View allAll Photos Tagged kitbash
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some panel lines with a mix of matte varnish and Panzergrau, plus some dry painting all over the fuselage.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. ;)
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and registration wwre puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, E (red) V marks the individual plane while the red E and the control letter "V" at the end designate a plane from the eleventh squadron. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
I kitbashed the Power Girl figure using the Jiaou doll instead of using the Tbleague body since the Jiaou seems much more curvey than the Tbleague bodies , especially the lower half of the bodies and she filled her suit a whole lot better .
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Bell XP-68A owed its existence to the manufacturer’s rather disappointing outcome of its first jet fighter design, the XP-59A Airacomet. The Airacomet was a twin jet-engined fighter aircraft, designed and built during World War II after Major General Henry H. "Hap" Arnold became aware of the United Kingdom's jet program when he attended a demonstration of the Gloster E.28/39 in April 1941. He requested, and was given, the plans for the aircraft's powerplant, the Power Jets W.1, which he took back to the U.S. He also arranged for an example of the engine, the Whittle W.1X turbojet, to be flown to the U.S., along with drawings for the more powerful W.2B/23 engine and a small team of Power Jets engineers. On 4 September 1941, he offered the U.S. company General Electric a contract to produce an American version of the engine, which subsequently became the General Electric I-A. On the following day, he approached Lawrence Dale Bell, head of Bell Aircraft Corporation, to build a fighter to utilize it. As a disinformation tactic, the USAAF gave the project the designation "P-59A", to suggest it was a development of the unrelated, canceled Bell XP-59 fighter project. The P-59A was the first design fighter to have its turbojet engine and air inlet nacelles integrated within the main fuselage. The jet aircraft’s design was finalized on 9 January 1942 and the first prototype flew in October of the same year.
The following 13 service test YP-59As had a more powerful engine than their predecessor, the General Electric J31, but the improvement in performance was negligible, with top speed increased by only 5 mph and a slight reduction in the time they could be used before an overhaul was needed. One of these aircraft, the third YP-59A, was supplied to the Royal Air Force, in exchange for the first production Gloster Meteor I for evaluation and flight-offs with domestic alternatives.
British pilots found that the YP-59A compared very unfavorably with the jets that they were already flying. The United States Army Air Forces were not impressed by its performance either and cancelled the contract when fewer than half of the originally ordered aircraft had been produced. No P-59s entered combat, but the type paved the way for the next design generation of U.S. turbojet-powered aircraft and helped to develop appropriate maintenance structures and procedures.
In the meantime, a new, more powerful jet engine had been developed in Great Britain, the Halford H-1, which became later better known as the De Havilland Goblin. It was another centrifugal compressor design, but it produced almost twice as much thrust as the XP-59A’s J31 engines. Impressed by the British Gloster Meteor during the USAAF tests at Muroc Dry Lake - performance-wise as well as by the aircraft’s simplicity and ruggedness - Bell reacted promptly and proposed an alternative fighter with wing-mounted engine nacelles, since the XP-59A’s layout had proven to be aerodynamically sub-optimal and unsuited for the installation of H-1 engines. In order to save development time and because the aircraft was rather regarded as a proof-of-concept demonstrator instead of a true fighter prototype, the new aircraft was structurally based on Bell’s current piston-engine P-63 “Kingcobra”. The proposal was accepted and, in order to maintain secrecy, the new jet aircraft inherited once more a designation of a recently cancelled project, this time from the Vultee XP-68 “Tornado” fighter. Similar to the Airacomet two years before, just a simple “A” suffix was added.
Bell’s development contract covered only three XP-68A aircraft. The H-1 units were directly imported from Great Britain in secrecy, suspended in the bomb bays of B-24 Liberator bombers. A pair of these engines was mounted in mid-wing nacelles, very similar to the Gloster Meteor’s arrangement. The tailplane was given a 5° dihedral to move it out of the engine exhaust. In order to bear the new engines and their power, the wing main spars were strengthened and the main landing gear wells were moved towards the aircraft’s centerline, effectively narrowing track width. The landing gear wells now occupied the space of the former radiator ducts for the P-63’s omitted Allison V-1710 liquid-cooled V12 engine. Its former compartment behind the cockpit was used for a new fuel tank and test equipment. Having lost the propeller and its long drive shaft, the nose section was also redesigned: the front fuselage became deeper and the additional space there was used for another fuel tank in front of the cockpit and a bigger weapon bay. Different armament arrangements were envisioned, one of each was to be tested on the three prototypes: one machine would be armed with six 0.5” machine guns, another with four 20mm Hispano M2 cannon, and the third with two 37mm M10 cannon and two 0.5” machine guns. Provisions for a ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb were made, but this was never fitted on any of the prototypes. Additional hardpoints under the outer wings for smaller bombs or unguided missiles followed the same fate.
The three XP-68As were built at Bell’s Atlanta plant in the course of early 1944 and semi-officially christened “Airagator”. After their clandestine transfer to Muroc Dry Lake for flight tests and evaluations, the machines were quickly nicknamed “Barrelcobra” by the test staff – not only because of the characteristic shape of the engine nacelles, but also due to the sheer weight of the machines and their resulting sluggish handling on the ground and in the air. “Cadillac” was another nickname, due to the very soft acceleration through the new jet engines and the lack of vibrations that were typical for piston-engine- and propeller-driven aircraft.
Due to the structural reinforcements and modifications, the XP-68A had become a heavy aircraft with an empty weight of 4 tons and a MTOW of almost 8 tons – the same as the big P-47 Thunderbolt piston fighter, while the P-63 had an MTOW of only 10,700 lb (4,900 kg). The result was, among other flaws, a very long take-off distance, especially in the hot desert climate of the Mojave Desert (which precluded any external ordnance) and an inherent unwillingness to change direction, its turning radius was immense. More than once the brakes overheated during landing, so that extra water cooling for the main landing gear was retrofitted.
Once in the air, the aircraft proved to be quite fast – as long as it was flying in a straight line, though. Only the roll characteristics were acceptable, but flying the XP-68A remained hazardous, esp. after the loss of one of the H-1s engines: This resulted in heavily asymmetrical propulsion, making the XP-68A hard to control at all and prone to spin in level flight.
After trials and direct comparison, the XP-68A turned out not to be as fast and, even worse, much less agile than the Meteor Mk III (the RAF’s then current, operational fighter version), which even had weaker Derwent engines. The operational range was insufficient, too, esp. in regard of the planned Pacific theatre of operations, and the high overall weight precluded any considerable external load like drop tanks.
However, compared with the XP-59A, the XP-68A was a considerable step forward, but it had become quickly clear that the XP-68A and its outfit-a-propeller-design-with jet-engines approach did not bear the potential for any service fighter development: it was already outdated when the prototypes were starting their test program. No further XP-68A was ordered or built, and the three prototypes fulfilled their test and evaluation program until May 1945. During these tests, the first prototype was lost on the ground due to an engine fire. After the program’s completion, the two remaining machines were handed over to the US Navy and used for research at the NATC Patuxent River Test Centre, where they were operated until 1949 and finally scrapped.
General characteristics.
Crew: 1
Length: 33 ft 9 in (10.36 m)
Wingspan: 38 ft 4 in (11.7 m)
Height: 13 ft (3.96 m)
Wing area: 248 sq ft (23 m²)
Empty weight: 8,799 lb (3,995 kg)
Loaded weight: 15,138 lb (6,873 kg)
Max. take-off weight: 17,246 lb (7,830 kg)
Powerplant:
2× Halford H-1 (De Havilland Goblin) turbojets, rated at 3,500 lbf (15.6 kN) each
Performance:
Maximum speed: 559 mph (900 km/h)
Range: 500 mi (444 nmi, 805 km)
Service ceiling: 37,565 ft (11,450 m)
Rate of climb: 3.930 ft/min (20 m/s)
Wing loading: 44.9 lb/ft² (218.97 kg/m²)
Thrust/weight: 0.45
Time to altitude: 5.0 min to 30,000 ft (9,145 m)
Armament:
4× Hispano M2 20 mm cannon with 150 rounds
One ventral hardpoint for a single drop tank or a 1.000 lb (550 kg) bomb
6× 60 lb (30 kg) rockets or 2× 500 lb (227 kg) bombs under the outer wings
The kit and its assembly:
This whiffy Kingcobra conversion was spawned by a post by fellow user nighthunter in January 2019 at whatifmodelers.com about a potential jet-powered variant. In found the idea charming, since the XP-59 had turned out to be a dud and the Gloster Meteor had been tested by the USAAF. Why not combine both into a fictional, late WWII Bell prototype?
The basic idea was simple: take a P-63 and add a Meteor’s engine nacelles, while keeping the Kingcobra’s original proportions. This sounds pretty easy but was more challenging than the first look at the outcome might suggest.
The donor kits are a vintage Airfix 1:72 Gloster Meteor Mk.III, since it has the proper, small nacelles, and an Eastern Express P-63 Kingcobra. The latter looked promising, since this kit comes with very good surface and cockpit details (even with a clear dashboard) as well as parts for several P-63 variants, including the A, C and even the exotic “pinball” manned target version. However, anything comes at a price, and the kit’s low price point is compensated by soft plastic (which turned out to be hard to sand), some flash and mediocre fit of any of the major components like fuselage halves, the wings or the clear parts. It feels a lot like a typical short-run kit. Nevertheless, I feel inclined to build another one in a more conventional fashion some day.
Work started with the H-1 nacelles, which had to be cut out from the Meteor wings. Since they come OOB only with a well-visible vertical plate and a main wing spar dummy in the air intake, I added some fine mesh to the plate – normally, you can see directly onto the engine behind the wing spar. Another issue was the fact that the Meteor’s wings are much thicker and deeper than the P-63s, so that lots of PSR work was necessary.
Simply cutting the P-63 OOB wings up and inserting the Meteor nacelles was also not possible: the P-63 has a very wide main landing gear, due to the ventral radiators and oil coolers, which were originally buried in the wing roots and under the piston engine. The only solution: move the complete landing gear (including the wells) inward, so that the nacelles could be placed as close as possible to the fuselage in a mid-span position. Furthermore, the - now useless - radiator openings had to disappear, resulting in a major redesign of the wing root sections. All of this became a major surgery task, followed by similarly messy work on the outer wings during the integration of the Meteor nacelles. LOTS of PSR, even though the outcome looks surprisingly plausible and balanced.
Work on the fuselage started in parallel. It was built mainly OOB, using the optional ventral fin for a P-63C. The exhaust stubs as well as the dorsal carburetor intake had to disappear (the latter made easy thanks to suitable optional parts for the manned target version). Since the P-63 had a conventional low stabilizer arrangement (unlike the Meteor with its cruciform tail), I gave them a slight dihedral to move them out of the engine efflux, a trick Sukhoi engineers did on the Su-11 prototype with afterburner engines in 1947, too.
Furthermore, the whole nose ahead of the cockpit was heavily re-designed, because I wanted the “new” aircraft to lose its propeller heritage and the P-63’s round and rather pointed nose. Somewhat inspired by the P-59 and the P-80, I omitted the propeller parts altogether and re-sculpted the nose with 2C putty, creating a deeper shape with a tall, oval diameter, so that the lower fuselage line was horizontally extended forward. In a profile view the aircraft now looks much more massive and P-80esque. The front landing gear was retained, just its side walls were extended downwards with the help of 0.5mm styrene sheet material, so that the original stance could be kept. Lots of lead in the nose ensured that the model would properly stand on its three wheels.
Once the rhinoplasty was done I drilled four holes into the nose and used hollow steel needles as gun barrels, with a look reminiscent of the Douglas A-20G.
Adding the (perfectly) clear parts of the canopy as a final assembly step also turned out to be a major fight against the elements.
Painting and markings:
With an USAAF WWII prototype in mind, there were only two options: either an NMF machine, or a camouflage in Olive Drab and Neutral Grey. I went for the latter and used Tamiya XF-62 for the upper surfaces and Humbrol 156 (Dark Camouflage Grey) underneath. The kit received a light black ink wash and some post shading in order to emphasize panels. A little dry-brushing with silver around the leading edges and the cockpit was done, too.
The cockpit interior became chromate green (I used Humbrol 150, Forest Green) while the landing gear wells were painted with zinc chromate yellow (Humbrol 81). The landing gear itself was painted in aluminum (Humbrol 56).
Markings/decals became minimal, puzzled together from various sources – only some “Stars and Bars” insignia and the serial number.
Somehow this conversion ended up looking a lot like the contemporary Soviet Sukhoi Su-9 and -11 (Samolyet K and LK) jet fighter prototype – unintentionally, though. But I am happy with the outcome – the P-63 ancestry is there, and the Meteor engines are recognizable, too. But everything blends into each other well, the whole affair looks very balanced and believable. This is IMHO furthermore emphasized by the simple paint scheme. A jet-powered Kingcobra? Why not…?
Kitbash figure and manipulated photography, inspired by Capcom's classic Devil May Cry videogames, employing the Hellgun filter from the Vinci app on my cameraphone.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Messerschmitt Me 262 Schwalbe or Sturmvogel (English: "Swallow"/ "Storm Bird") was the world's second operational jet-powered fighter aircraft. Design work started before World War II began, but engine problems and top-level interference kept the aircraft from operational status with the Luftwaffe until mid-1944.
The Me 262 was faster, and more heavily-armed than any Allied fighter, including the British jet-powered Gloster Meteor which entered service in the UK a month earlier than the Me 262. One of the most advanced aviation designs in operational use during World War II, the Me 262 was used in a variety of roles, including light bomber, reconnaissance, and even experimental night fighter versions.
The latter was a variant that was direly needed, and the development of a fast night fighter led to several prototypes and an operational interim version. Several two-seat trainer variants of the Me 262, the Me 262 B-1a, had been adapted through the Umrüst-Bausatz 1 factory refit package as night fighters, complete with on-board FuG 218 Neptun high-VHF band radar, using Hirschgeweih ("stag's antlers") antennae with a set of shorter dipole elements than the Lichtenstein SN-2 had used, as the B-1a/U1 version. Serving with 10 Staffel, Nachtjagdgeschwader 11, near Berlin, these few aircraft (alongside several single-seat examples) accounted for most of the 13 Mosquitoes lost over Berlin in the first three months of 1945.
Anyway, the Me 262 B-1a's deficiencies were clear from the start and in parallel Messerschmitt already worked on a dedicated night fighter variant that would offer a better performance (primarily concerning range and speed) than the converted trainer, which was, nevertheless, rushed into service and gathered valuable information.
Initially, the idea of a night-fighter 262 was developed independently by Messerschmitt as the Me 262B-2. It was to have a longer fuselage accommodating the two crew, internal fuel tanks with the capacity comparable to that of a single-seat variant, and a Berlin radar antenna hidden inside the modified nose cone. However, by the end of 1944 the war situation deteriorated so rapidly that it was realized that an interim solution must be found before the B-2 could reach production status.
Instead of the complex B-2 Messerschmitt also proposed a less ambitious approach which would use as many Me 262 fighter components as possible, primarily the aerodynamic surfaces, the engines and the landing gear. This proposal was accepted by the RLM in September 1944 and became the Me 262 G.
This variant received a completely re-designed and aerodynamically refined fuselage. It was, from the start, tailored to carry the heavy radar equipment, a second crew member as radar operator and navigator and a bigger fuselage tank (the trainers that were converted into night fighters had part of their fuel capacity reduced to make place for the 2nd seat). The result was a slender, streamlined aircraft with a considerably smaller cross section than the Me 262 day fighter/bomber.
The crew was separated into two cabins in front and behind the fuselage main tank. This arrangement also offered enough space for a "Schräge Musik" installation (a pair of guns firing upwards, either two 20mm MG 151/20 or two 30mm MK 108), to allow the night fighter to attack RAF bombers from their belly blind spot.
The main armament was a pair of MK 103 30mm cannons - while this was a reduction of firepower compared to the Me 262 B-1a, the MK 103 was much more accurate, had a longer range and a much higher muzzle velocity (860 m/s (2,822 ft/s) versus 540 m/s (1,800 ft/s) with HE/M), so that targets could be engaged at longer distance with less expenditure of ammunition and further outside of the bombers' defensive fire.
The first operational version, the G-1, was ready for service in December 1944 and exclusively delivered to the NJG 6, based in southern Germany after withdrawal from Romania and regrouping.The G-1 still carried the FuG 218 Neptun radar, still coupled with a high drag Hirschgeweih antenna and with a FuG 350 Zc Naxos radar warning receiver/detector, but the G-1 was still faster than the B-1a and had a longer range on internal fuel than the B-1a with two external 300l drop tanks, which further reduced top speed. Later versions (G-2) were supposed to carry the more modern FuG 240 with a parabolic dish antenna under a more treamlined thimble nose radome, and a single seat long range reconnaissance version (G-3) was also planned, which would carry no guns but an camera array in the radar operators's place.
Anyway, only about 20 Me 262 G-1 were delivered to NJG 6 at all, and probably less than a dozen were operational when Germany surrendered. The G-3 recce variant remained on the drawing board, while two prototypes with radomes for the FuG 240 were under construction and underwent wind tunnel tests.
General characteristics:
Crew: 2
Length overall: 11.67 m (38 ft 3 in)
Wingspan: 12.60 m (41 ft 6 in)
Height: 3.50 m (11 ft 6 in)
Wing area: 21.7 m² (234 ft²)
Empty weight: 3,795 kg[101] (8,366 lb)
Loaded weight: 6,473 kg[101] (14,272 lb)
Max. takeoff weight: 7,130 kg[101] (15,720 lb)
Powerplant:
Aspect ratio: 7.32
Powerplant:
2× Junkers Jumo 004 B-1 turbojets, 8.8 kN (1,980 lbf) each
Performance:
Maximum speed: 900 km/h (559 mph)
Range: 1,050 km (652 mi)
Service ceiling: 11,450 m (37,565 ft)
Rate of climb: 1,200 m/min (At max weight of 7,130 kg) (3,900 ft/min)
Thrust/weight: 0.28
Armament:
2x 30mm MK 103 cannon in the lower front fuselage with 120 RPG
2x 30mm MK 108 cannon "Schräge Musik" installation with 80 RPG,
angled 70° upwards, between the cockpits
2x hardpoints under the wings, each able to carry up to 250kg (550lb), including bombs, drop tanks or unguided missiles (rarely used)
The kit and its assembly:
Connoisseurs will immediately recognize this kitbash - and the Me 262 G was spawned from the thought that the Japanese Ki-46 was such an elegant aircraft - wouldn't a jet version somehow make sense? So, initially this was supposed to become a Hikoki '46 model, but when I held some Me 262 parts next to the Ki-46's fuselage the idea of a Luftwaffe night fighter was born.
And this actually worked better than expected. This whif is a kitbash of an Airfix Ki-46 fuselage with wings, tail, engines, landing gear and Hirschgeweih from a Revell Me 262 B-1a.
Mating the parts went pretty straightforward, even though I made a mistake when I measured the position of the wing under the fuselage. Somehow it ended up 4-5mm too close to the nose - while the flaw was acceptable I decided to add a 5mm plug behind the pilot cockpit to compensate... And the added length just underlines the elegant Ki-46 lines.
In order to keep the model on its three feet lots of lead beads were hidden in the fuselage, the nose tip and even the front ends of the engine nacelles. Since the Ki-46 fuselage is considerably smaller than the Me 262's I had to fill the wing roots with putty, but that was a rather easy task.
Painting and markings:
I wanted something different from other German night fighters/bombers I had already built, yet a simple livery. Since many German night fighters left the factories in an overall RLM 76 finish I used this as a basis and just added mottles in RLM 75 on the upper surfaces - inspired by a Ta 154 Moskito night fighter prototype.
The cockpits were painted in very dark grey (RLM 66) while the landing gear and the respective wells were painted with RLM 02. Everything very conventional.
The markings were puzzled together - the national markings and stencils come from the Revell Me 262 B-1a sheet while the registration was created from single aftermarket letters, matching a hypothetical aircraft from 4. Staffel, II./NJG 6 in code and colors.
The kit received a light black in wash and some dry-brushing to emphasize panel lines. On the fuselage, however, I painted some panel lines with a pencil, since the Airfix Ki-46 is completely bare of details. Some soot stains around the guns were added with graphite and finally everything sealed under matt acrylic varnish.
A simple kitbashing project, and I am amazed how plausible the Ki-46/Me 262 mix looks, despite the mistake I made with the wing position. I wonder how a Ki-46 III with its streamlined cockpit would look in this case?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Republic P-47 Thunderbolt was one of the largest and heaviest fighter aircraft in history to be powered by a single piston engine. It was heavily armed with eight .50-caliber machine guns, four per wing. When fully loaded, the P-47 weighed up to eight tons, and in the fighter-bomber ground-attack roles could carry five-inch rockets or a significant bomb load of 2,500 pounds; it could carry over half the payload of the B-17 bomber on long-range missions (although the B-17 had a far greater range).
The P-47, originally based on the powerful Pratt & Whitney R-2800 Double Wasp engine, was to be very effective as a short-to-medium range escort fighter in high-altitude air-to-air combat and, when unleashed as a fighter-bomber, proved especially adept at ground attack in both the World War II European and Pacific Theaters.
The P-47 was one of the main United States Army Air Forces (USAAF) fighters of World War II, and served with other Allied air forces, notably those of France, Britain, and Russia. Mexican and Brazilian squadrons fighting alongside the U.S. were equipped with the P-47.
In 1943, two P-47D-15-RE airframes (serials 42-23297/23298) were selected for testing with the new experimental 2300 hp Chrysler XIV-2220-1 sixteen-cylinder inverted Vee liquid-cooled engine. These aircraft were re-designated XP-47H. The liquid-cooled Chrysler engine with its large under-fuselage radiator radically changed the appearance of the Thunderbolt, and increased overall length to 39 feet 2 inches. With the increased power and improved streamlining, a maximum speed of 490 mph was anticipated.
The two P-47D-15-RE airframes were converted until early 1944 and test flights began on July 26, 1945. During flight trails, one of the XP-47Hs actually attained a speed of 490 mph in level flight, and the new aircraft was primarily intended as a fast interceptor for the European theater, where especially Great Britain was endangered by the fast V1 missiles, and initial reports about German jet fighters and reconnaissance aircraft that were hard to counter with current piston-engine types, stirred the need for this fast aircraft.
Production P-47Hs received several amendments that had already been introduced with the late D types, e. g. the lowered back and a bubble canopy that offered excellent view. The P-47H also received the new wing from the P-47N, recognizable by its characteristic square wing tips which allowed better roll manoeuvers. Not visible at first glance were the integral wing tanks, which enhanced the internal fuel load to 4.792,3 liters, resulting in a range of 3.500 km (2.175 ml), so that the P-47H was also suited for long range bomber escorts. Air brakes were added to the wing's lower surfaces, too, to allow braking after a dive onto its prey.
Furthermore, serial production machines received an uprated, more reliable Chrysler XIV-2220-2 engine, which had an output of 2.450 hp.
The P-47H was put into limited production with 130 built, sufficient for one group. However, the type suffered serious teething problems in the field due to the highly tuned engine. Engines were unable to reach operating temperatures and power settings and frequently failed in early flights from a variety of causes: ignition harnesses cracked at high altitudes, severing electrical connections between the magneto and distributor, and carburetor valve diaphragms also failed. Poor corrosion protection during shipments across the Atlantic also took their toll on the engines and airframes.
By the time the bugs were worked out, the war in Europe was nearly over. However, P-47Hs still destroyed 15 enemy jet aircraft in aerial combat in March-May 1945 when aerial encounters with the Luftwaffe were rare. The type also proved itself to be a valuable V1 missile interceptor over the Channel.
The entire production total of 130 P-47Hs were delivered to the 358th Fighter Group, which was part of the 9th Air Force and operated from Great Britain, France and finally on German ground. From the crews the P-47H received several nicknames like 'torpedo', 'Thunderbullet' or 'Anteater', due to its elongated nose section.
Twelve P-47H were lost in operational crashes with the 358th Group resulting in 11 deaths, two after VE Day, and two (44-21134 on 13 April 1945 and 44-21230 on 16 April 1945) were shot down in combat, both by ground fire.
General characteristics:
Crew: 1
Length: 39 ft 2 in (11.96 m)
Wingspan: 40 ft 9 in (12.42 m)
Height: 14 ft 8 in (4.47 m)
Wing area: 300 ft² (27.87 m²)
Empty weight: 10,000 lb (4,535 kg)
Loaded weight: 13,300 lb (6,032 kg)
Max. takeoff weight: 17,500 lb (7,938 kg)
Powerplant:
1× Chrysler XIV-2220-2 sixteen-cylinder inverted Vee liquid-cooled engine, rated at 2.450 hp.
Performance:
Maximum speed: 503 mph at 30,000 ft (810 km/h at 9,145 m)
Range: 920 mi combat, 2.175 ml ferry (1.480 km / 3.500 km)
Service ceiling: 43,000 ft (13,100 m)
Rate of climb: 3,120 ft/min (15.9 m/s)
Wing loading: 44.33 lb/ft² ()
Power/mass: 0.19 hp/lb (238 W/kg)
Armament:
8× .50 in (12.7 mm) M2 Browning machine guns (3.400 rounds)
Up to 2,500 lb (1,134 kg) of bombs, drop tanks and/or 10× 5 in (127 mm) unguided rockets
The kit and its assembly:
I had the (X)P-47H on the agenda for some time, and even the respective MPM kit stashed away. But it took some time to start this project - one reason actually being the, well, crudeness of the MPM offering. Anyway, I wanted to build a service aircraft, and I wondered how this would have looked like, way beyond 1944? That brought me towards the late bubble canopy versions of the P-47D - and suddenly the idea was born to convert the XP-47H into a respective service aircraft which would not only carry the Chrysler XIV-2220-1 V16 engine, but also other improvements of the type. This eventually led to the decision to make this build a kitbash, as a spine implantation would be the easiest way to incorporate the lowered back - or so I thought...
I chose the ancient Heller P-47(N) as donation kit. Not because it was “good”, it just had the right ingredients and was cheap and easy to procure. What sounded like a simple plan turned into a twisted route to vague success. I took the front fuselage and the lower belly from the MPM kit, as well as the horizontal stabilizers and mated it with the upper and rear fuselage of the Heller Thunderbolt. This could have been easy, if both kits would not have had different fuselage diameters - the Heller kit is about 1mm too narrow, even though the length is fine. In order to compensate, I built two new fuselage halves from the salvaged pieces, and once these were stable and more or less sanded even, put together. Inside, the cockpit was taken from the Heller kit, but the seat comes from the MPM kit, and a pilot figure was added. Another problem is the fact that the MPM kit features engraved panel lines, while the Heller kit has old school, raised details and lots of rivets.
The propeller from the MPM kit is a joke, so I built a replacement from scratch - from a drop tank front half from an ancient Revell F4U, and the individual propeller blades were taken from an Italeri F4U. Inside the fuselage, a styrene tube was implanted which holds the new propeller on a metal axis, so it can spin freely.
Other personal mods include lowered flaps and the large cooler intake was opened, with foamed styrene placed inside which mimics some mesh. The same method was also used inside of the intercooler outlets (primarily in order to block any light from shining through). Inside of the landing gear wells I added some structure made from styrene profiles.
Another bigger challenge was the wing attachment - Heller and MPM kit differ considerably in this aspect, so that swapping parts is not easy. The MPM kit has the wing roots molded onto the fuselage halves, while the Heller wings are, more or less, directly attached to the fuselage. As a consequence the Heller wings hold the complete landing gear wells, while the MPM solution has divided sections. I decided to get rid of the MPM wing roots, about 3mm of material, and onto these stubs the Heller wings were attached. The landing gear came from the Heller kit, but the main wheels come from a (new) Revell Me 262 - both MPM and Heller parts are not recommended for serious use... Finally, the many exhausts and cooler flaps were either sanded away and replaced by scratched parts, or added - e. g. the vents behind the cockpit. While the Heller kit features bomb and missile hardpoints under the wings I decided to leave them away - this is supposed to be a fast interceptor, not a train-hunting plough.
Painting and markings:
As this was to be a very late WWII aircraft, NMF was certain, and I wanted to place the service P-47H into the European conflict theatre, where its speed would IMHO be best used against German jet threats. I wanted a colorful aircraft, though, and settled for a machine of the 358th FG. This group actually flew Thunderbolts in the 365-367th Squadrons, and I found several profiles of these gaudy things.
Common to all of them was an orange tail and a dark blue back, while the engine cowling would be decorated with a red front and the air outlets would carry bands in red, white and blue, with lots of tiny stars sprinkled upon. Furthermore, I found specimen with white cowlings behind the red front end, or even yellow cowlings. Pretty cool.
I tried to mimic this look. The model was basically painted with Aluminum Metallizer (Humbrol 27002) overall. The effect is really good, even without rubbing treatment. Some panels were contrasted with Aluminium Plate and Polished Steel Metallizer (Modelmaster), as well as with Aluminum (Humbrol 56, which is rather a metallic grey). The latter was also used on the landing gear. The anti-glare panel in front of the cockpit was painted with Olive Drab (ANA 613 from Modelmaster).
Since there is no air intake opening on the inline engine I decided to paint the spinner in bright red (Humbrol 19), and tried to incorporate the white and blue theme with stars decoration to the rest of the nose. As a convenient coincidence, I found decals from an Italeri B-66 in the stash: it features a version with dark blue jet air intake decorations in the right size, colors and style for what I had been looking for. So, instead of painting everything by hand I decided to incorporate this decal option.
The area behind the spinner was painted white and then the B-66 decals applied to the front flanks. The radiator air intake scoop had to be cut out, but the overall size and shape were a very good match. Even the transition into the blue spine and cockpit area worked well!
The tail was painted with Humbrol 18, later some shading with Humbrol 82 was added. The blue spine was done with a mix of Humbrol 104 and 15 (Oxford Blue and Midnight Blue) - not a perfect match for the B-66 decal colors, but after some dirt and weathering these differences would blur.
Cockpit interior was painted in Humbrol 159 (Khaki Drab) and Zinc Chromate Green from Model Master. The landing gear wells received a chrome yellow primer (Humbrol 225 - actually RAF Mid Stone but a perfect match for the task) finish.
For weathering the kit received a rubbing treatment with grinded graphite, which adds a dark, metallic shine and emphasizes the kit’s raised panel lines. Some dry painting with Aluminum was added, too, simulating chipped paint on the leading edges. I also added some oil stains around the engine, and serious soot stains at the exhaust.
Decals were, beyond the B-66 decoration, puzzled together. The aircraft' code 'CH-F[bar]' is another exotic twist, in two ways. The bar under the letter marks a second use of that code within the squadron, and as a difference from normal code placement (normally exclusively on the fuselage) I placed the aircraft's individual code letter on the fin, a practice on some P-51s and a consequence of the relatively large letter decals.
The nose art is a fictional puzzle, consisting of a Czech MiG-21 pin-up from the Pardubice '89 meeting. The “Ohio Express” tag comes from a Tamiya 1:100 F-105 Thunderchief. A neat combination that even matches the overall colors well!
As a final step, a coat of semi matt acrylic varnish was applied, with the exception of the anti glare panel, which became purely matt.
A better XP-47H? Hard to tell, since this kitbashing was a messy and rather crude work, so the overall finish does not look as good as I hoped for. But the lowered spine and the fin root extension adds to a fast look of this thing, more elegant (if that's possible in this case?) than the Razorback prototypes. I can't help, but the finished article looks like an Evel Knievel stunt vehicle? The red spinner looks a bit odd, but I'll leave it this way.
Another in an ongoing series of images depicting an original vampiric character of my own devising: 'Bloodwalkers' are mortal agents, bound by blood and devoted to a Vampire Lord and the interests of its House
A kitbash Phicen doll photographed employing layered filters from Enjoyphoto, Photoshop, Superphoto & default editing apps on my cameraphone.
I kitbashed the Power Girl figure using the Jiaou doll instead of using the Tbleague body since the Jiaou seems much more curvey than the Tbleague bodies , especially the lower half of the bodies and she filled her suit a whole lot better .
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Republic P-47 Thunderbolt was one of the largest and heaviest fighter aircraft in history to be powered by a single piston engine. It was heavily armed with eight .50-caliber machine guns, four per wing. When fully loaded, the P-47 weighed up to eight tons, and in the fighter-bomber ground-attack roles could carry five-inch rockets or a significant bomb load of 2,500 pounds; it could carry over half the payload of the B-17 bomber on long-range missions (although the B-17 had a far greater range).
The P-47, originally based on the powerful Pratt & Whitney R-2800 Double Wasp engine, was to be very effective as a short-to-medium range escort fighter in high-altitude air-to-air combat and, when unleashed as a fighter-bomber, proved especially adept at ground attack in both the World War II European and Pacific Theaters.
The P-47 was one of the main United States Army Air Forces (USAAF) fighters of World War II, and served with other Allied air forces, notably those of France, Britain, and Russia. Mexican and Brazilian squadrons fighting alongside the U.S. were equipped with the P-47.
In 1943, two P-47D-15-RE airframes (serials 42-23297/23298) were selected for testing with the new experimental 2300 hp Chrysler XIV-2220-1 sixteen-cylinder inverted Vee liquid-cooled engine. These aircraft were re-designated XP-47H. The liquid-cooled Chrysler engine with its large under-fuselage radiator radically changed the appearance of the Thunderbolt, and increased overall length to 39 feet 2 inches. With the increased power and improved streamlining, a maximum speed of 490 mph was anticipated.
The two P-47D-15-RE airframes were converted until early 1944 and test flights began on July 26, 1945. During flight trails, one of the XP-47Hs actually attained a speed of 490 mph in level flight, and the new aircraft was primarily intended as a fast interceptor for the European theater, where especially Great Britain was endangered by the fast V1 missiles, and initial reports about German jet fighters and reconnaissance aircraft that were hard to counter with current piston-engine types, stirred the need for this fast aircraft.
Production P-47Hs received several amendments that had already been introduced with the late D types, e. g. the lowered back and a bubble canopy that offered excellent view. The P-47H also received the new wing from the P-47N, recognizable by its characteristic square wing tips which allowed better roll manoeuvers. Not visible at first glance were the integral wing tanks, which enhanced the internal fuel load to 4.792,3 liters, resulting in a range of 3.500 km (2.175 ml), so that the P-47H was also suited for long range bomber escorts. Air brakes were added to the wing's lower surfaces, too, to allow braking after a dive onto its prey.
Furthermore, serial production machines received an uprated, more reliable Chrysler XIV-2220-2 engine, which had an output of 2.450 hp.
