View allAll Photos Tagged kitbash
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the late 1970s the Mikoyan OKB began development of a hypersonic high-altitude reconnaissance aircraft. Designated "Izdeliye 301" (also known as 3.01), the machine had an unusual design, combining a tailless layout with variable geometry wings. The two engines fueled by kerosene were located side by side above the rear fuselage, with the single vertical fin raising above them, not unlike the Tu-22 “Blinder” bomber of that time, but also reminiscent of the US-American SR-71 Mach 3 reconnaissance aircraft.
Only few and rather corny information leaked into the West, and the 301 was believed not only to act as a reconnaissance plane , it was also believed to have (nuclear) bombing capabilities. Despite wind tunnel testing with models, no hardware of the 301 was ever produced - aven though the aircraft could have become a basis for a long-range interceptor that would replace by time the PVO's Tupolew Tu-28P (ASCC code "Fiddler"), a large aircraft armed solely with missiles.
Despite limitations, the Tu-28P served well in its role, but the concept of a very fast interceptor aircraft, lingered on, since the Soviet Union had large areas to defend against aerial intruders, esp. from the North and the East. High speed, coupled with long range and the ability to intercept an incoming target at long distances independently from ground guidance had high priority for the Soviet Air Defence Forces. Even though no official requirement was issued, the concept of Izdeliye 301 from the Seventies was eventually developed further into the fixed-wing "Izdeliye 701" ultra-long-range high-altitude interceptor in the 1980ies.
The impulse for this new approach came when Oleg S. Samoylovich joined the Mikoyan OKB after having worked at Suchoi OKB on the T-60S missile carrier project. Similar in overall design to the former 301, the 701 was primarily intended as a kind of successor for the MiG-31 Foxhound for the 21st century, which just had completed flight tests and was about to enter PVO's front line units.
Being based on a long range cruise missile carrier, the 701 would have been a huge plane, featuring a length of 30-31m, a wing span of 19m (featuring a highly swept double delta wing) and having a maximum TOW of 70 tons! Target performance figures included a top speed of 2.500km/h, a cruising speed of 2.100km/h at 17.000m and an effective range of 7.000km in supersonic or 11.000km in subsonic mode. Eventually, the 701 program was mothballed, too, being too ambitious and expensive for a specialized development that could also have been a fighter version of the Tu-22 bomber!
Anyway, while the MiG-31 was successfully introduced in 1979 and had evolved in into a capable long-range interceptor with a top speed of more than Mach 3 (limited to Mach 2.8 in order to protect the aircraft's structural integrity), MiG OKB decided in 1984 to take further action and to develop a next-generation technology demonstrator, knowing that even the formidable "Foxhound" was only an interim solution on the way to a true "Four plus" of even a 6th generation fighter. Other new threats like low-flying cruise missiles, the USAF's "Project Pluto" or the assumed SR-71 Mach 5 successor “Aurora” kept Soviet military officials on the edge of their seats, too.
Main objective was to expand the Foxhound's state-of the-art performance, and coiple it with modern features like aerodynamic instability, supercruise, stealth features and further development potential.
The aircraft's core mission objectives comprised:
- Provide strategic air defense and surveillance in areas not covered by ground-based air defense systems (incl. guidance of other aircraft with less sophisticated avionics)
- Top speed of Mach 3.2 or more in a dash and cruise at Mach 3.0 for prolonged periods
- Long range/high speed interception of airspace intruders of any kind, including low flying cruise missiles, UAVs and helicopters
- Intercept cruise missiles and their launch aircraft from sea level up to 30.000m altitude by reaching missile launch range in the lowest possible time after departing the loiter area
Because funding was scarce and no official GOR had been issued, the project was taken on as a private venture. The new project was internally known as "Izdeliye 710" or "71.0". It was based on both 301 and 701 layout ideas and the wind tunnel experiences with their unusual layouts, as well as Oleg Samoylovich's experience with the Suchoi T-4 Mach 3 bomber project and the T-60S.
"Izdeliye 710" was from the start intended only as a proof-of-concept prototype, yet fully functional. It would also incorporate new technologies like heat-resistant ceramics against kinetic heating at prolonged high speeds (the airframe had to resist temperatures of 300°C/570°F and more for considerable periods), but with potential for future development into a full-fledged interceptor, penetrator and reconnaissance aircraft.
Overall, “Izdeliye 710" looked like a shrinked version of a mix of both former MiG OKB 301 and 701 designs, limited to the MiG-31's weight class of about 40 tons TOW. Compared with the former designs, the airframe received an aerodynamically more refined, partly blended, slender fuselage that also incorporated mild stealth features like a “clean” underside, softened contours and partly shielded air intakes. Structurally, the airframe's speed limit was set at Mach 3.8.
From the earlier 301 design,the plane retained the variable geometry wing. Despite the system's complexity and weight, this solution was deemed to be the best approach for a combination of a high continuous top speed, extended loiter time in the mission’s patrol areas and good performance on improvised airfields. Minimum sweep was a mere 10°, while, fully swept at 68°, the wings blended into the LERXes. Additional lift was created through the fuselage shape itself, so that aerodynamic surfaces and therefore drag could be reduced.
Pilot and radar operator sat in tandem under a common canopy with rather limited sight. The cockpit was equipped with a modern glass cockpit with LCD screens. The aircraft’s two engines were, again, placed in a large, mutual nacelle on the upper rear fuselage, fed by large air intakes with two-dimensional vertical ramps and a carefully modulated airflow over the aircraft’s dorsal area.
Initially, the 71.0 was to be powered by a pair of Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each, and with 152 kN (34,172 lbf) with full afterburner. These were the same engines that powered the MiG-31, but there were high hopes for the Kolesov NK-101 engine: a variable bypass engine with a maximum thrust in the 200kN range, at the time of the 71.0's design undergoing bench tests and originally developed for the advanced Suchoj T-4MS strike aircraft.
With the D-30F6, the 71.0 was expected to reach Mach 3.2 (making the aircraft capable of effectively intercepting the SR-71), but the NK-101 would offer in pure jet mode a top speed in excess of Mach 3.5 and also improve range and especially loiter time when running as a subsonic turbofan engine.
A single fin with an all-moving top and an additional deep rudder at its base was placed on top of the engine nacelle. Additional maneuverability at lower speed was achieved by retractable, all-moving foreplanes, stowed in narrow slits under the cockpit. Longitudinal stability at high speed was improved through deflectable stabilizers: these were kept horizontal for take-off and added to the overall lift, but they could be folded down by up to 60° in flight, acting additionally as stabilizer strakes.
Due to the aircraft’s slender shape and unique proportions, the 71.0 quickly received the unofficial nickname "жура́вль" (‘Zhurávl' = Crane). The aircaft’s stalky impression was emphasized even more through its unusual landing gear arrangement: Due to the limited internal space for the main landing gear wells between the weapons bay, the wing folding mechanisms and the engine nacelle, MiG OKB decided to incorporate a bicycle landing gear, normally a trademark of Yakovlew OKB designs, but a conventional landing gear could simply not be mounted, or its construction would have become much too heavy and complex.
In order to facilitate operations from improvised airfields and on snow the landing gear featured twin front wheels on a conventional strut and a single four wheel bogie as main wheels. Smaller, single stabilizer wheels were mounted on outriggers that retracted into slender fairings at the wings’ fixed section trailing edge, reminiscent of early Tupolev designs.
All standard air-to-air weaponry, as well as fuel, was to be carried internally. Main armament would be the K-100 missile (in service eventually designated R-100), stored in a large weapons bay behind the cockpit on a rotary mount. The K-100 had been under development at that time at NPO Novator, internally coded ‘Izdeliye 172’. The K-100 missile was an impressive weapon, and specifically designed to attack vital and heavily defended aerial targets like NATO’s AWACS aircraft at BVR distance.
Being 15’ (4.57 m) long and weighing 1.370 lb (620 kg), this huge ultra-long-range weapon had a maximum range of 250 mi (400 km) in a cruise/glide profile and attained a speed of Mach 6 with its solid rocket engine. This range could be boosted even further with a pair of jettisonable ramjets in tubular pods on the missile’s flanks for another 60 mi (100 km). The missile could attack targets ranging in altitude between 15 – 25,000 meters.
The weapon would initially be allocated to a specified target through the launch aircraft’s on-board radar and sent via inertial guidance into the target’s direction. Closing in, the K-100’s Agat 9B-1388 active seeker would identify the target, lock on, and independently attack it, also in coordination with other K-100’s shot at the same target, so that the attack would be coordinated in time and approach directions in order to overload defense and ensure a hit.
The 71.0’s internal mount could hold four of these large missiles, or, alternatively, the same number of the MiG-31’s R-33 AAMs. The mount also had a slot for the storage of additional mid- and short-range missiles for self-defense, e .g. three R-60 or two R-73 AAMs. An internal gun was not considered to be necessary, since the 71.0 or potential derivatives would fight their targets at very long distances and rather rely on a "hit-and-run" tactic, sacrificing dogfight capabilities for long loitering time in stand-by mode, high approach speed and outstanding acceleration and altitude performance.
Anyway, provisions were made to carry a Gsh-301-250 gun pod on a retractable hardpoint in the weapons bay instead of a K-100. Alternatively, such pods could be carried externally on four optional wing root pylons, which were primarily intended for PTB-1500 or PTB-3000 drop tanks, or further missiles - theoretically, a maximum of ten K-100 missiles could be carried, plus a pair of short-range AAMs.
Additionally, a "buddy-to-buffy" IFR set with a retractable drogue (probably the same system as used on the Su-24) was tested (71.2 was outfitted with a retractable refuelling probe in front of the cockpit), as well as the carriage of simple iron bombs or nuclear stores, to be delivered from very high altitudes. Several pallets with cameras and sensors (e .g. a high resolution SLAR) were also envisioned, which could easily replace the missile mounts and the folding weapon bay covers for recce missions.
Since there had been little official support for the project, work on the 710 up to the hardware stage made only little progress, since the MiG-31 already filled the long-range interceptor role in a sufficient fashion and offered further development potential.
A wooden mockup of the cockpit section was presented to PVO and VVS officials in 1989, and airframe work (including tests with composite materials on structural parts, including ceramic tiles for leading edges) were undertaken throughout 1990 and 1991, including test rigs for the engine nacelle and the swing wing mechanism.
Eventually, the collapse of the Soviet Union in 1991 suddenly stopped most of the project work, after two prototype airframes had been completed. Their internal designations were Izdeliye 71.1 and 71.2, respectively. It took a while until the political situation as well as the ex-Soviet Air Force’s status were settled, and work on Izdeliye 710 resumed at a slow pace.
After taking two years to be completed, 71.1 eventually made its roll-out and maiden flight in summer 1994, just when MiG-31 production had ended. MiG OKB still had high hopes in this aircraft, since the MiG-31 would have to be replaced in the next couple of years and "Izdeliye 710" was just in time for the potential procurement process. The first prototype wore a striking all-white livery, with dark grey ceramic tiles on the wings’ leading edges standing out prominently – in this guise and with its futuristic lines the slender aircraft reminded a lot of the American Space Shuttle.
71.1 was primarily intended for engine and flight tests (esp. for the eagerly awaited NK-101 engines), as well as for the development of the envisioned ramjet propulsion system for full-scale production and further development of Izdeliye 710 into a Mach 3+ interceptor. No mission avionics were initially fitted to this plane, but it carried a comprehensive test equipment suite and ballast.
Its sister ship 71.2 flew for the first time in late 1994, wearing a more unpretentious grey/bare metal livery. This plane was earmarked for avionics development and weapons integration, especially as a test bed for the K-100 missile, which shared Izdeliye 710’s fate of being a leftover Soviet project with an uncertain future and an even more corny funding outlook.
Anyway, aircraft 71.2 was from the start equipped with a complete RP-31 ('Zaslon-M') weapon control system, which had been under development at that time as an upgrade for the Russian MiG-31 fleet being part of the radar’s development program secured financial support from the government and allowed the flight tests to continue. The RP-31 possessed a maximum detection range of 400 km (250 mi) against airliner-sized targets at high altitude or 200 km against fighter-sized targets; the typical width of detection along the front was given as 225 km. The system could track 24 airborne targets at one time at a range of 120 km, 6 of which could be simultaneously attacked with missiles.
With these capabilities the RP-31 suite could, coupled with an appropriate carrier airframe, fulfil the originally intended airspace control function and would render a dedicated and highly vulnerable airspace control aircraft (like the Beriev A-50 derivative of the Il-76 transport) more or less obsolete. A group of four aircraft equipped with the 'Zaslon-M' suite would be able to permanently control an area of airspace across a total length of 800–900 km, while having ultra-long range weapons at hand to counter any intrusion into airspace with a quicker reaction time than any ground-based fighter on QRA duty. The 71.0, outfitted with the RP-31/K-100 system, would have posed a serious threat to any aggressor.
In March 1995 both prototypes were eventually transferred to the Kerchenskaya Guards Air Base at Savasleyka in the Oblast Vladimir, 300 km east of Mocsow, where they received tactical codes of '11 Blue' and '12 Blue'. Besides the basic test program and the RP-31/K-100 system tests, both machines were directly evaluated against the MiG-31 and Su-27 fighters by the Air Force's 4th TsBPi PLS, based at the same site.
Both aircraft exceeded expectations, but also fell short in certain aspects. The 71.0’s calculated top speed of Mach 3.2 was achieved during the tests with a top speed of 3,394 km/h (2.108 mph) at 21,000 m (69.000 ft). Top speed at sea level was confirmed at 1.200 km/h (745 mph) indicated airspeed.
Combat radius with full weapon load and internal fuel only was limited to 1,450 km (900 mi) at Mach 0.8 and at an altitude of 10,000 m (33,000 ft), though, and it sank to a mere 720 km (450 mi) at Mach 2.35 and at an altitude of 18,000 m (59,000 ft). Combat range with 4x K-100 internally and 2 drop tanks was settled at 3,000 km (1,860 mi), rising to 5,400 km (3,360 mi) with one in-flight refueling, tested with the 71.2. Endurance at altitude was only slightly above 3 hours, though. Service ceiling was 22,800 m (74,680 ft), 2.000 m higher than the MiG-31.
While these figures were impressive, Soviet officials were not truly convinced: they did not show a significant improvement over the simpler MiG-31. MiG OKB tried to persuade the government into more flight tests and begged for access to the NK-101, but the Soviet Union's collapse halted this project, too, so that both Izdeliye 710 had to keep the Soloviev D-30F6.
Little is known about the Izdeliye 710 project’s progress or further developments. The initial tests lasted until at least 1997, and obviously the updated MiG-31M received official favor instead of a completely new aircraft. The K-100 was also dropped, since the R-33 missile and later its R-37 derivative sufficiently performed in the long-range aerial strike role.
Development on the aircraft as such seemed to have stopped with the advent of modernized Su-27 derivatives and the PAK FA project, resulting in the Suchoi T-50 prototype. Unconfirmed reports suggest that one of the prototypes (probably 71.1) was used in the development of the N014 Pulse-Doppler radar with a passive electronically scanned array antenna in the wake of the MFI program. The N014 was designed with a range of 420 km, detection target of 250km to 1m and able to track 40 targets while able to shoot against 20.
Most interestingly, Izdeliye 710 was never officially presented to the public, but NATO became aware of its development through satellite pictures in the early Nineties and the aircraft consequently received the ASCC reporting codename "Fastback".
Until today, only the two prototypes have been known to exist, and it is assumed – had the type entered service – that the long-range fighter had received the official designation "MiG-41".
General characteristics:
Crew: 2 (Pilot, weapon system officer)
Length (incl. pitot): 93 ft 10 in (28.66 m)
Wingspan:
- minimum 10° sweep: 69 ft 4 in (21.16 m)
- maximum 68° sweep: 48 ft 9 in (14,88 m)
Height: 23 ft 1 1/2 in (7,06 m )
Wing area: 1008.9 ft² (90.8 m²)
Weight: 88.151 lbs (39.986 kg)
Performance:
Maximum speed:
- Mach 3.2 (2.050 mph (3.300 km/h) at height
- 995 mph (1.600 km/h) supercruise speed at 36,000 ft (11,000 m)
- 915 mph (1.470 km/h) at sea level
Range: 3.705 miles (5.955 km) with internal fuel
Service ceiling: 75.000 ft (22.500 m)
Rate of climb: 31.000 ft/min (155 m/s)
Engine:
2x Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each
and with 152 kN (34,172 lbf) with full afterburner.
Armament:
Internal weapons bay, main armament comprises a flexible missile load; basic ordnance of 4x K-100 ultra long range AAMs plus 2x R-73 short-range AAMs: other types like the R-27, R-33, R-60 and R-77 have been carried and tested, too, as well as podded guns on internal and external mounts. Alternatively, the weapon bay can hold various sensor pallets.
Four hardpoints under the wing roots, the outer pair “wet” for drop tanks of up to 3.000 l capacity, ECM pods or a buddy-buddy refueling drogue system. Maximum payload mass is 9000 kg.
The kit and its assembly
The second entry for the 2017 “Soviet” Group Build at whatifmodelers.com – a true Frankenstein creation, based on the scarce information about the real (but never realized) MiG 301 and 701 projects, the Suchoj T-60S, as well as some vague design sketches you can find online and in literature.
This one had been on my project list for years and I already had donor kits stashed away – but the sheer size (where will I leave it once done…?) and potential complexity kept me from tackling it.
The whole thing was an ambitious project and just the unique layout with a massive engine nacelle on top of the slender fuselage instead of an all-in-one design makes these aircraft an interesting topic to build. The GB was a good motivator.
“My” fictional interpretation of the MiG concepts is mainly based on a Dragon B-1B in 1:144 scale (fuselage, wings), a PM Model Su-15 two seater (donating the nose section and the cockpit, as well as wing parts for the fin) and a Kangnam MiG-31 (for the engine pod and some small parts). Another major ingredient is a pair of horizontal stabilizers from a 1:72 Hasegawa A-5 Vigilante.
Fitting the cockpit section took some major surgery and even more putty to blend the parts smoothly together. Another major surgical area was the tail; the "engine box" came to be rather straightforward, using the complete rear fuselage section from the MiG-31 and adding the intakes form the same kit, but mounted horizontally with a vertical splitter.
Blending the thing to the cut-away tail section of the B-1 was quite a task, though, since I not only wanted to add the element to the fuselage, but rather make it look a bit 'organic'. More than putty was necessary, I also had to made some cuts and transplantations. And after six PSR rounds I stopped counting…
The landing gear was built from scratch – the front wheel comes mostly from the MiG-31 kit. The central bogie and its massive leg come from a VEB Plasticart 1:100 Tu-20/95 bomber, plus some additional struts. The outriggers are leftover landing gear struts from a Hobby Boss Fw 190, mated with wheels which I believe come from a 1:200 VEB Plasticart kit, an An-24. Not certain, though. The fairings are slender MiG-21 drop tanks blended into the wing training edge. For the whole landing gear, the covers were improvised with styrene sheet, parts from a plastic straw(!) or leftover bits from the B-1B.
The main landing gear well was well as the weapons’ bay themselves were cut into the B-1B underside and an interior scratched from sheet and various leftover materials – I tried to maximize their space while still leaving enough room for the B-1B kit’s internal VG mechanism.
The large missiles (two were visible fitted and the rotary launcher just visibly hinted at) are, in fact, AGM-78 ‘Standard’ ARMs in a fantasy guise. They look pretty Soviet, though, like big brothers of the already not small R-33 missiles from the MiG-31.
While not in the focus of attention, the cockpit interior is completely new, too – OOB, the Su-15 cockpit only has a floor and rather stubby seats, under a massive single piece canopy. On top of the front wheel well (from a Hasegawa F-4) I added a new floor and added side consoles, scratched from styrene sheet. F-4 dashboards improve the decoration, and I added a pair of Soviet election seats from the scrap box – IIRC left over from two KP MiG-19 kits.
The canopy was taken OOB, I just cut it into five parts for open display. The material’s thickness does not look too bad on this aircraft – after all, it would need a rather sturdy construction when flying at Mach 3+ and withstanding the respective pressures and temperatures.
Painting
As a pure whif, I was free to use a weirdo design - but I rejected this idea quickly. I did not want a garish splinter scheme or a bright “Greenbottle Fly” Su-27 finish.
With the strange layout of the aircraft, the prototype idea was soon settled – and Soviet prototypes tend to look very utilitarian and lusterless, might even be left in grey. Consequently, I adapted a kind of bare look for this one, inspired by the rather shaggy Soviet Tu-22 “Blinder” bombers which carried a mix of bare metal and white and grey panels. With additional black leading edges on the aerodynamic surfaces, this would create a special/provisional but still purposeful look.
For the painting, I used a mix of several metallizer tones from ModelMaster and Humbrol (including Steel, Magnesium, Titanium, as well as matt and polished aluminum, and some Gun Metal and Exhaust around the engine nozzles, partly mixed with a bit of blue) and opaque tones (Humbrol 147 and 127). The “scheme” evolved panel-wise and step by step. The black leading edges were an interim addition, coming as things evolved, and they were painted first with black acrylic paint as a rough foundation and later trimmed with generic black decal stripes (from TL Modellbau). A very convenient and clean solution!
The radomes on nose and tail and other di-electric panels became dark grey (Humbrol 125). The cockpit tub was painted with Soviet Cockpit Teal (from ModelMaster), while the cockpit opening and canopy frames were kept in a more modest medium grey (Revell 57). On the outside of the cabin windows, a fat, deep yellow sealant frame (Humbrol 93, actually “Sand”) was added.
The weapon bay was painted in a yellow-ish primer tone (seen on pics of Tu-160 bombers) while the landing gear wells received a mix of gold and sand; the struts were painted in a mixed color, too, made of Humbrol 56 (Aluminum) and 34 (Flat White). The green wheel discs (Humbrol 131), a typical Soviet detail, stand out well from the rather subdued but not boring aircraft, and they make a nice contrast to the red Stars and the blue tactical code – the only major markings, besides a pair of MiG OKB logos under the cockpit.
Decals were puzzled together from various sheets, and I also added a lot of stencils for a more technical look. In order to enhance the prototype look further I added some photo calibration markings on the nose and the tail, made from scratch.
A massive kitbashing project that I had pushed away for years - but I am happy that I finally tackled it, and the result looks spectacular. The "Firefox" similarity was not intended, but this beast really looks like a movie prop - and who knwos if the Firefox was not inspired by the same projects (the MiG 301 and 701) as my kitbash model?
The background info is a bit lengthy, but there's some good background info concerning the aforementioned projects, and this aircraft - as a weapon system - would have played a very special and complex role, so a lot of explanations are worthwhile - also in order to emphasize that I di not simply try to glue some model parts together, but rather try to spin real world ideas further.
Mighty bird!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Sondergerät SG104 "Münchhausen" was a German airborne recoillless 355.6 mm (14-inch) caliber gun, intended to engage even the roughest enemy battleships, primarily those of the Royal Navy. The design of this unusual and massive weapon began in 1939. The rationale behind it was that a battleship’s most vulnerable part was the deck – a flat surface, with relatively thin armor (as typical hits were expected on the flanks) and ideally with vital targets underneath, so that a single, good hit would cripple of even destroy a ship. The purpose of such a high angle of attack was likely to allow the projectile to penetrate the target ship's deck, where the ship's armor, if there was any, would have been much thinner than the armor on its sidesHowever, hitting the deck properly with another ship’s main gun was not easy, since it could only be affected through indirect hits and the typical angle of the attack from aballistic shot would not necessarily be ideal for deep penetration, esp. at long range.
The solution to this problem: ensure that the heavy projectile would hit its target directly from above, ideally at a very steep angle. To achieve this, the gun with battleship caliber was “relocated” from a carrier ship or a coastal battery onto an aircraft – specifically to a type that was capable of dive-bombing, a feature that almost any German bomber model of the time offered.
Firing such a heavy weapon caused a lot fo problems, which were severe even if the gun was mounted on a ship or on land. To compensate for such a large-caliber gun’s recoil and to make firing a 14 in shell (which alone weighed around almost 700 kg/1.550 lb, plus the charge) from a relatively light airframe feasible, the respective gun had to be as light as possible and avoid any recoil, which would easily tear an aircraft – even a bomber – apart upon firing. Therefore, the Gerät 104 was designed as a recoilless cannon. Its firing system involved venting the same amount of the weapon's propellant gas for its round to the rear of the launch tube (which was open at both ends), in the same fashion as a rocket launcher. This created a forward directed momentum which was nearly equal to the rearward momentum (recoil) imparted to the system by accelerating the projectile itself. The balance thus created did not leave much net momentum to be imparted to the weapon's mounting or the carrying airframe in the form of felt recoil. A further share of the recoil induced by the moving round itself could be compensated by a muzzle brake which re-directed a part of the firing gases backwards. Since recoil had been mostly negated, a heavy and complex recoil damping mechanism was not necessary – even though the weapon itself was huge and heavy.
Work on the "Münchhausen" device (a secret project handle after a fictional German nobleman created by the German writer Rudolf Erich Raspe in the late 18th century who reputedly had ridden on a cannonball between enemy frontlines), was done by Rheinmetall-Borsig and lasted until 1941. The first test of a prototype weapon was conducted on 9th of September 1940 in Unterlüss with a satisfactory result, even though the weapon was only mounted onto an open rack and not integrated into an airframe yet. At that time, potential carriers were the Ju 88, the Dornier Do 217 and the new Junkers Ju 288. Even though the system’s efficacy was doubted, the prospect of delivering a single, fatal blow to an important , armored arget superseded any doubts at the RLM, and the project was greenlit in early 1942 for the next stage: the integration of the Sondergerät 104 into an existing airframe. The Ju 88 and its successor, the Ju 188, turned out to be too light and lacked carrying capacity for the complete, loaded weapon, and the favored Ju 288 was never produced, so that only the Dornier Do 217 or the bigger He 177 remained as a suitable carriers. The Do 217 was eventually chosen because it had the biggest payload and the airframe was proven and readily available.
After calculations had verified that the designed 14 in rifle would have effectively no recoil, preliminary tests with dumm airframes were carried out. After ground trials with a Do 217 E day bomber to check recoil and blast effects on the airframe, the development and production of a limited Nullserie (pre-production series) of the dedicated Do 217 F variant for field tests and eventual operational use against British sea and land targets was ordered in April 1942.
The resulting Do 217 F-0 was based on the late “E” bomber variant and powered by a pair of BMW 801 radial engines. It was, however, heavily modified for its unique weapon and the highly specialized mission profile: upon arriving at the zone of operation at high altitude, the aircraft would initiate a dive with an angle of attack between 50° and 80° from the horizontal, firing the SG 104 at an altitude between 6,000 and 2,000 meters. The flight time of the projectile could range from 16.0 seconds for a shot from an altitude of 6,000 meters at a 50° angle to just 4.4 seconds for a shot from 2.000 meters at an almost vertical 80° angle. Muzzle velocity of the SG 104 was only 300 m/s, but, prior to impact, the effective velocity of the projectile was projected to range between 449 and 468 m/s (1,616 to 1,674 km/h). Together with the round's weight of roughly 700 kg (1.550 lb) and a hardened tip, this would still ensure a high penetration potential.
The operational Sondergerät 104 had an empty mass of 2.780 kg (6,123 lb) and its complete 14 inch double cartridge weighed around 1.600 kg (3,525 lb). The loaded mass of the weapon was 4,237 kg, stretching the limits of the Do 217’s load capacity to the maximum, so that some armor and less vital pieces of equipment were deleted. Crew and defensive armament were reduced to a minimum.
Even though there had been plans to integrate the wepaon into the airframe (on the Ju 288), the Gerät 104 was on the Do 217 F-0 mounted externally and occupied the whole space under the aircraft, precluding any use of the bomb bay. The latter was occupied by the Gerät 104’s complex mount, which extended to the outside under a streamlined fairing and held the weapon at a distance from the airframe. Between the mount’s struts inside of the fuselage, an additional fuel tank for balance reasons was added, too.
The gun’s center, where the heavy round was carried, was positioned under the aircraft’s center of gravity, so that the gun barrel markedly protruded from under the aircraft’s nose. To make enough space, the Do 217 Es bomb aimer’s ventral gondola and his rearward-facing defensive position under the cockpit were omitted and faired over. The nose section was also totally different: the original extensive glazing (the so-called “Kampfkopf”) was replaced by a smaller, conventional canopy, similar to the later Do 217 J and N night fighter versions, together with a solid nose - the original glass panels would have easily shattered upon firing the gun, esp. in a steep high-speed dive. A "Lotfernrohr" bomb aiming device was still installed in a streamlined and protected fairing, though, so that the navigator could guide the pilot during the approach to the target and during the attack run.
To stabilize the heavy aircraft during its attack and to time- and safely pull out of the dive, a massive mechanical dive brake was mounted at the extended tail tip, which unfolded with four "petals". A charecteristic stabilizing dorsal strake was added between the twin fins, too.
The ventral area behind the gun’s rear-facing muzzle received additional metal plating and blast guiding vanes, after trials in late 1940 had revealed that firing the SG 104 could easily damage the Do 217’s tail structure, esp. all of the tail surfaces’ rudders and the fins’ lower ends in particular. Due to all this extra weight, the Do 217 F-0’s defensive armament consisted only of a single 13 mm MG 131 machine gun in a manually operated dorsal position behind the cockpit cabin, which offered space for a crew of three. A fixed 15 mm MG 151 autocannon was mounted in the nose, too, a weapon with a long barrel for extended range and accuracy. It was not an offensive weapon, though, rather intended as an aiming aid for the SG 104 because it was loaded with tracer bullets: during the final phase of the attack dive, the pilot kept firing the MG 151, and the bullet trail showed if he was on target to fire the SG 104 when the right altitude/range had been reached.
The first Do 217 F-0 was flown and tested in late 1943, and after some detail changes the type was cleared for a limited production run of ten aircraft in January 1944. The first operational machine was delivered to a dedicated testing commando, the Erprobungskommando 104 “Münchhausen”, also known as “Sonderkommando Münchhausen” or simply “E-Staffel 104”. The unit was based at Bordeaux/Merignac and directly attached to the KG 40's as a staff flight. At that time, KG 40 operated Do 217 and He 177 bombers and frequently flew reconnaissance and anti-shipping missions over the Atlantic west of France, up to the British west and southern coast, equipped with experimental Henschel Hs 293 glide bombs.
Initial flights confirmed that the Do 217 airframe was burdened with the SG 104 to its limits, the already rather sluggish aircraft (the Do 217 had generally a high wing loading and was not easy to fly) lost anything that was left of what could be called agility. It needed an experienced pilot to handle it safely, esp. during start and landing. It is no wonder that two Do 217 F-0s suffered ground accidents during the first two weeks of operations, but the machines could be repaired, resume the test program and carry out attack missions.
However, during one of the first test shots with the weapon, one Do 217 F-0 lost its complete tail section though the gun blast, and the aircraft crashed into the Bay of Biscay, killing the complete crew.
On 4th or April 1944 the first "hot" attack against an enemy ship was executed in the Celtic Sea off of Brest, against a convoy of 20 ships homeward bound from Gibraltar. The attack was not successful, though, the shot missing its target, and the German bomber was attacked and heavily damaged by British Bristol Beaufighters that had been deployed to protect the ships. The Do 217F-0 eventually crashed and sank into the Atlantic before it could reach land again.
A couple of days later, on 10th of April, the first attempt to attack and destroy a land target was undertaken: two Do 217 F-0s took off to attack Bouldnor Battery, an armored British artillery position located on the Isle of Wight. One machine had to abort the attack due to oil leakages, the second Do 217 F-0 eventually reached its target and made a shallow attack run, but heavy fog obscured the location and the otherwise successful shot missed the fortification. Upon return to its home base the aircraft was intercepted by RAF fighters over the Channel and heavily damaged, even though German fighters deployed from France came to the rescue, fought the British attackers off and escorted the limping Do 217 F-0 back to its home base.
These events revealed that the overall SG 104 concept was generally feasible, but also showed that the Do 217 F-0 was very vulnerable without air superiority or a suitable escort, so that new tactics had to be developed. One consequence was that further Do 217 F-0 deployments were now supported by V/KG 40, the Luftwaffe's only long range maritime fighter unit. These escorts consisted of Junkers Ju 88C-6s, which were capable of keeping up with the Do 217 F-0 and fend of intercepting RAF Coastal Command’s Beaufighters and later also Mosquitos.
In the meantime, tests with the SG 104 progressed and several modifications were tested on different EKdo 104's Do 217 F-0s. One major upgrade was a further strengthening of the tail section, which added another 200 kg (440 lb) to the aircraft's dry weight. Furthermore, at least three aircraft were outfitted with additional dive brakes under the outer wings, so that the dive could be better controlled and intercepted. these aircraft, however, lost their plumbed underwing hardpoints, but these were only ever used for drop tanks during transfer flights - a loaded SG 104 precluded any other ordnance. On two other aircraft the SG 104 was modified to test different muzzle brakes and deflectors for the rear-facing opening, so that the gun blast was more effectively guided away from the airframe to prevent instability and structural damage. For instance, one machine was equipped with a bifurcated blast deflector that directed the rearward gasses partly sideways, away from the fuselage.
These tests did not last long, though. During the Allied Normandy landings in June 1944 E-Staffel 104 was hastily thrown into action and made several poorly-prepared attack runs against Allied support ships. The biggest success was a full hit and the resulting sinking of the Norwegian destroyer HNoMS Svenner (G03) by "1A+BA" at dawn on 6th of June, off Sword, one of the Allied landing zones. Other targets were engaged, too, but only with little effect. This involvement, however, led to the loss of three Do 217 F-0s within just two days and four more heavily damaged aircraft – leaving only two of EKdo 104's Do 217 F-0s operational.
With the Allied invasion of France and a worsening war condition, the SG 104 program was stopped in August 1944 and the idea of an airborne anti-ship gun axed in favor of more flexible guided weapons like the Hs 293 missile and the Fritz-X glide bomb. Plans for a further developed weapon with a three-round drum magazine were immediately stopped, also because there was no carrier aircraft in sight that could carry and deploy this complex 6.5 tons weapon. However, work on the SG 104 and the experience gained from EKdo 104's field tests were not in vain. The knowledge gathered from the Münchhausen program was directly used for the design of a wide range of other, smaller recoilless aircraft weapons, including the magnetically-triggered SG 113 "Förstersonde" anti-tank weapon or the lightweight SG 118 "Rohrblock" unguided air-to-air missile battery for the Heinkel He 162 "Volksjäger".
General characteristics:
Crew: 3 (pilot, navigator, radio operator/gunner)
Length: 20,73 m (67 ft 11 in) overall
18,93 m (62 ft 3/4 in) hull only
Wingspan: 19 m (62 ft 4 in)
Height: 4.97 m (16 ft 4 in)
Wing area: 57 m² (610 sq ft)
Empty weight: 9,065 kg (19,985 lb)
Empty equipped weight:10,950 kg (24,140 lb)
Max takeoff weight: 16,700 kg (36,817 lb)
Fuel capacity: 2,960 l (780 US gal; 650 imp gal) in fuselage tank and four wing tanks
Powerplant:
2× BMW 801D-2 14-cylinder air-cooled radial piston engines, delivering
1,300 kW (1,700 hp) each for take-off and 1,070 kW (1,440 hp) at 5,700 m (18,700 ft),
driving 3-bladed VDM constant-speed propellers
Performance:
Maximum speed: 475 km/h (295 mph, 256 kn) at sea level
560 km/h (350 mph; 300 kn) at 5,700 m (18,700 ft)
Cruise speed: 400 km/h (250 mph, 220 kn) with loaded Gerät 104 at optimum altitude
Range: 2,180 km (1,350 mi, 1,180 nmi) with maximum internal fuel
Ferry range: 2,500 km (1,600 mi, 1,300 nmi); unarmed, with auxiliary fuel tanks
Service ceiling: 7,370 m (24,180 ft) with loaded Gerät 104,
9,500 m (31,200 ft) after firing
Rate of climb: 3.5 m/s (690 ft/min)
Time to altitude: 1,000 m (3,300 ft) in 4 minutes 10 seconds
2,000 m (6,600 ft) in 8 minutes 20 seconds
6,100 m (20,000 ft) in 24 minutes 40 seconds
Armament:
1x 355.6 mm (14-inch) Sondergerät 104 recoilless gun with a single round in ventral position
1x 15 mm (0.787 in) MG 151 machine cannon with 200 rounds, fixed in the nose
1x 13 mm (0.512 in) MG 131 machine gun with 500 rounds, movable in dorsal position
Two underwing hardpoints for a 900 l drop tank each, but only used during unarmed ferry flights
The kit and its assembly:
This was another submission to the "Gunships" group build at whatifmodellers.com in late 2021, and inspiration struck when I realized that I had two Italeri Do 217 in The Stash - a bomber and a night fighter - that could be combined into a suitable (fictional) carrier for a Sondergerät 104. This mighty weapon actually existed and even reached the hardware/test stage - but it was never integrated into an airframe and tested in flight. But that's what this model is supposed to depict.
On the Do 217, the Sg 104 would have been carried externally under the fuselage, even though there had been plans to integrate this recoilless rifle into airframes, esp. into the Ju 288. Since the latter never made it into production, the Do 217 would have been the most logical alternative, also because it had the highest payload of all German bombers during WWII and probably the only aircraft capable of carrying and deploying the Münchhausen device, as the SG 104 was also known.
