – and the casemate’s length would have been reduced.
So, I used the Sturmtiger casemate “as is” and filled the gaps with styrene sheet strips. This worked, but the casemate’s width created now inward-bent sections that looked unplausible. Nobody, even grazed German engineers, would not have neglected the laws of structural integrity. What to do? Tailoring the casemate’s sides down would have been one route, but this would have had created a strange shape. The alternative I chose was to widen the flanks of the Elefant’s hull underneath the casemate, which was achieved with tailored 0.5 mm styrene sheet panels and some PSR – possible through the Elefant’s simple shape and the mudguards that run along the vehicle’s flanks.
Some more PSR was necessary to blend the rear into a coherent shape and to fill a small gap at the glacis plate’s base. Putty was also used to fill/hide almost all openings on the glacis plate, since no driver sight or ball mount for a machine gun was necessary anymore. New bolts between hull and casemate were created with small drops of white glue. The rest of the surface details were taken from the respective donor kits.
Painting and markings:
This was not an easy choice. A classic Hinterhalt scheme would have been a natural choice, but since the Sturmelefant would have been converted from existing hulls with new parts, I decided to emphasize this heritage through a simple, uniform livery: all Ferdinand elements would be painted/left in a uniform Dunkelgelb (RAL, 7028, Humbrol 83), while the new casemate as well as the bolted-on front armor were left in a red primer livery, in two different shades (Humbrol 70 and 113). This looked a little too simple for my taste, so that I eventually added snaky lines in Dunkelgelb onto the primer-painted sections, blurring the contrast between the two tones.
Markings remained minimal, just three German crosses on the flanks and at the rear and a tactical code on the casemate – the latter in black and in a hand-written style, as if the vehicle had been rushed into frontline service.
After the decals had been secured under sone varnish the model received an overall washing with dark brown, highly thinned acrylic paint, some dry-brushing with light grey and some rust traces, before it was sealed overall with matt acrylic varnish and received some dirt stains with mixed watercolors and finally, after the tracks had been mounted, some artist pigments as physical dust on the lower areas.
Again a project that appeared simple but turned out to be more demanding because the parts would not fit as well as expected. The resulting bunker breaker looks plausible, less massive than the real Sturmtiger but still a menacing sight.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the late 1920s, the Aéronautique Militaire (Belgian Air Force) set out to replace its old aircraft. Accordingly, Belgian officers attended the Hendon Air Display where they saw a Fairey Firefly and met Fairey staff. The Firefly toured Belgian air bases in 1930 and met with approval from pilots. This led to a contract for 12 UK-built Firefly II to be followed by a further 33 aircraft built in Belgium.
Fairey already had a number of Belgians in key roles in the company; Ernest Oscar Tips and Marcel Lobelle had joined during the First World War. Tips went to Belgium to set up the subsidiary company. He based the new company near Charleroi. The fighter ace Fernand Jacquet who operated a flying school nearby joined the company in 1931.
Avions Fairey received further orders for Fireflies followed by Fairey Foxes which would be the main aircraft of the Belgian Air Force; being used as a fighter, bomber and training aircraft.
Most of Avions Fairey work was on military contracts. The contact with the Belgian military led to Fairey developing the Fairey Fantôme as a followup to the Firefly for the Belgians. Of the three prototypes, two ended up in Spain (via the USSR) the third as a test aircraft with the RAF.
Another indigenous design of Avions Fairey was the Faune fighter, or better: it's fall-back design. The original design for the Faune started as an advanced (for the era) monoplane under the direction of Ernest Oscar Tips in 1934. He grew concerned that the design would not mature, and ordered a backup biplane design, just to be safe.
Internally called the "Faune-B", the alternative biplane was also a modern design with staggered, gulled upper wings that were directly attached to the fuselage and stabilized by single spars. The single bay wings were of wooden construction, while the fuselage was of mixed steel and duralumin construction, with a fabric covered steering surfaces.
Aerodynamic problems with the favored monoplane design led in 1935 to an end of its development, and further resources were allocated to the biplane. The most significant change of this revised version was the introduction of a retractable landing gear, which necessitated the lower wing main spar to be moved backwards by almost 1' and led to a distinctive wing layout.
In this modified guise the first flight was made in October 1936 with Fernand Jacquet at the controls, powered by an imported Bristol Jupiter engine and outfitted with a wooden, fixed pitch propeller. Armament comprised four 7.5 mm (.295 in) MAC 1934 machine guns with 300 RPG, two synchronized in the upper forward fuselage, and one under each lower wing, mounted in an external nacelle outside the propeller disc.
The Belgian Air Force accepted the fighter and production as Mk. I started in 1938, now powered by a licensed built Bristol Mercury that drove a three blade variable pitch propeller, and a fully enclosed cockpit. Compared with the very similar Gloster Gladiator, which was used by the Aviation Militaire Belge at that time, too, the Faune showed a higher speed and better climb rate, but was not as agile. The field of view for the pilot was poor, especially on the ground, and the narrow and low landing gear made ground handling, esp. on unprepared airfields, hazardous. Furthermore, the landing gear's complicated manual mechanism was prone to failure, and as a consequence the landing gear was frequently kept down so that the aerodynamic bonus was negated.
In late 1939 a total of 42 Avions Fairey Faunes had been built, and in order to compensate for the weaknesses trials were made to incorporate heavier armament in early 1939: the wing-mounted machine guns were on some machines replaced by 20mm Hispano-Suiza HS.404 cannon in deeper fairings and with 40 RPG, and the modified machines were designated Mk. IA. Around 20 machines were converted from service airframes and reached the active squadrons in early 1940. Furthermore, one Faune Mk. I was experimentally outfitted with a streamlined cowling, designated Mk. II, but befor the machine could be tested or even flown, Belgium had been occupied.
With the looming German neighbors, Belgium also ordered Hawker Hurricanes to be built in Belgium. However, on 10 May 1940, the Avions Fairey factory was heavily bombed by the Germans, the company personnel evacuated to France, and then left for England. Their ship was sunk by German bombers outside St Nazaire, though, and eight Fairey staff were killed; the survivors worked for the parent company during the Second World War. None of the Belgian Faunes survived this WWII episode.
General characteristics:
Crew: 1
Length: 27 ft 5 in (8.36 m)
Wingspan: 32 ft 3 in (9.83 m)
Height: 11 ft 9 in (3.58 m)
Wing area: 323 ft2 (30.0 m2)
Empty weight: 3,217 lb (1,462 kg)
Loaded weight: 4,594 lb (2,088 kg)
Powerplant:
1× Bristol Mercury VIII radial engine, 625 kW (840 hp)
Performance:
Maximum speed: 253 mph (220 knots, 407 km/h) at 14,500 ft (4,400 m)
Cruise speed: 210 mph[94]
Stall speed: 53 mph (46 knots, 85 km/h)
Endurance: 2 hours
Service ceiling: 32,800 ft (10,000 m)
Rate of climb: 2,300 ft/min[94] (11.7 m/s)
Climb to 10,000 ft (3,050 m): 4.75 min
Armament:
Initially (Mk. I) two synchronised .303" Vickers machine guns in fuselage sides,
plus two .303" Lewis machine guns; one beneath each lower wing.
Mk. IA aircraft had the wing-mounted machine guns replaced by
two 20mm Hispano-Suiza HS.404 cannon
The kit and its assembly:
This one was inspired on short notice by a series of side profiles of a fictional British creation called "Bristol Badger", published by whatifmodeler.com's NightHunter with support from Eswube and Darth Panda - very reminiscent of the PZL 24 fighter, but a biplane. A very pretty creation that could rival with the Gloster Gladiator - and seeing the profiles I wondered if a retractable landing gear could be added, in the style of a Grumman F4F or the Curtiss SBC? Hence the idea was born to take this CG creation to the hardware stage.
Another side of the story is that I had been pondering about changing the ugly Curtiss SBC into a single seat fighter. And since the "Badger" would be an equivalent build I eventually decided to combine both ideas.
Legwork turned out that the Bristol Badger actually existed, so it was not the proper name for this creation. Since my designh benchmark was a Belgian aircraft I simply switched the manufacturer to Avions Fairey (see above). ;)
Effectively the Faune is a kitbash of a Heller SBC and a Polikarpov I-15 from ICM - the latter is a noteworthy, small kit because it is full of details, including even an internal frame structure for the cockpit and a highly detailed engine - without any PE parts.
From the SBC the fuselage and the lower wing was taken. The I-15 donated the upper gull wing and its tail - the SBC's was cut away where the observer's station would be, and the diameter of both fuselage sections matches well. The I-15's fabric cover on the tail disappeared under putty. The SBC's canopy was also used , just the observer's rearmost part was cut away and a new spine and fairing sculpted from putty.
Since I wanted a different engine installation (not the streamlined but somewhat ugly solution of the SBC) the SBC fuselage was also cut away in front of the landing gear wells. Bulkheads from styrene sheet were added, and I implanted the nose section and the Bristol Jupiter engine with an open ring cowling from a Matchbox Vickers Wellesley.
Once the wings were in place I implanted the SBC's struts and some wiring was added. The landing gear comes from the SBC, too. The cannons under the wings come from a Hobby Boss Bf 109F.
Painting and markings:
As mentioned above, I used a Belgian Air Force aircraft as design benchmark, and this meant a simple livery in khaki and aluminum dope, similar to Belgian Gloster Gladiators or Fairey Foxes in the late 30ies.
The paint scheme is very simple, I used "French Khaki" from Modelmaster's Authentic enamel range and acrylic Aluminum from Revell. All internal surfaces were painted with RAF Cockpit Green (Modelmaster). The wing struts were painted glossy black, just as on Belgian Foxes or Gladiators of the time.
After a light black ink wash I did some shading with Faded Olive Drab, Humbrol 102 and even some RLM 02, while the Aluminum received some panels in Humbrol 56 and Modelmaster's Aluminum Lacquer. Panel lines were added with a simple, soft pencil.
The decals had to be puzzled together - originally I wanted to use a set for a Belgian Hurricane, but the carreir film turned out to be brittle, so the roundels now come from a generic TL Modellbau sheet, the "Cocotte Bleue" from an anniversary Mirage 5BE, and the codes actually belong to a Chilean D.H. Venom...
Finally, everything was sealed under a mix of 80% flat and 20% gloss acrylic varnish.
In the end, a major kitbash that looks rather simple - but I am actually surprised how well the parts of the I-15 and SBC went together. And the result does not look like the Frankenstein creation this whif kit actually is... ;)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the late 1920s, the Aéronautique Militaire (Belgian Air Force) set out to replace its old aircraft. Accordingly, Belgian officers attended the Hendon Air Display where they saw a Fairey Firefly and met Fairey staff. The Firefly toured Belgian air bases in 1930 and met with approval from pilots. This led to a contract for 12 UK-built Firefly II to be followed by a further 33 aircraft built in Belgium.
Fairey already had a number of Belgians in key roles in the company; Ernest Oscar Tips and Marcel Lobelle had joined during the First World War. Tips went to Belgium to set up the subsidiary company. He based the new company near Charleroi. The fighter ace Fernand Jacquet who operated a flying school nearby joined the company in 1931.
Avions Fairey received further orders for Fireflies followed by Fairey Foxes which would be the main aircraft of the Belgian Air Force; being used as a fighter, bomber and training aircraft.
Most of Avions Fairey work was on military contracts. The contact with the Belgian military led to Fairey developing the Fairey Fantôme as a followup to the Firefly for the Belgians. Of the three prototypes, two ended up in Spain (via the USSR) the third as a test aircraft with the RAF.
Another indigenous design of Avions Fairey was the Faune fighter, or better: it's fall-back design. The original design for the Faune started as an advanced (for the era) monoplane under the direction of Ernest Oscar Tips in 1934. He grew concerned that the design would not mature, and ordered a backup biplane design, just to be safe.
Internally called the "Faune-B", the alternative biplane was also a modern design with staggered, gulled upper wings that were directly attached to the fuselage and stabilized by single spars. The single bay wings were of wooden construction, while the fuselage was of mixed steel and duralumin construction, with a fabric covered steering surfaces.
Aerodynamic problems with the favored monoplane design led in 1935 to an end of its development, and further resources were allocated to the biplane. The most significant change of this revised version was the introduction of a retractable landing gear, which necessitated the lower wing main spar to be moved backwards by almost 1' and led to a distinctive wing layout.
In this modified guise the first flight was made in October 1936 with Fernand Jacquet at the controls, powered by an imported Bristol Jupiter engine and outfitted with a wooden, fixed pitch propeller. Armament comprised four 7.5 mm (.295 in) MAC 1934 machine guns with 300 RPG, two synchronized in the upper forward fuselage, and one under each lower wing, mounted in an external nacelle outside the propeller disc.
The Belgian Air Force accepted the fighter and production as Mk. I started in 1938, now powered by a licensed built Bristol Mercury that drove a three blade variable pitch propeller, and a fully enclosed cockpit. Compared with the very similar Gloster Gladiator, which was used by the Aviation Militaire Belge at that time, too, the Faune showed a higher speed and better climb rate, but was not as agile. The field of view for the pilot was poor, especially on the ground, and the narrow and low landing gear made ground handling, esp. on unprepared airfields, hazardous. Furthermore, the landing gear's complicated manual mechanism was prone to failure, and as a consequence the landing gear was frequently kept down so that the aerodynamic bonus was negated.