The P-47H was put into limited production with 130 built, sufficient for one group. However, the type suffered serious teething problems in the field due to the highly tuned engine. Engines were unable to reach operating temperatures and power settings and frequently failed in early flights from a variety of causes: ignition harnesses cracked at high altitudes, severing electrical connections between the magneto and distributor, and carburetor valve diaphragms also failed. Poor corrosion protection during shipments across the Atlantic also took their toll on the engines and airframes.
By the time the bugs were worked out, the war in Europe was nearly over. However, P-47Hs still destroyed 15 enemy jet aircraft in aerial combat in March-May 1945 when aerial encounters with the Luftwaffe were rare. The type also proved itself to be a valuable V1 missile interceptor over the Channel.
The entire production total of 130 P-47Hs were delivered to the 358th Fighter Group, which was part of the 9th Air Force and operated from Great Britain, France and finally on German ground. From the crews the P-47H received several nicknames like 'torpedo', 'Thunderbullet' or 'Anteater', due to its elongated nose section.
Twelve P-47H were lost in operational crashes with the 358th Group resulting in 11 deaths, two after VE Day, and two (44-21134 on 13 April 1945 and 44-21230 on 16 April 1945) were shot down in combat, both by ground fire.
General characteristics:
Crew: 1
Length: 39 ft 2 in (11.96 m)
Wingspan: 40 ft 9 in (12.42 m)
Height: 14 ft 8 in (4.47 m)
Wing area: 300 ft² (27.87 m²)
Empty weight: 10,000 lb (4,535 kg)
Loaded weight: 13,300 lb (6,032 kg)
Max. takeoff weight: 17,500 lb (7,938 kg)
Powerplant:
1× Chrysler XIV-2220-2 sixteen-cylinder inverted Vee liquid-cooled engine, rated at 2.450 hp.
Performance:
Maximum speed: 503 mph at 30,000 ft (810 km/h at 9,145 m)
Range: 920 mi combat, 2.175 ml ferry (1.480 km / 3.500 km)
Service ceiling: 43,000 ft (13,100 m)
Rate of climb: 3,120 ft/min (15.9 m/s)
Wing loading: 44.33 lb/ft² ()
Power/mass: 0.19 hp/lb (238 W/kg)
Armament:
8× .50 in (12.7 mm) M2 Browning machine guns (3.400 rounds)
Up to 2,500 lb (1,134 kg) of bombs, drop tanks and/or 10× 5 in (127 mm) unguided rockets
The kit and its assembly:
I had the (X)P-47H on the agenda for some time, and even the respective MPM kit stashed away. But it took some time to start this project - one reason actually being the, well, crudeness of the MPM offering. Anyway, I wanted to build a service aircraft, and I wondered how this would have looked like, way beyond 1944? That brought me towards the late bubble canopy versions of the P-47D - and suddenly the idea was born to convert the XP-47H into a respective service aircraft which would not only carry the Chrysler XIV-2220-1 V16 engine, but also other improvements of the type. This eventually led to the decision to make this build a kitbash, as a spine implantation would be the easiest way to incorporate the lowered back - or so I thought...
I chose the ancient Heller P-47(N) as donation kit. Not because it was “good”, it just had the right ingredients and was cheap and easy to procure. What sounded like a simple plan turned into a twisted route to vague success. I took the front fuselage and the lower belly from the MPM kit, as well as the horizontal stabilizers and mated it with the upper and rear fuselage of the Heller Thunderbolt. This could have been easy, if both kits would not have had different fuselage diameters - the Heller kit is about 1mm too narrow, even though the length is fine. In order to compensate, I built two new fuselage halves from the salvaged pieces, and once these were stable and more or less sanded even, put together. Inside, the cockpit was taken from the Heller kit, but the seat comes from the MPM kit, and a pilot figure was added. Another problem is the fact that the MPM kit features engraved panel lines, while the Heller kit has old school, raised details and lots of rivets.
The propeller from the MPM kit is a joke, so I built a replacement from scratch - from a drop tank front half from an ancient Revell F4U, and the individual propeller blades were taken from an Italeri F4U. Inside the fuselage, a styrene tube was implanted which holds the new propeller on a metal axis, so it can spin freely.
Other personal mods include lowered flaps and the large cooler intake was opened, with foamed styrene placed inside which mimics some mesh. The same method was also used inside of the intercooler outlets (primarily in order to block any light from shining through). Inside of the landing gear wells I added some structure made from styrene profiles.
Another bigger challenge was the wing attachment - Heller and MPM kit differ considerably in this aspect, so that swapping parts is not easy. The MPM kit has the wing roots molded onto the fuselage halves, while the Heller wings are, more or less, directly attached to the fuselage. As a consequence the Heller wings hold the complete landing gear wells, while the MPM solution has divided sections. I decided to get rid of the MPM wing roots, about 3mm of material, and onto these stubs the Heller wings were attached. The landing gear came from the Heller kit, but the main wheels come from a (new) Revell Me 262 - both MPM and Heller parts are not recommended for serious use... Finally, the many exhausts and cooler flaps were either sanded away and replaced by scratched parts, or added - e. g. the vents behind the cockpit. While the Heller kit features bomb and missile hardpoints under the wings I decided to leave them away - this is supposed to be a fast interceptor, not a train-hunting plough.
Painting and markings:
As this was to be a very late WWII aircraft, NMF was certain, and I wanted to place the service P-47H into the European conflict theatre, where its speed would IMHO be best used against German jet threats. I wanted a colorful aircraft, though, and settled for a machine of the 358th FG. This group actually flew Thunderbolts in the 365-367th Squadrons, and I found several profiles of these gaudy things.
Common to all of them was an orange tail and a dark blue back, while the engine cowling would be decorated with a red front and the air outlets would carry bands in red, white and blue, with lots of tiny stars sprinkled upon. Furthermore, I found specimen with white cowlings behind the red front end, or even yellow cowlings. Pretty cool.
I tried to mimic this look. The model was basically painted with Aluminum Metallizer (Humbrol 27002) overall. The effect is really good, even without rubbing treatment. Some panels were contrasted with Aluminium Plate and Polished Steel Metallizer (Modelmaster), as well as with Aluminum (Humbrol 56, which is rather a metallic grey). The latter was also used on the landing gear. The anti-glare panel in front of the cockpit was painted with Olive Drab (ANA 613 from Modelmaster).
Since there is no air intake opening on the inline engine I decided to paint the spinner in bright red (Humbrol 19), and tried to incorporate the white and blue theme with stars decoration to the rest of the nose. As a convenient coincidence, I found decals from an Italeri B-66 in the stash: it features a version with dark blue jet air intake decorations in the right size, colors and style for what I had been looking for. So, instead of painting everything by hand I decided to incorporate this decal option.
The area behind the spinner was painted white and then the B-66 decals applied to the front flanks. The radiator air intake scoop had to be cut out, but the overall size and shape were a very good match. Even the transition into the blue spine and cockpit area worked well!
The tail was painted with Humbrol 18, later some shading with Humbrol 82 was added. The blue spine was done with a mix of Humbrol 104 and 15 (Oxford Blue and Midnight Blue) - not a perfect match for the B-66 decal colors, but after some dirt and weathering these differences would blur.
Cockpit interior was painted in Humbrol 159 (Khaki Drab) and Zinc Chromate Green from Model Master. The landing gear wells received a chrome yellow primer (Humbrol 225 - actually RAF Mid Stone but a perfect match for the task) finish.
For weathering the kit received a rubbing treatment with grinded graphite, which adds a dark, metallic shine and emphasizes the kit’s raised panel lines. Some dry painting with Aluminum was added, too, simulating chipped paint on the leading edges. I also added some oil stains around the engine, and serious soot stains at the exhaust.
Decals were, beyond the B-66 decoration, puzzled together. The aircraft' code 'CH-F[bar]' is another exotic twist, in two ways. The bar under the letter marks a second use of that code within the squadron, and as a difference from normal code placement (normally exclusively on the fuselage) I placed the aircraft's individual code letter on the fin, a practice on some P-51s and a consequence of the relatively large letter decals.
The nose art is a fictional puzzle, consisting of a Czech MiG-21 pin-up from the Pardubice '89 meeting. The “Ohio Express” tag comes from a Tamiya 1:100 F-105 Thunderchief. A neat combination that even matches the overall colors well!
As a final step, a coat of semi matt acrylic varnish was applied, with the exception of the anti glare panel, which became purely matt.
A better XP-47H? Hard to tell, since this kitbashing was a messy and rather crude work, so the overall finish does not look as good as I hoped for. But the lowered spine and the fin root extension adds to a fast look of this thing, more elegant (if that's possible in this case?) than the Razorback prototypes. I can't help, but the finished article looks like an Evel Knievel stunt vehicle? The red spinner looks a bit odd, but I'll leave it this way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the Second World War, France’s armored force consisted, almost entirely, of US-built vehicles, such as the M4 Sherman, M26 Pershing, and M24 Chaffee (among others). France received these vehicles as aid as part of the Marshall Plan and the Mutual Defense Assistance Act (MDAA). These aid pacts also financed the reconstruction of France’s economy and armed forces from 1948 until the late 1950s. In April 1949, the North Atlantic Treaty was signed, and NATO was born, resulting in the United States extending the MDAA. This resulted in France receiving newer vehicles, such as the M47 Patton II tank.
In total, France would operate around 1,250 M24s which were identical to their US counterparts. It was a small tank at 5.45 meters (16 ft 4 in) long, 2.84 meters (9ft 4in) wide, and 2.61 meters (9ft 3in) tall. It weighed 16.6 tonnes (18.37 tons), utilized a torsion bar suspension, and was armed with a 75 mm gun. The tank had a 5-men crew: Commander, Gunner, Loader, Driver, Bow Gunner. The ‘Chaffee’ was named after WWI US Army General, Adna R. Chaffee Jr.
In 1956, the French Army and the Direction des Etudes et Fabrications d’Armements (Directorate of Studies and Manufacture of Armaments, DEFA, an institution within the French Military) were looking into affordable methods of modernizing their fleet of aging M24 Chaffee light tanks, which had been operated since WWII. One method was to somehow combine France’s new domestic light tank, the AMX-13, with the M24.
Initially, this led to the mating of the AMX-13’s FL-10 oscillating turret to the hull of the Chaffee, as the most logical step to improve the M24s. While cheap and feasible, this configuration never went further than trials. This was largely due to a perceived safety issue with the High-Explosive (HE) rounds fired by the CN 75-50 cannon. Inside the FL-10 turret, the CN 75-50 gun was fed via an automatic loading system, which was reloaded externally. If an alternate shell-type needed to be fired, HE, for example, it had to be loaded into the breach manually by the Commander. This was a tricky task in the tight confines of the turret on the standard AMX, made worse by the notoriously sensitive fuze of the HE rounds. This process would be even more dangerous on the smaller hull of the Chaffee. As a result, the inverse of this mounting was decided upon, mounting the Chaffee’s turret on the AMX-13’s hull.
The officially designated AMX-US was a result of this, even though there were many other unofficial names, including ‘AMX-13 Chaffee’ – as it was known by troops – or ‘AMX-13 Avec Tourelle Chaffee (with Chaffee Turret)’. By 1957, work on the inverse of mounting the Chaffee turret to the AMX hull had begun, what was regarded as a safer and easier alternative, and it was also a convenient way of recycling useful Chaffee turrets by separating them from their worn hulls. It also created a vehicle lighter than the regular Chaffee, meaning it was easier to transport.
The M24 turrets went through very little modification for their installation, retaining all the same main features. The only modification necessary was the introduction of an adapter or ‘collar’ to the AMX hull’s turret ring. This was needed as the Chaffee turret had quite a deep basket. The collar granted the basket clearance from the hull floor for uninterrupted, full 360-degree rotation.
The Chaffee turret was a standard design with a typical 3-man crew of the time: Gunner, Loader, and Commander. The Commander sat at the left rear of the turret under a vision-cupola, the gunner sat in front of him. The loader was located at the right-rear of the turret under his own hatch. Armor on the turret was 25 mm (.98 in) thick on all sides, with the gun mantlet being 38 mm (1.49 in) thick.
The AMX-US was operated by a four-man crew, as opposed to the three-man crew of the standard Mle 51, due to the three-man turret of the Chaffee. Armament consisted of the 75 mm Lightweight Tank Gun M6 which had a concentric recoil system (this was a hollow tube around the barrel, a space-saving alternative to traditional recoil cylinders). Variants of this gun were also used on the B-25H Mitchell Bomber, and the T33 Flame Thrower Tank prototype. The shell velocity was 619 m/s (2,031 ft/s) and had a maximum penetration of 109 mm. The elevation range of the gun was around -10 to +13 degrees. Secondary weapons were also retained. This included the coaxial .30 Cal (7.62 mm) Browning M1919 Machine Gun, and the .50 Caliber (12.7 mm) M2 Browning Heavy Machine gun which was mounted on the rear of the turret roof.
Apart from the adaptor or ‘collar’, the AMX hull went through no alterations. It retained the same dimensions, and forward-mounted engine and transmission. The tank was powered by a SOFAM Model 8Gxb 8-cylinder, water-cooled petrol engine developing 250 hp, propelling the tank to a top speed of around 60 km/h (37 mph). The vehicle ran on a torsion bar suspension with five road-wheels, two return rollers, a rear-mounted idler, and a forward-mounted drive-sprocket. The driver was positioned at the front left of the hull, behind the transmission and next to the engine.
Trials with what would be designated the ‘AMX-US’ were undertaken between December 1959 and January 1960. The vehicle was well received, with an order for 150 conversions being placed by the French military in March 1960. Conversion work was carried out at a plant in Gien, North-Central France.
The AMX-US saw brief service in the War in Algeria – otherwise known as the Algerian War of Independence or Algerian Revolution. One known operator was the 9e Régiment de Hussards (9th Hussar Regiment) based in Oran. They served well, but a few were lost in combat, but there is no evidence to suggest they served in any other location with the French military, such as in France or West Germany based regiments.
After the conflict in Algeria, the vehicles were returned to France, but they did not last long in active service after this. Many vehicles were being repurposed into driver trainers. For this, the vehicles were disarmed, with the 75 mm gun and mantlet removed from the turret face and a large plexiglass windscreen was installed in its place.
About fifty surplus AMX-US were sold as scout tanks to Israel, because the AMX-13, which had been procured and operated by the IDF since 1956 in great numbers, was used as a battle tank, so that no IDF reconnaissance unit used the AMX 13. The AMX-US was a perfect and cheap alternative to fill this operational gap, and the vehicles, delivered in 1963, took actively part in the 1967 Six-Day-War.
During these battles, the IDF soon realized that the AMX-13 tank in general was too lightly armored and lacked firepower, and this was even more true for the AMX-US with its vintage WWII gun. Losses were heavy at places like Rafah Junction and Jiradi Pass with many tanks destroyed by heavier Arab-fielded Soviet armor, such as T-55 MBTs and IS-3 heavy tanks. After that, both the AMX-13 and the AMX-US were gradually phased out by the IDF, either sold to other nations (e. g. Thailand), broken up for spares or preserved and stored in depots.
In 1975, a handful of these mothballed AMX-US were, together with other outdated Six-Day-War M50 Sherman veterans, re-activated and handed over to the South Lebanese Army (SLA). The SLA was a Christian militia during the Lebanese Civil War, opposing Muslim militias supported by Syria. The SLA received a total of 15 AMX-US, plus 35 M50s, and all these tanks were painted in a characteristic light blue-grey color. The SLA kept these tanks operational and active for a surprisingly long period, the last confirmed appearance of an SLA AMX-US in battle was in 1988. Even after the retirement of the last operational specimen, the SLA still used the AMX-US for training and security duties.
In 2000, nearly ten years after the end of the civil war, the SLA disbanded, and the surviving former IDF tanks were returned to Israel to prevent them from falling into the wrong hands – spelling the end to the AMX-US long career, of which four were returned and subsequently scrapped.
Specifications:
Crew: Four (Commander, Loader, Gunner, Driver)
Weight: 15 tons
Length: 4.88 m (16 ft) overall
Width: 2.51 m (8 ft 2 in)
Height: 2.30 m (7 ft 5 in)
Suspension: Torsion arms; Tracked chassis, 5 roadwheels, drive sprocket front, idler rear,
3.00 m length, 0.35 width, 2.16 m track
Ground clearance: 0.37 m (1 ft 2½ in)
Fording depth: 2 ft (0.6 m) unprepared, 6.9 ft (2.1 m) with snorkel
Grade: 60%
Side slope: 60%
Trench crossing: 1.6 m (5 ft 3 in)
Vertical wall climb: 0.65 m (2 ft 1½ ft)
Fuel capacity: 480 l (127 gal)
Engine:
1× water-cooled Renault SOFAM Model 8Gxb 8-cylinder gasoline with 250 hp
Transmission:
Hydramatic automatic transmission; 8 speeds forward, 4 reverse
Armor:
Hull: 10 - 40 mm (1.57 in)
Turret: max. 38 mm (1.49 in)
Performance:
Speed: 60 km/h (40 mph) maximum, road
Operational range: 350 km (217 mi) on streets with internal fuel only
Power/weight: 17 hp/t
Armament:
1× 75 mm Lightweight Tank Gun M6 in Mount M64 with 48 rounds
1× co-axial 0.30 Cal. (7.62 mm) Browning M1919 machine gun, 2.200 rounds
1× 0.50 Caliber (12.7 mm) M2 Browning anti-aircraft heavy machine gun, 440 rounds
The kit and its assembly:
This fictional tank model is the result of recycling: After a T-34 conversion, which used an AMX-13 turret, I was left with the chassis of a 1:72 Heller kit. The latter is a rather simple and primitive affair, with many wrong details and a very weak running gear. From another, even older conversion project I also had an almost complete turret from a Hasegawa M24 Chaffee left over. When I stumbled in literature over the French AMX-US hybrid I decided to use these leftover bits to create one!
The AMX-13 chassis was taken OOB, because I did want to invest too much energy into this build, despite its many flaws. Its running gear is rubbish, the vinyl tracks featureless, and overall the detail level is rather soft. From a distance it looks like an AMX-13, but any closer inspection reveals the model's simplicity and toy-likeness. The Chaffee turret was also built with the original parts – but I had to replace the gun barrel and find a replacement for the gunner’s hatch.
Nevertheless, some scratch work had to be done. The biggest challenge was the AMX-US’ characteristic turret adapter ring, which markedly raises the M24 turret above the AMX-13 hull. My solution became a manually bent a piece of soft styrene profile - it’s not perfectly circular, but that’s not obvious when the turret is in place, and it looks the part. Furthermore, some small bits were added to hide flaws and distract. These include vertical bars in the exhaust opening, shallow storage boxes on the fenders (hiding the wacky distance ring) and tarpaulin/cammo net packs (created from paper tissue and nylon stockings drenched with white glue). The commander cupola’s hatch was left open and a figure (an ESCI German WWII tank commander) added, to make the model appear livelier. Since the M24’s AA machine gun had been gone, I had to replace it with one from an ESCI Merkava, its mount was moved in front of the cupola.
Painting and markings:
Initially, I just had the French army as potential operator for the AMX-US but found that rather boring due to the very limited livery options: any French tank from the era would have carried a dark olive-green livery, even those operated in North Africa! Some French M24s had been operated in South-East Asia in a sand/green/brown/green jungle scheme, but the time frame would not match well. So, I checked other AMX-13 operators and took liking in an IDF vehicle. However, while looking for potential liveries I came upon the SLA. The AMX-US, had it been handed over to the IDF, could have been among these donor tanks, and their unique (if not spectacular) light blue livery made them outstanding. I am not certain whether the blue tone was intended as serious camouflage or just as an IFF measure? However, among typical light rocks and mountains of the Lebenon and in dusty/hazy air, the bluish tone actually works quite fine, better than expected.
While a uniform livery is not complex, finding a suitable tone for the model took a while. Real life color pictures (of dubious quality) show a wide range of light blue and/or grey tones, ranging from a bright sky blue over pale grey (like FS 36375) to a medium bluish grey (FS 35237), frequently with severe signs of weathering/sun-bleaching which makes some tanks appear almost white. Some M50s also had olive drab or dark grey patches or patterns added on top as additional camouflage.
After testing several options I chose RLM78 (Modelmaster 2088) as basic tone. Odd choice, but it turned out to be light enough, is a rather blue tone (with a slight hint of green), but still dull enough to look like a military tone. An overall washing with a mix of grey, black and red brown followed, and then the model received a thorough, overall dry brushing treatment with various shades of light blue grey, including Modelmaster RLM76, FS 36320 and Revell 75, for a worn and bleached appearance.
The markings had to be completely improvised, though, and were created with Corel Draw on an ink jet printer and with white and clear decal paper. They include the SLA’s cedar tree emblem and the Arabic tactical codes. The white “X” markings were created with generic decal stripes.
After the model had been sealed with matt acrylic varnish, sand and dust residues were created with watercolors, and some beige mineral pigments were dusted into the running gear and over the upper surfaces.
A quick build and a good use of leftover parts from other projects, melded into a plausible result. The SLA livery adds a weird twist to this model, even though it is – in the end – just a mix of real-world elements: the AMX-US existed, and the SLA operated light blue tanks! Life is sometimes stranger than fiction.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
A kitbash using a Phicen body and the blonde headsculpt by Kimi , also wearing a cowgirl outfit by Super Duck .
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the Second World War, France’s armored force consisted, almost entirely, of US-built vehicles, such as the M4 Sherman, M26 Pershing, and M24 Chaffee (among others). France received these vehicles as aid as part of the Marshall Plan and the Mutual Defense Assistance Act (MDAA). These aid pacts also financed the reconstruction of France’s economy and armed forces from 1948 until the late 1950s. In April 1949, the North Atlantic Treaty was signed, and NATO was born, resulting in the United States extending the MDAA. This resulted in France receiving newer vehicles, such as the M47 Patton II tank.
In total, France would operate around 1,250 M24s which were identical to their US counterparts. It was a small tank at 5.45 meters (16 ft 4 in) long, 2.84 meters (9ft 4in) wide, and 2.61 meters (9ft 3in) tall. It weighed 16.6 tonnes (18.37 tons), utilized a torsion bar suspension, and was armed with a 75 mm gun. The tank had a 5-men crew: Commander, Gunner, Loader, Driver, Bow Gunner. The ‘Chaffee’ was named after WWI US Army General, Adna R. Chaffee Jr.
In 1956, the French Army and the Direction des Etudes et Fabrications d’Armements (Directorate of Studies and Manufacture of Armaments, DEFA, an institution within the French Military) were looking into affordable methods of modernizing their fleet of aging M24 Chaffee light tanks, which had been operated since WWII. One method was to somehow combine France’s new domestic light tank, the AMX-13, with the M24.
Initially, this led to the mating of the AMX-13’s FL-10 oscillating turret to the hull of the Chaffee, as the most logical step to improve the M24s. While cheap and feasible, this configuration never went further than trials. This was largely due to a perceived safety issue with the High-Explosive (HE) rounds fired by the CN 75-50 cannon. Inside the FL-10 turret, the CN 75-50 gun was fed via an automatic loading system, which was reloaded externally. If an alternate shell-type needed to be fired, HE, for example, it had to be loaded into the breach manually by the Commander. This was a tricky task in the tight confines of the turret on the standard AMX, made worse by the notoriously sensitive fuze of the HE rounds. This process would be even more dangerous on the smaller hull of the Chaffee. As a result, the inverse of this mounting was decided upon, mounting the Chaffee’s turret on the AMX-13’s hull.
The officially designated AMX-US was a result of this, even though there were many other unofficial names, including ‘AMX-13 Chaffee’ – as it was known by troops – or ‘AMX-13 Avec Tourelle Chaffee (with Chaffee Turret)’. By 1957, work on the inverse of mounting the Chaffee turret to the AMX hull had begun, what was regarded as a safer and easier alternative, and it was also a convenient way of recycling useful Chaffee turrets by separating them from their worn hulls. It also created a vehicle lighter than the regular Chaffee, meaning it was easier to transport.
The M24 turrets went through very little modification for their installation, retaining all the same main features. The only modification necessary was the introduction of an adapter or ‘collar’ to the AMX hull’s turret ring. This was needed as the Chaffee turret had quite a deep basket. The collar granted the basket clearance from the hull floor for uninterrupted, full 360-degree rotation.
The Chaffee turret was a standard design with a typical 3-man crew of the time: Gunner, Loader, and Commander. The Commander sat at the left rear of the turret under a vision-cupola, the gunner sat in front of him. The loader was located at the right-rear of the turret under his own hatch. Armor on the turret was 25 mm (.98 in) thick on all sides, with the gun mantlet being 38 mm (1.49 in) thick.
The AMX-US was operated by a four-man crew, as opposed to the three-man crew of the standard Mle 51, due to the three-man turret of the Chaffee. Armament consisted of the 75 mm Lightweight Tank Gun M6 which had a concentric recoil system (this was a hollow tube around the barrel, a space-saving alternative to traditional recoil cylinders). Variants of this gun were also used on the B-25H Mitchell Bomber, and the T33 Flame Thrower Tank prototype. The shell velocity was 619 m/s (2,031 ft/s) and had a maximum penetration of 109 mm. The elevation range of the gun was around -10 to +13 degrees. Secondary weapons were also retained. This included the coaxial .30 Cal (7.62 mm) Browning M1919 Machine Gun, and the .50 Caliber (12.7 mm) M2 Browning Heavy Machine gun which was mounted on the rear of the turret roof.
Apart from the adaptor or ‘collar’, the AMX hull went through no alterations. It retained the same dimensions, and forward-mounted engine and transmission. The tank was powered by a SOFAM Model 8Gxb 8-cylinder, water-cooled petrol engine developing 250 hp, propelling the tank to a top speed of around 60 km/h (37 mph). The vehicle ran on a torsion bar suspension with five road-wheels, two return rollers, a rear-mounted idler, and a forward-mounted drive-sprocket. The driver was positioned at the front left of the hull, behind the transmission and next to the engine.
Trials with what would be designated the ‘AMX-US’ were undertaken between December 1959 and January 1960. The vehicle was well received, with an order for 150 conversions being placed by the French military in March 1960. Conversion work was carried out at a plant in Gien, North-Central France.
The AMX-US saw brief service in the War in Algeria – otherwise known as the Algerian War of Independence or Algerian Revolution. One known operator was the 9e Régiment de Hussards (9th Hussar Regiment) based in Oran. They served well, but a few were lost in combat, but there is no evidence to suggest they served in any other location with the French military, such as in France or West Germany based regiments.
After the conflict in Algeria, the vehicles were returned to France, but they did not last long in active service after this. Many vehicles were being repurposed into driver trainers. For this, the vehicles were disarmed, with the 75 mm gun and mantlet removed from the turret face and a large plexiglass windscreen was installed in its place.
About fifty surplus AMX-US were sold as scout tanks to Israel, because the AMX-13, which had been procured and operated by the IDF since 1956 in great numbers, was used as a battle tank, so that no IDF reconnaissance unit used the AMX 13. The AMX-US was a perfect and cheap alternative to fill this operational gap, and the vehicles, delivered in 1963, took actively part in the 1967 Six-Day-War.
During these battles, the IDF soon realized that the AMX-13 tank in general was too lightly armored and lacked firepower, and this was even more true for the AMX-US with its vintage WWII gun. Losses were heavy at places like Rafah Junction and Jiradi Pass with many tanks destroyed by heavier Arab-fielded Soviet armor, such as T-55 MBTs and IS-3 heavy tanks. After that, both the AMX-13 and the AMX-US were gradually phased out by the IDF, either sold to other nations (e. g. Thailand), broken up for spares or preserved and stored in depots.
In 1975, a handful of these mothballed AMX-US were, together with other outdated Six-Day-War M50 Sherman veterans, re-activated and handed over to the South Lebanese Army (SLA). The SLA was a Christian militia during the Lebanese Civil War, opposing Muslim militias supported by Syria. The SLA received a total of 15 AMX-US, plus 35 M50s, and all these tanks were painted in a characteristic light blue-grey color. The SLA kept these tanks operational and active for a surprisingly long period, the last confirmed appearance of an SLA AMX-US in battle was in 1988. Even after the retirement of the last operational specimen, the SLA still used the AMX-US for training and security duties.
In 2000, nearly ten years after the end of the civil war, the SLA disbanded, and the surviving former IDF tanks were returned to Israel to prevent them from falling into the wrong hands – spelling the end to the AMX-US long career, of which four were returned and subsequently scrapped.
Specifications:
Crew: Four (Commander, Loader, Gunner, Driver)
Weight: 15 tons
Length: 4.88 m (16 ft) overall
Width: 2.51 m (8 ft 2 in)
Height: 2.30 m (7 ft 5 in)
Suspension: Torsion arms; Tracked chassis, 5 roadwheels, drive sprocket front, idler rear,
3.00 m length, 0.35 width, 2.16 m track
Ground clearance: 0.37 m (1 ft 2½ in)
Fording depth: 2 ft (0.6 m) unprepared, 6.9 ft (2.1 m) with snorkel
Grade: 60%
Side slope: 60%
Trench crossing: 1.6 m (5 ft 3 in)
Vertical wall climb: 0.65 m (2 ft 1½ ft)
Fuel capacity: 480 l (127 gal)
Engine:
1× water-cooled Renault SOFAM Model 8Gxb 8-cylinder gasoline with 250 hp
Transmission:
Hydramatic automatic transmission; 8 speeds forward, 4 reverse
Armor:
Hull: 10 - 40 mm (1.57 in)
Turret: max. 38 mm (1.49 in)
Performance:
Speed: 60 km/h (40 mph) maximum, road
Operational range: 350 km (217 mi) on streets with internal fuel only
Power/weight: 17 hp/t
Armament:
1× 75 mm Lightweight Tank Gun M6 in Mount M64 with 48 rounds
1× co-axial 0.30 Cal. (7.62 mm) Browning M1919 machine gun, 2.200 rounds
1× 0.50 Caliber (12.7 mm) M2 Browning anti-aircraft heavy machine gun, 440 rounds
The kit and its assembly:
This fictional tank model is the result of recycling: After a T-34 conversion, which used an AMX-13 turret, I was left with the chassis of a 1:72 Heller kit. The latter is a rather simple and primitive affair, with many wrong details and a very weak running gear. From another, even older conversion project I also had an almost complete turret from a Hasegawa M24 Chaffee left over. When I stumbled in literature over the French AMX-US hybrid I decided to use these leftover bits to create one!
The AMX-13 chassis was taken OOB, because I did want to invest too much energy into this build, despite its many flaws. Its running gear is rubbish, the vinyl tracks featureless, and overall the detail level is rather soft. From a distance it looks like an AMX-13, but any closer inspection reveals the model's simplicity and toy-likeness. The Chaffee turret was also built with the original parts – but I had to replace the gun barrel and find a replacement for the gunner’s hatch.
Nevertheless, some scratch work had to be done. The biggest challenge was the AMX-US’ characteristic turret adapter ring, which markedly raises the M24 turret above the AMX-13 hull. My solution became a manually bent a piece of soft styrene profile - it’s not perfectly circular, but that’s not obvious when the turret is in place, and it looks the part. Furthermore, some small bits were added to hide flaws and distract. These include vertical bars in the exhaust opening, shallow storage boxes on the fenders (hiding the wacky distance ring) and tarpaulin/cammo net packs (created from paper tissue and nylon stockings drenched with white glue). The commander cupola’s hatch was left open and a figure (an ESCI German WWII tank commander) added, to make the model appear livelier. Since the M24’s AA machine gun had been gone, I had to replace it with one from an ESCI Merkava, its mount was moved in front of the cupola.
Painting and markings:
Initially, I just had the French army as potential operator for the AMX-US but found that rather boring due to the very limited livery options: any French tank from the era would have carried a dark olive-green livery, even those operated in North Africa! Some French M24s had been operated in South-East Asia in a sand/green/brown/green jungle scheme, but the time frame would not match well. So, I checked other AMX-13 operators and took liking in an IDF vehicle. However, while looking for potential liveries I came upon the SLA. The AMX-US, had it been handed over to the IDF, could have been among these donor tanks, and their unique (if not spectacular) light blue livery made them outstanding. I am not certain whether the blue tone was intended as serious camouflage or just as an IFF measure? However, among typical light rocks and mountains of the Lebenon and in dusty/hazy air, the bluish tone actually works quite fine, better than expected.
While a uniform livery is not complex, finding a suitable tone for the model took a while. Real life color pictures (of dubious quality) show a wide range of light blue and/or grey tones, ranging from a bright sky blue over pale grey (like FS 36375) to a medium bluish grey (FS 35237), frequently with severe signs of weathering/sun-bleaching which makes some tanks appear almost white. Some M50s also had olive drab or dark grey patches or patterns added on top as additional camouflage.
After testing several options I chose RLM78 (Modelmaster 2088) as basic tone. Odd choice, but it turned out to be light enough, is a rather blue tone (with a slight hint of green), but still dull enough to look like a military tone. An overall washing with a mix of grey, black and red brown followed, and then the model received a thorough, overall dry brushing treatment with various shades of light blue grey, including Modelmaster RLM76, FS 36320 and Revell 75, for a worn and bleached appearance.
The markings had to be completely improvised, though, and were created with Corel Draw on an ink jet printer and with white and clear decal paper. They include the SLA’s cedar tree emblem and the Arabic tactical codes. The white “X” markings were created with generic decal stripes.
After the model had been sealed with matt acrylic varnish, sand and dust residues were created with watercolors, and some beige mineral pigments were dusted into the running gear and over the upper surfaces.
A quick build and a good use of leftover parts from other projects, melded into a plausible result. The SLA livery adds a weird twist to this model, even though it is – in the end – just a mix of real-world elements: the AMX-US existed, and the SLA operated light blue tanks! Life is sometimes stranger than fiction.
Some background:
The Leyland “Type D” was one of several armoured vehicle types designed in 1940 on the orders of Lord Beaverbrook and Admiral Sir Edward Evans, as a part of the hasty measures taken by the British Government following the Dunkirk evacuation and the threat of invasion.
The “Type D” was a heavy scout car, intended to replace the Lanchester 6x4 and Rolls-Royce 4x2 armoured cars, which dated back to the WWI era and the early interwar period. While they were reliable vehicles and still in active service, their off-road capabilities, armament and armour left a lot to be desired – esp. in the face of the modern German army and its effective equipment.