The fictional Do 217 F-0 is a kitbashing, using a Do 217 N fuselage, combined with the wings from a Do 217 K bomber, plus some modifications. What initially sounded like a simple plan soon turned into a improvisation mess: it took some time to realize that I had already donated the Do 217 K's BMW 801 engines to another project, an upgraded He 115... I did not want to use the nightfighter's more powerful DB 603s, and I was lucky to have an Italeri Ju 188 kit at hand which comes with optional BMW 801s and Jumo 211s. Transplanting these engines onto the Do 217's wings took some tailoring of the adapter plates, but was feasible. However, the BMW 801s from the Ju 188 kit have a flaw: they lack the engine's characteristic cooling fans... Another lucky find: I found two such parts in the scrap box, even though from different kits - one left over from another Italeri Do 217 K, the other one from what I assume is/was an Italeri 1:72 Fw 190 A/F. To make matters worse, one propeller from the Ju 188 kit was missing, so that I had to find a(nother) replacement. :-/
I eventually used something that looked like an 1:72 F6F Hellcat propeller, but I an not certain about this because I have never built this model...? With some trimming on the blades' trailing edges and other mods, the donor's overall look could be adapted to the Ju 188 benchmark. Both propellers were mounted on metal axis' so that they could also carry the cooling fans. Lots of work, but the result looks quite good.
The Do 217 N's hull lost the lower rear gunner position and its ventral gondola, which was faired over with a piece of styrene sheet. The pilot was taken OOB, the gunner in the rear position was replaced by a more blob-like crew member from the scrap box. The plan to add a navigator in the seat to the lower right of the pilot did not work out due to space shortage, but this figure would probably have been invisble, anyway.
All gun openings in the nose were filled and PSRed away, and a fairing for a bomb aiming device and a single gun (the barrel is a hollow steel needle) were added.
The SG 104 was scratched. Starting point was a white metal replacement barrel for an 1:35 ISU-152 SPG with a brass muzzle brake. However, after dry-fitting the barrel under the hull the barrel turned out to be much too wide, so that only the muzzal brake survived and the rest of the weapon was created from a buddy refueling pod (from an Italeri 1:72 Luftwaffe Tornado, because of its two conical ends) and protective plastic caps from medical canulas. To attach this creation to the hull I abused a conformal belly tank from a Matchbox Gloster Meteor night fighter and tailored it into a streamlined fairing. While this quite a Frankenstein creation, the overall dimensions match the real SG 104 prototype and its look well.
Other cosmetic modifications include a pair of underwing dive brakes, translanted from an Italeri 1:72 Ju 88 A-4 kit, an extended (scratched) tail "stinger" which resembles the real dive brake arrangement that was installed on some Do 217 E bombers, and I added blast deflector vanes and a dorsal stabilizer fin.
In order to provide the aircraft with enough ground clearance, the tail wheel was slightly extended. Thanks to the long tail stinger, this is not blatantly obvious.
Painting and markings:
This was not an easy choice, but as a kind of prototype I decided that the paint scheme should be rather conservative. However, German aircraft operating over the Atlantic tended to carry rather pale schemes, so that the standard pattern of RLM 70/71/65 (Dunkelgrün, Schwarzgrün and Hellblau) with a low waterline - typical for experimental types - would hardly be appropriate.
I eventually found a compromise on a He 177 bomber (coded 6N+BN) from 1944 that was operated by KG 100: this particular aircraft had a lightened upper camouflage - still a standard splinter scheme but consisting of RLM 71 and 02 (Dunkelgrün and Grau; I used Modelmaster 2081 and Humbrol 240), a combination that had been used on German fighters during the Battle of Britain when the standard colors turned out to be too dark for operations over the Channel. The aircraft also carried standard RLM 65 (or maybe the new RLM76) underneath (Humbrol 65) and on the fin, but with a very high and slightly wavy waterline. As a rather unusual feature, no typical camouflage mottles were carried on the flanks or the fin, giving the aircraft a very bleak and simple look.
Despite my fears that this might look rather boring I adapted this scheme for the Do 217 F-0, and once basic painting was completed I was rather pleased by the aircraft's look! As an aircraft operated at the Western front, no additional markings like fuselage bands were carried.
To set the SG 104 apart from the airframe, I painted the weapon's visible parts in RLM 66 (Schwarzgrau, Humbrol 67), because this tone was frequently used for machinery (including the interior surfaces of aircraft towards 1945).
RLM 02 was also used for the interior surfaces and the landing gear, even though I used a slightly different, lighter shade in form of Revell 45 (Helloliv).
A light black ink washing was applied and post-shading to emphasize panel lines. Most markings/decals came from a Begemot 1:72 He 11 sheet, including the unusual green tactical code - it belongs to a staff unit, a suitable marking for such an experimental aircraft. The green (Humbrol 2) was carried over to the tips of the propeller spinners. The unit's code "1A" is fictional, AFAIK this combination had never been used by the Luftwaffe.
The small unit badge was alucky find: it actually depicts the fictional Baron von Münchhausen riding on a cannonball, and it comes from an Academy 1:72 Me 163 kit and its respective sheet. The mission markings underneath, depicting two anti-ship missions plus a successful sinking, came from a TL Modellbau 1:72 scale sheet with generic German WWII victory markings.
After some soot stains around the engine exhaust and weapon muzzles had been added with graphite, the model was sealed with matt acrylic varnish and final details like position lights and wire antennae (from heated black plastic sprue material) were added.
Well, what started as a combination of two kits of the same kind with a simple huge pipe underneath turned out to be more demanding than expected. The (incomplete) replacement engines were quite a challenge, and body work on the hull (tail stinger, fairing for the SG 104 as well as the weapon itself) turned out to be more complex and extensive than initially thought of. The result looks quite convincing, also supported by the rather simple paint scheme which IMHO just "looks right" and very convincing. And the whole thing is probably the most direct representation of the inspiring "Gunship" theme!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Development studies at Grumman for jet-powered fighter aircraft began near the end of World War II as the first jet engines emerged. In a competition for a jet-powered night fighter for the United States Navy, on 3 April 1946 the Douglas F3D Skyknight was selected over Grumman's G-75, a two-seater powered by four Westinghouse J30s. The Navy's Bureau of Aeronautics (BuAer) also issued a contract to Grumman for two G-75 prototype aircraft on 11 April 1946, in case the Skyknight ran into problems.
However, Grumman soon realized that the G-75 was a dead end. But the company had been working on a completely different day fighter, the G-79, which offered a higher potential. In order to keep Grumman in the US Navy’s procurement loop, BuAer, in a bureaucratic maneuver, did not cancel the G-75 contract, but changed the wording to include prototypes of the entirely different G-79, too.
The G-79 project comprised a total of four different layouts and engine arrangements for a single seat fighter aircraft. G-79A and B were traditional tail sitters, but both featured mixed propulsion for an enhanced performance: G-79A was powered by an R-2800 radial engine and a Rolls Royce Derwent VI jet booster in the tail, fed by a pair of dorsal air intakes behind the cockpit. The G-79B was a similar aircraft, but its primary engine was a General Electric TG-100 turboprop in a more slender nose section. Even though both designs were big aircraft, initial calculations indicated a performance that would be superior to the Grumman F8F Bearcat, which had been designed as a thoroughbred interceptor.
The other two designs were pure jet fighters, both with a tricycle landing gear. G-79C had a layout reminiscent of the Gloster Meteor and was powered by two Derwent VI engines in bulky wing nacelles, and G-79D was finally an overall smaller and lighter aircraft, similar in its outlines to the early Vought F6U Pirate, and powered by a single Nene in the rear fuselage, fed by air intakes in the wing roots.
Since the operation of jet-powered aircraft from carriers was terra incognita for the US Navy, and early turbojets thirsty and slow to react to throttle input, BuAer decided to develop two of Grumman's G-79 designs into prototypes for real life evaluation: one of the conservative designs, as a kind of safe route, and one of the more modern jets.
From the mixed propulsion designs, the turboprop-powered G-79B was chosen (becoming the XF9F-1 'JetCat'), since it was expected to offer a higher performance and development potential than the radial-powered 'A'. From the pure jet designs the G-79D was chosen, because of its simplicity and compact size, and designated XF9F-2 'Panther'.
The first JetCat prototype made its maiden flight on 26 October 1947, but it was only a short airfield circuit since the TG-100 turpoprop failed to deliver full power and the jet booster had not been installed yet. The prototype Panther, piloted by test pilot Corky Meyer, first flew on 21 November 1947 without major problems.
In the wake of the two aircrafts' test program, several modifications and improvements were made. This included an equal armament of four 20mm guns (mounted in the outer, foldable wings on the JetCat and, respectively, in the Panther’s nose). Furthermore, both aircraft were soon armed with underwing HVAR air-to-ground rockets and bombs, and the JetCat even received an underfuselage pylon for the potential carriage of an airborne torpedo. Since there was insufficient space within the foldable wings and the fuselage in both aircraft for the thirsty jet’s fuel, permanently mounted wingtip fuel tanks were added on both aircraft, which incidentally improved the fighters' rate of roll. Both F9F types were cleared for flight from aircraft carriers in September 1949.
The F9F-1 was soon re-engined with an Allison T38 turboprop, which was much more reliable than the TF-100 (in the meantime re-designated XT31) and delivered a slightly higher power output. Another change was made for the booster: the bulky Derwent VI engine from the prototype stage was replaced by a much more compact Westinghouse J34 turbojet, which not only delivered slightly more thrust, it also used up much less internal space which was used for radio and navigation equipment, a life raft and a relocated oil tank. Due to a resulting CG shift towards the nose, the fuselage fuel cell layout had to be revised. As a consequence, the cockpit was moved 3’ backwards, slightly impairing the pilot’s field of view, but it was still superior to the contemporary Vought F4U.
Despite the engine improvements, though, the F9F-1 attained markedly less top speed than the F9F-2. On the other side, it had a better rate of climb and slow speed handling characteristics, could carry more ordnance and offered a considerably bigger range and extended loiter time. The F9F-2 was more agile, though, and more of the nimble dogfighter the US Navy was originally looking for. Its simplicity with just a single engine was appealing, too.
The Panther was eventually favored as the USN's first operational jet day fighter and put into production, but the F9F-1 showed much potential as a fast fighter bomber. Through pressure from the USMC, who was looking for a replacement for its F7F heavy Tigercat fighters, a production order for 50 JetCats was eventually placed, later augmented to 82 aircraft because the US Navy also recognized the type’s potential as a fast, ship-borne multi-role fighter. Further interest came in 1949 from Australia, when the country’s government was looking for a - possibly locally-built in license - replacement for the outdated Mustang Mk 23 and De Havilland Vampire then operated by the Royal Australian Air Force (RAAF). Both Grumman designs were potential contenders, rivalling with the domestic CAC CA-23 fighter development.
The Grumman Panther became the most widely used U.S. Navy jet fighter of the Korean War, flying 78,000 sorties and scoring the first air-to-air kill by the U.S. Navy in the war, the downing of a North Korean Yakovlev Yak-9 fighter. Being rugged aircraft, F9F-2s, -3s and -5s were able to sustain operations, even in the face of intense anti-aircraft fire. The pilots also appreciated the Panther’s air conditioned cockpit, which was a welcome change from the humid environment of piston-powered aircraft.
The F9F-1 did fare less glamorous. Compared with the prototypes, the T38 turboprop's power output could be enhanced on service aircraft, but not on a significant level. The aircraft's original, rather sluggish response to throttle input and its low-speed handling were improved through an eight-blade contraprop, which, as a side benefit, countered torque problems during starts and landings on carriers.
The JetCat’s mixed powerplant installation remained capricious, though, and the second engine and its fuel meant a permanent weight penalty. The aircraft's complexity turned out to be a real weak point during the type's deployment to front line airfields in the Korean War, overall readiness was – compared with conservative types like the F4U and also the F9F-2, low. Despite the turboprop improvements, the jet booster remained necessary for carrier starts and vital in order to take on the MiG-15 or post-war piston engine types of Soviet origin like the Lavochkin La-9 and -11 or the Yakowlev Yak-9.
Frequent encounters with these opponents over Korea confirmed that the F9F-1 was not a “naturally born” dogfighter, but rather fell into the escort fighter or attack aircraft class. In order to broaden the type's duty spectrum, a small number of USMC and USN F9F-1s was modified in field workshops with an APS-6 type radar equipment from F4U-4N night fighters. Similar to the Corsair, the radar dish was carried in a streamlined pod under the outer starboard wing. The guns received flame dampers, and these converted machines, re-designated F9F-1N, were used with mild success as night and all-weather fighters.
However, the JetCat remained unpopular among its flight and ground crews and, after its less-than-satisfactory performance against MiGs, quickly retired. After the end of the Korean War in July 1953, all machines were grounded and by 1954 all had been scrapped. However, the turboprop-powered fighter bomber lived on with the USMC, which ordered the Vought A3U SeaScorpion as successor.
General characteristics:
Crew: 1
Length: 40 ft 5 in (12,31 m)
Wingspan: 43 ft 5 in (13,25 m)
Height: 15 ft 6 3/4 in (4,75 m)
Wing area: 250 ft² (23 m²)
Empty weight: 12,979 lb (5,887 kg)
Gross weight: 24,650 lb (11,181 kg)
Powerplant:
1× Allison T38E turboprop, rated at 2,500 shp (1,863 kW) plus 600 lbf (2.7 kN) residual thrust
1× Westinghouse J34-WE-13 turbojet booster with 3,000 lbf (13.35 kN)
Performance:
Maximum speed: 507 mph (441 kn; 816 km/h) at 30,000 ft (9,100 m)
497 mph (432 kn, 800 km/h) at sea level
Cruise speed: 275 mph (443 km/h; 239 kn) at 30,000 ft (9,100 m)
Stall speed: 74 mph (119 km/h; 64 kn) with flaps
Range: 2,500 mi (2,172 nmi; 4,023 km)
Service ceiling: 47,000 ft (14,000 m)
Rate of climb: 5,300 ft/min (27 m/s)
Wing loading: 71 lb/ft² (350 kg/m²)
Thrust/weight: 0.42
Armament:
4× 20 mm (0.79 in) AN/M3 cannon in the outer, foldable wings with 220 RPG
Underwing hardpoints and provisions to carry combinations of up to 6× 5 " (127 mm) HVAR
missiles and/or bombs on underwing hardpoints, for a total ordnance of 3,000 lb (1,362 kg)
The kit and its assembly:
This is another submission to the Cold War GB at whatifmodelers in early 2018, and rather a spontaneous idea. It was actually spawned after I finished my fictional Gudkov Gu-1 mixed propulsion fighter - while building (using the engine front from an F6F Hellcat) I had the impression that it could also have ended up as a post-war USN fighter design.
A couple of days later, while browsing literature for inspiration, I came across Grumman's G-79 series of designs that eventually led to the F9F Panther - and I was amazed that the 'A' design almost looked like my kitbashed Soviet fighter!
So I considered a repeated build of a P-47D/Supermarine Attacker kitbash, just in American colors. But with the F9F relationship, I planned the integration of Panther parts, so that the new creation would look different from the Gu-1, but also show some (more) similarity to the Panther.
The plan appeared feasible. Again, the aircraft's core is an Academy P-47D, with its outer wings cut off. Cockpit and landing gear were retained. However, instead of Supermarine Attacker wings from a Novo kit, I attached F9F-2 wings from a Hasegawa kit. Shape-wise this worked fine, but the Panther wings are much thinner than the Thunderbolt’s, so that I had to integrate spacers inside of the intersections which deepen the Hasegawa parts. Not perfect, but since the type would feature folding wings, the difference and improvisation is not too obvious.
On the fuselage, the Thunderbolt’s air outlets on its flanks were faired over and most of the tail section cut away. In the lower part of the tail, a jet pipe (from a Heller F-84G) was added and blended with PSR into the Thunderbolt fuselage, similar to the Gu-1. A completely new fin was scratched from an outer wing section from a Heinkel He 189, in an attempt to copy the G-79B's shape according to the drawing I used as benchmark for the build. I also used the F9F's stabilizers. With clipped tips they match well in size and shape, and add to the intended Grumman family look. The original tail wheel well was retained, but the tail wheel was placed as far back as possible and replaced by the twin wheel from a Hasegawa F5U. The Panther’s OOB tail hook was integrated under the jet pipe, too.
The front section is completely different and new, and my choice fell on the turboprop-powered G-79B because I did not want to copy the Gu-1 with its radial engine. However, the new turboprop nose was not less complicated to build. Its basis is a 1:100 engine and contraprop from a VEB Plasticart Tu-20/95 bomber, a frequent ingredient in my builds because it works so well in 1:72 scale. This slender core was attached to the Thunderbolt's fuselage, and around this basis a new cowling was built up with 2C putty, once more in an attempt to mimic the original G-79B design as good as possible.
In order to blend the new engine with the fuselage and come close to the G-79B’s vaguely triangular fuselage diameter, the P-47's deep belly was cut away, faired over with styrene sheet, and everything blended into each other with more PSR work. As a final step, two exhaust pipes were mounted to the lower fuselage in front of the wings’ leading edge.
The air intakes for the jet booster are actually segments from a Sopwith Triplane fuselage (Revell) – an unlikely source, but the shape of the parts was just perfect. More PSR was necessary to blend them into the aircraft’s flanks, though.
Painting and markings:
As per usual, I'd rather go with conservative markings on a fictional aircraft. Matching the Korean War era, the aircraft became all-over FS 35042 (Modelmaster). A black ink wash emphasized the partly re-engraved panel lines, and some post shading highlighted panels.
The wings’ leading edges and the turboprop’s intake were painted with aluminum, similar edges on fin and stabilizers were created with silver decal material. The interior of cockpit and landing gear was painted with green chromate primer.
The markings were puzzled together. “Stars and Bars” and VF-53 markings were taken from a Hobby Boss F4U-4 kit. The blue fin tip is the marking for the 3rd squadron, so that the “307” tactical code is plausible, too (the latter comes from a Hobby Boss F9F-2). In order to keep things subtle and more business-like (after all, the aircraft is supposed to be operated during the ongoing Korean War), I did not carry the bright squadron color to any other position like the spinner or the wing tips.
After some final detail work and gun and exhaust soot stains, the kit was sealed with semi-gloss acrylic varnish (Italeri). Matt acrylic varnish was used for weathering effects, so that the aircraft would not look too clean and shiny.
While it is not a prefect recreation of the Grumman G-79B, I am quite happy with the result. The differences between the model and the original design sketch can be explained through serial production adaptations, and overall the whole thing looks pretty conclusive. In fact, the model appears from certain angles like a naval P-51 on steroids, even though the G-79B was a much bigger aircraft than the Mustang.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Gloster Glaive was basically a modernized and re-engined variant of the successful, British-built Gloster Gladiator (or Gloster SS.37), the RAF’s final biplane fighter to enter service. The Gladiator was not only widely used by the RAF at the dawn of WWII and in almost every theatre of operations, but also by many other nations. Operators included Norway, Belgium, Sweden, Greece, Latvia, Lithuania or Nationalist China, and while the RAF already opted for more modern monoplanes, Gloster saw the opportunity to sell an updated Gladiator to countries which were not as progressive.
Originally designated Gladiator Mk. IV, the machine received many aerodynamic refinements and the motor was changed from a draggy radial to a liquid-cooled inline engine. The latter was the new Rolls Royce Peregrine, a development of the Kestrel. It was, in its original form, a 21-litre (1,300 cu in) liquid-cooled V-12 aero engine ), delivering 885-horsepower (660 kW). The engine was housed under a streamlined cowling, driving a three blade metal propeller, and was coupled with a ventral radiator bath, reminiscent of the Hawker Fury biplane’s arrangement.
Structural improvements included an all-metal monocoque fuselage and stabilizers, as well as new wings and streamlined struts with reduced bracing. The upper wing was enlarged and of all-metal construction, too, while the lower wings were reduced in span and area, almost resulting in a sesquiplane layout. The total wing area was only marginally reduced, though.
The fixed landing gear was retained, but the main wheels were now covered with spats. The pilot still sat in a fully enclosed cockpit, the armament consisted of four machine guns, similar to the Gladiator. But for the Glaive, all Browning machine guns were synchronized and mounted in the fuselage: one pair was placed on top of the cowling, in front of the cockpit. Another pair, much like the Gladiator’s arrangement was placed in the fuselage flanks, below the exhaust outlets.
Compared with the Gladiator, the design changes were so fundamental that Gloster eventually decided to allocate a separate designation – also with a view to the type’s foreign marketing, since a new aircraft appeared more attractive than another mark of a pre-war design. For the type’s virgin flight in late 1938 the name “Glaive” was unveiled to the public, and several smaller European air forces immediately showed interest, including Greece, Croatia, Turkey, Portugal and Egypt.
Greece was one of the initial customers, and the first of a total of 24 aircraft for the Hellenic Air Force was delivered in early 1939, with 24 more on order (which were never delivered, though). The initial batch arrived just in time, since tension had been building between Greece and Italy since 7 April 1939, when Italian troops occupied Albania. On 28 October 1940, Italy issued an ultimatum to Greece, which was promptly rejected. A few hours later, Italian troops launched an invasion of Greece, initiating the Greco-Italian War.
The Hellenic Gloster Glaives were split among three Mirae Dioxeos (Fighter Squadrons): the 21st at Trikala, 22nd at Thessaloniki and 23rd at Larissa. When Italy attacked in October 1940, the British fighter was, together with the PZL 24, the Greeks' only modern type in adequate numbers. However, by late 1940, the Gloster Glaive was already no longer a front-runner despite a powerful powerplant and satisfactory armament. It had no speed advantage over the Fiat Cr.42 nor could it outfly the nimble Italian biplane, and it was much slower than the Macchi MC.200 and the Fiat G.50 it was pitted against. Its agility was the only real advantage against the Italian fighters, whose reliance on the slow firing Breda-SAFAT 12.7mm machine guns proved detrimental.
Anyway, on 5 April 1941, German forces invaded Greece and quickly established air superiority. As the Allied troops retreated, British and Hellenic forces covered them, before flying to Crete during the last week of April. There, the refugee aircraft recorded a few claims over twin-engine aircraft before being evacuated to Egypt during the Battle of Crete.
Overall, the Glaives performed gallantly during the early period of the conflict, holding their own against impossible numerical odds and despite the fact that their main target were enemy bombers which forced them to fight at a disadvantage against enemy fighters. Italian claims of easy superiority over the Albanian front were vastly over-rated and their kill claims even exceeded the total number of operational fighters on the Greek side. Total Greek fighter losses in combat came to 24 a/c with the Greek fighter pilots claiming 64 confirmed kills and 24 probables (about two third bombers).
By April 1941, however, lack of spares and attrition had forced the Hellenic Air Force to merge the surviving seven Glaives with five leftover PZL.24s into one understrength squadron supported by five Gloster Gladiators Mk I & II and the two surviving MB.151s. These fought hopelessly against the Luftwaffe onslaught, and most aircraft were eventually lost on the ground. None of the Hellenic Gloster Glaives survived the conflict.
General characteristics:
Crew: two
Length: 8.92m (29 ft 3 in)
Wingspan: 34 ft 0 in (10.36 m)
Height: 11 ft 9 in (3.58 m)
Wing area: 317 ft² (29.4 m²)
Empty weight: 1,295 kg (2,855 lb)
Max takeoff weight: 1,700 kg (3,748 lb)
Powerplant:
1× Rolls Royce Peregrine II liquid-cooled V12 inline engine, rated at 940 hp (700 kw)
Performance:
Maximum speed: 405 km/h (252 mph; 219 kn) at 4,400 m (14,436 ft)
Cruise speed: 345 km/h (214 mph; 186 kn)
Stall speed: 60 mph (52 knots, 96 km/h)
Range: 373 mi (600 km; 324 nmi)
Endurance: 2 hours
Service ceiling: 10,600 m (34,800 ft)
Rate of climb: 2,982 ft/min (15.15 m/s)
Time to altitude: 10.000 ft (3.050 m) in 3 minutes 20 seconds
Armament:
4× 0.303 calibre (7.7 mm) M1919 Browning machine guns in the fuselage
Provisions for 6× 10 kg (22 lb) or 4x 20 kg (44 lb) bombs under the lower wings
The kit and its assembly:
The fictional Gloster Glaive started quite simple with the idea of replacing the Gladiator’s radial with an inline engine. But this soon did not appear enough for an update – the Peregrine hardly delivered much more power than the former Mercury, so I considered some structural updates, too. Most of them comprised the replacement of former fabric-covered structures, and this led conceptually to a kitbash with only some Gladiator fuselage and tail parts left.
The basis is (once more) the very nice Matchbox Gloster Gladiator, but it was heavily modified. As an initial step, fuselage, fin and stabilizers (all OOB parts) lost their rib-and-fabric structure, simply sanded away. A minor detail, but it changes the overall look of the aircraft a lot, making it appear much more modern.
The fuselage was left without the OOB radial, and instead a leftover Merlin front end from an Airfix Hurricane (ca. 1cm long, left over from one of my first whif builds ever, a Hurricane with a radial engine!) was added. The lines match pretty well: the side profile looks sleek, if not elegant, but the Gladiator fuselage turned out to be wider than expected. Some major body work/PSR was necessary to integrate the new nose, but the result looks very good.
The liquid-cooled engine necessitated a radiator somewhere on the airframe…! Since I wanted the nose to remain slim and streamlined I eventually placed the radiator bath under the fuselage, much like the arrangement of the Hawker Fury biplane. The radiator itself comes from a late Spitfire (FROG kit).
The exhaust was taken from the Hurricane kit, too, and matching slits dug into the putty nose to take them. The three blade propeller is a mash-up, too: the spinner belongs, IIRC, to an early Spitfire (left over from an AZ Models kit) while the blades came from a damaged Matchbox Brewster Buffalo.
The Gladiator’s fuselage flank machine guns were kept and their “bullet channels” extrapolated along the new cowling, running under the new exhaust pipes. Another pair of machine guns were placed on top of the engine – for these, openings were carved into the upper hull and small fairings (similar to the Browning guns in the flanks) added. This arrangement appeared plausible to me, since the Gladiator’s oil cooler was not necessary anymore and the new lower wings (see below) were not big enough anymore to take the Gladiator’s underwing guns. Four MGs in the fuselage appears massive – but there were other types with such an arrangement, e.g. the Avia B-534 with four guns in the flanks and an inline engine.
The wings are complete replacements: the upper wing comes from a Heller Curtiss SBC4, while the lower wings as well as the spats (on shortened OOB Gladiator struts) come from an ICM Polikarpov I-153. All struts were scratched. Once the lower wings were in place and the relative position of the upper wing clear, the outer struts were carved from 1mm styrene sheet, using the I-153 design as benchmark. These were glued to the lower wing first, and, once totally dry after 24h, the upper wing was simply glued onto the top and the wing position adjusted. This was left to dry another 24h, and as a final step the four struts above the cowling (using the OOB struts, but as single parts and trimmed for proper fit) were placed. This way, a stable connection is guaranteed – and the result is surprisingly sturdy.
Rigging was done with heated sprue material – my personal favorite for this delicate task, and executed before painting the kit started so that the glue could cure and bond well.
Painting and markings:
The reason why this aircraft ended in Greek service is a color photograph of a crashed Hellenic Bloch M.B. 152 (coded ‘D 177’, to be specific). I guess that the picture was post-colored, though, because the aircraft of French origin sports rather weird colors: the picture shows a two-tone scheme in a deep, rather reddish chestnut brown and a light green that almost looks like teal. Unique, to say the least... Underside colors couldn’t be identified with certainty in the picture, but appeared like a pale but not too light blue grey.
Anyway, I assume that these colors are pure fiction and exaggerated Photoshop work, since the few M.B. 152s delivered to Greece carried AFAIK standard French camouflage (in French Khaki, Chestnut Brown and Blue-Grey on the upper surfaces, and a very light blue-grey from below). I’d assume that the contrast between the grey and green tones was not very obvious in the original photograph, so that the artist, not familiar with WWII paint schemes, replaced both colors with the strange teal tone and massively overmodulated the brown.
As weird as it looked, I liked this design and used it as an inspirational benchmark for my Hellenic Glaive build. After all, it’s a fictional aircraft… Upper basic colors are Humbrol 31 (RAF Slate Grey) and 160 (German Camouflage Red Brown), while the undersides became French Dark Blue Grey (ModelMaster Authentics 2105). The result looks rather odd…
Representing a combat-worn aircraft, I applied a thorough black ink wash and did heavier panel shading and dry-brushing on the leading edges, along with some visible touches of aluminum.
The Hellenic roundels come from a TL Modellbau aftermarket sheet. The tactical code was puzzled together from single letters, and the Greek “D” was created from single decal strips. For better contrast I used white decals – most Hellenic aircraft of the time had black codes, but the contrast is much better, and I found evidence that some machines actually carried white codes. The small fin flash is another free interpretation. Not every Hellenic aircraft carried these markings, and instead of painting the whole rudder in Greek colors I just applied a small fin flash. This was created with white and blue decal strips, closely matching the roundels’ colors.
Finally, after some soot stains around the guns and the exhausts, the kit was sealed with matt acrylic varnish.
Modified beyond recognition, perhaps…? The fictional Gloster Glaive looks IMHO good and very modern, just like one of those final biplane designs that were about to be outrun by monoplanes at the brink of WWII.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
The A-14 program originally started in 2005 as a private venture, initiated by Northrop-Grumman together with the Elbit Group as a joint venture through Elbit’s Texas-based aircraft division M7 Aerosystems, an approved supplier to major aerospace clients. The aircraft was intended to replace the USAF’s A-10 attack aircraft as well as early F-16s in the strike role from 2010 onwards. The time slot for the project turned out to be advantageous, because at that time the USAF was contemplating to replace the simple and sturdy A-10 with the much more complex F-35, eventually even with its VTOL variant, and the highly specialized F-117 was retired, too.
The A-14 revived conceptual elements of Grumman’s stillborn A-12 stealth program for the US Navy, which had also been part of the USAF’s plans to replace the supersonic F-111 tactical bomber, but on a less ambitious and expensive level concerning technology, aiming for a more effective compromise between complexity, survivability and costs. The basic idea was an updated LTV A-7D (the A-10’s predecessor from the Vietnam War era), which had far more sophisticated sensor and navigation equipment than the rather simple but sturdy A-10, but with pragmatic stealth features and a high level of survivability in a modern frontline theatre or operations.
M7 Aerosystems started on a blank sheet, even though Northrop-Grumman’s A-12 influence was clearly visible, and to a certain degree the aircraft shared the basic layout with the F-117A. The A-14 was tailored from the start to the ground attack role, and therefore a subsonic design. Measures to reduce radar cross-section included airframe shaping such as alignment of edges, fixed-geometry serpentine inlets that prevented line-of-sight of the engine faces from any exterior view, use of radar-absorbent material (RAM), and attention to detail such as hinges and maintenance covers that could provide a radar return. The A-14 was furthermore designed to have decreased radio emissions, infrared signature and acoustic signature as well as reduced visibility to the naked eye.
The resulting airframe was surprisingly large for an attack aircraft – in fact, it rather reminded of a tactical bomber in the F-111/Su-24 class than an alternative to the A-10. The A-14 consisted of a rhomboid-shaped BWB (blended-wing-and-body) with extended wing tips and only a moderate (35°) wing sweep, cambered leading edges, a jagged trailing edge and a protruding cockpit section which extended forward of the main body.
The majority of the A-14’s structure and surface were made out of a carbon-graphite composite material that is stronger than steel, lighter than aluminum, and absorbs a significant amount of radar energy. The central fuselage bulge ended in a short tail stinger with a pair of swept, canted fins as a butterfly tail, which also shrouded the engine’s hot efflux. The fins could have been omitted, thanks to the aerodynamically unstable aircraft’s fly-by-wire steering system, and they effectively increased the A-14’s radar signature as well as its visual profile, but the gain in safety in case of FBW failure or physical damage was regarded as a worthwhile trade-off. Due to its distinctive shape and profile, the A-14 quickly received the unofficial nickname “Squatina”, after the angel shark family.
The spacious and armored cockpit offered room for the crew of two (pilot and WSO or observer for FAC duties), seated side-by-side under a generous glazing, with a very good field of view forward and to the sides. The fuselage structure was constructed around a powerful cannon, the five-barrel GAU-12/U 25 mm ‘Equalizer’ gun, which was, compared with the A-10’s large GAU-8/A, overall much lighter and more compact, but with only little less firepower. It fired a new NATO series of 25 mm ammunition at up to 4.200 RPM. The gun itself was located under the cockpit tub, slightly set off to port side, and the front wheel well was offset to starboard to compensate, similar in arrangement to the A-10 or Su-25. The gun’s ammunition drum and a closed feeding belt system were located behind the cockpit in the aircraft’s center of gravity. An in-flight refueling receptor (for the USAF’s boom system) was located in the aircraft’s spine behind the cockpit, normally hidden under a flush cover.
Due to the gun installation in the fuselage, however, no single large weapon bay to minimize radar cross section and drag through external ordnance was incorporated, since this feature would have increased airframe size and overall weight. Instead, the A-14 received four, fully enclosed compartments between the wide main landing gear wells and legs. The bays could hold single iron bombs of up to 2.000 lb caliber each, up to four 500 lb bombs or CBUs, single laser-guided GBU-14 glide bombs, AGM-154 JSOW or GBU-31/38 JDAM glide bombs, AGM-65 Maverick guided missiles or B61 Mod 11 tactical nuclear weapons, as well as the B61 Mod 12 standoff variant, under development at that time). Retractable launch racks for defensive AIM-9 Sidewinder air-to-air missiles were available, too, and additional external pylons could be added, e.g. for oversize ordnance like AGM-158C Long Range Anti-Ship Missile (LRASM) or AGM-158 Joint Air to Surface Standoff Missile (JASSM), or drop tanks for ferry flights. The total in- and external ordnance load was 15,000 lb (6,800 kg).
The A-14 was designed with superior maneuverability at low speeds and altitude in mind and therefore featured a large wing area, with high wing aspect ratio on the outer wing sections, and large ailerons areas. The ailerons were placed at the far ends of the wings for greater rolling moment and were split, making them decelerons, so that they could also be used as air brakes in flight and upon landing.
This wing configuration promoted short takeoffs and landings, permitting operations from primitive forward airfields near front lines. The sturdy landing gear with low-pressure tires supported these tactics, and a retractable arrester hook, hidden by a flush cover under the tail sting, made it possible to use mobile arrested-recovery systems.
The leading edge of the wing had a honeycomb structure panel construction, providing strength with minimal weight; similar panels covered the flap shrouds, elevators, rudders and sections of the fins. The skin panels were integral with the stringers and were fabricated using computer-controlled machining, reducing production time and cost, and this construction made the panels more resistant to damage. The skin was not load-bearing, so damaged skin sections could be easily replaced in the field, with makeshift materials if necessary.
Power came from a pair of F412-GE-114 non-afterburning turbofans, engines that were originally developed for the A-12, but de-navalized and lightened for the A-14. These new engines had an output of 12,000 lbf (53 kN) each and were buried in blended fairings above the wing roots, with jagged intakes and hidden ducts. Flat exhausts on the wings’ upper surface minimized both radar and IR signatures.
Thanks to the generous internal fuel capacity in the wings and the fuselage, the A-14 was able to loiter and operate under 1,000 ft (300 m) ceilings for extended periods. It typically flew at a relatively low speed of 300 knots (350 mph; 560 km/h), which made it a better platform for the ground-attack role than fast fighter-bombers, which often have difficulty targeting small, slow-moving targets or executing more than just a single attack run on a selected target.
A mock-up was presented and tested in the wind tunnel and for radar cross-section in late 2008. The A-14’s exact radar cross-section (RCS) remained classified, but in 2009 M7 Aerosystems released information indicating it had an RCS (from certain angles) of −40 dBsm, equivalent to the radar reflection of a "steel marble". With this positive outcome and the effective design, M7 Aerosystems eventually received federal funding for the production of prototypes for an official DT&E (Demonstration Testing and Evaluation) program.
Three prototypes/pre-production aircraft were built in the course of 2010 and 2011, and the first YA-14 made its maiden flight on 10 May 2011. The DT&E started immediately, and the machines (a total of three flying prototypes were completed, plus two additional airframes for static tests) were gradually outfitted with mission avionics and other equipment. This included GPS positioning, an inertial navigation system, passive sensors to detect radar usage, a small, gyroscopically stabilized turret, mounted under the nose of the aircraft, containing a FLIR boresighted with a laser spot-tracker/designator, and an experimental 3-D laser scanning LIDAR in the nose as a radiation-less alternative to a navigation and tracking radar.
Soon after the DT&E program gained momentum in 2012, the situation changed for M7 Aerosystems when the US Air Force considered the F-35B STOVL variant as its favored replacement CAS aircraft, but concluded that the aircraft could not generate a sufficient number of sorties. However, the F-35 was established as the A-14’s primary rival and remained on the USAF’s agenda. For instance, at that time the USAF proposed disbanding five A-10 squadrons in its budget request to cut its fleet of 348 A-10s by 102 to lessen cuts to multi-mission aircraft in service that could replace the specialized attack aircraft.
In August 2013, Congress and the Air Force examined various proposals for an A-10 replacement, including the A-14, F-35 and the MQ-9 Reaper unmanned aerial vehicle, and, despite the A-14’s better qualities in the ground attack role, the F-35 came out as the overall winner, since it was the USAF’s favorite. Despite its complexity, the F-35 was – intended as a multi-role tri-service aircraft and also with the perspective of bigger international sales than the more specialized A-14 – regarded as the more versatile and, in the long run, more cost-efficient procurement option. This sealed the A-14’s fate and the F-35A entered service with U.S. Air Force F-35A in August 2016 (after the F-35B was introduced to the U.S. Marine Corps in July 2015). At that time, the U.S. planned to buy 2,456 F-35s through 2044, which would represent the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps for several decades.