In late 1939 a total of 42 Avions Fairey Faunes had been built, and in order to compensate for the weaknesses trials were made to incorporate heavier armament in early 1939: the wing-mounted machine guns were on some machines replaced by 20mm Hispano-Suiza HS.404 cannon in deeper fairings and with 40 RPG, and the modified machines were designated Mk. IA. Around 20 machines were converted from service airframes and reached the active squadrons in early 1940. Furthermore, one Faune Mk. I was experimentally outfitted with a streamlined cowling, designated Mk. II, but befor the machine could be tested or even flown, Belgium had been occupied.
With the looming German neighbors, Belgium also ordered Hawker Hurricanes to be built in Belgium. However, on 10 May 1940, the Avions Fairey factory was heavily bombed by the Germans, the company personnel evacuated to France, and then left for England. Their ship was sunk by German bombers outside St Nazaire, though, and eight Fairey staff were killed; the survivors worked for the parent company during the Second World War. None of the Belgian Faunes survived this WWII episode.
General characteristics:
Crew: 1
Length: 27 ft 5 in (8.36 m)
Wingspan: 32 ft 3 in (9.83 m)
Height: 11 ft 9 in (3.58 m)
Wing area: 323 ft2 (30.0 m2)
Empty weight: 3,217 lb (1,462 kg)
Loaded weight: 4,594 lb (2,088 kg)
Powerplant:
1× Bristol Mercury VIII radial engine, 625 kW (840 hp)
Performance:
Maximum speed: 253 mph (220 knots, 407 km/h) at 14,500 ft (4,400 m)
Cruise speed: 210 mph[94]
Stall speed: 53 mph (46 knots, 85 km/h)
Endurance: 2 hours
Service ceiling: 32,800 ft (10,000 m)
Rate of climb: 2,300 ft/min[94] (11.7 m/s)
Climb to 10,000 ft (3,050 m): 4.75 min
Armament:
Initially (Mk. I) two synchronised .303" Vickers machine guns in fuselage sides,
plus two .303" Lewis machine guns; one beneath each lower wing.
Mk. IA aircraft had the wing-mounted machine guns replaced by
two 20mm Hispano-Suiza HS.404 cannon
The kit and its assembly:
This one was inspired on short notice by a series of side profiles of a fictional British creation called "Bristol Badger", published by whatifmodeler.com's NightHunter with support from Eswube and Darth Panda - very reminiscent of the PZL 24 fighter, but a biplane. A very pretty creation that could rival with the Gloster Gladiator - and seeing the profiles I wondered if a retractable landing gear could be added, in the style of a Grumman F4F or the Curtiss SBC? Hence the idea was born to take this CG creation to the hardware stage.
Another side of the story is that I had been pondering about changing the ugly Curtiss SBC into a single seat fighter. And since the "Badger" would be an equivalent build I eventually decided to combine both ideas.
Legwork turned out that the Bristol Badger actually existed, so it was not the proper name for this creation. Since my designh benchmark was a Belgian aircraft I simply switched the manufacturer to Avions Fairey (see above). ;)
Effectively the Faune is a kitbash of a Heller SBC and a Polikarpov I-15 from ICM - the latter is a noteworthy, small kit because it is full of details, including even an internal frame structure for the cockpit and a highly detailed engine - without any PE parts.
From the SBC the fuselage and the lower wing was taken. The I-15 donated the upper gull wing and its tail - the SBC's was cut away where the observer's station would be, and the diameter of both fuselage sections matches well. The I-15's fabric cover on the tail disappeared under putty. The SBC's canopy was also used , just the observer's rearmost part was cut away and a new spine and fairing sculpted from putty.
Since I wanted a different engine installation (not the streamlined but somewhat ugly solution of the SBC) the SBC fuselage was also cut away in front of the landing gear wells. Bulkheads from styrene sheet were added, and I implanted the nose section and the Bristol Jupiter engine with an open ring cowling from a Matchbox Vickers Wellesley.
Once the wings were in place I implanted the SBC's struts and some wiring was added. The landing gear comes from the SBC, too. The cannons under the wings come from a Hobby Boss Bf 109F.
Painting and markings:
As mentioned above, I used a Belgian Air Force aircraft as design benchmark, and this meant a simple livery in khaki and aluminum dope, similar to Belgian Gloster Gladiators or Fairey Foxes in the late 30ies.
The paint scheme is very simple, I used "French Khaki" from Modelmaster's Authentic enamel range and acrylic Aluminum from Revell. All internal surfaces were painted with RAF Cockpit Green (Modelmaster). The wing struts were painted glossy black, just as on Belgian Foxes or Gladiators of the time.
After a light black ink wash I did some shading with Faded Olive Drab, Humbrol 102 and even some RLM 02, while the Aluminum received some panels in Humbrol 56 and Modelmaster's Aluminum Lacquer. Panel lines were added with a simple, soft pencil.
The decals had to be puzzled together - originally I wanted to use a set for a Belgian Hurricane, but the carreir film turned out to be brittle, so the roundels now come from a generic TL Modellbau sheet, the "Cocotte Bleue" from an anniversary Mirage 5BE, and the codes actually belong to a Chilean D.H. Venom...
Finally, everything was sealed under a mix of 80% flat and 20% gloss acrylic varnish.
In the end, a major kitbash that looks rather simple - but I am actually surprised how well the parts of the I-15 and SBC went together. And the result does not look like the Frankenstein creation this whif kit actually is... ;)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the first years of the war, the Wehrmacht had only little interest in developing self-propelled anti-aircraft guns, but as the Allies developed air superiority and dedicated attack aircraft threatened the ground troops from above, the need for more mobile and better-armed self-propelled anti-aircraft guns increased. As a stopgap solution the Wehrmacht initially adapted a variety of wheeled, half-track and tracked vehicles to serve as mobile forward air defense positions. Their tasks were to protect armor and infantry units in the field, as well as to protect temporary forward area positions such as mobile headquarters and logistic points.
These vehicles were only lightly armored, if at all, and rather mobilized the anti-aircraft weapons. As Allied fighter bombers and other ground attack aircraft moved from machine gun armament and bombing to air-to-ground rockets and large-caliber cannons, the air defense positions were even more vulnerable. The answer was to adapt a tank chassis with a specialized turret that would protect the gun crews while they fired upon approaching Allied aircraft. Furthermore, the vehicle would have the same mobility as the battle tanks it protected.
Initial German AA-tank designs were the ‘Möbelwagen’ and the ‘Wirbelwind’, both conversions of refurbished Panzer IV combat tank chassis with open platforms or turrets with four 20mm cannon. Alternatively, a single 37mm AA gun was mounted, too – but all these vehicles were just a compromise and suffered from light armor, a high silhouette and lack of crew protection.
Further developments of more sophisticated anti-aircraft tank designs started in late 1943 and led into different directions. One development line was the ‘Kugelblitz’, another Panzer IV variant, but this time the ball-shaped turret, armed with very effective 30 mm MK 103 cannon, was fully integrated into the hull, resulting in a low silhouette and a protected crew. However, the ‘Kugelblitz’ only featured two of these guns and the tilting turret was very cramped and complicated. Venting and ammunition feed problems led to serious delays and a prolonged development stage.
The ‘Coelian’ family of bigger turrets with various weapon options for the Panzer V (the ‘Panther’) was another direction, especially as a response against the armored Il-2 attack aircraft at the Eastern front and against flying targets at medium altitude. Targets at high altitude, esp. Allied bombers, were to be countered with the very effective 8.8 cm Flak, and there were also several attempts to mount this weapon onto a fully armored hull.
The primary weapon for a new low/medium altitude anti-aircraft tank was to become the heavy automatic 55 mm MK 214. Like the 30 mm MK 103 it was a former aircraft weapon, belt-fed and adapted to continuous ground use. However, in early 1944, teething troubles with the ‘Kugelblitz’ suggested that a completely enclosed turret with one or (even better) two of these new weapons, mounted on a ‘Panther’ or the new E-50/75 tank chassis, would need considerable development time. Operational vehicles were not expected to enter service before mid-1945. In order to fill this operational gap, a more effective solution than the Panzer IV AA conversions, with more range and firepower than anything else currently in service, was direly needed.
This situation led to yet another hasty stopgap solution, the so-called ‘Ostwind II’ weapon system, which consisted primarily of a new turret, mated with a standard medium battle tank chassis. It was developed in a hurry in the course of 1944 and already introduced towards the end of the same year. The ‘Ostwind II’ was a compromise in the worst sense: even though it used two 37 mm FlaK 43 guns in a new twin mount and offered better firepower than any former German AA tank, it also retained many weaknesses from its predecessors: an open turret with only light armor and a high silhouette. But due to the lack of time and resources, the ‘Ostwind II’ was the best thing that could be realized on short notice, and with the perspective of more effective solutions within one year’s time it was rushed into production.
The ‘Ostwind II’ system was an open, roughly diamond-shaped, octagonal turret, very similar in design to the Panzer IV-based ‘Wirbelwind’ and ‘Ostwind’ (which was re-designated ‘Ostwind I’). As a novelty, in order to relieve the crew from work overload, traverse and elevation of the turret was hydraulic, allowing a full elevation (-4° to +90° was possible) in just over four seconds and a full 360° traverse in 15 seconds. This had become necessary because the new turret was bigger and heaver, both the weapons and their crews required more space, so that the Ostwind II complex could not be mounted onto the Panzer IV chassis anymore and movement by hand was just a fallback option.
In order to provide the ‘Ostwind II’ with a sufficiently large chassis, it was based on the SdKfz. 171 Panzer V medium battle tank, the ‘Panther’, exploiting its bigger turret ring, armor level and performance. The Panther chassis had, by late 1944, become available for conversions in considerable numbers through damaged and/or recovered combat tanks, and updated details like new turrets or simplified road wheels were gradually introduced into production and during refurbishments. Mounting the ‘Ostwind II’ turret on the Panzer VI (Tiger) battle tank chassis had been theoretically possible, too, but it never happened, because the Tiger lacked agility and its protection level and fuel consumption were considered impractical for an SPAAG that would typically protect battle tank groups.
The ‘Ostwind II’ turret was built around a motorized mount for the automatic 3.7 cm FlaK 43 twin guns. These proven weapons were very effective against aircraft flying at altitudes up to 4,200 m, but they also had devastating effect against ground targets. The FlaK 43’s armor penetration was considerable when using dedicated ammunition: at 100 m distance it could penetrate 36 mm of a 60°-sloped armor, and at 800 m distance correspondingly 24 mm. The FlaK 43’s theoretical maximum rate of fire was 250 shots/minute, but it was practically kept at ~120 rpm in order to save ammunition and prevent wear of the barrels. The resulting weight of fire was 76.8 kg (169 lb) per minute, but this was only theoretical, too, because the FlaK 43 could only be fed manually by 6-round clips – effectively, only single shots or short bursts could be fired, but a trained crew could maintain fire through using alternating gun use. A more practical belt feed was at the time of the Ostwind II's creation not available yet, even though such a mechanism was already under development for the fully enclosed Coelian turret, which could also take the FlaK 43 twin guns, but the armament was separated from the turret crew.
The new vehicle received the official designation ‘Sd.Kfz. 171/2 Flakpanzer V’, even though ‘Ostwind II’ was more common. When production actually began and how many were built is unclear. The conversion of Panther hulls could have started in late-1944 or early-1945, with sources disagreeing. The exact number of produced vehicles is difficult to determine, either. Beside the prototype, the number of produced vehicles goes from as little as 6 to over 40. The first completed Ostwind II SPAAGs were exclusively delivered to Eastern front units and reached them in spring 1945, where they were immediately thrown into action.
All Flakpanzer vehicles at that time were allocated to special anti-aircraft tank platoons (so-called Panzer Flak Züge). These were used primarily to equip Panzer Divisions, and in some cases given to special units. By the end of March 1945, there were plans to create mixed platoons equipped with the Ostwinds and other Flakpanzers. Depending on the source, they were either to be used in combination with six Kugelblitz, six Ostwinds and four Wirbelwinds or with eight Ostwinds and three Sd.Kfz. 7/1 half-tracks. Due to the war late stage and the low number of anti-aircraft tanks of all types built, this reorganization was never truly implemented, so that most vehicles were simply directly attached to combat units, primarily to the commanding staff.
The Ostwind II armament proved to be very effective, but the open turret (nicknamed ‘Keksdose’ = cookie tin) left the crews vulnerable. The crew conditions esp. during wintertime were abominable, and since aiming had to rely on vision the system's efficacy was limited, esp. against low-flying targets. The situation was slightly improved when the new mobile ‘Medusa’ and ‘Basilisk’ surveillance and target acquisition systems were introduced. These combined radar and powerful visual systems and guided the FlaK crews towards incoming potential targets, what markedly improved the FlaKs' first shot hit probability. However, the radar systems rarely functioned properly, the coordination of multiple SPAAGs in the heat of a low-level air attack was a challenging task, and - to make matters worse - the new mobile radar systems were even more rare than the new SPAAGs themselves.