Certainly inspired by the German SdKfz. 231/232 family of heavy 8x8 armoured reconnaissance vehicles, Leyland added a fourth axle to better distribute the vehicle’s weight and a drivetrain to the front axle to a modified “Retriever” 3-ton 6x4 lorry chassis, resulting in a 6x8 layout. The rigid axles were mounted on leaf springs front and rear with hydraulic dampers, both front axles were steerable. The engine, a water-cooled 6-litre, 4-cylinder overhead camshaft petrol engine with 73 hp, was, together with the gearbox, relocated to the rear, making room for a fully enclosed crew compartment in the front section with two access doors in the vehicle’s flanks. The crew consisted of four, with the driver seat at the front. The gunner and commander (the commander at the right and gunner at the left) stood behind them into the turret or were sitting on simple leather belts, and behind them was a working station for a radio operator.
The tall, cylindrical turret was welded and electrically traversed, but it lacked a commander cupola. All the armament was mounted in the turret and consisted of a quick-firing two-pounder (40mm) cannon and a coaxial 7.92 mm Besa machine gun. The faceted hull was, like the turret, welded from homogenous steel armour plates, and a straightforward design. Maximum armour thickness was 15 mm at the front, 8 mm on the sides, and 10 mm on the back, with 6 mm and 5 mm of armour on the top and bottom respectively. It had been designed to provide protection from small arms fire and HE fragments, but it was ineffective against heavier weapons. This armour was a compromise, since better protection had resulted in a higher weight and overstrained the Type D’s lorry chassis and engine. The armoured cabin was mounted to the chassis at only four points - front, rear and sides - to give some flexibility but with precautions against excessive movement.
The Type D’s prototype was designed, built, tested and approved just within 3 months. Deliveries of the first production vehicles commenced only 2 months later, just in time to become involved in the North Africa campaign. All early production vehicles were immediately sent to Egypt and took part in Operation Compass and the Western Desert Campaign.
It comes as no surprise that the Type D – developed and produced in a hurry and thrown into battle in an environment it had not been designed for – initially failed, and even when the worst deficits had been rectified the Type D’s performance remained mediocre at best. The biggest problems concerned the engine’s cooling system, its low power output and therefore poor speed, and the vehicle’s poor off-road performance, esp. on soft ground like sand. The vehicle’s suspension was quickly overburdened in heavy terrain and the tall turret placed its center of gravity very high, making the Type D prone to topple over to a side when slope angles were taken too slightly. Poor cabin ventilation was another problem that became even more apparent under the African sun.
Initial losses were high: more than half of the Type Ds lost in North Africa during the early months of 1941 were abandoned vehicles which got stuck or had to be left behind due to mechanical failures. The rest had fallen easy prey to German and Italian attacks – the Type D was not only very vulnerable even to the Panzer II’s 20 mm autocannon, its thin top armour made it in the open desert also very vulnerable to air attacks: German MG 131 machine gun rounds easily punched the vehicle’s shell, and even lighter weapons were a serious threat to the tall Type D.
As soon as the first sobering field reports returned back to Great Britain, Leyland immediately devised major improvements. These were introduced to newly produced Mk. II vehicles and partly retrofitted to the early Mk. I vehicles in field workshops. One of these general improvements were new desert wheels and tires, which were considerably wider than the original lorry wheels and featured a flat pattern that better distributed the vehicle’s weight on soft and unstable ground, what considerably improved the Type D’s performance on sand. A kit with a more effective radiator and a bigger engine cooling system was quickly developed and sent to the units in Africa, too. The kit did not fully solve the overheating problems of the early Mk. I, but improved the situation. From the outside, retrofitted Type Ds could be recognized by a raised engine cover with enlarged air intakes. Due to the limits of the chassis the armour level was not improved, even though the crews and field workshops tried to attach improvised additional protective measures like spare track links from tanks or sandbags – with mixed results, though. The armament was not updated either, except for an optional mount for an additional light anti-aircraft machine gun on the turret and kits for smoke dischargers on the turret’s flanks.
The Type D Mk. II, which gradually replaced the Mk. I on the production lines from March 1941 on, furthermore received a different and much more effective powerplant, a Leyland 7-litre six-cylinder diesel engine with an output of 95 hp (70 kW). It not only provided more power and torque, markedly improving the vehicle’s off-road performance, it also had a better fuel economy than the former lorry petrol engine (extending range by 25%), and the fuel itself was less prone to ignite upon hits or accidents.
During its short career the Leyland Type D was primarily used in the North African Campaign by the 11th Hussars and other units. After the invasion of Italy, a small number was also used in the Southern European theatre by reconnaissance regiments of British and Canadian infantry divisions. A few vehicles were furthermore used for patrol duty along the Iran supply route.
However, the Type D was not popular, quickly replaced by smaller and more agile vehicles like the Humber scout car, and by 1944 outdated and retired. Leyland built a total of 220 Type Ds of both versions until early 1943, whilst an additional 86 Mk. IIs were built by the London, Midland and Scottish Railway's Derby Carriage Works.
Specifications:
Crew: Four (commander, gunner, driver, co-driver/radio operator/loader)
Weight: 8.3 tons
Length: 20 ft 5 in (6,30 m)
Width: 7 ft 5 in (2,27 m)
Height: 9 ft 2¾ in (2,81 m)
Ground clearance: 12 in (30.5 cm)
Turning radius: 39 ft (12 m)
Suspension: Wheel, rigid front and rear axles;
4x8 rear-wheel drive with selectable additional 6x8 front axle drive
Fuel capacity: 31 imp gal (141 litres)
Armour:
5–15 mm (0.2 – 0.6 in)
Performance:
Maximum road speed: 35 mph (56 km/h)
Sustained road speed: 30 mph (48 km/h)
Cross country speed: up to 20 mph (32 km/h)
Operational range: 250 mi (400 km)
Power/weight: 11,44 hp/ton
Engine:
1× Leyland 7-litre six-cylinder diesel engine, 95 hp (70 kW)
Transmission:
4-speed, with a 2-speed auxiliary box
Armament:
1× QF Two-pounder (40 mm/1.57 in) cannon with 94 rounds
1× 7.92 mm Besa machine gun mounted co-axially with 2.425 rounds
2-4× smoke dischargers, mounted on the turret
The kit and its assembly:
This fictional British WWII vehicle might look weird, but it has a real-world inspiration: the Marmon Herrington Mk. VI armoured heavy scout car. This vehicle only existed as a prototype and is AFAIK still preserved in a museum in South Africa – and upon a cursory glance it looks like an SdKfz. 232 with the shrunk turret from a “Crusader” cruiser tank with a short-barreled six pounder gun. It looks like a fake! Another reason for this build was a credible “canvas” for the application of the iconic “Caunter Scheme”, so that I placed the Type D in a suitable historic time frame.
The Type D was not supposed to be a truthful Marmon Herrington Mk. VI copy, so I started with a 1:72 “First to Fight” SdKfz. 232. This is a simple and sturdy tabletop wargaming model, but it is quite accurate, goes together well, is cheap and even comes with a metal gun barrel. It’s good value for the money, even though the plastic is a little thick and soft.
However, from this basis things changed in many ways. I initially wanted to shorten the hull, but the new wheels (see below) made this idea impossible. Nevertheless, the front glacis plate was completely re-modeled with 2C putty in the style of the Humber scout car, and the crew cabin was extended backwards with the same method. New observation slits had to be scratched with styrene profile material. The engine bay received a raised cover, simulating extra air intakes. The turret was replaced with a resin piece for an A13 “Valentine” Mk.III tank (S&S Models), which had a perfect size and even came with a suitable gun.
The suspension was taken OOB, but the wheels were replaced with two aftermarket resin sets (Silesian Models) with special Allied desert wheels/tires from 1941, they originally belong to a Chevrolet truck and are markedly bigger and wider than the SdKfz. 232 wheels. However, they had to be modified to match the rest of the suspension, and their size necessitated a thorough modification of the mudguards. They were not only mounted 1mm higher on the flanks, their sides, normally consisting of closed skirts, were fully opened to make sufficient room for the new wheels to change the vehicle’s look. They were furthermore separated into four two-wheel covers and their front and rear ends were slightly bent upwards. Sufficient space for the side doors had to be made, too. The spare wheels that came with the respective sets were mounted to the front (again Humber-style) and onto the engine bay cover, under a scratched tarpaulin (made from paper tissue drenched with white glue).
To conceal the SdKfz. 232 heritage even more I added more equipment to the vehicle’s flanks. Tool boxed were added to the engine bay’s flanks, some more tools to the fenders, scratched tarpaulin rolls above the side doors and I tried to scratch PSP plates with aluminum foil rubbed against a flight stand diorama floor made from PSP. Not perfect, but all the stuff livens the Type D up. A new exhaust (IIRC from a Panzer IV) was added to the rear and bumpers scratched from wire and mounted low unto the hull.
Painting and markings:
Finally, the British, so-called “Caunter Scheme”, a great source of misinterpretation not only in museums but also by modelers who have painted their British tanks in dubious if not garish colors. I do not claim that my interpretation of the colors is authentic, but I did some legwork and tried to improvise with my resources some tones that appear plausible (at least to me), based on descriptions and contemporary references.
The pattern itself was well defined for each vehicle type, and I adapted a M3 “Stuart” pattern for the model. All three basic colors, “Light Stone”, “Silver Grey” and “Slate”, were guesstimated. “Slate” is a relatively dark and greenish tone, and I chose Tamiya XF-65 (Field Grey). “Light Stone” is rather yellow-ish, light sand tone, and I used Humbrol 103 (Cream). Some sources suggest the use of Humbrol 74 (linen) as basis, but that is IMHO too yellow-ish and lacks red. The most obscure tone is “Silver Grey”, and its depictions range from a pale and dull light olive drab over blue-grey, greenish grey to bright light blue and even turquoise. In fact, this tone must have had a greenish-blue hue, and so I mixed Humbrol 145 (FS 35237) with maybe Humbrol 94 in a 3:1 ratio to achieve an “in between” tone, which is hard to describe - maybe as a greenish sand-grey? A funny effect of the colors in direct contrast is that the XF-65 appeared with an almost bluish hue! Overall, the choice of colors seems to work, though, and the impression is good.
Painting was, as usual, done with brushes and, due to the vehicle’s craggy shape, free-handedly. After basic painting the model received a light washing with a mix of black ink and brown, and some post-shading was done with light grey (Revell 75) and Hemp (Humbrol 168). Decals came from the scrap box, and before an overall protective coat of matt acrylic varnish was applied, the model received an additional treatment with thinned Revell 82 (supposed to be RAF Dark Earth but it is a much paler tone).
A more demanding build than one would expect at first sight. The SdKafz. 232 is unfortunately still visible, but the desert wheels, including the spare wheels, change the look considerably, and the British replacement turret works well, too. Using the tabletop model basis was not a good move, though, because everything is rather solid and somewhat blurry, esp. the many molded surface details, which suffered under the massive body work. On the other side, the Counter Scheme IMHO turned out well, esp. the colors, even though the slender hull made the adaptation of the pattern from a (much shorter) tank not easy. But most of the critical areas were hidden under extra equipment, anyway. 😉
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some panel lines with a mix of matte varnish and Panzergrau, plus some dry painting all over the fuselage.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. ;)
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and registration wwre puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, E (red) V marks the individual plane while the red E and the control letter "V" at the end designate a plane from the eleventh squadron. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
An original vampiric character of my own devising, and a 1/6 scale kitbash figure, conceived and assembled by myself, photographed employing layered filters from Enjoyphoto, Superphoto & default editing apps on my cameraphone.
The notion behind this character (part of an ongoing project) is to create an 'anti-Buffy': a mortal agent, bound by blood, and devoted to a Vampyre Lord and the interests of its House.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".
The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.
But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.
Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.
Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.
Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.
The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.
The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.
The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.
AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.
Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.
The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.
Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.
Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.
While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.
USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.
The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.
Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.
International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.
General F-24A characteristics:
Crew: 1 pilot
Length: 47 ft 4 in (14.4 m)
Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)
Height: 13 ft 10 in (4.20 m)
Wing area: 36.55 m² (392 ft²)
Empty weight: 13.150 lb (5.090 kg)
Loaded weight: 15.480 lb (6.830 kg)
Max. take-off weight: 27.530 lb (12.500 kg)
Powerplant
1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner
Performance
Maximum speed: Mach 2+
Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks
Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks
Service ceiling: 55,000 ft (16,800 m)
Rate of climb: 52,800 ft/min (255 m/s)
Wing loading: 70.0 lb/ft² (342 kg/m²)
Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)
Armament
1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG
Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.
The kit and its assembly:
A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.
As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.
I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.
Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):
● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear
● Fin and nose cone from an Italeri F-16A
● Inner wings from a (vintage) Hasegawa MiG-21F
● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)
The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.
The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?
Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.
The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.
For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.
All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.
Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.
The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.
Painting and markings:
At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.
A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).
“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.
The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.
Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.
Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some panel lines with a mix of matte varnish and Panzergrau, plus some dry painting all over the fuselage.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. ;)
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and registration wwre puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, E (red) V marks the individual plane while the red E and the control letter "V" at the end designate a plane from the eleventh squadron. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
Some background:
A vanship is a type of flying machine from the animated series Last Exile. It is often referred to as a "flying boat" in that it does not fly by means of aerodynamics like planes do, but rather by floating on the air and propelling itself through the use of a substance known as "Claudia" (see below).
Vanships in general were couriers prior to the events of Last Exile, traveling long distances to deliver cargoes (usually messages). Some Vanships thus include tools for towing solid objects.
The design of several vanships throughout the series bears great resemblance to various famed 1930s racecars than any aircraft, most notably the Anatoray millitary vanships which bear great resemblance to the 1933 Napier Railton. The resemblance is found in the grill shape of the cowl vents and the shape of the tail cone, as well as the aerodynamic bulges on the car which cover the valve covers and exaust on the car, which are also found on the Anatoray vanships.
Other Vanships bear striking design elements from Junkers aircraft in the pre-WWII era, e. g. from the A 35 monoplane.
"Spirit of Grand Stream" is a courier-type vanship (see below) owned by Claus Valca and Lavie Head, and its design is very similar to that of Hayao Miyazaki's gunship from Nausicaa of the Valley of the Wind. The matches are really focused on the two seated open cockpit, and the navigator section which has matching interface panels of small glass cylinders.
Courier vanships, also known as racing vanships, are one of the main types of vanship featured in Last Exile. Courier vanships are small and narrow with a single, high-powered thruster. Like any vanship intended to achieve high speeds, they have stub wings, far too small themselves to provide lift. They simply act as mounts for ailerons to provide better steering, as pivoting the thruster would put undue stress on the assembly at high speeds.
Over the course of Last Exile, Vanships were adapted for combat. The process resembles the evolving roles that aircraft held during WW1; originally developed for scouting and surveillance, but eventually equipped with bombs and machine guns to become potent fightercraft.
Claudia is a fluorescent blue ore mined on the floating world of Prester. It is the foundation of Prester's technology, fueling steam engines and is a key element of the claudia units that allow vanships to fly. Claudia is also the primary currency of Prester. It is well suited for the purpose, as it is constantly generated by Prester and is not possible to counterfeit.
Claudia, when dissolved in water, serves as the primary drive fluid in a claudia unit. When Claudia fluid is heated and compressed, it generates lift. A vanship engine has a distinctive claudia circulation pipe loop, where the supercritical fluid generates both lift and thrust.
Dissolving Claudia in alcohol dramatically increases the energy density of the fuel. This is why steam engines are the predominant technology of Last Exile, instead of the internal combustion engine. Technology design documents from the production of the show indicate that the steam engines of Last Exile have a power to weight ratio exceeding that of a modern gasoline fueled internal combustion engine.
All vanships in the series were rendered as 3D images, a hallmark of Japanese animation studio Gonzo, makers of such series as Vandread and Blue Submarine No. 6.
The kit and its assembly:
I love the Vanships from Last Exile - even though I have never seen the series.
While these vehicles appear as retro stuff, they are very original and unique in look and feel - a modeler's dream if you are into scratchbuilding and kitbashing. There's also a 1:72 Vanship kit available (actually, in two versions) from Hasegawa, but it is IMHO overpriced. And there are so many different Vanships in the series that it is a shame that not more of them have been kitted, scratched, or at least used as a source of modelling inspiration.
The latter's the case here. I had a scratched Vanship on the agenda for a long time and also a basic idea with what I'd start, but it took a SF racing GB at phoxim.de ( a German SF model building forum) to make a move.
I wanted a small and fast single seater, and this evolved through the GB into a Racer with a more prominent engine unit and a rather purposeful livery instead of bright colors. But the basic concept was retained: originally, the plan was to use a 1:72 F4U as fuselage basis, and I had the idea to integrate some parts of a 1:43 Citroen 11CV from Heller, e. g. its grill and bonnet.
The F4U is the SMER kit, and it has the benefit of having separate wings for a folded display. The fin was cut off and the landing gear wells covered.
The cockpit opening was slightly enlarged in order to take a 1:48 Japanese WWII resin pilot and a seat from the 1:43 11CV - pretty cramped, but it worked and looks good. Only the wind screen of the OOB F4U canopy was used, as well as the original dashboard.
Most work was done on the outside, though. The first problem turned up when I realized that the 11CV bonnet could hardly be mated with the F4U. As a plan B I found a cover for the brush head of a Philipps electric toothbrush in my donor bank - a bit too high and narrow, but overall a unique addition and characteristic nose for my creation!
The landing gear comes from an Amodel Ju-87A - together with the drooped F4U inner wings the result looked a bit stalky at first, but the Vanship still needed its engines.
As a racer, I went for double power, and the long pods that carry the propulsion system were scratched from several non-model-kit parts:
- Front comes from a Revell 1:32 AH-64 Apache, its engines
- The intakes come from a Matchbox Gloster Meteor NF.14
- The "ring" consists of wheel parts from the Heller 11CV
- The conic isolators are ball pen grips, cut to size and closed with tank wheels on both ends
- The fins are plastic knives, primarily the blades and parts of the handles
In between these engine pods, which are only held under the wings and stabilized internally through steel wire, a generator pod from a 1:72 Matchbox EA-6B fills the void. It also holds a characteristic "knife" under the front grill - again carved from the handle of the plastic knives.
In order to blend the changes in fuselage shape and diameter and create a kind of Cord-style grill I added three styrene strips which were wrapped around the nose, the upper line reaching back to the cockpit - a kind of 3D rally stripe that also streches the shape.
Some air scoops and surface details were added, made from styrene, and stiff cable was used under the front fuselage to create hoses between the bonnet with the Claudia reactor and the engines.
I was frequently tempted to add more things and details or decoration, but found that a rather clean look would better suit a dedicated racer Vanship - the Stutz Blackhawk land speed record car was a vague benchmark.
Painting and markings:
I wanted to keep things simple and dry. Before this turned into a racer I considered several colors like pale blue, a greyish-green, British Racing Green or Crimson, with ivory trim. Anyway, I rejected this in favir of a pure, bare metal finish. I even did not add colorful stripes - the only "color" comes from the mechanical parts (ivory and dark brown on the engine pods, the idea was to add an isolator impression) and the small sponsor decals.
The kit initially received a basic coat of Revell's acrylic Aluminum, and onto that panels/field with several Metallizer tones (Steel, Magnesium, Titanium, polished Aluminum) were added. On top of that, the whole thing received a rubbing with grinded graphite - intensifying the metal shine and also weathering the vehicle.
The pilot received a rather conservatie outfit, with a brown leather jacket - matching the overall style of the Vanship. Some engine parts (e. g. the blades and the knife under the nose) were painted with a mix of Steel Metallizer and Gold. The cockpit interior was painted in RLM 02.
The markings were puzzled together. The start number '24' in that nice retro type comes from an 1:72 Airfix Il-2, the black disc below is from a slot car aftermarket sheet. The many sponsor stickers come mostly from an 1:72 Su-27 demonstrator aircraft sheet from Begemot - with their cyrillic typo they blend well into the Last Exile look and feel (where Greek/Cyrillic typo pops up).
Finally, the kit received a coat with acrylic gloss varnish, while the anti glare panel in front of the windscreen became matt.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background
The Hütter Hü 324 was the final development stage of BMW's 'Schnellbomber II' project, which had been designed around two mighty BMW 109-028 turboprops.
These innovative engines had been developed since February 1941, but did not receive fullest attention due to the more promising jet engines. Anyway, it soon became clear that no jet engine with the potential to drive a bomber-sized aircraft - considering both performance and fuel consumption - would be available on short notice. Consequently, the BMW 028 received more attention from the RLM from 1943 on.
Biggest pressure came from the fact that several obsolete types like the He 111 or Do 217 had to be replaced, and the ill-fated and complicated He 177 was another candidate with little future potential, since four-engined variants had been rejected. Additionally, the promising and ambitious Ju 288 had been stillborn, and a wide gap for a tactical medium bomber opned in the Luftwaffe arsenal.
In may 1943, new requirements for a medium bomber were concretised. Main objective was to design a fast, twin-engined bomber, primarily intended for horizontal bombing, which would be able to carry a 3.000 kilograms (6.600 lbs) payload at 800 kilometres per hour in a 1.500km (900 ml) radius. The plane had to be fast and to operate at great heights, limiting the threat of interception.
Since many major design bureaus’ resources were bound, Ulrich W. Hütter, an Austro-German engineer and university professor got involved in the RLM project and BMW's design team which had been working on appropriate designs. In July 1943, Hütter moved to the Research Institute of the Graf Zeppelin works (FGZ) convened in Ruit near Stuttgart, and as head of the engineering department he was also involved in the development of manned missiles, underwater towing systems and the Hü 211 high altitude interceptor/reconnaissance plane.
Under Ulrich W. Hütter and his brother, Wolfgang Hütter, BMW's original and highly innovative (if not over-ambitious) Schnellbomber designs gave way to a more conservative layout: the so-called BMW-Hütter Hü 324.
The plane was conventional in layout, with high, unswept laminar profile wings and a high twin tail. The engines were carried in nacelles slung directly under the wings. The nose wheel retracted rearwards, while the main wheels retracted forwards into the engine nacelles, rotating 90°, and laying flat under the engines. The crew of four (pilot, co-pilot/bombardier, navigator/radar operator and gunner/radio operator) were accommodated in a compact, pressurised "glass house" cockpit section – a popular design and morale element in Luftwaffe bomber and reconnaissance aircraft of that era.
Construction of the first prototype started in February 1945, and while the aircraft cell made good progress towards the hardware stage, the development suffered a serious setback in March when BMW admitted that the 109-028 turboprop engine would not be ready in time. It took until August to arrive, and the prototype did not fly until 6 November 1945.
Initial flight test of the four A-0 pre-production samples of the Hü 324 went surprisingly well. Stability and vibration problems with the aircraft were noted, though. One major problem was that the front glas elements were prone to crack at high speeds, and it took a while to trace the troubole source back to the engines and sort these problems out. Among others, contraprops were fitted to counter the vibration problems, the engines' power output had to be reduced by more than 500 WPS and the tail fins had to be re-designed.
Another innovative feature of this bomber was the “Elbegast” ground-looking navigation radar system, which allowed identification of targets on the ground for night and all-weather bombing. It was placed in a shallow radome behind the front wheel. Performance-wise, the system was comparable to the USAAF’s H2X radar, and similarly compact. Overall, the Hü 324 showed much promise and a convincing performance, was easy to build and maintain, and it was immediately taken to service.
Despite the relatively high speed and agility for a plane of its size, the Hü 324 bore massive defensive armament: the original equipment of the A-1 variant comprised two remotely operated FDL 131Z turrets in dorsal (just behind the cockpit) and ventral (behind the bomb bay) position with 2× 13 mm MG 131 machine guns each, plus an additional, unmanned tail barbette with a single 20mm canon. All these guns were aimed by the gunner through a sighting station at the rear of the cockpit, effectively covering the rear hemisphere of the bomber.
After first operational experience, this defence was beefed up with another remotely-controlled barbette with 2× 13 mm MG 131 machine guns under the cockpit, firing forwards. The reason was similar to the introduction of the chin-mounted gun turret in the B-17G: the plane was rather vulnerable to frontal attacks. In a secondary use, the chin guns could be used for strafing ground targets. This update was at first called /R1, but was later incorporated into series production, under the designation A-2.
Effectively, almost 4.500kg ordnance could be carried in- and externally, normally limited to 3.000kg in the bomb bay in order to keep the wings clean and reduce drag, for a high cruising speed. While simple iron bombs and aerial mines were the Hü 324's main payload, provisions were made to carry guided weapons like against small/heavily fortified targets. Several Rüstsätze (accessory packs) were developed, and the aircraft in service received an "/Rx" suffix to their designation, e. g. the R2 Rüstsatz for Fritz X bomb guidance or the R3 set for rocket-propelled Hs 293 bombs.
Trials were even carried out with a semi-recessed Fieseler Fi 103 missile, better known as the V1 flying bomb, hung under the bomber's belly and in an enlarged bomb bay, under deletion of the ventral barbette.
The Hü 324 bomber proved to be an elusive target for the RAF day and night fighters, especially at height. After initial attacks at low level, where fast fighters like the Hawker Tempest or DH Mosquito night fighters were the biggest threat, tactics were quickly changed. Approaching at great height and speed, bombing was conducted from medium altitudes of 10,000 to 15,000 feet (3,000 to 4,600 m).
The Hü 324 proved to be very successful, striking against a variety of targets, including bridges and radar sites along the British coast line, as well as ships on the North Sea.
From medium altitude, the Hü 324 A-2 proved to be a highly accurate bomber – thanks to its "Elbegast" radar system which also allowed the planes to act as pathfinders for older types or fast bombers with less accurate equipment like the Ar 232, Ju 388 or Me 410. Loss rates were far lower than in the early, low-level days, with the Hü 324 stated by the RLM as having the lowest loss rate in the European Theatre of Operations at less than 0.8 %.
BMW-Hütter Ha 324A-2, general characteristics:
Crew: 4
Length: 18.58 m (60 ft 10 in)
Wingspan: 21.45 m (70 ft 4½ in )
Height: 4.82 m (15 ft 9½ in)
Wing area: 60.80 m² (654.5 ft.²)
Empty weight: 12,890 kg (28,417 lb)
Loaded weight: 18,400 kg (40,565 lb)
Max. take-off weight: 21,200 kg (46,738 lb)
Performance:
Maximum speed: 810 km/h (503 mph) at optimum height
Cruising speed: 750 km/h (460 mph) at 10,000 m (32,800 ft)
Range: 3.500 km (2.180 ml)
Service ceiling: 11.400 m (37.500 ft)
Rate of climb: 34.7 m/s (6,820 ft/min)
Powerplant:
Two BMW 109-028 ‘Mimir’ turboprop engines, limited to 5.500 WPS (4.044 WkW) each plus an additional residual thrust of 650kg (1.433 lb), driving four-bladed contraprops.
Armament:
6× 13mm MG 131 in three FDL 131Z turrets
1× 20mm MG 151/20 in unmanned/remote-controlled tail barbette
Up to 4.500 kg (9.800 lbs) in a large enclosed bomb-bay in the fuselage and/or four underwing hardpoints.
Typically, bomb load was limited to 3.000 kg (6.500 lbs) internally.
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some enhanced panel lines (with a mix of matte varnish and Panzergrau), as well as some dry painting all over the fuselage.
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. Propeller spinners were painted RLM 70 (Schwarzgrün) on the front half, the rear half was painted half black and half white.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and squadron code were puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, "EV" marks the individual plane, the red "E" and the control letter "V" at the end designate a plane from the eleventh squadron of KG 210. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
So, after some more surgical work than expected, the Hü 324 medium bomber is ready to soar!
The kit and its assembly
This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:
● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber
● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)
● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail
● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)
Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?
Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.
The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.
The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".
Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.
The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.
Painting
Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some panel lines with a mix of matte varnish and Panzergrau, plus some dry painting all over the fuselage.
Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. ;)
All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?
Markings and registration wwre puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, E (red) V marks the individual plane while the red E and the control letter "V" at the end designate a plane from the eleventh squadron. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
After the success of the Soviet Union’s first carrier ship, the Moskva Class (Projekt 1123, also called „Кондор“/„Kondor“) cruisers in the mid 1960s, the country became more ambitious. This resulted in Project 1153 Orel (Russian: Орёл, Eagle), a planned 1970s-era Soviet program to give the Soviet Navy a true blue water aviation capability. Project Orel would have resulted in a program very similar to the aircraft carriers available to the U.S. Navy. The ship would have been about 75-80,000 tons displacement, with a nuclear power plant and carried about 70 aircraft launched via steam catapults – the first Soviet aircraft carrier that would be able to deploy fixed-wing aircraft.
Beyond this core capability, the Orel carrier was designed with a large offensive capability with the ship mounts including 24 vertical launch tubes for anti-ship cruise missiles. In the USSR it was actually classified as the "large cruiser with aircraft armament".
Anyway, the carrier needed appropriate aircraft, and in order to develop a the aircraft major design bureaus were asked to submit ideas and proposals in 1959. OKB Yakovlev and MiG responded. While Yakovlev concentrated on the Yak-36 VTOL design that could also be deployed aboard of smaller ships without catapult and arrester equipment, Mikoyan-Gurevich looked at navalized variants of existing or projected aircraft.
While land-based fighters went through a remarkable performance improvement during the 60ies, OKB MiG considered a robust aircraft with proven systems and – foremost – two engines to be the best start for the Soviet Union’s first naval fighter. “Learning by doing”, the gathered experience would then be used in a dedicated new design that would be ready in the mid 70ies when Project 1153 was ready for service, too.
Internally designated “I-SK” or “SK-01” (Samolyot Korabelniy = carrier-borne aircraft), the naval fighter was based on the MiG-19 (NATO: Farmer), which had been in production in the USSR since 1954.
Faster and more modern types like the MiG-21 were rejected for a naval conversion because of their poor take-off performance, uncertain aerodynamics in the naval environment and lack of ruggedness. The MiG-19 also offered the benefit of relatively compact dimensions, as well as a structure that would carry the desired two engines.
Several innovations had to be addresses:
- A new wing for improved low speed handling
- Improvement of the landing gear and internal structures for carrier operations
- Development of a wing folding mechanism
- Integration of arrester hook and catapult launch devices into the structure
- Protection of structure, engine and equipment from the aggressive naval environment
- Improvement of the pilot’s field of view for carrier landings
- Improved avionics, esp. for navigation
Work on the SK-01 started in 1960, and by 1962 a heavily redesigned MiG-19 was ready as a mock-up for inspection and further approval. The “new” aircraft shared the outlines with the land-based MiG-19, but the nose section was completely new and shared a certain similarity to the experimental “Aircraft SN”, a MiG-17 derivative with side air intakes and a solid nose that carried a. Unlike the latter, the cockpit had been moved forward, which offered, together with an enlarged canopy and a short nose, an excellent field of view for the pilot.
On the SK-01 the air intakes with short splitter plates were re-located to the fuselage flanks underneath the cockpit. In order to avoid gun smoke ingestion problems (and the lack of space in the nose for any equipment except for a small SRD-3 Grad gun ranging radar, coupled with an ASP-5N computing gun-sight), the SK-01’s internal armament, a pair of NR-30 cannon, was placed in the wing roots.
The wing itself was another major modification, it featured a reduced sweep of only 33° at ¼ chord angle (compared to the MiG-19’s original 55°). Four wing hardpoints, outside of the landing gear wells, could carry a modest ordnance payload, including rocket and gun pods, unguided missiles, iron bombs and up to four Vympel K-13 AAMs.
Outside of these pylons, the wings featured a folding mechanism that allowed the wing span to be reduced from 10 m to 6.5 m for stowage. The fin remained unchanged, but the stabilizers had a reduced sweep, too.
The single ventral fin of the MiG-19 gave way to a fairing for a massive, semi-retractable arrester hook, flanked by a pair of smaller fins. The landing gear was beefed up, too, with a stronger suspension. Catapult launch from deck was to be realized through expandable cables that were attached onto massive hooks under the fuselage.
The SK-01 received a “thumbs up” in March 1962 and three prototypes, powered by special Sorokin R3M-28 engines, derivatives of the MiG-19's RB-9 that were adapted to the naval environment, were created and tested until 1965, when the type – now designated MiG-SK – went through State Acceptance Trials, including simulated landing tests on an “unsinkalble carrier” dummy, a modified part of the runway at Air Base at the Western coast of the Caspian Sea. Not only flight tests were conducted at Kaspiysk, but also different layouts for landing cables were tested and optimized as well. Furthermore, on a special platform at the coast, an experimental steam catapult went through trials, even though no aircraft starts were made from it – but weights hauled out into the sea.
Anyway, the flight tests and the landing performance on the simulated carrier deck were successful, and while the MiG-SK (the machine differed from the MiG-19 so much that it was not recognized as an official MiG-19 variant) was not an outstanding combat aircraft, rather a technology carrier with field use capabilities.
The MiG-SK’s performance was good enough to earn OKB MiG an initial production run of 20 aircraft, primarily intended for training and development units, since the whole infrastructure and procedures for naval aviation from a carrier had to be developed from scratch. These machines were built at slow pace until 1968 and trials were carried out in the vicinity of the Black Sea and the Caspian Sea.
The MiG-SK successfully remained hidden from the public, since the Soviet Navy did not want to give away its plans for a CTOL carrier. Spy flights of balloons and aircraft recognized the MiG-SK, but the type was mistaken as MiG-17 fighters. Consequently, no NATO codename was ever allocated.
Alas, the future of the Soviet, carrier-borne fixed wing aircraft was not bright: Laid down in in 1970, the Kiev-class aircraft carriers (also known as Project 1143 or as the Krechyet (Gyrfalcon) class) were the first class of fixed-wing aircraft carriers to be built in the Soviet Union, and they entered service, together with the Yak-38 (Forger) VTOL fighter, in 1973. This weapon system already offered a combat performance similar to the MiG-SK, and the VTOL concept rendered the need for catapult launch and deck landing capability obsolete.
OKB MiG still tried to lobby for a CTOL aircraft (in the meantime, the swing-wing MiG-23 was on the drawing board, as well as a projected, navalized multi-purpose derivative, the MiG-23K), but to no avail.
Furthermore, carrier Project 1153 was cancelled in October 1978 as being too expensive, and a program for a smaller ship called Project 11435, more V/STOL-aircraft-oriented, was developed instead; in its initial stage, a version of 65,000 tons and 52 aircraft was proposed, but eventually an even smaller ship was built in the form of the Kuznetsov-class aircraft carriers in 1985, outfitted with a 12-degree ski-jump bow flight deck instead of using complex aircraft catapults. This CTOL carrier was finally equipped with navalized Su-33, MiG-29 and Su-25 aircraft – and the MiG-SK paved the early way to these shipboard fighters, especially the MiG-29K.