Since the A-14’s technology was considered to be too critical to be marketed to export customers (Israel showed early interest in the aircraft, as well as South Korea), the program was cancelled in 2016.
General characteristics:
Crew: 2 (pilot, WSO)
Length: 54 ft 11 1/2 in (16.78 m)
Wingspan: 62 ft 11 1/2 in (19.22 m)
Height: 11 ft 3 3/4 in (3.45 m)
Wing area: 374.9 ft² (117.5 m²)
Empty weight: 24,959 lb (11,321 kg)
Loaded weight: 30,384 lb (13,782 kg)
Max. takeoff weight: 50,000 lb (22,700 kg)
Internal fuel capacity: 11,000 lb (4,990 kg)
Powerplant:
2× General Electric Whitney F412-GE-114 non-afterburning turbofans
with 12,000 lbf (53 kN) thrust each
Performance:
Maximum speed: 630 mph (1,010 km/h, 550 kn) at 40,000 ft altitude /
Mach 0.95 at sea level
Cruise speed: 560 mph (900 km/h, 487 kn) at 40,000 ft altitude
Range: 1,089 nmi (1,253 mi, 2,017 km)
Ferry range: 1,800 nmi (2,100 mi, 3,300 km)
Service ceiling: 50,000 ft (15,200 m)
Rate of climb: 50,000 ft/min (250 m/s)
Wing loading: 133 lb/ft² (193 kg/m²)
Thrust/weight: 0.48 (full internal fuel, no stores)
Take-off run: 1,200 m (3,930 ft) at 42,000 lb (19,000 kg) over a 15 m (30 ft) obstacle
Armament:
1× General Dynamics GAU-12/U Equalizer 25 mm (0.984 in) 5-barreled rotary cannon
with 1,200 rounds (max. capacity 1,350 rounds)
4x internal weapon bays plus 4x external optional hardpoints with a total capacity of
15,000 lb (6,800 kg) and provisions to carry/deploy a wide range of ordnance
The kit and its assembly:
A major kitbashing project which I had on my idea list for a long time and its main ingredients/body donors already stashed away – but, as with many rather intimidating builds, it takes some external motivation to finally tackle the idea and bring it into hardware form. This came in August 2020 with the “Prototypes” group build at whatifmodellers.com, even though is still took some time to find the courage and mojo to start.
The original inspiration was the idea of a stealthy successor for the A-10, or a kind of more modern A-7 as an alternative to the omnipresent (and rather boring, IMHO) F-35. An early “ingredient” became the fuselage of a Zvezda Ka-58 stealth helicopter kit – I liked the edgy shape, the crocodile-like silhouette and the spacious side-by-side cockpit. Adding wings, however, was more challenging, and I remembered a 1:200 B-2A which I had turned into a light Swedish 1:72 attack stealth aircraft. Why not use another B-2 for the wings and the engines, but this time a bigger 1:144 model that would better match the quite bulbous Ka-58 fuselage? This donor became an Italeri kit.
Work started with the fuselage: the Ka-58’s engine and gearbox hump had to go first and a generous, new dorsal section had to be scratched with 1mm styrene sheet and some PSR. The cockpit and its glazing could be retained and were taken OOB. Under the nose, the Ka-58’s gun turret was omitted and a scratched front landing gear well was implanted instead.
The wings consist of the B-2 model; the lower “fuselage half” had its front end cut away, then the upper fuselage half of the Ka-58 was used as benchmark to cut the B-2’s upper wing/body part in two outer wing panels. Once these elements had been glued together, the Ka-58’s lower nose and tail section were tailored to match the B-2 parts. The B-2 engine bays were taken OOB and mounted next, so that the A-14’s basic hull was complete and the first major PSR session could start. Blending the parts into each other turned out to be a tedious process, since some 2-3 mm wide gaps had to be filled.
Once the basic BWP pack had been finished, I added the fins. These were taken from an 1:72 F-117 kit (IIRC from Italeri), which I had bought in a lot many moons ago. The fins were just adapted at their base to match the tail sting slope, and they were mounted in a 45° angle. This looks very F-117ish but was IMHO the most plausible solution.
Now that the overall length of the aircraft was defined, I could work on the final major assembly part: the wing tips. The 1:144 B-2 came with separate wing tip sections, but they proved to be much too long for the Squatina. After some trials I reduced their length by more than half, so that the B-2’s jagged wing trailing edge was kept. The result looks quite natural, even though blending the cut wing tips to the BWB turned out to be a PSR nightmare because their thickness reduces gently towards the tip – since I took out a good part of the inner section, the resulting step had to be sanded away and hidden with more PSR.
Detail work started next, including the cockpit glazing, the bomb bay (the B-2 kit comes with one of its bays open, and I kept this detail and modified the interior) and the landing gear, the latter was taken from the F-117 donor bank and fitted surprisingly well.
Some sensors were added, too, including a flat glass panel on the nose tip and a triangular IRST fairing under the nose, next to the landing gear well.
Painting and markings:
For a stealth aircraft and a prototype I wanted something subdued or murky, but not an all-black or -grey livery. I eventually settled for the rather dark paint scheme that the USAF applied to its late B-52Gs and the B-1Bs, which consists of two tones from above, FS 36081 (Dark Grey, a.k.a. Dark Gunship Grey) and 34086 (Green Drab), and underneath (FS 36081 and 36118 (Gunship Grey). The irregular pattern was adapted (in a rather liberal fashion) from the USAF’s early B-1Bs, using Humbrol 32, 108 and 125 as basic colors. The 108 turned out to be too bright, so I toned it down with an additional coat of thinned Humbrol 66. While this considerably reduced the contrast between the green and the grey, the combination looks much better and B-1B-esque.
The wings’ leading edges were painted for more contrast with a greyish black (Tar Black, Revell 09), while the landing gear, the interior of the air intakes and the open bomb bay became glossy white. The cockpit was painted in medium grey (Humbrol 140) and the clear parts received a thinned inner coating with a mix of transparent yellow and brown, simulating an anti-radar coating – even though the effect turned out to be minimal, now it looks as of the plastic parts had just yellowed from age…
After the initial livery had been finished the model received a black ink washing and some post-panel shading with slightly brightened variations of the basic tones (using Humbrol 79, 144 and 224). Decals were added next, an individual mix from various sources. The “Stars-and-Bars” come from a PrintScale A-7 sheet, most stencils come from an F-16 sheet.
After some more detail painting and a treatment with graphite on the metal areas (exhausts, gun port), the model was sealed with matt acrylic varnish (Italeri).
Batman’s next Batwing? Maybe, there’s certainly something fictional about this creation. But the “Squatina” turned out much more conclusive (and even pretty!) than I expected, even though it became a bigger aircraft than intended. And I am positively surprised how good the bodywork became – after all, lots of putty had to be used to fill all the gaps between parts that no one ever expected to be grafted together.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
The A-14 program originally started in 2005 as a private venture, initiated by Northrop-Grumman together with the Elbit Group as a joint venture through Elbit’s Texas-based aircraft division M7 Aerosystems, an approved supplier to major aerospace clients. The aircraft was intended to replace the USAF’s A-10 attack aircraft as well as early F-16s in the strike role from 2010 onwards. The time slot for the project turned out to be advantageous, because at that time the USAF was contemplating to replace the simple and sturdy A-10 with the much more complex F-35, eventually even with its VTOL variant, and the highly specialized F-117 was retired, too.
The A-14 revived conceptual elements of Grumman’s stillborn A-12 stealth program for the US Navy, which had also been part of the USAF’s plans to replace the supersonic F-111 tactical bomber, but on a less ambitious and expensive level concerning technology, aiming for a more effective compromise between complexity, survivability and costs. The basic idea was an updated LTV A-7D (the A-10’s predecessor from the Vietnam War era), which had far more sophisticated sensor and navigation equipment than the rather simple but sturdy A-10, but with pragmatic stealth features and a high level of survivability in a modern frontline theatre or operations.
M7 Aerosystems started on a blank sheet, even though Northrop-Grumman’s A-12 influence was clearly visible, and to a certain degree the aircraft shared the basic layout with the F-117A. The A-14 was tailored from the start to the ground attack role, and therefore a subsonic design. Measures to reduce radar cross-section included airframe shaping such as alignment of edges, fixed-geometry serpentine inlets that prevented line-of-sight of the engine faces from any exterior view, use of radar-absorbent material (RAM), and attention to detail such as hinges and maintenance covers that could provide a radar return. The A-14 was furthermore designed to have decreased radio emissions, infrared signature and acoustic signature as well as reduced visibility to the naked eye.
The resulting airframe was surprisingly large for an attack aircraft – in fact, it rather reminded of a tactical bomber in the F-111/Su-24 class than an alternative to the A-10. The A-14 consisted of a rhomboid-shaped BWB (blended-wing-and-body) with extended wing tips and only a moderate (35°) wing sweep, cambered leading edges, a jagged trailing edge and a protruding cockpit section which extended forward of the main body.
The majority of the A-14’s structure and surface were made out of a carbon-graphite composite material that is stronger than steel, lighter than aluminum, and absorbs a significant amount of radar energy. The central fuselage bulge ended in a short tail stinger with a pair of swept, canted fins as a butterfly tail, which also shrouded the engine’s hot efflux. The fins could have been omitted, thanks to the aerodynamically unstable aircraft’s fly-by-wire steering system, and they effectively increased the A-14’s radar signature as well as its visual profile, but the gain in safety in case of FBW failure or physical damage was regarded as a worthwhile trade-off. Due to its distinctive shape and profile, the A-14 quickly received the unofficial nickname “Squatina”, after the angel shark family.
The spacious and armored cockpit offered room for the crew of two (pilot and WSO or observer for FAC duties), seated side-by-side under a generous glazing, with a very good field of view forward and to the sides. The fuselage structure was constructed around a powerful cannon, the five-barrel GAU-12/U 25 mm ‘Equalizer’ gun, which was, compared with the A-10’s large GAU-8/A, overall much lighter and more compact, but with only little less firepower. It fired a new NATO series of 25 mm ammunition at up to 4.200 RPM. The gun itself was located under the cockpit tub, slightly set off to port side, and the front wheel well was offset to starboard to compensate, similar in arrangement to the A-10 or Su-25. The gun’s ammunition drum and a closed feeding belt system were located behind the cockpit in the aircraft’s center of gravity. An in-flight refueling receptor (for the USAF’s boom system) was located in the aircraft’s spine behind the cockpit, normally hidden under a flush cover.
Due to the gun installation in the fuselage, however, no single large weapon bay to minimize radar cross section and drag through external ordnance was incorporated, since this feature would have increased airframe size and overall weight. Instead, the A-14 received four, fully enclosed compartments between the wide main landing gear wells and legs. The bays could hold single iron bombs of up to 2.000 lb caliber each, up to four 500 lb bombs or CBUs, single laser-guided GBU-14 glide bombs, AGM-154 JSOW or GBU-31/38 JDAM glide bombs, AGM-65 Maverick guided missiles or B61 Mod 11 tactical nuclear weapons, as well as the B61 Mod 12 standoff variant, under development at that time). Retractable launch racks for defensive AIM-9 Sidewinder air-to-air missiles were available, too, and additional external pylons could be added, e.g. for oversize ordnance like AGM-158C Long Range Anti-Ship Missile (LRASM) or AGM-158 Joint Air to Surface Standoff Missile (JASSM), or drop tanks for ferry flights. The total in- and external ordnance load was 15,000 lb (6,800 kg).
The A-14 was designed with superior maneuverability at low speeds and altitude in mind and therefore featured a large wing area, with high wing aspect ratio on the outer wing sections, and large ailerons areas. The ailerons were placed at the far ends of the wings for greater rolling moment and were split, making them decelerons, so that they could also be used as air brakes in flight and upon landing.
This wing configuration promoted short takeoffs and landings, permitting operations from primitive forward airfields near front lines. The sturdy landing gear with low-pressure tires supported these tactics, and a retractable arrester hook, hidden by a flush cover under the tail sting, made it possible to use mobile arrested-recovery systems.
The leading edge of the wing had a honeycomb structure panel construction, providing strength with minimal weight; similar panels covered the flap shrouds, elevators, rudders and sections of the fins. The skin panels were integral with the stringers and were fabricated using computer-controlled machining, reducing production time and cost, and this construction made the panels more resistant to damage. The skin was not load-bearing, so damaged skin sections could be easily replaced in the field, with makeshift materials if necessary.
Power came from a pair of F412-GE-114 non-afterburning turbofans, engines that were originally developed for the A-12, but de-navalized and lightened for the A-14. These new engines had an output of 12,000 lbf (53 kN) each and were buried in blended fairings above the wing roots, with jagged intakes and hidden ducts. Flat exhausts on the wings’ upper surface minimized both radar and IR signatures.
Thanks to the generous internal fuel capacity in the wings and the fuselage, the A-14 was able to loiter and operate under 1,000 ft (300 m) ceilings for extended periods. It typically flew at a relatively low speed of 300 knots (350 mph; 560 km/h), which made it a better platform for the ground-attack role than fast fighter-bombers, which often have difficulty targeting small, slow-moving targets or executing more than just a single attack run on a selected target.
A mock-up was presented and tested in the wind tunnel and for radar cross-section in late 2008. The A-14’s exact radar cross-section (RCS) remained classified, but in 2009 M7 Aerosystems released information indicating it had an RCS (from certain angles) of −40 dBsm, equivalent to the radar reflection of a "steel marble". With this positive outcome and the effective design, M7 Aerosystems eventually received federal funding for the production of prototypes for an official DT&E (Demonstration Testing and Evaluation) program.
Three prototypes/pre-production aircraft were built in the course of 2010 and 2011, and the first YA-14 made its maiden flight on 10 May 2011. The DT&E started immediately, and the machines (a total of three flying prototypes were completed, plus two additional airframes for static tests) were gradually outfitted with mission avionics and other equipment. This included GPS positioning, an inertial navigation system, passive sensors to detect radar usage, a small, gyroscopically stabilized turret, mounted under the nose of the aircraft, containing a FLIR boresighted with a laser spot-tracker/designator, and an experimental 3-D laser scanning LIDAR in the nose as a radiation-less alternative to a navigation and tracking radar.
Soon after the DT&E program gained momentum in 2012, the situation changed for M7 Aerosystems when the US Air Force considered the F-35B STOVL variant as its favored replacement CAS aircraft, but concluded that the aircraft could not generate a sufficient number of sorties. However, the F-35 was established as the A-14’s primary rival and remained on the USAF’s agenda. For instance, at that time the USAF proposed disbanding five A-10 squadrons in its budget request to cut its fleet of 348 A-10s by 102 to lessen cuts to multi-mission aircraft in service that could replace the specialized attack aircraft.
In August 2013, Congress and the Air Force examined various proposals for an A-10 replacement, including the A-14, F-35 and the MQ-9 Reaper unmanned aerial vehicle, and, despite the A-14’s better qualities in the ground attack role, the F-35 came out as the overall winner, since it was the USAF’s favorite. Despite its complexity, the F-35 was – intended as a multi-role tri-service aircraft and also with the perspective of bigger international sales than the more specialized A-14 – regarded as the more versatile and, in the long run, more cost-efficient procurement option. This sealed the A-14’s fate and the F-35A entered service with U.S. Air Force F-35A in August 2016 (after the F-35B was introduced to the U.S. Marine Corps in July 2015). At that time, the U.S. planned to buy 2,456 F-35s through 2044, which would represent the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps for several decades.
Since the A-14’s technology was considered to be too critical to be marketed to export customers (Israel showed early interest in the aircraft, as well as South Korea), the program was cancelled in 2016.
General characteristics:
Crew: 2 (pilot, WSO)
Length: 54 ft 11 1/2 in (16.78 m)
Wingspan: 62 ft 11 1/2 in (19.22 m)
Height: 11 ft 3 3/4 in (3.45 m)
Wing area: 374.9 ft² (117.5 m²)
Empty weight: 24,959 lb (11,321 kg)
Loaded weight: 30,384 lb (13,782 kg)
Max. takeoff weight: 50,000 lb (22,700 kg)
Internal fuel capacity: 11,000 lb (4,990 kg)
Powerplant:
2× General Electric Whitney F412-GE-114 non-afterburning turbofans
with 12,000 lbf (53 kN) thrust each
Performance:
Maximum speed: 630 mph (1,010 km/h, 550 kn) at 40,000 ft altitude /
Mach 0.95 at sea level
Cruise speed: 560 mph (900 km/h, 487 kn) at 40,000 ft altitude
Range: 1,089 nmi (1,253 mi, 2,017 km)
Ferry range: 1,800 nmi (2,100 mi, 3,300 km)
Service ceiling: 50,000 ft (15,200 m)
Rate of climb: 50,000 ft/min (250 m/s)
Wing loading: 133 lb/ft² (193 kg/m²)
Thrust/weight: 0.48 (full internal fuel, no stores)
Take-off run: 1,200 m (3,930 ft) at 42,000 lb (19,000 kg) over a 15 m (30 ft) obstacle
Armament:
1× General Dynamics GAU-12/U Equalizer 25 mm (0.984 in) 5-barreled rotary cannon
with 1,200 rounds (max. capacity 1,350 rounds)
4x internal weapon bays plus 4x external optional hardpoints with a total capacity of
15,000 lb (6,800 kg) and provisions to carry/deploy a wide range of ordnance
The kit and its assembly:
A major kitbashing project which I had on my idea list for a long time and its main ingredients/body donors already stashed away – but, as with many rather intimidating builds, it takes some external motivation to finally tackle the idea and bring it into hardware form. This came in August 2020 with the “Prototypes” group build at whatifmodellers.com, even though is still took some time to find the courage and mojo to start.
The original inspiration was the idea of a stealthy successor for the A-10, or a kind of more modern A-7 as an alternative to the omnipresent (and rather boring, IMHO) F-35. An early “ingredient” became the fuselage of a Zvezda Ka-58 stealth helicopter kit – I liked the edgy shape, the crocodile-like silhouette and the spacious side-by-side cockpit. Adding wings, however, was more challenging, and I remembered a 1:200 B-2A which I had turned into a light Swedish 1:72 attack stealth aircraft. Why not use another B-2 for the wings and the engines, but this time a bigger 1:144 model that would better match the quite bulbous Ka-58 fuselage? This donor became an Italeri kit.
Work started with the fuselage: the Ka-58’s engine and gearbox hump had to go first and a generous, new dorsal section had to be scratched with 1mm styrene sheet and some PSR. The cockpit and its glazing could be retained and were taken OOB. Under the nose, the Ka-58’s gun turret was omitted and a scratched front landing gear well was implanted instead.
The wings consist of the B-2 model; the lower “fuselage half” had its front end cut away, then the upper fuselage half of the Ka-58 was used as benchmark to cut the B-2’s upper wing/body part in two outer wing panels. Once these elements had been glued together, the Ka-58’s lower nose and tail section were tailored to match the B-2 parts. The B-2 engine bays were taken OOB and mounted next, so that the A-14’s basic hull was complete and the first major PSR session could start. Blending the parts into each other turned out to be a tedious process, since some 2-3 mm wide gaps had to be filled.
Once the basic BWP pack had been finished, I added the fins. These were taken from an 1:72 F-117 kit (IIRC from Italeri), which I had bought in a lot many moons ago. The fins were just adapted at their base to match the tail sting slope, and they were mounted in a 45° angle. This looks very F-117ish but was IMHO the most plausible solution.
Now that the overall length of the aircraft was defined, I could work on the final major assembly part: the wing tips. The 1:144 B-2 came with separate wing tip sections, but they proved to be much too long for the Squatina. After some trials I reduced their length by more than half, so that the B-2’s jagged wing trailing edge was kept. The result looks quite natural, even though blending the cut wing tips to the BWB turned out to be a PSR nightmare because their thickness reduces gently towards the tip – since I took out a good part of the inner section, the resulting step had to be sanded away and hidden with more PSR.
Detail work started next, including the cockpit glazing, the bomb bay (the B-2 kit comes with one of its bays open, and I kept this detail and modified the interior) and the landing gear, the latter was taken from the F-117 donor bank and fitted surprisingly well.
Some sensors were added, too, including a flat glass panel on the nose tip and a triangular IRST fairing under the nose, next to the landing gear well.
Painting and markings:
For a stealth aircraft and a prototype I wanted something subdued or murky, but not an all-black or -grey livery. I eventually settled for the rather dark paint scheme that the USAF applied to its late B-52Gs and the B-1Bs, which consists of two tones from above, FS 36081 (Dark Grey, a.k.a. Dark Gunship Grey) and 34086 (Green Drab), and underneath (FS 36081 and 36118 (Gunship Grey). The irregular pattern was adapted (in a rather liberal fashion) from the USAF’s early B-1Bs, using Humbrol 32, 108 and 125 as basic colors. The 108 turned out to be too bright, so I toned it down with an additional coat of thinned Humbrol 66. While this considerably reduced the contrast between the green and the grey, the combination looks much better and B-1B-esque.
The wings’ leading edges were painted for more contrast with a greyish black (Tar Black, Revell 09), while the landing gear, the interior of the air intakes and the open bomb bay became glossy white. The cockpit was painted in medium grey (Humbrol 140) and the clear parts received a thinned inner coating with a mix of transparent yellow and brown, simulating an anti-radar coating – even though the effect turned out to be minimal, now it looks as of the plastic parts had just yellowed from age…
After the initial livery had been finished the model received a black ink washing and some post-panel shading with slightly brightened variations of the basic tones (using Humbrol 79, 144 and 224). Decals were added next, an individual mix from various sources. The “Stars-and-Bars” come from a PrintScale A-7 sheet, most stencils come from an F-16 sheet.
After some more detail painting and a treatment with graphite on the metal areas (exhausts, gun port), the model was sealed with matt acrylic varnish (Italeri).
Batman’s next Batwing? Maybe, there’s certainly something fictional about this creation. But the “Squatina” turned out much more conclusive (and even pretty!) than I expected, even though it became a bigger aircraft than intended. And I am positively surprised how good the bodywork became – after all, lots of putty had to be used to fill all the gaps between parts that no one ever expected to be grafted together.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Me 309 project began in mid-1940, just as the Bf 109 was having its first encounters with the Spitfire in the Battle of Britain, the first aircraft to match the 109 in speed and performance. Already, Messerschmitt anticipated the need for an improved design to replace the Bf 109. The Reich Air Ministry, however, did not feel the same urgency, with the project given a low priority, resulting in the design not being finalized until the end of 1941.
The new fighter had many novel features, such as tricycle landing gear (with a nose gear strut that twisted through 90° during retraction, to a "flat" orientation under the engine) and a pressurized cockpit, which would have given it more comfortable and effective high-altitude performance. Each of the new features was first tested on a number of Bf 109F airframes, the V23 having a ventral radiator, the V31 with a radiator and tricycle landing gear, and the V30 having a pressurized cockpit.
Low government interest in the project delayed completion of the first prototype until spring 1942, and trouble with the nose wheel pushed back the 309's first flight to July. When it did fly, the Me 309's performance was satisfactory – about 50 km/h (30 mph) faster than a standard Bf 109G – but not exemplary. In fact, the Bf 109G could out-turn its intended replacement. With the addition of armament, the aircraft's speed decreased to an unacceptable level. In light of its poor performance and the much more promising development of the Focke-Wulf Fw 190D, the Me 309 in its original form was canceled.
However, the design was not dead and eventually found its way into the Me 509 (with a mid-engine layout) and the Me 609 (a heavy fighter which joined two Me 309 fuselages with a new centre wing section). By the time designs were being ironed out in the course of 1943, revolutionary turbojet engines became operational and with them new designs like the Me 262 or the He 162. These promised superior performance concerning speed, but they had only a short range and the new turbojets’ reliability was poor.
In another attempt to keep the Me 309 alive, Franz Hirschleitner, a young engineer who had formerly worked for Blohm & Voss, proposed the addition of a turbojet engine to the piston fighter as a booster. This would combine the range and reliability of the old technology with the new engine’s potential gain of speed. Having worked on the innovative Bv 141 reconnaissance aircraft before, Hirschleitner proposed an unusual solution for the Me 309 update: since as many original parts of the fighter were to be retained (what ruled out a redesign of the fuselage to carry the turbojet engine), he presented an asymmetrical layout which added a new pod with the cockpit, the armament and an underslung BMW 003 turbojet, which was connected to the Me 309 fuselage with a short wing. The Me 309 fuselage itself was virtually identical with the original fighter, just the weapons had been deleted from it (saving weight) and the former cockpit was faired over, the internal space being used for additional fuel tanks. The outer wings were taken from the Me 309, too, except for a reinforced landing gear which now retracted outwards, so that the aircraft’s track width was kept in acceptable limits. The front wheel still retracted into the Me 309 fuselage.
This aircraft, called the Me 309 T (for “Turbine” = jet engine), was envisioned as a heavy single-seat fighter, armed with four 30 mm cannon. Hardpoints under the middle wing section allowed an external ordnance of 1.000 kg (2.202 lb), including two bombs of up to 500 kg (1.100 lb) caliber each or two 300l drop tanks. Furthermore, the cockpit pod was large enough to add a second crew member under an extended canopy, so that the type could also be developed into a night fighter with a radar.
Despite initial skepticism at the Messerschmitt design bureau, Hirschleitner’s proposal was accepted and presented to the RLM in late 1943. Not surprisingly, it was rejected at first for being “too innovative”. Nevertheless, growing pressure from the Allied forces made the RLM reconsider the Hirschleitner design, since it was based on existing components and could be quickly realized. Therefore, the Me 309 T was ordered into production as the T-0 version in Spring 1944. From these initial aircraft, 12 were produced until August 1944 and used for field tests and conversion training. The T-0 was powered by a DB 603G and a BMW 003C and armed with four MK 108 machine cannon. These initial frontline tests lasted until December 1945 and the aircraft was ordered into full production as the T-1.
Just as the first production machines left the factories in April 1945, an upgraded variant, the T-2, was introduced. It shared the same airframe as the earlier variants but had an upgraded turbojet engine, a BMW 003D, which offered 10.76 kN (2,420 lbf) of thrust instead of the former 8.81 kN (1,980 lbf), together with improved reliability. The armament was upgraded, too: Two of the MK 108s were replaced by MK 103 30 mm machine cannon, a weapon that offered a much higher range and penetration power, so that the aircraft could fire effectively while keeping outside of the Allied bombers' defensive fire, which now frequently entered German airspace. Furthermore a Rüstsatz (R1) was introduced which put two additional MK 108 behind the cockpit, firing obliquely upwards as "schräge Musik" .
Despite the acceptable performance, which made it superior to pure piston-driven fighters of the time like the Republic P-47 or the North American P-51D, the Me 309 T was not very popular among the pilots. The handling on the ground was difficult, not only because of the offset front wheel, but also due to the fact that the left fuselage blocked almost the complete portside field of view. This flaw also created a significant blind spot during flight. Furthermore, getting the Me 309 T into the air without the support from the jet engine could be a gamble, too, esp. when the machine carried external loads. The BMW 003D, even though its reliability had been improved over time, was prone to failure, and the resulting lack of thrust made it a dead weight that severely hampered the aircraft's performance. All in all, only 123 machines were eventually built, with no two-seat night fighter or a trainer ever produced.
General characteristics:
Crew: one
Length: 9.46 m (31 ft 0 in)
Wingspan: 13.60 m (44 ft 7 in)
Height: 3.9 m (12 ft 10 in)
Wing area: 21.1 m² (226 sq ft)
Empty weight: 3,795 kg (8,367 lb)
Gross weight: 6,473 kg (14,271 lb)
Max takeoff weight: 7,130 kg (15,719 lb)
Powerplant:
1× Daimler-Benz DB 603G inverted V-12 liquid-cooled piston engine, 1,287 kW (1,726 hp)
1× BMW 003D (TL 109-003) turbojet with 10.76 kN (2,420 lbf) / 10,000 rpm / sea level
Performance:
Maximum speed: 840 km/h (522 mph, 464 kn) with both powerplants
695 km/h (431 mph, 383 kn) with the DB 603G only
Cruise speed: 665 km/h (413 mph, 359 kn)
Range: 1,100 km (680 mi, 590 nmi)
Service ceiling: 12,000 m (39,000 ft)
Wing loading: 256 kg/m2 (52 lb/sq ft)
Power/mass: 0.31 kW/kg (0.19 hp/lb)
Armament:
2× 30 mm (.1.181 in) MK 103 cannon
2× 30 mm (.1.181 in) MK 108 cannon
Underwing hardpoints for a total external ordnance of 1.000 kg (2.202 lb)
The kit and its assembly:
This model went through a prolonged development phase. It is based on the question whether an asymmetrical Blohm & Voss design could be made compact enough for a fighter aircraft? Aircraft like the Bv 141 reconnaissance aircraft (which actually flew) or the P-194 attack aircraft (which only existed as a paper project) were considerably bigger than typical single seat fighters.
While doing legwork I also found the relatively compact Blohm & Voss P-197 project in literature, which already came closer to my idea - I initally planned to build something along its lines, based on a Revell P-194 kit, but the latter turned out to be too big for this plan and I shelved the idea again.
However, the projected lingered in the back of my mind and was soon revived through the idea of using a Fw 190D fuselage as an alternative. But, alas, I still did not find the affair to be convincing enough for a build, also because of conceptual problems with the landing gear.
Then I eventually stumbled upon a HUMA Me 609 in the stash and considered a "modernized" asymmetrical layout with a tricycle landing gear. And this became the Me 309T.
It sounds so simple: take an aircraft model and add the cockpit pod, together with a new wing middle section. But turning this plan into hardware caused serious headaches. The biggest issue became the landing gear: the only space to stow the main landing gear would be the outer wings. Bu using the original Me 309 landing gear, which retracted inwards and already had a wide track, was impossible. So I decided to "reverse" the landing gear wells for an outward-retracting arrangement. Easier said than done, because the thin Me 309 wings come as single pieces in the HUMA kit: I had to cut out the complete well section on each wing, switch it around and re-sculpt the wings' profiles and surfaces. A lot of work!
The Me 309 fuselage was built OOB and I used the cockpit cover that comes with the Me 609 kit. The Bv P-194 cockpit pod with the jet engine was built OOB, too, but the wing attachment points had to be heavily re-sculpted because the P-194's wings are much deeper and thicker than the Me 309's. For the same reason I could not use the P-194's mid wing section - I had to scratch one from a leftover section of a VEB Plasticart 1:100 An-12, styrene sheet and putty. Messy affair, but at least it matches the outer Me 309 wings in shape and thickness.
A lot of putty was furthermore needed to finish the Me 309 fuselage and re-build all the wing/fuselage intersections. The HUMA Me 309 is a very basic affair, and fit as well as detail are mediocre, putting it in a polite fashion. The Revell P-194 is a little better, but it has many doubtful details like a pilot seat and canopy for pygmies or a poorly fitting jet exhaust section.
Thanks to the wing surgery, the Me 309's OOB landing gear could be retained - it looks pretty stalky, though, and the front wheel strut comes very close to the propeller disc.
Sice the HUMA Me 609 does not come with separate stabilizers I finally had to improvise again: I initially considered and asymmetrical layout (somewhat compensating for the cockpit pod on the starboard side with and extended span at port side), but when I saw how close the fuselages were, I settled upon an enlarged, convetional layout in the form of stabilizers from a Heller He 112.
Painting and markings:
This caused some headaches, too. I did not want a "conventional" late WWII Luftwaffe scheme, even though I wanted to use standard RLM colors. I eventually found inspiration in Me 262 recce aircraft, which frequently featured a unique paint scheme in the form of an overall RLM 76 livery onto which very fine dots or ondulating, thin lines in one or more darker contrast colors (RLM 81 and/or 83) were painted or sprayed. At first In wanted to adapt this scheme to the whole aircraft, but eventually decided to give the wings' upper surfaces a different, more "planar" scheme.
So, the whole model initially received and overall coat of RLM 76 (Humbrol 247), with the wings' undersides left in bare metal and the rudders painted in a greenish-grey primer. The cover of the DB 603 was kept in bare metal, too.
Contrast areas in RLM 81 and 83 (Braunviolett and Dunkelgrün, both from ModelMaster's Authentic line) were added onto the top of the wings, while I painted the fuselages and the fin with a semi-translucent "snake" pattern in RLM 82 (Humbrol 102).
The decals come from a Sky Models Fw 190A/F sheet, the crosses on the fuselage and under the wings come from a generic TL Modellbau sheet.
The cockpit interior as well as the landing gear wells were painted in very dark grey (Revell 09), while the landing gear struts became RLM 02 (Revell 45). The spinner received a black-and-white spiral, with black green propeller blades.
Well, I am not 100% happy with the result. While the overall model looks quite balanced, I am not happy with the finish - partly due to the massive use of putty and the fact that I had to mount parts in a fashion that the kits' manufacturers never expected to happen, but also due to the paint: The Humbrol enamels that I used turned out to be from the poor batch when the fabrication was moved to Belgium a while ago. With the result of a poor and gooey quality. That could have gone better. :-(
Nevertheless, I like the odd look of the asymmetrical design, esp. with the tricycle landing gear. From certain angles, the model looks really weird! And I am amazed how good the camouflage works - it's really disruptive.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Both Imperial Japanese Army and Navy Aviation (IJA and IJN, respectively) were very aware of the developments of jet engines, esp. through close contact with Germany and mutual exchange of blueprints and even hardware. But it was the IJN which basically drove jet-powered aircraft, e. g. through the Kyūshū J7W2 Shinden or Nakajima J9Y1 Kikka fighters.
The IJA was far behind schedule. Its primary jet projects had been conversions of existing, piston-engine-driven bomber types, but the increasing threat through high and fast incoming B-29 bombers, as well as the potential danger of even faster, jet-powered types, stirred the development of fast and agile interceptors with a heavy armament.
Since no such indigenous design existed (the IJA rejected the logical option to adapt an IJN types!), German engineers and design had a strong impact on what was to become the Ki-202 - a parallel development to the two-engined, heavier Ki-201 "Karyu", which resembled much the German Me 262.
The Ki-202 was developed by the Nippon Kokusai Koku Kogyo in a very short time frame: initial work started in late 1944, and the prototype was ready in summer 1945. The Ki-202 was regarded as a light, dedicated interceptor for spot defence, which should be produced in large numbers and with less investment of sparse resources and work labor per unit than the Karyu.
The Ki-202 was a very compact and simple aircraft. Outwardly it bore a striking resemblance to Kurt Tank's Ta 183 "Huckebein" jet fighter that had been under development in Germany since 1942, but the Ki-202 was much more simplified, both concerning construction and aerodynamics, as it was so direly needed and, beyond the jet engine, no big development risk was to be dared.
For instance, in order to avoid trouble with swept wings (which had not been incorporated in Japanese aircraft design yet, even though some wind tunnel test results already existed, as well as scientific input from Germany), the Ki-202 featured straight wings with a laminar-flow profile. The tail section was also different from the Ta 183: instead of the Ta 183's highly swept tail fin and a T-tail arrangement, the Ki-202 featured a relatively slender, staright tail boom above the jet exhaust, carrying a conventional stabilizer arrangement with only moderate sweep.
The fuselage resembled much Hans Multhopp's Ta 183, with a nose air intake, the pressurized cockpit placed above the air duct. The cockpot featured a frameless bubble canopy with an armored windscreen that offered an excellent field of view. Another novelty for the IJA was a tricycle landing gear that retracted into the lower fuselage. The engine (initially a single Ishikawajima Ne-20 turbojet, rated at 4.66 kN/475 kgf) filled the whole lower fuselage half. It lay between the main landing gear wells, with fuel cells above them and in the wing roots.
The aircraft had a rather stubby appearance, but turned out to be easy to handle and highly agile. Its weak spot was the Ne-20 engine, which was based on the German BMW 003 turbojet. Its low power output limited the Ki-202's performance so much that the initial prototypes (two were built) could only take off with reduced fuel - in fact, one of these machines was lost when it overrun the runway and crashed beyond repair.
Hence, only basic flight testing without any military equipment on board could be done until April 1945, and after the starting crash the other prototype was actually towed into the air, where it would, at safe height, power up its engine and perform a very limited test program.
When it became available in May 1945, a slightly uprated Ne-20-Kai engine was installed, but this measure hardly made the aircraft suitable to serious military service.
Things changed dramatically with the introduction of the much improved Ne-230 and Ne-330 engines. The latter had a thrust rating at 12.75 kN/1.300 kgf of thrust - nearly three times of what the early Ne-20 could deliver and close to the German 2nd generation Heinkel HeS 011 turbojet.
This new engine necessitated a slightly widened exhaust nozzle, and in the course of this modifications many detail refinements on prototypes #3 and 4 were made, including anti-flutter weights on the horizontal stabilizers and small wing fences.
In September 1945 this "new" aircraft eventually entered IJA service as "Ki-202 Kai", officially called 'Goryō' (御霊 - "Vengeful ghost") but also nicknamed 'Nezumi' (ネズミ - "Mouse") by its crews
The new type proved to be an immediate success. The Ki-202 Kai had a very good rate of climb, the short wings, coupled with a center-heavy CG due to the compact "pod and boom" layout, offered a very high manouverybility that was on par with contemporary Allied piston-engined fighters. As a bonus, its small size made the 'Goryō' a target which was hard to acquire or hit.
On the other side, the aircraft sported a powerful cannon armament (two fuselage-mounted 20 mm Ho-5 cannons, each with 150 RPG, plus two fuselage-mounted 30 mm Ho-155-II cannons, each with 50 RPG), and it was able to carry unguided air-to-air missiles under its wings, or two 150 L (40 US gal) drop tanks on either wing or a pair of 250 kg (550 lb) bombs.