All Ostwind II tanks were built from recovered ‘Panther’ battle tanks of various versions. The new Panther-based SPAAGs gradually replaced most of the outdated Panzer IV AA variants as well as the Ostwind I. Their production immediately stopped in the course of 1945 when the more sophisticated 'Coelian' family of anti-aircraft tanks with fully enclosed turrets became available. This system was based on Panzer V hulls, too, and it was soon followed by the first E-50 SPAAGs with the new, powerful twin-55 mm gun.
Specifications:
Crew: Six (commander, gunner, 2× loader, driver, radio-operator/hull machine gunner)
Weight: 43.8 tonnes (43.1 long tons; 48.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in)
Height: 3.53 m (11 ft 6 3/4 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 46 km/h (29 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
2× 37 mm (1.46 in) FlaK 43 cannon in twin mount with 1.200 rounds
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
The kit and its assembly:
This was a spontaneous build, more or less the recycling of leftover parts from a 1:72 Revell Ostwind tank on a Panzer III chassis that I had actually bought primarily for the chassis (it became a fictional Aufklärungspanzer III). When I looked at the leftover turret, I wondered about a beefed-up/bigger version with two 37 mm guns. Such an 'Ostwind II' was actually on the German drawing boards, but never realized - but what-if modelling can certainly change that. However, such a heavy weapon would have to be mounted on a bigger/heavier chassis, so the natural choice became the Panzer V, the Panther medium battle tank. This way, my ‘Ostwind II’ interpretation was born.
The hull for this fictional AA tank is a Hasegawa ‘Panther Ausf. G’ kit, which stems from 1973 and clearly shows its age, at least from today’s point of view. While everything fits well, the details are rather simple, if not crude (e. g. the gratings on the engine deck or the cupola on the turret). However, only the lower hull and the original wheels were used since I wanted to portray a revamped former standard battle tank.
The turret was a more complicated affair. It had to be completely re-constructed, to accept the enlarged twin gun and to fit onto the Panther hull. The first step was the assembly of the twin gun mount, using parts from the original Ostwind kit and additional parts from a second one. In order to save space and not to make thing uber-complicated I added the second weapon to the right side of the original gun and changed some accessories.
This, together with the distance between the barrels, gave the benchmark for the turret's reconstruction. Since the weapon had not become longer, I decided to keep things as simple as possible and just widen the open turret - I simply took the OOB Ostwind hexagonal turret (which consists of an upper and lower half), cut it up vertically and glued them onto the Panther turret's OOB base, shifting the sides just as far to the outside that the twin gun barrels would fit between them - a distance of ~0.4 inch (1 cm). At the rear the gap was simply closed with styrene sheet, while the front used shield parts from the Revell Ostwind kit that come from a ground mount for the FlaK 43. Two parts from this shield were glued together and inserted into the front gap. While this is certainly not as elegant as e. g. the Wirbelwind turret, I think that this solution was easier to integrate.
Massive PSR was necessary to blend the turret walls with the Panther turret base, and as a late modification the opening for the sight had to be moved, too. To the left of the weapons, I also added a raised protective shield for the commander.
Inside of the turret, details from the Ostwind kit(s), e. g. crew seats and ammunition clips, were recycled, too.
Painting and markings:
Since the Ostwind II would be based on a repaired/modified former Panzer V medium battle tank, I settled upon a relatively simple livery. The kit received a uniform finish in Dunkelgelb (RAL 7028), with a network of greenish-grey thin stripes added on top, to break up the tank's outlines and reminiscent of the British ‘Malta’ scheme, but less elaborate. The model and its parts were initially primed with matt sand brown from the rattle can (more reddish than RAL 7028) and then received an overall treatment with thinned RAL 7028 from Modelmaster, for an uneven, dirty and worn look. The stripes were created with thinned Tamiya XF-65 (Field Grey).
Once dry, the whole surface received a dark brown wash, details were emphasized with dry-brushing in light grey and beige. Decals were puzzled together from various German tank sheets, and the kit finally sealed with matt acrylic varnish.
The black vinyl tracks were also painted/weathered, with a wet-in-wet mix of black, grey, iron and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
A bit of recycling and less exotic than one would expect, but it’s still a whiffy tank model that fits well into the historic gap between the realized Panzer IV AA tanks and the unrealized E-50/75 projects. Quite subtle! Creating the enlarged turret was the biggest challenge, even, even more so because it was/is an open structure and the interior can be readily seen. But the new/bigger gun fits well into it, and it even remained movable!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the first years of the war, the Wehrmacht had only little interest in developing self-propelled anti-aircraft guns, but as the Allies developed air superiority and dedicated attack aircraft threatened the ground troops from above, the need for more mobile and better-armed self-propelled anti-aircraft guns increased. As a stopgap solution the Wehrmacht initially adapted a variety of wheeled, half-track and tracked vehicles to serve as mobile forward air defense positions. Their tasks were to protect armor and infantry units in the field, as well as to protect temporary forward area positions such as mobile headquarters and logistic points.
These vehicles were only lightly armored, if at all, and rather mobilized the anti-aircraft weapons. As Allied fighter bombers and other ground attack aircraft moved from machine gun armament and bombing to air-to-ground rockets and large-caliber cannons, the air defense positions were even more vulnerable. The answer was to adapt a tank chassis with a specialized turret that would protect the gun crews while they fired upon approaching Allied aircraft. Furthermore, the vehicle would have the same mobility as the battle tanks it protected.
Initial German AA-tank designs were the ‘Möbelwagen’ and the ‘Wirbelwind’, both conversions of refurbished Panzer IV combat tank chassis with open platforms or turrets with four 20mm cannon. Alternatively, a single 37mm AA gun was mounted, too – but all these vehicles were just a compromise and suffered from light armor, a high silhouette and lack of crew protection.
Further developments of more sophisticated anti-aircraft tank designs started in late 1943 and led into different directions. One development line was the ‘Kugelblitz’, another Panzer IV variant, but this time the ball-shaped turret, armed with very effective 30 mm MK 103 cannon, was fully integrated into the hull, resulting in a low silhouette and a protected crew. However, the ‘Kugelblitz’ only featured two of these guns and the tilting turret was very cramped and complicated. Venting and ammunition feed problems led to serious delays and a prolonged development stage.
The ‘Coelian’ family of bigger turrets with various weapon options for the Panzer V (the ‘Panther’) was another direction, especially as a response against the armored Il-2 attack aircraft at the Eastern front and against flying targets at medium altitude. Targets at high altitude, esp. Allied bombers, were to be countered with the very effective 8.8 cm Flak, and there were also several attempts to mount this weapon onto a fully armored hull.
The primary weapon for a new low/medium altitude anti-aircraft tank was to become the heavy automatic 55 mm MK 214. Like the 30 mm MK 103 it was a former aircraft weapon, belt-fed and adapted to continuous ground use. However, in early 1944, teething troubles with the ‘Kugelblitz’ suggested that a completely enclosed turret with one or (even better) two of these new weapons, mounted on a ‘Panther’ or the new E-50/75 tank chassis, would need considerable development time. Operational vehicles were not expected to enter service before mid-1945. In order to fill this operational gap, a more effective solution than the Panzer IV AA conversions, with more range and firepower than anything else currently in service, was direly needed.
This situation led to yet another hasty stopgap solution, the so-called ‘Ostwind II’ weapon system, which consisted primarily of a new turret, mated with a standard medium battle tank chassis. It was developed in a hurry in the course of 1944 and already introduced towards the end of the same year. The ‘Ostwind II’ was a compromise in the worst sense: even though it used two 37 mm FlaK 43 guns in a new twin mount and offered better firepower than any former German AA tank, it also retained many weaknesses from its predecessors: an open turret with only light armor and a high silhouette. But due to the lack of time and resources, the ‘Ostwind II’ was the best thing that could be realized on short notice, and with the perspective of more effective solutions within one year’s time it was rushed into production.
The ‘Ostwind II’ system was an open, roughly diamond-shaped, octagonal turret, very similar in design to the Panzer IV-based ‘Wirbelwind’ and ‘Ostwind’ (which was re-designated ‘Ostwind I’). As a novelty, in order to relieve the crew from work overload, traverse and elevation of the turret was hydraulic, allowing a full elevation (-4° to +90° was possible) in just over four seconds and a full 360° traverse in 15 seconds. This had become necessary because the new turret was bigger and heaver, both the weapons and their crews required more space, so that the Ostwind II complex could not be mounted onto the Panzer IV chassis anymore and movement by hand was just a fallback option.
In order to provide the ‘Ostwind II’ with a sufficiently large chassis, it was based on the SdKfz. 171 Panzer V medium battle tank, the ‘Panther’, exploiting its bigger turret ring, armor level and performance. The Panther chassis had, by late 1944, become available for conversions in considerable numbers through damaged and/or recovered combat tanks, and updated details like new turrets or simplified road wheels were gradually introduced into production and during refurbishments. Mounting the ‘Ostwind II’ turret on the Panzer VI (Tiger) battle tank chassis had been theoretically possible, too, but it never happened, because the Tiger lacked agility and its protection level and fuel consumption were considered impractical for an SPAAG that would typically protect battle tank groups.
The ‘Ostwind II’ turret was built around a motorized mount for the automatic 3.7 cm FlaK 43 twin guns. These proven weapons were very effective against aircraft flying at altitudes up to 4,200 m, but they also had devastating effect against ground targets. The FlaK 43’s armor penetration was considerable when using dedicated ammunition: at 100 m distance it could penetrate 36 mm of a 60°-sloped armor, and at 800 m distance correspondingly 24 mm. The FlaK 43’s theoretical maximum rate of fire was 250 shots/minute, but it was practically kept at ~120 rpm in order to save ammunition and prevent wear of the barrels. The resulting weight of fire was 76.8 kg (169 lb) per minute, but this was only theoretical, too, because the FlaK 43 could only be fed manually by 6-round clips – effectively, only single shots or short bursts could be fired, but a trained crew could maintain fire through using alternating gun use. A more practical belt feed was at the time of the Ostwind II's creation not available yet, even though such a mechanism was already under development for the fully enclosed Coelian turret, which could also take the FlaK 43 twin guns, but the armament was separated from the turret crew.
The new vehicle received the official designation ‘Sd.Kfz. 171/2 Flakpanzer V’, even though ‘Ostwind II’ was more common. When production actually began and how many were built is unclear. The conversion of Panther hulls could have started in late-1944 or early-1945, with sources disagreeing. The exact number of produced vehicles is difficult to determine, either. Beside the prototype, the number of produced vehicles goes from as little as 6 to over 40. The first completed Ostwind II SPAAGs were exclusively delivered to Eastern front units and reached them in spring 1945, where they were immediately thrown into action.
All Flakpanzer vehicles at that time were allocated to special anti-aircraft tank platoons (so-called Panzer Flak Züge). These were used primarily to equip Panzer Divisions, and in some cases given to special units. By the end of March 1945, there were plans to create mixed platoons equipped with the Ostwinds and other Flakpanzers. Depending on the source, they were either to be used in combination with six Kugelblitz, six Ostwinds and four Wirbelwinds or with eight Ostwinds and three Sd.Kfz. 7/1 half-tracks. Due to the war late stage and the low number of anti-aircraft tanks of all types built, this reorganization was never truly implemented, so that most vehicles were simply directly attached to combat units, primarily to the commanding staff.
The Ostwind II armament proved to be very effective, but the open turret (nicknamed ‘Keksdose’ = cookie tin) left the crews vulnerable. The crew conditions esp. during wintertime were abominable, and since aiming had to rely on vision the system's efficacy was limited, esp. against low-flying targets. The situation was slightly improved when the new mobile ‘Medusa’ and ‘Basilisk’ surveillance and target acquisition systems were introduced. These combined radar and powerful visual systems and guided the FlaK crews towards incoming potential targets, what markedly improved the FlaKs' first shot hit probability. However, the radar systems rarely functioned properly, the coordination of multiple SPAAGs in the heat of a low-level air attack was a challenging task, and - to make matters worse - the new mobile radar systems were even more rare than the new SPAAGs themselves.
All Ostwind II tanks were built from recovered ‘Panther’ battle tanks of various versions. The new Panther-based SPAAGs gradually replaced most of the outdated Panzer IV AA variants as well as the Ostwind I. Their production immediately stopped in the course of 1945 when the more sophisticated 'Coelian' family of anti-aircraft tanks with fully enclosed turrets became available. This system was based on Panzer V hulls, too, and it was soon followed by the first E-50 SPAAGs with the new, powerful twin-55 mm gun.
Specifications:
Crew: Six (commander, gunner, 2× loader, driver, radio-operator/hull machine gunner)
Weight: 43.8 tonnes (43.1 long tons; 48.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in)
Height: 3.53 m (11 ft 6 3/4 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 46 km/h (29 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
2× 37 mm (1.46 in) FlaK 43 cannon in twin mount with 1.200 rounds
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
The kit and its assembly:
This was a spontaneous build, more or less the recycling of leftover parts from a 1:72 Revell Ostwind tank on a Panzer III chassis that I had actually bought primarily for the chassis (it became a fictional Aufklärungspanzer III). When I looked at the leftover turret, I wondered about a beefed-up/bigger version with two 37 mm guns. Such an 'Ostwind II' was actually on the German drawing boards, but never realized - but what-if modelling can certainly change that. However, such a heavy weapon would have to be mounted on a bigger/heavier chassis, so the natural choice became the Panzer V, the Panther medium battle tank. This way, my ‘Ostwind II’ interpretation was born.