General characteristics:
Crew: One
Length: 13.28 m (43 ft 6 in)
Wingspan: 10.39 m (34 ft)
Height: 3.9 m (12 ft 10 in)
Wing area: 22.6 m² (242.5 ft²)
Empty weight: 5.172 kg (11,392 lb)
Max. take-off weight: 7,560 kg (16,632 lb)
Powerplant:
2× Sorokin R3M-28 turbojets afterburning turbojets, rated at 33.8 kN (7,605 lbf) each
Performance:
Maximum speed: 1,145 km/h (618 knots, 711 mph) at 3,000 m (10,000 ft)
Range: 2,060 km (1,111 nmi, 1,280 mi) with drop tanks
Service ceiling: 17,500 m (57,400 ft)
Rate of climb: 180 m/s (35,425 ft/min)
Wing loading: 302.4 kg/m² (61.6 lb/ft²)
Thrust/weight: 0.86
Armament:
2x 30 mm NR-30 cannons in the wing roots with 75 RPG
4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb)
The kit and its assembly:
This kitbash creation was spawned by thoughts concerning the Soviet Naval Aviation and its lack of CTOL aircraft carriers until the 1980ies and kicked-off by a CG rendition of a navalized MiG-17 from fellow member SPINNERS at whatifmodelers.com, posted a couple of months ago. I liked this idea, and at first I wanted to convert a MiG-17 with a solid nose as a dedicated carrier aircraft. But the more I thought about it and did historic research, the less probable this concept appeared to me: the MiG-17 was simply too old to match Soviet plans for a carrier ship, at least with the real world as reference.
A plausible alternative was the MiG-19, esp. with its twin-engine layout, even though the highly swept wings and the associated high start and landing speeds would be rather inappropriate for a shipborne fighter. Anyway, a MiG-21 was even less suitable, and I eventually took the Farmer as conversion basis, since it would also fit into the historic time frame between the late 60ies and the mid-70ies.
In this case, the basis is a Plastyk MiG-19 kit, one of the many Eastern European re-incarnations of the vintage KP kit. This cheap re-issue became a positive surprise, because any former raised panel and rivet details have disappeared and were replaced with sound, recessed engravings. The kit is still a bit clumsy, the walls are very thick (esp. the canopy – maybe 2mm!), but IMHO it’s a considerable improvement with acceptable fit, even though there are some sink holes and some nasty surprises (in my case, for instance, the stabilizer fins would not match with the rear fuselage at all, and you basically need putty everywhere).
Not much from the Plastyk kit was taken over, though: only the fuselage’s rear two-thirds were used, some landing gear parts as well as fin and the horizontal stabilizers. The latter were heavily modified and reduced in sweep in order to match new wings from a Hobby Boss MiG-15 (the parts were cut into three pieces each and then set back together again).
Furthermore, the complete front section from a Novo Supermarine Attacker was transplanted, because its short nose and the high cockpit are perfect parts for a carrier aircraft. The Attacker’s front end, including the air intakes, fits almost perfectly onto the round MiG-19 forward fuselage, only little body work was necessary. A complete cockpit tub and a new seat were implanted, as well as a front landing gear well and walls inside of the (otherwise empty) air intakes. The jet exhausts were drilled open, too, and afterburner dummies added. Simple jobs.
On the other side, the wings were trickier than expected. The MiG-19 kit comes with voluminous and massive wing root fairings, probably aerodynamic bodies for some area-ruling. I decided to keep them, but this caused some unexpected troubles…
The MiG-15 wings’ position, considerably further back due to the reduced sweep angle, was deduced from the relative MiG-19’s landing gear position. A lot of sculpting and body work followed, and after the wings were finally in place I recognized that the aforementioned, thick wing root fairings had reduced the wing sweep – basically not a bad thing, but with the inconvenient side effect that the original wing MiG-15 fences were not parallel to the fuselage anymore, looking rather awkward! What to do? Grrrr…. I could not leave it that way, so I scraped them away and replaced with them with four scratched substitutes (from styrene profiles), moving the outer pair towards the wing folding mechanism.
Under the wings, four new pylons were added (two from an IAI Kfir, two from a Su-22) and the ordnance gathered from the scrap box – bombs and rocket pods formerly belonged to a Kangnam/Revell Yak-38.
The landing gear was raised by ~2mm for a higher stance on the ground. The original, thick central fin was reduced in length, so that it could become a plausible attachment point for an arrester hook (also from the spares box), and a pair of splayed stabilizer fins was added as a compensation. Finally, some of the OOB air scoops were placed all round the hull and some pitots, antennae and a gun camera fairing added.
Painting and markings:
This whif was to look naval at first sight, so I referred to the early Yak-38 VTOL aircraft and their rather minimalistic paint scheme in an overall dull blue. The green underside, seen on many service aircraft, was AFAIK a (later) protective coating – an obsolete detail for a CTOL aircraft.
Hence, all upper surfaces and the fuselage were painted in a uniform “Field Blue” (Tamiya XF-50). It’s a bit dark, but I have used this unique, petrol blue tone many moons ago on a real world Kangnam Forger where it looks pretty good, and in this case the surface was furthermore shaded with Humbrol 96 and 126 after a black in wash.
For some contrast I painted the undersides of the wings and stabilizers as well as a fuselage section between the wings in a pale grey (Humbrol 167), seen on one of the Yak-38 prototypes. Not very obvious, but at least the aircraft did not end up in a boring, uniform color.
The interior was painted in blue-gray (PRU Blue, shaded with Humbrol 87) while the landing gear wells became Aluminum (Humbrol 56). The wheel discs became bright green, just in order to keep in style and as a colorful contrast, and some di-electric panels and covers became very light grey or bright green. For some color contrast, the anti-flutter weight tips on the stabilizers as well as the pylons’ front ends were painted bright red.
The markings/decals reflect the early Soviet Navy style, with simple Red Stars, large yellow tactical codes and some high contrast warning stencils, taken from the remains of a Yak-38 sheet (American Revell re-release of the Kangnam kit).
Finally, after some soot stains with graphite around the gun muzzles and the air bleed doors, the kit was sealed with a coat of semi-matt acrylic varnish and some matt accents (anti-glare panel, radomes).
A simple idea that turned out to be more complex than expected, due to the wing fence troubles. But I am happy that the Attacker nose could be so easily transplanted, it changes the MiG-19’s look considerably, as well as the wings with (much) less sweep angle.
The aircraft looks familiar, but you only recognize at second glance that it is more than just a MiG-19 with a solid nose. The thing looks pretty retro, reminds me a bit of the Supermarine Scimitar (dunno?), and IMHO it appears more Chinese than Soviet (maybe because the layout reminds a lot of the Q-5 fighter bomber)? It could even, with appropriate markings, be a Luft ’46 design?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
After the success of the Soviet Union’s first carrier ship, the Moskva Class (Projekt 1123, also called „Кондор“/„Kondor“) cruisers in the mid 1960s, the country became more ambitious. This resulted in Project 1153 Orel (Russian: Орёл, Eagle), a planned 1970s-era Soviet program to give the Soviet Navy a true blue water aviation capability. Project Orel would have resulted in a program very similar to the aircraft carriers available to the U.S. Navy. The ship would have been about 75-80,000 tons displacement, with a nuclear power plant and carried about 70 aircraft launched via steam catapults – the first Soviet aircraft carrier that would be able to deploy fixed-wing aircraft.
Beyond this core capability, the Orel carrier was designed with a large offensive capability with the ship mounts including 24 vertical launch tubes for anti-ship cruise missiles. In the USSR it was actually classified as the "large cruiser with aircraft armament".
Anyway, the carrier needed appropriate aircraft, and in order to develop a the aircraft major design bureaus were asked to submit ideas and proposals in 1959. OKB Yakovlev and MiG responded. While Yakovlev concentrated on the Yak-36 VTOL design that could also be deployed aboard of smaller ships without catapult and arrester equipment, Mikoyan-Gurevich looked at navalized variants of existing or projected aircraft.
While land-based fighters went through a remarkable performance improvement during the 60ies, OKB MiG considered a robust aircraft with proven systems and – foremost – two engines to be the best start for the Soviet Union’s first naval fighter. “Learning by doing”, the gathered experience would then be used in a dedicated new design that would be ready in the mid 70ies when Project 1153 was ready for service, too.
Internally designated “I-SK” or “SK-01” (Samolyot Korabelniy = carrier-borne aircraft), the naval fighter was based on the MiG-19 (NATO: Farmer), which had been in production in the USSR since 1954.
Faster and more modern types like the MiG-21 were rejected for a naval conversion because of their poor take-off performance, uncertain aerodynamics in the naval environment and lack of ruggedness. The MiG-19 also offered the benefit of relatively compact dimensions, as well as a structure that would carry the desired two engines.
Several innovations had to be addresses:
- A new wing for improved low speed handling
- Improvement of the landing gear and internal structures for carrier operations
- Development of a wing folding mechanism
- Integration of arrester hook and catapult launch devices into the structure
- Protection of structure, engine and equipment from the aggressive naval environment
- Improvement of the pilot’s field of view for carrier landings
- Improved avionics, esp. for navigation
Work on the SK-01 started in 1960, and by 1962 a heavily redesigned MiG-19 was ready as a mock-up for inspection and further approval. The “new” aircraft shared the outlines with the land-based MiG-19, but the nose section was completely new and shared a certain similarity to the experimental “Aircraft SN”, a MiG-17 derivative with side air intakes and a solid nose that carried a. Unlike the latter, the cockpit had been moved forward, which offered, together with an enlarged canopy and a short nose, an excellent field of view for the pilot.
On the SK-01 the air intakes with short splitter plates were re-located to the fuselage flanks underneath the cockpit. In order to avoid gun smoke ingestion problems (and the lack of space in the nose for any equipment except for a small SRD-3 Grad gun ranging radar, coupled with an ASP-5N computing gun-sight), the SK-01’s internal armament, a pair of NR-30 cannon, was placed in the wing roots.
The wing itself was another major modification, it featured a reduced sweep of only 33° at ¼ chord angle (compared to the MiG-19’s original 55°). Four wing hardpoints, outside of the landing gear wells, could carry a modest ordnance payload, including rocket and gun pods, unguided missiles, iron bombs and up to four Vympel K-13 AAMs.
Outside of these pylons, the wings featured a folding mechanism that allowed the wing span to be reduced from 10 m to 6.5 m for stowage. The fin remained unchanged, but the stabilizers had a reduced sweep, too.
The single ventral fin of the MiG-19 gave way to a fairing for a massive, semi-retractable arrester hook, flanked by a pair of smaller fins. The landing gear was beefed up, too, with a stronger suspension. Catapult launch from deck was to be realized through expandable cables that were attached onto massive hooks under the fuselage.
The SK-01 received a “thumbs up” in March 1962 and three prototypes, powered by special Sorokin R3M-28 engines, derivatives of the MiG-19's RB-9 that were adapted to the naval environment, were created and tested until 1965, when the type – now designated MiG-SK – went through State Acceptance Trials, including simulated landing tests on an “unsinkalble carrier” dummy, a modified part of the runway at Air Base at the Western coast of the Caspian Sea. Not only flight tests were conducted at Kaspiysk, but also different layouts for landing cables were tested and optimized as well. Furthermore, on a special platform at the coast, an experimental steam catapult went through trials, even though no aircraft starts were made from it – but weights hauled out into the sea.
Anyway, the flight tests and the landing performance on the simulated carrier deck were successful, and while the MiG-SK (the machine differed from the MiG-19 so much that it was not recognized as an official MiG-19 variant) was not an outstanding combat aircraft, rather a technology carrier with field use capabilities.
The MiG-SK’s performance was good enough to earn OKB MiG an initial production run of 20 aircraft, primarily intended for training and development units, since the whole infrastructure and procedures for naval aviation from a carrier had to be developed from scratch. These machines were built at slow pace until 1968 and trials were carried out in the vicinity of the Black Sea and the Caspian Sea.
The MiG-SK successfully remained hidden from the public, since the Soviet Navy did not want to give away its plans for a CTOL carrier. Spy flights of balloons and aircraft recognized the MiG-SK, but the type was mistaken as MiG-17 fighters. Consequently, no NATO codename was ever allocated.
Alas, the future of the Soviet, carrier-borne fixed wing aircraft was not bright: Laid down in in 1970, the Kiev-class aircraft carriers (also known as Project 1143 or as the Krechyet (Gyrfalcon) class) were the first class of fixed-wing aircraft carriers to be built in the Soviet Union, and they entered service, together with the Yak-38 (Forger) VTOL fighter, in 1973. This weapon system already offered a combat performance similar to the MiG-SK, and the VTOL concept rendered the need for catapult launch and deck landing capability obsolete.
OKB MiG still tried to lobby for a CTOL aircraft (in the meantime, the swing-wing MiG-23 was on the drawing board, as well as a projected, navalized multi-purpose derivative, the MiG-23K), but to no avail.
Furthermore, carrier Project 1153 was cancelled in October 1978 as being too expensive, and a program for a smaller ship called Project 11435, more V/STOL-aircraft-oriented, was developed instead; in its initial stage, a version of 65,000 tons and 52 aircraft was proposed, but eventually an even smaller ship was built in the form of the Kuznetsov-class aircraft carriers in 1985, outfitted with a 12-degree ski-jump bow flight deck instead of using complex aircraft catapults. This CTOL carrier was finally equipped with navalized Su-33, MiG-29 and Su-25 aircraft – and the MiG-SK paved the early way to these shipboard fighters, especially the MiG-29K.
General characteristics:
Crew: One
Length: 13.28 m (43 ft 6 in)
Wingspan: 10.39 m (34 ft)
Height: 3.9 m (12 ft 10 in)
Wing area: 22.6 m² (242.5 ft²)
Empty weight: 5.172 kg (11,392 lb)
Max. take-off weight: 7,560 kg (16,632 lb)
Powerplant:
2× Sorokin R3M-28 turbojets afterburning turbojets, rated at 33.8 kN (7,605 lbf) each
Performance:
Maximum speed: 1,145 km/h (618 knots, 711 mph) at 3,000 m (10,000 ft)
Range: 2,060 km (1,111 nmi, 1,280 mi) with drop tanks
Service ceiling: 17,500 m (57,400 ft)
Rate of climb: 180 m/s (35,425 ft/min)
Wing loading: 302.4 kg/m² (61.6 lb/ft²)
Thrust/weight: 0.86
Armament:
2x 30 mm NR-30 cannons in the wing roots with 75 RPG
4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb)
The kit and its assembly:
This kitbash creation was spawned by thoughts concerning the Soviet Naval Aviation and its lack of CTOL aircraft carriers until the 1980ies and kicked-off by a CG rendition of a navalized MiG-17 from fellow member SPINNERS at whatifmodelers.com, posted a couple of months ago. I liked this idea, and at first I wanted to convert a MiG-17 with a solid nose as a dedicated carrier aircraft. But the more I thought about it and did historic research, the less probable this concept appeared to me: the MiG-17 was simply too old to match Soviet plans for a carrier ship, at least with the real world as reference.
A plausible alternative was the MiG-19, esp. with its twin-engine layout, even though the highly swept wings and the associated high start and landing speeds would be rather inappropriate for a shipborne fighter. Anyway, a MiG-21 was even less suitable, and I eventually took the Farmer as conversion basis, since it would also fit into the historic time frame between the late 60ies and the mid-70ies.
In this case, the basis is a Plastyk MiG-19 kit, one of the many Eastern European re-incarnations of the vintage KP kit. This cheap re-issue became a positive surprise, because any former raised panel and rivet details have disappeared and were replaced with sound, recessed engravings. The kit is still a bit clumsy, the walls are very thick (esp. the canopy – maybe 2mm!), but IMHO it’s a considerable improvement with acceptable fit, even though there are some sink holes and some nasty surprises (in my case, for instance, the stabilizer fins would not match with the rear fuselage at all, and you basically need putty everywhere).
Not much from the Plastyk kit was taken over, though: only the fuselage’s rear two-thirds were used, some landing gear parts as well as fin and the horizontal stabilizers. The latter were heavily modified and reduced in sweep in order to match new wings from a Hobby Boss MiG-15 (the parts were cut into three pieces each and then set back together again).
Furthermore, the complete front section from a Novo Supermarine Attacker was transplanted, because its short nose and the high cockpit are perfect parts for a carrier aircraft. The Attacker’s front end, including the air intakes, fits almost perfectly onto the round MiG-19 forward fuselage, only little body work was necessary. A complete cockpit tub and a new seat were implanted, as well as a front landing gear well and walls inside of the (otherwise empty) air intakes. The jet exhausts were drilled open, too, and afterburner dummies added. Simple jobs.
On the other side, the wings were trickier than expected. The MiG-19 kit comes with voluminous and massive wing root fairings, probably aerodynamic bodies for some area-ruling. I decided to keep them, but this caused some unexpected troubles…
The MiG-15 wings’ position, considerably further back due to the reduced sweep angle, was deduced from the relative MiG-19’s landing gear position. A lot of sculpting and body work followed, and after the wings were finally in place I recognized that the aforementioned, thick wing root fairings had reduced the wing sweep – basically not a bad thing, but with the inconvenient side effect that the original wing MiG-15 fences were not parallel to the fuselage anymore, looking rather awkward! What to do? Grrrr…. I could not leave it that way, so I scraped them away and replaced with them with four scratched substitutes (from styrene profiles), moving the outer pair towards the wing folding mechanism.
Under the wings, four new pylons were added (two from an IAI Kfir, two from a Su-22) and the ordnance gathered from the scrap box – bombs and rocket pods formerly belonged to a Kangnam/Revell Yak-38.
The landing gear was raised by ~2mm for a higher stance on the ground. The original, thick central fin was reduced in length, so that it could become a plausible attachment point for an arrester hook (also from the spares box), and a pair of splayed stabilizer fins was added as a compensation. Finally, some of the OOB air scoops were placed all round the hull and some pitots, antennae and a gun camera fairing added.
Painting and markings:
This whif was to look naval at first sight, so I referred to the early Yak-38 VTOL aircraft and their rather minimalistic paint scheme in an overall dull blue. The green underside, seen on many service aircraft, was AFAIK a (later) protective coating – an obsolete detail for a CTOL aircraft.
Hence, all upper surfaces and the fuselage were painted in a uniform “Field Blue” (Tamiya XF-50). It’s a bit dark, but I have used this unique, petrol blue tone many moons ago on a real world Kangnam Forger where it looks pretty good, and in this case the surface was furthermore shaded with Humbrol 96 and 126 after a black in wash.
For some contrast I painted the undersides of the wings and stabilizers as well as a fuselage section between the wings in a pale grey (Humbrol 167), seen on one of the Yak-38 prototypes. Not very obvious, but at least the aircraft did not end up in a boring, uniform color.
The interior was painted in blue-gray (PRU Blue, shaded with Humbrol 87) while the landing gear wells became Aluminum (Humbrol 56). The wheel discs became bright green, just in order to keep in style and as a colorful contrast, and some di-electric panels and covers became very light grey or bright green. For some color contrast, the anti-flutter weight tips on the stabilizers as well as the pylons’ front ends were painted bright red.
The markings/decals reflect the early Soviet Navy style, with simple Red Stars, large yellow tactical codes and some high contrast warning stencils, taken from the remains of a Yak-38 sheet (American Revell re-release of the Kangnam kit).
Finally, after some soot stains with graphite around the gun muzzles and the air bleed doors, the kit was sealed with a coat of semi-matt acrylic varnish and some matt accents (anti-glare panel, radomes).
A simple idea that turned out to be more complex than expected, due to the wing fence troubles. But I am happy that the Attacker nose could be so easily transplanted, it changes the MiG-19’s look considerably, as well as the wings with (much) less sweep angle.
The aircraft looks familiar, but you only recognize at second glance that it is more than just a MiG-19 with a solid nose. The thing looks pretty retro, reminds me a bit of the Supermarine Scimitar (dunno?), and IMHO it appears more Chinese than Soviet (maybe because the layout reminds a lot of the Q-5 fighter bomber)? It could even, with appropriate markings, be a Luft ’46 design?
Some background:
The idea for a heavy infantry support vehicle capable of demolishing heavily defended buildings or fortified areas with a single shot came out of the experiences of the heavy urban fighting in the Battle of Stalingrad in 1942. At the time, the Wehrmacht had only the Sturm-Infanteriegeschütz 33B available for destroying buildings, a Sturmgeschütz III variant armed with a 15 cm sIG 33 heavy infantry gun. Twelve of them were lost in the fighting at Stalingrad. Its successor, the Sturmpanzer IV, also known by Allies as Brummbär, was in production from early 1943. This was essentially an improved version of the earlier design, mounting the same gun on the Panzer IV chassis with greatly improved armour protection.
While greatly improved compared to the earlier models, by this time infantry anti-tank weapons were improving dramatically, too, and the Wehrmacht still saw a need for a similar, but more heavily armoured and armed vehicle. Therefore, a decision was made to create a new vehicle based on the Tiger tank and arm it with a 210 mm howitzer. However, this weapon turned out not to be available at the time and was therefore replaced by a 380 mm rocket launcher, which was adapted from a Kriegsmarine depth charge launcher.
The 380 mm Raketen-Werfer 61 L/5.4 was a breech-loading barrel, which fired a short-range, rocket-propelled projectile roughly 1.5 m (4 ft 11 in) long. The gun itself existed in two iterations at the time. One, the RaG 43 (Raketenabschuss-Gerät 43), was a ship-mounted anti-aircraft weapon used for firing a cable-spooled parachute-anchor creating a hazard for aircraft. The second, the RTG 38 (Raketen Tauch-Geschoss 38), was a land-based system, originally planned for use in coastal installations by the Kriegsmarine firing depth-charges against submarines with a range of about 3.000 m. For use in a vehicle, the RTG 38 was to find use as a demolition gun and had to be modified for that role. This modification work was carried out by Rheinmetall at their Sommerda works.
The design of the rocket system caused some problems. Modified for use in a vehicle, the recoil from the modified rocket-mortar was enormous, about 40-tonnes, and this meant that only a heavy chassis could be used to mount the gun. The hot rocket exhaust could not be vented into the fighting compartment nor could the barrel withstand the pressure if the gasses were not vented. Therefore, a ring of ventilation shafts was put around the barrel which channeled the exhaust and gave the weapon something of a pepperbox appearance.
The shells for the weapon were extremely heavy, far too heavy for a man to load manually. As a result, each of them had to be carried by means of a ceiling-mounted trolley from their rack to a roller-mounted tray at the breech. Once on the tray, four soldiers could then push it into the breech to load it. The whole process took 10 minutes per shot from loading, aiming, elevating and, finally, to firing.
There were a variety of rocket-assisted round types with a weight of up to 376 kg (829 lb), and a maximum range of up to 6,000 m (20,000 ft), which either contained a high explosive charge of 125 kg (276 lb) or a shaped charge for use against fortifications, which could penetrate up to 2.5 m (8 ft 2 in) of reinforced concrete. The stated range of the former was 5,650 m (6,180 yd). A normal charge first accelerated the projectile to 45 m/s (150 ft/s) to leave the short, rifled barrel, the 40 kg (88 lb) rocket charge then boosted this to about 250 m/s (820 ft/s).
In September 1943 plans were made for Krupp to fabricate new Tiger I armored hulls for the Sturmtiger. The Tiger I hulls were to be sent to Henschel for chassis assembly and then to Alkett, where the superstructures would be mounted. The first prototype was ready and presented in October 1943. By May 1944, the Sturmtiger prototype had been kept busy with trials and firing tests for the development of range tables, but production had still not started yet and the concept was likely to be scrapped. Rather than ditch the idea though, orders were given that, instead of interrupting the production of the Tiger I, the Sturmtigers would be built on the chassis of Tiger I tanks which had already been in action and suffered serious damage. Twelve superstructures and RW 61 weapons were prepared and mounted on rebuilt Tiger I chassis. However, by August 1944 the dire need for this kind of vehicle led to the adaptation of another chassis to the 380 mm Sturmmörser: the SdKfz. 184, better known as “Ferdinand” (after its designer’s forename) and later, in an upgraded version, “Elefant”.
The Elefant (German for "elephant") was actually a heavy tank destroyer and the result of mismanagement and poor planning: Porsche GmbH had manufactured about 100 chassis for their unsuccessful proposal for the Tiger I tank, the so-called "Porsche Tiger". Both the successful Henschel proposal and the Porsche design used the same Krupp-designed turret—the Henschel design had its turret more-or-less centrally located on its hull, while the Porsche design placed the turret much closer to the front of the superstructure. Since the competing Henschel Tiger design was chosen for production, the Porsche chassis were no longer required for the Tiger tank project, and Porsche was left with 100 unfinished heavy tank hulls.
It was therefore decided that the Porsche chassis were to be used as the basis of a new heavy tank hunter, the Ferdinand, mounting Krupp's newly developed 88 mm (3.5 in) Panzerjägerkanone 43/2 (PaK 43) anti-tank gun with a new, long L71 barrel. This precise long-range weapon was intended to destroy enemy tanks before they came within their own range of effective fire, but in order to mount the very long and heavy weapon on the Porsche hull, its layout had to be completely redesigned.
Porsche’s SdKfz. 184’s unusual petrol-electric transmission made it much easier to relocate the engines than would be the case on a mechanical-transmission vehicle, since the engines could be mounted anywhere, and only the length of the power cables needed to be altered, as opposed to re-designing the driveshafts and locating the engines for the easiest routing of power shafts to the gearbox. Without the forward-mounted turret of the Porsche Tiger prototype, the twin engines were relocated to the front, where the turret had been, leaving room ahead of them for the driver and radio operator. As the engines were placed in the middle, the driver and the radio operator were isolated from the rest of the crew and could be addressed only by intercom. The now empty rear half of the hull was covered with a heavily armored, full five-sided casemate with slightly sloped upper faces and armored solid roof, and turned into a crew compartment, mounting a single 8.8 cm Pak 43 cannon in the forward face of the casemate.
From this readily available basis, the SdKfz. 184/1 was hurriedly developed. It differed from the tank hunter primarily through its new casemate that held the 380 mm Raketenwerfer. Since the SdKfz. 184/1 was intended for use in urban areas in close range street fighting, it needed to be heavily armoured to survive. Its front plate had a greater slope than the Ferdinand while the sides were more vertical and the roof was flat. Its sloped (at 47° from vertical) frontal casemate armor was 150 mm (5.9 in) thick, while its superstructure side and rear plates had a strength of 82 mm (3.2 in). The SdKfz.184/1 also received add-on armor of 100 mm thickness, bolted to the hull’s original vertical front plates, increasing the thickness to 200 mm but adding 5 tons of weight. All these measures pushed the weight of the vehicle up from the Ferdinand’s already bulky 65 t to 75 t, limiting the vehicle’s manoeuvrability even further. Located at the rear of the loading hatch was a Nahverteidigungswaffe launcher which was used for close defense against infantry with SMi 35 anti-personnel mines, even though smoke grenades or signal flares could be fired with the device in all directions, too. For close-range defense, a 7.92 mm MG 34 machine gun was carried in a ball mount in the front plate, an addition that was introduced to the Elefant tank hunters, too, after the SdKfz. 184 had during its initial deployments turned out to be very vulnerable to infantry attacks.
Due to the size of the RW 61 and the bulkiness of the ammunition, only fourteen rounds could be carried internally, of which one was already loaded, with another stored in the loading tray, and the rest were carried in two storage racks, leaving only little space for the crew of four in the rear compartment. To help with the loading of ammunition into the vehicle, a loading crane was fitted at the rear of the superstructure next to the loading hatch on the roof.
Due to the internal limits and the tactical nature of the vehicle, it was intended that each SdKfz. 184/1 (as well as each Sturmtiger) would be accompanied by an ammunition carrier, typically based on the Panzer IV chassis, but the lack of resources did not make this possible. There were even plans to build a dedicated, heavily armored ammunition carrier on the Tiger I chassis, but only one such carrier was completed and tested, it never reached production status.
By the time the first RW 61 carriers had become available, Germany had lost the initiative, with the Wehrmacht being almost exclusively on the defensive rather than the offensive, and this new tactical situation significantly weakened the value of both Sturmtiger and Sturmelefant, how the SdKfz 184/1 was semi-officially baptized. Nevertheless, three new Panzer companies were raised to operate the Sturmpanzer types: Panzer Sturmmörser Kompanien (PzStuMrKp) ("Armored Assault Mortar Company") 1000, 1001 and 1002. These originally were supposed to be equipped with fourteen vehicles each, but this figure was later reduced to four each, divided into two platoons, consisting of mixed vehicle types – whatever was available and operational.
PzStuMrKp 1000 was raised on 13 August 1944 and fought during the Warsaw Uprising with two vehicles, as did the prototype in a separate action, which may have been the only time the Sturmtiger was used in its intended role. PzStuMrKp 1001 and 1002 followed in September and October. Both PzStuMrKp 1000 and 1001 served during the Ardennes Offensive, with a total of four Sturmtiger and three Sturmelefanten.
After this offensive, the Sturmpanzer were used in the defence of Germany, mainly on the Western Front. During the battle for the bridge at Remagen, German forces mobilized Sturmmörserkompanie 1000 and 1001 (with a total of 7 vehicles, five Sturmtiger and two Sturmelefanten) to take part in the battle. The tanks were originally tasked with using their mortars against the bridge itself, though it was discovered that they lacked the accuracy needed to hit the bridge and cause significant damage with precise hits to vital structures. During this action, one of the Sturmtigers in Sturmmörserkompanie 1001 near Düren and Euskirchen allegedly hit a group of stationary Shermans tanks in a village with a 380mm round, resulting in nearly all the Shermans being put out of action and their crews killed or wounded - the only recorded tank-on-tank combat a Sturmtiger was ever engaged in. After the bridge fell to the Allies, Sturmmörserkompanie 1000 and 1001 were tasked with bombardment of Allied forces to cover the German retreat, as opposed to the bunker busting for which they had originally been designed for. None was actually destroyed through enemy fire, but many vehicles had to be given up due to mechanical failures or the lack of fuel. Most were blown up by their crews, but a few fell into allied hands in an operational state.
Total production numbers of the SdKfz. 184/1 are uncertain but, being an emergency product and based on a limited chassis supply, the number of vehicles that left the Nibelungenwerke in Austria was no more than ten – also because the tank hunter conversion had top priority and the exotic RW 61 launcher was in very limited supply. As a consequence, only a total of 18 Sturmtiger had been finished by December 1945 and put into service, too. However, the 380 mm Raketen-Werfer 61 remained in production and was in early 1946 adapted to the new Einheitspanzer E-50/75 chassis.
Specifications:
Crew: Six (driver, radio operator/machine gunner in the front cabin,
commander, gunner, 2× loader in the casemate section)
Weight: 75 tons
Length: 7,05 m (23 ft 1½ in)
Width: 3,38 m (11 ft 1 in)
Height w/o crane: 3,02 m (9 ft 10¾ in)
Ground clearance: 1ft 6¾ in (48 cm)
Climbing: 2 ft 6½ in (78 cm)
Fording depth: 3 ft 3¼ (1m)
Trench crossing: 8 ft 7 ¾ in (2,64 m)
Suspension: Longitudinal torsion-bar
Fuel capacity: 1.050 liters
Armour:
62 to 200 mm (2.44 to 7.87 in)
Performance:
30 km/h (19 mph) on road
15 km/h (10 miles per hour () off road
Operational range: 150 km (93 mi) on road
90 km (56 mi) cross-country
Power/weight: 8 hp/ton
Engine:
2× Maybach HL120 TRM petrol engines with 300 PS (246 hp, 221 kW) each, powering…
2× Siemens-Schuckert D1495a 500 Volt electric engines with 320 PS (316 hp, 230 kW) each
Transmission:
Electric
Armament:
1x 380 mm RW 61 rocket launcher L/5.4 with 14 rounds
1x 7.92 mm (0.312 in) MG 34 machine gun with 600 rounds
1x 100 mm grenade launcher (firing anti-personnel mines, smoke grenades or signal flares)
The kit and its assembly:.
This fictional tank model is not my own idea, it is rather based on a picture of a similar kitbashing of an Elefant with a Sturmtiger casemate and its massive missile launcher – even though it was a rather crude model, with a casemate created from cardboard. However, I found the idea charming, even more so because the Ferdinand/Elefant was rather a rolling bunker than an agile tank hunter, despite its powerful weapon. Why not use the same chassis as a carrier for the Sturmtiger’s huge mortar as an assault SPG?
The resulting Sturmelefant was created as a kitbashing: the chassis is an early boxing of the Trumpeter Elefant, which comes not only with IP track segments but also alternative vinyl tracks (later boxing do not feature them), and casemate parts come from a Trumpeter Sturmtiger.
While one would think that switching the casemate would be straightforward affair, the conversion turned out to be more complex than expected. Both Elefant and Sturmtiger come with separate casemate pieces, but they are not compatible. The Sturmtiger casemate is 2mm wider than the Elefant’s hull, and its glacis plate is deeper than the Elefant’s, leaving 4mm wide gaps at the sides and the rear. One option could have been to trim down the glacis plate, but I found the roofline to become much too low – and the casemate’s length would have been reduced.
So, I used the Sturmtiger casemate “as is” and filled the gaps with styrene sheet strips. This worked, but the casemate’s width created now inward-bent sections that looked unplausible. Nobody, even grazed German engineers, would not have neglected the laws of structural integrity. What to do? Tailoring the casemate’s sides down would have been one route, but this would have had created a strange shape. The alternative I chose was to widen the flanks of the Elefant’s hull underneath the casemate, which was achieved with tailored 0.5 mm styrene sheet panels and some PSR – possible through the Elefant’s simple shape and the mudguards that run along the vehicle’s flanks.
Some more PSR was necessary to blend the rear into a coherent shape and to fill a small gap at the glacis plate’s base. Putty was also used to fill/hide almost all openings on the glacis plate, since no driver sight or ball mount for a machine gun was necessary anymore. New bolts between hull and casemate were created with small drops of white glue. The rest of the surface details were taken from the respective donor kits.