On the downside, the Ne-330 engine had a very high fuel consumption rate, its throttle response was marginal, and its reliability was poor, especially in the initial production batches which suffered from material failures and lack of engineering experience.
General characteristics
Crew: one
Length: 8.96 m (29 ft 4 in)
Wingspan: 9,74 m (31 ft 10 1/2 in)
Height: 3,69 m (12 ft 1 in)
Wing area: 17.5 m² (188 ft²)
Empty weight: 2,380 kg (5,247 lb)
Loaded weight: 4,300 kg (9,480 lb)
Powerplant:
1× Ishikawajima Ne-330 engine with 12.75 kN/1.300 kgf of thrust
Performance
Maximum speed: 855 km/h (531 mph)
Stall speed: 140 km/h (92 knots, 106 mph) (power off, flaps down)
Range: 1.250 km (673 nmi, 776 mi)
Service ceiling: 14.000 m (45,932 ft)
Rate of climb: 20,4 m/s (4,020 ft/min)
Wing loading: 196 kg/m² (41 lb/ft²)
Thrust/weight: 0.37
Armament
2× 20 mm Ho-5 cannons with 150 RPG
2× 30 mm Ho-155-II cannons with 50 RPG
2× underwing hardpoints for up to 250 kg (551 lb) each
(for racks with unguided missiles, drop tanks or bombs)
The kit and its assembly:
A spontaneous project, inspired by a similar build (in French livery, though) on whatifmodelers.com some time ago, and an interim project while I waited for ordered decals for another whif on the bench.
I had a surplus Ta 183 from PM Models in store, and eventually considered it for conversion. When I recently got hands on several PZL TS-11 'Iskra' trainers from Master Craft, I eventually got the inspiration (and parts!) I needed and decided to make a kitbash, retro-fitting the rather futuristic Ta 183 with straight wings and a tail boom.
Conversion was rather straightforward, even though little from the Ta 183 was left: just the fuselage halves, air intake, canopy and parts of the landing gear. The Iskra 'donated' its wings and tail, as well as the front wheel.
Main wheels, cockpit interior, exhaust pipe and pilot figure come from the scrap box - noteworthy is the landing gear well interior. The PM kit just has a shallow, blank fairing - I cut that away and inserted parts from a jet engine (from a Revell F-16, the old kit which comes with a truck, trolley and a spare engine as props) - finally got use for these rather crude parts!
Some putty work was necessary at the fuselage/tail intersection, as well as at the wing roots, but overall the body work was rather quick and simple.
The packs of unguided missiles under the wings actually belong to the Matchbox BAC Strikemaster - I found an illustration of a similar arrangement on a Japanese rocket fighter, and they suit the 'Vengeful Ghost' well.
Painting and markings:
By tendency, I rather keep whifs' liveries simple and unspectacular - but I already have built some and want to avoid repetition. So I settled for an improvised camouflage scheme on bare metal, which I kept for the lower sides. AFAIK, such makeshift paint schemes were pretty common, and since no primer was used, quickly deteriorated.
To keep things simple I painted the finished model with Metallizer from Modelmaster, with different tones in selected areas (e. g. Aluminum Plate, Steel). After that I applied a thin coat of Humbrol 172 with a soft, broad brush on the upper surfaces, the waterline on the flanks masked with Tamiya tape. The metal below was to shine through, streaks were welcome, so that the finish became willingly uneven (and more interesting). This was later enhanced with some dry-brushed Humbrol 102 on top of that.
For more contrast, I added white Homeland Defence bands under the Hinomaru markings on wings and fuselage. These were cut from white decal sheet, not painted, and the Hinomaru placed on top of that. The yellow bands on the wings' ledaing edges are decals, too, a very effective method! The other few markings came from AeroMaster Decals and Microscale sheets.
Weathering included, beyond a wash with thinned black ink, a light sand paper treatment on the leading edges and in areas with much external contact, for an even shaggier look, and some grinded graphite was rubbed onto the bare metal surfaces for a worn look and some extra metal shine.
Finally, everything was sealed under a coat of semi-gloss acryl varnish.
A 'quickie', and the result looks a bit odd, IMHO - like a Saab 29 hatchling, maybe?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
The A-14 program originally started in 2005 as a private venture, initiated by Northrop-Grumman together with the Elbit Group as a joint venture through Elbit’s Texas-based aircraft division M7 Aerosystems, an approved supplier to major aerospace clients. The aircraft was intended to replace the USAF’s A-10 attack aircraft as well as early F-16s in the strike role from 2010 onwards. The time slot for the project turned out to be advantageous, because at that time the USAF was contemplating to replace the simple and sturdy A-10 with the much more complex F-35, eventually even with its VTOL variant, and the highly specialized F-117 was retired, too.
The A-14 revived conceptual elements of Grumman’s stillborn A-12 stealth program for the US Navy, which had also been part of the USAF’s plans to replace the supersonic F-111 tactical bomber, but on a less ambitious and expensive level concerning technology, aiming for a more effective compromise between complexity, survivability and costs. The basic idea was an updated LTV A-7D (the A-10’s predecessor from the Vietnam War era), which had far more sophisticated sensor and navigation equipment than the rather simple but sturdy A-10, but with pragmatic stealth features and a high level of survivability in a modern frontline theatre or operations.
M7 Aerosystems started on a blank sheet, even though Northrop-Grumman’s A-12 influence was clearly visible, and to a certain degree the aircraft shared the basic layout with the F-117A. The A-14 was tailored from the start to the ground attack role, and therefore a subsonic design. Measures to reduce radar cross-section included airframe shaping such as alignment of edges, fixed-geometry serpentine inlets that prevented line-of-sight of the engine faces from any exterior view, use of radar-absorbent material (RAM), and attention to detail such as hinges and maintenance covers that could provide a radar return. The A-14 was furthermore designed to have decreased radio emissions, infrared signature and acoustic signature as well as reduced visibility to the naked eye.
The resulting airframe was surprisingly large for an attack aircraft – in fact, it rather reminded of a tactical bomber in the F-111/Su-24 class than an alternative to the A-10. The A-14 consisted of a rhomboid-shaped BWB (blended-wing-and-body) with extended wing tips and only a moderate (35°) wing sweep, cambered leading edges, a jagged trailing edge and a protruding cockpit section which extended forward of the main body.
The majority of the A-14’s structure and surface were made out of a carbon-graphite composite material that is stronger than steel, lighter than aluminum, and absorbs a significant amount of radar energy. The central fuselage bulge ended in a short tail stinger with a pair of swept, canted fins as a butterfly tail, which also shrouded the engine’s hot efflux. The fins could have been omitted, thanks to the aerodynamically unstable aircraft’s fly-by-wire steering system, and they effectively increased the A-14’s radar signature as well as its visual profile, but the gain in safety in case of FBW failure or physical damage was regarded as a worthwhile trade-off. Due to its distinctive shape and profile, the A-14 quickly received the unofficial nickname “Squatina”, after the angel shark family.
The spacious and armored cockpit offered room for the crew of two (pilot and WSO or observer for FAC duties), seated side-by-side under a generous glazing, with a very good field of view forward and to the sides. The fuselage structure was constructed around a powerful cannon, the five-barrel GAU-12/U 25 mm ‘Equalizer’ gun, which was, compared with the A-10’s large GAU-8/A, overall much lighter and more compact, but with only little less firepower. It fired a new NATO series of 25 mm ammunition at up to 4.200 RPM. The gun itself was located under the cockpit tub, slightly set off to port side, and the front wheel well was offset to starboard to compensate, similar in arrangement to the A-10 or Su-25. The gun’s ammunition drum and a closed feeding belt system were located behind the cockpit in the aircraft’s center of gravity. An in-flight refueling receptor (for the USAF’s boom system) was located in the aircraft’s spine behind the cockpit, normally hidden under a flush cover.
Due to the gun installation in the fuselage, however, no single large weapon bay to minimize radar cross section and drag through external ordnance was incorporated, since this feature would have increased airframe size and overall weight. Instead, the A-14 received four, fully enclosed compartments between the wide main landing gear wells and legs. The bays could hold single iron bombs of up to 2.000 lb caliber each, up to four 500 lb bombs or CBUs, single laser-guided GBU-14 glide bombs, AGM-154 JSOW or GBU-31/38 JDAM glide bombs, AGM-65 Maverick guided missiles or B61 Mod 11 tactical nuclear weapons, as well as the B61 Mod 12 standoff variant, under development at that time). Retractable launch racks for defensive AIM-9 Sidewinder air-to-air missiles were available, too, and additional external pylons could be added, e.g. for oversize ordnance like AGM-158C Long Range Anti-Ship Missile (LRASM) or AGM-158 Joint Air to Surface Standoff Missile (JASSM), or drop tanks for ferry flights. The total in- and external ordnance load was 15,000 lb (6,800 kg).
The A-14 was designed with superior maneuverability at low speeds and altitude in mind and therefore featured a large wing area, with high wing aspect ratio on the outer wing sections, and large ailerons areas. The ailerons were placed at the far ends of the wings for greater rolling moment and were split, making them decelerons, so that they could also be used as air brakes in flight and upon landing.
This wing configuration promoted short takeoffs and landings, permitting operations from primitive forward airfields near front lines. The sturdy landing gear with low-pressure tires supported these tactics, and a retractable arrester hook, hidden by a flush cover under the tail sting, made it possible to use mobile arrested-recovery systems.
The leading edge of the wing had a honeycomb structure panel construction, providing strength with minimal weight; similar panels covered the flap shrouds, elevators, rudders and sections of the fins. The skin panels were integral with the stringers and were fabricated using computer-controlled machining, reducing production time and cost, and this construction made the panels more resistant to damage. The skin was not load-bearing, so damaged skin sections could be easily replaced in the field, with makeshift materials if necessary.
Power came from a pair of F412-GE-114 non-afterburning turbofans, engines that were originally developed for the A-12, but de-navalized and lightened for the A-14. These new engines had an output of 12,000 lbf (53 kN) each and were buried in blended fairings above the wing roots, with jagged intakes and hidden ducts. Flat exhausts on the wings’ upper surface minimized both radar and IR signatures.
Thanks to the generous internal fuel capacity in the wings and the fuselage, the A-14 was able to loiter and operate under 1,000 ft (300 m) ceilings for extended periods. It typically flew at a relatively low speed of 300 knots (350 mph; 560 km/h), which made it a better platform for the ground-attack role than fast fighter-bombers, which often have difficulty targeting small, slow-moving targets or executing more than just a single attack run on a selected target.
A mock-up was presented and tested in the wind tunnel and for radar cross-section in late 2008. The A-14’s exact radar cross-section (RCS) remained classified, but in 2009 M7 Aerosystems released information indicating it had an RCS (from certain angles) of −40 dBsm, equivalent to the radar reflection of a "steel marble". With this positive outcome and the effective design, M7 Aerosystems eventually received federal funding for the production of prototypes for an official DT&E (Demonstration Testing and Evaluation) program.
Three prototypes/pre-production aircraft were built in the course of 2010 and 2011, and the first YA-14 made its maiden flight on 10 May 2011. The DT&E started immediately, and the machines (a total of three flying prototypes were completed, plus two additional airframes for static tests) were gradually outfitted with mission avionics and other equipment. This included GPS positioning, an inertial navigation system, passive sensors to detect radar usage, a small, gyroscopically stabilized turret, mounted under the nose of the aircraft, containing a FLIR boresighted with a laser spot-tracker/designator, and an experimental 3-D laser scanning LIDAR in the nose as a radiation-less alternative to a navigation and tracking radar.
Soon after the DT&E program gained momentum in 2012, the situation changed for M7 Aerosystems when the US Air Force considered the F-35B STOVL variant as its favored replacement CAS aircraft, but concluded that the aircraft could not generate a sufficient number of sorties. However, the F-35 was established as the A-14’s primary rival and remained on the USAF’s agenda. For instance, at that time the USAF proposed disbanding five A-10 squadrons in its budget request to cut its fleet of 348 A-10s by 102 to lessen cuts to multi-mission aircraft in service that could replace the specialized attack aircraft.
In August 2013, Congress and the Air Force examined various proposals for an A-10 replacement, including the A-14, F-35 and the MQ-9 Reaper unmanned aerial vehicle, and, despite the A-14’s better qualities in the ground attack role, the F-35 came out as the overall winner, since it was the USAF’s favorite. Despite its complexity, the F-35 was – intended as a multi-role tri-service aircraft and also with the perspective of bigger international sales than the more specialized A-14 – regarded as the more versatile and, in the long run, more cost-efficient procurement option. This sealed the A-14’s fate and the F-35A entered service with U.S. Air Force F-35A in August 2016 (after the F-35B was introduced to the U.S. Marine Corps in July 2015). At that time, the U.S. planned to buy 2,456 F-35s through 2044, which would represent the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps for several decades.
Since the A-14’s technology was considered to be too critical to be marketed to export customers (Israel showed early interest in the aircraft, as well as South Korea), the program was cancelled in 2016.
General characteristics:
Crew: 2 (pilot, WSO)
Length: 54 ft 11 1/2 in (16.78 m)
Wingspan: 62 ft 11 1/2 in (19.22 m)
Height: 11 ft 3 3/4 in (3.45 m)
Wing area: 374.9 ft² (117.5 m²)
Empty weight: 24,959 lb (11,321 kg)
Loaded weight: 30,384 lb (13,782 kg)
Max. takeoff weight: 50,000 lb (22,700 kg)
Internal fuel capacity: 11,000 lb (4,990 kg)
Powerplant:
2× General Electric Whitney F412-GE-114 non-afterburning turbofans
with 12,000 lbf (53 kN) thrust each
Performance:
Maximum speed: 630 mph (1,010 km/h, 550 kn) at 40,000 ft altitude /
Mach 0.95 at sea level
Cruise speed: 560 mph (900 km/h, 487 kn) at 40,000 ft altitude
Range: 1,089 nmi (1,253 mi, 2,017 km)
Ferry range: 1,800 nmi (2,100 mi, 3,300 km)
Service ceiling: 50,000 ft (15,200 m)
Rate of climb: 50,000 ft/min (250 m/s)
Wing loading: 133 lb/ft² (193 kg/m²)
Thrust/weight: 0.48 (full internal fuel, no stores)
Take-off run: 1,200 m (3,930 ft) at 42,000 lb (19,000 kg) over a 15 m (30 ft) obstacle
Armament:
1× General Dynamics GAU-12/U Equalizer 25 mm (0.984 in) 5-barreled rotary cannon
with 1,200 rounds (max. capacity 1,350 rounds)
4x internal weapon bays plus 4x external optional hardpoints with a total capacity of
15,000 lb (6,800 kg) and provisions to carry/deploy a wide range of ordnance
The kit and its assembly:
A major kitbashing project which I had on my idea list for a long time and its main ingredients/body donors already stashed away – but, as with many rather intimidating builds, it takes some external motivation to finally tackle the idea and bring it into hardware form. This came in August 2020 with the “Prototypes” group build at whatifmodellers.com, even though is still took some time to find the courage and mojo to start.
The original inspiration was the idea of a stealthy successor for the A-10, or a kind of more modern A-7 as an alternative to the omnipresent (and rather boring, IMHO) F-35. An early “ingredient” became the fuselage of a Zvezda Ka-58 stealth helicopter kit – I liked the edgy shape, the crocodile-like silhouette and the spacious side-by-side cockpit. Adding wings, however, was more challenging, and I remembered a 1:200 B-2A which I had turned into a light Swedish 1:72 attack stealth aircraft. Why not use another B-2 for the wings and the engines, but this time a bigger 1:144 model that would better match the quite bulbous Ka-58 fuselage? This donor became an Italeri kit.
Work started with the fuselage: the Ka-58’s engine and gearbox hump had to go first and a generous, new dorsal section had to be scratched with 1mm styrene sheet and some PSR. The cockpit and its glazing could be retained and were taken OOB. Under the nose, the Ka-58’s gun turret was omitted and a scratched front landing gear well was implanted instead.
The wings consist of the B-2 model; the lower “fuselage half” had its front end cut away, then the upper fuselage half of the Ka-58 was used as benchmark to cut the B-2’s upper wing/body part in two outer wing panels. Once these elements had been glued together, the Ka-58’s lower nose and tail section were tailored to match the B-2 parts. The B-2 engine bays were taken OOB and mounted next, so that the A-14’s basic hull was complete and the first major PSR session could start. Blending the parts into each other turned out to be a tedious process, since some 2-3 mm wide gaps had to be filled.
Once the basic BWP pack had been finished, I added the fins. These were taken from an 1:72 F-117 kit (IIRC from Italeri), which I had bought in a lot many moons ago. The fins were just adapted at their base to match the tail sting slope, and they were mounted in a 45° angle. This looks very F-117ish but was IMHO the most plausible solution.
Now that the overall length of the aircraft was defined, I could work on the final major assembly part: the wing tips. The 1:144 B-2 came with separate wing tip sections, but they proved to be much too long for the Squatina. After some trials I reduced their length by more than half, so that the B-2’s jagged wing trailing edge was kept. The result looks quite natural, even though blending the cut wing tips to the BWB turned out to be a PSR nightmare because their thickness reduces gently towards the tip – since I took out a good part of the inner section, the resulting step had to be sanded away and hidden with more PSR.
Detail work started next, including the cockpit glazing, the bomb bay (the B-2 kit comes with one of its bays open, and I kept this detail and modified the interior) and the landing gear, the latter was taken from the F-117 donor bank and fitted surprisingly well.
Some sensors were added, too, including a flat glass panel on the nose tip and a triangular IRST fairing under the nose, next to the landing gear well.
Painting and markings:
For a stealth aircraft and a prototype I wanted something subdued or murky, but not an all-black or -grey livery. I eventually settled for the rather dark paint scheme that the USAF applied to its late B-52Gs and the B-1Bs, which consists of two tones from above, FS 36081 (Dark Grey, a.k.a. Dark Gunship Grey) and 34086 (Green Drab), and underneath (FS 36081 and 36118 (Gunship Grey). The irregular pattern was adapted (in a rather liberal fashion) from the USAF’s early B-1Bs, using Humbrol 32, 108 and 125 as basic colors. The 108 turned out to be too bright, so I toned it down with an additional coat of thinned Humbrol 66. While this considerably reduced the contrast between the green and the grey, the combination looks much better and B-1B-esque.
The wings’ leading edges were painted for more contrast with a greyish black (Tar Black, Revell 09), while the landing gear, the interior of the air intakes and the open bomb bay became glossy white. The cockpit was painted in medium grey (Humbrol 140) and the clear parts received a thinned inner coating with a mix of transparent yellow and brown, simulating an anti-radar coating – even though the effect turned out to be minimal, now it looks as of the plastic parts had just yellowed from age…
After the initial livery had been finished the model received a black ink washing and some post-panel shading with slightly brightened variations of the basic tones (using Humbrol 79, 144 and 224). Decals were added next, an individual mix from various sources. The “Stars-and-Bars” come from a PrintScale A-7 sheet, most stencils come from an F-16 sheet.
After some more detail painting and a treatment with graphite on the metal areas (exhausts, gun port), the model was sealed with matt acrylic varnish (Italeri).
Batman’s next Batwing? Maybe, there’s certainly something fictional about this creation. But the “Squatina” turned out much more conclusive (and even pretty!) than I expected, even though it became a bigger aircraft than intended. And I am positively surprised how good the bodywork became – after all, lots of putty had to be used to fill all the gaps between parts that no one ever expected to be grafted together.
I'd seen pictures of these armor sets all over the place but never managed to get one until now, my girlfriend found two on ebay and got both of them at a pretty good price, not sure if I'm gonna leave them like this or repaint them, I love the camo pattern on them but I dunno about the uniform.
The kit and its assembly:
This was another submission to the "Gunships" group build at whatifmodellers.com in late 2021, and inspiration struck when I realized that I had two Italeri Do 217 in The Stash - a bomber and a night fighter - that could be combined into a suitable (fictional) carrier for a Sondergerät 104. This mighty weapon actually existed and even reached the hardware/test stage - but it was never integrated into an airframe and tested in flight. But that's what this model is supposed to depict.
On the Do 217, the Sg 104 would have been carried externally under the fuselage, even though there had been plans to integrate this recoilless rifle into airframes, esp. into the Ju 288. Since the latter never made it into production, the Do 217 would have been the most logical alternative, also because it had the highest payload of all German bombers during WWII and probably the only aircraft capable of carrying and deploying the Münchhausen device, as the SG 104 was also known.
The fictional Do 217 F-0 is a kitbashing, using a Do 217 N fuselage, combined with the wings from a Do 217 K bomber, plus some modifications. What initially sounded like a simple plan soon turned into a improvisation mess: it took some time to realize that I had already donated the Do 217 K's BMW 801 engines to another project, an upgraded He 115... I did not want to use the nightfighter's more powerful DB 603s, and I was lucky to have an Italeri Ju 188 kit at hand which comes with optional BMW 801s and Jumo 211s. Transplanting these engines onto the Do 217's wings took some tailoring of the adapter plates, but was feasible. However, the BMW 801s from the Ju 188 kit have a flaw: they lack the engine's characteristic cooling fans... Another lucky find: I found two such parts in the scrap box, even though from different kits - one left over from another Italeri Do 217 K, the other one from what I assume is/was an Italeri 1:72 Fw 190 A/F. To make matters worse, one propeller from the Ju 188 kit was missing, so that I had to find a(nother) replacement. :-/
I eventually used something that looked like an 1:72 F6F Hellcat propeller, but I an not certain about this because I have never built this model...? With some trimming on the blades' trailing edges and other mods, the donor's overall look could be adapted to the Ju 188 benchmark. Both propellers were mounted on metal axis' so that they could also carry the cooling fans. Lots of work, but the result looks quite good.
The Do 217 N's hull lost the lower rear gunner position and its ventral gondola, which was faired over with a piece of styrene sheet. The pilot was taken OOB, the gunner in the rear position was replaced by a more blob-like crew member from the scrap box. The plan to add a navigator in the seat to the lower right of the pilot did not work out due to space shortage, but this figure would probably have been invisble, anyway.
All gun openings in the nose were filled and PSRed away, and a fairing for a bomb aiming device and a single gun (the barrel is a hollow steel needle) were added.
The SG 104 was scratched. Starting point was a white metal replacement barrel for an 1:35 ISU-152 SPG with a brass muzzle brake. However, after dry-fitting the barrel under the hull the barrel turned out to be much too wide, so that only the muzzal brake survived and the rest of the weapon was created from a buddy refueling pod (from an Italeri 1:72 Luftwaffe Tornado, because of its two conical ends) and protective plastic caps from medical canulas. To attach this creation to the hull I abused a conformal belly tank from a Matchbox Gloster Meteor night fighter and tailored it into a streamlined fairing. While this quite a Frankenstein creation, the overall dimensions match the real SG 104 prototype and its look well.
Other cosmetic modifications include a pair of underwing dive brakes, translanted from an Italeri 1:72 Ju 88 A-4 kit, an extended (scratched) tail "stinger" which resembles the real dive brake arrangement that was installed on some Do 217 E bombers, and I added blast deflector vanes and a dorsal stabilizer fin.
In order to provide the aircraft with enough ground clearance, the tail wheel was slightly extended. Thanks to the long tail stinger, this is not blatantly obvious.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Lockheed Martin (originally developed by General Dynamics) F-16 Fighting Falcon is originally a single-engine multirole fighter aircraft, developed for the United States Air Force (USAF). Designed as an air superiority day fighter, it evolved into a successful all-weather multirole aircraft. Over 4,500 aircraft have been built since production was approved in 1976. Although no longer being purchased by the U.S. Air Force, improved versions are still being built for export customers.
One of these recent developments is the AF-16 “Strike Falcon”, a thorough update of the original fighter design as a 4.5 generation aircraft and optimized for the attack role. The prototype was presented to the public at the 2012 Singapore Air Show, and the type is intended for the export market as a simpler and less costly alternative to the F-35 multi role SVTOL aircraft.
Compared to the original F-16 fighter the new attack aircraft underwent considerable modifications – the most obvious is a new wing with more area (effectively, almost doubling it) and a much thicker profile, a V-tail layout and a fixed Divertless Supersonic Intake (DSI).
The AF-16’s new delta wing was designed around a large single piece of carbon fiber composite material. The wing has a span of 11 meters, with a 55-degree leading edge sweep and can hold up to 20,000 pounds of fuel – extending range and loitering time considerable. The purpose of the high sweep angle was to allow for a thick wing section to be used while still providing limited transonic aerodynamic drag, and to provide a good angle for wing-installed conformal antenna equipment.
Another side effect of the new wing’s shape is a highly reduced radar signature, which was further improved by the angular, canted twin tail fins and the DSI’s design that absorbs much of incoming frontal radar beams and totally blocks the moving parts of the jet engine.
A simple afterburner nozzle for the F110-GE-100 afterburning turbofan was retained, even though a 2D and even 3D vectoring thrust nozzle could be mounted.
The AF-16 features the same AN/APG-68 of the F-16C/D Block 25, but it has been optimized for the ground attack role, even though air combat capabilities are retained. This includes improved ground-mapping, Doppler beam-sharpening, ground moving target indication, sea target, and track while scan (TWS) for up to 10 targets.
The system provides all-weather autonomous detection and targeting for Global Positioning System (GPS)-aided precision weapons, SAR mapping and terrain-following radar (TF) modes, as well as interleaving of all modes. The system is also fully compatibility with Lockheed Martin Low-Altitude Navigation and Targeting Infra-Red for Night (LANTIRN) system, which was integrated into the forward fuselage (instead of pods on the F-16).
The AF-16 quickly attained interest, and one of the first countries to order the Strike Falcon is Jordan. Jordan gained independence in 1946, but its first air bases had been set up in 1931 by the Royal Air Force. By 1950, Jordan began to develop a small air arm, which came to be known as the Arab Legion Air Force (ALAF).
In July of 1994, King Hussein of Jordan signed a peace treaty with Israel, ending over 40 years of hostility between these two nations. Shortly thereafter, the government of Jordan began to lobby within the American government to purchase as many as 42 F-16A/B Fighting Falcons.
In recent years, U.S. military assistance has been primarily directed toward upgrading Jordan’s air force, as recent purchases include upgrades to U.S.-made F-16 fighters, air-to-air missiles, and radar systems.
Following the 1994 Israel–Jordan peace treaty and the lending of Jordanian support to the United States during the Persian Gulf War, the U.S. recommenced full military relations with Jordan starting with the donation of 16 General Dynamics F-16 Fighting Falcon (12 F-16A and 4 F-16B) in storage at the Aerospace Maintenance and Regeneration Center (AMARC) at Davis Monthan AFB. Deliveries commenced in 1997 and were completed the following year, replacing the Mirage F1CJs in the air-defense role.
Other types, especially the ageing F-5E/F fleet, needed replacement, too. The RJAF’s F-5E/F, as well as the remaining Mirage F.1s in the ground support role, took several years after the F-16’s arrival until the AF-16A could finally fill this gap in the RJAF’s arsenal. Fourteen machines had been ordered in 2012 (twelve AF-16A single seaters plus two AF-16B two seaters for conversion training) and were delivered in early 2015, allocated to No. 1 Squadron at Azraq. For twelve more an option had been agreed upon, while the RJAF F-16As will focus on the interceptor and air superiority role.
General characteristics:
Crew: 1
Length (incl. pitot): 52 ft 1 1/2 in (15.91 m)
Wingspan: 36 ft (10.97 m)
Height: 12 ft 4 1/2 in (3,78 m)
Wing area: 590 ft² (54.8 m²)
Empty weight: 18,900 lb (8,570 kg)
Loaded weight: 26,500 lb (12,000 kg)
Max. takeoff weight: 42,300 lb (19,200 kg)
Powerplant:
1× F110-GE-100 turbofan with 17,155 lbf (76.3 kN) dry thrust and
28,600 lbf (127 kN) with afterburner
Performance:
Maximum speed: Mach 1.2 (915 mph, 1,470 km/h) at sea level,
Mach 1.6 (1,200 mph, 1,931 km/h) at altitude
Range: 1,324 nmi; 1,521 mi (2,450 km) with internal fuel
Ferry range: 2,485 nmi (2,857 mi, 4,600 km) with drop tanks
Service ceiling: 42,000 ft (13,000 m)
Rate of climb: 50,000 ft/min (254 m/s)
Wing loading: 44.9 lb/sq ft (219 kg/m2)
Thrust/weight: 1.095
Armament:
1× 20 mm (0.787 in) M61A2 Vulcan 6-barrel Gatling cannon with 511 rounds
A total of nine hardpoints for Air-to-air missile launch rails and a wide range of guided and unguided
air-to-ground ordnance with a capacity of up to 17,000 lb (7.700 kg) of stores
The kit and its assembly:
This whif kitbashing was inspired by real design studies from General Dynamics that show evolutionary developments of the F-16 in a no-tail configuration, but with an enlarged diamond-shaped wing shape (much like the F-22's), obviously based on the F-16XL. Additionally you find several similar fantasy CG designs in the WWW – the basic idea seems to have potential. And when I stumbled across the remains of a Revell X-32 in my stash and an Intech F-16A kit, I wondered if these could not be reasonably combined...?
What sounds easy eventually ended up in a massive bodywork orgy. The Intech kit (marketed under the Polish Master Craft Label) is horrible, the worst F-16 kit I have ever seen or tried to build - it's cheap and you get what you pay for. Maybe the PM Model F-16 is worse (hard to believe, but sprue pics I saw suggest it), but the Intech kits are …challenging. This thing is like a blurred picture of an F-16: you recognize the outlines, but nothing is sharp and no part matches any other! Stay away.
Well, actually only the fuselage, the cockpit and parts of the Intech kit's landing gear survived. The X-32 kit is, on the other side, a sound offering. It was not complete anymore, since I donated parts like the cockpit and the landing gear to my SAAB OAS 41 'Vيًarr' stealth aircraft from Sweden some time ago, but there were many good parts left to work with.
Especially the aerodynamic surfaces (wings and V-tail) attained my interest: these parts match well with the F-16 fuselage in size and shape if you look from above, and the leading edges even blend well with the F-16 LERXs. But: the X-32's wings are much, much thicker than the F-16's, so that the original blended wing/fuselage intersection does not match at all.
Additionally, the X-32's bulged landing gear wells in the wings had to go, so these had to be filled as an initial step. The wing roots were roughly cut into the F-16 kit's shape and glued onto the fuselage. After drying, the whole blended wing/fuselage intersection had to be sculpted from scratch - several layers of putty and even more wet sanding sessions were necessary. I stopped counting after turn five, a tedious job. But it eventually paid out…
Furthermore decided to change the F-16's chin air intake and implant parts from the X-32 divertless supersonic "sugar scoop" intake. Such an arrangement has actually been tested on an F-16, so it's not too far-fetched, and its stealthy properties make a welcome update. The respective section from the X-32's lower front fuselage was cut away and had to be modified, too, because it would originally not fit at all under the F-16's front. The intake was carefully heated at the edges and the side walls bent inwards - I was lucky that no melting damage occurred! Inside of the new intake, the upper, bulged part was implanted, too, so that in real life the jet engine parts would be protected from direct frontal radar detection.
The front wheel position was retained. As a consequence of the new, much more voluminous and square air intake, the rather round section from the main landing gear onwards had to be sculpted for a decent new fuselage shape, too. But compared to the massive wing/fuselage body work, this was only a minor task.
The F-16A's fuselage was not extended, but for a different look I decided to eliminate the single fin and rather implant the X-32's outward-canted twin fins - the original extensions that hold the F-16's air brakes and now blend into the new wings' trailing edge were a perfect place, and as a side benefit they'd partly cover the jet nozzle. The latter was replaced by a respective spare part from an Italeri F-16 – the Intech nozzle is just a plain, conical tube!
The landing gear was mostly taken over from the Intech F-16, even though it is rather rough, as well as the pylons. The ordnance was puzzled together: the Sidewinders and the cropped drop tanks come from the Intech kit (the latter have a horribly oval diameter shape and the triangulare fins are a massive 1mm thick!), the Paveway bombs come from a Hasegawa air-to-ground weapons set.
Painting and markings:
The livery is somewhat inspired by a CG illustration of a fictional Big-Wing-F-16IN in Jordan colors. I also found a desert camouflage rather interesting for this aircraft – F-16s are typically grey-in-grey, with rare exceptions. Anyway, the paint scheme I applied is pure fiction fictional. I wanted a multi-color scheme with rather sober and subdued colors, partly inspired by contemporary Iranian MiG-29s.
I ended up with three upper and a single lower tone. The scheme is roughly based on the pattern that is applied to Venezuelan F-16s, but with desert colors: these are a pale, yellow-ish sand (Humbrol 103, Cream), a medium sand brown (Humbrol 187, Dark Stone) and a dull medium grey (Revell 75, RAL 7030). The undersides were painted in a pale blue (Humbrol 23, RAF Duck Egg Blue).
Since a lot of the (already rather vague) surface details of the Intech kit was lost through sanding, I simulated panels through dry painting, later some panel lines were manually added with a pencil, too. A light weathering was done with a thin black in wash. The cockpit was painted in Neutral Grey (FS 36173), and the canopy was tinted with a thinned mix of clear brown and yellow – and it turned out nicely! Even though the rear part had to be painted over, because the clear part’s fit with the rest of the fuselage was poor and putty had to be used to fill gaps and sculpt a decent rear end.
Most of the decals come from a Mirage F.1 decal sheet from FFSMC Productions, a French manufacturer. Together with the pale desert colors and the subdued RJAF markings, the AF-16A looks better and more coherent than expected, esp. after a uniform coat of matt acrylic varnish had been applied (from a rattle can).
A bold idea, with many doubts on the way, esp. because of the massive body sculpting. But once the kitbashed model was painted and sealed under matt varnish, things suddenly looked pretty cool – a positive surprise. Even though I will certainly never ever touch an Intech F-16 again…
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Sondergerät SG104 "Münchhausen" was a German airborne recoillless 355.6 mm (14-inch) caliber gun, intended to engage even the roughest enemy battleships, primarily those of the Royal Navy. The design of this unusual and massive weapon began in 1939. The rationale behind it was that a battleship’s most vulnerable part was the deck – a flat surface, with relatively thin armor (as typical hits were expected on the flanks) and ideally with vital targets underneath, so that a single, good hit would cripple of even destroy a ship. The purpose of such a high angle of attack was likely to allow the projectile to penetrate the target ship's deck, where the ship's armor, if there was any, would have been much thinner than the armor on its sidesHowever, hitting the deck properly with another ship’s main gun was not easy, since it could only be affected through indirect hits and the typical angle of the attack from aballistic shot would not necessarily be ideal for deep penetration, esp. at long range.
The solution to this problem: ensure that the heavy projectile would hit its target directly from above, ideally at a very steep angle. To achieve this, the gun with battleship caliber was “relocated” from a carrier ship or a coastal battery onto an aircraft – specifically to a type that was capable of dive-bombing, a feature that almost any German bomber model of the time offered.
Firing such a heavy weapon caused a lot fo problems, which were severe even if the gun was mounted on a ship or on land. To compensate for such a large-caliber gun’s recoil and to make firing a 14 in shell (which alone weighed around almost 700 kg/1.550 lb, plus the charge) from a relatively light airframe feasible, the respective gun had to be as light as possible and avoid any recoil, which would easily tear an aircraft – even a bomber – apart upon firing. Therefore, the Gerät 104 was designed as a recoilless cannon. Its firing system involved venting the same amount of the weapon's propellant gas for its round to the rear of the launch tube (which was open at both ends), in the same fashion as a rocket launcher. This created a forward directed momentum which was nearly equal to the rearward momentum (recoil) imparted to the system by accelerating the projectile itself. The balance thus created did not leave much net momentum to be imparted to the weapon's mounting or the carrying airframe in the form of felt recoil. A further share of the recoil induced by the moving round itself could be compensated by a muzzle brake which re-directed a part of the firing gases backwards. Since recoil had been mostly negated, a heavy and complex recoil damping mechanism was not necessary – even though the weapon itself was huge and heavy.
Work on the "Münchhausen" device (a secret project handle after a fictional German nobleman created by the German writer Rudolf Erich Raspe in the late 18th century who reputedly had ridden on a cannonball between enemy frontlines), was done by Rheinmetall-Borsig and lasted until 1941. The first test of a prototype weapon was conducted on 9th of September 1940 in Unterlüss with a satisfactory result, even though the weapon was only mounted onto an open rack and not integrated into an airframe yet. At that time, potential carriers were the Ju 88, the Dornier Do 217 and the new Junkers Ju 288. Even though the system’s efficacy was doubted, the prospect of delivering a single, fatal blow to an important , armored arget superseded any doubts at the RLM, and the project was greenlit in early 1942 for the next stage: the integration of the Sondergerät 104 into an existing airframe. The Ju 88 and its successor, the Ju 188, turned out to be too light and lacked carrying capacity for the complete, loaded weapon, and the favored Ju 288 was never produced, so that only the Dornier Do 217 or the bigger He 177 remained as a suitable carriers. The Do 217 was eventually chosen because it had the biggest payload and the airframe was proven and readily available.
After calculations had verified that the designed 14 in rifle would have effectively no recoil, preliminary tests with dumm airframes were carried out. After ground trials with a Do 217 E day bomber to check recoil and blast effects on the airframe, the development and production of a limited Nullserie (pre-production series) of the dedicated Do 217 F variant for field tests and eventual operational use against British sea and land targets was ordered in April 1942.