The hull for this fictional AA tank is a Hasegawa ‘Panther Ausf. G’ kit, which stems from 1973 and clearly shows its age, at least from today’s point of view. While everything fits well, the details are rather simple, if not crude (e. g. the gratings on the engine deck or the cupola on the turret). However, only the lower hull and the original wheels were used since I wanted to portray a revamped former standard battle tank.
The turret was a more complicated affair. It had to be completely re-constructed, to accept the enlarged twin gun and to fit onto the Panther hull. The first step was the assembly of the twin gun mount, using parts from the original Ostwind kit and additional parts from a second one. In order to save space and not to make thing uber-complicated I added the second weapon to the right side of the original gun and changed some accessories.
This, together with the distance between the barrels, gave the benchmark for the turret's reconstruction. Since the weapon had not become longer, I decided to keep things as simple as possible and just widen the open turret - I simply took the OOB Ostwind hexagonal turret (which consists of an upper and lower half), cut it up vertically and glued them onto the Panther turret's OOB base, shifting the sides just as far to the outside that the twin gun barrels would fit between them - a distance of ~0.4 inch (1 cm). At the rear the gap was simply closed with styrene sheet, while the front used shield parts from the Revell Ostwind kit that come from a ground mount for the FlaK 43. Two parts from this shield were glued together and inserted into the front gap. While this is certainly not as elegant as e. g. the Wirbelwind turret, I think that this solution was easier to integrate.
Massive PSR was necessary to blend the turret walls with the Panther turret base, and as a late modification the opening for the sight had to be moved, too. To the left of the weapons, I also added a raised protective shield for the commander.
Inside of the turret, details from the Ostwind kit(s), e. g. crew seats and ammunition clips, were recycled, too.
Painting and markings:
Since the Ostwind II would be based on a repaired/modified former Panzer V medium battle tank, I settled upon a relatively simple livery. The kit received a uniform finish in Dunkelgelb (RAL 7028), with a network of greenish-grey thin stripes added on top, to break up the tank's outlines and reminiscent of the British ‘Malta’ scheme, but less elaborate. The model and its parts were initially primed with matt sand brown from the rattle can (more reddish than RAL 7028) and then received an overall treatment with thinned RAL 7028 from Modelmaster, for an uneven, dirty and worn look. The stripes were created with thinned Tamiya XF-65 (Field Grey).
Once dry, the whole surface received a dark brown wash, details were emphasized with dry-brushing in light grey and beige. Decals were puzzled together from various German tank sheets, and the kit finally sealed with matt acrylic varnish.
The black vinyl tracks were also painted/weathered, with a wet-in-wet mix of black, grey, iron and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
A bit of recycling and less exotic than one would expect, but it’s still a whiffy tank model that fits well into the historic gap between the realized Panzer IV AA tanks and the unrealized E-50/75 projects. Quite subtle! Creating the enlarged turret was the biggest challenge, even, even more so because it was/is an open structure and the interior can be readily seen. But the new/bigger gun fits well into it, and it even remained movable!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the first years of the war, the Wehrmacht had only little interest in developing self-propelled anti-aircraft guns, but as the Allies developed air superiority and dedicated attack aircraft threatened the ground troops from above, the need for more mobile and better-armed self-propelled anti-aircraft guns increased. As a stopgap solution the Wehrmacht initially adapted a variety of wheeled, half-track and tracked vehicles to serve as mobile forward air defense positions. Their tasks were to protect armor and infantry units in the field, as well as to protect temporary forward area positions such as mobile headquarters and logistic points.
These vehicles were only lightly armored, if at all, and rather mobilized the anti-aircraft weapons. As Allied fighter bombers and other ground attack aircraft moved from machine gun armament and bombing to air-to-ground rockets and large-caliber cannons, the air defense positions were even more vulnerable. The answer was to adapt a tank chassis with a specialized turret that would protect the gun crews while they fired upon approaching Allied aircraft. Furthermore, the vehicle would have the same mobility as the battle tanks it protected.
Initial German AA-tank designs were the ‘Möbelwagen’ and the ‘Wirbelwind’, both conversions of refurbished Panzer IV combat tank chassis with open platforms or turrets with four 20mm cannon. Alternatively, a single 37mm AA gun was mounted, too – but all these vehicles were just a compromise and suffered from light armor, a high silhouette and lack of crew protection.
Further developments of more sophisticated anti-aircraft tank designs started in late 1943 and led into different directions. One development line was the ‘Kugelblitz’, another Panzer IV variant, but this time the ball-shaped turret, armed with very effective 30 mm MK 103 cannon, was fully integrated into the hull, resulting in a low silhouette and a protected crew. However, the ‘Kugelblitz’ only featured two of these guns and the tilting turret was very cramped and complicated. Venting and ammunition feed problems led to serious delays and a prolonged development stage.
The ‘Coelian’ family of bigger turrets with various weapon options for the Panzer V (the ‘Panther’) was another direction, especially as a response against the armored Il-2 attack aircraft at the Eastern front and against flying targets at medium altitude. Targets at high altitude, esp. Allied bombers, were to be countered with the very effective 8.8 cm Flak, and there were also several attempts to mount this weapon onto a fully armored hull.
The primary weapon for a new low/medium altitude anti-aircraft tank was to become the heavy automatic 55 mm MK 214. Like the 30 mm MK 103 it was a former aircraft weapon, belt-fed and adapted to continuous ground use. However, in early 1944, teething troubles with the ‘Kugelblitz’ suggested that a completely enclosed turret with one or (even better) two of these new weapons, mounted on a ‘Panther’ or the new E-50/75 tank chassis, would need considerable development time. Operational vehicles were not expected to enter service before mid-1945. In order to fill this operational gap, a more effective solution than the Panzer IV AA conversions, with more range and firepower than anything else currently in service, was direly needed.
This situation led to yet another hasty stopgap solution, the so-called ‘Ostwind II’ weapon system, which consisted primarily of a new turret, mated with a standard medium battle tank chassis. It was developed in a hurry in the course of 1944 and already introduced towards the end of the same year. The ‘Ostwind II’ was a compromise in the worst sense: even though it used two 37 mm FlaK 43 guns in a new twin mount and offered better firepower than any former German AA tank, it also retained many weaknesses from its predecessors: an open turret with only light armor and a high silhouette. But due to the lack of time and resources, the ‘Ostwind II’ was the best thing that could be realized on short notice, and with the perspective of more effective solutions within one year’s time it was rushed into production.
The ‘Ostwind II’ system was an open, roughly diamond-shaped, octagonal turret, very similar in design to the Panzer IV-based ‘Wirbelwind’ and ‘Ostwind’ (which was re-designated ‘Ostwind I’). As a novelty, in order to relieve the crew from work overload, traverse and elevation of the turret was hydraulic, allowing a full elevation (-4° to +90° was possible) in just over four seconds and a full 360° traverse in 15 seconds. This had become necessary because the new turret was bigger and heaver, both the weapons and their crews required more space, so that the Ostwind II complex could not be mounted onto the Panzer IV chassis anymore and movement by hand was just a fallback option.
In order to provide the ‘Ostwind II’ with a sufficiently large chassis, it was based on the SdKfz. 171 Panzer V medium battle tank, the ‘Panther’, exploiting its bigger turret ring, armor level and performance. The Panther chassis had, by late 1944, become available for conversions in considerable numbers through damaged and/or recovered combat tanks, and updated details like new turrets or simplified road wheels were gradually introduced into production and during refurbishments. Mounting the ‘Ostwind II’ turret on the Panzer VI (Tiger) battle tank chassis had been theoretically possible, too, but it never happened, because the Tiger lacked agility and its protection level and fuel consumption were considered impractical for an SPAAG that would typically protect battle tank groups.
The ‘Ostwind II’ turret was built around a motorized mount for the automatic 3.7 cm FlaK 43 twin guns. These proven weapons were very effective against aircraft flying at altitudes up to 4,200 m, but they also had devastating effect against ground targets. The FlaK 43’s armor penetration was considerable when using dedicated ammunition: at 100 m distance it could penetrate 36 mm of a 60°-sloped armor, and at 800 m distance correspondingly 24 mm. The FlaK 43’s theoretical maximum rate of fire was 250 shots/minute, but it was practically kept at ~120 rpm in order to save ammunition and prevent wear of the barrels. The resulting weight of fire was 76.8 kg (169 lb) per minute, but this was only theoretical, too, because the FlaK 43 could only be fed manually by 6-round clips – effectively, only single shots or short bursts could be fired, but a trained crew could maintain fire through using alternating gun use. A more practical belt feed was at the time of the Ostwind II's creation not available yet, even though such a mechanism was already under development for the fully enclosed Coelian turret, which could also take the FlaK 43 twin guns, but the armament was separated from the turret crew.
The new vehicle received the official designation ‘Sd.Kfz. 171/2 Flakpanzer V’, even though ‘Ostwind II’ was more common. When production actually began and how many were built is unclear. The conversion of Panther hulls could have started in late-1944 or early-1945, with sources disagreeing. The exact number of produced vehicles is difficult to determine, either. Beside the prototype, the number of produced vehicles goes from as little as 6 to over 40. The first completed Ostwind II SPAAGs were exclusively delivered to Eastern front units and reached them in spring 1945, where they were immediately thrown into action.
All Flakpanzer vehicles at that time were allocated to special anti-aircraft tank platoons (so-called Panzer Flak Züge). These were used primarily to equip Panzer Divisions, and in some cases given to special units. By the end of March 1945, there were plans to create mixed platoons equipped with the Ostwinds and other Flakpanzers. Depending on the source, they were either to be used in combination with six Kugelblitz, six Ostwinds and four Wirbelwinds or with eight Ostwinds and three Sd.Kfz. 7/1 half-tracks. Due to the war late stage and the low number of anti-aircraft tanks of all types built, this reorganization was never truly implemented, so that most vehicles were simply directly attached to combat units, primarily to the commanding staff.
The Ostwind II armament proved to be very effective, but the open turret (nicknamed ‘Keksdose’ = cookie tin) left the crews vulnerable. The crew conditions esp. during wintertime were abominable, and since aiming had to rely on vision the system's efficacy was limited, esp. against low-flying targets. The situation was slightly improved when the new mobile ‘Medusa’ and ‘Basilisk’ surveillance and target acquisition systems were introduced. These combined radar and powerful visual systems and guided the FlaK crews towards incoming potential targets, what markedly improved the FlaKs' first shot hit probability. However, the radar systems rarely functioned properly, the coordination of multiple SPAAGs in the heat of a low-level air attack was a challenging task, and - to make matters worse - the new mobile radar systems were even more rare than the new SPAAGs themselves.
All Ostwind II tanks were built from recovered ‘Panther’ battle tanks of various versions. The new Panther-based SPAAGs gradually replaced most of the outdated Panzer IV AA variants as well as the Ostwind I. Their production immediately stopped in the course of 1945 when the more sophisticated 'Coelian' family of anti-aircraft tanks with fully enclosed turrets became available. This system was based on Panzer V hulls, too, and it was soon followed by the first E-50 SPAAGs with the new, powerful twin-55 mm gun.
Specifications:
Crew: Six (commander, gunner, 2× loader, driver, radio-operator/hull machine gunner)
Weight: 43.8 tonnes (43.1 long tons; 48.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in)
Height: 3.53 m (11 ft 6 3/4 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 46 km/h (29 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
2× 37 mm (1.46 in) FlaK 43 cannon in twin mount with 1.200 rounds
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
The kit and its assembly:
This was a spontaneous build, more or less the recycling of leftover parts from a 1:72 Revell Ostwind tank on a Panzer III chassis that I had actually bought primarily for the chassis (it became a fictional Aufklärungspanzer III). When I looked at the leftover turret, I wondered about a beefed-up/bigger version with two 37 mm guns. Such an 'Ostwind II' was actually on the German drawing boards, but never realized - but what-if modelling can certainly change that. However, such a heavy weapon would have to be mounted on a bigger/heavier chassis, so the natural choice became the Panzer V, the Panther medium battle tank. This way, my ‘Ostwind II’ interpretation was born.
The hull for this fictional AA tank is a Hasegawa ‘Panther Ausf. G’ kit, which stems from 1973 and clearly shows its age, at least from today’s point of view. While everything fits well, the details are rather simple, if not crude (e. g. the gratings on the engine deck or the cupola on the turret). However, only the lower hull and the original wheels were used since I wanted to portray a revamped former standard battle tank.
The turret was a more complicated affair. It had to be completely re-constructed, to accept the enlarged twin gun and to fit onto the Panther hull. The first step was the assembly of the twin gun mount, using parts from the original Ostwind kit and additional parts from a second one. In order to save space and not to make thing uber-complicated I added the second weapon to the right side of the original gun and changed some accessories.