Painting and markings:
This was not an easy choice. A classic Hinterhalt scheme would have been a natural choice, but since the Sturmelefant would have been converted from existing hulls with new parts, I decided to emphasize this heritage through a simple, uniform livery: all Ferdinand elements would be painted/left in a uniform Dunkelgelb (RAL, 7028, Humbrol 83), while the new casemate as well as the bolted-on front armor were left in a red primer livery, in two different shades (Humbrol 70 and 113). This looked a little too simple for my taste, so that I eventually added snaky lines in Dunkelgelb onto the primer-painted sections, blurring the contrast between the two tones.
Markings remained minimal, just three German crosses on the flanks and at the rear and a tactical code on the casemate – the latter in black and in a hand-written style, as if the vehicle had been rushed into frontline service.
After the decals had been secured under sone varnish the model received an overall washing with dark brown, highly thinned acrylic paint, some dry-brushing with light grey and some rust traces, before it was sealed overall with matt acrylic varnish and received some dirt stains with mixed watercolors and finally, after the tracks had been mounted, some artist pigments as physical dust on the lower areas.
Again a project that appeared simple but turned out to be more demanding because the parts would not fit as well as expected. The resulting bunker breaker looks plausible, less massive than the real Sturmtiger but still a menacing sight.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Yakovlev Yak-38 (Russian: Яковлева Як-38; NATO reporting name: "Forger") was the Soviet Naval Aviation's first and only operational VTOL strike fighter aircraft, in addition to being its first operational carrier-based fixed-wing aircraft. It was developed specifically for and served almost exclusively on the Kiev-class aircraft carriers.
Some specimen of the initial variant were tested during the Soviet Union's intervention in Afghanistan. These trials revealed several weaknesses of the construction in the form of unacceptable hot and high capabilities as well as a low payload. A further development for the Soviet Navy was therefore decided in August 1981, the abilities of which were fixed in October 1982. Already in November 1982 the first flight experiments of the prototype, leading to the Yak-38M, took place. In mid-1983 the manufacturing tests were completed and the production release was granted.
Anyway, the Soviet Air Force also had interest in a VTOL attack aircraft, which could provide CAS duties in immediate front line theatres, complementing the new Suchoj Su-25 Frogfoot and various attack helicopter types - but the Yak-38 was outright rejected. The Frontal Aviation demanded a much better performance, a dedicated avionics suite for ground attack duties and a higher payload of at least 2.500 kg (5.500 lb) in VTOL mode, plus an internal gun, and 3.000 kg (6.600 lb) when operating in C/STOL mode at sea level and from semi-prepared airstrips. For its primary ground attack role, the machine was also to be armored against projectiles of up to 0.5” around the lower hull and against 20mm rounds in the cockpit section. Finally, the machine had to be, compared with the Yak-38, simplified and be more rugged in order to ease frontline service and endure survivability.
OKB Yakovlev accepted the challenge and dusted off studies that had been undertaken during the Yak-38’s design stage. One of these was the Yak-38L (for 'lift/cruise'), a design built around a single, modified the AL-21F turbojet with vectoring nozzles and no lift engines, which were just dead weight in normal flight. This route seemed to be the most promising option for the Frontal Aviation's demands, even though it would mean a severe re-construction of the airframe.
The new aircraft, internally referred to as 'Izdeliye 138', was based on the Yak-38 airframe, but adapted and literally built around a lift/cruise variant of the large Kuznetsov NK-32 low bypass turbofan engine (originally, with an afterburner, powering the late Tu-144 airliners and the Tu-160 bomber). This engine’s initial derivative, NK-32L-1, adapted for operation with four vectoring nozzles, had a dry thrust of roundabout 110 kN (25,000 lbf) – about 10% more than the Yak-38’s engine trio all together. And the massive engine bore potential for at least 10% more power for the service aircraft.
The overall layout differed considerably from the long and sleek Yak-38: in order to create enough space for the large turbofan stage and its bigger, fixed-configuration air intakes, the fuselage had to be widened behind the cockpit section and the wings' main spar was moved upwards, so that the wings were now shoulder-mounted. The overall arrangement was reminiscent of the successful Hawker Harrier, but differed in some details like the landing gear, which was a classic tricycle design.
Cold air from the NK-32L’s initial turbofan stage was ducted into vectoring nozzles at the forward fuselage flanks, just in front of the aircraft's center of gravity, while the hot exhaust gasses passed through a bifurcated jet pipe through another pair of vectoring nozzles behind the CoG, in an arrangement which was also used in the Yak-38.
Slow speed control was ensured through puffer jet nozzles, fed by bleed air from the engine and placed on both wing tips as well as under the nose and in the aircraft’s tail section.
Teething troubles with the new engine, as well as the new, vectored nozzle arrangement, postponed the Izedeliye 138 prototype’s first flight until March 1986. Work was also slowed down because OKB Yakovlev had been working on the supersonic Yak-41 V/STOL fighter for the Soviet Navy, too. The Soviet Air Force's Frontal Aviation kept interested in the project, though, since they wanted a dedicated attack aircraft, and no complex multi-role fighter.
State acceptance trials lasted until mid 1987, and a total of four prototypes were built (including one for static ground tests). The Yak-138 was found to be easier to handle than the Yak-38, and the single engine made operations and also the handling during flight mode transition much easier and safer.
The prototypes were soon followed by a pre-production batch of 21 aircraft for field trials in frontline units. By then, the NK-32L had been much improved and now offered 137 kN (31,000 lbf) of thrust for short periods, which made it possible to meet all the Frontal Aviations requirements (esp. the call for 2.000 kg ordnance in VTOL mode).
Among its test pilots, the Yak-138 was quite popular and called "Balkon" ("Balcony") because of the good frontal view from the armored cockpit (offering a 17° downwards sight angle).
For frontline service, the aircraft was now equipped with sophisticated avionics, including a Sokol-138 navigation suite with a DISS-7 Doppler radar and a digital computer. A comprehensive ECM suite was installed for self-defence, including SPS-141 and SB-1 active jammers, KDS-23 chaff/flare dispensers built into the ventral pylon and an SPO-10 radar himing and warning system.
In accordance with the Yak-138‘s strike and low-level attack requirements, provisions were made to mount missiles and precision-guided munitions, as well as retaining a nuclear capability in line with other Soviet combat aircraft. An S-17VG-1 optical sight was fitted, as well as a laser rangefinder and marked-target seeker behind a flat, sloped window in the lower nose section.In the upper nose, between the aircraft's two characterisitic pitot booms, a Delta-2NG beam-riding missile guidance system antenna was placed in a small bullet fairing.
By 1989, the initial batch of aircraft had been delivered (receiving the NATO ASCC code 'Flitchbeam') and successfully tested. An order for 42 more aircraft had been placed and a dual training facility with the Soviet Navy at Kaspiysk AB in the Dagestan region (where Soviet Navy Yak-38U trainers were used for transitional training) established , when the disruption of the Soviet Union suddenly stopped the program in 1991 before the Yak-138 could enter production and service on a large scale.
Most of the machines in Frontal Aviation service fell to the Ukraine, where most of the machines had been based. This situation sealed the fate of the promising Yak-138 more or less over night: the now independent Ukraine did not want to keep the exotic type in its arsenal (together with some Yak-38s of the former Soviet Navy, too), and Russia did not want (and could simply not afford) to pay anything for the machines, which had been offered for an unknown sum.
Officially, all Ukrainian Yak-138 were scrapped until 1994, even though rumor has it that one or two airframes had been sold behind the scenes to China. In Russia only five specimen had survived, and since the spares situation was doubtful none could be kept in flying condition. One Yak-138 was eventually handed over to the Ulyanovsk Aircraft Museum, while the rest was either mothballed or scrapped, too. Unfortunately, the sole museum exhibit was lost in 1995 in a fire accident.
General characteristics:
Crew: One
Length (incl. pitot): 15.84 m (51 ft 10 1/2 in)
Wingspan: 8,17 m (26 ft 9 in)
Height: 4.19 m (14 ft 3 in)
Wing area: 24.18 m² (260.27 ft²)
Empty weight: 7,385 kg (16,281 lb)
Max. takeoff weight: 11,300 kg (28,700 lb)
Powerplant:
1x Kuznetsov NK-32L-2 turbofan engine, rated at 137 kN (31,000 lbf)
Performance:
Maximum speed: 1,176 km/h (730 mph; 635 knots) at sea level
Combat radius: 230 mi (200 nmi, 370 km) lo-lo-lo with 4,400 lb (2,000 kg) payload
Ferry range: 2,129 mi (1,850 nmi, 3,425 km)
Endurance: 1 hr 30 min (combat air patrol – 115 mi (185 km) from base)
Service ceiling: 51,200 ft (15,600 m)
Time to climb to 40,000 ft (12,200 m): 2 min 23 s
Armament:
1x GSh-23L 23mm machine cannon with 250 RPG under the fuselage
5 hardpoints with a total external capacity of
- 3.000 kg (6,600 lb) for C/STOL operations and
- 2.000 kg (4.400 lb) in VTOL mode
Provisions to carry combinations of various types of unguided rockets (up to 240 mm), anti-ship
or air-to-surface Kh-23 (AS-7 Kerry) missiles (together with a Delta N guidance pod), R-60,
R-60M (AA-8 Aphid) or R-73 (AA-11 Archer) air-to-air missiles; tactical nuclear bombs, general
purpose bombs of up to 500 kg (1.100 lb) caliber, or incendiary ZB-500 napalm tanks or up to
three PTB-800 drop tanks under the fuselage and the inner pair of wing pylons
The kit and its assembly:
Sixth contribution to the “Soviet” Group Build at whatifmodelers.com in early 2017, on pretty short notice since the GB had been coming to its end. This totally fictional aircraft was inspired CG illustrations that had been roaming the WWW for some time: a hybrid between a Yak-38 (mostly the tail section), mated with an AV-8B Harrier II (cockpit, wings, landing gear). This did not look bad at all, yet a bit weird, with lift engines added in front of the fin. Certainly not conformal with a good CG balance – but I liked the idea of a single-engine Forger. And actually, OKB Yakovlev had been considering this.
So, the basic idea was a Harrier/Yak-38 kitbash. But the more I thought about the concept, the more additional donor parts came into play. One major addition was the nose section from a MiG-27 – with its slanted nose it would offer the pilot an excellent field of view, and the aircraft would, as a front line attack plane like the Harrier, not carry a radar, so the Flogger’s nose shape was perfect.
Therefore, initial ingredients for the Yak-138 were:
- Rear fuselage, wings and tail from a Tsukuda Hobby/Kangnam/Revell Yak-38
- Mid-fuselage with air intakes and front vectoring nozzles from a Matchbox Sea Harrier
- Cockpit from an Academy MiG-27
Work started with the MiG-27 cockpit, which was more or less taken OOB (except for side consoles in the cockpit and different seat), and the Yak-38 the tail section, built in parallel. To my surprise the Forger fuselage was easier to combine with the Harrier than expected, even though the position of the right cuts took multiple measurements until I came up with a proper solution. Since the Harrier is overall shorter than the Yak-38, the latter’s fuselage had to be shortened. I retained the tail cone, the Forger’s vectoring nozzles and the landing gear wells – and a 2cm plug was taken out between them. Instead of the Harrier’s tandem landing gear arrangement with outriggers under the outer wings, this one was to receive a conventional landing gear for optional C/STOL operations with a higher ordnance load, so that the Yak-38 parts were a welcome basis. Once the fuselage’s underside was more or less complete, the upper rest of the Yak-38 fuselage could be cut to size and integrated into the lower half and the Harrier parts.
After the rear end was settled, the MiG-27 cockpit could be mounted to the front end, which was slightly shortened by 2-3mm (since the Flogger’s is markedly longer than the short Harrier nose). In order to change the overall look of the aircraft, I eventually dropped the Harrier intakes and decided to use the Flogger’s boxy air intakes instead. These are considerably smaller than the gaping Harrier holes, and blending the conflicting shapes into each other for a more or less consistent look took several PSR turns. But it worked, better than expected, and it changes the aircraft’s look effectively, so that almost anything Harrier-esque was gone.
Once the fuselage was completed, I realized that I could not use the Yak-38 wings anymore. They are already pretty small, but with the more voluminous Harrier and Flogger parts added to the aircraft, they’d just be too small!
What to do...? I checked the donor bank and – in order to add even more individual flavor – used a pair of double delta wings from a PM Model Su-15! But only the core of them was left after considerable modifications: The inner delta wing sections were cut off, as well as the tip sections and parts of the trailing edge (for a planform similar to the Yak-38’s wings). On the underside, the landing gear openings were filled up and wing tips from the Yak-38, with puffer jet nozzles, transplanted. The inner leading edges had to be re-sculpted, too. The Su-15 wing fences were kept - a welcome, very Soviet design detail.
A lot of work, but I think it paid out because of the individual shape and look of these “new” wings?
As a consequence of the new, bigger wings, the little Yak-38 stabilizers could not be used anymore, either. In order to keep the square wing shape, I used modified stabilizers from an Intech F-16C/D – their trailing edges were clipped, but the bigger span retained. Together with the characteristic OOB Yak-38 fin they work well, and all of the aerodynamic surfaces IMHO blend well into the overall design of the aircraft.
After the hull was complete, work on smaller things could start. Under the fuselage, a GSh-23-2 pod from a MiG-21 was added, as well as pylons from the Tsukuda Yak-38 under the wings and a donor part from the scrap box in ventral position.
The landing gear is a mix, too: the main struts come from the Yak-38, the balloon wheels from the Matchbox Harrier. The front landing gear comes from the Academy MiG-27, including the wheels with mudguards. It was just mounted in a fashion that it now retracts forward.
The Harrier vectoring nozzles were modified, too, the exhaust “grills” replaced by square, simple ducts, scratched from styrene profile and putty. Care was taken that the nozzles would remain moveable in the fuselage flanks – for later hover pictures. The Yak-38’s nozzles were retained, but since they can OOB only be mounted in a single, fixed position, I added a simple pin to each nozzle, together with two holes in the hull, so that positions can now be switched between hover and level flight.
All around the hull, finally some small details like pitots, blade antennae and air scoops were finally added, and the ordnance consists of a pair of unguided 57mm rocket pods and a pair of Kh-23 (AS-7 Kerry) guided missiles – the latter come from the Yak-38 kit, but they are very crude and their tail sections were modified in order to come (slightly) closer to reality.
Painting and markings:
As an aircraft of the Soviet Frontal Aviation in the late Eighties, I settled upon a typical, disruptive four-tone camouflage with blue undersides. Very conventional, but with an exotic VTOL model I thought that a subtle look would be appropriate – and also separate it from the Naval Yak-38 cousin.
Design benchmark is the scheme on a contemporary MiG-21bis from a Soviert Frontal Aviation unit, chosen because of the disruptive pattern. The tones are guesstimates, though, based on various similar aircraft in more or less weathered condition. I settled for:
- Humbrol 195 (Dark Satin Green)
- Humbrol 78 (RAF Interior Green)
- Modelmaster 2005 (Burnt Umber)
- Humbrol 119 (Light Earth)
- Humbrol 115 (Russian Blue) for the undersides
The cockpit was painted in Russian Cockpit Green, opf course. The landing gear and their respective wells in a mix of Aluminum and Khaki Drab (Humbrol 56 & 26), and the wheel discs became bright green (Humbrol 131). Several di-electric panels and antennae were painted in Humbrol 106 (RAF Ocean Grey).
The kit received a thin black ink wash, in order to emphasize the panel lines, and panel post-shading with subtly lighter tones of the basic colors. National markings, codes and emblems come from several aftermarket sheets, mostly from High Decal Line and Begemot.
After some soot stains (grinded graphite) had been added, the kit was sealed with matt acrlyic varnish (Italeri) and the ordnace added.
Messy work, but I am surprised how consistent and normal the resulting aircraft appears? From certain angles, my Yak-138 creation reminds a good deal of the stillborn Hawker P.1154 (no similarity intended, though), the SEPECAT Jaguar or rather exotic Soko J-22 Orao/IAR-93 Vultur fighter bomber. IMHO, there’s also some A-4 Skyhawk style to it, esp. in planview? Anyway, there’s still some good Yak-38 heritage recognizable, and the tactical Frontal Aviation paint scheme suits the aircraft well - looks like a serious mud mover.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The Fiat Macchi C.170 Brezza ("Gust of wind") was a single-seat biplane fighter which served primarily in Italy's Regia Aeronautica before and in the early stages of World War II. The aircraft was produced by the Varese firm, and entered service, in smaller numbers, with the air forces of Italy, Austria and Hungary.
In spite of the biplane configuration, the C.170 was a modern, 'sleek-looking' design based around a strong steel and alloy frame incorporating a NACA cowling housing the radial engine, with fairings for the fixed main landing gear. The C.170's upper wing was slightly larger than its lower wing, carried only by six struts and a few bracing wires. Only the upper wing featured ailerons while the lower wing carried large flaps. Although it looked slightly outdated, the aircraft proved exceptionally agile thanks to its very low wing loading and a powerful, responsive engine.
Power was provided by a 650 kW (870 hp) Fiat A.74 14 cylinder radial engine, which also drove the contemporary Fiat CR.32 fighter. With the "direttiva" (Air Ministry Specific) of 1932, Italian industrial leaders had been instructed to concentrate solely on radial engines for fighters, due to their better reliability. The A.74 was actually a re-design of the American Pratt & Whitney R-1830 SC-4 Twin Wasp made by engineers Tranquillo Zerbi and Antonio Fessia, and in the C.170 it was geared to drive a metal three-blade Fiat-Hamilton Standard 3D.41-1 propeller of 2.9 m (9.5 ft) diameter. This allowed an impressive top speed of 441 km/h (272 mph) at 6.500 m (20.000 ft), and 342 km/h (213 mph) at ground level.
The first C.170 prototype flew on 24 December 1934 in Lonate Pozzolo, Varese, with Macchi Chief Test Pilot Giuseppe Burei at the controls. It was followed by the second prototype early the next year, which flew with an armored headrest and fairing in place (the C.170 lacked any further armor!) and other minor changes that were incorporated for serial production.
Despite Macchi’s proposal for a closed cockpit canopy the cockpit remained open – Italian pilots were rather conservative. Additional protection was introduced through armored side panels, though, which would protect the pilot’s shoulders. Radio equipment was also not included, as in many other Italian fighter aircraft.
During evaluation in early 1935 the C.170 was tested against the Fiat CR.42 and the Caproni Ca.165 biplane fighters, and was judged to be on par with the CR.42, although the Ca.165 was a more modern design which boasted a higher speed at the cost of maneuverability. An initial order of 99 C.170 for Italy's Regia Aeronautica was placed to Macchi factory in summer 1935, followed by foreign interest and order options from Austria, Belgium and Spain.
Anyway, what looked like a prosperous design was soon rendered obsolete: Following the end of Italy's campaigns in East Africa, a program was started to completely re-equip the Regia Aeronautica with a new interceptor aircraft of modern design. The 10 February 1936 specifications called for an aircraft powered by a single radial engine, with a top speed of 500 km/h, climb rate at 6,000 meters of 5 minutes, with a flight endurance of two hours, and armed with a single (later increased to two) 12.7 mm (0.5 in) machine gun. That was more or less the premature end for the C.170, as Macchi and other manufacturers quickly turned to more modern monoplane designs.
Therefore, orders and production of the Macchi Brezza remained limited. Beyond the original 99 aircraft for the Regia Aeronautica only 24 further C.170s were delivered. These aircraft went in spring 1936 to Austria to equip Jagdgeschwader II at Wiener Neustadt. Immediately after their delivery the Brezza fighters were retro-fitted with radio equipment, recognizable through the antenna installation on the headrest fairing. The potential orders from Belgium and Spain were soon cancelled, due to political tensions.
As a side note, the Austrian C.170s fighters were the first aircraft to sport the new national emblem, which had been the result of a competition and won by flight engineer Rosner from the Graz-Thalerhof base. The white, equilateral triangle with the point facing downwards in a red disc was a completely new design and had (other than the flag or coats of arms) no prior basis.
The C.170s' career in Austrian service was short, though: in March 1938 the Austrian units were absorbed into the Luftwaffe, and after a brief period the aircraft were handed over to Hungary where they were used for training purposes.
Although an obsolete design, it proved to be robust, durable and effective especially in severe conditions. In spring 1943, surviving C.170s were rounded up from training schools and delivered to night ground attack units operating on the Eastern Front. The C.170 was used to conduct night harassment sorties on the Eastern Front until September 1944, when the units were disbanded, due to a lack of serviceable airframes and spare parts.
General characteristics
Crew: 1
Length: 8.25 m (27 ft 1 in)
Wingspan: 32 ft 3 in (9.83 m)
Height: 11 ft 9 in (3.58 m)
Wing area: 323 ft² (30.0 m²)
Empty weight: 3,217 lb (1,462 kg)
Loaded weight: 4,594 lb (2,088 kg)
Powerplant
1× Fiat A.74 R.C.38 14-cylinder air-cooled radial engine, 650 kW (870 hp) at 2,520 rpm for take-off
Performance
Maximum speed: 441 km/h (238 kn, 274 mph) at 20,000 ft
Cruise speed: 338 km/h (187 kn, 210 mph)
Range: 780 km (420 nmi, 485 mi)
Service ceiling: 10,210 m (33,500 ft)
Rate of climb: 11.8 m/s (2,340 ft/min)
Climb to 10,000 ft (3,050 m): 4.75 min
Wing loading: 69,6 kg/m² (15,3 lb/ft²)
Power/mass: 311 W/kg (0.19 hp/lb)
Armament
2× 12.7 mm (0.5 in) Breda-SAFAT synchronized machine guns above the engine, 370 rpg
Some aircraft were field-modified to carry up to 8× 15 kg (33 lb) or 2× 50 or 100 kg (110/220 lb) bombs under the wings
The kit and its assembly
Inspiration for this little, whiffy biplane came when I posted a pic of an Austrian Ju 86 bomber as a reply/ suggestion to a fellow modeler's (NARSES2) search at whatifmodelers.com for “something” to make from a Gloster Gladiator.
When I looked at the paint scheme a second time I remembered that I still had some Austrian roundels in stock, as well some very old biplane spare parts... hmmm.
Biplanes are tricky to build, even OOB, and kitbashing this kind of whif would not make things easier. Anyway, I love such challenges, and the potential outcome would surely look nice, if not exotic, so I decided to tackle the project.
Basically, the following donation ingredients went into it:
● Fuselage, engine, cockpit/pilot and tail from a Revell Macchi C.200 "Saetta"
● Upper wing from a Matchbox Gloster "Gladiator"
● Lower wings from a Matchbox SBC "Helldiver"
● Wheels from a Matchbox Hs 126 (shortened)
Pretty straightforward, but even though it would be a small aircraft model, it would come with two big challenges: mounting the lower wings and shaping the resulting, gaping belly, and the custom-made struts and wirings for the upper wing.
Work started with the Macchi C.200’s fuselage, which was built OOB - just without the wing, which is a single part, different pilot (the included one is a pygmy!) and with a free spinning metal axis for the propeller.
The wing installation started with the lower wings. I glued the Helldiver wings onto the C.200 fuselage, so that the wings' trailing edge would match the C.200's wing root ends. From that, a floor plate was fitted under the fuselage and any excessive material removed, the gaps filled with lumps of 2C putty. That moved the lower wing's roots backwards, creating space at the lower forward fuselage for the new landing gear.
The latter was taken from a vintage Matchbox Hs 126 reconnaissance aircraft - probably 25, if 30 years old... Size was O.K., but the struts had to shortened by about 5mm, as thge HS 126 is a much bigger/longer aircraft than the C.200. A cut was made just above the wheel spats, material taken out, and the separate parts were glued back together again.
With the lower wings in place I started building strut supports for the upper wing from styrene strips - tricky and needs patience, but effective. I started with the outer supports, carving something SBC-style from styrene. These were glued into place, slightly canted outwards, and their length/height adapted to the upper wing’s position.
When this was settled, the upper Gladiator wing was glued into place. After a thorough drying period the short fuselage supports in front of the cockpit – again, styrene strips – were inserted into the gap. This allowed an individual lengthening, and was easier than expected, with a stable result.
After having the upper wing glued in place I added some wiring, made from heated and pulled-out styrene sprues. This not only enhances the kit's look, it also (just like in real life) improves rigidity of the model. Also a tedious task, but IMHO worth the effort. I tried thin wire, nylon strings and sewing yarn for this job, but finally the styrene solution is what worked best for me.
The exhaust installation had also to be modified: the new Hs 126 struts with spats would have been where the original C.200’s hot exhaust gases would have gone, so I added new exhaust pipes that would go between the new legs.
Other small added details included, among others, a pitot on a wing strut, a visor in front of the cockpit, a radio antenna, a ladder made from wire.
Painting and markings:
I would not call the Austrian 3+1-tone pre-WWII-scheme spectacular, but the colors are unique. My scheme is based on an Austrian Ju 86 bomber from 1938, so it fits into the intended time frame.
The colors were puzzled together from various sources and are subjective guesstimates:
● A pale, yellow-ish beige (Humbrol 74, ‘Linen’, out of production)
● A rather brownish green (Testors 1711, ‘Olive Drab’, FS 34087)
● A dark green with a yellow-ish hue (Humbrol 116, ‘US Dark Green’ FS 34079)
● Light blue for the undersides (Humbrol 65, ‘Aircraft Blue’, RLM 65)
In order to add some details I painted the area behind the engine cowling in aluminum. The respective part under the fuselage, where the exhaust gases would pass, was painted in Steel – both Testors Metallizers.
The interior surfaces were painted in a neutral Grey – but with the engine and the pilot in place you cannot see anything of that at all.
Markings are minimal: the Austrian roundels come from a TL Decals aftermarket sheet, the flag on the rudder was laid out with red paint (a mix of Humbrol 19 and 60), the white bar is a decal. The tactical code is fictional, puzzled together from single digits in various sizes (also from TL Modellbau sheets). The original documents how purely black fuselage codes, but I found these hard to read. So I chose digits with a white rim (actually, these belong to modern German Luftwaffe tactical codes in 1:32), which improve contrast a little.
The kit received a thin black ink wash and some shading/dry-painting with lighter basic tones (Humbrol 103, 155, Model Master 2138,‘Israeli Armor Sand Grey’, and Humbrol 122). After decal application, another turn with overall Hemp and Light Grey was done in order to fade contrast and to emphasize the surface structure. The wires were also painted, but only with thinned black ink and a VERY soft brush.
Finally, everything was sealed under a spray coat of matt acrylic varnish.
Voilà, and done in just about a week!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The TIE/LN starfighter, or TIE/line starfighter, simply known as the TIE Fighter or T/F, was the standard Imperial starfighter seen in massive numbers throughout most of the Galactic Civil War and onward.
The TIE Fighter was manufactured by Sienar Fleet Systems and led to several upgraded TIE models such as TIE/sa bomber, TIE/IN interceptor, TIE/D Defender, TIE/D automated starfighter, and many more.
The original TIEs were designed to attack in large numbers, overwhelming the enemy craft. The Imperials used so many that they came to be considered symbols of the Empire and its might. They were also very cheap to produce, reflecting the Imperial philosophy of quantity over quality.
However, a disadvantage of the fighter was its lack of deflector shields. In combat, pilots had to rely on the TIE/LN's maneuverability to avoid damage. The cockpit did incorporate crash webbing, a repulsorlift antigravity field, and a high-g shock seat to help protect the pilot, however these did next to nothing to help protect against enemy blaster fire.
Due to the lack of life-support systems, each TIE pilot had a fully sealed flight suit superior to their Rebel counterparts. The absence of a hyperdrive also rendered the light fighter totally dependent on carrier ships when deployed in enemy systems. TIE/LNs also lacked landing gear, another mass-reducing measure. While the ships were structurally capable of "sitting" on their wings, they were not designed to land or disembark their pilots without special support. On Imperial ships, TIEs were launched from racks in the hangar bays.
The high success rate of more advanced Rebel starfighters against standard Imperial TIE Fighters resulted in a mounting cost of replacing destroyed fighters and their pilots. That, combined with the realization that the inclusion of a hyperdrive would allow the fleet to be more flexible, caused the Imperial Navy to rethink its doctrine of using swarms of cheap craft instead of fewer high-quality ones, leading to the introduction of the TIE Advanced x1 and its successor, the TIE Avenger. The following TIE/D Defender as well as the heavy TIE Escort Fighter (or TIE/E) were touted as the next "logical advance" of the TIE Series—representing a shift in starfighter design from previous, expendable TIE models towards fast, well armed and protected designs, capable of hyperspace travel and long-term crew teams which gained experience and capabilities over time.
The TIE/E Escort, was a high-performance TIE Series starfighter developed for the Imperial Navy by Sienar Fleet Systems and it was introduced into service shortly before the Battle of Endor. It was a much heavier counterpart to the agile and TIE/D fighter, and more of an attack ship or even a light bomber than a true dogfighter. Its role were independent long range operations, and in order to reduce the work load and boost morale a crew of two was introduced (a pilot and a dedicated weapon systems officer/WSO). The primary duty profile included attack and escort task, but also reconnoiter missions. The TIE/E shared the general layout with the contemporary TIE/D fighter, but the cockpit section as well as the central power unit were much bigger, and the ship was considerably heavier.
The crew enjoyed – compared with previous TIE fighter designs – a spacious and now fully pressurized cockpit, so that no pressurized suits had to be worn anymore. The crew members sat in tandem under a large, clear canopy. The pilot in front had a very good field of view, while the WSO sat behind him, in a higher, staggered position with only a limited field of view. Both work stations had separate entries, though, and places could not be switched in flight: the pilot mounted the cockpit through a hatch on port side, while the WSO entered the rear compartment through a roof hatch.
In a departure from the design of previous TIE models, instead of two parallel wings to either side of the pilot module, the TIE Escort had three quadanium steel solar array wings mounted symmetrically around an aft section, which contained an I-s4d solar ionization reactor to store and convert solar energy collected from the wing panels. The inclusion of a third wing provided additional solar power to increase the ship's range and the ship's energy management system was designed to allow weapons and shields to be charged with minimum loss of power to the propulsion system.
Although it was based on the standard twin ion engine design, the TIE/E’s propulsion system was upgraded to the entirely new, powerful P-sz9.8 triple ion engine. This allowed the TIE/E a maximum acceleration of 4,220 G or 21 MGLT/s and a top speed of 144 MGLT, or 1,680 km/h in an atmosphere — almost 40 percent faster than a former standard TIE Fighter. With tractor beam recharge power (see below) redirected to the engines, the top speed could be increased to 180 MGLT in a dash.
In addition to the main thrusters located in the aft section, the TIE Escort's triple wing design allowed for three arrays of maneuvering jets and it featured an advanced F-s5x flight avionics system to process the pilot's instructions. Production models received a class 2, ND9 hyperdrive motivator, modified from the version developed for the TIE Avenger. The TIE/E also carried a Sienar N-s6 Navcon navigation computer with a ten-jump memory.
Special equipment included a small tractor beam projector, originally developed for the TIE Avenger, which could be easily fitted to the voluminous TIE Escort. Models produced by Ysanne Isard's production facility regularly carried such tractor beams and the technology found other uses, such as towing other damaged starfighters until they could achieve the required velocity to enter hyperspace. The tractor beam had limited range and could only be used for a short time before stopping to recharge, but it added new tactics, too. For instance, the beam allowed the TIE/E crews to temporarily inhibit the mobility of enemy fighters, making it easier to target them with the ship's other weapon systems, or prevent enemies from clear shots.
The TIE Escort’s weapons systems were primarily designed to engage bigger ships and armored or shielded targets, like armed freighters frequently used by the Alliance. Thanks to its complex weapon and sensor suite, it could also engage multiple enemy fighters at once. The sensors also allowed an effective attack of ground targets, so that atmospheric bombing was a potential mission for the TIE/E, too.
.
The TIE Escort Fighter carried a formidable array of weaponry in two modular weapon bays that were mounted alongside the lower cabin. In standard configuration, the TIE/E had two L-s9.3 laser cannons and two NK-3 ion cannons. The laser and ion cannons could be set to fire separately or, if concentrated power was required, to fire-linked in either pairs or as a quartet.
The ship also featured two M-g-2 general-purpose warhead launchers, each of which could be equipped with a standard load of three proton torpedoes or four concussion missiles. Depending on the mission profile, the ship could be fitted with alternative warheads such as proton rockets, proton bombs, or magnetic pulse warheads.
Additionally, external stores could be carried under the fuselage, which included a conformal sensor pallet for reconnaissance missions or a cargo bay with a capacity for 500 kg (1.100 lb).
The ship's defenses were provided by a pair of forward and rear projecting Novaldex deflector shield generators—another advantage over former standard TIE models. The shields were designed to recharge more rapidly than in previous Imperial fighters and were nearly as powerful as those found on capital ships, so that the TIE/E could engage other ships head-on with a very high survivability. The fighters were not equipped with particle shields, though, relying on the reinforced titanium hull to absorb impacts from matter. Its hull and wings were among the strongest of any TIE series Starfighter yet.
The advanced starfighter attracted the attention of several other factions, and the Empire struggled to prevent the spread of the technology. The ship's high cost, together with political factors, kept it from achieving widespread use in the Empire, though, and units were assigned only to the most elite crews.
The TIE/E played a central role in the Empire's campaign against rogue Grand Admiral Demetrius Zaarin, and mixed Defender and Escort units participated in several other battles, including the Battle of Endor. The TIE Escort continued to see limited use by the Imperial Remnant up to at least 44 ABY, and was involved in numerous conflicts, including the Yuuzhan Vong War..
The kit and its assembly:
Another group build contribution, this time to the Science Fiction GB at whatifmodelers.com during summer 2017. Originally, this one started as an attempt to build a vintage MPC TIE Interceptor kit which I had bought and half-heartedly started to build probably 20 years ago. But I did not have the right mojo (probably, The Force was not strong enough…?), so the kit ended up in a dark corner and some parts were donated to other projects.
The sun collectors were still intact, though, and in the meantime I had the idea of reviving the kit’s remains, and convert it into (what I thought was) a fictional TIE Fighter variant with three solar panels. For this plan I got myself another TIE Interceptor kit, and stashed it away, too. Mojo was still missing, though.
Well, then came the SF GB and I took it as an occasion to finally tackle the build. But when I prepared for the build I found out that my intended design (over the years) more or less actually existed in the Star Wars universe: the TIE/D Defender! I could have built it with the parts and hand and some improvisation, but the design similarity bugged me. Well, instead of a poor copy of something that was more or less clearly defined, I rather decided to create something more individual, yet plausible, from the parts at hand.
The model was to stay a TIE design, though, in order to use as much donor material from the MPC kits as possible. Doing some legwork, I settled for a heavy fighter – bigger than the TIE Interceptor and the TIE/D fighter, a two-seater.