The resulting Do 217 F-0 was based on the late “E” bomber variant and powered by a pair of BMW 801 radial engines. It was, however, heavily modified for its unique weapon and the highly specialized mission profile: upon arriving at the zone of operation at high altitude, the aircraft would initiate a dive with an angle of attack between 50° and 80° from the horizontal, firing the SG 104 at an altitude between 6,000 and 2,000 meters. The flight time of the projectile could range from 16.0 seconds for a shot from an altitude of 6,000 meters at a 50° angle to just 4.4 seconds for a shot from 2.000 meters at an almost vertical 80° angle. Muzzle velocity of the SG 104 was only 300 m/s, but, prior to impact, the effective velocity of the projectile was projected to range between 449 and 468 m/s (1,616 to 1,674 km/h). Together with the round's weight of roughly 700 kg (1.550 lb) and a hardened tip, this would still ensure a high penetration potential.
The operational Sondergerät 104 had an empty mass of 2.780 kg (6,123 lb) and its complete 14 inch double cartridge weighed around 1.600 kg (3,525 lb). The loaded mass of the weapon was 4,237 kg, stretching the limits of the Do 217’s load capacity to the maximum, so that some armor and less vital pieces of equipment were deleted. Crew and defensive armament were reduced to a minimum.
Even though there had been plans to integrate the wepaon into the airframe (on the Ju 288), the Gerät 104 was on the Do 217 F-0 mounted externally and occupied the whole space under the aircraft, precluding any use of the bomb bay. The latter was occupied by the Gerät 104’s complex mount, which extended to the outside under a streamlined fairing and held the weapon at a distance from the airframe. Between the mount’s struts inside of the fuselage, an additional fuel tank for balance reasons was added, too.
The gun’s center, where the heavy round was carried, was positioned under the aircraft’s center of gravity, so that the gun barrel markedly protruded from under the aircraft’s nose. To make enough space, the Do 217 Es bomb aimer’s ventral gondola and his rearward-facing defensive position under the cockpit were omitted and faired over. The nose section was also totally different: the original extensive glazing (the so-called “Kampfkopf”) was replaced by a smaller, conventional canopy, similar to the later Do 217 J and N night fighter versions, together with a solid nose - the original glass panels would have easily shattered upon firing the gun, esp. in a steep high-speed dive. A "Lotfernrohr" bomb aiming device was still installed in a streamlined and protected fairing, though, so that the navigator could guide the pilot during the approach to the target and during the attack run.
To stabilize the heavy aircraft during its attack and to time- and safely pull out of the dive, a massive mechanical dive brake was mounted at the extended tail tip, which unfolded with four "petals". A charecteristic stabilizing dorsal strake was added between the twin fins, too.
The ventral area behind the gun’s rear-facing muzzle received additional metal plating and blast guiding vanes, after trials in late 1940 had revealed that firing the SG 104 could easily damage the Do 217’s tail structure, esp. all of the tail surfaces’ rudders and the fins’ lower ends in particular. Due to all this extra weight, the Do 217 F-0’s defensive armament consisted only of a single 13 mm MG 131 machine gun in a manually operated dorsal position behind the cockpit cabin, which offered space for a crew of three. A fixed 15 mm MG 151 autocannon was mounted in the nose, too, a weapon with a long barrel for extended range and accuracy. It was not an offensive weapon, though, rather intended as an aiming aid for the SG 104 because it was loaded with tracer bullets: during the final phase of the attack dive, the pilot kept firing the MG 151, and the bullet trail showed if he was on target to fire the SG 104 when the right altitude/range had been reached.
The first Do 217 F-0 was flown and tested in late 1943, and after some detail changes the type was cleared for a limited production run of ten aircraft in January 1944. The first operational machine was delivered to a dedicated testing commando, the Erprobungskommando 104 “Münchhausen”, also known as “Sonderkommando Münchhausen” or simply “E-Staffel 104”. The unit was based at Bordeaux/Merignac and directly attached to the KG 40's as a staff flight. At that time, KG 40 operated Do 217 and He 177 bombers and frequently flew reconnaissance and anti-shipping missions over the Atlantic west of France, up to the British west and southern coast, equipped with experimental Henschel Hs 293 glide bombs.
Initial flights confirmed that the Do 217 airframe was burdened with the SG 104 to its limits, the already rather sluggish aircraft (the Do 217 had generally a high wing loading and was not easy to fly) lost anything that was left of what could be called agility. It needed an experienced pilot to handle it safely, esp. during start and landing. It is no wonder that two Do 217 F-0s suffered ground accidents during the first two weeks of operations, but the machines could be repaired, resume the test program and carry out attack missions.
However, during one of the first test shots with the weapon, one Do 217 F-0 lost its complete tail section though the gun blast, and the aircraft crashed into the Bay of Biscay, killing the complete crew.
On 4th or April 1944 the first "hot" attack against an enemy ship was executed in the Celtic Sea off of Brest, against a convoy of 20 ships homeward bound from Gibraltar. The attack was not successful, though, the shot missing its target, and the German bomber was attacked and heavily damaged by British Bristol Beaufighters that had been deployed to protect the ships. The Do 217F-0 eventually crashed and sank into the Atlantic before it could reach land again.
A couple of days later, on 10th of April, the first attempt to attack and destroy a land target was undertaken: two Do 217 F-0s took off to attack Bouldnor Battery, an armored British artillery position located on the Isle of Wight. One machine had to abort the attack due to oil leakages, the second Do 217 F-0 eventually reached its target and made a shallow attack run, but heavy fog obscured the location and the otherwise successful shot missed the fortification. Upon return to its home base the aircraft was intercepted by RAF fighters over the Channel and heavily damaged, even though German fighters deployed from France came to the rescue, fought the British attackers off and escorted the limping Do 217 F-0 back to its home base.
These events revealed that the overall SG 104 concept was generally feasible, but also showed that the Do 217 F-0 was very vulnerable without air superiority or a suitable escort, so that new tactics had to be developed. One consequence was that further Do 217 F-0 deployments were now supported by V/KG 40, the Luftwaffe's only long range maritime fighter unit. These escorts consisted of Junkers Ju 88C-6s, which were capable of keeping up with the Do 217 F-0 and fend of intercepting RAF Coastal Command’s Beaufighters and later also Mosquitos.
In the meantime, tests with the SG 104 progressed and several modifications were tested on different EKdo 104's Do 217 F-0s. One major upgrade was a further strengthening of the tail section, which added another 200 kg (440 lb) to the aircraft's dry weight. Furthermore, at least three aircraft were outfitted with additional dive brakes under the outer wings, so that the dive could be better controlled and intercepted. these aircraft, however, lost their plumbed underwing hardpoints, but these were only ever used for drop tanks during transfer flights - a loaded SG 104 precluded any other ordnance. On two other aircraft the SG 104 was modified to test different muzzle brakes and deflectors for the rear-facing opening, so that the gun blast was more effectively guided away from the airframe to prevent instability and structural damage. For instance, one machine was equipped with a bifurcated blast deflector that directed the rearward gasses partly sideways, away from the fuselage.
These tests did not last long, though. During the Allied Normandy landings in June 1944 E-Staffel 104 was hastily thrown into action and made several poorly-prepared attack runs against Allied support ships. The biggest success was a full hit and the resulting sinking of the Norwegian destroyer HNoMS Svenner (G03) by "1A+BA" at dawn on 6th of June, off Sword, one of the Allied landing zones. Other targets were engaged, too, but only with little effect. This involvement, however, led to the loss of three Do 217 F-0s within just two days and four more heavily damaged aircraft – leaving only two of EKdo 104's Do 217 F-0s operational.
With the Allied invasion of France and a worsening war condition, the SG 104 program was stopped in August 1944 and the idea of an airborne anti-ship gun axed in favor of more flexible guided weapons like the Hs 293 missile and the Fritz-X glide bomb. Plans for a further developed weapon with a three-round drum magazine were immediately stopped, also because there was no carrier aircraft in sight that could carry and deploy this complex 6.5 tons weapon. However, work on the SG 104 and the experience gained from EKdo 104's field tests were not in vain. The knowledge gathered from the Münchhausen program was directly used for the design of a wide range of other, smaller recoilless aircraft weapons, including the magnetically-triggered SG 113 "Förstersonde" anti-tank weapon or the lightweight SG 118 "Rohrblock" unguided air-to-air missile battery for the Heinkel He 162 "Volksjäger".
General characteristics:
Crew: 3 (pilot, navigator, radio operator/gunner)
Length: 20,73 m (67 ft 11 in) overall
18,93 m (62 ft 3/4 in) hull only
Wingspan: 19 m (62 ft 4 in)
Height: 4.97 m (16 ft 4 in)
Wing area: 57 m² (610 sq ft)
Empty weight: 9,065 kg (19,985 lb)
Empty equipped weight:10,950 kg (24,140 lb)
Max takeoff weight: 16,700 kg (36,817 lb)
Fuel capacity: 2,960 l (780 US gal; 650 imp gal) in fuselage tank and four wing tanks
Powerplant:
2× BMW 801D-2 14-cylinder air-cooled radial piston engines, delivering
1,300 kW (1,700 hp) each for take-off and 1,070 kW (1,440 hp) at 5,700 m (18,700 ft),
driving 3-bladed VDM constant-speed propellers
Performance:
Maximum speed: 475 km/h (295 mph, 256 kn) at sea level
560 km/h (350 mph; 300 kn) at 5,700 m (18,700 ft)
Cruise speed: 400 km/h (250 mph, 220 kn) with loaded Gerät 104 at optimum altitude
Range: 2,180 km (1,350 mi, 1,180 nmi) with maximum internal fuel
Ferry range: 2,500 km (1,600 mi, 1,300 nmi); unarmed, with auxiliary fuel tanks
Service ceiling: 7,370 m (24,180 ft) with loaded Gerät 104,
9,500 m (31,200 ft) after firing
Rate of climb: 3.5 m/s (690 ft/min)
Time to altitude: 1,000 m (3,300 ft) in 4 minutes 10 seconds
2,000 m (6,600 ft) in 8 minutes 20 seconds
6,100 m (20,000 ft) in 24 minutes 40 seconds
Armament:
1x 355.6 mm (14-inch) Sondergerät 104 recoilless gun with a single round in ventral position
1x 15 mm (0.787 in) MG 151 machine cannon with 200 rounds, fixed in the nose
1x 13 mm (0.512 in) MG 131 machine gun with 500 rounds, movable in dorsal position
Two underwing hardpoints for a 900 l drop tank each, but only used during unarmed ferry flights
The kit and its assembly:
This was another submission to the "Gunships" group build at whatifmodellers.com in late 2021, and inspiration struck when I realized that I had two Italeri Do 217 in The Stash - a bomber and a night fighter - that could be combined into a suitable (fictional) carrier for a Sondergerät 104. This mighty weapon actually existed and even reached the hardware/test stage - but it was never integrated into an airframe and tested in flight. But that's what this model is supposed to depict.
On the Do 217, the Sg 104 would have been carried externally under the fuselage, even though there had been plans to integrate this recoilless rifle into airframes, esp. into the Ju 288. Since the latter never made it into production, the Do 217 would have been the most logical alternative, also because it had the highest payload of all German bombers during WWII and probably the only aircraft capable of carrying and deploying the Münchhausen device, as the SG 104 was also known.
The fictional Do 217 F-0 is a kitbashing, using a Do 217 N fuselage, combined with the wings from a Do 217 K bomber, plus some modifications. What initially sounded like a simple plan soon turned into a improvisation mess: it took some time to realize that I had already donated the Do 217 K's BMW 801 engines to another project, an upgraded He 115... I did not want to use the nightfighter's more powerful DB 603s, and I was lucky to have an Italeri Ju 188 kit at hand which comes with optional BMW 801s and Jumo 211s. Transplanting these engines onto the Do 217's wings took some tailoring of the adapter plates, but was feasible. However, the BMW 801s from the Ju 188 kit have a flaw: they lack the engine's characteristic cooling fans... Another lucky find: I found two such parts in the scrap box, even though from different kits - one left over from another Italeri Do 217 K, the other one from what I assume is/was an Italeri 1:72 Fw 190 A/F. To make matters worse, one propeller from the Ju 188 kit was missing, so that I had to find a(nother) replacement. :-/
I eventually used something that looked like an 1:72 F6F Hellcat propeller, but I an not certain about this because I have never built this model...? With some trimming on the blades' trailing edges and other mods, the donor's overall look could be adapted to the Ju 188 benchmark. Both propellers were mounted on metal axis' so that they could also carry the cooling fans. Lots of work, but the result looks quite good.
The Do 217 N's hull lost the lower rear gunner position and its ventral gondola, which was faired over with a piece of styrene sheet. The pilot was taken OOB, the gunner in the rear position was replaced by a more blob-like crew member from the scrap box. The plan to add a navigator in the seat to the lower right of the pilot did not work out due to space shortage, but this figure would probably have been invisble, anyway.
All gun openings in the nose were filled and PSRed away, and a fairing for a bomb aiming device and a single gun (the barrel is a hollow steel needle) were added.
The SG 104 was scratched. Starting point was a white metal replacement barrel for an 1:35 ISU-152 SPG with a brass muzzle brake. However, after dry-fitting the barrel under the hull the barrel turned out to be much too wide, so that only the muzzal brake survived and the rest of the weapon was created from a buddy refueling pod (from an Italeri 1:72 Luftwaffe Tornado, because of its two conical ends) and protective plastic caps from medical canulas. To attach this creation to the hull I abused a conformal belly tank from a Matchbox Gloster Meteor night fighter and tailored it into a streamlined fairing. While this quite a Frankenstein creation, the overall dimensions match the real SG 104 prototype and its look well.
Other cosmetic modifications include a pair of underwing dive brakes, translanted from an Italeri 1:72 Ju 88 A-4 kit, an extended (scratched) tail "stinger" which resembles the real dive brake arrangement that was installed on some Do 217 E bombers, and I added blast deflector vanes and a dorsal stabilizer fin.
In order to provide the aircraft with enough ground clearance, the tail wheel was slightly extended. Thanks to the long tail stinger, this is not blatantly obvious.
Painting and markings:
This was not an easy choice, but as a kind of prototype I decided that the paint scheme should be rather conservative. However, German aircraft operating over the Atlantic tended to carry rather pale schemes, so that the standard pattern of RLM 70/71/65 (Dunkelgrün, Schwarzgrün and Hellblau) with a low waterline - typical for experimental types - would hardly be appropriate.
I eventually found a compromise on a He 177 bomber (coded 6N+BN) from 1944 that was operated by KG 100: this particular aircraft had a lightened upper camouflage - still a standard splinter scheme but consisting of RLM 71 and 02 (Dunkelgrün and Grau; I used Modelmaster 2081 and Humbrol 240), a combination that had been used on German fighters during the Battle of Britain when the standard colors turned out to be too dark for operations over the Channel. The aircraft also carried standard RLM 65 (or maybe the new RLM76) underneath (Humbrol 65) and on the fin, but with a very high and slightly wavy waterline. As a rather unusual feature, no typical camouflage mottles were carried on the flanks or the fin, giving the aircraft a very bleak and simple look.
Despite my fears that this might look rather boring I adapted this scheme for the Do 217 F-0, and once basic painting was completed I was rather pleased by the aircraft's look! As an aircraft operated at the Western front, no additional markings like fuselage bands were carried.
To set the SG 104 apart from the airframe, I painted the weapon's visible parts in RLM 66 (Schwarzgrau, Humbrol 67), because this tone was frequently used for machinery (including the interior surfaces of aircraft towards 1945).
RLM 02 was also used for the interior surfaces and the landing gear, even though I used a slightly different, lighter shade in form of Revell 45 (Helloliv).
A light black ink washing was applied and post-shading to emphasize panel lines. Most markings/decals came from a Begemot 1:72 He 11 sheet, including the unusual green tactical code - it belongs to a staff unit, a suitable marking for such an experimental aircraft. The green (Humbrol 2) was carried over to the tips of the propeller spinners. The unit's code "1A" is fictional, AFAIK this combination had never been used by the Luftwaffe.
The small unit badge was alucky find: it actually depicts the fictional Baron von Münchhausen riding on a cannonball, and it comes from an Academy 1:72 Me 163 kit and its respective sheet. The mission markings underneath, depicting two anti-ship missions plus a successful sinking, came from a TL Modellbau 1:72 scale sheet with generic German WWII victory markings.
After some soot stains around the engine exhaust and weapon muzzles had been added with graphite, the model was sealed with matt acrylic varnish and final details like position lights and wire antennae (from heated black plastic sprue material) were added.
Well, what started as a combination of two kits of the same kind with a simple huge pipe underneath turned out to be more demanding than expected. The (incomplete) replacement engines were quite a challenge, and body work on the hull (tail stinger, fairing for the SG 104 as well as the weapon itself) turned out to be more complex and extensive than initially thought of. The result looks quite convincing, also supported by the rather simple paint scheme which IMHO just "looks right" and very convincing. And the whole thing is probably the most direct representation of the inspiring "Gunship" theme!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The AMD Mystère S represents one of the many evolutionary steps in French 2nd generation jet fighter aircraft design, which began with the straight-wing Dassault Ouragan and progressed through the Mystère II/III and Mystère IV to the supersonic Super Mystère SM2B. Internally designated AMD 461 and originally called the Mystère X (Roman numeral “10”, not the letter “X”), the new aircraft was the attempt to improve the successful Mystère IV from 1953 in many respects, following Marcel Dassaults strategy to take small, evolutionary steps instead of radical quantum leaps. While the overall outlines were similar and followed the proven layout of the former Dassault jet fighters, the AMD 461 was a completely new design, though.
First of all, the machine was from the start designed around the indigenous axial-flow Atar 101 jet engine, since it had become obvious that the former radial-flow engines used in Dassault’s fighters, like the Rolls-Royce Tay and its French-built version, the Hispano-Suiza Verdon 350, did not offer the potential for sustained supersonic performance in level flight. As a result, the fuselage became thinner and the aircraft had a less tubby look. Furthermore, in order to achieve the ambitious performance goals, a new wing was devised, and it incorporated leading edges made from novel composite materials. The wing shape was more complex than previous AMD designs: unlike the simple trapezoid Mystère II and IV wing designs, the AMD 461’s wings had kinked wing leading edges at about half span, so that the wing root sections were extended forward and had a slightly stronger sweep than the outer wing sections (47° vs. 45°), resulting in a crescent planform with rounded tips. Dogteeth at the kinks’ position increased the wings’ critical Mach number, augmented by small boundary layer fences. A novelty were power-operated ailerons. The tail surfaces were swept, too, and featured a variable-incidence tail plane.
The Mystère IV’s circular nose air intake arrangement was retained, but the intake received a sharper lip for better aerodynamic efficiency at high speed. The intake ducts were split deeper down inside of the fuselage, flanking the cockpit and the weapon bay behind it (see below) on both sides. The small ranging radar, originally developed for the upgraded Mystère IVB (which never made it into series production due to a fatal prototype crash and the progress of AMD’s other supersonic projects), was relocated and now mounted on top of the intake section, reminiscent of the F-86’s arrangement. A gun camera was placed outside of the intake in a small fairing on the starboard side. Two pitots under the air intake (one main and a secondary sensor) replaced the Mystère IV’s single wing-mounted sensor boom.
Being a classic “gunfighter”, the AMD 461’s main armament comprised a pair of 30mm DEFA cannon in the lower front fuselage, taken over from the Mystère IV, and a retractable Type 103 pannier for 45 unguided MATRA missiles against air or ground targets behind the front wheel well. Four underwing hardpoints could carry a total payload of 1.500 kg (3.300 lb), including a pair of supersonic 625 l drop tanks on the inner pair of pylons. A typical fighter weapon were lightweight Matra Type 116M launchers, each with 19 unguided SNEB-68 air-to-air rockets. Up to four could be carried under the wings. In a secondary attack/fighter bomber role, bombs of various caliber (up to 500 kg/1.100 lb on the inner and 250 kg/550 lb on the outer hardpoints) and other unguided missiles/pods were possible, too.
The first Mystère X prototype was powered by the Atar 101D with 29,420 N (6,610 lbf) of thrust, and it flew successfully in June 1953. However, due to the lack of an afterburner at this stage, the machine could only become supersonic in a dive, just like the former Mystère fighters, and it offered in this guise only minimal performance improvements – even though the handling near Mach 1 was already noticeably better. The initial flight test program was successful, though, and the Armée de l’Air immediately placed an order for 100 Mystère X aircraft, intended to improve the Armée de l’Air’s interception capabilities as soon as possible. Serial production started instantaneously, even while the flight tests were still ongoing, and the production machines were powered by the newly developed Atar 101F, which had just been cleared for production and operation on the Mystère X prototype. The Atar 101F was basically a D model with an afterburner added to it, to produce a temporary thrust of 37,300 N (8,400 lbf) and ensure the desired top speed in level flight of more than Mach 1. As a result, the Mystère X’s tail section had to be modified to accommodate the new engine’s longer tailpipe, which did not feature an adjustable nozzle yet – it was simply extended beyond the fin’s trailing edge, and even then the longer jet pipe protruded from the hull. However, this modification was successful and incorporated into the serial aircraft. With the Atar 101F, the serial production Mystère X’s performance was appreciably improved: beyond supersonic top speed, initial rate of climb was almost doubled in comparison with the Mystère IV, but the thirsty afterburner engine almost nullified any gain in range from the new type’s higher internal fuel capacity. Drop tanks had to be carried almost all the time.
The quick (if not hastened) order for the Mystère X also served as an insurance policy in the event of the AMD effort failing to produce an even more capable supersonic aircraft with the Mystère XX, a project that had been under development as a private venture in parallel, but with a time lag of about two years and benefitting from the research that had been done for the AMD 461. However, both designs turned out to be successful and both were adopted for service. They became known to the public as the Mystère S (for ‘supersonique’) and the Super Mystère, respectively. The first Super Mystère prototype, powered by a Rolls-Royce Avon RA.7R, took to the air on 2 March 1955, and the promising aircraft already broke the sound barrier in level flight the following day. The Super Mystère turned out to be the more capable and modern aircraft thanks to its new, more powerful Atar 109G-2 engine.
The more capable Super Mystère was immediately favored and, as a consequence, the running Mystère S order was cancelled in May 1955 and its initial production run limited to a mere 54 airframes - the number that had been completed until that point. The Super Mystère became the Armée de l’Air’s standard fighter for the late Fifties and production was quickly switched to the new type, 180 specimen were eventually built. Since a mix of types in the operational fighter squadrons was not economical, the Armée de l’Air decided to separate them and find a different role for the young but relatively small Mystère S fleet. Since the aircraft had a rugged airframe and had shown very good handling characteristics at medium to low altitude, and because the Armée de l’Air was lacking a fast, tactical and indigenous reconnaissance aircraft at that time (the standard type was the RF-84F), the Armée de l’Air decided in 1956 to convert the Mystère S fighters accordingly.
This modification was a relatively easy task: The retractable missile pannier (which was hardly ever used) was removed and its well behind the cockpit offered sufficient internal space for optical reconnaissance equipment in a conditioned compartment. This comprised four OMERA cameras (less than the RF-84F’s six cameras), covered by a ventral canoe fairing. One camera was facing forward, two were set on mounts that allowed vertical photography or camera orientation to either port or starboard, and the fourth camera had a panoramic field of view. After these modifications, the machines were re-designated Mystère SR to reflect their new role and capabilities.
Initially, the converted machines retained the twin DEFA cannon armament and full external stores capability. Typical load in the new photo-recce role was the standard pair of drop tanks, plus optional flares for night photography. In this guise the Mystère SR fleet was distributed among two reconnaissance units, ER 2/33 “Savoie” and ER 3/33 “Moselle” in Eastern France, close to the German border, starting service in April 1957.
Later in their career, the Mystère SR’s guns and also the ranging radar equipment (even though the empty small radome was retained) were often removed. This was initially a weight-saving measure for better performance, but due to their short legs many Mystère SRs had extra fuel tanks added to the former gun and ammunition bays. In some cases the space was used to house additional mission equipment, the aircrafts’ designation did not change, though. The integration of the new Matra R.550 Magic AAM was considered briefly in 1970, but not deemed relevant for the Mystère SR’s mission profile. However, eight late-production Mystère SRs received a new, bigger panoramic OMERA camera, which necessitated a larger ventral fairing and some other internal changes. These machines were re-designated Mystère SRP (‘panoramique’). Another early Mystère SR was used for the development of indigenous infra-red linescan and side looking airborne radar systems, which were both later incorporated in an under-fuselage pod for the Mirage IIIR.
Having become quickly obsolete through the introduction of 3rd generation jet fighters in the early Sixties – namely the Mirage III – the Mystère SR’s active career only lasted a mere 10 years, and the Mirage III’s fighter variants quickly replaced the Super Mystère, too. Due to its many limitations, the Mystère SR was soon replaced by the Mirage IIIR reconnaissance version, by 1974 all aircraft had been retired. Another reason for this early operational end were durability problems with the composite elements on the aircraft’s wings – there had been no long-term experience with the new material, but the elements tended to become brittle and collapse under stress or upon bird strikes. AMD conceived a plan to replace the affected panels with light metal sheets, but this update, which would have prolonged service life for 10 more years, was not carried out. After spending 5 years in mothballed storage, all surviving Mystère SR airframes were scrapped between 1980 and 1981.
General characteristics:
Crew: 1
Length: 42 ft 3 in (12.88 m) overall
42 ft 3 in (12.88 m) w/o pitots
Wingspan: 32 ft 4 in (9.86 m)
Height: 3.75 m (12 ft 4 in)
Wing area: 345.5 sq ft (32.2 m²)
Empty weight: 13,435 lb (6,094 kg)
Gross weight: 21,673 lb (9,831 kg)
Fuel capacity: 3,540 l (778 imp gal; 934 US gal) internally
plus 2x 625 l (72 imp gal; 165 US gal) drop tanks
Powerplant:
1× Atar 101F turbojet, rated at 29.42 kN (6,610 lbf) dry thrust
and with 37.3 kN (8,400 lbf) with afterburner
Performance:
Maximum speed: 1,110 km/h (600 kn, 690 mph) at sea level
1,180 km/h (637 kn 732 mph,) at 11,000 m (36,089 ft)
Combat range: 915 km (494 nmi, 570 mi) with internal fuel only
Maximum range: 1,175 km (730 mi, 634 nmi)
Service ceiling: 45,800 ft (14,000 m)
Rate of climb: 14,660 ft/min (74.5 m/s)
Time to altitude: 40,000 ft (12,000 m) in 4 minutes 41 seconds
Armament:
2x 30mm (1.18 in) DEFA 552 cannon with 150 rounds per gun (later frequently deleted)
Four underwing hardpoints for 1.500 kg (3.300 lb) of ordnance,
including a pair of 625 liter drop tanks, flares and various unguided missiles and iron bombs
The kit and its assembly:
A project I had on my idea list for a long time – there were so many AMD jet fighter designs (both that entered service but also many paper projects and prototypes) during the Fifties and Sixties that I wondered if I could smuggle a what-if type somewhere into the lineage. A potential basis appeared when I recognized that the British Supermarine Swift had a fuselage shape quite similar to the contemporary French fighters, and from this impression the idea was born to “Frenchize” a Swift.
This called for a kitbash, and I used a Matchbox Mystère IV (Revell re-boxing) for the French donor elements that would be grafted onto an Xtrakit FR.5 model, which looks good in the box but has serious fit issues, e.g. between the rear fuselage halves or when the wings have to be mated with the completed fuselage.
The transplantations from the rather primitive/blunt Matchbox Mystère included the whole cockpit section except for the interior, which was taken from the in this respect much better Swift, the glazing, the spine and the whole tail with fin and stabilizers. The Swift provided most of the fuselage, the wings and the landing gear, even though I used the Mystère’s main wheels because of their characteristic hub caps/brake arrangement.
Mating the fuselage sections from the two models became a major stunt, though, because the diameters and shapes were rather different. Three-dimensional gaps and steps behihd the cockpit had to be bridged, initially with 2C putty for the rough overall shape and then with NC putty for a smooth finish. A gap in the spine in front of the fin had to be improvised/filled, too, and the Mystère’s fin had to be tailored to the different Swift rear fuselage shape, too.
The result looks a little odd, though, the Swift’s original air intake ducts now look from certain angles like hamster cheeks – but after all, the ducts have to pass the central cockpit section on both sides somehow, so that the arrangement makes nonetheless sense. And the small dorsal spine taken over from the Mystère changes the Swift’s profile considerably, as well as the shorter Dassault-style canopy.
The small ranging radar radome is just a piece of sprue from the Mystère kit, blended into the rest of the fuselage with putty. The interior of the air intake was heavily modified – the original splitter, positioned directly inside of the intake, was deleted and the walls trimmed down for a much thinner/sharper lip. Inside of the intake a bulkhead was added as a sight blocker, and a new splitter was mounted to the new bulkhead in a much deeper position. The gun camera fairing is a piece of styrene profile, the new twin pitots (reminiscent of the SM2B’s arrangement) were made from heated sprue material.
The camera fairing is the lower half from a P-47 drop tank, left over from a Hobby Boss kit, IIRC, and in order to fit the Swift’s cockpit tub into the Mystère’s fuselage the rear bulkhead had to be re-created with the help of paper tissue drenched with white glue.
The drop tanks come from a KP MiG-19, which had the benefit of integral, thin pylons at a suitable position for the Mystère SR. For a different look I just canted their fins downwards.
Painting and markings:
For a subtle impression I settled for an authentic livery: the French rendition of the USAF SEA scheme for the F-100 with local CELOMER tones, which was not only applied to the Armée de l’Air’s F-100s (these were originally delivered in NMF and camouflaged later in the Sixties), but also to the Super Mystères - the SM2Bs actually carried a quite faithful adaptation of the USAF’s F-100 pattern! However, the indigenous CELOMER paints differed from the original U.S. Federal Standard tones (FS 30219, 34102, 34079 and 36622, respectively), esp. the reddish light tan was more of an earth tone, and the dark green had a more bluish hue.
This offered some freedom – even more so because real life pictures of French reference aircraft show a wide range of shades of these basic tones and frequent serious weathering. Instead of the U.S. tan I went for RAF Dark Earth (Humbrol 29), the dark Forest Green was replaced with Humbrol 75 (Bronze Green). The light green became a 2:1 mix of Humbrol 117 (the original FS 34102) with Humbrol 78 (RAF Cockpit Green), for more contrast and less yellow in the tone. The undersides were painted with Humbrol 166 (RAF Light Aircraft Grey).
After a black ink wash I gave the model a thorough panel post-shading and recreated some lost panel lines with the help of silver paint, too. I also added some paint patches and touch-ups, for a rather worn look of the aircraft.
The black areas around the gun muzzles were created with the help of decal material, generic black decal sheet material was also used to create the camera windows. Grey (Revell 75) dielectric panels were added to the fin tip and behind the cockpit. The cockpit interior became very dark grey (Revell 09, Anthracite, with some dry-painted medium grey on top), while the landing gear and the respective wells were left in aluminum (Humbrol 56).
The decals are a mix from various sources. The ER 2/33 markings came from a Heller Mirage III sheet, which offers an optional IIIR from 1984. I also settled for relatively small roundels (from a Mirage F.1C) – a trend which started in the Armée de l’Air in the early Seventies and also comprised the deletion of the fin flash. Contemporary real world SM2Bs with the French SEA cammo frequently carried a similar type of subdued markings instead of earlier, bigger roundels found on the machines in NMF finish or on the aircraft from EC 1/12 "Cambresis" with their unique and different camouflage in two shades of green and a rather sandy tan, almost like a desert paint scheme. The white tactical code “33-PS” was improvised with single 4mm letters from TL Modellbau. The stencils were puzzled together from various Mirage III/V/F.1C sheets and also from an IAI Kfir.
The kit received some additional dry-painting with silver to simulate more wear, and was finally sealed with a coat of matt acrylic varnish.
Another “missing link” build, but I think that my Mystère S fits stylistically well into the (non-existent, though) gap between the Mystère IV and the Super Mystère, sporting vintage details like the round air intake but coupled with highly swept wings and the Swift’s elegant lines. The “traditional” French paint scheme adds to the realism - and, when put in the right background/landscape context, turns out to be very effective. Not a spectacular model, despite serious body work around the cockpit, but a convincing result.
The model and its assembly:
My second attempt to create a functional H0 scale what-if locomotive – and after I “only” did a color variant with some cosmetic changes on the basis of a Märklin V160/BR 216 diesel locomotive, I wanted something more special and challenging. However, kitbashing model locomotives with a metal chassis that includes a functional motor, respective drivetrain/gearing and electronics is not as easy as gluing some plastic parts together. And finding “matching” donor parts for such a stunt is also not as easy as it may seem. But what would life be without attempts to widen its boundaries?
This time I wanted an electric locomotive. Inspiration (and occasion) somewhat struck when I stumbled upon a running/functional chassis of a Märklin E 10/BR 110 (#3039), just without light and naturally missing the whole upper hull. Due to its incompleteness, I got it for a reasonable price, though. With this basis I started to watch out for eventual (and affordable) donor parts for a new superstructure, and remembered the collectible, non-powered all-plastic locomotive models from Atlas/IXO.
The good thing about the Märklin 3039 chassis was that it was just a solid and flat piece of metal without integrated outer hull elements, headstock or side skirts, so that a new hull could (theoretically) be simply tailored to fit over this motorized platform. Finding something with the exact length would be impossible, so I settled upon an Atlas H0 scale Nederlands Spoorwegen Series 1200 locomotive model, which is markedly longer than the German BR 110, due to its six axles vs. the E 10/BR 110’s four. Another selling point: the NS 1200’s body is virtually blank in its middle section, ideal for shortening it to match the different chassis. Detail of the Atlas plastic models is also quite good, so there was the potential for something quite convincing.
Work started with the disassembly of the static Atlas NS Class 1200 model. It's all-styrene, just with a metal plate as a chassis. Against my expectations the model's hull was only held on the chassis by two tiny screws under the "noses", so that I did not have to use force to separate it. The body's walls were also relatively thin, good for the upcoming modifications. The model also featured two nice driver's stations, which could be removed easily, too. Unfortunately; they had to go to make enough room for the electronics of the Märklin 3039 all-metal chassis.
Dry-fitting the chassis under the Class 1200 hull revealed that the stunt would basically work - the chassis turned out to be only marginally too wide. I just had to grind a little of the chassis' front edges away to reduce pressure on the styrene body, and I had to bend the end sections of the chassis’ stabilizing side walls.
To make the Class 1200 hull fit over the shorter BR 110 chassis a section of about 3 cm had to be taken out of the body’s middle section. The Class 1200 lent itself to this measure because the body is rather bare and uniform along its mid-section, so that re-combining two shortened halves should not pose too many problems.
To make the hull sit properly on the chassis I added styrene profiles inside of it - easy to glue them into place, thanks to the material. At this time, the original fixed pantographs and some wiring on the roof had gone, brake hoses on the nose were removed to make space for the BR 110 couplers, and the clear windows were removed after a little fight (they were glued into their places, but thankfully each side has three separate parts instead of just one that would easily break). PSR on the seam between the hull halves followed, plus some grey primer to check the surface quality.
Even though the new body now had a proper position on the metal chassis, a solution had to be found to securely hold it in place. My solution: an adapter for a screw in the chassis’ underside, scratched. I found a small area next to the central direction switch where I could place a screw and a respective receiver that could attached to the body’s roof. A 3 mm hole was drilled into the chassis’ floor and a long Spax screw with a small diameter was mated with a hollow square styrene profile, roughly trimmed down in length to almost reach the roof internally. Then a big lump of 2C putty was put into the hull, and the styrene adapter pressed into it, so that it would held well in place. Fiddly, but it worked!
Unfortunately, the pantographs of the Atlas/IXO model were static and not flexible at all. One was displayed raised while the other one was retracted. Due to the raised pantograph’s stiffness the model might lose contact to or even damage the model railroad catenary, even when not pulling power through it – not a satisfactory condition. Since the chassis could be powered either from below or through the pantographs (the Märklin 3039 chassis offers an analogue switch underneath to change between power sources) I decided to pimp my build further and improve looks and functionality. I organized a pair of aftermarket diamond pantographs, made from metal, fully functional and held in place on the model’s roof with (very short and) small screws from the inside.
I was not certain if the screws were conductive, and I had to somehow connect them with the switch in the chassis. I eventually soldered thin wire to the pantographs’ bases, led them through additional small holes in the roof inside and soldered them to the switch input, with an insulating screw joint in-between to allow a later detachment/disassembly without damage to the body. There might have been more elegant solutions, but my limited resources and skills did not allow more. It works, though, and I am happy with it, since the cables won’t be visible from the outside. This layout allows to draw power through them, I just had to create a flexible and detachable connection internally. Some plugs, wire and soldering created a solution – rough (electronics is not my strength!), but it worked! Another investment of money, time and effort into this project, but I think that the new pantographs significantly improve the overall look and the functionality of this model.
Internally, the missing light bulbs were retrofitted with OEM parts. A late external addition were PE brass ladders for the shunting platforms and under the doors for the driver’s cabins. They were rather delicate, but the model would not see much handling or railroading action, anyway, and the improve the overall impression IMHO a lot. On the roof, some details like cooling fans and tailored conduits (from the Atlas Series 1200) were added, they partly obscure the seam all around the body.