This, together with the distance between the barrels, gave the benchmark for the turret's reconstruction. Since the weapon had not become longer, I decided to keep things as simple as possible and just widen the open turret - I simply took the OOB Ostwind hexagonal turret (which consists of an upper and lower half), cut it up vertically and glued them onto the Panther turret's OOB base, shifting the sides just as far to the outside that the twin gun barrels would fit between them - a distance of ~0.4 inch (1 cm). At the rear the gap was simply closed with styrene sheet, while the front used shield parts from the Revell Ostwind kit that come from a ground mount for the FlaK 43. Two parts from this shield were glued together and inserted into the front gap. While this is certainly not as elegant as e. g. the Wirbelwind turret, I think that this solution was easier to integrate.
Massive PSR was necessary to blend the turret walls with the Panther turret base, and as a late modification the opening for the sight had to be moved, too. To the left of the weapons, I also added a raised protective shield for the commander.
Inside of the turret, details from the Ostwind kit(s), e. g. crew seats and ammunition clips, were recycled, too.
Painting and markings:
Since the Ostwind II would be based on a repaired/modified former Panzer V medium battle tank, I settled upon a relatively simple livery. The kit received a uniform finish in Dunkelgelb (RAL 7028), with a network of greenish-grey thin stripes added on top, to break up the tank's outlines and reminiscent of the British ‘Malta’ scheme, but less elaborate. The model and its parts were initially primed with matt sand brown from the rattle can (more reddish than RAL 7028) and then received an overall treatment with thinned RAL 7028 from Modelmaster, for an uneven, dirty and worn look. The stripes were created with thinned Tamiya XF-65 (Field Grey).
Once dry, the whole surface received a dark brown wash, details were emphasized with dry-brushing in light grey and beige. Decals were puzzled together from various German tank sheets, and the kit finally sealed with matt acrylic varnish.
The black vinyl tracks were also painted/weathered, with a wet-in-wet mix of black, grey, iron and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
A bit of recycling and less exotic than one would expect, but it’s still a whiffy tank model that fits well into the historic gap between the realized Panzer IV AA tanks and the unrealized E-50/75 projects. Quite subtle! Creating the enlarged turret was the biggest challenge, even, even more so because it was/is an open structure and the interior can be readily seen. But the new/bigger gun fits well into it, and it even remained movable!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
In the period immediately after the Second World War the world found itself with hundreds of thousands of surplus aircraft and just as many surplus aviators. Most aircraft would meet the salvage blade and the smelter’s fiery furnace. Most pilots would return to civilian life, the bulk of them never to fly again.
With the plethora of military aircraft languishing in desert lots awaiting a certain fate, some of those disenfranchised aviators and aircraft designers would look to new growing markets for salvation. One of these emerging markets was the new-found requirement for fast and capable business transport aircraft for executives looking to link business interests across the vast distances of the nation. With few purpose-built business aircraft available for executives, medium bombers became the drug of choice for high flying big shots—fast, powerful and, with the right interior appointments, a visual statement of their success and power.
In early variants like the Executive, On Mark simply removed military equipment and replaced them with fairings and civil avionics, sealed the bomb bay doors, soundproofed the cabin, and added additional cabin windows. Later models had special wing spars designed to give more interior room, pressurization and equipment from bigger surplus aircraft such as DC-6 brakes and flat glass cockpit windows. It was an elegant mashing together of equipment, but it was not a true business aircraft.
In the Sixties, Jet Craft Ltd. of Las Vegas, Nevada, went for a different interpretation of the same topic: The company had purchased a number of former Royal Australian Air Force Vampire trainers and RCAF single-seaters, which were to be converted to a new design for a business aircraft called 'Mystery Jet', offering 4-8-seats.
Jet Craft worked with stellar British conversion experts Aviation Traders to do the structural design work. Aviation Traders Limited (ATL) was a war-surplus aircraft and spares trader formed in 1947. In 1949, it began maintaining aircraft used by some of Britain’s contemporary independent airlines on the Berlin Airlift. In the early 1950s, it branched out into aircraft conversions and manufacturing.
Aviation Traders worked on the drawings and the structural mock-ups. A full-scale mock-up of the Mystery Jet languished at Southend airport for a decade, trying to lure owners and operators into buying it. And this actually happened: about twenty former Vampire airframes were converted into Mystery Jet business aircraft, tailored to the customers' needs and desires.
The Mystery Jet was just what it looked like: a former De Havilland Vampire with a new, roomy nose section grafted onto it. The cabin was pressurized, and was available in two different lengths (130 and 160 inches long, with two or three rows of seats and reflected in the aircraft's title) and several window and door options - the most exotic option being the "Landaulet" cabin which featured a panoramic roof/window installation over the rear pair of seats (or, alternatively, a two-seat bench).
The original Goblin engine was retained, CG was retained due to the fact that the new cabin was, despite being considerably longer than the Vampire's nose, the biggest version being more than 8 feet longer. The new front section was much lighter, though, e. g. through the loss of the heavy cannons and their armament, as well as some more military avionics. The loss of fuel capacity through the enlarged cabin was compensated through fixed wing tip tanks, so that range was on par with the former military jet, just top speed and ceiling were slightly inferior.
Anyway, prices were steep and from the United States more modern and economical offerings ruled the market. Maintaining a former military jet was also a costly business, so, consequently, after a slight buzz (more of a hum, actually) in the early Seventies, the Mystery Jet and Jet Craft of Las Vegas, also fuelled by some dubious business practices by the company's owner, disappeared. Even further developments of the original concept, e .g. with a wide body for up to 14 passengers and two engines, would not save the Mystery Jet from failure.
General characteristics:
Crew: 1 pilot plus 5-7 passengers
Length (Mystery Jet 160): 38 ft 5 in (11.73 m)
Wingspan incl. tip tanks: 39 ft 7 1/2 in (12.09 m)
Height: 8 ft 10 in (2.69 m)
Wing area: 262 ft² (24.34 m²)
Empty weight: 7,283 lb (3,304 kg)
Max. take-off weight: 12,390 lb (5,620 kg)
Powerplant:
1× de Havilland Goblin 3 centrifugal turbojet, rated at 3,350 lbf (14.90 kN)
Performance:
Maximum speed: 516 mph (832 km/h)
Cruising speed: 400 mph (644 km/h)
Range: 1,220 mi (1,960 km)
Service ceiling: 37,700 ft (11,500 m)
Armament:
None
The kit and its assembly:
The first finished work in 2017 is a different kind of whif, one of the few civilian models in my collection. This conversion looks sick, but ,as weird as it may seem, the Business-Jet-From-Vintage-Vampires idea was real. For more information, and the source from where some of the backgound story was gathered, please check:
www.vintagewings.ca/VintageNews/Stories/tabid/116/article...
Anyway, my build is just a personal interpretation of the original concept, not a true model of the Mystery Jet. In fact, this was limited through the donor parts for this kitbash.
The rear end was the smaller problem: Airfix offers a very good Vampire T.11 trainer with excellent detail and fit - the passenger cabin was the bigger challenge. Finding "something" that would fit in shape and especialsl size was not easy - my first choice was a nose section from a vintage 1:100 Antonow An-24 from VEB Plasticart (still much too wide, though), and the best solution came as an accidental find in a local model kit shop where I found a heavily discounted MPM Focke Wulf Fw 189 B-0 trainer.
The reason: the kit was complete, but the bag holding the sprues must have been heated immensely during the packaging process: the main sprues were horrible warped - except for some single parts including the canopies and the sprue with the cabin! Height wind width were perfect, only the boxy shape caused some headaches. But I guess I would not find anything better...
That said, the transplantation mess started. I never built any of the two donor kits before, so I carefully tried to find the best place where to cut the Vampire's nose - I ended up with a staggered solution right in front of the wing root air intakes.
The Fw 189's cabin was bit more tricky, because I had to get rid of the original wing roots and wanted to use as much space as possible, up to the rear bulkhead and together with the rear cabin window. The idea was to blend the Fw 189's roof line into the Vampire's engine section, while keeping the original air intake ducts, so that the overall arrangement would look plausible.
The result became a pretty long nose section - and at that time the tail booms were not fited yet, so I was not certain concerning overall proportions. The cabin's underside had to be improvised, and blending the boxy front end with a flat underside into the tubby, round Vampire fuselage caused some headaches. I also had to re-create the lower flank section with styrene sheet, because I had originally hoped that I could "push" the new cabin between the wing roots - but that space was occupied by the Goblin's inlet ducts.
Inside of the cabin, the original floor, bulkheads and dashboard were used, plus five bucket seats that come with the MPM kit. In order to hide the body work from the inside, side panels from 0.5mm styrene sheet were added in the cabin - with the benefit of additional stability, but also costing some space... Since the machine was built with closed cabin, a pilot was added - actually a bash of a WWII Matchbox pilot and a German officer from an ESCI tank kit. Looks pretty good and "professional". ;-)
Once the cabin was in place, lots of PSR followed and the tail booms could be fitted. To my relief, the longer nose did not look too unbalanced (and actually, design sketches for the original Mystery Jet suggest just this layout!) - but I decided to add wing tip tanks which would beef up wingspan and shift the visual mass slightly forward. They come from an 1:100 Tamiya Il-28, or better the "R" recce variant.
The only other big change concerned the nose wheel. While the OOB wheel and strut were used, the well is now located in front of the wheel and it would retract forwards, giving the nose a more balanced look - and the cabin arrangement made this change more plausible, too.
Another addition were three small porthole windows in the solid parts of the cabin flanks - one of them ending up in the middle of the cabin door on starboard, where a solid part of the canopy roof lent itself for a good place just behind the pilots' seats.
Painting and markings:
I cannot help it, but the thing looks like a design from a vintage Tintin or Yoko Tsuno comic! This was not planned or expected - and actually the paint scheme evolved step by step. I had no plan or clue what to apply - the real Mystery Jet mock-up in silver with blue trim looked sharp, but somehow I did not want blue. So I started with the interior (out of a necessity, as the fuselage had to be closed before any further work progress at some point) and settled for plushy, British colors: Cream (walls and roof) and Claret-Red (carpet and seats).
I tried to find something for the outside that would complement this choice of colors, and eventually settled on Ivory and White (upper and lower fuselage halves, respectively) with some deep red trim, plus pale grey wing surfaces. I even considered some thin golden trim lines, but I think this would have been too much?
The trim was created with decals tripes from generic sheet material, the black anti-glare panel was painted, though. As a color contrast I painted some of the upper canopy panels in translucent, light blue, and this looks very good.
The wings received a lightb treatment with thinned black ink, in order to emphasize the engravings. No post-shading was done, though, for a rather clean look.
Most markings were puzzled together; the registration G-AZRE actually belonged to a Vickers Vanguard (from the 1:144 Airfix kit), the large letters above and under the wings were created with single 45° letters (USAF style). Most stencils come from a Vampire trainer aftermarket sheet from Xtradecal, from the OOB sheet only the "No step" warnings on the wings were used.
Finally, the kit was sealed with a semi-matt coat of varnish, except for the anti-glare panel, which recived a matt coat. The three small windows received artificial panes made from Clearfix, after their rims had been painted black.
A messy project, and you better do not take a close look. But the overall elegance of this creation surprises me - the real Mystery Jet already looked sleek, and this model, despite a more blunt nose, confirms this impression. The colors work together well, too - and the thing has a dedicated retro feel about it. Tintin might be on board, as well as Elton John, both sharing a cigar on the rear seats... ;)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
How it came to be:
It has been a long time since I built a "real" airplane kit, and this one here is a one-of-a-kind. After a bleak phase with lots of reading about German WWII airplane projects I found a spark to fire up a project I kept in the back of my mind for a long time: building one of these semi-fictional WWII airplanes from scratch. These astonishing designs were on the drawing boards at their time and rarely made it beyond that. Only a few reached prototype status at the end of the war, but today these partly weird designs are the basis of today's Luft '46 model kit genre: What-if airplanes, based on sketches, construction plans and pure speculation, in the case the war would have gone on.
At this point I want to make clear that this kit has NO political background. It is not even intended, and any Nazi symbolism is intentionally avoided and rejected. It is rather a hommage to an impressive design and, from my personal point of view, pure science fiction, based on vague historic facts.
Some historic background on this plane:
This plane is a Focke-Wulf study from 1941 for a heavy fighter. It was developes shortly after the Fw 190 introduction and surely influenced by the twin-boom Fw 189 reconnaissance aircraft, which became very popular due to its high agility, stable flight characteristics and toughness against enemy fire. The small "Flitzer" turbine engine fighter will surely also have had some impact, since it was on Focke Wulf's drawing boards in 1943, too.
This beast here would have been a much larger airplane, though: a heavy, high performance fighter built around the potent BMW 803 engine: a 28 cylinder, liquid-cooled radial engine in the 4.000 hp output range - comparable to the P&W-R-4360 Wasp Major engine (the so-called "corncob") which actually found its way into the Vought F2G Corsair but "just" put out 3.000 hp.
For reference, this Focke Wulf design was quite comparable to the US American XP-54, both in design and performance
The Focke Wulf fighter never received an official designation, and saw some mutation in the course of 1943. Even though the basic layout as a twin-boom, single pusher engine airplane with a tricycle landing gear was retained, the radiator placements, wing and tail shape changed.