Working out the basic concept and layout took some time and evolved gradually. The creative spark for the TIE/E eventually came through a Revell “Obi Wan’s Jedi Starfighter” snap fit kit in my pile – actually a prize from a former GB participation at phoxim.de (Thanks a lot, Wolfgang!), and rather a toy than a true model kit.
The Jedi Fighter was in so far handy as it carries some TIE Fighter design traits, like the pilot capsule and the characteristic spider web windscreen. Anyway, it’s 1:32, much bigger than the TIE Interceptor’s roundabout 1:50 scale – but knowing that I’d never build the Jedi Starfighter OOB I used it as a donor bank, and from this starting point things started to evolve gradually.
Work started with the cockpit section, taken from the Jedi Starfighter kit. The two TIE Interceptor cockpit tubs were then mounted inside, staggered, and the gaps to the walls filled with putty. A pretty messy task, and once the shapes had been carved out some triangular tiles were added to the surfaces – a detail I found depicted in SW screenshots and some TIE Fighter models.
Another issue became the crew – even though I had two MPC TIE Interceptors and, theorectically, two pilot figures, only one of them could be found and the second crewman had to be improvised. I normally do not build 1:48 scale things, but I was lucky (and happy) to find an SF driver figure, left over from a small Dougram hoovercraft kit (from Takara, as a Revell “Robotech” reboxing). This driver is a tad bigger than the 1:50 TIE pilot, but I went with it because I did not want to invest money and time in alternatives. In order to justify the size difference I decided to paint the Dougram driver as a Chiss, based on the expanded SW universe (with blue skin and hair, and glowing red eyes). Not certain if this makes sense during the Battle of Endor timeframe, but it adds some color to the project – and the cockpit would not be visible in much detail since it would be finished fully closed.
Reason behind the closed canopy is basically the poor fit of the clear part. OOB, this is intended as an action toy – but also the canopy’s considerable size in 1:50 would prevent its original opening mechanism.
Additional braces on the rel. large window panels were created with self-adhesive tape and later painted over.
The rear fuselage section and the solar panel pylons were scratched. The reactor behind the cockpit section is actually a plastic adapter for water hoses, found in a local DIY market. It was slightly modified, attached to the cockpit “egg” and both parts blended with putty. The tail opening was closed with a hatch from the OOB TIE Interceptor – an incidental but perfect match in size and style.
The three pylons are also lucky finds: actually, these are SF wargaming/tabletop props and would normally be low walls or barriers, made from resin. For my build, they were more or less halved and trimmed. Tilted by 90°, they are attached to the hull with iron wire stabilizers, and later blended to the hull with putty, too.
Once the cockpit was done, things moved more swiftly. The surface of the hull was decorated with many small bits and pieces, including thin styrene sheet and profiles, steel and iron wire in various strengths, and there are even 1:72 tank tracks hidden somewhere, as well as protective caps from syringes (main guns and under the rear fuselage). It’s amazing how much stuff you can add to such a model – but IMHO it’s vital in order to create some structure and to emulate the (early) Star Wars look.
Painting and markings:
The less spectacular part of the project, even though still a lot of work because of the sheer size of the model’s surface. Since the whole thing is fictional, I tried to stay true to the Imperial designs from Episode IV-VI and gave the TIE/E a simple, all-light grey livery. All basic painting was done with rattle cans.
Work started with a basic coat of grey primer. On top of that, an initial coat of RAL 7036 Platingrau was added, esp. to the lower surfaces and recesses, for a rough shading effect. Then, the actual overall tone, RAL 7047, called “Telegrau 4”, one of Deutsche Telekom’s corporate tones, was added - mostly sprayed from abone and the sides onto the model. Fuselage and panels were painted separately, overall assembly was one of the final steps.
The solar panels were to stand out from the grey rest of the model, and I painted them with Revell Acrylic “Iron Metallic” (91) first, and later applied a rather rich wash with black ink , making sure the color settled well into the many small cells. The effect is pretty good, and the contrast was slightly enhanced through a dry-brushing treatment.
Only a few legible stencils were added all around the hull (most from the scrap box or from mecha sheets), the Galactic Empire Seal were inkjet-printed at home, as well as some tactical markings on the flanks, puzzled together from single digits in "Aurebash", one of the Imperial SW languages/fonts.
For some variety and color highlights, dozens of small, round and colorful markings were die-punched from silver, yellow, orange, red and blue decal sheet and were placed all over the hull - together with the large panels they blur into the the overall appearance, though. The hatches received thin red linings, also made from generic decals strips.
The cockpit interior was a bit challenging, though. Good TIE Fighter cockpit interior pictures are hard to find, but they suggest a dark grey tone. More confusingly, the MPC instructions call for a “Dark Green” cockpit? Well, I did not like the all-grey option, since the spaceship is already monochrome grey on the outside.
As a compromise I eventually used Tamiya XF-65 "Field Grey". The interior recieved a black ink in and dry-brushing treatment, and some instruments ansd screens were created with black decal material and glossy black paint; some neon paint was used for sci-fi-esque conmtraol lamps everywhere - I did not pay too much intention on the interior, since the cockpit would stay closed, and the thick clear material blurs everything inside.
Following this rationale, the crew was also painted in arather minimal fashion - both wear a dark grey uniform, only the Chiss pilot stands aout with his light blue skin and the flourescent red eyes.
After an overall black ink wash the model received a dry brusing treatment with FS 36492 and FS 36495, for a weathered and battle-worn look. After all, the "Vehement" would not survive the Ballte of Endor, but who knows what became of TIE/E "801"'s mixed crew...?
Finally, the kit was sealed with matt acrylic varnish, and some final cosmetic corrections made.
The display is a DIY creation, too, made from a 6x6" piece of wood, it's edges covered with edgebonder, a steel wire as holder, and finally the display was paited with semi-matt black acrylic paint from the rattle can.
A complex build, and the TIE/E more or less evolved along the way, with only the overall layout in mind. Work took a month, but I think it was worth the effort. This fantasy creation looks pretty plausible and blends well into the vast canonical TIE Fighter family - and I am happy that I finally could finish this mummy project, including the surplus Jedi Starfighter kit which now also find a very good use!
An epic one, and far outside my standard comfort zone. But a wothwhile build!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The TIE/LN starfighter, or TIE/line starfighter, simply known as the TIE Fighter or T/F, was the standard Imperial starfighter seen in massive numbers throughout most of the Galactic Civil War and onward.
The TIE Fighter was manufactured by Sienar Fleet Systems and led to several upgraded TIE models such as TIE/sa bomber, TIE/IN interceptor, TIE/D Defender, TIE/D automated starfighter, and many more.
The original TIEs were designed to attack in large numbers, overwhelming the enemy craft. The Imperials used so many that they came to be considered symbols of the Empire and its might. They were also very cheap to produce, reflecting the Imperial philosophy of quantity over quality.
However, a disadvantage of the fighter was its lack of deflector shields. In combat, pilots had to rely on the TIE/LN's maneuverability to avoid damage. The cockpit did incorporate crash webbing, a repulsorlift antigravity field, and a high-g shock seat to help protect the pilot, however these did next to nothing to help protect against enemy blaster fire.
Due to the lack of life-support systems, each TIE pilot had a fully sealed flight suit superior to their Rebel counterparts. The absence of a hyperdrive also rendered the light fighter totally dependent on carrier ships when deployed in enemy systems. TIE/LNs also lacked landing gear, another mass-reducing measure. While the ships were structurally capable of "sitting" on their wings, they were not designed to land or disembark their pilots without special support. On Imperial ships, TIEs were launched from racks in the hangar bays.
The high success rate of more advanced Rebel starfighters against standard Imperial TIE Fighters resulted in a mounting cost of replacing destroyed fighters and their pilots. That, combined with the realization that the inclusion of a hyperdrive would allow the fleet to be more flexible, caused the Imperial Navy to rethink its doctrine of using swarms of cheap craft instead of fewer high-quality ones, leading to the introduction of the TIE Advanced x1 and its successor, the TIE Avenger. The following TIE/D Defender as well as the heavy TIE Escort Fighter (or TIE/E) were touted as the next "logical advance" of the TIE Series—representing a shift in starfighter design from previous, expendable TIE models towards fast, well armed and protected designs, capable of hyperspace travel and long-term crew teams which gained experience and capabilities over time.
The TIE/E Escort, was a high-performance TIE Series starfighter developed for the Imperial Navy by Sienar Fleet Systems and it was introduced into service shortly before the Battle of Endor. It was a much heavier counterpart to the agile and TIE/D fighter, and more of an attack ship or even a light bomber than a true dogfighter. Its role were independent long range operations, and in order to reduce the work load and boost morale a crew of two was introduced (a pilot and a dedicated weapon systems officer/WSO). The primary duty profile included attack and escort task, but also reconnoiter missions. The TIE/E shared the general layout with the contemporary TIE/D fighter, but the cockpit section as well as the central power unit were much bigger, and the ship was considerably heavier.
The crew enjoyed – compared with previous TIE fighter designs – a spacious and now fully pressurized cockpit, so that no pressurized suits had to be worn anymore. The crew members sat in tandem under a large, clear canopy. The pilot in front had a very good field of view, while the WSO sat behind him, in a higher, staggered position with only a limited field of view. Both work stations had separate entries, though, and places could not be switched in flight: the pilot mounted the cockpit through a hatch on port side, while the WSO entered the rear compartment through a roof hatch.
In a departure from the design of previous TIE models, instead of two parallel wings to either side of the pilot module, the TIE Escort had three quadanium steel solar array wings mounted symmetrically around an aft section, which contained an I-s4d solar ionization reactor to store and convert solar energy collected from the wing panels. The inclusion of a third wing provided additional solar power to increase the ship's range and the ship's energy management system was designed to allow weapons and shields to be charged with minimum loss of power to the propulsion system.
Although it was based on the standard twin ion engine design, the TIE/E’s propulsion system was upgraded to the entirely new, powerful P-sz9.8 triple ion engine. This allowed the TIE/E a maximum acceleration of 4,220 G or 21 MGLT/s and a top speed of 144 MGLT, or 1,680 km/h in an atmosphere — almost 40 percent faster than a former standard TIE Fighter. With tractor beam recharge power (see below) redirected to the engines, the top speed could be increased to 180 MGLT in a dash.
In addition to the main thrusters located in the aft section, the TIE Escort's triple wing design allowed for three arrays of maneuvering jets and it featured an advanced F-s5x flight avionics system to process the pilot's instructions. Production models received a class 2, ND9 hyperdrive motivator, modified from the version developed for the TIE Avenger. The TIE/E also carried a Sienar N-s6 Navcon navigation computer with a ten-jump memory.
Special equipment included a small tractor beam projector, originally developed for the TIE Avenger, which could be easily fitted to the voluminous TIE Escort. Models produced by Ysanne Isard's production facility regularly carried such tractor beams and the technology found other uses, such as towing other damaged starfighters until they could achieve the required velocity to enter hyperspace. The tractor beam had limited range and could only be used for a short time before stopping to recharge, but it added new tactics, too. For instance, the beam allowed the TIE/E crews to temporarily inhibit the mobility of enemy fighters, making it easier to target them with the ship's other weapon systems, or prevent enemies from clear shots.
The TIE Escort’s weapons systems were primarily designed to engage bigger ships and armored or shielded targets, like armed freighters frequently used by the Alliance. Thanks to its complex weapon and sensor suite, it could also engage multiple enemy fighters at once. The sensors also allowed an effective attack of ground targets, so that atmospheric bombing was a potential mission for the TIE/E, too.
.
The TIE Escort Fighter carried a formidable array of weaponry in two modular weapon bays that were mounted alongside the lower cabin. In standard configuration, the TIE/E had two L-s9.3 laser cannons and two NK-3 ion cannons. The laser and ion cannons could be set to fire separately or, if concentrated power was required, to fire-linked in either pairs or as a quartet.
The ship also featured two M-g-2 general-purpose warhead launchers, each of which could be equipped with a standard load of three proton torpedoes or four concussion missiles. Depending on the mission profile, the ship could be fitted with alternative warheads such as proton rockets, proton bombs, or magnetic pulse warheads.
Additionally, external stores could be carried under the fuselage, which included a conformal sensor pallet for reconnaissance missions or a cargo bay with a capacity for 500 kg (1.100 lb).
The ship's defenses were provided by a pair of forward and rear projecting Novaldex deflector shield generators—another advantage over former standard TIE models. The shields were designed to recharge more rapidly than in previous Imperial fighters and were nearly as powerful as those found on capital ships, so that the TIE/E could engage other ships head-on with a very high survivability. The fighters were not equipped with particle shields, though, relying on the reinforced titanium hull to absorb impacts from matter. Its hull and wings were among the strongest of any TIE series Starfighter yet.
The advanced starfighter attracted the attention of several other factions, and the Empire struggled to prevent the spread of the technology. The ship's high cost, together with political factors, kept it from achieving widespread use in the Empire, though, and units were assigned only to the most elite crews.
The TIE/E played a central role in the Empire's campaign against rogue Grand Admiral Demetrius Zaarin, and mixed Defender and Escort units participated in several other battles, including the Battle of Endor. The TIE Escort continued to see limited use by the Imperial Remnant up to at least 44 ABY, and was involved in numerous conflicts, including the Yuuzhan Vong War..
The kit and its assembly:
Another group build contribution, this time to the Science Fiction GB at whatifmodelers.com during summer 2017. Originally, this one started as an attempt to build a vintage MPC TIE Interceptor kit which I had bought and half-heartedly started to build probably 20 years ago. But I did not have the right mojo (probably, The Force was not strong enough…?), so the kit ended up in a dark corner and some parts were donated to other projects.
The sun collectors were still intact, though, and in the meantime I had the idea of reviving the kit’s remains, and convert it into (what I thought was) a fictional TIE Fighter variant with three solar panels. For this plan I got myself another TIE Interceptor kit, and stashed it away, too. Mojo was still missing, though.
Well, then came the SF GB and I took it as an occasion to finally tackle the build. But when I prepared for the build I found out that my intended design (over the years) more or less actually existed in the Star Wars universe: the TIE/D Defender! I could have built it with the parts and hand and some improvisation, but the design similarity bugged me. Well, instead of a poor copy of something that was more or less clearly defined, I rather decided to create something more individual, yet plausible, from the parts at hand.
The model was to stay a TIE design, though, in order to use as much donor material from the MPC kits as possible. Doing some legwork, I settled for a heavy fighter – bigger than the TIE Interceptor and the TIE/D fighter, a two-seater.
Working out the basic concept and layout took some time and evolved gradually. The creative spark for the TIE/E eventually came through a Revell “Obi Wan’s Jedi Starfighter” snap fit kit in my pile – actually a prize from a former GB participation at phoxim.de (Thanks a lot, Wolfgang!), and rather a toy than a true model kit.
The Jedi Fighter was in so far handy as it carries some TIE Fighter design traits, like the pilot capsule and the characteristic spider web windscreen. Anyway, it’s 1:32, much bigger than the TIE Interceptor’s roundabout 1:50 scale – but knowing that I’d never build the Jedi Starfighter OOB I used it as a donor bank, and from this starting point things started to evolve gradually.
Work started with the cockpit section, taken from the Jedi Starfighter kit. The two TIE Interceptor cockpit tubs were then mounted inside, staggered, and the gaps to the walls filled with putty. A pretty messy task, and once the shapes had been carved out some triangular tiles were added to the surfaces – a detail I found depicted in SW screenshots and some TIE Fighter models.
Another issue became the crew – even though I had two MPC TIE Interceptors and, theorectically, two pilot figures, only one of them could be found and the second crewman had to be improvised. I normally do not build 1:48 scale things, but I was lucky (and happy) to find an SF driver figure, left over from a small Dougram hoovercraft kit (from Takara, as a Revell “Robotech” reboxing). This driver is a tad bigger than the 1:50 TIE pilot, but I went with it because I did not want to invest money and time in alternatives. In order to justify the size difference I decided to paint the Dougram driver as a Chiss, based on the expanded SW universe (with blue skin and hair, and glowing red eyes). Not certain if this makes sense during the Battle of Endor timeframe, but it adds some color to the project – and the cockpit would not be visible in much detail since it would be finished fully closed.
Reason behind the closed canopy is basically the poor fit of the clear part. OOB, this is intended as an action toy – but also the canopy’s considerable size in 1:50 would prevent its original opening mechanism.
Additional braces on the rel. large window panels were created with self-adhesive tape and later painted over.
The rear fuselage section and the solar panel pylons were scratched. The reactor behind the cockpit section is actually a plastic adapter for water hoses, found in a local DIY market. It was slightly modified, attached to the cockpit “egg” and both parts blended with putty. The tail opening was closed with a hatch from the OOB TIE Interceptor – an incidental but perfect match in size and style.
The three pylons are also lucky finds: actually, these are SF wargaming/tabletop props and would normally be low walls or barriers, made from resin. For my build, they were more or less halved and trimmed. Tilted by 90°, they are attached to the hull with iron wire stabilizers, and later blended to the hull with putty, too.
Once the cockpit was done, things moved more swiftly. The surface of the hull was decorated with many small bits and pieces, including thin styrene sheet and profiles, steel and iron wire in various strengths, and there are even 1:72 tank tracks hidden somewhere, as well as protective caps from syringes (main guns and under the rear fuselage). It’s amazing how much stuff you can add to such a model – but IMHO it’s vital in order to create some structure and to emulate the (early) Star Wars look.
Painting and markings:
The less spectacular part of the project, even though still a lot of work because of the sheer size of the model’s surface. Since the whole thing is fictional, I tried to stay true to the Imperial designs from Episode IV-VI and gave the TIE/E a simple, all-light grey livery. All basic painting was done with rattle cans.
Work started with a basic coat of grey primer. On top of that, an initial coat of RAL 7036 Platingrau was added, esp. to the lower surfaces and recesses, for a rough shading effect. Then, the actual overall tone, RAL 7047, called “Telegrau 4”, one of Deutsche Telekom’s corporate tones, was added - mostly sprayed from abone and the sides onto the model. Fuselage and panels were painted separately, overall assembly was one of the final steps.
The solar panels were to stand out from the grey rest of the model, and I painted them with Revell Acrylic “Iron Metallic” (91) first, and later applied a rather rich wash with black ink , making sure the color settled well into the many small cells. The effect is pretty good, and the contrast was slightly enhanced through a dry-brushing treatment.
Only a few legible stencils were added all around the hull (most from the scrap box or from mecha sheets), the Galactic Empire Seal were inkjet-printed at home, as well as some tactical markings on the flanks, puzzled together from single digits in "Aurebash", one of the Imperial SW languages/fonts.
For some variety and color highlights, dozens of small, round and colorful markings were die-punched from silver, yellow, orange, red and blue decal sheet and were placed all over the hull - together with the large panels they blur into the the overall appearance, though. The hatches received thin red linings, also made from generic decals strips.
The cockpit interior was a bit challenging, though. Good TIE Fighter cockpit interior pictures are hard to find, but they suggest a dark grey tone. More confusingly, the MPC instructions call for a “Dark Green” cockpit? Well, I did not like the all-grey option, since the spaceship is already monochrome grey on the outside.
As a compromise I eventually used Tamiya XF-65 "Field Grey". The interior recieved a black ink in and dry-brushing treatment, and some instruments ansd screens were created with black decal material and glossy black paint; some neon paint was used for sci-fi-esque conmtraol lamps everywhere - I did not pay too much intention on the interior, since the cockpit would stay closed, and the thick clear material blurs everything inside.
Following this rationale, the crew was also painted in arather minimal fashion - both wear a dark grey uniform, only the Chiss pilot stands aout with his light blue skin and the flourescent red eyes.
After an overall black ink wash the model received a dry brusing treatment with FS 36492 and FS 36495, for a weathered and battle-worn look. After all, the "Vehement" would not survive the Ballte of Endor, but who knows what became of TIE/E "801"'s mixed crew...?
Finally, the kit was sealed with matt acrylic varnish, and some final cosmetic corrections made.
The display is a DIY creation, too, made from a 6x6" piece of wood, it's edges covered with edgebonder, a steel wire as holder, and finally the display was paited with semi-matt black acrylic paint from the rattle can.
A complex build, and the TIE/E more or less evolved along the way, with only the overall layout in mind. Work took a month, but I think it was worth the effort. This fantasy creation looks pretty plausible and blends well into the vast canonical TIE Fighter family - and I am happy that I finally could finish this mummy project, including the surplus Jedi Starfighter kit which now also find a very good use!
An epic one, and far outside my standard comfort zone. But a wothwhile build!
Not given him a name yet.. still bonding. Not sure what to do do about that hair... it just looks so like it doesn't have a hair out of place... It's almost too perfect! LIke he wears hairspray!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
At the end of WW2, Sweden was in search of a new fighter offering better performance than the J21 could offer. The latter was an indigenous fighter/attack aircraft from SAAB that first took to the air in 1943 and dated back to a requirement from 1941. The J21 was designed as an unusual twin boom pusher configuration, where the propeller was mounted in the rear of the fuselage, pushing the aircraft forward. The advantages of a pusher design were that the view forward was unobstructed and armament could be concentrated in the nose, while the heavy engine was placed close to the center of gravity for better handling and agility. A major drawback was the difficulty in escaping from the aircraft in an emergency, though, as the pilot could get drawn into the propeller blades. SAAB deliberated between systems that would eject the pilot, or jettison the propeller or even the whole engine, via a system of explosive bolts, and eventually installed an early, explosives-powered ejector seat developed by Bofors for this purpose.
However, the SAAB 21 had its share of trouble (overheating an unreliable DB 605 engine), and in 1944 a new requirement for a more powerful and conventional fighter was issued. Selecting the Rolls Royce Griffon as the powerplant, SAAB initially looked into adapting the engine to the J21. However, this proved impractical, so SAAB started work on a clean-sheet design.
The L27, as it was known in the project stage, ended up closely resembling the latest designs to come from Britain like the Supermarine Spitfire or the Martin Baker MB 5, as well as the North American P-51 Mustang. The Griffon engine, chosen for initial development and flight tests, drove a contra-rotating propeller and sat in the nose. Top speed with the Griffon was expected to be around 700 km/h (435 mph). Later production aircraft were to be powered by a domestically developed, new H-24 cylinder motor similar to the British Napier Sabre engine and delivering output in significant excess of 2.200 hp (1.640 kW). With this machine, the aircraft was expected to reach a top speed of 740 km/h (460 mph) or even more.
The wings were similar to those used on the Fairey Firefly, complete with Fairey’s characteristic Youngman flaps, but with small wing root extensions and a thicker profile than the late Spitfires’ wings, and with more rounded wing tips. Similar to the P-51, the L27’s landing gear with a wide track retracted inwards into the wings, and the tail wheel could be fully retracted, too.
Armament, consisting of four 20mm Hispano cannons, was to be concentrated in the wings just outside of the propeller arc, and unlike the Spitfire’s arrangement with underwing coolers, the L27’s single radiator was placed in a ventral tunnel position, very similar to the arrangement on the P-51.
A total of three prototypes were ordered, and the aircraft was now formally designated J27A; two were to be powered by Rolls-Royce Griffon 83 engines, and one as a test structure and earmarked for the development of the 24 cylinder engine and its integration into the projected J27B.
The first flight of a J27A took place in March 1945, and the promising results kept the project evolving until late 1946, when the aircraft was cleared for service and production in January 1947. 70 aircraft with Griffon engines were ordered.
Anyway, in early 1945, SAAB had also launched a project to determine how to provide the J21A with a jet engine to get the experience of jet engines and flying at high speeds. The goal was to catch up with the development of jet aircraft, which were moving ahead fast in England, where, among others, de Havilland already had the de Havilland Vampire in production. The resulting J21R, SAAB's first jet, made its first flight on 10 March 1947 and it marked the death knell for any piston-engine fighter development and use in Sweden. Consequentially the 24 cylinder engine never made it from the drawing board, and after the initial production run of the Griffon-powered J27A was completed until early 1949, further production was stopped and the whole J27 program terminated. Serial production J27As differed only slightly from the prototypes. The most obvious change was a taller vertical stabilizer and a small fin fillet, less obvious was a modified landing gear cover arrangement, because the original design with a single, large cover of the main wheels tended to bulge outward at high speed. A split design mended this problem.
While the J27A’s projected top speed of 700km/h was impressive for a piston-engine fighter and frequently confirmed in service, it was inadequate in the oncoming jet age. In the end, SAAB opted to pursuit jet fighter endeavors that soon led to the very modern and innovative SAAB J29 that soon became Sweden’s standard jet fighter.
In frontline service the J27 was, even though it was popular among its pilots and maintenance crews, almost immediately replaced by jets, at first with the J28B Vampire (from 1951 on), which were in turn quickly replaced in 1952 with the indigenous J29 Tunnan.
The last J27A was, after serving with fighter units primarily in southern Sweden, already retired from frontline duties in 1955. Some aircraft, though, were kept in service as target tugs, liaison aircraft for the air staff and for dissimilar air combat training. The last machine was finally decommissioned in summer 1961.
General characteristics:
Crew: One
Length: 9.90 m (32 ft 5 in)
Wingspan: 11.84 m (38 ft 9 1/2 in)
Height: 4.19 (13 ft 9 in)
Wing area: 22.2 m² (238.87 ft²)
Empty weight: 3,250 kg (7,165 lb)
Loaded weight: 4,150 kg (9,149 lb)
Max. take-off weight: 4,413 kg (9,730 lb)
Powerplant:
1× license-built Rolls-Royce Griffon 83 liquid-cooled V-12 engine, 2,340 hp (1,745 kW),
driving a six-bladed contraprop
Performance:
Maximum speed: 435 mph (700 km/h) at 20,000 ft (6,100 m)
Cruise speed: 495 km/h (265 knots, 308 mph)
Range: 1,100 mi (1,770 km)
Service ceiling: 40,000 ft (12,190 m)
Rate of climb: 3,800 ft/min (19.3 m/s)
Armament:
4× 20 mm Bofors cannon (license-built Hispano Mk.II cannon) with 200 rpg in the outer wings
Underwing hardpoints for 8-12 × 3inch "60 lb" rocket projectiles
or 2× 1,000 lb (450 kg) bombs
or a pair of 45 gal (205 l) or 90 gal (409 l) drop tanks.
The kit and its assembly:
This is a “real” what-if model, or at least the attempt to build a phantom aircraft from single parts! The SAAB 27 is a bit of a mystery, because valid information is sparse, especially concerning details about its shape. You find some drawings or profiles, but IMHO these are based on guesswork and rather vague. The J27 is frequently described as a “Swedish Spitfire with a P-51 radiator” or a “Swedish Super-Spitfire”, but that leaves much to be desired, because the similarity is only superficial. Hence, this model here is rather a free interpretation of what a service J27 could have looked like.
For long time I fought with two building options: either convert a Fairey Firefly (Airfix’ Mk. 5 would have been my bet), or use a Spitfire Mk. 22. After long considerations I settled for the latter one, because I feared that the Firefly would result in a rather massive aircraft, and the Airfix kit itself is vintage and worth a building fight on its own.
So I used an Airfix Spitfire Mk. 22, but from this (very nice!) kit just a few things were taken, because I wanted a more individual look. Only the fuselage, cockpit interior and landing gear survived, and I even inserted a 2.5mm wide “wedge plug” around the cockpit and wedge-shaped inserts at the fuselage halves’ seams in order to add some beef to the sleek (if not spindly) Spitfire. I think it’s hard to notice, but the overall proportions look good. At the tail and the front end, the original fuselage width was kept, though.
Reason behind this was the P-51 radiator’s width (leftover from a Matchbox kit) that was considerably wider than the Spitfire fuselage. Furthermore, the thicker/more massive wings from a P-47 (from an early MPM kit) also called for a more massive body.
For the new wings, some adaptations to the Spitfire wing roots had to be made, though, e.g. a bulged mid-wing section under the fuselage. The Thunderbolt parts also had the benefit of wells for a landing gear that retracts inwards. I also used P-47 landing gear parts, even though the struts were shortened at their bases by 3mm and the covers accordingly. For the sake of a different look (the Spitfire wheels are very characteristic) I used different main wheels from a Revell G.91R. The landing gear cover arrangement differs from J27 sketches (as far as I can tell, it must have been similar to the P-51's), but I stuck with the P-47 parts because they match well with the rest of the aircraft.
The contraprop belongs to a late mark Seafire, left over from a Special Hobby kit. The propeller was in so far modified that I added a metal axis and a styrene tube adapter for the fuselage, so that both propeller parts can (theoretically) spin. OOB, the Special Hobby solution is simply to be glued onto the nose, fixed, despite being constructed in two separate parts?
Furthermore, the carburetor intake was changed: the Spitfire’s scoop at the wings’ leading edge was replace by a Firefly-style lip intake right behind the propeller.
The whole tail section was reconditioned, too. Descriptions of the J27’s tail are corny, but “more square than a Spitfire’s”. Instead of simple cosmetic surgery I thoroughly replaced the OOB fin with a Supermarine Attacker’s (Novo kit) with some mods to the outline, which fits well in size and is …more square!
The new tail is a bit taller and has a fin fillet, making it look very P-51-ish, but that’s O.K. for me. At least it’s different from the round Spitfire shape.
I also exchanged the stabilizers, the round Spitfire parts gave way to differently shaped pieces from a Hobby Boss La-7. Their shape is similar to a P-47’s, but they are smaller and match J27 illustrations well.
The canopy was also changed. Through the widened fuselage around the cockpit the tight OOB Spitfire hood would hardly match, anyway. The bubble layout remained, and I adapted a bigger Matchbox P-51 canopy to the new fuselage contours, and moved forward as far as possible.
Painting and markings:
The Swedish Air Force as operator was settled, as well as early post-WWII markings. But I did not want the standard, uniform olive green/blue grey livery, so I painted the upper surfaces with camouflage scheme made from two green tones: a medium green tone (Humbrol 102, Army Green, ~FS 34096) and a bluish, dark green (Humbrol 91, RLM 70 equivalent), applied in bands – somewhat inspired by a scheme carried by some SAAB 32 Lansen in the early 60ies.
The underside was kept in the typical Swedish blue-grey, for which I used Humbrol 87. The waterline was placed very low so that the upper camouflage was also taken to the radiator flanks under the fuselage and wings.
The cockpit was painted in very dark grey (Humbrol 32), while the landing gear and the wells were kept in Aluminum (Humbrol 56).
As a 2nd squadron machine, the code letter became blue, as well as the two-part spinner, latter’s paint was mixed, based on the squadron code letter decal’s tone on the tail.
The roundels and the 'R' codes come from an RBD Studio aftermarket sheet from Sweden, further decals like the yellow ‘9’ code, the squadron’s ‘Bonzo’ dog mascot emblem as well as most stencils come from a Heller SAAB 21.
A complex build, yet the model aircraft looks so innocent… Anyway, the goal was IMHO achieved: this J27 model just looks like a “Swedish Spitfire with a P-51 radiator”, and at first glance you cannot be certain if this is a modified Griffon Spitfire or a P-51D. Both is true, to a certain degree, but also not correct, because the changes are more fundamental and the wings are completely different from either. So, the mission’s been accomplished. ;)
And I feel inclined to tackle a J23, too, a Bf109/P-51B design hybrid that was designed as a conservative alternative to the pusher J21.
An original steampunk samurai character & 1/6 scale kitbash figure, conceived and assembled by myself, photographed using layered filters from both Enjoyphoto and editing apps installed on my cameraphone.
Some background:
Instead of a story compiled/edited by myself, a very good “real” source: an article about the “American Spirit” project from 1996, scanned from a magazine and posted elsewhere:
This and some more information, including a drawing of the (apparently never) finished aircraft and a photo of the semi-finished airframe on airliners.net were the basis for my build.
The kit and its assembly:
This is my third and last entry to the “Racing” group build at whatifmodelers.com that ended in Feb. 2019. It is nothing less than the attempt to re-create the potentially fastest piston engine aircraft in the world as a model, based on the sparse information I was able to gather (see above). The aircraft’s design is quite odd, and it is worth reading the design background in the article, because it was a true “garage build” with the intention to use as many existing components in order to save costs and development time.
This was, more or less, mirrored during the building process, and like the real “American Spirit” the model consists at its core of a Matchbox T-2 “Buckeye” jet trainer! The T-2 fuselage lost its nose section, the ventral engine bay and the original cockpit fairing. This left a lot of fuselage surface to be re-constructed. The fin was clipped, too, just like in real life. At the fin’s base I added a cockpit opening and implanted a cockpit tub, taken from a Revell G.91. A new bucket seat (probably from an Academy Fw 190) was installed, and a new, tight canopy – I think it originally came from a Revell Go 229, but it was trimmed down considerably to match the T-2’s fuselage lines. The canopy was blended into the fin root with massive 2C putty sculpting, and the area in front of the windscreen was created with 2C putty, too. Both a tedious PSR process.
Once the upper fuselage shape was finished I started searching for a cowling and a matching propeller. After several attempts with bigger engines (e. g. from a Super Constellation) I eventually settled upon a rather narrow (but bleak) cowling from an Pioneer2/Airfix Hawker Sea Fury, which turned out to have just the right diameter for the re-constructed T-2 fuselage and matched the “American Spirit” drawing’s well.
It also had at the front end the right diameter for the propeller: it comes, just like in real life, from a C-130 Hercules, even though I used a late variant with six blades, a resin aftermarket piece, taken from an Attack Squadron engine nacelle set. Unfortunately, the spinners were molded onto the engines, so that I had to cut my donor part away. Three of the six propeller blade attachment points were faired over. While the original “American Spirit” carried clipped blades from an Electra airliner, I used parts from a P-3 Orion – the come very close in shape and size, and were easy to install. Finally, the propeller received a metal axis and a matching styrene tube adapter in the Sea Fury cowling.
Once the engine was in place, the cowling was filled with as much lead as possible, since the model would be built with an extended landing gear.
However, a large ventral section was still missing, and it was created with a leftover underwater section from a model ship hull, and lots of more putty, of course. A small tail bumper was added under the fin.
Once the fuselage was more or less finished, I turned my attention to the wings and stabilizers. The latter were supposed to be “un-swept F-86H stabilizers”, but unfortunately I could not find visual evidence of what this would have looked like. I tried some donor parts, including stabilizers from an F-86A and D, as well as from a MiG-15, and eventually decided to use individual parts, because nothing looked convincing to me, either swept or straight. Actually the MiG-15 parts looked the best, but they were too small, so I used the wings from an 1:144 Panavia Tornado (Dragon) and tailored them into a sweep angle similar to the MiG-15 parts, but with more depth and span. Not certain how “realistic” this is, but it looks good and compliments the swept T-2 fin well.