Unfortunately, due to the necessary space for the chassis, its motor and the electronics, the driver stations’ interiors could not be re-mounted – but this is not too obvious, despite the clear windows.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Gloster Glaive was basically a modernized and re-engined variant of the successful, British-built Gloster Gladiator (or Gloster SS.37), the RAF’s final biplane fighter to enter service. The Gladiator was not only widely used by the RAF at the dawn of WWII and in almost every theatre of operations, but also by many other nations. Operators included Norway, Belgium, Sweden, Greece, Latvia, Lithuania or Nationalist China, and while the RAF already opted for more modern monoplanes, Gloster saw the opportunity to sell an updated Gladiator to countries which were not as progressive.
Originally designated Gladiator Mk. IV, the machine received many aerodynamic refinements and the motor was changed from a draggy radial to a liquid-cooled inline engine. The latter was the new Rolls Royce Peregrine, a development of the Kestrel. It was, in its original form, a 21-litre (1,300 cu in) liquid-cooled V-12 aero engine ), delivering 885-horsepower (660 kW). The engine was housed under a streamlined cowling, driving a three blade metal propeller, and was coupled with a ventral radiator bath, reminiscent of the Hawker Fury biplane’s arrangement.
Structural improvements included an all-metal monocoque fuselage and stabilizers, as well as new wings and streamlined struts with reduced bracing. The upper wing was enlarged and of all-metal construction, too, while the lower wings were reduced in span and area, almost resulting in a sesquiplane layout. The total wing area was only marginally reduced, though.
The fixed landing gear was retained, but the main wheels were now covered with spats. The pilot still sat in a fully enclosed cockpit, the armament consisted of four machine guns, similar to the Gladiator. But for the Glaive, all Browning machine guns were synchronized and mounted in the fuselage: one pair was placed on top of the cowling, in front of the cockpit. Another pair, much like the Gladiator’s arrangement was placed in the fuselage flanks, below the exhaust outlets.
Compared with the Gladiator, the design changes were so fundamental that Gloster eventually decided to allocate a separate designation – also with a view to the type’s foreign marketing, since a new aircraft appeared more attractive than another mark of a pre-war design. For the type’s virgin flight in late 1938 the name “Glaive” was unveiled to the public, and several smaller European air forces immediately showed interest, including Greece, Croatia, Turkey, Portugal and Egypt.
Greece was one of the initial customers, and the first of a total of 24 aircraft for the Hellenic Air Force was delivered in early 1939, with 24 more on order (which were never delivered, though). The initial batch arrived just in time, since tension had been building between Greece and Italy since 7 April 1939, when Italian troops occupied Albania. On 28 October 1940, Italy issued an ultimatum to Greece, which was promptly rejected. A few hours later, Italian troops launched an invasion of Greece, initiating the Greco-Italian War.
The Hellenic Gloster Glaives were split among three Mirae Dioxeos (Fighter Squadrons): the 21st at Trikala, 22nd at Thessaloniki and 23rd at Larissa. When Italy attacked in October 1940, the British fighter was, together with the PZL 24, the Greeks' only modern type in adequate numbers. However, by late 1940, the Gloster Glaive was already no longer a front-runner despite a powerful powerplant and satisfactory armament. It had no speed advantage over the Fiat Cr.42 nor could it outfly the nimble Italian biplane, and it was much slower than the Macchi MC.200 and the Fiat G.50 it was pitted against. Its agility was the only real advantage against the Italian fighters, whose reliance on the slow firing Breda-SAFAT 12.7mm machine guns proved detrimental.
Anyway, on 5 April 1941, German forces invaded Greece and quickly established air superiority. As the Allied troops retreated, British and Hellenic forces covered them, before flying to Crete during the last week of April. There, the refugee aircraft recorded a few claims over twin-engine aircraft before being evacuated to Egypt during the Battle of Crete.
Overall, the Glaives performed gallantly during the early period of the conflict, holding their own against impossible numerical odds and despite the fact that their main target were enemy bombers which forced them to fight at a disadvantage against enemy fighters. Italian claims of easy superiority over the Albanian front were vastly over-rated and their kill claims even exceeded the total number of operational fighters on the Greek side. Total Greek fighter losses in combat came to 24 a/c with the Greek fighter pilots claiming 64 confirmed kills and 24 probables (about two third bombers).
By April 1941, however, lack of spares and attrition had forced the Hellenic Air Force to merge the surviving seven Glaives with five leftover PZL.24s into one understrength squadron supported by five Gloster Gladiators Mk I & II and the two surviving MB.151s. These fought hopelessly against the Luftwaffe onslaught, and most aircraft were eventually lost on the ground. None of the Hellenic Gloster Glaives survived the conflict.
General characteristics:
Crew: two
Length: 8.92m (29 ft 3 in)
Wingspan: 34 ft 0 in (10.36 m)
Height: 11 ft 9 in (3.58 m)
Wing area: 317 ft² (29.4 m²)
Empty weight: 1,295 kg (2,855 lb)
Max takeoff weight: 1,700 kg (3,748 lb)
Powerplant:
1× Rolls Royce Peregrine II liquid-cooled V12 inline engine, rated at 940 hp (700 kw)
Performance:
Maximum speed: 405 km/h (252 mph; 219 kn) at 4,400 m (14,436 ft)
Cruise speed: 345 km/h (214 mph; 186 kn)
Stall speed: 60 mph (52 knots, 96 km/h)
Range: 373 mi (600 km; 324 nmi)
Endurance: 2 hours
Service ceiling: 10,600 m (34,800 ft)
Rate of climb: 2,982 ft/min (15.15 m/s)
Time to altitude: 10.000 ft (3.050 m) in 3 minutes 20 seconds
Armament:
4× 0.303 calibre (7.7 mm) M1919 Browning machine guns in the fuselage
Provisions for 6× 10 kg (22 lb) or 4x 20 kg (44 lb) bombs under the lower wings
The kit and its assembly:
The fictional Gloster Glaive started quite simple with the idea of replacing the Gladiator’s radial with an inline engine. But this soon did not appear enough for an update – the Peregrine hardly delivered much more power than the former Mercury, so I considered some structural updates, too. Most of them comprised the replacement of former fabric-covered structures, and this led conceptually to a kitbash with only some Gladiator fuselage and tail parts left.
The basis is (once more) the very nice Matchbox Gloster Gladiator, but it was heavily modified. As an initial step, fuselage, fin and stabilizers (all OOB parts) lost their rib-and-fabric structure, simply sanded away. A minor detail, but it changes the overall look of the aircraft a lot, making it appear much more modern.
The fuselage was left without the OOB radial, and instead a leftover Merlin front end from an Airfix Hurricane (ca. 1cm long, left over from one of my first whif builds ever, a Hurricane with a radial engine!) was added. The lines match pretty well: the side profile looks sleek, if not elegant, but the Gladiator fuselage turned out to be wider than expected. Some major body work/PSR was necessary to integrate the new nose, but the result looks very good.
The liquid-cooled engine necessitated a radiator somewhere on the airframe…! Since I wanted the nose to remain slim and streamlined I eventually placed the radiator bath under the fuselage, much like the arrangement of the Hawker Fury biplane. The radiator itself comes from a late Spitfire (FROG kit).
The exhaust was taken from the Hurricane kit, too, and matching slits dug into the putty nose to take them. The three blade propeller is a mash-up, too: the spinner belongs, IIRC, to an early Spitfire (left over from an AZ Models kit) while the blades came from a damaged Matchbox Brewster Buffalo.
The Gladiator’s fuselage flank machine guns were kept and their “bullet channels” extrapolated along the new cowling, running under the new exhaust pipes. Another pair of machine guns were placed on top of the engine – for these, openings were carved into the upper hull and small fairings (similar to the Browning guns in the flanks) added. This arrangement appeared plausible to me, since the Gladiator’s oil cooler was not necessary anymore and the new lower wings (see below) were not big enough anymore to take the Gladiator’s underwing guns. Four MGs in the fuselage appears massive – but there were other types with such an arrangement, e.g. the Avia B-534 with four guns in the flanks and an inline engine.
The wings are complete replacements: the upper wing comes from a Heller Curtiss SBC4, while the lower wings as well as the spats (on shortened OOB Gladiator struts) come from an ICM Polikarpov I-153. All struts were scratched. Once the lower wings were in place and the relative position of the upper wing clear, the outer struts were carved from 1mm styrene sheet, using the I-153 design as benchmark. These were glued to the lower wing first, and, once totally dry after 24h, the upper wing was simply glued onto the top and the wing position adjusted. This was left to dry another 24h, and as a final step the four struts above the cowling (using the OOB struts, but as single parts and trimmed for proper fit) were placed. This way, a stable connection is guaranteed – and the result is surprisingly sturdy.
Rigging was done with heated sprue material – my personal favorite for this delicate task, and executed before painting the kit started so that the glue could cure and bond well.
Painting and markings:
The reason why this aircraft ended in Greek service is a color photograph of a crashed Hellenic Bloch M.B. 152 (coded ‘D 177’, to be specific). I guess that the picture was post-colored, though, because the aircraft of French origin sports rather weird colors: the picture shows a two-tone scheme in a deep, rather reddish chestnut brown and a light green that almost looks like teal. Unique, to say the least... Underside colors couldn’t be identified with certainty in the picture, but appeared like a pale but not too light blue grey.
Anyway, I assume that these colors are pure fiction and exaggerated Photoshop work, since the few M.B. 152s delivered to Greece carried AFAIK standard French camouflage (in French Khaki, Chestnut Brown and Blue-Grey on the upper surfaces, and a very light blue-grey from below). I’d assume that the contrast between the grey and green tones was not very obvious in the original photograph, so that the artist, not familiar with WWII paint schemes, replaced both colors with the strange teal tone and massively overmodulated the brown.
As weird as it looked, I liked this design and used it as an inspirational benchmark for my Hellenic Glaive build. After all, it’s a fictional aircraft… Upper basic colors are Humbrol 31 (RAF Slate Grey) and 160 (German Camouflage Red Brown), while the undersides became French Dark Blue Grey (ModelMaster Authentics 2105). The result looks rather odd…
Representing a combat-worn aircraft, I applied a thorough black ink wash and did heavier panel shading and dry-brushing on the leading edges, along with some visible touches of aluminum.
The Hellenic roundels come from a TL Modellbau aftermarket sheet. The tactical code was puzzled together from single letters, and the Greek “D” was created from single decal strips. For better contrast I used white decals – most Hellenic aircraft of the time had black codes, but the contrast is much better, and I found evidence that some machines actually carried white codes. The small fin flash is another free interpretation. Not every Hellenic aircraft carried these markings, and instead of painting the whole rudder in Greek colors I just applied a small fin flash. This was created with white and blue decal strips, closely matching the roundels’ colors.
Finally, after some soot stains around the guns and the exhausts, the kit was sealed with matt acrylic varnish.
Modified beyond recognition, perhaps…? The fictional Gloster Glaive looks IMHO good and very modern, just like one of those final biplane designs that were about to be outrun by monoplanes at the brink of WWII.
A more regal interpretation of Ming the Merciless, inspired by Alex Ross' depiction for Dynamite Comics that rather neatly circumvents the 1930's 'Yellow Peril' stereotype of the character's original incarnation.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".
The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.
But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.
Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.
Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.
Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.
The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.
The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.
The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.
AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.
Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.
The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.
Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.
Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.
While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.
USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.
The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.
Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.
International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.
General F-24A characteristics:
Crew: 1 pilot
Length: 47 ft 4 in (14.4 m)
Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)
Height: 13 ft 10 in (4.20 m)
Wing area: 36.55 m² (392 ft²)
Empty weight: 13.150 lb (5.090 kg)
Loaded weight: 15.480 lb (6.830 kg)
Max. take-off weight: 27.530 lb (12.500 kg)
Powerplant
1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner
Performance
Maximum speed: Mach 2+
Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks
Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks
Service ceiling: 55,000 ft (16,800 m)
Rate of climb: 52,800 ft/min (255 m/s)
Wing loading: 70.0 lb/ft² (342 kg/m²)
Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)
Armament
1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG
Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.
The kit and its assembly:
A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.
As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.
I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.
Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):
● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear
● Fin and nose cone from an Italeri F-16A
● Inner wings from a (vintage) Hasegawa MiG-21F
● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)
The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.
The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?
Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.
The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.
For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.
All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.
Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.
The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.
Painting and markings:
At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.
A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).
“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.
The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.
Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.
Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The AMD Mystère S represents one of the many evolutionary steps in French 2nd generation jet fighter aircraft design, which began with the straight-wing Dassault Ouragan and progressed through the Mystère II/III and Mystère IV to the supersonic Super Mystère SM2B. Internally designated AMD 461 and originally called the Mystère X (Roman numeral “10”, not the letter “X”), the new aircraft was the attempt to improve the successful Mystère IV from 1953 in many respects, following Marcel Dassaults strategy to take small, evolutionary steps instead of radical quantum leaps. While the overall outlines were similar and followed the proven layout of the former Dassault jet fighters, the AMD 461 was a completely new design, though.
First of all, the machine was from the start designed around the indigenous axial-flow Atar 101 jet engine, since it had become obvious that the former radial-flow engines used in Dassault’s fighters, like the Rolls-Royce Tay and its French-built version, the Hispano-Suiza Verdon 350, did not offer the potential for sustained supersonic performance in level flight. As a result, the fuselage became thinner and the aircraft had a less tubby look. Furthermore, in order to achieve the ambitious performance goals, a new wing was devised, and it incorporated leading edges made from novel composite materials. The wing shape was more complex than previous AMD designs: unlike the simple trapezoid Mystère II and IV wing designs, the AMD 461’s wings had kinked wing leading edges at about half span, so that the wing root sections were extended forward and had a slightly stronger sweep than the outer wing sections (47° vs. 45°), resulting in a crescent planform with rounded tips. Dogteeth at the kinks’ position increased the wings’ critical Mach number, augmented by small boundary layer fences. A novelty were power-operated ailerons. The tail surfaces were swept, too, and featured a variable-incidence tail plane.
The Mystère IV’s circular nose air intake arrangement was retained, but the intake received a sharper lip for better aerodynamic efficiency at high speed. The intake ducts were split deeper down inside of the fuselage, flanking the cockpit and the weapon bay behind it (see below) on both sides. The small ranging radar, originally developed for the upgraded Mystère IVB (which never made it into series production due to a fatal prototype crash and the progress of AMD’s other supersonic projects), was relocated and now mounted on top of the intake section, reminiscent of the F-86’s arrangement. A gun camera was placed outside of the intake in a small fairing on the starboard side. Two pitots under the air intake (one main and a secondary sensor) replaced the Mystère IV’s single wing-mounted sensor boom.
Being a classic “gunfighter”, the AMD 461’s main armament comprised a pair of 30mm DEFA cannon in the lower front fuselage, taken over from the Mystère IV, and a retractable Type 103 pannier for 45 unguided MATRA missiles against air or ground targets behind the front wheel well. Four underwing hardpoints could carry a total payload of 1.500 kg (3.300 lb), including a pair of supersonic 625 l drop tanks on the inner pair of pylons. A typical fighter weapon were lightweight Matra Type 116M launchers, each with 19 unguided SNEB-68 air-to-air rockets. Up to four could be carried under the wings. In a secondary attack/fighter bomber role, bombs of various caliber (up to 500 kg/1.100 lb on the inner and 250 kg/550 lb on the outer hardpoints) and other unguided missiles/pods were possible, too.
The first Mystère X prototype was powered by the Atar 101D with 29,420 N (6,610 lbf) of thrust, and it flew successfully in June 1953. However, due to the lack of an afterburner at this stage, the machine could only become supersonic in a dive, just like the former Mystère fighters, and it offered in this guise only minimal performance improvements – even though the handling near Mach 1 was already noticeably better. The initial flight test program was successful, though, and the Armée de l’Air immediately placed an order for 100 Mystère X aircraft, intended to improve the Armée de l’Air’s interception capabilities as soon as possible. Serial production started instantaneously, even while the flight tests were still ongoing, and the production machines were powered by the newly developed Atar 101F, which had just been cleared for production and operation on the Mystère X prototype. The Atar 101F was basically a D model with an afterburner added to it, to produce a temporary thrust of 37,300 N (8,400 lbf) and ensure the desired top speed in level flight of more than Mach 1. As a result, the Mystère X’s tail section had to be modified to accommodate the new engine’s longer tailpipe, which did not feature an adjustable nozzle yet – it was simply extended beyond the fin’s trailing edge, and even then the longer jet pipe protruded from the hull. However, this modification was successful and incorporated into the serial aircraft. With the Atar 101F, the serial production Mystère X’s performance was appreciably improved: beyond supersonic top speed, initial rate of climb was almost doubled in comparison with the Mystère IV, but the thirsty afterburner engine almost nullified any gain in range from the new type’s higher internal fuel capacity. Drop tanks had to be carried almost all the time.
The quick (if not hastened) order for the Mystère X also served as an insurance policy in the event of the AMD effort failing to produce an even more capable supersonic aircraft with the Mystère XX, a project that had been under development as a private venture in parallel, but with a time lag of about two years and benefitting from the research that had been done for the AMD 461. However, both designs turned out to be successful and both were adopted for service. They became known to the public as the Mystère S (for ‘supersonique’) and the Super Mystère, respectively. The first Super Mystère prototype, powered by a Rolls-Royce Avon RA.7R, took to the air on 2 March 1955, and the promising aircraft already broke the sound barrier in level flight the following day. The Super Mystère turned out to be the more capable and modern aircraft thanks to its new, more powerful Atar 109G-2 engine.
The more capable Super Mystère was immediately favored and, as a consequence, the running Mystère S order was cancelled in May 1955 and its initial production run limited to a mere 54 airframes - the number that had been completed until that point. The Super Mystère became the Armée de l’Air’s standard fighter for the late Fifties and production was quickly switched to the new type, 180 specimen were eventually built. Since a mix of types in the operational fighter squadrons was not economical, the Armée de l’Air decided to separate them and find a different role for the young but relatively small Mystère S fleet. Since the aircraft had a rugged airframe and had shown very good handling characteristics at medium to low altitude, and because the Armée de l’Air was lacking a fast, tactical and indigenous reconnaissance aircraft at that time (the standard type was the RF-84F), the Armée de l’Air decided in 1956 to convert the Mystère S fighters accordingly.
This modification was a relatively easy task: The retractable missile pannier (which was hardly ever used) was removed and its well behind the cockpit offered sufficient internal space for optical reconnaissance equipment in a conditioned compartment. This comprised four OMERA cameras (less than the RF-84F’s six cameras), covered by a ventral canoe fairing. One camera was facing forward, two were set on mounts that allowed vertical photography or camera orientation to either port or starboard, and the fourth camera had a panoramic field of view. After these modifications, the machines were re-designated Mystère SR to reflect their new role and capabilities.
Initially, the converted machines retained the twin DEFA cannon armament and full external stores capability. Typical load in the new photo-recce role was the standard pair of drop tanks, plus optional flares for night photography. In this guise the Mystère SR fleet was distributed among two reconnaissance units, ER 2/33 “Savoie” and ER 3/33 “Moselle” in Eastern France, close to the German border, starting service in April 1957.
Later in their career, the Mystère SR’s guns and also the ranging radar equipment (even though the empty small radome was retained) were often removed. This was initially a weight-saving measure for better performance, but due to their short legs many Mystère SRs had extra fuel tanks added to the former gun and ammunition bays. In some cases the space was used to house additional mission equipment, the aircrafts’ designation did not change, though. The integration of the new Matra R.550 Magic AAM was considered briefly in 1970, but not deemed relevant for the Mystère SR’s mission profile. However, eight late-production Mystère SRs received a new, bigger panoramic OMERA camera, which necessitated a larger ventral fairing and some other internal changes. These machines were re-designated Mystère SRP (‘panoramique’). Another early Mystère SR was used for the development of indigenous infra-red linescan and side looking airborne radar systems, which were both later incorporated in an under-fuselage pod for the Mirage IIIR.
Having become quickly obsolete through the introduction of 3rd generation jet fighters in the early Sixties – namely the Mirage III – the Mystère SR’s active career only lasted a mere 10 years, and the Mirage III’s fighter variants quickly replaced the Super Mystère, too. Due to its many limitations, the Mystère SR was soon replaced by the Mirage IIIR reconnaissance version, by 1974 all aircraft had been retired. Another reason for this early operational end were durability problems with the composite elements on the aircraft’s wings – there had been no long-term experience with the new material, but the elements tended to become brittle and collapse under stress or upon bird strikes. AMD conceived a plan to replace the affected panels with light metal sheets, but this update, which would have prolonged service life for 10 more years, was not carried out. After spending 5 years in mothballed storage, all surviving Mystère SR airframes were scrapped between 1980 and 1981.
General characteristics:
Crew: 1
Length: 42 ft 3 in (12.88 m) overall
42 ft 3 in (12.88 m) w/o pitots
Wingspan: 32 ft 4 in (9.86 m)
Height: 3.75 m (12 ft 4 in)
Wing area: 345.5 sq ft (32.2 m²)
Empty weight: 13,435 lb (6,094 kg)
Gross weight: 21,673 lb (9,831 kg)
Fuel capacity: 3,540 l (778 imp gal; 934 US gal) internally
plus 2x 625 l (72 imp gal; 165 US gal) drop tanks
Powerplant:
1× Atar 101F turbojet, rated at 29.42 kN (6,610 lbf) dry thrust
and with 37.3 kN (8,400 lbf) with afterburner
Performance:
Maximum speed: 1,110 km/h (600 kn, 690 mph) at sea level
1,180 km/h (637 kn 732 mph,) at 11,000 m (36,089 ft)
Combat range: 915 km (494 nmi, 570 mi) with internal fuel only
Maximum range: 1,175 km (730 mi, 634 nmi)
Service ceiling: 45,800 ft (14,000 m)
Rate of climb: 14,660 ft/min (74.5 m/s)
Time to altitude: 40,000 ft (12,000 m) in 4 minutes 41 seconds
Armament:
2x 30mm (1.18 in) DEFA 552 cannon with 150 rounds per gun (later frequently deleted)
Four underwing hardpoints for 1.500 kg (3.300 lb) of ordnance,
including a pair of 625 liter drop tanks, flares and various unguided missiles and iron bombs
The kit and its assembly:
A project I had on my idea list for a long time – there were so many AMD jet fighter designs (both that entered service but also many paper projects and prototypes) during the Fifties and Sixties that I wondered if I could smuggle a what-if type somewhere into the lineage. A potential basis appeared when I recognized that the British Supermarine Swift had a fuselage shape quite similar to the contemporary French fighters, and from this impression the idea was born to “Frenchize” a Swift.
This called for a kitbash, and I used a Matchbox Mystère IV (Revell re-boxing) for the French donor elements that would be grafted onto an Xtrakit FR.5 model, which looks good in the box but has serious fit issues, e.g. between the rear fuselage halves or when the wings have to be mated with the completed fuselage.
The transplantations from the rather primitive/blunt Matchbox Mystère included the whole cockpit section except for the interior, which was taken from the in this respect much better Swift, the glazing, the spine and the whole tail with fin and stabilizers. The Swift provided most of the fuselage, the wings and the landing gear, even though I used the Mystère’s main wheels because of their characteristic hub caps/brake arrangement.
Mating the fuselage sections from the two models became a major stunt, though, because the diameters and shapes were rather different. Three-dimensional gaps and steps behihd the cockpit had to be bridged, initially with 2C putty for the rough overall shape and then with NC putty for a smooth finish. A gap in the spine in front of the fin had to be improvised/filled, too, and the Mystère’s fin had to be tailored to the different Swift rear fuselage shape, too.
The result looks a little odd, though, the Swift’s original air intake ducts now look from certain angles like hamster cheeks – but after all, the ducts have to pass the central cockpit section on both sides somehow, so that the arrangement makes nonetheless sense. And the small dorsal spine taken over from the Mystère changes the Swift’s profile considerably, as well as the shorter Dassault-style canopy.
The small ranging radar radome is just a piece of sprue from the Mystère kit, blended into the rest of the fuselage with putty. The interior of the air intake was heavily modified – the original splitter, positioned directly inside of the intake, was deleted and the walls trimmed down for a much thinner/sharper lip. Inside of the intake a bulkhead was added as a sight blocker, and a new splitter was mounted to the new bulkhead in a much deeper position. The gun camera fairing is a piece of styrene profile, the new twin pitots (reminiscent of the SM2B’s arrangement) were made from heated sprue material.
The camera fairing is the lower half from a P-47 drop tank, left over from a Hobby Boss kit, IIRC, and in order to fit the Swift’s cockpit tub into the Mystère’s fuselage the rear bulkhead had to be re-created with the help of paper tissue drenched with white glue.
The drop tanks come from a KP MiG-19, which had the benefit of integral, thin pylons at a suitable position for the Mystère SR. For a different look I just canted their fins downwards.
Painting and markings:
For a subtle impression I settled for an authentic livery: the French rendition of the USAF SEA scheme for the F-100 with local CELOMER tones, which was not only applied to the Armée de l’Air’s F-100s (these were originally delivered in NMF and camouflaged later in the Sixties), but also to the Super Mystères - the SM2Bs actually carried a quite faithful adaptation of the USAF’s F-100 pattern! However, the indigenous CELOMER paints differed from the original U.S. Federal Standard tones (FS 30219, 34102, 34079 and 36622, respectively), esp. the reddish light tan was more of an earth tone, and the dark green had a more bluish hue.
This offered some freedom – even more so because real life pictures of French reference aircraft show a wide range of shades of these basic tones and frequent serious weathering. Instead of the U.S. tan I went for RAF Dark Earth (Humbrol 29), the dark Forest Green was replaced with Humbrol 75 (Bronze Green). The light green became a 2:1 mix of Humbrol 117 (the original FS 34102) with Humbrol 78 (RAF Cockpit Green), for more contrast and less yellow in the tone. The undersides were painted with Humbrol 166 (RAF Light Aircraft Grey).
After a black ink wash I gave the model a thorough panel post-shading and recreated some lost panel lines with the help of silver paint, too. I also added some paint patches and touch-ups, for a rather worn look of the aircraft.
The black areas around the gun muzzles were created with the help of decal material, generic black decal sheet material was also used to create the camera windows. Grey (Revell 75) dielectric panels were added to the fin tip and behind the cockpit. The cockpit interior became very dark grey (Revell 09, Anthracite, with some dry-painted medium grey on top), while the landing gear and the respective wells were left in aluminum (Humbrol 56).
The decals are a mix from various sources. The ER 2/33 markings came from a Heller Mirage III sheet, which offers an optional IIIR from 1984. I also settled for relatively small roundels (from a Mirage F.1C) – a trend which started in the Armée de l’Air in the early Seventies and also comprised the deletion of the fin flash. Contemporary real world SM2Bs with the French SEA cammo frequently carried a similar type of subdued markings instead of earlier, bigger roundels found on the machines in NMF finish or on the aircraft from EC 1/12 "Cambresis" with their unique and different camouflage in two shades of green and a rather sandy tan, almost like a desert paint scheme. The white tactical code “33-PS” was improvised with single 4mm letters from TL Modellbau. The stencils were puzzled together from various Mirage III/V/F.1C sheets and also from an IAI Kfir.
The kit received some additional dry-painting with silver to simulate more wear, and was finally sealed with a coat of matt acrylic varnish.
Another “missing link” build, but I think that my Mystère S fits stylistically well into the (non-existent, though) gap between the Mystère IV and the Super Mystère, sporting vintage details like the round air intake but coupled with highly swept wings and the Swift’s elegant lines. The “traditional” French paint scheme adds to the realism - and, when put in the right background/landscape context, turns out to be very effective. Not a spectacular model, despite serious body work around the cockpit, but a convincing result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Bell XP-68A owed its existence to the manufacturer’s rather disappointing outcome of its first jet fighter design, the XP-59A Airacomet. The Airacomet was a twin jet-engined fighter aircraft, designed and built during World War II after Major General Henry H. "Hap" Arnold became aware of the United Kingdom's jet program when he attended a demonstration of the Gloster E.28/39 in April 1941. He requested, and was given, the plans for the aircraft's powerplant, the Power Jets W.1, which he took back to the U.S. He also arranged for an example of the engine, the Whittle W.1X turbojet, to be flown to the U.S., along with drawings for the more powerful W.2B/23 engine and a small team of Power Jets engineers. On 4 September 1941, he offered the U.S. company General Electric a contract to produce an American version of the engine, which subsequently became the General Electric I-A. On the following day, he approached Lawrence Dale Bell, head of Bell Aircraft Corporation, to build a fighter to utilize it. As a disinformation tactic, the USAAF gave the project the designation "P-59A", to suggest it was a development of the unrelated, canceled Bell XP-59 fighter project. The P-59A was the first design fighter to have its turbojet engine and air inlet nacelles integrated within the main fuselage. The jet aircraft’s design was finalized on 9 January 1942 and the first prototype flew in October of the same year.
The following 13 service test YP-59As had a more powerful engine than their predecessor, the General Electric J31, but the improvement in performance was negligible, with top speed increased by only 5 mph and a slight reduction in the time they could be used before an overhaul was needed. One of these aircraft, the third YP-59A, was supplied to the Royal Air Force, in exchange for the first production Gloster Meteor I for evaluation and flight-offs with domestic alternatives.
British pilots found that the YP-59A compared very unfavorably with the jets that they were already flying. The United States Army Air Forces were not impressed by its performance either and cancelled the contract when fewer than half of the originally ordered aircraft had been produced. No P-59s entered combat, but the type paved the way for the next design generation of U.S. turbojet-powered aircraft and helped to develop appropriate maintenance structures and procedures.
In the meantime, a new, more powerful jet engine had been developed in Great Britain, the Halford H-1, which became later better known as the De Havilland Goblin. It was another centrifugal compressor design, but it produced almost twice as much thrust as the XP-59A’s J31 engines. Impressed by the British Gloster Meteor during the USAAF tests at Muroc Dry Lake - performance-wise as well as by the aircraft’s simplicity and ruggedness - Bell reacted promptly and proposed an alternative fighter with wing-mounted engine nacelles, since the XP-59A’s layout had proven to be aerodynamically sub-optimal and unsuited for the installation of H-1 engines. In order to save development time and because the aircraft was rather regarded as a proof-of-concept demonstrator instead of a true fighter prototype, the new aircraft was structurally based on Bell’s current piston-engine P-63 “Kingcobra”. The proposal was accepted and, in order to maintain secrecy, the new jet aircraft inherited once more a designation of a recently cancelled project, this time from the Vultee XP-68 “Tornado” fighter. Similar to the Airacomet two years before, just a simple “A” suffix was added.
Bell’s development contract covered only three XP-68A aircraft. The H-1 units were directly imported from Great Britain in secrecy, suspended in the bomb bays of B-24 Liberator bombers. A pair of these engines was mounted in mid-wing nacelles, very similar to the Gloster Meteor’s arrangement. The tailplane was given a 5° dihedral to move it out of the engine exhaust. In order to bear the new engines and their power, the wing main spars were strengthened and the main landing gear wells were moved towards the aircraft’s centerline, effectively narrowing track width. The landing gear wells now occupied the space of the former radiator ducts for the P-63’s omitted Allison V-1710 liquid-cooled V12 engine. Its former compartment behind the cockpit was used for a new fuel tank and test equipment. Having lost the propeller and its long drive shaft, the nose section was also redesigned: the front fuselage became deeper and the additional space there was used for another fuel tank in front of the cockpit and a bigger weapon bay. Different armament arrangements were envisioned, one of each was to be tested on the three prototypes: one machine would be armed with six 0.5” machine guns, another with four 20mm Hispano M2 cannon, and the third with two 37mm M10 cannon and two 0.5” machine guns. Provisions for a ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb were made, but this was never fitted on any of the prototypes. Additional hardpoints under the outer wings for smaller bombs or unguided missiles followed the same fate.
The three XP-68As were built at Bell’s Atlanta plant in the course of early 1944 and semi-officially christened “Airagator”. After their clandestine transfer to Muroc Dry Lake for flight tests and evaluations, the machines were quickly nicknamed “Barrelcobra” by the test staff – not only because of the characteristic shape of the engine nacelles, but also due to the sheer weight of the machines and their resulting sluggish handling on the ground and in the air. “Cadillac” was another nickname, due to the very soft acceleration through the new jet engines and the lack of vibrations that were typical for piston-engine- and propeller-driven aircraft.
Due to the structural reinforcements and modifications, the XP-68A had become a heavy aircraft with an empty weight of 4 tons and a MTOW of almost 8 tons – the same as the big P-47 Thunderbolt piston fighter, while the P-63 had an MTOW of only 10,700 lb (4,900 kg). The result was, among other flaws, a very long take-off distance, especially in the hot desert climate of the Mojave Desert (which precluded any external ordnance) and an inherent unwillingness to change direction, its turning radius was immense. More than once the brakes overheated during landing, so that extra water cooling for the main landing gear was retrofitted.
Once in the air, the aircraft proved to be quite fast – as long as it was flying in a straight line, though. Only the roll characteristics were acceptable, but flying the XP-68A remained hazardous, esp. after the loss of one of the H-1s engines: This resulted in heavily asymmetrical propulsion, making the XP-68A hard to control at all and prone to spin in level flight.
After trials and direct comparison, the XP-68A turned out not to be as fast and, even worse, much less agile than the Meteor Mk III (the RAF’s then current, operational fighter version), which even had weaker Derwent engines. The operational range was insufficient, too, esp. in regard of the planned Pacific theatre of operations, and the high overall weight precluded any considerable external load like drop tanks.
However, compared with the XP-59A, the XP-68A was a considerable step forward, but it had become quickly clear that the XP-68A and its outfit-a-propeller-design-with jet-engines approach did not bear the potential for any service fighter development: it was already outdated when the prototypes were starting their test program. No further XP-68A was ordered or built, and the three prototypes fulfilled their test and evaluation program until May 1945. During these tests, the first prototype was lost on the ground due to an engine fire. After the program’s completion, the two remaining machines were handed over to the US Navy and used for research at the NATC Patuxent River Test Centre, where they were operated until 1949 and finally scrapped.
General characteristics.
Crew: 1
Length: 33 ft 9 in (10.36 m)
Wingspan: 38 ft 4 in (11.7 m)
Height: 13 ft (3.96 m)
Wing area: 248 sq ft (23 m²)
Empty weight: 8,799 lb (3,995 kg)
Loaded weight: 15,138 lb (6,873 kg)
Max. take-off weight: 17,246 lb (7,830 kg)
Powerplant:
2× Halford H-1 (De Havilland Goblin) turbojets, rated at 3,500 lbf (15.6 kN) each
Performance:
Maximum speed: 559 mph (900 km/h)
Range: 500 mi (444 nmi, 805 km)
Service ceiling: 37,565 ft (11,450 m)
Rate of climb: 3.930 ft/min (20 m/s)
Wing loading: 44.9 lb/ft² (218.97 kg/m²)
Thrust/weight: 0.45
Time to altitude: 5.0 min to 30,000 ft (9,145 m)
Armament:
4× Hispano M2 20 mm cannon with 150 rounds
One ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb
6× 60 lb (30 kg) rockets or 2× 500 lb (227 kg) bombs under the outer wings
The kit and its assembly:
This whiffy Kingcobra conversion was spawned by a post by fellow user nighthunter in January 2019 at whatifmodelers.com about a potential jet-powered variant. In found the idea charming, since the XP-59 had turned out to be a dud and the Gloster Meteor had been tested by the USAAF. Why not combine both into a fictional, late WWII Bell prototype?
The basic idea was simple: take a P-63 and add a Meteor’s engine nacelles, while keeping the Kingcobra’s original proportions. This sounds pretty easy but was more challenging than the first look at the outcome might suggest.
The donor kits are a vintage Airfix 1:72 Gloster Meteor Mk.III, since it has the proper, small nacelles, and an Eastern Express P-63 Kingcobra. The latter looked promising, since this kit comes with very good surface and cockpit details (even with a clear dashboard) as well as parts for several P-63 variants, including the A, C and even the exotic “pinball” manned target version. However, anything comes at a price, and the kit’s low price point is compensated by soft plastic (which turned out to be hard to sand), some flash and mediocre fit of any of the major components like fuselage halves, the wings or the clear parts. It feels a lot like a typical short-run kit. Nevertheless, I feel inclined to build another one in a more conventional fashion some day.
Work started with the H-1 nacelles, which had to be cut out from the Meteor wings. Since they come OOB only with a well-visible vertical plate and a main wing spar dummy in the air intake, I added some fine mesh to the plate – normally, you can see directly onto the engine behind the wing spar. Another issue was the fact that the Meteor’s wings are much thicker and deeper than the P-63s, so that lots of PSR work was necessary.
Simply cutting the P-63 OOB wings up and inserting the Meteor nacelles was also not possible: the P-63 has a very wide main landing gear, due to the ventral radiators and oil coolers, which were originally buried in the wing roots and under the piston engine. The only solution: move the complete landing gear (including the wells) inward, so that the nacelles could be placed as close as possible to the fuselage in a mid-span position. Furthermore, the - now useless - radiator openings had to disappear, resulting in a major redesign of the wing root sections. All of this became a major surgery task, followed by similarly messy work on the outer wings during the integration of the Meteor nacelles. LOTS of PSR, even though the outcome looks surprisingly plausible and balanced.
Work on the fuselage started in parallel. It was built mainly OOB, using the optional ventral fin for a P-63C. The exhaust stubs as well as the dorsal carburetor intake had to disappear (the latter made easy thanks to suitable optional parts for the manned target version). Since the P-63 had a conventional low stabilizer arrangement (unlike the Meteor with its cruciform tail), I gave them a slight dihedral to move them out of the engine efflux, a trick Sukhoi engineers did on the Su-11 prototype with afterburner engines in 1947, too.