From the original 1941 annular radiator design (a ring opening around the central fuselage), the arrangement was modified in April 1943 to a single drum radiator in the nose and, alternatively, twin drum radiators in the front ends of the tailbooms. The latter design is the layout I chose for my model, or better: where I ended up (see below).
Valuable sources:
Walter Schick, Ingolf Meyer: Luftwaffe Secret Projects, Fighters 1939-1945, Hinckley, 2005 (this is an English translation of the original German edition, Stuttgart, 1994, but with many colored illustrations added).
Sundin, Claes; Bergstroem, Christer: Deutsche Jaqgdflugzeuge 1939-1945 in Farbprofilen, Bonn, 1999.
www.luft46.com - a great online institution which offers many facts, information and artwork about secret German WWII airplane designs like this one - you can find a nice CG graphic of the initial 1941 design of this machine there.
wp.scn.ru - "Wings Palette" - a Russian website which collects plane profiles and some details about the respective machine's history. A nice reference archive, since a lot information concerning colors can be found there, too. Handling is poor, though. But once you get it, it is a great model kit building source.
The construction:
Anyway, this Focke Wulf design never left the drawing board, and this model here is just an interpretation of the vague design sketches I found in literature. It is also limited by the use of various existing kits as a kitbashing basis. My idea was to build a what-if version of the airplane if it had entered service, which would allow some deviations from the blueprints and also leave some room for a semi-realistic Luftwaffe livery.
What went into this model:
Grumman Panther (1:72, Matchbox/Revell):
- Main body,
- Parts of the outer wings
- Cockpit interior
- Canopy
Lockheed P-38E Lightning (1:72; Airfix):
- Tailbooms
- Horizontal fin
- Cockpit parts
- Landing gear
- Propeller spinners
Messerschmidt Me 262 A-2a (1:72, Hobby Master):
- Outer wings
- Wheels
Dornier Do 217N (1:72, Italeri):
- Engine cowling (rear central fuselage)
- Propellers
Other smaller donations:
- Kamow Ka-25 (1:72, Airfix): Vertical fins
- Chance Vought XF5U-1 (1:72, Hasegawa): Propeller spinners
- Chance Vought F4U (1:72, Matchbox): Engine block
- Messerschmidt Me-110 (1:72, Matchbox): Pilot figure
...and a lot of small stuff of unknown origin!
Laying the foundations
The basic choice for donation kits was quickly done: the central body would come from the Grumman F9F-4 Panther kit from Matchbox (currently released by Revell). Its overall proportions match well with the Focke Wulf design's central body and its size well, and the kit's construction with folded wings and a separate tail fin allowed easy modification for the pusher engine layout.
Originally, I wanted to use the Panther's jet intakes as radiator openings for a fictional (and more elegant) design alternative to the "official" radiator solutions, but I had to skip this idea (see below). The slender tailbooms come from a vintage Airfix P-38H kit and are much more slender than the Focke Wulf designs. Furthermore, the original Focke Wulf main landing gear looks as if it would retract inwards - which collided with my intial radiator ideas! Due to the pusher propeller, a much longer landing gear than the Panther's wpould be necessary, and this would have needed much bigger compartments. Enlarging them appeared too complex, and there's be actually no space with my inital wing root radiator idea. Therefore, I decided to retract the main wheels into the twin booms, and the P-38 pieces were just perfect for my ideas (and at hand). They'd undergo major modifications, though.
The twin booms were to be mounted onto the Panther's inner wings, and from there the rest of the model design would come when the parts were needed or available, since matching proportions for a balanced look is an important aspect when you build from scratch - a lesson I learned through varioius mecha bashings and modifications. I had some plans though: for the outer wings, for instance, I considered straight wings from a Fw 190 or parts from a Do 335 "Arrow", since these are slightly swept and would match the original drawings quite well.
The body parts get assembled
Work started straightforward with the tailbooms: they needed total cleaning, so that the P-38 look would disappear as much as possible: intercooolers and turbochargers had to go, and the engines were to "disappear", too. The Airfix kit is pretty old and clumsy, but offers massive material to work with. Another positive aspect is that the main landing gear compartments are complete parts, including the doors and all the inside. A neat arrangement which would later allow a switch between extended and retracted wheels!
The Panther's fuselage was cut open at the rear end to hold the BMW 803 engine, which requiered a new cowling. This came from a Dornier Do 217 with BMW 801 engines from Italeri, the BMW 803 dummy inside comes from a Matchbox F4U kit. The diameters of both segments were pretty equal and were easily merged with putty.
The Panther's front end was taken as it is, including the cockpit. The latter is actually very detailed for a Matchbox kit, with side consoles, a dashboard with instruments and even steering stick is included. I just fitted a better seat and a WWII pilot figure, which received an oxygen mask and its head was turned left for a more vivid look.
Since the front wheel had to be much longer than the Panther pieces I decided to use the P-38 front landing gear. Consequently, I enlarged its compartment (towards the nose, with a transplanted interior) and moved the Panther's nose guns from their original low position upwards. The kit's nose was filled with lots of lead in order to ensure a good weight on the front wheel for free standing on its tricycle undercarriage.
The BMW 803's contraprops had to be built from scratch. The basis were two leftover three-bladed rotors from the aforementioned Do 217 Italeri kit (they had just the correct diameter!) for the static display version, and two transparent plastic discs of the same diameter in order to mimic running propellers for photo shooting purposes in flight.
The spinners were a nightmare, though. They come from a wrecked 1:72 Hasegawa kit of a Chance Vought XF5U-1 (The "Flying Pancake"). Cut into three pieces, the three-bladed props were implanted into the spinner segments and a metal axis inserted, so that the propellers can be moved and interchanged. A plastic tube inside of the engine dummy is the respective adapter and offers a stable hold.
Trouble! ...and even more trouble!
As rough work progressed, some fundamental problems became obvious:
a) the P-38 booms were too long at their front, and their diameter was much too large. Cutting the front ends off did not help much, since I would have had to create new front covers/noses from putty and their bulky shape would look very unsinspired - way off of the Focke Wulf design! Hence, I finally decided to switch my personal design plan from the wing root intake arrangement to the authetic twin drum radiator layout from April 1943.
The Panther's air intakes would be totally closed, leaving pretty "fat" wing roots of high thickness. But since armament was supposed to be loacted in both the nose and wing roots of this machine (see below), this offered a good chance to cover the mess up a little.
Finding something to act as drum radiators was another problem that followed suit! At first I thought I'd become happy with two leftover engines from a Matchbox PB4-Y2 Privateer in 1:72 scale. These are/were actually Twin Wasp radial engines, but their diameter, the grates inside and their cooling flaps made them suited for my kit. They fitted well, but it just did not look right (see some of the WIP pics).
Heavy-hearted I skipped this approach and also built the drums radiators from scratch. I finally found some good parts in model railraod equipment: in a HO Modulars set from Cornerstone with various roof detils for industrial buildings, I found two nice "tubs" (parts for motorized vents) which were merged with lots of putty and sanding onto the clipped tail booms. The radiator arrangement inside was made up from parts from a 1:72 scale Panzer IV(!) and from the Airfix P-38 spinners. The cooling flaps are very thin Plasticard. Comparing this solution with the original plane sketches, the result looks convicing and more "realistic" than originally planned! Whew...
b) The wing root/twin boom area was another source of headaches, since I had to merge parts that were never supposed to meet, in places even less intended for construction. But a mini drill with a diamond cutter and epoxy putty are wonderful things!
Spacers between the Panther hull and the booms had to be made, closing a 5mm gap on each side because the propeller needed this much space between the booms. Parts of the leftover Panther kit's outer wings were the basis, and the original P-38's horizonmtal fin could be used, too. Sound simple, but almost the complete area had to be remodeled with putty.
The big picture becomes clear(er)
Now that the main part of the body was finished, the final missing pieces could be added and first details defined.
For the outer wings, I finally settled on parts from a Me 262 from Hobby Boss. These have the advantage that they are massive pieces (not two halves, as usual) and that the Me 262's engine nacelles could easily be left away. As a result, I had two thin, slightly swept wings which could easily be cut into the right length for my project. Fixing them to the P-38 tail booms was another story, though!
The original Focke Wulf design uses simpler and thicker wings, which look very similar to the Do 335. But I justify my choice with the advancements in aerodynamics since the 1943 revision of the original plane's design and the effective introduction of the Me 262 into production and service. Using these parts or a similar design for high speeds in another airplane appears plausible in order to get this machine into the air quickly, and the slender Me 262 wings blend well with the angles of the inner wings from the Panther.
The vertical fins also puzzled me for some time. The round P-38 fins had definitively to go, but the different Focke Wulf design sketches did not show a definitive vertical fin shape or arrangement. Since I wanted an old-fashioned, not jet-like look, I went for parts from the scrap box again. And, believe it or not, the model's retro-looking vertical fins actually come from a helicopter: from an antique 1:72 scale Kamow Ka-25 "Hokum" from Airfix!
The main landing gear was taken from the P-38, but the wheels come from the scrap box. I am not sure where these come from - they could come from a Douglas Skyknight from Matchbox. Since the Airfix kit's contruction offers the main landing gear to be inserted as complete units, I also used the covers for the retracted gear for the photo shootings, for some pictures in flight.
Armament:
Being a heavy daylight fighter, I stuck to the original 1941 design armament: four fixed 20mm MG 151/20 in the nose, plus "provision for two larger calibre cannons", plus two or four machine guns installed in the wing-roots. The firepower would have been massive!
For my model I adopted the four 20mm guns in the upper nose and added four 30mm MK 103 cannons in the wing roots. Since these offered now lots of space, this arrangement would make the thick wing and the blended bodywork plausible, without looking exagerrated.
The nose guns are just thin polystyrol sticks, the larger calibre guns are syringe needles cut to length with the beloved diamond cutter.
But beyond the guns, I also wanted to add some of the experimental air-to-air weapons that were under development against allied bomber forces in 1945. Among those was the world's probably first guided AAM, the Kramer X-4: a relatively small, wire-guided missile with a range of just 3 miles and a contact detonator.
Tests with this innovative weapon were conducted in the late war months, and the X-4 was suppoesed to be carried by e. g. Me 262 fighters. The targeting procedure would easily overstress a single pilot's capabilities, though, esp. in the heat of a bomber formation attack at high speeds. Therefore, field tests were rather performed by multi-seated planes like the Ju 88, and the X-4 did not enter serious service.
But this missile would have been a plausible weapon for this Focke Wulf design, and so two X-4s found their way with starting racks under my model's wings.
Each missile consists of nine parts and had to be built from scratch. The body is a streamlined, modern 250 lbs. Mk 81 bomb, the wings were cut from thin polystyrol. The wire spools on the wing tips are actually parts from a HO scale fence(!), the acoustic detonator nose are leftover tool handles from a 1:35 scale tank kit.
Livery and markings:
Being a semi-fictional design that never left the drawing board, I tried to implement a "typical" late war Luftwaffe livery. Benchmarks were Me 262 fighter paint schemes, as well as late Fw 190D-9 and Ta-152 machines. Since the plane itself was already centre of attraction, the paint job should be rather subtle, yet authentic.
All interior areas (cockpit, engine, landing gear) were painted in RLM 02. For the outside I ended up with a basic livery in RLM 74/75/76, using colors from Testor's Military Models and Figures range, 2071, 2084, 2085, 2086.
The upper splinter scheme with faded/mottled fuselage sides (which includes RLM 02 in order to create a soft color transition from the dark upper sides into the light RLM 76 underneath, a common practice in field conditions) was derived from a Me 262 profile. This machine also contributed the dark green (RLM 82) color fields on the nose and other fuselage parts. These would not have been standard livery, I think, rather improvised in the field. But this subtle detail prevents the plane from being all grey-in-grey.
The markings come from various decal sheets and were a kind of challenge. I intended to mark this machine as being part of an Erprobungskommando (test unit), or EKdo or EK, for short. But these squadrons would not have special designations, though. Prototypes woud carry a "V"-number (for Versuch/test), but I wanted a machine already in service. So I made up a semi-fictional squadron marking as a part of the late Reich defense.
Typical markings are the colored band at the rear fuselage, its color and scheme being associated with certain Jagdgeschwader (JG) wings, dedicated to interception tasks. The red tail band(s) denote this machine as being part of JG 1, which comprised several Staffeln/groups and squadrons with individual emblems. The JG 1's red tail band would not have been used in the late war years in real life, but, hey, it LOOKS good, and we're finally doing fictional things here! As a side note, JG 1 was the only wing (to be exact: 1./JG 1 and later, in April 1945 III./JG 1) to use the He 162 Salamender jet fighter, so JG 1 appears to be a general plausible choice for this fictional Focke Wulf fighter.
The red wave symbol should, AFAIK, mark the 2nd group of that wing, but it could also be a symbol for the pilot's rank - that's quite obscure and had not been handled consistently. For squadron markings I setlled on 6./JG 1 - the red wyvern was this group's squadron emblem.