The T-2 wings saw only minor modifications: the wing tip tanks were cut off and the tips as well as the flaps faired over, since the “American Spirit” did not feature the latter anymore. The small LERXs were cut away, too, and instead I added small air intakes – the “American Spirit” probably did not feature them, but I wondered where the aircraft’s engine would feed its carburetor or an oil cooler? The respective gaps on the fuselage flanks were filled accordingly.
Some more work waited on the fuselage, too. The aircraft’s drawing showed shallow openings on the forward fuselage’s flanks, but their function was not clear – I assume that the exhausts from the 18 cylinder engine were collected there, 9 on each side, so I carved the openings into the massive plastic and putty fuselage with a mini drill tool and added exhaust stubs as well as deflector plates.
Another issue was the well for the front landing gear – this came, together with the complete front leg, from an Italeri F-100, just like in real life. The good thing about the Italeri kit is that it comes with a separate well tub, which made the installation quite easy. I just cut a square section out of the lower fuselage behind the engine and the landing gear well snuggly fell into place, with only little PSR effort. And, to my surprise, the end result seems to be a very good match to the real life design – even though I was not able to confirm this with picture material.
The main landing gear was taken OOB from the Matchbox T-2 – and it is really a weird sight, since the T-2’s track is very wide while the wheelbase is unusually short. But the source article indicates that this must have been the designers’ plans!
Painting and markings:
While the model’s hardware came quite close to the real thing, the livery of the “American Spirit” was totally open, so I created my own. I felt that two design directions would be appropriate: either a relatively dry and clean design, e. g. in overall silver or white with a little trim, or something patriotic, reflecting the aircraft’s name.
I eventually settled for the latter, and considered several approaches in white, red and blue, and eventually settled for one of my first ideas, a kind of “flying American flag” in an asymmetrical design, somewhat inspired by a Bicentennial F-106A from 1976: this machine carried a white fuselage with some red trim stripes and a blue nose section that featured lots of tiny white stars. I took this layout a little further and gave the “American Spirit” a dark blue engine cowling and front fuselage section, as well as a single blue wing. From that, wide red and white stripes stream backwards across the other wing, the fuselage and the tail. The design was mirrored on the undersides.
The stripes were painted with a wide brush with Humbrol 19 and 22, after the kit had been primed with white and had received an overall white basic coat with acrylic paint from the rattle can, too. The blue section was painted with Revell 350 (RAL 5013/Lufthansa Blue). I tried to add some “wavy flag texture” effect to the basic paints with slightly different tones, added wet-in-wet to the basic paints, but the visual effect turned out to be minimal, so I left it like that.
The stars are all individual waterslide decals, coming from an 1:87 Allied WWII markings sheet from TL Modellbau. The big white stars that are the background for the starting numbers on top and below the blue wing come from an 1:72 F4U. The red and blue starting numbers themselves were taken from a TL Modellbau sheet for firefighting vehicles: they are actually parts of German emergency telephone numbers…
Some stencils and leading edges on all wings, created with generic silver decal material, completed the outside, and finally I painted some fake panel lines onto the hull with a soft pencil. The T-2 air brakes, which were retained for the “American Spirit”, were re-created with fine black decal lines. Similar material in silver was used to simulate panel lines for the cooling air outlet flaps on the cowling. Unfortunately, the T-2 kit itself did not come with much surface detail, and any leftover rest (like the air brakes) disappeared during the extensive PSR sessions and under the primer and paint coats. Finally, the kit was sealed with a coat of semi-gloss acrylic varnish (Italeri).
A massive scratch-build. While challenging the work on this model was fun because it followed in its creation a similar process as the real “American Spirit”, which was, AFAIK, sold and never completed. In the end, I am positively surprised how close the overall outlines seem to come to the real (and odd-looking) aircraft, even though the garish livery is purely speculative, so that this model is, despite its roots in the real world and the attempt to stay true to the original, a fictional/whif piece. The finish is a bit rough, though, but that’s probably the price to pay when you create things from scratch.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Su-21 attack aircraft had its roots in the Su-15 interceptor, which itself was a development of Sukhoi's tailed-delta Su-9 and Su-11 interceptor fighters. Construction of the Su-15 (internal project designation T-58) began in mid-1960, state acceptance tests of the respective T-58-8M1 interception complex with radar and air-to-air missiles started in August 1963.
In 1966 series production at Novosibirsk began, the first pre-series Su-15 interceptor made its first flight from Novosibirsk on 6 March 1966. Once identified as a new service aircraft, NATO christened the type 'Flagon'. While the Su-15 was in series production, a number of improved design features were developed, tested and subsequently introduced with a new production series of the interceptor.
In 1969, under the influence of the Vietnam conflict and the conclusion that dedicated ground attack aircraft were needed in a modern battlefield, the Sukhoi OKB investigated options for a new close-support "mudfighter" aircraft. One option was a derivative of the Su-15, designated the "T-58Sh" -- the suffix "Sh" stood for "shturmovik (storm bird)", a general Soviet name for a close-support aircraft.
The T-58Sh design was based on the Su-15 fuselage and engine installation with two Tumansky R-13-300 turbojets, but with considerable modifications. These included totally new wings and stabilizers - the orginal delta wing for high speed gave way to tapered wings with a constant 40° sweep, and the horizontal stabilizers were modified, too. The original fin was kept, though, as well as most of the landing gear installation, even though the front wheel retracted backwards now, since the complete nose up until spar no. 10 had been redesigned: instead of the interceptor's large radome, a slanted, considerably shorter nose improved the field of view for the pilot. In its tip it housed a 'Fon' laser rangefinder as well as a missile guidance antenna. A Doppler radar was housed under the nose, too, and an ASP-PF gunsight and a PBK-2 bomb sight optimized for lob-bombing were installed. The cockpit was completely armored, as well as parts of the lower fuselage around the engine section. All internal tanks (holding 4.500kg/9.921lb of fuel in the fuselage as well as in the wings) were self-sealing.
Another novelty was the freshly developed, built-in Gatling cannon, the GSh-30A, also known as 9A-621. This formidable, six-barreled weapon had a pneumatic mechanism (instead of en electric system, which was used in US types like the M61 'Vulcan' gun), fired 30mm shells and achieved a staggering fire rate of 5.000rpm. The cannon's magazine held 280 rounds - a shift of fuel tanks from the fuselage into the new wings with more internal space allowed the belly installation behind the front wheel well. Furthermore, a total of nine external weapon hardpoints allowed an ordnance load of up to 5.500kg (12.115lb), which included laser-guided smart bombs/missiles as well as tactical nuclear weapons.
Two T-58Sh prototypes were completed, and the first of these flew on 6 April 1968, the second on 26 September 1968. After State Acceptance Trials the Su-15Sh entered service in 1970 - in parallel, OKB Mikoyan was also working on a ground attack variant of its MiG-23 VG fighter, the later MiG-27, which flew in 1971 for the first time.
This advantage in time to service worked in favor of the Suchoj aircraft, which was so different from its Su-15 origins that it received a new service-designation, Su-21 (which was, by Western observers, often miss-attributed to the late Su-15 interceptor versions with ogive radomes and new double-delta wings).
By 1972, four squadrons were equipped with the new aircraft. Interestingly, none of the Su-21 were deployed to Afghanistan. Instead, the new fighter bombers were exclusively allocated to Attack Regiments in the potential Western conflict theatre, two of them based in Poland and two in Eastern Germany.
The basic version of the aircraft was produced at Factory 31, at Tbilisi, in the Soviet Republic of Georgia. Between 1969 and 1975, 182 Su-21 were produced. Much like the Su-15 interceptor variants, there were no exports, the Soviet/Russian Air Force remained the only operator - the more versatile MiG-23/27 filled that role. Later, foreign customers would receive the Su-25K from Sukhoi's export program, as well as the Su-20 and 22 VG fighter bombers.
During its service career, the Su-21 was constantly upgraded. One of the most significant changes was an MLU programme which, among others, introduced the 'Shkval' optical TV and aiming system, which was coupled with a new 'Prichal' laser rangefinder and target designator in an enlarged nosecone. This system enabled the aircraft to carry out all-weather missions, day and night, and also allowed to deploy the new 'Vikhr' laser-guided, tube-launched missiles, which were very effective against armored vehicles.
These updated aircraft received the designation Su-21D ('dorabotanyy' = updated). Two respective prototypes were built in 1982–84, and all aircraft were brought to this standard until 1988.
The only engagement of the Su-21 in a real combat scenario was its employment during the First Chechen War - which also signalized the type's retirement, after the conflict was over. Together with other Russian Air Force air assets, The Su-21s achieved air supremacy for Russian Forces, destroying up to 266 Chechen aircraft on the ground. The entire Air Force assets committed to the Chechen campaign between 1994 and 1996 performed around 9,000 air sorties, with around 5,300 being strike sorties. The 4th Russian Air Army had 140 Su-17Ms, Su-21Ds, Su-24s and Su-25s in the warzone supported by an A-50 AWACS aircraft. The employed munitions were generally unguided bombs and rockets with only 2.3% of the strikes using precision-guided munitions.
The Su-21 was a controversial aircraft. It was relatively reliable, benefitting from its two engines and solid armor, which was seen as one of the most important features for a true battlefield aircraft - inofficially, it was nicknamed 'ома́р' ('lobster') among the crews.
It had a high payload and was a very stable weapon platform. But the type suffered from the fact that it was an interceptor derivate which had originally been designed for dashes at Mach 2.5 at high altitudes. Consequently, the airframe had to be enforced to withstand higher G loads at low level flight and with heavy external loads, so that it was basically overweight. The extra armor did not help much either.
Additionally, the R-13 jet engines (basically the same that powered the 3rd generation MiG-21MF) were thirsty, even when running without the afterburner extra power, so that the type's range was very limited. Its ability to dash beyond Mach 1 even at low altitudes was of little tactical use, even though its high rate of acceleration and climb made it ideal for suprise attacks and delivery of tactical nuclear weapons - the latter was the main reason why the type was kept in service for so long until it was replaced by Su-24 bombers in this role.
Another source of constant trouble was the GSh-30A cannon. While its firepower was overwhelming, the vibrations it caused while firing and the pressure blasts from the nozzles could badly damage the aircraft's lower fuselage. There had been several incidents when the front wheel covers had literally been blown apart, and in one case the gun itself detached from its fuselage mount while firing - hitting the aircraft itself from below!
In the end, the Su-21 could not live up to the expectations of its intended role - even though this was less the aircraft's fault: the military demands had been unclear from the beginning, and the T-58Sh had been a second- choice solution to this diffuse performance profile.
Eventually the MiG-27 and also the Su-17/22 family as well as the biggher Su-24 tactical bomber, thanks to their variable geometry wings, proved to be the more flexible aircraft for the ground attack/fighter bomber role. But the lessons learned from the Su-21 eventually found their way into the very successful, subsonic Su-25 ('Frogfoot') family. The last Su-21D was retired in January 1997, after a service career of 25 years.
General characteristics
Crew: 1
Length (with pitot): 17.57 m (57 ft 6 1/4 in)
Wingspan: 12.24 m (40 ft 1 in)
Height: 4.84 m (15 ft 10 in)
Empty weight: 11.225 kg (24.725 lb)
Loaded weight: 17.500 kg (38.580 lb)
Powerplant:
2× Tumansky R-13-300 turbojets,each rated at 40.21 kN (9,040 lbf) dry and at 70.0 kN (15,730 lbf) with afterburner
Performance
Maximum speed: 1.250km/h (777mph/674nm) at sea level
Range: 1.380 km (855 ml)
Ferry range: 1.850 km (1.146 mi)
Service ceiling: 17.000 m (55.665 ft)
Armament
1× GSh-30A gatling gun with 280 RPG in the lower fuselage
9× hardpoints (three under the fuselage, three under each wing) for a weapon load of up to 5.500kg (12.115lb),
including iron bombs, unguided missiles and rocket pods, guided weapons, napalm tanks or gun pods; two R-60 (AA-8 "Aphid") AAMs were typically carried for self-defense on the outer pylon pair
The kit and its assembly:
This whif actually has a real background, as outlined above - OKB Sukhoi actually worked in the late 60ies on a Su-15 derivate as a specialized attack aircraft, since the Soviet Forces lacked that type. The ground attack types then in service were the vintage MiG-17 and converted MiG-19 fighters, as well as the fast but very limited Su-7 - either outdated fighters or a fighter-bomber with insufficient range and payload.
Specifications for a ground attack aircraft were unclear at that time, though. Supersonic capability was still seen as a vital asset for any military aircraft, and WWII tactics were still the basis for close air support duties. The T-58Sh was eventually one design direction that would keep development time and costs low, starting with a proven basic airframe and adapting it to a new (and very different) role.
The Su-15, from which the T-58Sh was derived, originally was a Mach 2 interceptor, solely armed with missiles. Making THIS a ground attack aircraft surely was a huge step. The projected Su-15Sh, how the aircrfat was also called, was still to be supersonic, since this was seen as a vital asset at that time. This concept would eventually be a dead end, though, or, alternatively, result in the lighter and much cheaper MiG-27 tactical fighter in the 70ies. But it should still take some more years until a subsonic, simple and dedicated aircraft (the T-8, which made its maiden flight in 1975 and became later the Su-25 'Frogfoot') would be the 'right' direction for the new shturmovik. The Su-15Sh actually never left the drawing board, the swing-wing Su-17/20/22 more or less took its place in real life.
With that background my idea was to build a model of the ground attack Su-15 derivate in front line service in the mid 80ies, at the Cold War's peak and used by the Group of Soviet Forces in (Eastern) Germany. The Su-21 designation is fictional. But since the aircraft would be SO different from the Su-15 interceptor I can hardly imagine that it would have been called Su-15Sh in service. Since its cousin, the MiG-27, also received a new designation, I decided to apply the Su-21 code (which was never applied to a real aircraft - those Su-15 versions called Su-21 are just misnomers or speculations of Western 'experts' when the Iron Curtain was still up).
As a coincidence, I had all 'ingredients' at hand:
● Fuselage and fin from a PM Model Su-15
● Nose section from an Academy MiG-27 (leftover from the Q-6 kitbach)
● Wings and horizontal stabilizers from an ESCI A-7
The A-7 wings have slightly more sweep than what the drafted T-58Sh had (45° vs. 40°), as far as I can tell from profiles, but otherwise they fit in shape and size. I just cut the orginal leading edge away, sculpted a new front from putty, and the result looked very good.
What became tricky were the landing gear wells. Part of the Su-15 landing gear retracts into the lower fuselage, and mating this with the Corsair's wings and the potential space for the landing gear there did not match up properly -the wings would end up much too far behind.
After some trials I decided to cut out the landing gear wells on the lower side of the wings, relatively far forward, and cut out a part of the lower fuselage, reversed it, so that the landing gear wells woukd be placed about 5mm further forward, and the wings were finally attached to the fuselage so that these would match the respective openings on the fuselage's bottom. This was more or less the only major and unexpected surgery, and the original Su-15 landing gear could be retained.
Using the A-7's stabilizers was also a bit off the original concept (the T-58Sh appeared to keep the original parts), but I found that the more slender but wider A-7 parts just made the aircraft look more homogenous?
Grafting the MiG-27 cockpit (which was taken OOB) onto the fuselage was not a big problem, since the intersection is of simple shape and fits well by height and width. I made a vertical cut on the Su-15 fuselage in the middle of the air intake area, which would later be hidden through the air intakes. The latter were taken from the Su-15, but simplified: the intake became simple and "vertical", and the large, orginal splitter plates were replaced by the shorter speiceimen from the MiG-27 kit. The fit almost perfectly, are just a bit short, so that a small hole had to be filled with styrene strips on the lower side.
The fin was taken OOB, just as on the propsed real aircraft. The resulting side profile reminds VERY much of a Dassault Étendard on steroids...? The whole thing also looks a bit like the missing link between the Su-15 and the later Su-24 fighter bomber - esp. when you know the Fencer's fixed-wing T-6 prototype.
Externally, the gatling gun (also taken from the leftoevr MiG-27) and a total of nine hardpoints were added - three under the fuselage, flanking the gun, and six under the outer wings.
Since the Su 15 is a pretty large aircraft, I used the opportunity to equip the aircraft with serious air-to-ground ordnance, a pair of TV-guided Kh-29T (AS-14 "Kedge") missiles from an ICM USSR weapon set and a pair of R-60 AAMs, leftover from an ESCI Ka-34. Furthermore, chaff/flare dispensers were added to the rear upper fuselage, as well as some antennae and the pitots.
Actually, this kitbash was less complicated as expected. Needed lots of putty, sure, but this would also have been needed on the OOB Su-15 from PM Models, as it is a primitive and crude model kit. Here, it found a good use. One drawback is, though, that the surface lacks detail: the PM Model Su-15 is bleak (to put it mildly), and the re-used A-7 wings lost much of their engraved details to leftover paint or sanding - paint tricks would have to mend this.
Painting and markings:
As a frontline service aircraft, this one would receive a tactical camouflage pattern. The Soviet Air Force offers a wide range of options, ranging from boring to bizarre, and I settled for a typical four-color camouflage with light blue undersides:
● Humbrol 119 (Light Earth)
● Humbrol 159 (Khaki Drab)
● Humbrol 195 (Chrome Oxide Green, RAL 6020)
● Testors 2005 (Burnt Umber)
● Humbrol 115 (Russian Blue) for the lower surfaces
The paint scheme was inspired by a East Germany-based Su-17, the colors are guesstimates, based on pictures of real-life Soviet aircraft.
Cockpit interior was painted in typical, infamous Soviet/Russian turqoise (*Argh*), the complete landing gear was painted in Aluminum (Humbrol 56); the wheel discs became bright green (Humbrol 131), di-electric panels (e .g. the fin tip) received a coat in Forest Green (Humbrol 149, FS 34092).
The model was weathered through some counter-shading with lighter tones of the five basic colors, a wash with black ink and some additional stains and blotches with different shades of green and brown, including Humbrol 98 118, 128, 151 - even some RLM 82 from Testors found its way onto the aircraft!
Decals and markings were puzzled together from various aftermarket sheets, and are based on real life pictures of Soviet/Russian aircraft based in Eastern Germany.
I also added some bare metal stains at the leading edges and soot stains around the gun. Since the kitbashed model was pretty bleak, I tried to add painted panel lines - using a thin brush and a mix of matt varnish and black. The counter-shading applied before enhances this effect, and if you do not look too closely at the model, the result is O.K.
Finally, everything was sealed under a coat of matt acrylic varnish.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the aftermath of the Second World War, Britain identified a threat posed by the jet-powered strategic bomber and atomic weaponry and thus placed a great emphasis on developing aerial supremacy through continuing to advance its fighter technology, even following the end of conflict. Blackburn Aircraft responded to a 1947 Air Ministry requirement for a high-performance night fighter under Air Ministry specification F.44/46. The specification called for a two-seat night fighter that would intercept enemy aircraft at heights of up to at least 40,000 feet. It would also have to reach a maximum speed of no less than 525 kn at this height, be able to perform rapid ascents and attain an altitude of 45,000 feet within ten minutes of engine ignition.
Additional criteria given in the requirement included a minimum flight endurance of two hours, a takeoff distance of 1,500 yards, structural strength to support up to 4g manoeuvers at high speed and for the aircraft to incorporate airborne interception radar, multi-channel VHF radio and various navigational aids. The aircraft would also be required to be economical to produce, at a rate of ten per month for an estimated total of 150 aircraft.
Blackburn produced several design proposals in the hope of satisfying the requirement. B.47, drawn up in 1946, was essentially a two-seat Meteor with slightly swept wings. A similar design was also offered to the Royal Navy as the B.49. The later-issued B.76 and B.77 of early 1947 had adopted many of the features that would be distinctive of the later Barghest, including the large, swept wings and the engine nacelles moved to the wing roots, integrated into the fuselage. The two projects differed primarily in role: P.76 was a single-seat day fighter with a V-tail, while P.77 was a two-seat night fighter with a radar and a mid-mounted tail plane.
The RAF requirements were subject to some changes, mainly in regards to radar equipment and armaments. Blackburn also initiated some changes, as further research was conducted into the aerodynamic properties of the new swept wings and tail surfaces. For propulsion, the new Armstrong Siddeley Sapphire turbojet engine was chosen and the airframe adapted accordingly.
On 13 April 1949 the Ministry of Supply issued instructions to three aircraft manufacturers, Blackburn, Gloster and de Havilland, to each construct four airworthy prototypes of their competing designs to meet the requirement, as well as one airframe each for structural testing. These prototype aircraft were the Gloster GA.5, designed by Richard Walker, the de Havilland DH.110, which held the advantage of also being under consideration for the Royal Navy (and became the Sea Vixen), and the Blackburn B.87, which was a refined B.77 with a slimmed-down fuselage and a swept T-tail.
The development of all of these designs was considerably delayed through political cost-cutting measures, the number of prototypes being trimmed down to an unworkable level of two each before the decision was entirely reversed! The B.87 was soon christened Barghest and first prototype was structurally completed in 1951. Following a month of ground testing the first prototype conducted its first flight on 26 November 1951 and the second prototype followed in February 1952 (and was in 1953 used for aerodynamic tests that led to the improved Mk. 3, see below). The third prototype, and the first to be fitted with operational equipment including radar and weapons, first flew on 7 March 1953. The fourth airframe was passed to the Aeroplane and Armament Experimental Establishment (A&AEE) in August 1953 for trials.
The original Barghest all-weather fighter was equipped with a British AI.17 radar and powered by two Sapphire Sa.5 engines without afterburner, delivering 6,500 lbf (28.91 kN) thrust each. The aircraft did not have built-in weapons, but could carry various weapon packages in a spacious, ventral weapon bay. Options included a tray with four 30 mm ADEN cannon, three retractable pods with a total of 70 unguided Microcell 2 in (51mm) missiles, or a recoilless 4.5 in gun with 7 rounds in a drum magazine, even though this huge weapon, intended against incoming bomber formations at high altitude, never made it beyond the prototype stage and ground tests. Furthermore, four underwing hardpoints could carry drop tanks (on the inner pair of pylons only), bombs or unguided SNEB rocket pods for a total load of 4.000 lb (1.814 kg).
The official production order for the Barghest was issued in mid-1953, together with the Gloster GA.5, which became the Javelin – an unusual decision, but the need for an operational all-weather fighter was so dire that two types were procured at the same time in order to fill the defense gaps as quickly as possible and to have a fall back option at hand immediately. While some delays were incurred, the Barghest's status as a "super priority" for production helped to minimize the time involved in producing each aircraft. Production was assisted by a large order placed by the United States Air Force, purchasing aircraft for the RAF as part of the Mutual Defense Aid Program.
On 22 July 1954 the first production aircraft took flight at Leeds, and the Barghest F(AW).1 entered service with the RAF in 1956 with 46 Squadron based at RAF Odiham, England. The Barghests were immediately put to use in an intensive flying program, to rapidly familiarize crews with the type. In order to assist conversion training, twelve machines from the initial production batch were converted into dual control trainers. They lacked the radar equipment and were designated T.2.
The introduction of the Barghest allowed the RAF to expand its night-fighter activity considerably. During RAF trials, the type proved readily capable of intercepting jet bombers such as the English Electric Canberra and modern jet fighters, over a hundred miles out to sea, and the Barghest turned out to be quite an agile aircraft with good flying characteristics, despite its size. By the end of July 1959, all remaining Meteor squadrons had been converted to the Barghest and the Javelin.
After an initial production batch of 48 F(AW).1 fighters and a dozen T.2 trainers, the upgraded F(AW).3 was introduced in October 1956, which featured several changes and improvements. The biggest external change was the introduction of a modified wing with a dog tooth (tested on the 2nd prototype from 1953 onwards), which enhanced airflow and handling at high speed. Furthermore, the tailplane was modified so that either the rudders could be operated at slow speed or, alternatively, the whole stabilizer at high speed. A bulbous aerodynamic fairing on the fin’s top held the more complicated mechanism.
The Barghest F(AW).3 was furthermore equipped with a more capable AI.22 radar (actually a U.S.-made Westinghouse AN/APQ-43 radar) and it was able to carry up to four IR-guided Firestreak AAMs on pylons under the wings, what significantly improved the aircraft's interceptor capabilities. The aircraft now featured a total of six hardpoints, even though the new, outermost pylons could only carry a single Firestreak missile each. The ventral weapon bay was retained, but, typically, only the pack of four Aden cannon was carried.
In order to cope with a higher all-up weight and improve overall performance, the F(AW).3 was powered by Sapphire Sa.6 engines, which delivered 23% more thrust and were recognizable by enlarged air intakes of oval shape instead of the original, circular orifices. Stronger engines with afterburners could not be mounted, though – their addition would have required a severe structural change to the aircraft’s rear fuselage, and this lack of development potential eventually favored the Barghest’s rival, the Gloster Javelin.
Beyond newly produced F(AW).3 airframes, most F(AW).1s were eventually upgraded to this standard, and a further twelve F(AW).1s were modified into trainers. All T.2 aircraft received the wing and tail upgrade, but retained the weaker Sapphire Sa.5s, and their designation was eventually changed into T.4.
Due to its higher development potential, the Gloster Javelin overshadowed the Barghest during its relatively short career. The last Barghest fighter was already withdrawn from service in 1966, with a total of 125 airframes having been produced, while the Javelin, produced in more than 420 units, kept on serving until 1968. Both types were replaced by the Mach 2-capable BAC Lightning interceptor.
However, the experience gathered from the Barghest's early development was successfully used by Blackburn during the Buccaneer development process for the Royal Navy in the mid-Fifties.
General characteristics:
Crew: two
Length: 54 ft in (16,49 m)
Wingspan: 40 ft 7 in (12.38 m)
Wing area: 514.7 ft² (47.82 m²)
Height: 14 ft 9 in (4,50 m)
Empty weight: 19,295 lb (8,760 kg)
Gross weight: 29,017 lb (13,174 kg)
Max takeoff weight: 34,257 lb (15,553 kg)
Powerplant:
2× Armstrong Siddeley Sapphire Sa.6 engines with 8,000 lbf (35.6 kN) thrust each
Performance:
Maximum speed: 606 kn (697 mph; 1,122 km/h) at sea level
Range: 954 mi (1,530 km)
Service ceiling: 52,800 ft (15,865 m)
Rate of climb: 7,000 ft/min (35.6 m/s)
Wing loading: 66 lb/ft² (325 kg/m²)
Thrust/weight: 0.56
Armament:
Ventral weapon bay, typically carrying 4× 30 mm (0.79 in) ADEN revolver cannon with 180 RPG;
alternatively, three retractable packs with a total of 70 unguided Microcell 2 in (51mm) missiles
could be carried;
Six underwing hardpoints (The outer pair of pylons could only carry Firestreak AAMs) for a total
ordnance of 4.000 lb (1.814 kg), including up to 4× Firestreak IR-guided AAMs, drop tanks on the
inner pair of pylons, or unguided bombs and SNEB missile pods.
The kit and its assembly:
This kitbash model originally started as an early Fifties all-weather fighter for the Royal Navy, and the idea was a Gloster Meteor night fighter fuselage mated with the engines and swept wings from a Blackburn Buccaneer. However, things change and evolve as ideas turn into hardware (for another submission to the 2018 “RAF Centenary” Group Build at whatifmodelers.com), and so this project gradually transformed into an all-weather fighter for the Royal Air Force, as a rival to the Gloster Javelin, and some other fundamental changes to the original plan as things evolved on the work bench.
Work started with a Matchbox Gloster Meteor, from which the fuselage (incl. the NF.14 cockpit with its bubble canopy) and tail cone (w/o fin, though) were taken OOB. Then a Matchbox Buccaneer donated its nose cone and the engine pods, together with the inner wing sections. An initial attempt to use the Buccaneer’s fin and stabilizer was made, but it did not work at all (looked horrible and totally unbalanced!). Instead, I used a leftover fin from a Revell 1:200 Concorde because of its retro shape and depth, and waited for the stabilizers until the wings were mounted, so that size, position and proportions would become clearer.
The nose cone had to be squashed, because its OOB oval diameter would not go onto the circular Meteor front end without problems and major PSR. With some force from a vice and internal stabilization through 2C putty the shape could be successfully modified, though, and blended into the fuselage contours. Looks pretty good and fast!
Once the engine nacelles were in place, I initially tried the Buccaneer’s OOB outer wings, but I was not really happy with the look. Their shape did not look “right”, they were a bit too large and just very Buccaneer-esque. After a donor bank safari I found a leftover sprue with wings and stabilizers from a Matchbox Hawker Hunter, and after some measurements and trials I found that they could be quite easily adapted to the Buccaneer’s inner wing stubs, even though this called for more serious surgery and PSR work. The latter was also necessary in order to blend the engine nacelles into the slender Meteor fuselage – messy, but feasible.
Alas, one challenge leads to the next one: Once in place, the massive engines created a ventral gap, due to the Meteor’s slender tail section. This was eventually filled with the Matchbox Buccaneer’s extra fuel bomb bay door, simply cut away from the kit, trimmed down and transplanted between the engine nacelles. As a side benefit, its bulged shape would now simulate a fairing for a ventral gun pack, somewhat similar to the CF-100’s arrangement. More PSR ensued, though, and between and around the jet exhausts the fuselage had to be fully re-sculpted.
The stabilizers also caused some headaches. With the new Hunter swept wings tips, I also needed new, matching stabilizers. I eventually used the Hunter stabilizers from the surplus Matchbox kit sprue. At first I tried to mate them with a shortened central fairing from the Buccaneer, but this did work even less than the whole Bucc tail, and so I scratched a more slender central fairing for the T-tail on top of the Concorde fin from a piece of sprue. Even though the Hunter stabilizers turned out to look a bit diminutive, I stuck with them since they complement the wing shape so well.
The benefit of the Buccaneer engine nacelles is that they come with proper landing gear wells, so that only the landing gear had to be improvises and adapted to the new aircraft and its proportions. I wanted to use the Meteor landing gear, but this turned out to be much too short! So I replaced the front wheel with a respective part from a Matchbox Buccaneer. The main wheels from the Meteor kit were retained, but they had to be extended - with a 5mm styrene tube “plug”, which is, thankfully, well hidden behind the covers.
Others small changes/additions are ejection seats in the cockpit instead of the Meteor bucket seats, the jet exhausts were drilled open and an interior was added, and some antennae were placed on the aircraft’s hull.
The ordnance was to reflect a typical late Fifties RAF fighter, and so the Barghest received a pair of drop tanks (from a Heller SEPECAT Jaguar, with simplified fins) and a pair of Firestreak AAMs (from a Matchbox BAC Lightning) on a pair of launch rails from an Academy MiG-23.
Colors and markings:
As per usual, I rather keep complicated whiffs visually simple, so I used the standard RAF scheme of Dark Green/Dark Sea Grey/Light Aircraft Grey on the Barghest, with the Buccaneer’s typical pattern as benchmark. Humbrol enamels (163, 164 and 166) were used for basic painting.
The cockpit interior became Tar Black (Revell 06), while the landing gear and its respective wells were painted in Aluminum (Humbrol 56). The kit received a light black ink washing and mild post-shading – more for a dramatic than a weathering effect, since RAF machines in the Fifties looked very tidy and clean.
The drop tanks received camouflage and the Firestreaks became white, while their clear seeker cones were painted with a mix of silver and translucent blue. The IR sensors were created with thin decal stripes.
The decals come primarily from an Xtradecal BAC Lightning sheet (roundels and 19 Sq. markings – the squadron badges are unfortunately quite large, since they belong to a NMF aircraft), most stencils and the tactical code come from an Airfix Venom trainer and an Italeri Tornado.
Finally, the kit was sealed with a matt acrylic varnish, a mix of matt and little semi-gloss Italeri varnish, for a sheen finish.
A true kitbashing, made from many well-known RAF ingredients and a disturbing look between odd and familiar! A Buccaneer? No, it’s too scrawny. A Javelin? No, it does not have delta wings, and it’s got a tail sting. A de-navalized Sea Vixen? Well, no twin tail, and anything else does not match either... Despite the puzzling details (or because of them?), the Barghest looks disturbingly British and Fifties, as if it had been created from a profound RAF DNA pool – and it actually is! And with lots of putty. ;-)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Q-6 program was initiated in the mid-1970s when, during the Battle of the Paracel Islands in 1974, the People's Liberation Army Air Force (PLAAF) and People's Liberation Army Naval Air Force (PLANAF) proved incapable of ground support missions. Due to the lack of modern avionics and ground infrastructure to support a modern air war, Chinese aircraft suffered navigation and other logistics problems that severely limited their performance. The first Chinese aircraft did not actually reach the islands until several hours after the battle was over.
In addition to the need to upgrade its logistics capability and infrastructure, China also decided that nothing-in-its-then-aircraft-inventory could fill the requirement for support missions in the South China Sea. Fighters such as the J-5, J-6, J-7, and J-8 lacked a ground attack capability and were hampered by short range. The only Chinese ground attack aircraft atr that time, the Nanchang Q-5 (a MiG-19 derivate with a solid nose, an internal weapon bay and lateral air intakes), was also short ranged and had a relatively low payload. China's bombers such as the Harbin H-5 and Xian H-6 were slow and lacked a sufficient self-defense capability. A new aircraft was therefore seen as desperately needed to fulfill a new naval strike mission in support of the People's Liberation Army Navy (PLAN).
Immediately after the battle, both the PLAAF and PLAN submitted their requirements for a new fighter bomber/ground attack aircraft to the 3rd Ministry of PRC. After extensive research, the 3rd Ministry decided that, based on the Chinese aeronautical industrial capability at the time, it was impossible to develop two separate airplanes at the same time. Instead, a decision was made to develop a single airplane when the prime requirements of the PLAAF and PLAN were similar, even though with different versions tailored to meet the different secondary needs of PLAAF and PLAN.
In June 1976 representatives from various aircraft factories were summoned to Beijing to discuss the project, and were instructed to come up with designs in the shortest possible time. Shenyang Aircraft Factory (later reorganized into Shenyang Aircraft Corporation) was the first to come up with a design, the JH-8 (FB-8), which was essentially a ground attack version of the large, twin-engined J-8II (F-8II) interceptor. Next came the Q-6, a new design from the Nanchang Aircraft Factory. The Xi'an Aircraft Factory (later reorganized into Xi'an Aircraft Industrial Corporation) was the last one to present a design, the Xian JH-7, also a new design.