Furthermore, the whole nose ahead of the cockpit was heavily re-designed, because I wanted the “new” aircraft to lose its propeller heritage and the P-63’s round and rather pointed nose. Somewhat inspired by the P-59 and the P-80, I omitted the propeller parts altogether and re-sculpted the nose with 2C putty, creating a deeper shape with a tall, oval diameter, so that the lower fuselage line was horizontally extended forward. In a profile view the aircraft now looks much more massive and P-80esque. The front landing gear was retained, just its side walls were extended downwards with the help of 0.5mm styrene sheet material, so that the original stance could be kept. Lots of lead in the nose ensured that the model would properly stand on its three wheels.
Once the rhinoplasty was done I drilled four holes into the nose and used hollow steel needles as gun barrels, with a look reminiscent of the Douglas A-20G.
Adding the (perfectly) clear parts of the canopy as a final assembly step also turned out to be a major fight against the elements.
Painting and markings:
With an USAAF WWII prototype in mind, there were only two options: either an NMF machine, or a camouflage in Olive Drab and Neutral Grey. I went for the latter and used Tamiya XF-62 for the upper surfaces and Humbrol 156 (Dark Camouflage Grey) underneath. The kit received a light black ink wash and some post shading in order to emphasize panels. A little dry-brushing with silver around the leading edges and the cockpit was done, too.
The cockpit interior became chromate green (I used Humbrol 150, Forest Green) while the landing gear wells were painted with zinc chromate yellow (Humbrol 81). The landing gear itself was painted in aluminum (Humbrol 56).
Markings/decals became minimal, puzzled together from various sources – only some “Stars and Bars” insignia and the serial number.
Somehow this conversion ended up looking a lot like the contemporary Soviet Sukhoi Su-9 and -11 (Samolyet K and LK) jet fighter prototype – unintentionally, though. But I am happy with the outcome – the P-63 ancestry is there, and the Meteor engines are recognizable, too. But everything blends into each other well, the whole affair looks very balanced and believable. This is IMHO furthermore emphasized by the simple paint scheme. A jet-powered Kingcobra? Why not…?
Picked up this tiny little Bandai, so detailed, so cheap! Anyway the parts are fun to play around with. Some interesting ship designs resulted.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.
Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.
The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.
At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.
However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.
In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.
In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.
The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.
Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.
The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.
While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.
In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.
The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.
The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.
The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.
A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.
Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.
When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.
Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits
During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.
And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.
General characteristics:
Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo
Length: 45 ft 7 1/2 in (13,93 m)
Rotor diameter: 20 ft 9 in (6,33 m)
Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)
Total width with rotors: 58 ft 8 1/2 in (17,93 m)
Height: 17 ft (5,18 m) at top of tailfin
Disc area: 4x 297 ft² (27,65 m²)
Wing area: 342.2 ft² (36,72 m²)
Empty weight: 8,500 kg (18,740 lb)
Max. takeoff weight: 12,000 kg (26,500 lb)
Powerplant:
4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each
Performance:
Maximum speed: 275 knots (509 km/h, 316 mph) at sea level
305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)
Cruise speed: 241 kn (277 mph, 446 km/h) at sea level
Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode
Range: 879 nmi (1,011 mi, 1,627 km)
Combat radius: 390 nmi (426 mi, 722 km)
Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks
Service ceiling: 25,000 ft (7,620 m)
Rate of climb: 2,320–4,000 ft/min (11.8 m/s)
Glide ratio: 4.5:1
Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
Power/mass: 0.259 hp/lb (427 W/kg)
Armament:
1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds
7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)
The kit and its assembly:
This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.
The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.
I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.
The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.
In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…
The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.
At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!
However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…
With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.
The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.
Painting and markings:
With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.
The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.
Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).
The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).
The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.
Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.
A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!
Picked up this tiny little Bandai, so detailed, so cheap! Anyway the parts are fun to play around with. Some interesting ship designs resulted.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
In the period immediately after the Second World War the world found itself with hundreds of thousands of surplus aircraft and just as many surplus aviators. Most aircraft would meet the salvage blade and the smelter’s fiery furnace. Most pilots would return to civilian life, the bulk of them never to fly again.
With the plethora of military aircraft languishing in desert lots awaiting a certain fate, some of those disenfranchised aviators and aircraft designers would look to new growing markets for salvation. One of these emerging markets was the new-found requirement for fast and capable business transport aircraft for executives looking to link business interests across the vast distances of the nation. With few purpose-built business aircraft available for executives, medium bombers became the drug of choice for high flying big shots—fast, powerful and, with the right interior appointments, a visual statement of their success and power.
In early variants like the Executive, On Mark simply removed military equipment and replaced them with fairings and civil avionics, sealed the bomb bay doors, soundproofed the cabin, and added additional cabin windows. Later models had special wing spars designed to give more interior room, pressurization and equipment from bigger surplus aircraft such as DC-6 brakes and flat glass cockpit windows. It was an elegant mashing together of equipment, but it was not a true business aircraft.
In the Sixties, Jet Craft Ltd. of Las Vegas, Nevada, went for a different interpretation of the same topic: The company had purchased a number of former Royal Australian Air Force Vampire trainers and RCAF single-seaters, which were to be converted to a new design for a business aircraft called 'Mystery Jet', offering 4-8-seats.
Jet Craft worked with stellar British conversion experts Aviation Traders to do the structural design work. Aviation Traders Limited (ATL) was a war-surplus aircraft and spares trader formed in 1947. In 1949, it began maintaining aircraft used by some of Britain’s contemporary independent airlines on the Berlin Airlift. In the early 1950s, it branched out into aircraft conversions and manufacturing.
Aviation Traders worked on the drawings and the structural mock-ups. A full-scale mock-up of the Mystery Jet languished at Southend airport for a decade, trying to lure owners and operators into buying it. And this actually happened: about twenty former Vampire airframes were converted into Mystery Jet business aircraft, tailored to the customers' needs and desires.
The Mystery Jet was just what it looked like: a former De Havilland Vampire with a new, roomy nose section grafted onto it. The cabin was pressurized, and was available in two different lengths (130 and 160 inches long, with two or three rows of seats and reflected in the aircraft's title) and several window and door options - the most exotic option being the "Landaulet" cabin which featured a panoramic roof/window installation over the rear pair of seats (or, alternatively, a two-seat bench).
The original Goblin engine was retained, CG was retained due to the fact that the new cabin was, despite being considerably longer than the Vampire's nose, the biggest version being more than 8 feet longer. The new front section was much lighter, though, e. g. through the loss of the heavy cannons and their armament, as well as some more military avionics. The loss of fuel capacity through the enlarged cabin was compensated through fixed wing tip tanks, so that range was on par with the former military jet, just top speed and ceiling were slightly inferior.
Anyway, prices were steep and from the United States more modern and economical offerings ruled the market. Maintaining a former military jet was also a costly business, so, consequently, after a slight buzz (more of a hum, actually) in the early Seventies, the Mystery Jet and Jet Craft of Las Vegas, also fuelled by some dubious business practices by the company's owner, disappeared. Even further developments of the original concept, e .g. with a wide body for up to 14 passengers and two engines, would not save the Mystery Jet from failure.
General characteristics:
Crew: 1 pilot plus 5-7 passengers
Length (Mystery Jet 160): 38 ft 5 in (11.73 m)
Wingspan incl. tip tanks: 39 ft 7 1/2 in (12.09 m)
Height: 8 ft 10 in (2.69 m)
Wing area: 262 ft² (24.34 m²)
Empty weight: 7,283 lb (3,304 kg)
Max. take-off weight: 12,390 lb (5,620 kg)
Powerplant:
1× de Havilland Goblin 3 centrifugal turbojet, rated at 3,350 lbf (14.90 kN)
Performance:
Maximum speed: 516 mph (832 km/h)
Cruising speed: 400 mph (644 km/h)
Range: 1,220 mi (1,960 km)
Service ceiling: 37,700 ft (11,500 m)
Armament:
None
The kit and its assembly:
The first finished work in 2017 is a different kind of whif, one of the few civilian models in my collection. This conversion looks sick, but ,as weird as it may seem, the Business-Jet-From-Vintage-Vampires idea was real. For more information, and the source from where some of the backgound story was gathered, please check:
www.vintagewings.ca/VintageNews/Stories/tabid/116/article...
Anyway, my build is just a personal interpretation of the original concept, not a true model of the Mystery Jet. In fact, this was limited through the donor parts for this kitbash.
The rear end was the smaller problem: Airfix offers a very good Vampire T.11 trainer with excellent detail and fit - the passenger cabin was the bigger challenge. Finding "something" that would fit in shape and especialsl size was not easy - my first choice was a nose section from a vintage 1:100 Antonow An-24 from VEB Plasticart (still much too wide, though), and the best solution came as an accidental find in a local model kit shop where I found a heavily discounted MPM Focke Wulf Fw 189 B-0 trainer.
The reason: the kit was complete, but the bag holding the sprues must have been heated immensely during the packaging process: the main sprues were horrible warped - except for some single parts including the canopies and the sprue with the cabin! Height wind width were perfect, only the boxy shape caused some headaches. But I guess I would not find anything better...
That said, the transplantation mess started. I never built any of the two donor kits before, so I carefully tried to find the best place where to cut the Vampire's nose - I ended up with a staggered solution right in front of the wing root air intakes.
The Fw 189's cabin was bit more tricky, because I had to get rid of the original wing roots and wanted to use as much space as possible, up to the rear bulkhead and together with the rear cabin window. The idea was to blend the Fw 189's roof line into the Vampire's engine section, while keeping the original air intake ducts, so that the overall arrangement would look plausible.
The result became a pretty long nose section - and at that time the tail booms were not fited yet, so I was not certain concerning overall proportions. The cabin's underside had to be improvised, and blending the boxy front end with a flat underside into the tubby, round Vampire fuselage caused some headaches. I also had to re-create the lower flank section with styrene sheet, because I had originally hoped that I could "push" the new cabin between the wing roots - but that space was occupied by the Goblin's inlet ducts.
Inside of the cabin, the original floor, bulkheads and dashboard were used, plus five bucket seats that come with the MPM kit. In order to hide the body work from the inside, side panels from 0.5mm styrene sheet were added in the cabin - with the benefit of additional stability, but also costing some space... Since the machine was built with closed cabin, a pilot was added - actually a bash of a WWII Matchbox pilot and a German officer from an ESCI tank kit. Looks pretty good and "professional". ;-)
Once the cabin was in place, lots of PSR followed and the tail booms could be fitted. To my relief, the longer nose did not look too unbalanced (and actually, design sketches for the original Mystery Jet suggest just this layout!) - but I decided to add wing tip tanks which would beef up wingspan and shift the visual mass slightly forward. They come from an 1:100 Tamiya Il-28, or better the "R" recce variant.
The only other big change concerned the nose wheel. While the OOB wheel and strut were used, the well is now located in front of the wheel and it would retract forwards, giving the nose a more balanced look - and the cabin arrangement made this change more plausible, too.
Another addition were three small porthole windows in the solid parts of the cabin flanks - one of them ending up in the middle of the cabin door on starboard, where a solid part of the canopy roof lent itself for a good place just behind the pilots' seats.
Painting and markings:
I cannot help it, but the thing looks like a design from a vintage Tintin or Yoko Tsuno comic! This was not planned or expected - and actually the paint scheme evolved step by step. I had no plan or clue what to apply - the real Mystery Jet mock-up in silver with blue trim looked sharp, but somehow I did not want blue. So I started with the interior (out of a necessity, as the fuselage had to be closed before any further work progress at some point) and settled for plushy, British colors: Cream (walls and roof) and Claret-Red (carpet and seats).
I tried to find something for the outside that would complement this choice of colors, and eventually settled on Ivory and White (upper and lower fuselage halves, respectively) with some deep red trim, plus pale grey wing surfaces. I even considered some thin golden trim lines, but I think this would have been too much?
The trim was created with decals tripes from generic sheet material, the black anti-glare panel was painted, though. As a color contrast I painted some of the upper canopy panels in translucent, light blue, and this looks very good.
The wings received a lightb treatment with thinned black ink, in order to emphasize the engravings. No post-shading was done, though, for a rather clean look.
Most markings were puzzled together; the registration G-AZRE actually belonged to a Vickers Vanguard (from the 1:144 Airfix kit), the large letters above and under the wings were created with single 45° letters (USAF style). Most stencils come from a Vampire trainer aftermarket sheet from Xtradecal, from the OOB sheet only the "No step" warnings on the wings were used.
Finally, the kit was sealed with a semi-matt coat of varnish, except for the anti-glare panel, which recived a matt coat. The three small windows received artificial panes made from Clearfix, after their rims had been painted black.
A messy project, and you better do not take a close look. But the overall elegance of this creation surprises me - the real Mystery Jet already looked sleek, and this model, despite a more blunt nose, confirms this impression. The colors work together well, too - and the thing has a dedicated retro feel about it. Tintin might be on board, as well as Elton John, both sharing a cigar on the rear seats... ;)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background
The Hütter Hü 324 was the final development stage of BMW's 'Schnellbomber II' project, which had been designed around two mighty BMW 109-028 turboprops.
These innovative engines had been developed since February 1941, but did not receive fullest attention due to the more promising jet engines. Anyway, it soon became clear that no jet engine with the potential to drive a bomber-sized aircraft - considering both performance and fuel consumption - would be available on short notice. Consequently, the BMW 028 received more attention from the RLM from 1943 on.
Biggest pressure came from the fact that several obsolete types like the He 111 or Do 217 had to be replaced, and the ill-fated and complicated He 177 was another candidate with little future potential, since four-engined variants had been rejected. Additionally, the promising and ambitious Ju 288 had been stillborn, and a wide gap for a tactical medium bomber opned in the Luftwaffe arsenal.
In may 1943, new requirements for a medium bomber were concretised. Main objective was to design a fast, twin-engined bomber, primarily intended for horizontal bombing, which would be able to carry a 3.000 kilograms (6.600 lbs) payload at 800 kilometres per hour in a 1.500km (900 ml) radius. The plane had to be fast and to operate at great heights, limiting the threat of interception.
Since many major design bureaus’ resources were bound, Ulrich W. Hütter, an Austro-German engineer and university professor got involved in the RLM project and BMW's design team which had been working on appropriate designs. In July 1943, Hütter moved to the Research Institute of the Graf Zeppelin works (FGZ) convened in Ruit near Stuttgart, and as head of the engineering department he was also involved in the development of manned missiles, underwater towing systems and the Hü 211 high altitude interceptor/reconnaissance plane.
Under Ulrich W. Hütter and his brother, Wolfgang Hütter, BMW's original and highly innovative (if not over-ambitious) Schnellbomber designs gave way to a more conservative layout: the so-called BMW-Hütter Hü 324.
The plane was conventional in layout, with high, unswept laminar profile wings and a high twin tail. The engines were carried in nacelles slung directly under the wings. The nose wheel retracted rearwards, while the main wheels retracted forwards into the engine nacelles, rotating 90°, and laying flat under the engines. The crew of four (pilot, co-pilot/bombardier, navigator/radar operator and gunner/radio operator) were accommodated in a compact, pressurised "glass house" cockpit section – a popular design and morale element in Luftwaffe bomber and reconnaissance aircraft of that era.
Construction of the first prototype started in February 1945, and while the aircraft cell made good progress towards the hardware stage, the development suffered a serious setback in March when BMW admitted that the 109-028 turboprop engine would not be ready in time. It took until August to arrive, and the prototype did not fly until 6 November 1945.
Initial flight test of the four A-0 pre-production samples of the Hü 324 went surprisingly well. Stability and vibration problems with the aircraft were noted, though. One major problem was that the front glas elements were prone to crack at high speeds, and it took a while to trace the troubole source back to the engines and sort these problems out. Among others, contraprops were fitted to counter the vibration problems, the engines' power output had to be reduced by more than 500 WPS and the tail fins had to be re-designed.
Another innovative feature of this bomber was the “Elbegast” ground-looking navigation radar system, which allowed identification of targets on the ground for night and all-weather bombing. It was placed in a shallow radome behind the front wheel. Performance-wise, the system was comparable to the USAAF’s H2X radar, and similarly compact. Overall, the Hü 324 showed much promise and a convincing performance, was easy to build and maintain, and it was immediately taken to service.
Despite the relatively high speed and agility for a plane of its size, the Hü 324 bore massive defensive armament: the original equipment of the A-1 variant comprised two remotely operated FDL 131Z turrets in dorsal (just behind the cockpit) and ventral (behind the bomb bay) position with 2× 13 mm MG 131 machine guns each, plus an additional, unmanned tail barbette with a single 20mm canon. All these guns were aimed by the gunner through a sighting station at the rear of the cockpit, effectively covering the rear hemisphere of the bomber.
After first operational experience, this defence was beefed up with another remotely-controlled barbette with 2× 13 mm MG 131 machine guns under the cockpit, firing forwards. The reason was similar to the introduction of the chin-mounted gun turret in the B-17G: the plane was rather vulnerable to frontal attacks. In a secondary use, the chin guns could be used for strafing ground targets. This update was at first called /R1, but was later incorporated into series production, under the designation A-2.
Effectively, almost 4.500kg ordnance could be carried in- and externally, normally limited to 3.000kg in the bomb bay in order to keep the wings clean and reduce drag, for a high cruising speed. While simple iron bombs and aerial mines were the Hü 324's main payload, provisions were made to carry guided weapons like against small/heavily fortified targets. Several Rüstsätze (accessory packs) were developed, and the aircraft in service received an "/Rx" suffix to their designation, e. g. the R2 Rüstsatz for Fritz X bomb guidance or the R3 set for rocket-propelled Hs 293 bombs.
Trials were even carried out with a semi-recessed Fieseler Fi 103 missile, better known as the V1 flying bomb, hung under the bomber's belly and in an enlarged bomb bay, under deletion of the ventral barbette.
The Hü 324 bomber proved to be an elusive target for the RAF day and night fighters, especially at height. After initial attacks at low level, where fast fighters like the Hawker Tempest or DH Mosquito night fighters were the biggest threat, tactics were quickly changed. Approaching at great height and speed, bombing was conducted from medium altitudes of 10,000 to 15,000 feet (3,000 to 4,600 m).
The Hü 324 proved to be very successful, striking against a variety of targets, including bridges and radar sites along the British coast line, as well as ships on the North Sea.
From medium altitude, the Hü 324 A-2 proved to be a highly accurate bomber – thanks to its "Elbegast" radar system which also allowed the planes to act as pathfinders for older types or fast bombers with less accurate equipment like the Ar 232, Ju 388 or Me 410. Loss rates were far lower than in the early, low-level days, with the Hü 324 stated by the RLM as having the lowest loss rate in the European Theatre of Operations at less than 0.8 %.
BMW-Hütter Ha 324A-2, general characteristics:
Crew: 4
Length: 18.58 m (60 ft 10 in)
Wingspan: 21.45 m (70 ft 4½ in )
Height: 4.82 m (15 ft 9½ in)
Wing area: 60.80 m² (654.5 ft.²)
Empty weight: 12,890 kg (28,417 lb)
Loaded weight: 18,400 kg (40,565 lb)
Max. take-off weight: 21,200 kg (46,738 lb)
Performance:
Maximum speed: 810 km/h (503 mph) at optimum height
Cruising speed: 750 km/h (460 mph) at 10,000 m (32,800 ft)
Range: 3.500 km (2.180 ml)
Service ceiling: 11.400 m (37.500 ft)
Rate of climb: 34.7 m/s (6,820 ft/min)
Powerplant:
Two BMW 109-028 ‘Mimir’ turboprop engines, limited to 5.500 WPS (4.044 WkW) each plus an additional residual thrust of 650kg (1.433 lb), driving four-bladed contraprops.
Armament:
6× 13mm MG 131 in three FDL 131Z turrets
1× 20mm MG 151/20 in unmanned/remote-controlled tail barbette
Up to 4.500 kg (9.800 lbs) in a large enclosed bomb-bay in the fuselage and/or four underwing hardpoints.
Typically, bomb load was limited to 3.000 kg (6.500 lbs) internally.
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some enhanced panel lines (with a mix of matte varnish and Panzergrau), as well as some dry painting all over the fuselage.
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. Propeller spinners were painted RLM 70 (Schwarzgrün) on the front half, the rear half was painted half black and half white.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and squadron code were puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, "EV" marks the individual plane, the red "E" and the control letter "V" at the end designate a plane from the eleventh squadron of KG 210. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
So, after some more surgical work than expected, the Hü 324 medium bomber is ready to soar!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Lockheed P-80 Shooting Star was the first jet fighter used operationally by the United States Army Air Forces (USAAF) during World War II. Designed and built by Lockheed in 1943 and delivered just 143 days from the start of design, production models were flying, and two pre-production models did see very limited service in Italy just before the end of World War II. The XP-80 had a conventional all-metal airframe, with a slim low wing and tricycle landing gear. Like most early jets designed during World War II—and before the Allies captured German research data that confirmed the speed advantages of swept-wings—the XP-80 had straight wings similar to previous propeller-driven fighters, but they were relatively thin to minimize drag at high speed.
The Shooting Star began to enter service in late 1944 with 12 pre-production YP-80As. Four were sent to Europe for operational testing (demonstration, familiarization, and possible interception roles), two to England and two to the 1st Fighter Group at Lesina Airfield, Italy. Because of delays in delivery of production aircraft, the Shooting Star saw no actual combat during the conflict. The initial production order was for 344 P-80As after USAAF acceptance in February 1945. A total of 83 P-80s had been delivered by the end of July 1945 and 45 assigned to the 412th Fighter Group (later redesignated the 1st Fighter Group) at Muroc Army Air Field. Production continued after the war, although wartime plans for 5,000 were quickly reduced to 2,000 at a little under $100,000 each. A total of 1,714 single-seat F-80A, F-80B, F-80C, and RF-80s were manufactured by the end of production in 1950, of which 927 were F-80Cs (including 129 operational F-80As upgraded to F-80C-11-LO standards). However, the two-seat TF-80C, first flown on 22 March 1948, became the basis for the T-33 trainer, of which 6,557 were produced.
Shooting Stars first saw combat service in the Korean War, and were among the first aircraft to be involved in jet-versus-jet combat. Despite initial claims of success, the speed of the straight-wing F-80s was inferior to the 668 mph (1075 km/h) swept-wing transonic MiG-15. The MiGs incorporated German research showing that swept wings delayed the onset of compressibility problems, and enabled speeds closer to the speed of sound. F-80s were soon replaced in the air superiority role by the North American F-86 Sabre, which had been delayed to also incorporate swept wings into an improved straight-winged naval FJ-1 Fury.
This prompted Lockheed to improve the F-80 to keep the design competitive, and the result became the F-80E, which was almost a completely different aircraft, despite similar outlines. Lockheed attempted to change as little of the original airframe as possible while the F-80E incorporated two major technical innovation of its time. The most obvious change was the introduction of swept wings for higher speed. After the engineers obtained German swept-wing research data, Lockheed gave the F-80E a 25° sweep, with automatically locking leading edge slots, interconnected with the flaps for lateral stability during take-off and landing, and the wings’ profile was totally new, too. The limited sweep was a compromise, because a 35° sweep had originally been intended, but the plan to retain the F-80’s fuselage and wing attachment points would have resulted in massive center of gravity and mechanical problems. However, wind tunnel tests quickly revealed that even this compromise would not be enough to ensure stable flight esp. at low speed, and that the modified aircraft would lack directional stability. The swept-wing aircraft’s design had to be modified further.
A convenient solution came in the form of the F-80’s trainer version fuselage, the T-33, which had been lengthened by slightly more than 3 feet (1 m) for a second seat, instrumentation, and flight controls, under a longer canopy. Thanks to the extended front fuselage, the T-33’s wing attachment points could accept the new 25° wings without much further modifications, and balance was restored to acceptable limits. For the fighter aircraft, the T-33’s second seat was omitted and replaced with an additional fuel cell. The pressurized front cockpit was retained, together with the F-80’s bubble canopy and out fitted with an ejection seat.
The other innovation was the introduction of reheat for the engine. The earlier F-80 fighters were powered by centrifugal compressor turbojets, the F-80C had already incorporated water injection to boost the rather anemic powerplant during the start phase and in combat. The F-80E introduced a modified engine with a very simple afterburner chamber, designated J33-A-39. It was a further advanced variant of the J33-A-33 for the contemporary F-94 interceptor with water-alcohol injection and afterburner. For the F-80E with less gross weight, the water-alcohol injection system was omitted so save weight and simplify the system, and the afterburner was optimized for quicker response. Outwardly, the different engine required a modified, wider tail section, which also slightly extended the F-80’s tail.
The F-80E’s armament was changed, too. Experience from the Korean War had shown that the American aircrafts’ traditional 0.5” machine guns were reliable, but they lacked firepower, esp. against bigger targets like bombers, and even fighter aircraft like the MiG-15 had literally to be drenched with rounds to cause significant damage. On the other side, a few 23 mmm rounds or just a single hit with an explosive 37 mm shell from a MiG could take a bomber down. Therefore, the F-80’s six machine guns in the nose were replaced with four belt-fed 20mm M24 cannon. This was a license-built variant of the gas-operated Hispano-Suiza HS.404 with the addition of electrical cocking, allowing the gun to re-cock over a lightly struck round. It offered a rate of fire of 700-750 rounds/min and a muzzle velocity of 840 m/s (2,800 ft/s).In the F-80E each weapon was provided with 190 rounds.
Despite the swept wings Lockheed retained the wingtip tanks, similar to Lockheed’s recently developed XF-90 penetration fighter prototype. They had a different, more streamlined shape now, to reduce drag and minimize the risk of torsion problems with the outer wing sections and held 225 US gal (187 imp gal; 850 l) each. Even though the F-80E was conceived as a daytime fighter, hardpoints under the wings allowed the carriage of up to 2.000 lb of external ordnance, so that the aircraft could, like the straight-wing F-80s before, carry out attack missions. A reinforced pair of plumbed main hardpoints, just outside of the landing gear wells, allowed to carry another pair of drop tanks for extra range or single bombs of up to 1.000 lb (454 kg) caliber. A smaller, optional pair of pylons was intended to carry pods with nineteen “Mighty Mouse” 2.75 inches (70 mm) unguided folding-fin air-to-air rockets, and further hardpoints under the outer wings allowed eight 5” HVAR unguided air-to-ground rockets to be carried, too. Total external payload (including the wing tip tanks) was 4,800 lb (roughly 2,200 kg) of payload
The first XP-80E prototype flew in December 1953 – too late to take part in the Korean War, but Lockheed kept the aircraft’s development running as the benefits of swept wings were clearly visible. The USAF, however, did not show much interest in the new aircraft since the proven F-86 Sabre was readily available and focus more and more shifted to radar-equipped all-weather interceptors armed with guided missiles. However, military support programs for the newly founded NATO, esp. in Europe, stoked the demand for jet fighters, so that the F-80E was earmarked for export to friendly countries with air forces that had still to develop their capabilities after WWII. One of these was Germany; after World War II, German aviation was severely curtailed, and military aviation was completely forbidden after the Luftwaffe of the Third Reich had been disbanded by August 1946 by the Allied Control Commission. This changed in 1955 when West Germany joined NATO, as the Western Allies believed that Germany was needed to counter the increasing military threat posed by the Soviet Union and its Warsaw Pact allies. On 9 January 1956, a new German Air Force called Luftwaffe was founded as a branch of the new Bundeswehr (Federal Defence Force). The first volunteers of the Luftwaffe arrived at the Nörvenich Air Base in January 1956, and the same year, the Luftwaffe was provided with its first jet aircraft, the US-made Republic F-84 Thunderstreak from surplus stock, complemented by newly built Lockheed F-80E day fighters and T-33 trainers.
A total of 43 F-80Es were delivered to Germany in the course of 1956 and early 1957 via freight ships as disassembled kits, initially allocated to WaSLw 10 (Waffenschule der Luftwaffe = Weapon Training School of the Luftwaffe) at Nörvenich, one of three such units which focused on fighter training. The unit was quickly re-located to Northern Germany to Oldenburg, an airfield formerly under British/RAF governance, where the F-80Es were joined by Canada-built F-86 Sabre Mk. 5s. Flight operations began there in November 1957. Initially supported by flight instructors from the Royal Canadian Air Force from Zweibrücken, the WaSLw 10’s job was to train future pilots for jet aircraft on the respective operational types. F-80Es of this unit were in the following years furthermore frequently deployed to Decimomannu AB on Sardinia (Italy), as part of multi-national NATO training programs.
The F-80Es’ service at Oldenburg with WaSLw 10 did not last long, though. In 1963, basic flight and weapon system training was relocated to the USA, and the so-called Europeanization was shifted to the nearby Jever air base, i. e. the training in the more crowded European airspace and under notoriously less pleasant European weather conditions. The remaining German F-80E fleet was subsequently allocated to the Jagdgeschwader 73 “Steinhoff” at Pferdsfeld Air Base in Rhineland-Palatinate, where the machines were – like the Luftwaffe F-86s – upgraded to carry AIM-9 Sidewinder AAMs, a major improvement of their interceptor capabilities. But just one year later, on October 1, 1964, JG 73 was reorganized and renamed Fighter-Bomber Squadron 42, and the unit converted to the new Fiat G.91 attack aircraft. In parallel, the Luftwaffe settled on the F-86 (with more Sabre Mk. 6s from Canada and new F-86K all-weather interceptors from Italian license production) as standard fighter, with the plan to convert to the supersonic new Lockheed F-104 as standard NATO fighter as soon as the type would become available.
For the Luftwaffe the F-80E had become obsolete, and to reduce the number of operational aircraft types, the remaining German aircraft, a total of 34, were in 1965 passed through to the Türk Hava Kuvvetleri (Turkish air force) as part of international NATO military support, where they remained in service until 1974 and were replaced by third generation F-4E Phantom II fighter jets.
General characteristics:
Crew: 1
Length: 36 ft 9 1/2 in (11.23 m)
Wingspan: 37 ft 6 in (11.44 m) over tip tanks
Height: 13 ft 5 1/4 in (4.10 m)
Wing area: 241.3 sq ft (22,52 m²)
Empty weight: 10,681 lb (4.845 kg)
Max. takeoff weight: 18,464 lb (8.375 kg)
Zero-lift drag coefficient: 0.0134
Frontal area: 32 sq ft (3.0 m²)
Powerplant:
1× Allison J33-A-39 centrifugal compressor turbojet with 4,600 lbf (20 kN) dry thrust
and 27.0 kN (6,070 lbf) thrust with afterburning
Performance:
Maximum speed: 1,060 km/h (660 mph, 570 kn)
Cruise speed: 439 mph (707 km/h, 381 kn)
Range: 825 mi (1,328 km, 717 nmi)
Ferry range: 1,380 mi (2,220 km, 1,200 nmi)
Service ceiling: 50,900 ft (15,500 m)
Rate of climb: 7,980 ft/min (40.5 m/s)
Time to altitude: 20,000 ft (6,100 m) in 4 minutes 50 seconds
Lift-to-drag: 17.7
Wing loading: 51.3 lb/sq ft (250 kg/m²)
Thrust/weight: 0.249 dry
0.328 with afterburner
Armament:
4× 0.79 in (20 mm) M24 cannon (190 rpg)
2x wing tip auxiliary tanks with 225 US gal (187 imp gal; 850 l) each
Underwing hardpoints for a total ordnance load of 4,800 lb (2.200 kg), including
2× 1,000 lb (454 kg) bombs, up to 4× pods with nineteen unguided Mighty Mouse FFARs each,
and/or up to 8× 5” (127 mm) HVAR unguided air-to-ground rockets
The kit and its assembly:
The idea of a swept-wing F-80 had been lingering on my idea list for a while, and I actually tried this stunt before in the form of a heavily modified F-94. The recent “Fifties” group build at whatifmodellers.com and a similar build by fellow forum member mat revived the interest in this topic – and inspired by mat’s creation, based on a T-33 fuselage, I decided to use the opportunity and add my personal interpretation of the idea.
Having suitable donor parts at hand was another decisive factor to start this build: I had a Heller T-33 in store, which had already been (ab)used as a donor bank for other projects, and which could now find a good use. I also had an F-80 canopy left over (from an Airfix kit), and my plan was to use Saab J29 wings (from a Matchbox kit) because of their limited sweep angle that would match the post-WWII era well.
Work started with the fuselage; it required a completely new cockpit interior because these parts had already gone elsewhere. I found a cockpit tub with its dashboard from an Italeri F4U, and with some trimming it could be mounted into the reduced cockpit opening, above the OOB front landing gear well. The T-33’s rear seat was faired of with styrene sheet and later PSRed away. The standard nose cone from the Heller T-33 was used, but I added gun ports for the new/different cannon armament.
For a different look with an afterburner engine I modified the tail section under the stabilizers, which was retained because of its characteristic shape. A generous section from the tail was cut away and replaced with the leftover jet pipe from an Italeri (R)F-84F, slightly longer and wider and decorated with innards from a Matchbox Mystère IV. This change is rather subtle but changes the F-80 profile and appears like a compromise between the F-80 and F-94 arrangements.
The T-33 wings were clipped down to the connection lower fuselage part. This ventral plate with integral main landing gear wells was mounted onto the T-33 hull and then the Saab 29 wings were dry-fitted to check their position along the fuselage and to define the main landing gear wells, which had to be cut into them to match their counterparts from the aircraft’s belly.
Their exact position was eventually fixed when the new swept stabilizers, taken from a Hobby Boss F-86, were mounted to the tail. They match well with the swept wings, and for an odd look I kept their dihedral.
The fin was eventually replaced, too – mat’s build retained the original F-80 fin, but with all other surfaces swept I found that the fin had to reflect this, too. So, I implanted a shortened Italeri (R)F-84F fin onto the original base, blended with some PSR into the rest of the tail.
With all aerodynamic surfaces in place it was time for fine-tuning, and to give the aircraft a simpler look I removed the dog teeth from the late Tunnan's outer wings, even though I retained the small LERXs. The wing tips were cut down a little and tip tanks (probably drop tanks from a Hobby Boss F-5E) added – without them the aircraft looked like a juvenile Saab 32!
The landing gear was mostly taken over from the Heller T-33, I just added small consoles for the main landing gear struts to ensure a proper stance, because the new wings and the respective attachment points were deeper. I also had to scratch some landing gear covers because the T-33 donor kit was missing them. The canopy was PSRed over the new opening and a new ejection seat tailored to fit into the F4U cockpit.
A final addition was a pair of pods with unguided FFARs. AFAIK the Luftwaffe did not use such weapons, but they’d make thematically sense on a Fifties anti-bomber interceptor - and I had a suitable pair left over from a Matchbox Mystère IV kit, complete with small pylons.
Painting and markings:
Since the time frame was defined by the Fifties, early Luftwaffe fighters had to carry a bare metal finish, with relatively few decorations. For the F-80E I gave the model an overall base coat with White Aluminum from a Dupli Color rattle can, a very nice and bright silver tone that comes IMHO close to NMF. Panels were post-shaded with Revell 99 (Aluminum) and 91 (Iron Metallic). An anti-glare panel in front of the windscreen was painted in the Luftwaffe tone RAL 6014, Gelboliv (Revell 42).
For some color highlights I gave the tip tanks bright red (Feuerrot, RAL 3000; Revell 330) outer halves, while the inner halves were painted black to avoid reflections that could distract the pilot (seen on a real Luftwaffe T-33 from the late Fifties). For an even more individual touch I added light blue (Tamiya X-14, Sky Blue) highlights on the nose and the fin, reflecting the squadron’s color code which is also carried within the unit emblem – the Tamiya paint came closest to the respective decal (see below).
The cockpit interior was painted with zinc chromate green primer (I used Humbrol 80, which is brighter than the tone should be, but it adds contrast to the black dials on the dashboard), the landing gear wells were painted with a mix of Humbrol 80 and 81, for a more yellowish hue. The landing gear struts became grey, dry-brushed with silver, while the inside of the ventral air brakes were painted in Feuerrot, too.
Then the model received an overall washing with black ink to emphasize the recessed panel lines, plus additional panel shading with Matt Aluminum Metallizer (Humbrol 27001), plus a light rubbing treatment with grinded graphite that emphasized the (few leftover) raised panel lines and also added a dark metallic shine to the silver base. Some of the lost panel lines were simulated with simple pencil strokes, too.
The decals/markings primarily came from an AirDoc aftermarket sheet for late Fifties Luftwaffe F-84Fs. The tactical code (“BB-xxx” was then assigned to the WaSLw 10 as unit code, but this soon changed to a similar but different format that told about the unit’s task as well as the specific unit and squadron within it; this was replaced once more by a simple xx+yy code that was only connected to a specific aircraft with no unit reference anymore, and this format is still in use today) was puzzled together from single letters/digits from the same decal set. Some additional markings like the red band on the fuselage had to be scratched, but most stencils came from an all-bare-metal Luftwaffe F-84F.
After some more detail painting the model was sealed with semi-gloss acrylic paint, just the anti-glare panel and the di-electric fairings on the nose and the fin tip became matt.
A thorough kitbashing build, but the result looks quite plausible, if not elegant? The slightly swept wings suit the F-80 with its organic fuselage shape well, even though they reveal the designs rather baroque shape. There’s a sense of obsolescence about the F-80E, despite its modern features? The Luftwaffe markings work well on the aircraft, too, and with the red and blue highlights the machine looks more attractive despite its simple NMF livery than expected.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After World War I, the German aircraft industry had several problems. German airlines were forbidden to operate multi engine aircraft and during a period all manufacturing of aircraft in Germany was banned. By 1921, some of the restrictions was lifted, civilian aircraft could be made after approval of an international control commission if they fulfilled certain requirements. To bypass these rules and to be able to make whatever aircraft they wanted several aircraft manufacturers moved abroad. In 1921, Carl Bücker handled the purchase of a reconnaissance aircraft from Caspar-Werke in Travemünde. Because they expected problems due to the rules in the peace treaty regarding the export of German fighter aircraft, Bücker explored the possibility to smuggle the parts out of Germany and assemble the aircraft in Sweden.