Decals come from aftermarkets sheet from TL-Modellbau (superb quality) and others i e. from a MiG-25 from Hasegawa (the red bort number) or the leftover decal sheet of the Hobby Boss Me 262 (mostly stencellings and warning signs).
After application of the decals on the semi-matte paint, everything was sealed under matte varnish.
The X-4 missiles were painted in a color livery I found for a museum X-4. Other test missiles were painted in black and white, checkered. Not sure if the field use missiles would have looked that bright, but for a test unit, the blank fuselage and the hi-vis, orange fins look just right and make a nice contrast to the dull rest of the machine.
Finally...
Lots of work, but the result looks better and more harmonious than I expected. O.K., the Panther's fuselage and cockpit deviate from the Focke Wulf sketches - but the plane I built would have had entered service 3 years after its redesign to the drum radiator design, and details like the bubble canopy or more modern weaponry would have certainly been incorporated.
The finish is not as good as a kit "out of the box", but considering the massive putty work, this machine looks quite good :)
And, after all, it is a fictional design!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The ZSU-62 (Zenitnaya Samokhodnaya Ustanovka = anti-aircraft self-propelled mount) was a potential successor for the Soviet ZSU-57-2 SPAAG, developed in parallel with the ZSU-23-4. But unlike its brethren, the ZSU-62 was only produced in limited numbers, but it received limited fame during its late operational second-line career when it was successfully deployed to Afghanistan.
The ZSU’62’s roots were laid down just after WWII with the ZSU-57-2. The first prototype (Objekt 500) was completed in the summer of 1950, production began in 1955. The vehicle was built using a modified chassis of the new T-54 tank and was armed with two S-68 57 mm cannons – at the time the most powerful guns mounted in an anti-aircraft system. The modification of the chassis included reducing the road wheels per side to four and using lighter armor. The ZSU-57-2 was powered by a V-54 12-cylinder diesel engine providing 520 hp. Despite the weight of 28 tons, thanks to the strong engine, the maximum speed was 50 km/h. With a fuel load of 850 liters, the operational range was 420 km.
Each cannon had a (theoretical) rate of fire of 240 rounds per minute with a muzzle velocity of 1,000 m/s. Maximum horizontal range was 12 km (with an effective range against ground targets of up to 4 km / 2.5 miles), maximum vertical range was 8.8 km (with a maximum effective vertical range of 4.5 km / 14,750 ft). The effective range, when used against flying targets, was 6 km. Armor-piercing rounds were able to penetrate 110 mm armor at 500 m or 70 mm armor at 2,000 m (at 90° impact angle).
Rate of fire was 120 RPM, but this was only a theoretical number, because each gun was fed with separate four-shot magazines so that only bursts and no continuous fire was possible. Both fragmentation and armor-piercing ammunition were available. The ZSU-57-2’s total ammunition load was 300 rounds, with 176 rounds being stored inside the turret and the remaining in the hull. To efficiently operate the vehicle, six crew members were needed: commander, gunner, loader, driver, and two sight adjusters.
The ZSU-57-2 had serious firepower that could easily destroy any aerial target but had many issues. The greatest weaknesses were the lack of modern range-finding and radar equipment, the impossibility of engaging targets at night or while on the move, the lack of protection for its crew (being open-topped), and low ammunition count. Nevertheless, more than 2.000 ZSU-57-2s were eventually built. While many would be sold to other Warsaw Pact countries, like East Germany, Romania, and Poland, its service within the Soviet Army was limited, because of its many operational deficiencies.
This led in 1957 to a new SPAAG program for the Soviet Army and initiated the development of the ZSU-23-4 "Shilka", the ZSU-37-2 "Yenisei" and a new ZSU-57-2 “Kama” (all baptized after Russian rivers) with the outlook to replace the original ZSU-57-2 by the mid to late Sixties. These vehicles were intended for AA defense of military facilities, troops, and mechanized columns on the march. “Shilka” was intended for close range defense (esp. against low-flying attack helicopters) while the more powerful guns of "Yenisei" and “Kama” were judged to be effective at covering the inner dead-zone of Soviet surface-to-air missile systems between 1.000 and 6.000 m altitude, with a focus on attack aircraft and more heavily armored targets.
All designs were based on existing tracked chassis’ and featured completely enclosed turrets as well as a proven radar system, the RPK-2 "Tobol" radar (NATO designator: "Gun Dish"). The ZSU-37-2 was soon dropped in favor of the higher firepower and range of the 57mm guns, so that both “Shilka” and “Kama” entered the hardware stage at Omsk Works No. 174.
However, “Kama” lagged behind the “Shilka” development because several technical and conceptual problems had to be solved. For instance, even though the armament still consisted of two proven S-68 cannon, the weapons’ mount had to be developed new to fit into the enclosed cast turret. To save space, both weapons were now mounted directly side-by-side. Their feeding system was furthermore changed from magazines to belts, what considerably improved the SPAAG’s firepower and now allowed continuous fire at a higher rate of fire of 150 RPM per gun. For sufficient flexibility, a belt-switching mechanism allowed to choose between two different ammunition supplies: each gun had supplies of 220 and 35 rounds, normally occupied with HE fragmentation and armor-piercing tracer (AP-T) shells, respectively, against aerial and armored ground targets. Changing between the two feeds just took a couple of seconds.
The twin S-68s were recoil-operated and the whole mount (without feeding mechanism) weighed 4,500 kg. The guns had a recoil of between 325 and 370 mm, and each air-cooled gun barrel, fitted with a muzzle brake, was 4365 mm long (76.6 calibers). The weapons could be elevated or depressed between −5° and +80° at a speed of between 0.3° and 32° per second, while the turret could traverse 360° at a speed of between 0.2° and 52° per second. Drive was from a direct current electric motor and universal hydraulic speed gears.
The “Kama” crew numbered four: driver (in the hull), commander, gunner and radar operator (all in the turret). The heavy guns, their ammunition supply and the radar system had to be housed in a turret, together with decent armor, and this resulted in a considerable volume and weight (a single 57 mm projectile alone already weighed 2.8 kg). Several layouts were tested, but weight and volume of the systems made it impossible to mate the “Kama” turret on the T-54/55 chassis, which was available in ample numbers for conversions. The limiting factor was the T-54/55’s relatively small turret bearing diameter.
To solve this problem, the “Kama” designers chose the more modern T-62 as chassis basis. It was outwardly very similar to the former T-54/55, but it featured a 2245 mm turret ring (250 mm more than the T-54/55’s bearing) that was able to take a much bigger/wider/heavier turret than its predecessor. Furthermore, the T-62 represented the Soviet Army’s “state of the art”. The choice of the T-62 ensured many component and maintenance communalities with the operational MBT and it also meant that the “Kama” SPAAG could operate in the same environment and the same pace as the T-62. In order to save costs and development time, the T-62 chassis was taken “as is”, with the same engine and armor level as the MBT. There were only minor changes in the electric components, e. g. a more powerful generator for the radar system.
In this combination, “Kama” eventually entered tests and state acceptance trials as “Object 503”. During these tests, some final changes to layout and equipment were made; for instance, the RPK-2’s dish-shaped radome received a retractable mount that allowed the antenna to be raised higher above the turret in order to avoid clutter and to protect the antenna when the vehicle was on the move.
The tests lasted until 1963 and were successful, so that an initial batch of 100 serial production tanks was ordered the same year. In order to avoid confusion with the old ZSU-57-2 from 1955, the new tank with the same armament was pragmatically designated ZSU-62.
Alas, while production of the “Kama” turrets ran up to be mated with T-62 hulls at the Uralvagonzavod factory in Nizhny Tagil, the ZSU-62’s future had already been sealed by the fast pace of technical developments: in the meantime MANPADS (Man Portable Air Defense System) had taken the medium-range SPAAG’s place and a foot soldier could now fulfill the same mission as an expensive and bulky 40 ton tank, so that the medium range/altitude gap between the ZSU-23-4 (which had already entered service) and heavier surface-to-air missile systems would not be filled with a dedicated vehicle anymore. The ZSU-62 had become superfluous the moment it had reached the first frontline units, and large-scale production was immediately stopped.
However, the initial production run was nevertheless completed until 1967, and the ZSU-62s were primarily sent to training units, where the vehicles were – due to their turrets’ shape – nicknamed “черепаха“ (turtle).
This could have been the ZSU-62’s fate, but the Soviet Union’s intervention in Afghanistan brought it back into frontline service. Since December 1978, the Afghan government called on Soviet forces, which were introduced in the spring and summer of 1979 to provide security and to assist in the fight against the mujaheddin rebels. After the killing of Soviet technicians in Herat by rioting mobs, the Soviet government sold several Mi-24 helicopters to the Afghan military and increased the number of military advisers in the country to 3,000. In April 1979, the Afghan government requested that the USSR send 15 to 20 helicopters with their crews to Afghanistan, and on June 16, the Soviet government responded and sent a detachment of tanks, BMPs, and crews to guard the government in Kabul and to secure the Bagram and Shindand airfields. In response to this request, an airborne battalion arrived at the Bagram Air Base on July 7, and ground forces were deployed from Turkmenistan territory into northern Afghanistan, securing the supply lines.
Experience in the mountainous Afghan landscape soon made the shortcomings of standard MBTs apparent, namely their lack of gun elevation, esp. when attacking hideouts and posts in high locations. While the ZSU-23-4 “Shilka” was readily available and used against such targets, it lacked range and firepower to take out protected posts at distances more than 2.000 m away. This led to the decision to send roundabout 40 ZSU-62s to the Afghan theatre of operations, where they were primarily used against ground targets – both fortifications as well as armored and unarmored vehicles. The weapons’ precision and range proved to be valuable assets, with devastating effect, and the vehicles remained in active service until 1985 when their role was more and more taken over by helicopters and aircraft like the new Su-25. The ZSU-62 were, nevertheless, still employed for aerial airfield defense and as a deterrent against ground attacks.
With the USSR’s withdrawal from Afghanistan in 1988 and 1989, the last operational ZSU-62s were retired. In the training units, the vehicles had already been replaced by ZSU-23-4s by 1984.
Specifications:
Crew: Four (commander, gunner, radar operator, driver)
Weight: 37 t (41 short tons; 36 long tons)
Length: 6.63 m (21 ft 9 in) hull only
9.22 m (30 ft 3½ in) with barrel in forward position
Width: 3.30 m (10 ft 10 in)
Height: 3.88 m (12 ft 9 in) with search radar fully extended,
2.84 m (9 ft 3¾ in) with search radar stowed
Suspension: Torsion bar
Ground clearance: 425 mm (16.7 in)
Fuel capacity: 960 l
Armor:
20 mm (hull bottom) – 102 mm (hull front)
Performance:
Speed: 50 km/h (31 mph) on roads,
40 km/h (25 mph) cross country)
Range: 450 km (280 mi) on road;
650 km (400 mi) with two 200 l (53 US gal; 44 imp gal) extra fuel tanks;
320 km (200 mi) cross-country
450 km (280 mi) with two 200-liter extra fuel tanks
Climbing ability: 0.7 m (2.3')
Maximum climb gradient: 30°
Trench crossing ability: 2.5 m (8.2')
Fording depth: 1.0 m (3.3')
Operational range: 500 km (310 mi)
Power/weight: 14.5 hp/tonne (10.8 kW/tonne)
Engine:
1x V-55 12-cylinder 4-stroke one-chamber 38.88 liter water-cooled diesel engine
with 581 hp (433 kW) at 2,000 rpm
Transmission:
Hydromechanical
Armament:
2× S-68 57mm (1.5 in) cannon with 255 rounds each
The kit and its assembly:
This fictional tank model came to be as a classic what-if, based on the question “what could have been a successor of the Soviet ZSU-57-2 SPAAG?”. Not an existential question that comes to your mind frequently, but it made me wonder – also because the real-world successor, the ZSU-23-4 “Shilka”, lacked the ZSU-57-2’s range and large-caliber firepower.
From this conceptual basis I decided to retain the 57mm twin guns, add an RPK-2 radar and mount these into a fully enclosed turret. The latter became a leftover M48 turret, which was suitably bulky, and the gun mount was taken from a Modelcollect E-75 SPAAG. However, both were heavily modified: the gun mount lost its boxy armor protection, just the brass barrels and the joint at the base were retained, the rest was scratched from styrene bits and wire. To accept the much taller weapon mount, the turret front had to be re-sculpted with putty, resulting in a boxier shape with steeper side walls – but the whole affair looks very organic. A simpler commander cupola was used and the whole radar dish arrangement on the rear roof was scratched, too.
The hull came from a Trumpeter T-62, just for the reasons explained in the background: the T-54/55 had a relatively small turret ring, and this caused severe development problems, because the MBT could not take a bigger turret and with it a more powerful cannon. Since this SPAAG would have been developed a couple of years later than the T-54/55, its successor, the T-62, appeared logical, and the “marriage” with the M48 turret worked like a charm. Even the turret’s adapter had the same diameter as the hull opening, I just had to modify the notches that hold it in place! The hull itself remained unmodified.
Painting and markings:
I wanted to place this SPAAG into the Afghanistan theatre of operations, and this was historically not very easy since I had to bridge some fifteen years of service to make this idea work. However, I found a story for the background, and the model received an appropriate paint scheme, based on real world vehicles around 1980 (actually from a BMP-1 operated in northern Afghanistan).
The camouflage consists of three tones, a pale/greyish sand, an olive drab tone and some contrasts in a dark, dull brown – it reminds of the US Army’s more complex MERDC scheme. The paints became Humbrol 167 (Hemp), Tamiya XF-62 (Olive Drab) and Humbrol 98 (Chocolate), even though the green appears darker than expected due to the high contrast with the sand tone.
The model received an overall washing with dark brown, highly thinned acrylic paint, and some dry-brushing with cream, faded olive drab and light grey. The few markings/decals were taken from the T-62 kit, and everything was sealed with matt acrylic varnish before the lower areas were finally dusted with a greyish-sand brown mix of artist pigments, simulating dust.
A plausible result, even though a cast turret might not appear to be a natural choice for a SPAAG? But the AMX-30 SPAAG from 1969 had a very similar design and there was a German prototype called “MATADOR” (a Gepard forerunner from 1968) that had a turret of similar shape, too. However, the kitbashed/scratched turret looks really good and convincing, and the T-62 hull is a great match for it in shape, size and timeframe. The ZSU-62 turned out way better than hoped for! :D
A kitbash using a Phicen body with a Scarlet Witch headsculpt by Hot Toy's and an outfit by Super Duck .
Here aremy three TVC Mandos. Early Season 1, a late Season 1I made using the Mines of Mandalore figure as a base, but then gave a dark grey cape to and swapped out the right thigh armor. I do need to see if I can customize the original left leg to leave off the knee pad, but I'm fine with it being there for now.And last the Mines of Mandalore figure, but with a plastic cape as at this scale I'm not as huge fan of soft goods.
Much like my refresher of the Black Series Mando from season 1, I bought the TVC Mines of Mandalore figure as I found that it was still the original mold from back in 2019, but with new and improved ankle articulation.
Well, considering the 2019 figure is what made me abandon 3.75 inch collecting, I figured I'd see if I could kitbash an improvement into this older figure and you know, I like it!
What I did was swap the legs from the knee down. Easy enough and if that was all i did I would be pleased, but in addition to that I swapped the hands to the black and orange gloves, and even swapped the belt and bandolier as I wanted the hip armor to match the new knee pad. It did require repainting that little flap that hangs below the belt buckle and back of the belt to match that grey-ish midsection this version of Mando sports. I also added the black cape from the first TVC Beskar Mando as in the show this cape often appears as just black. I then swapped the helmet as I felt the gunmetal color they used was just too dark and the dirt application way too sparse. I then removed that easy to scrape brown paint from his rifle grip and repainted it with some more robust paint.
In the end I think this is huge improvement over the initial release and I'm quite happy with how this turned out.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The Fiat Macchi C.170 Brezza ("Gust of wind") was a single-seat biplane fighter which served primarily in Italy's Regia Aeronautica before and in the early stages of World War II. The aircraft was produced by the Varese firm, and entered service, in smaller numbers, with the air forces of Italy, Austria and Hungary.
In spite of the biplane configuration, the C.170 was a modern, 'sleek-looking' design based around a strong steel and alloy frame incorporating a NACA cowling housing the radial engine, with fairings for the fixed main landing gear. The C.170's upper wing was slightly larger than its lower wing, carried only by six struts and a few bracing wires. Only the upper wing featured ailerons while the lower wing carried large flaps. Although it looked slightly outdated, the aircraft proved exceptionally agile thanks to its very low wing loading and a powerful, responsive engine.
Power was provided by a 650 kW (870 hp) Fiat A.74 14 cylinder radial engine, which also drove the contemporary Fiat CR.32 fighter. With the "direttiva" (Air Ministry Specific) of 1932, Italian industrial leaders had been instructed to concentrate solely on radial engines for fighters, due to their better reliability. The A.74 was actually a re-design of the American Pratt & Whitney R-1830 SC-4 Twin Wasp made by engineers Tranquillo Zerbi and Antonio Fessia, and in the C.170 it was geared to drive a metal three-blade Fiat-Hamilton Standard 3D.41-1 propeller of 2.9 m (9.5 ft) diameter. This allowed an impressive top speed of 441 km/h (272 mph) at 6.500 m (20.000 ft), and 342 km/h (213 mph) at ground level.
The first C.170 prototype flew on 24 December 1934 in Lonate Pozzolo, Varese, with Macchi Chief Test Pilot Giuseppe Burei at the controls. It was followed by the second prototype early the next year, which flew with an armored headrest and fairing in place (the C.170 lacked any further armor!) and other minor changes that were incorporated for serial production.
Despite Macchi’s proposal for a closed cockpit canopy the cockpit remained open – Italian pilots were rather conservative. Additional protection was introduced through armored side panels, though, which would protect the pilot’s shoulders. Radio equipment was also not included, as in many other Italian fighter aircraft.
During evaluation in early 1935 the C.170 was tested against the Fiat CR.42 and the Caproni Ca.165 biplane fighters, and was judged to be on par with the CR.42, although the Ca.165 was a more modern design which boasted a higher speed at the cost of maneuverability. An initial order of 99 C.170 for Italy's Regia Aeronautica was placed to Macchi factory in summer 1935, followed by foreign interest and order options from Austria, Belgium and Spain.
Anyway, what looked like a prosperous design was soon rendered obsolete: Following the end of Italy's campaigns in East Africa, a program was started to completely re-equip the Regia Aeronautica with a new interceptor aircraft of modern design. The 10 February 1936 specifications called for an aircraft powered by a single radial engine, with a top speed of 500 km/h, climb rate at 6,000 meters of 5 minutes, with a flight endurance of two hours, and armed with a single (later increased to two) 12.7 mm (0.5 in) machine gun. That was more or less the premature end for the C.170, as Macchi and other manufacturers quickly turned to more modern monoplane designs.
Therefore, orders and production of the Macchi Brezza remained limited. Beyond the original 99 aircraft for the Regia Aeronautica only 24 further C.170s were delivered. These aircraft went in spring 1936 to Austria to equip Jagdgeschwader II at Wiener Neustadt. Immediately after their delivery the Brezza fighters were retro-fitted with radio equipment, recognizable through the antenna installation on the headrest fairing. The potential orders from Belgium and Spain were soon cancelled, due to political tensions.
As a side note, the Austrian C.170s fighters were the first aircraft to sport the new national emblem, which had been the result of a competition and won by flight engineer Rosner from the Graz-Thalerhof base. The white, equilateral triangle with the point facing downwards in a red disc was a completely new design and had (other than the flag or coats of arms) no prior basis.
The C.170s' career in Austrian service was short, though: in March 1938 the Austrian units were absorbed into the Luftwaffe, and after a brief period the aircraft were handed over to Hungary where they were used for training purposes.
Although an obsolete design, it proved to be robust, durable and effective especially in severe conditions. In spring 1943, surviving C.170s were rounded up from training schools and delivered to night ground attack units operating on the Eastern Front. The C.170 was used to conduct night harassment sorties on the Eastern Front until September 1944, when the units were disbanded, due to a lack of serviceable airframes and spare parts.
General characteristics
Crew: 1
Length: 8.25 m (27 ft 1 in)
Wingspan: 32 ft 3 in (9.83 m)
Height: 11 ft 9 in (3.58 m)
Wing area: 323 ft² (30.0 m²)
Empty weight: 3,217 lb (1,462 kg)
Loaded weight: 4,594 lb (2,088 kg)
Powerplant
1× Fiat A.74 R.C.38 14-cylinder air-cooled radial engine, 650 kW (870 hp) at 2,520 rpm for take-off
Performance
Maximum speed: 441 km/h (238 kn, 274 mph) at 20,000 ft
Cruise speed: 338 km/h (187 kn, 210 mph)
Range: 780 km (420 nmi, 485 mi)
Service ceiling: 10,210 m (33,500 ft)
Rate of climb: 11.8 m/s (2,340 ft/min)
Climb to 10,000 ft (3,050 m): 4.75 min
Wing loading: 69,6 kg/m² (15,3 lb/ft²)
Power/mass: 311 W/kg (0.19 hp/lb)
Armament
2× 12.7 mm (0.5 in) Breda-SAFAT synchronized machine guns above the engine, 370 rpg
Some aircraft were field-modified to carry up to 8× 15 kg (33 lb) or 2× 50 or 100 kg (110/220 lb) bombs under the wings
The kit and its assembly
Inspiration for this little, whiffy biplane came when I posted a pic of an Austrian Ju 86 bomber as a reply/ suggestion to a fellow modeler's (NARSES2) search at whatifmodelers.com for “something” to make from a Gloster Gladiator.
When I looked at the paint scheme a second time I remembered that I still had some Austrian roundels in stock, as well some very old biplane spare parts... hmmm.
Biplanes are tricky to build, even OOB, and kitbashing this kind of whif would not make things easier. Anyway, I love such challenges, and the potential outcome would surely look nice, if not exotic, so I decided to tackle the project.
Basically, the following donation ingredients went into it:
● Fuselage, engine, cockpit/pilot and tail from a Revell Macchi C.200 "Saetta"
● Upper wing from a Matchbox Gloster "Gladiator"
● Lower wings from a Matchbox SBC "Helldiver"
● Wheels from a Matchbox Hs 126 (shortened)
Pretty straightforward, but even though it would be a small aircraft model, it would come with two big challenges: mounting the lower wings and shaping the resulting, gaping belly, and the custom-made struts and wirings for the upper wing.
Work started with the Macchi C.200’s fuselage, which was built OOB - just without the wing, which is a single part, different pilot (the included one is a pygmy!) and with a free spinning metal axis for the propeller.
The wing installation started with the lower wings. I glued the Helldiver wings onto the C.200 fuselage, so that the wings' trailing edge would match the C.200's wing root ends. From that, a floor plate was fitted under the fuselage and any excessive material removed, the gaps filled with lumps of 2C putty. That moved the lower wing's roots backwards, creating space at the lower forward fuselage for the new landing gear.
The latter was taken from a vintage Matchbox Hs 126 reconnaissance aircraft - probably 25, if 30 years old... Size was O.K., but the struts had to shortened by about 5mm, as thge HS 126 is a much bigger/longer aircraft than the C.200. A cut was made just above the wheel spats, material taken out, and the separate parts were glued back together again.
With the lower wings in place I started building strut supports for the upper wing from styrene strips - tricky and needs patience, but effective. I started with the outer supports, carving something SBC-style from styrene. These were glued into place, slightly canted outwards, and their length/height adapted to the upper wing’s position.
When this was settled, the upper Gladiator wing was glued into place. After a thorough drying period the short fuselage supports in front of the cockpit – again, styrene strips – were inserted into the gap. This allowed an individual lengthening, and was easier than expected, with a stable result.
After having the upper wing glued in place I added some wiring, made from heated and pulled-out styrene sprues. This not only enhances the kit's look, it also (just like in real life) improves rigidity of the model. Also a tedious task, but IMHO worth the effort. I tried thin wire, nylon strings and sewing yarn for this job, but finally the styrene solution is what worked best for me.
The exhaust installation had also to be modified: the new Hs 126 struts with spats would have been where the original C.200’s hot exhaust gases would have gone, so I added new exhaust pipes that would go between the new legs.
Other small added details included, among others, a pitot on a wing strut, a visor in front of the cockpit, a radio antenna, a ladder made from wire.
Painting and markings:
I would not call the Austrian 3+1-tone pre-WWII-scheme spectacular, but the colors are unique. My scheme is based on an Austrian Ju 86 bomber from 1938, so it fits into the intended time frame.
The colors were puzzled together from various sources and are subjective guesstimates:
● A pale, yellow-ish beige (Humbrol 74, ‘Linen’, out of production)
● A rather brownish green (Testors 1711, ‘Olive Drab’, FS 34087)
● A dark green with a yellow-ish hue (Humbrol 116, ‘US Dark Green’ FS 34079)
● Light blue for the undersides (Humbrol 65, ‘Aircraft Blue’, RLM 65)
In order to add some details I painted the area behind the engine cowling in aluminum. The respective part under the fuselage, where the exhaust gases would pass, was painted in Steel – both Testors Metallizers.
The interior surfaces were painted in a neutral Grey – but with the engine and the pilot in place you cannot see anything of that at all.
Markings are minimal: the Austrian roundels come from a TL Decals aftermarket sheet, the flag on the rudder was laid out with red paint (a mix of Humbrol 19 and 60), the white bar is a decal. The tactical code is fictional, puzzled together from single digits in various sizes (also from TL Modellbau sheets). The original documents how purely black fuselage codes, but I found these hard to read. So I chose digits with a white rim (actually, these belong to modern German Luftwaffe tactical codes in 1:32), which improve contrast a little.
The kit received a thin black ink wash and some shading/dry-painting with lighter basic tones (Humbrol 103, 155, Model Master 2138,‘Israeli Armor Sand Grey’, and Humbrol 122). After decal application, another turn with overall Hemp and Light Grey was done in order to fade contrast and to emphasize the surface structure. The wires were also painted, but only with thinned black ink and a VERY soft brush.
Finally, everything was sealed under a spray coat of matt acrylic varnish.
Voilà, and done in just about a week!