To make the purchase easier, Ernst Heinkel and Bücker started Svenska Aero in Lidingö in 1921. The contract on the aircraft was transferred from Caspar to Svenska Aero. Heinkel and some German assembly workers temporarily moved to Lidingö to assemble the aircraft. During 1922 to 1923, the company moved into a former shipyard in Skärsätra on Lidingö since the company had received additional orders from the navy's air force. The parts for those aircraft were made in Sweden by Svenska Aero but assembled by TDS. In 1928, the navy ordered four J 4 (Heinkel HD 19) as a fighter with pontoons. That delivery came to be the last licens- built aircraft by Svenska Aero. In the mid-1920s, Svenska Aero created their own design department to be able to make their own aircraft models. Sven Blomberg, earlier employed by Heinkel Flugzeugwerke, was hired as head of design. In 1930, he was joined by Anders Johan Andersson from Messerschmitt. Despite that, Svenska Aero designed and made several different models on their own.
One of them was the model SA-16, a direct response to the Swedish Air Force and Navy’s interest in the new dive bomber tactics, which had become popular in Germany since the mid-Thirties and had spawned several specialized aircraft, the Junkers Ju 87 being the best-known type. The Flygvapnet (Swedish Air Force) had already conducted dive bombing trials with Hawker Hart (B 4) biplanes, but only with mixed results. Diving towards the target simplified the bomb's trajectory and allowed the pilot to keep visual contact throughout the bomb run. This allowed attacks on point targets and ships, which were difficult to attack with conventional level bombers, even en masse. While accuracy was increased through bombing runs at almost vertical dive, the aircraft were not suited for this kind of operations – structurally, and through the way the bombs were dropped.
Therefore, Svenska Aero was tasked to develop an indigenous dedicated dive bomber, primarily intended to attack ships, and with a secondary role as reconnaissance aircraft – a mission profile quite similar to American ship-based “SB” aircraft of the time. Having learnt from the tests with the Hawker Harts, the SA-16 was a very robust monoplane, resulting in an almost archaic look. It was a single-engine all-metal cantilever monoplane with a fixed undercarriage and carried a two-person crew. The main construction material was duralumin, and the external coverings were made of duralumin sheeting, bolts and parts that were required to take heavy stress were made of steel. The wings were of so-called “double-wing” construction, which gave the SA-16 considerable advantage on take-off; even at a shallow angle, large lift forces were created through the airfoil, reducing take-off and landing runs. Retractable perforated air brakes were mounted under the wings’ leading edges. The fully closed “greenhouse cabin” offered space for a crew of two in tandem, with the pilot in front and a navigator/radio operator/observer/gunner behind. To provide the rear-facing machine gun with an increased field of fire, the stabilizers were of limited span but deeper to compensate for the loss of surface, what resulted in unusual proportions. As a side benefit, the short stabilizers had, compared with a wider standard layout, increased structural integrity. Power came from an air-cooled Bristol Mercury XII nine-cylinder radial engine with 880 hp (660 kW), built by Nohab in Sweden.
Internal armament consisted of two fixed forward-firing 8 mm (0.315 in) Flygplanskulspruta Ksp m/22F (M1919 Browning AN/M2) machine guns in the wings outside of the propeller disc. A third machine gun of the same type was available in the rear cockpit on a flexible mount as defensive weapon. A total of 700 kg (1,500 lb) of bombs could be carried externally. On the fuselage centerline, a swing arm could hold bombs of up to 500 kg (1.100 lb) caliber and deploy them outside of the propeller arc when released in a, additional racks under the outer wings could hold bombs of up to 250 kg (550 lb) caliber each or clusters of smaller bombs, e. g. four 50 (110 lb) or six 12 kg (26 ½ lb) bombs.
Flight testing of the first SA-16 prototype began on 14 August 1936. The aircraft could take off in 250 m (820 ft) and climb to 1,875 m (6,152 ft) in eight minutes with a 250 kg (550 lb) bomb load, and its cruising speed was 250 km/h (160 mph). This was less than expected, and pilots also complained that navigation and powerplant instruments were cluttered and not easy to read, especially in combat. To withstand strong forces during a dive, heavy plating, along with brackets riveted to the frame and longeron, was added to the fuselage. Despite this, pilots praised the aircraft's handling qualities and strong airframe. These problems were quickly resolved, but subsequent testing and progress still fell short of the designers’ hopes. With some refinements the machine's speed was increased to 274 km/h (170 mph) at ground level and 319 km/h 319 km/h (198 mph, 172 kn) at 3,650 m (11,980 ft), while maintaining its good handling ability.
Since the Swedish Air Force was in dire need for a dive bomber, the SA-16 was accepted into service as the B 9 – even though it was clear that it was only a stopgap solution on the way to a more capable light bomber with dive attack capabilities. This eventually became the Saab 17, which was initiated in 1938 as a request from the Flygvapnet to replace its fleet of dive bombers of American origin, the B 5 (Northrop A-17), the B 6 (Seversky A8V1) and the obsolete Fokker S 6 (C.Ve) sesquiplane, after the deal with Fokker to procure the two-engine twin-boom G.I as a standardized type failed due to the German invasion of the Netherlands. The B 9 dive bomber would subsequently be replaced by the more modern and capable B 17 in the long run, too, which made its first flight on 18 May 1940 and was introduced to frontline units in March 1942. Until then, 93 SA-16s had been produced between 1937 and 1939. When the B 17 became available, the slow B 9 was quickly retired from the attack role. Plans to upgrade the aircraft with a stronger 14 cylinder engine (a Piaggio P.XIbis R.C.40D with 790 kW/1,060 hp) were not carried out, as it was felt that the design lacked further development potential in an offensive role.
Because the airframes were still young and had a lot of service life ahead of them, most SA-16s were from 1941 on relegated to patrol and reconnaissance missions along the Swedish coastlines, observing ship and aircraft traffic in the Baltic Sea and undertaking rescue missions with droppable life rafts. For long-range missions, the forked ventral swing arm was replaced with a fixed plumbed pylon for an external 682 liters (150 Imp. gal.) auxiliary tank that more than doubled the aircraft’s internal fuel capacity of 582 liters, giving it an endurance of around 8 hours. In many cases, the machine guns on these aircraft were removed to save weight. In this configuration the SA-16 was re-designated S 9 (“S” for Spaning) and the machines served in their naval observation and SAR role well into the Fifties, when the last SA-16s were retired.
General characteristics:
Crew: two, pilot and observer
Length: 9,58 m (31 ft 11 in)
Wingspan: 10,67 m (34 ft 11 in)
Height: 3,82 m (12 ft 6 in)
Wing area: 30.2 m² (325 sq ft)
Empty weight: 2,905 kg (6,404 lb)
Gross weight: 4,245 kg (9,359 lb)
Max takeoff weight: 4,853 kg (10,700 lb)
Powerplant:
1× Bristol Mercury XII nine-cylinder radial engine with 880 hp (660 kW),
driving a three-bladed variable pitch metal propeller
u>Performance:
Maximum speed: 319 km/h (198 mph, 172 kn) at 3,650 m (11,980 ft)
274 km/h (170 mph; 148 kn) at sea level
299 km/h (186 mph; 161 kn) at 2,000 m (6,600 ft)
308 km/h (191 mph; 166 kn) at 5,000 m (16,000 ft)
Stall speed: 110 km/h (68 mph, 59 kn)
Range: 1,260 km (780 mi, 680 nmi)
Service ceiling: 7,300 m (24,000 ft)
Time to altitude: 2,000 m (6,600 ft) in 4 minutes 45 seconds
4,000 m (13,000 ft) in 15 minutes 10 seconds
Armament:
2× fixed 8 mm (0.315 in) Flygplanskulspruta Ksp m/22F (M1919 Browning AN/M2) machine guns
in the wings outside of the propeller disc (with 600 RPG), plus
1× 8 mm (0.315 in) Ksp m/22F machine gun on a flexible mount in the rear cockpit with 800 rounds
Ventral and underwing hardpoints for a total external bomb load of 700 kg (1,500 lb)
The kit and its assembly:
This purely fictional Swedish dive bomber was inspired by reading about Flygvapnet‘s pre-WWII trials with dive bombing tactics and the unsuited aircraft fleet for this task. When I found a Hasegawa SOC Seagull floatplane in The Stash™ and looks at the aircraft’s profile, I thought that it could be converted into a two-seat monoplane – what would require massive changes, though.
However, I liked the SOC’s boxy and rustic look, esp. the fuselage, and from this starting point other ingredients/donors were integrated. Work started with the tail. Originally, I wanted to retain the SOCs fin and stabilizer, but eventually found them oversized for a land-based airplane. In the scrap box I found a leftover fin from an Academy P-47, and it turned out to be a very good, smaller alternative, with the benefit that it visually lengthened the rear fuselage. The stabilizers were replaced with leftover parts from a NOVO Supermarine Attacker – an unlikely choice, but their size was good, they blended well into the overall lines of the aircraft, and they helped to stabilize the fin donor. Blending these new parts into to SOC’s hull required massive PSR, though.
The wings were also not an easy choice, and initially I planned the aircraft with a retractable landing gear. I eventually settled on the outer wings (just outside of the gullwing kink) from an MPM Ju 87 B, because of their shape and the archaic “double wings” that would complement the SOC’s rustic fuselage. However, at this point I refrained from the retractable landing gear and instead went for a fixed spatted alternative, left over from an Airfix Hs 123, which would round up the aircraft’s somewhat vintage look. Because the wheels were missing, I inserted two Matchbox MiG-21 wheels (which were left over in the spares bin from two different kits, though). The tail wheel came from an Academy Fw 190.
Cowling and engine inside (thankfully a 9-cylinder radial that could pose as a Mercury) were taken OOB, just the original two-blade propeller was replaced with a more appropriate three-blade alternative, IIRC from a Hobby Boss Grumman F4F. The cockpit was taken OOB, and I also used the two pilot figures from the kit. The rear crew member just had the head re-positioned to look sideways, and had to have the legs chopped off because there’s hardly and space under the desk with the radio set he’s sitting at.
The ventral 500 kg bomb came from a Matchbox Ju 87, the bomb arms are Fw 189 landing gear parts. Additional underwing pylons came from an Intech P-51, outfitted with 50 kg bombs of uncertain origin (they look as if coming from an old Hasegawa kit). The protruding machine gun barrel fairings on the wings were scratched from styrene rod material, with small holes drilled into them.
A real Frankenstein creation, but it does not look bad or implausible!
Painting and markings:
I gave the B 9 a camouflage that was carried by some Flygvapnet aircraft in the late Thirties, primarily by fighters imported from the United States but also some bombers like the B 3 (Ju 86). The IMHO quite attractive scheme consists on the upper surfaces of greenish-yellow zinc chromate primer (Humbrol 81, FS 33481), on top of which a dense net of fine dark green wriggles (supposed to be FS 34079, but I rather used Humbrol 163, RAF Dark Green, because it is more subdued) was manually applied with a thin brush, so that the primer would still shine through, resulting in a mottled camouflage.
On the real aircraft, this was sealed with a protective clear lacquer to which 5% of the dark green had been added, and I copied this procedure on the model, too, using semi-gloss acrylic varnish with a bit of Revell 46 added. The camouflage was wrapped around the wings’ leading edges and the spatted landing gear was painted with the upper camouflage, too.
The undersides were painted with Humbrol 87 (Steel Grey), to come close to the original blue-grey tone, which is supposed to be FS 35190 on this type of camouflage. The tone is quite dark, almost like RAF PRU Blue.
The interior was painted – using a Saab J 21 cockpit as benchmark – in a dark greenish grey (RAL 7009).
The model received the usual light black ink washing and some post-panel shading on the lower surfaces, because this effect would hardly be recognizable on the highly fragmented upper surface.
The markings are reflecting Flygvapnet’s m/37 regulations, from the direct pre-WWII era when the roundels had turned from black on white to yellow on blue but still lacked the yellow edge around the roundel for more contrast. F6 Västgöta flygflottilj was chosen because it was a dive bomber unit in the late Thirties, and the individual aircraft code (consisting of large white two-digit numbers) was added with the fin and the front of the fuselage. “27” would indicate an aircraft of the unit’s 2nd division, which normally had blue as a standardized color code, incorporated through the blue bands on the spats and the small "2nd div." tag on the rudder (from a contemporary F8 Swedish Gladiator).
Roundels and codes came from an SBS Models sheet, even though they belong to various aircraft types. Everything was finally sealed with matt acrylic varnish.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Lockheed P-80 Shooting Star was the first jet fighter used operationally by the United States Army Air Forces (USAAF) during World War II. Designed and built by Lockheed in 1943 and delivered just 143 days from the start of design, production models were flying, and two pre-production models did see very limited service in Italy just before the end of World War II. The XP-80 had a conventional all-metal airframe, with a slim low wing and tricycle landing gear. Like most early jets designed during World War II—and before the Allies captured German research data that confirmed the speed advantages of swept-wings—the XP-80 had straight wings similar to previous propeller-driven fighters, but they were relatively thin to minimize drag at high speed.
The Shooting Star began to enter service in late 1944 with 12 pre-production YP-80As. Four were sent to Europe for operational testing (demonstration, familiarization, and possible interception roles), two to England and two to the 1st Fighter Group at Lesina Airfield, Italy. Because of delays in delivery of production aircraft, the Shooting Star saw no actual combat during the conflict. The initial production order was for 344 P-80As after USAAF acceptance in February 1945. A total of 83 P-80s had been delivered by the end of July 1945 and 45 assigned to the 412th Fighter Group (later redesignated the 1st Fighter Group) at Muroc Army Air Field. Production continued after the war, although wartime plans for 5,000 were quickly reduced to 2,000 at a little under $100,000 each. A total of 1,714 single-seat F-80A, F-80B, F-80C, and RF-80s were manufactured by the end of production in 1950, of which 927 were F-80Cs (including 129 operational F-80As upgraded to F-80C-11-LO standards). However, the two-seat TF-80C, first flown on 22 March 1948, became the basis for the T-33 trainer, of which 6,557 were produced.
Shooting Stars first saw combat service in the Korean War, and were among the first aircraft to be involved in jet-versus-jet combat. Despite initial claims of success, the speed of the straight-wing F-80s was inferior to the 668 mph (1075 km/h) swept-wing transonic MiG-15. The MiGs incorporated German research showing that swept wings delayed the onset of compressibility problems, and enabled speeds closer to the speed of sound. F-80s were soon replaced in the air superiority role by the North American F-86 Sabre, which had been delayed to also incorporate swept wings into an improved straight-winged naval FJ-1 Fury.
This prompted Lockheed to improve the F-80 to keep the design competitive, and the result became the F-80E, which was almost a completely different aircraft, despite similar outlines. Lockheed attempted to change as little of the original airframe as possible while the F-80E incorporated two major technical innovation of its time. The most obvious change was the introduction of swept wings for higher speed. After the engineers obtained German swept-wing research data, Lockheed gave the F-80E a 25° sweep, with automatically locking leading edge slots, interconnected with the flaps for lateral stability during take-off and landing, and the wings’ profile was totally new, too. The limited sweep was a compromise, because a 35° sweep had originally been intended, but the plan to retain the F-80’s fuselage and wing attachment points would have resulted in massive center of gravity and mechanical problems. However, wind tunnel tests quickly revealed that even this compromise would not be enough to ensure stable flight esp. at low speed, and that the modified aircraft would lack directional stability. The swept-wing aircraft’s design had to be modified further.
A convenient solution came in the form of the F-80’s trainer version fuselage, the T-33, which had been lengthened by slightly more than 3 feet (1 m) for a second seat, instrumentation, and flight controls, under a longer canopy. Thanks to the extended front fuselage, the T-33’s wing attachment points could accept the new 25° wings without much further modifications, and balance was restored to acceptable limits. For the fighter aircraft, the T-33’s second seat was omitted and replaced with an additional fuel cell. The pressurized front cockpit was retained, together with the F-80’s bubble canopy and out fitted with an ejection seat.
The other innovation was the introduction of reheat for the engine. The earlier F-80 fighters were powered by centrifugal compressor turbojets, the F-80C had already incorporated water injection to boost the rather anemic powerplant during the start phase and in combat. The F-80E introduced a modified engine with a very simple afterburner chamber, designated J33-A-39. It was a further advanced variant of the J33-A-33 for the contemporary F-94 interceptor with water-alcohol injection and afterburner. For the F-80E with less gross weight, the water-alcohol injection system was omitted so save weight and simplify the system, and the afterburner was optimized for quicker response. Outwardly, the different engine required a modified, wider tail section, which also slightly extended the F-80’s tail.
The F-80E’s armament was changed, too. Experience from the Korean War had shown that the American aircrafts’ traditional 0.5” machine guns were reliable, but they lacked firepower, esp. against bigger targets like bombers, and even fighter aircraft like the MiG-15 had literally to be drenched with rounds to cause significant damage. On the other side, a few 23 mmm rounds or just a single hit with an explosive 37 mm shell from a MiG could take a bomber down. Therefore, the F-80’s six machine guns in the nose were replaced with four belt-fed 20mm M24 cannon. This was a license-built variant of the gas-operated Hispano-Suiza HS.404 with the addition of electrical cocking, allowing the gun to re-cock over a lightly struck round. It offered a rate of fire of 700-750 rounds/min and a muzzle velocity of 840 m/s (2,800 ft/s).In the F-80E each weapon was provided with 190 rounds.
Despite the swept wings Lockheed retained the wingtip tanks, similar to Lockheed’s recently developed XF-90 penetration fighter prototype. They had a different, more streamlined shape now, to reduce drag and minimize the risk of torsion problems with the outer wing sections and held 225 US gal (187 imp gal; 850 l) each. Even though the F-80E was conceived as a daytime fighter, hardpoints under the wings allowed the carriage of up to 2.000 lb of external ordnance, so that the aircraft could, like the straight-wing F-80s before, carry out attack missions. A reinforced pair of plumbed main hardpoints, just outside of the landing gear wells, allowed to carry another pair of drop tanks for extra range or single bombs of up to 1.000 lb (454 kg) caliber. A smaller, optional pair of pylons was intended to carry pods with nineteen “Mighty Mouse” 2.75 inches (70 mm) unguided folding-fin air-to-air rockets, and further hardpoints under the outer wings allowed eight 5” HVAR unguided air-to-ground rockets to be carried, too. Total external payload (including the wing tip tanks) was 4,800 lb (roughly 2,200 kg) of payload
The first XP-80E prototype flew in December 1953 – too late to take part in the Korean War, but Lockheed kept the aircraft’s development running as the benefits of swept wings were clearly visible. The USAF, however, did not show much interest in the new aircraft since the proven F-86 Sabre was readily available and focus more and more shifted to radar-equipped all-weather interceptors armed with guided missiles. However, military support programs for the newly founded NATO, esp. in Europe, stoked the demand for jet fighters, so that the F-80E was earmarked for export to friendly countries with air forces that had still to develop their capabilities after WWII. One of these was Germany; after World War II, German aviation was severely curtailed, and military aviation was completely forbidden after the Luftwaffe of the Third Reich had been disbanded by August 1946 by the Allied Control Commission. This changed in 1955 when West Germany joined NATO, as the Western Allies believed that Germany was needed to counter the increasing military threat posed by the Soviet Union and its Warsaw Pact allies. On 9 January 1956, a new German Air Force called Luftwaffe was founded as a branch of the new Bundeswehr (Federal Defence Force). The first volunteers of the Luftwaffe arrived at the Nörvenich Air Base in January 1956, and the same year, the Luftwaffe was provided with its first jet aircraft, the US-made Republic F-84 Thunderstreak from surplus stock, complemented by newly built Lockheed F-80E day fighters and T-33 trainers.
A total of 43 F-80Es were delivered to Germany in the course of 1956 and early 1957 via freight ships as disassembled kits, initially allocated to WaSLw 10 (Waffenschule der Luftwaffe = Weapon Training School of the Luftwaffe) at Nörvenich, one of three such units which focused on fighter training. The unit was quickly re-located to Northern Germany to Oldenburg, an airfield formerly under British/RAF governance, where the F-80Es were joined by Canada-built F-86 Sabre Mk. 5s. Flight operations began there in November 1957. Initially supported by flight instructors from the Royal Canadian Air Force from Zweibrücken, the WaSLw 10’s job was to train future pilots for jet aircraft on the respective operational types. F-80Es of this unit were in the following years furthermore frequently deployed to Decimomannu AB on Sardinia (Italy), as part of multi-national NATO training programs.
The F-80Es’ service at Oldenburg with WaSLw 10 did not last long, though. In 1963, basic flight and weapon system training was relocated to the USA, and the so-called Europeanization was shifted to the nearby Jever air base, i. e. the training in the more crowded European airspace and under notoriously less pleasant European weather conditions. The remaining German F-80E fleet was subsequently allocated to the Jagdgeschwader 73 “Steinhoff” at Pferdsfeld Air Base in Rhineland-Palatinate, where the machines were – like the Luftwaffe F-86s – upgraded to carry AIM-9 Sidewinder AAMs, a major improvement of their interceptor capabilities. But just one year later, on October 1, 1964, JG 73 was reorganized and renamed Fighter-Bomber Squadron 42, and the unit converted to the new Fiat G.91 attack aircraft. In parallel, the Luftwaffe settled on the F-86 (with more Sabre Mk. 6s from Canada and new F-86K all-weather interceptors from Italian license production) as standard fighter, with the plan to convert to the supersonic new Lockheed F-104 as standard NATO fighter as soon as the type would become available.
For the Luftwaffe the F-80E had become obsolete, and to reduce the number of operational aircraft types, the remaining German aircraft, a total of 34, were in 1965 passed through to the Türk Hava Kuvvetleri (Turkish air force) as part of international NATO military support, where they remained in service until 1974 and were replaced by third generation F-4E Phantom II fighter jets.
General characteristics:
Crew: 1
Length: 36 ft 9 1/2 in (11.23 m)
Wingspan: 37 ft 6 in (11.44 m) over tip tanks
Height: 13 ft 5 1/4 in (4.10 m)
Wing area: 241.3 sq ft (22,52 m²)
Empty weight: 10,681 lb (4.845 kg)
Max. takeoff weight: 18,464 lb (8.375 kg)
Zero-lift drag coefficient: 0.0134
Frontal area: 32 sq ft (3.0 m²)
Powerplant:
1× Allison J33-A-39 centrifugal compressor turbojet with 4,600 lbf (20 kN) dry thrust
and 27.0 kN (6,070 lbf) thrust with afterburning
Performance:
Maximum speed: 1,060 km/h (660 mph, 570 kn)
Cruise speed: 439 mph (707 km/h, 381 kn)
Range: 825 mi (1,328 km, 717 nmi)
Ferry range: 1,380 mi (2,220 km, 1,200 nmi)
Service ceiling: 50,900 ft (15,500 m)
Rate of climb: 7,980 ft/min (40.5 m/s)
Time to altitude: 20,000 ft (6,100 m) in 4 minutes 50 seconds
Lift-to-drag: 17.7
Wing loading: 51.3 lb/sq ft (250 kg/m²)
Thrust/weight: 0.249 dry
0.328 with afterburner
Armament:
4× 0.79 in (20 mm) M24 cannon (190 rpg)
2x wing tip auxiliary tanks with 225 US gal (187 imp gal; 850 l) each
Underwing hardpoints for a total ordnance load of 4,800 lb (2.200 kg), including
2× 1,000 lb (454 kg) bombs, up to 4× pods with nineteen unguided Mighty Mouse FFARs each,
and/or up to 8× 5” (127 mm) HVAR unguided air-to-ground rockets
The kit and its assembly:
The idea of a swept-wing F-80 had been lingering on my idea list for a while, and I actually tried this stunt before in the form of a heavily modified F-94. The recent “Fifties” group build at whatifmodellers.com and a similar build by fellow forum member mat revived the interest in this topic – and inspired by mat’s creation, based on a T-33 fuselage, I decided to use the opportunity and add my personal interpretation of the idea.
Having suitable donor parts at hand was another decisive factor to start this build: I had a Heller T-33 in store, which had already been (ab)used as a donor bank for other projects, and which could now find a good use. I also had an F-80 canopy left over (from an Airfix kit), and my plan was to use Saab J29 wings (from a Matchbox kit) because of their limited sweep angle that would match the post-WWII era well.
Work started with the fuselage; it required a completely new cockpit interior because these parts had already gone elsewhere. I found a cockpit tub with its dashboard from an Italeri F4U, and with some trimming it could be mounted into the reduced cockpit opening, above the OOB front landing gear well. The T-33’s rear seat was faired of with styrene sheet and later PSRed away. The standard nose cone from the Heller T-33 was used, but I added gun ports for the new/different cannon armament.
For a different look with an afterburner engine I modified the tail section under the stabilizers, which was retained because of its characteristic shape. A generous section from the tail was cut away and replaced with the leftover jet pipe from an Italeri (R)F-84F, slightly longer and wider and decorated with innards from a Matchbox Mystère IV. This change is rather subtle but changes the F-80 profile and appears like a compromise between the F-80 and F-94 arrangements.
The T-33 wings were clipped down to the connection lower fuselage part. This ventral plate with integral main landing gear wells was mounted onto the T-33 hull and then the Saab 29 wings were dry-fitted to check their position along the fuselage and to define the main landing gear wells, which had to be cut into them to match their counterparts from the aircraft’s belly.
Their exact position was eventually fixed when the new swept stabilizers, taken from a Hobby Boss F-86, were mounted to the tail. They match well with the swept wings, and for an odd look I kept their dihedral.
The fin was eventually replaced, too – mat’s build retained the original F-80 fin, but with all other surfaces swept I found that the fin had to reflect this, too. So, I implanted a shortened Italeri (R)F-84F fin onto the original base, blended with some PSR into the rest of the tail.
With all aerodynamic surfaces in place it was time for fine-tuning, and to give the aircraft a simpler look I removed the dog teeth from the late Tunnan's outer wings, even though I retained the small LERXs. The wing tips were cut down a little and tip tanks (probably drop tanks from a Hobby Boss F-5E) added – without them the aircraft looked like a juvenile Saab 32!
The landing gear was mostly taken over from the Heller T-33, I just added small consoles for the main landing gear struts to ensure a proper stance, because the new wings and the respective attachment points were deeper. I also had to scratch some landing gear covers because the T-33 donor kit was missing them. The canopy was PSRed over the new opening and a new ejection seat tailored to fit into the F4U cockpit.
A final addition was a pair of pods with unguided FFARs. AFAIK the Luftwaffe did not use such weapons, but they’d make thematically sense on a Fifties anti-bomber interceptor - and I had a suitable pair left over from a Matchbox Mystère IV kit, complete with small pylons.
Painting and markings:
Since the time frame was defined by the Fifties, early Luftwaffe fighters had to carry a bare metal finish, with relatively few decorations. For the F-80E I gave the model an overall base coat with White Aluminum from a Dupli Color rattle can, a very nice and bright silver tone that comes IMHO close to NMF. Panels were post-shaded with Revell 99 (Aluminum) and 91 (Iron Metallic). An anti-glare panel in front of the windscreen was painted in the Luftwaffe tone RAL 6014, Gelboliv (Revell 42).
For some color highlights I gave the tip tanks bright red (Feuerrot, RAL 3000; Revell 330) outer halves, while the inner halves were painted black to avoid reflections that could distract the pilot (seen on a real Luftwaffe T-33 from the late Fifties). For an even more individual touch I added light blue (Tamiya X-14, Sky Blue) highlights on the nose and the fin, reflecting the squadron’s color code which is also carried within the unit emblem – the Tamiya paint came closest to the respective decal (see below).
The cockpit interior was painted with zinc chromate green primer (I used Humbrol 80, which is brighter than the tone should be, but it adds contrast to the black dials on the dashboard), the landing gear wells were painted with a mix of Humbrol 80 and 81, for a more yellowish hue. The landing gear struts became grey, dry-brushed with silver, while the inside of the ventral air brakes were painted in Feuerrot, too.
Then the model received an overall washing with black ink to emphasize the recessed panel lines, plus additional panel shading with Matt Aluminum Metallizer (Humbrol 27001), plus a light rubbing treatment with grinded graphite that emphasized the (few leftover) raised panel lines and also added a dark metallic shine to the silver base. Some of the lost panel lines were simulated with simple pencil strokes, too.
The decals/markings primarily came from an AirDoc aftermarket sheet for late Fifties Luftwaffe F-84Fs. The tactical code (“BB-xxx” was then assigned to the WaSLw 10 as unit code, but this soon changed to a similar but different format that told about the unit’s task as well as the specific unit and squadron within it; this was replaced once more by a simple xx+yy code that was only connected to a specific aircraft with no unit reference anymore, and this format is still in use today) was puzzled together from single letters/digits from the same decal set. Some additional markings like the red band on the fuselage had to be scratched, but most stencils came from an all-bare-metal Luftwaffe F-84F.
After some more detail painting the model was sealed with semi-gloss acrylic paint, just the anti-glare panel and the di-electric fairings on the nose and the fin tip became matt.
A thorough kitbashing build, but the result looks quite plausible, if not elegant? The slightly swept wings suit the F-80 with its organic fuselage shape well, even though they reveal the designs rather baroque shape. There’s a sense of obsolescence about the F-80E, despite its modern features? The Luftwaffe markings work well on the aircraft, too, and with the red and blue highlights the machine looks more attractive despite its simple NMF livery than expected.
I had shaved the bottom of the walls on the inside so I could glue styrene strips. I did this so that I can glue the building to the sidewalks.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The British occupation of the Faroe Islands in World War II, also known as Operation Valentine, was implemented immediately following the German invasion of Denmark and Norway.In April 1940, the United Kingdom occupied the strategically important Faroe Islands to preempt a German invasion.
At the time of the occupation, the Faroe Islands had the status of an amt (county) of Denmark.
On 12 April, two destroyers of the British Royal Navy arrived in Tórshavn harbour, the Faroe capital. Following a meeting with Carl Aage Hilbert (the Danish Prefect of the Islands) and Kristian Djurhuus (President of the Løgting, the Faroese Parliament), an emergency meeting of the Løgting was convened the same afternoon.
Pro-independence members tried to declare the independence of the Faroe Islands from the Kingdom of Denmark but were outvoted. An official announcement was made later, announcing the occupation and ordering a nighttime blackout in Tórshavn and neighboring Argir, the censorship of post and telegraphy and the prohibition of the use of motor vehicles during the night without a permit.
On 13 April, the Royal Navy cruiser HMS Suffolk arrived at Tórshavn. Colonel T B W Sandall (the British military commander) and Frederick Mason (the new British Consul to the Faroe Islands) then met with the Danish Prefect. The Prefect responded with what Sandall took to be a formal protest, although Hilbert maintained that owing to the occupation of Denmark he was unable to formally represent the Danish government. He duly accepted the British terms on the basis that the UK would not seek to interfere with the internal affairs of the islands. A formal protest was made by the Løgting, albeit expressing the wish for friendly relations. 250 Royal Marines were disembarked, later to be replaced by other British troops.
In practice, cordial relations were maintained between the British forces and the Faroese authorities.
On 25 April 1940 the British authorities recognized the Faroese flag — Merkið — as the civil ensign of the Faroe Islands. The traditional Faroese coat of arms was, however, not reintroduced until the formal introduction of home rule on 23 March 1948. As a consequence and sign of respect, Faroese ships were allowed (and actually had) to hoist the Faroese flag and paint FAROES / FØROYAR on the ships' sides, thus allowing the Royal Navy to identify them as "friendly".
This principle was also adopted for other British equipment under Operation Valentine, underlining the defensive nature of the task and the islands’ special status.
In May 1940, the Royal Marines were replaced by soldiers of the Lovat Scouts, a Scottish Regiment, and more military equipment was deployed to the islands, including ships and aircraft. Since it was not before 1943 that an operational airfield on the island of Vágar by the Royal Engineers was established, all aircraft had to be waterborne. The small air force with Faroese markings included three Fairey Seafox reconnaissance aircraft, two Supermarine Walrus flying boats and five Blackburn Bonxie floatplanes (a torpedo bomber based on the Blackburn Skua dive bomber), which were later replaced and augmented by several Fairey Swordfish and Supermarine Spitfire Mk. V on floats.
All these aircraft were allocated to the newly established RAF 362 Squadron and piloted by Danish and Norwegian crews in British exile, purely dedicated to the Faroe Islands Defense. The machines kept their original British serial numbers and tactical codes, but the RAF roundels were replaced by Merkið banners on the wings and the fin rudder.
On 20 June 1940, five Swedish naval vessels arrived in the Faroe Islands. Four were destroyers bought from Italy, one with civilian passengers; the fifth was a tanker converted to military status. Britain seized all the ships under armed threat, and moved them to the Shetland Islands. Although Sweden was a neutral country and not at war with Britain, the British were afraid that Germany would seize them if they continued to Sweden. After political negotiations, Sweden secured their return. The British Navy had stripped equipment and caused damage to the ships, for which Britain later gave compensation.
The Faroe Islands suffered occasional attacks by German Luftwaffe aircraft in the course of the war, but a full-scale invasion was never attempted. Frequently, German long-range reconnaissance aircraft were intercepted and a single Fw 200 Condor was shot down by a Spitfire floatplane of 362 Squadron. Drifting sea mines proved to be a bigger problem and resulted in the loss of numerous fishing boats and their crews.
Once the Vágar airfield became operational in early 1943, 362 Squadron exchanged many of its water-based aircraft for more modern, land-based aircraft, even though the Supermarine Walrus floatplanes were kept for SAR duties. From 1944 onwards the British Faroe garrison was considerably reduced, and British troops left shortly after the end of the war.
Specifications:
Crew: 2
Length (fuselage only): 35 ft 7 in (10.85 m)
Length (over floats): 38 ft (11.60 m)
Wingspan: 46 ft (14.02 m)
Height: 12 ft 1 in (3.68 m)
Wing area: 310 ft² (28.8 m²)
Empty weight: 6,121 lb (2,782 kg)
Loaded weight: 7,950 lb (3,614 kg)
Powerplant:
1 × Bristol Perseus XII radial engine, 890 hp (664 kW)
Performance:
Maximum speed: 194 kn (223 mph, 359 km/h) at 10,000 ft (3,050 m)
Cruise speed: 117 knots (135 mph, 217 km/h) [20]
Range: 704 nmi (810 mi, 1,304 km) with 70 imp gal (320 l; 84 US gal) long-range tank
Service ceiling: 18,000 ft (5,500 m)
Rate of climb: 1,500 ft/min (7.6 m/s)
Wing loading: 25.6 lb/ft² (125 kg/m²)
Power/mass: 0.11 hp/lb (0.18 kW/kg)
Armament:
2× 0.303 in (7.7 mm) forward-firing Browning machine guns in the outer wings
1× 0.303 in (7.7 mm) Lewis or Vickers K machine gun on flexible mount in rear cockpit
1 × 1,500 lb (680 kg) torpedo under the fuselage, or a single 1.000 lb (454 kg) bomb
alternatively 4× 100 lb (45kg) bombs or 8× 30 lb (14 kg) practice bombs under the wings
The kit and its assembly:
Well, this is rather an alternative history whif than a whiffy aircraft – even though it’s a kitbash: a Novo/Frog/Eastern Express Blackburn Skua, slightly modified and mated with floats and a torpedo from a Blackburn Shark from the same moulds.
This combo was never realized, but four Blackburn Roc turret fighters were modified this way for trials – and the big floats deteriorated the type’s rather mediocre performance even more… But with the Skua as basis, the result could have been an decent multi-purpose aircraft?
Building the thing was rather straightforward, aircraft and floats were taken pretty much OOB.
The only changes are:
- a fuel tank added between the two seats, filling the OOB void
- a light blocker (foamed plastic) between the engine and the cockpit – the kit features no bulkhead
- the outer wing machine guns were deleted
- the landing gear wells were filled, as well as the tail wheel space on the ventral tail fin
- struts for the floats were taken OOB, but tailored to the Skua’s underside and re-arranged so that a torpedo could be carried and dropped
- a new exhaust with flame dampers was installed
Painting and markings:
That’s where the original inspiration for this build came from: while researching for the German invasion of Norway in 1940 I came across Operation Valentine on the remote Faroer islands. When I saw the Faroese flag I knew I had to incorporate it somehow in a whif – and the design of choice fell upon a layout similar to the Norwegian solution of the era, just with adapted colors.
As a fictional ex RAF aircraft, the Bonxie received a typical Coastal Command/Royal Navy livery in Dark Slate Grey and Dark Sea Grey on the upper surfaces, coupled with Sky Grey undersides and a low waterline. Rather conservative, and suits the aircraft well. Basic colors are Humbrol 224, 164 and 166, respectively, later weathered through a thin black ink wash and panel-shaded with lighter mixed of the basic tones – the latter was direly necessary, because the massive putty work (NO part of the Skua kit would match another one, plus flash, sinkholes, anything you can ask for) rendered almost any of the risen panel line details invisible.
The code letters “NY”, as well as 362 Squadron, are fictional – both never existed or were used in WWII.
Where the original RAF roundels would have been placed, blotches of slightly different tones were applied, as if the original operator markings had been hastily painted over. Later, the Faroese markings were created with plain-colored decal sheet in white, red and blue from TL Modellbau. The Medium Sea Grey code letters come from a PrintScale sheet, the serials were done with single black letters and numbers, also from TL Modellbau.