Initially, the 3rd Ministry favored the JH-8, however because the design of the operational J-8II was still not completed the risk was considered to be too high, so it was eliminated. The projected development of JH-7 was too far out, and so the Q-6 was selected because it was believed to be the one that would be able for service the soonest.
The Q-6's distictive feature was its swing wing arrangement, and the project was China's first venture into this direction. Before the Q-6 program started, however, China had already obtained MiG-23BN and MiG-23MS aircraft from Egypt. A few downed F-111 were also provided to China by North Vietnam. Based on the research effort performed on these aircraft, it was suggested that the variable-sweep wing should be adopted for China's new ground attack aircraft.
The general designer of Nanchang Q-5, and the future academician of the Chinese Academy of Sciences (elected in 1995), Mr. Lu Xiaopeng, was named as the general designer of Q-6. Lu personally visited PLAAF and PLANAF numerous times to obtain their input, which was the base of the Tactical Technological Requirements of the Q-6 he was in charge of, and by February 1979, the general design of the attack aircraft was finalized, based on the initial requirement of the 3rd Ministry.
The original plan was to base the design of Q-6 on the MiG-23BN, the ground attack version of MiG-23. However, both PLAAF and PLAN required a true dogfight capability for self-defense. Due to the need of dogfight capability, a radar was needed, and the ground attack version of the Soviet fighter had no radar. As a result, the plan was changed to base the design on the MiG-23MS instead. But this was not a true solution: Studies revealed that in order to successfully perform the required missions for PLAAF and PLANAF, ground attack radar, as well as terrain-following radar, were needed, too. And for the intended dogfight capability, the RP-22 Sapfir-21 radar (NATO reporting name Jay Bird) of the MiG-23MS lacked the BVR capability.
Facing this technological lack the decision was made to use avionics reverse-engineered from the F-111 to makeup the MiG-23 shortcomings. But as with other technological features adopted for the Q-6, they were proven to be way too ambitious for the Chinese industrial, scientific and technological capability at the time, which resulted in prolonged development.
Problems did not stop, the airframe itself proved to be troublesome, too. Originally the design was based on the MiG-23MS, and was initially thought to be better than the MiG-23BN, because it provided more room in the nosecone to house the radar.
However, the Chinese microelectronic industry could not provide the solid state electronics needed to miniaturize the intended radar, and as a result, the size of the fuselage had theoretically to be increased from the size of the MiG-23 to that of the Su-24 to fit an appropriate radar dish with the technolgy available at that time. Research furthermore revealed that the side-intakes of the MiG-23 design were not sufficient enough to meet the required dogfight capability, so the side-intakes arrangement was changed into a single chin-intake instead, and the Q-6 is claimed to be the first Chinese aircraft to have a chin-mounted intake.
The engine itself was also a problem, since China did not possess a powerful jet fighter engine that would match the intended performance profile of the Q-6. At first there were plans to use 122.4 kN thrust of a WS-6 engine (which was used in the H-6/Tu-16 bomber!), but these were not suited for a fighter and simply too large. To match the targets of an aircraft weight of 14.500 kg, the biggest load of bombs of 4.500 kilograms and a combat radius of 900 km, the Q-6 was finally outfitted with the Wopen WS-9 afterburning turbofan - a license-built Rolls Royce RB.168 Spey Mk. 202 with 91.3 kN of thrust.
Chinese considered the greatest achievement of the Q-6 in its fly-by-wire (FBW) control of the variable-sweep wings, both were the first of its kind in China. The original goal of reverse-engineering the FBW of the F-111 proved to be way too ambitious and had to be abandoned, so a much simpler version was adopted. The triplex analog FBW of the Q-6 was effectively just slightly more advanced than the most rudimentary FBW in that the mechanical servo valves were replaced with electrical servo valves, operated by electronic controllers. But contrary to the most rudimentary FBW, where hydraulic actuators still existed, the hydraulic actuators are replaced by electrical actuators on the Q-6. Anyway, this system proved to be the major obstacle in the hardware development of the Q-6 and it took nine years to complete (1980–1988), under the personal leadership of Mr. Lu Xiaopeng.
In 1988, three prototypes were built: one for static test, one for avionics tests on the ground, and one for the variable sweep wing research. The serial aircraft for PLAAF and PLANAF would have been separate variants, called Q-6A and Q-6B, which are believed to be offered for export now (see below).
Although hailed as a technological breakthrough for the Chinese aviation and providing superior performance to fixed-wing designs (esp. the outdated Q-5), the Chinese system was more than 12% heavier than the simple mechanical-hydraulic controlled variable-sweep wing of the benchmark MiG-23, and the Q-6 avionics were still far from being up-to-date.
Once identified as an indigenous aircraft (the Q-6 was at first deemed to be a variant or straight copy of the MiG-23/27, and therefore premilinarily coded 'Flogger L'), NATO alloted the Code 'Fruitcase' to it, with suffixes for the various export variants (see below).
It was not before 1990 that the aircraft was completed and (theoretically) ready for service – but at that time, technology and military strategy had already changed, and China had been developing the more capable (but much bigger) twin-engined Xian JH-7 fighter bomber for PLAAF and PLANAF. But it would still take some years until the JH-7A would enter service with the PLANAF: in early 2004, and with the PLAAF by the end of the year.
For China, the most important factor which prevented the Q-6 introduction into PLAAF and PLANAF service, was the 'discovery' of stealth features on the battlefield: variable-sweep wing would enlarge the aircraft's radar cross section multiple times and thus making it impossible to survive on the modern battlefield, because it would be much more likely to be detected and shot down.
Anyway, internal politics did not stop China from offering the now completed airframe on the export market as A-6 'Kong Yun' ("Cloud"), as a more capable successor to the Nanchang A-5 (the export version of the MiG-19-based Q-5). From 1992 onwards, several former A-5 users bought the aircraft as A-6 multi-role fighters. It is assumed that these correspond to the Q-6's development lines for PLAAAF an PLANAF.
Current users are the Bangladeshi Air Force (8× A-6B), Myanmar Air Force (20× A-6C), Sri Lanka (11× A-6B) Korean People's Air Force (probably less than 50x A-6A) and the Sudanese Air Force (A total of about 20, 3–11 of them servicable, probably all A-6A).
A-6A ('Fruitcase A'):
The first version and despite being marketed as a "multi-role combat aircraft" a very simple variant with a small radome, probably containing a Type 226 pulse-Doppler radar (a Chinese copy of the GEC-Marconi Skyranger).
A-6B ('Fruitcase B'):
Similar in apperance to the A-6A with a bigger radome. This variant is equipped with a Chinese KLJ-6E pulse-Doppler radar (A Chinese copy of the Italian Pointer-2500 radar, the same as featured on the Chinese Q-5M Fantan attack aircraft), which gives all weather attack capability. These aircraft are also fitted with a HUD, a GPS receiver/inertial navigation system, a 360° radar warning system, a tactical radio navigation system and chaff/flare dispensers on the rear fuselage.
The Sri Lanka aircraft have been seen carrying an external FLIR pod on one of the underfuselage pylons, while the Bangladeshi Air Force aircraft exclusively feature a small fairing under the nose which is believed to contain a LR/MTS, allowing the deployment of PGM.
A-6C ('Fruitcase C'):
Dedicated ground attack variant with a solid, more slender nose and full PGM capability. The nose features a fairing with windows for an ALR-1 laser rangefinder/marked target seeker (LR/MTS) in a small ball turret, and possibly LLLTV/FLIR. This optical system offers day/night attack capability. Like the A-6B, these aircraft feature HUD, GPS, tactical radio and optional flare dispensers.
General characteristics:
Crew: 1
Length: 56 ft 1 in (17.10 m)
Wingspan: 47 ft 2 in (14.4m) at 16°, 28 ft 6 in (8,7m) at 72°
Height: 15 ft 9.5 in (4.82 m)
Empty weight: 16.520 lb (7.500 kg)
Loaded weight: 28.370 lb (12.880 kg)
Max. take-off weight: 32.820 lb (14.900 kg)
Powerplant:
1× Xian WS-9 Qin Ling afterburning turbofan (a license-built Rolls Royce RB.168 Spey Mk. 202), rated at 54,6 kN (5.562kp) dry and at 91,3KN (9.305kp) at full afterburner
Performance
Maximum speed: Mach 1.2 at low altitude and in clean configuration, subsonic with external ordnance; 1.055mph (1.700 km/h) at height and in clean configuration
Combat radius: 485 nmi (560 mi, 900 km)
Service ceiling: 49.180 ft (15.000 m)
Armament:
2× Type 23-III twin-barreled 23mm cannons in the wing roots with 200 RPG
7× Hardpoints (three under the fuselage, one under each fixed wing root and the mobile outer wings) for a maximum external ordnance of 10.000 lbs (4.540kg), including guided and unguided bombs, missiles, napalm tanks or 800l drop tanks; the two hardpoints under the outer wings are fixed and can only be used when the wings are kept in the most forward position (they are normally only used for drop tanks in ferry configuration).
The kit and its assembly:
This is a whif, but the Nanchang Q-6 was actually developed until 1989 – even though it never entered any service. It was over-ambitious and a dead end, overtaken by technological advances and the fact that Chinese development used to take decades rather than years.
Anyway, the Q-6 actually looked as if someone had glued the nose and air intake of a F-16 onto a MiG-23/27 fuselage - weird, but cool, so why not try this at home?
Like many kitbashing things, what sounds simple turned out to be a bit tricky in detail, even though the surgery was finally easier than expected. The model basis is pretty simple: I took an Academy MiG-27, sawed off the fuselage in the wing roots area (about 1cm, the cockpit section is an extra fuselage section), and did the same with an Italeri F-16 nose section, right behind the cockpit, where the front wheel well ends. The top insert for the single seater was left a bit longer, so that it would overlap with the MiG-23/27 spine.
When you fit these parts together, height is almost perfect, even the wing root/LERX angles match, but there are gaps left on the flanks where the original MiG-27 air intakes would be. These have to be covered, what creates lines reminiscent of the respective area on a MRCA Tornado. Furthermore, the spine behind the cockpit has to be sculpted, too.
Furthermore, the wing root levels of the MiG-23/27 and the F-16 did not match - they have a difference in height of about 4mm on the model, and this was the biggest challenge.
In order to compensate for this problem on my model, any LERX sign was removed from the F-16 nose. Inside of the F-16 section, a column was added that supports the rear upper half of the front fuselage, since the flanks had to go almost completely.
On the outside, the necessary intersections/extensions sculpted new with 2C putty, extending the MiG-23/27 lines forward. The final surface finish was done with NC putty. This major surgery was less complicated than expected - lots of work, though, but feasible.
The new front section with its blended fuselage/LERX area around the cockpit reminds surprisingly much of the MiG-29? As a side note: when you look at CG simulations of this aircraft, this area is a frequent field of trial and error. You find unconclusive, if not impossible designs.
Other changes include a less modern canopy from a MiG-21 (I think it comes from an Academy MiG-21F kit), which was more tricky to fit onto the original F-16 canopy than the LERX stuff. The F-16 canopy looked just too modern for my taste. An old Airfix pilot figure was added, too.
Another new feature is a new jet pipe, a J-79 nozzle from an Italeri Kfir that fits perfectly into the rear fuselage, and the fin. The latter was taken as a leftover part from my recent CF-151A project and comes from a 1:144 scale Tu-22M bomber (Dragon). It's higher, but less deep, and I thought that a slightly different shape and more area would be suitable for an attack aircraft. For the same reason the single, foldable stabilizer fin under the rear fuselage was replaced by two fixed strakes (from the F-16). Small details, but they change the look and make the aircraft appear more simple.
The landing gear was taken from the MiG-27, the front wheel strut had to be slightly shortened due to the reduced wheelbase on the Q-6.
The ordnance was puzzled together – according to current BAF weapons in use. I went for unguided missiles (taken from the Academy MiG-27 donation kit) and some 100kg iron bombs, leftover from a Trumpeter Il-28 bomber kit. These were arranged under the wing roots on improvised tandem MERs.
I did not even try to engrave new panel lines on the new front section - actually, almost the whole upper surface is featureless since it was made with putty. But bot 2C and NC putty are pretty touchy to drilling or engraving (as the rather fruitless attempt to drill open cavities for the two guns proved...), so I decided to just use paint effects.
Painting and markings:
I had been wanting to build a Bangladeshi Air Force aircraft for quite a long time, and the Q-6 was finally a great opportunity. As a ground attack aircraft, the livery was to reflect that role, and among modern BAF aircraft I found C-130 transporters carrying a wrap-around ‘Lizard’/’European One’ scheme, in the traditional tones of FS34102, FS34097 and FS 36081 (Humbrol 117, 149 and 32). Maybe the BAF C-130s are ex USAF aircraft? It seems to be common BAF practice to keep former users' liveries and even bort numbers! Anyway, I find the Lizard cammo on a swing wing aircraft like this rather disturbing, but overall the whole thing looks pretty cool, probably also because of the exotic roundels.
Another option would have been a two-tone green camouflage (seen on BAF An-32 transports) or a three-tone pattern of pale sand, dark brown and dark green with light blue undersides, seen on BAF A-5 fighters. The garish, blue livery of BAF MiG-29s, as well as the blue and grey patterns on BAF F-7 fighters, were ruled out, since they’d rather suggest an air superiority role.
The camouflage pattern is based on USAF A-10 aircraft, and the aircraft’s upper sides were thoroughly weathered with a black ink wash and dry-brushing in lighter shades of the basic tones. After all, my kit is to represent a Q-6 after more than 15 years of service, so that the grey would become much lighter, the dark green get a greyish-blue hue and the light green tone adapt an almost olive drab look. As a result, the aircraft does not look too dark and murky, and the missile ordnance does not stand out too much.
The roundels were improvised – Bangladeshi aircraft kits/decals are rare. AFAIK, only one 1:72 Fujimi MiG-21 offers a BAF markings option, otherwise I could not find anything else, even among aftermarket offerings. Scratching is more fun, though, so “my” markings are actually Pakistani roundels (from a TL Modellbau aftermarket sheet) with red decal discs covering the original white central disc.
The flag on the fin was cut from generic green decal sheet, the red disc was punched out from red decal sheet, just like the roundel additions. Straightforward – and highly effective! Other markings were puzzled together from the scrap box, since the Q-6 never got beyond prototype stage, anything was possible concerning stencils etc.
The bort numbers are guesstimates - typically, BAF (and also PAF) carry a full registration on the tail fin and only a three-digit code on the nose. Squadron emblems are only small and carried either on the nose or the fin, so the model is rather simple in appearance.
The cockpit interior was painted in "Russian Interior Blue-Green" (Testors 2135, a stuff also in use in China, as far as I can tell), the landing gear and its wells were kept in Aluminum (Humbrol 56). The air intake was painted in light grey from the inside, the radome became black.
An original 1/6 scale custom kitbash figure of Lara Croft, inspired by the latest video game, 'Rise of The Tomb Raider', photographed using layered filters from Enjoyphoto, Photoshop, Superphoto and default editing apps on my cameraphone.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
Antanas Gustaitis (March 26, 1898 – October 16, 1941) was an officer in the Lithuanian Armed Forces who modernized the Lithuanian Air Force, which at that time was part of the Lithuanian Army. He was the architect or aeronautical engineer who undertook the task to design and construct several military aircraft before WWII broke out.
Gustaitis was born in the village of Obelinė, in Javaravas county, in the Marijampolė district. He attended high school in Yaroslavl, and from there studied at the Institute of Engineering and School of Artillery in Petrograd. After joining the Lithuanian Army in 1919, he graduated from the School of Military Aviation as a Junior Lieutenant in 1920. Later that year, he saw action in the Polish-Lithuanian War. By 1922 he began to train pilots, and later became the head of the training squadron. He also oversaw the construction of aircraft for Lithuania in Italy and Czechoslovakia. Gustaitis was one of the founding members of the Aero Club of Lithuania, and later its Vice-President. He did much to promote aviation among the young people in Lithuania, especially concerning the sport of gliding. He also won the Lithuanian Chess Championship in 1922.
Between 1925 and 1928, Gustaitis studied aeronautical engineering in Paris. After his graduation he returned to Lithuania and was promoted to deputy Commander-in-Chief of Military Aviation and made chief of the Aviation Workshop (Karo Aviacijos Tiekimo Skyrius) in Kaunas. During this time, he reorganized the workshop and expanded its capability to repair aircraft as well. The aircraft he designed were named ANBO, an acronym for "Antanas Nori Būti Ore", which literally means “Antanas wants to be in the air” in Lithuanian.
Between 1925 and 1939, the ANBO design bureau developed, built and flew several trainers, reconnaissance and even fighter aircraft for the Lithuanian air force. The last projects, the ANBO VIII, a light single-engine reconnaissance bomber, and the ANBO IX, a single-seat fighter, were the most ambitious.
The ANBO IX started in 1935 as a light low-wing design with spatted, fixed landing gear and an open cockpit, powered by a British Bristol Mercury 830 hp (619 kW) 9-cylinder radial engine – a very clean all-metal design, outwardly not unlike the contemporary Japanese Nakajima Ki-27 or the Dutch Fokker D.XXI, but a much more modern construction.
A first prototype had been completed in summer 1936 and it flew for the first time on 1st of August, with good flight characteristics, but Gustaitis was not satisfied with the aircraft anymore. More powerful and aerodynamically more efficient engines had become available, and a retractable landing gear would improve the performance of the ANBO IX even more, so that the aircraft was heavily modified during the rest of the year.
The large Mercury was replaced with a Pratt & Whitney R-1535 Twin Wasp Junior, a two-row 14-cylinder radial engine with 825 hp and a much smaller frontal area that allowed the ANBO IX’s cowling to be wrapped much tighter around the engine than the Mercury’s former Townend ring, leading to a very aerodynamic overall shape. The oil cooler, formerly mounted starboard flank in front of the cockpit, was moved into a mutual fairing with the carburetor intake under the fuselage behind the engine.
The wings had to be modified to accommodate a retractable main landing gear: to make space for suitable wells, the inner wing section in front of the main spar was deepened, resulting in a kinked leading edge of the wing. The landing gear retracted inwards and was initially completely covered. The tail remained fixed, though, even though the former simple tailskid was replaced with a pressurized rubber wheel for better handling on paved runways.
These measures alone improved the ANBO IX’s top speed by 25 mph (40 km/h), and to improve the pilot’s working conditions the originally open cockpit with just a windscreen and a small headrest fairing was covered with a fully closed clear canopy and an enlarged aerodynamic spinal fairing that ended at the fin’s base. This additional space was used to introduce another contemporary novel feature on board: a radio set.
Together with some other refinements on a second prototype (e. g. a smaller diameter of the front fuselage section, an even more streamlined cowling that now also covered two synchronized machine guns above the engine and a recontoured wing/fuselage intersection), which flew in September 1937, top speed rose by another 6 mph (10 km/h) from 460 km/h (285 mph) of the original aircraft to a competitive 510 km/h (317 mph) that put the ANBO IX on a par with many other contemporary European fighter aircraft.
In this form the ANBO IX was cleared for production in early 1938, even though the desired R-1535 Twin Wasp Junior was not cleared for export or license production. With the Manfréd Weiss WM K.14 engine from Hungary, a derivative of the French Gnôme-Rhône 14 K with 900 hp, a similar, even slightly more powerful replacement could be quickly found, even though the adaptation of the airframe to the different powerplant delayed production by four months. Beyond a new engine mount, the machine guns in the fuselage and its synchronization gearbox had to be deleted, but the weapons could be moved into the outer wings, so that a total of four machine guns as main armament was retained. Additionally, a single ventral hardpoint was added that could either carry a single bomb with its respective shackles or – more frequently – a drop tank that extended the fighter’s rather limited range.
The Lithuanian air force ordered fifty of these machines, primarily to replace its Fiat CR.20 biplane fighters, and several regional export customers like Finland, Estonia and Bulgaria showed interest in the modern ANBO IX, too. Due to the complex all-metal airframe and limited workshop capacities, however, production started only slowly.
The first batch of six ANBO IXs arrived at Lithuanian frontline units in November 1939, more were in the ANBO workshops in Kaunas at that time in various stages of assembly. In 1940, the Lithuanian Air Force consisted of eight Air Squadrons, including reconnaissance, fighter, bomber and training units. However, only the 5th fighter squadron had by the time enough ANBO IXs and trained pilots to be fully operational with the new type. Air Force bases had been established in the cities and towns of Kaunas/Žagariškės, Šiauliai /Zokniai (Zokniai airfield), Panevėžys /Pajuostis. In the summertime, airports in the cities of Palanga and Rukla were also used. A total of 117 aircraft and 230 pilots and observers were listed in the books at that time, but less than ten of them were modern ANBO IX fighters, and probably only half of them were actually operational.
Following the Soviet occupation of Lithuania, however, the Lithuanian Air Force was formally disbanded on October 23, 1940. Part of Lithuanian Air Force (77 senior officers, 72 junior officers, 59 privates, 20 aircraft) was reorganized into Red Army's 29th Territorial Rifle Corps Aviation, also referred to as National Squadron (Tautinė eskadrilė). Other planes and equipment were taken over by Red Army's Air Force Bases No. 13 and 213. About third of Tautinė eskadrilė's personnel latter suffered repressions by Soviet authorities, significant share joined June uprising, after the start of German invasion into Soviet Union several pilots of Tautinė eskadrilė and fewer than six planes withdrew with the Soviet army.
General characteristics:
Crew: 1
Length: 7.71 m (25 ft 2¾ in)
Wingspan: 10.22 m (33 ft 5¾ in)
Wing area: 16 m2 (170 sq ft)
Height: 2.62 m (8 ft 7 in)
Empty weight: 2,070 kg (4,564 lb)
Gross weight: 2,520 kg (5,556 lb)
Powerplant:
1× Manfred Weiss WM K.14 (Gnome-Rhône 14Kfrs Mistral-Major) 14-cyinder air-cooled radial
piston engine with 647 kW (900 hp), driving a 3-bladed constant-speed metal propeller
Performance:
Maximum speed: 510 km/h (320 mph, 280 kn)
Minimum control speed: 113 km/h (70 mph, 61 kn)
Range: 730 km (450 mi, 390 nmi) on internal fuel
1.000 km (621 mi, 543 nmi) with 300 l drop tank
Service ceiling: 10.000 m (33,000 ft)
Time to altitude: 4'41" to 5,000 meters
Wing loading: 157,5 kg/m² (32.7 lb/sq ft)
Power/mass: 3.89 kg/kW (6.17 lb/hp)
Take-off run to 8 m (26 ft): 270 m (886 ft)
Landing run from 8 m (26 ft): 340 m (1,115 ft)
Armament:
4x 7.7 mm (0.303 in) fixed forward-firing M1919 Browning machine guns with 500 rpg
in the outer wings
1x ventral hardpoint for a single 250 kg (550 lb) bomb or a 300 l (66 imp gal) drop tank
The kit and its assembly:
This small aircraft model is the result of a spontaneous kitbashing flash, when I dug through the sprue piles and the spares box. It started with a leftover fuselage from a Mistercraft PZL P-7 fighter, and further searches revealed the wings from a PM Model Fokker D.XXI and the sawn-off wings from a Hobby Boss MS.406. The sprue stash came up with other useful parts like small stabilizers and a landing gear – and it turned out to be the rest of the MS.406, which had originally been butchered to be mated with the P-7 wings to become my fictional Polish RWD-24 fighter prototype. So, as a serious recycling project, I decided to accept the challenge and use the remains of the P-7 and the MS.406 to create a “counterpart” to the RWD-24, and it became the fictional ANBO IX.
While the ingredients for a basic airframe were now available, some parts were still missing. Most important: an engine. One option was an early Merlin, left over from a Spitfire, but due to the circular P-7 fuselage I preferred a radial engine. With the cowling from a Japanese Mitsubishi Ha-102 two-row radial (from an Airfix Ki-46 “Dinah”) I found a suitable and very streamlined donor, which received a small three-blade propeller with a scratched spinner on a metal axis inside.
The cockpit and the canopy caused more headaches, because the P-7 has an open cockpit with a rather wide opening. For a fighter with a retractable landing gear this would hardly work anymore and finding a solution as well as a suitable donor piece took a while. I initially wanted to use a kind of bubble canopy (with struts, so that it would not look too modern), but eventually rejected this because the proportions would have looked odd – and the overall style would have been too modern.
So I switched to an early Spitfire canopy, which had a good size for the small aircraft, even though it called for a spinal fairing – the latter became the half from a drop tank (IIRC from an Airfix P-61?).
Lots of PSR was necessary everywhere to blend the disparate parts together. The cockpit opening had to be partly filled and reshaped, blending both canopy and spine into the hull took several layers.
The area in front of the cockpit (originally holding the P-7’s shoulder-mounted wings) had to be re-sculpted and blended into the Ki-46 cowling.
The ventral area between the wings had also to be fully sculpted with putty, and huge gaps along the wing roots on the wings’ upper surfaces had to be filled and formed, too. No wonder that many surface details disappeared along the way… Nevertheless, the effort was worthwhile, because the resulting airframe, esp. the sleek fuselage, looks very aerodynamic, almost like a Thirties air speed record contender?
Painting and markings:
This is where the real trouble came to play. It took a while to find a suitable/authentic paint scheme for a pre-WWII Lithuanian aircraft, and I took inspiration from mid-Thirties Letov S.20 biplane fighters and the real ANBO VIII light bomber prototype. Apparently, a two-tone camouflage in two shades of green were an option, even though the tones appear debatable. The only real-life reference was a b/w picture of an S.20, and it showed a good contrast between the greens, so that my first choice were Humbrol 120 (FS 34227) and 172 (Satin Dark Green). However: 120 turned out to be much too pale, and the 172 had a somewhat grainy consistency. Leaving a horrible finish on the already less-than-perfect PSR mess of the model.
With a heavy heart I eventually decided to remove the initial coat of enamel paint with a two-day bath in foamed oven cleaner, which did the job but also worked on the putty. Disaster struck when one wing came loose while cleaning the model, and the canopy came off, too…
Repairs were possible, but did not improve the model’s surface finish – but I eventually pulled a second coat of paint through, this time with slightly different green tones: a mix of Humbrol 80 (Grass Green) and Revell 360 (fern Green), resulting in a rich but rather yellow-ish tone, and Humbrol 245 (RLM 75, Graugrün), as a subdued contrast. The result, though, reminded a lot of Finnish WWII aircraft, so that I gave the aircraft an NMF cowling (again inspired by the ANBO VIII prototype) and a very light grey (Modelmaster 2077, RLM 63) underside with a low waterline. This gave the model a somewhat Italian touch?
The national markings came from two different Blue Rider decal sheets for modern Lithuanian aircraft, the tactical code and the knight helmet as squadron emblem came from a French Dewoitine D.520 (PrintScale sheet).
After a black ink washing the kit received light panel post-shading to virtually restore some of the missing surface details, some weathering with Tamiya Smoke and silver was done and the model received a final overall coat of matt acrylic varnish.
Well, I am not happy with the outcome – mostly because of the painting mishaps and the resulting collateral damage overall. However, the kitbashed aircraft looks pretty conclusive and plays the role of one of the many European pre-WWII monoplane fighters with modern features like a retractable landing gear and a closed canopy well, it’s a very subtle result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the late 1970s the Mikoyan OKB began development of a hypersonic high-altitude reconnaissance aircraft. Designated "Izdeliye 301" (also known as 3.01), the machine had an unusual design, combining a tailless layout with variable geometry wings. The two engines fueled by kerosene were located side by side above the rear fuselage, with the single vertical fin raising above them, not unlike the Tu-22 “Blinder” bomber of that time, but also reminiscent of the US-American SR-71 Mach 3 reconnaissance aircraft.
Only few and rather corny information leaked into the West, and the 301 was believed not only to act as a reconnaissance plane , it was also believed to have (nuclear) bombing capabilities. Despite wind tunnel testing with models, no hardware of the 301 was ever produced - aven though the aircraft could have become a basis for a long-range interceptor that would replace by time the PVO's Tupolew Tu-28P (ASCC code "Fiddler"), a large aircraft armed solely with missiles.
Despite limitations, the Tu-28P served well in its role, but the concept of a very fast interceptor aircraft, lingered on, since the Soviet Union had large areas to defend against aerial intruders, esp. from the North and the East. High speed, coupled with long range and the ability to intercept an incoming target at long distances independently from ground guidance had high priority for the Soviet Air Defence Forces. Even though no official requirement was issued, the concept of Izdeliye 301 from the Seventies was eventually developed further into the fixed-wing "Izdeliye 701" ultra-long-range high-altitude interceptor in the 1980ies.
The impulse for this new approach came when Oleg S. Samoylovich joined the Mikoyan OKB after having worked at Suchoi OKB on the T-60S missile carrier project. Similar in overall design to the former 301, the 701 was primarily intended as a kind of successor for the MiG-31 Foxhound for the 21st century, which just had completed flight tests and was about to enter PVO's front line units.
Being based on a long range cruise missile carrier, the 701 would have been a huge plane, featuring a length of 30-31m, a wing span of 19m (featuring a highly swept double delta wing) and having a maximum TOW of 70 tons! Target performance figures included a top speed of 2.500km/h, a cruising speed of 2.100km/h at 17.000m and an effective range of 7.000km in supersonic or 11.000km in subsonic mode. Eventually, the 701 program was mothballed, too, being too ambitious and expensive for a specialized development that could also have been a fighter version of the Tu-22 bomber!
Anyway, while the MiG-31 was successfully introduced in 1979 and had evolved in into a capable long-range interceptor with a top speed of more than Mach 3 (limited to Mach 2.8 in order to protect the aircraft's structural integrity), MiG OKB decided in 1984 to take further action and to develop a next-generation technology demonstrator, knowing that even the formidable "Foxhound" was only an interim solution on the way to a true "Four plus" of even a 6th generation fighter. Other new threats like low-flying cruise missiles, the USAF's "Project Pluto" or the assumed SR-71 Mach 5 successor “Aurora” kept Soviet military officials on the edge of their seats, too.
Main objective was to expand the Foxhound's state-of the-art performance, and coiple it with modern features like aerodynamic instability, supercruise, stealth features and further development potential.
The aircraft's core mission objectives comprised:
- Provide strategic air defense and surveillance in areas not covered by ground-based air defense systems (incl. guidance of other aircraft with less sophisticated avionics)
- Top speed of Mach 3.2 or more in a dash and cruise at Mach 3.0 for prolonged periods
- Long range/high speed interception of airspace intruders of any kind, including low flying cruise missiles, UAVs and helicopters
- Intercept cruise missiles and their launch aircraft from sea level up to 30.000m altitude by reaching missile launch range in the lowest possible time after departing the loiter area
Because funding was scarce and no official GOR had been issued, the project was taken on as a private venture. The new project was internally known as "Izdeliye 710" or "71.0". It was based on both 301 and 701 layout ideas and the wind tunnel experiences with their unusual layouts, as well as Oleg Samoylovich's experience with the Suchoi T-4 Mach 3 bomber project and the T-60S.
"Izdeliye 710" was from the start intended only as a proof-of-concept prototype, yet fully functional. It would also incorporate new technologies like heat-resistant ceramics against kinetic heating at prolonged high speeds (the airframe had to resist temperatures of 300°C/570°F and more for considerable periods), but with potential for future development into a full-fledged interceptor, penetrator and reconnaissance aircraft.
Overall, “Izdeliye 710" looked like a shrinked version of a mix of both former MiG OKB 301 and 701 designs, limited to the MiG-31's weight class of about 40 tons TOW. Compared with the former designs, the airframe received an aerodynamically more refined, partly blended, slender fuselage that also incorporated mild stealth features like a “clean” underside, softened contours and partly shielded air intakes. Structurally, the airframe's speed limit was set at Mach 3.8.
From the earlier 301 design,the plane retained the variable geometry wing. Despite the system's complexity and weight, this solution was deemed to be the best approach for a combination of a high continuous top speed, extended loiter time in the mission’s patrol areas and good performance on improvised airfields. Minimum sweep was a mere 10°, while, fully swept at 68°, the wings blended into the LERXes. Additional lift was created through the fuselage shape itself, so that aerodynamic surfaces and therefore drag could be reduced.
Pilot and radar operator sat in tandem under a common canopy with rather limited sight. The cockpit was equipped with a modern glass cockpit with LCD screens. The aircraft’s two engines were, again, placed in a large, mutual nacelle on the upper rear fuselage, fed by large air intakes with two-dimensional vertical ramps and a carefully modulated airflow over the aircraft’s dorsal area.
Initially, the 71.0 was to be powered by a pair of Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each, and with 152 kN (34,172 lbf) with full afterburner. These were the same engines that powered the MiG-31, but there were high hopes for the Kolesov NK-101 engine: a variable bypass engine with a maximum thrust in the 200kN range, at the time of the 71.0's design undergoing bench tests and originally developed for the advanced Suchoj T-4MS strike aircraft.
With the D-30F6, the 71.0 was expected to reach Mach 3.2 (making the aircraft capable of effectively intercepting the SR-71), but the NK-101 would offer in pure jet mode a top speed in excess of Mach 3.5 and also improve range and especially loiter time when running as a subsonic turbofan engine.
A single fin with an all-moving top and an additional deep rudder at its base was placed on top of the engine nacelle. Additional maneuverability at lower speed was achieved by retractable, all-moving foreplanes, stowed in narrow slits under the cockpit. Longitudinal stability at high speed was improved through deflectable stabilizers: these were kept horizontal for take-off and added to the overall lift, but they could be folded down by up to 60° in flight, acting additionally as stabilizer strakes.
Due to the aircraft’s slender shape and unique proportions, the 71.0 quickly received the unofficial nickname "жура́вль" (‘Zhurávl' = Crane). The aircaft’s stalky impression was emphasized even more through its unusual landing gear arrangement: Due to the limited internal space for the main landing gear wells between the weapons bay, the wing folding mechanisms and the engine nacelle, MiG OKB decided to incorporate a bicycle landing gear, normally a trademark of Yakovlew OKB designs, but a conventional landing gear could simply not be mounted, or its construction would have become much too heavy and complex.
In order to facilitate operations from improvised airfields and on snow the landing gear featured twin front wheels on a conventional strut and a single four wheel bogie as main wheels. Smaller, single stabilizer wheels were mounted on outriggers that retracted into slender fairings at the wings’ fixed section trailing edge, reminiscent of early Tupolev designs.
All standard air-to-air weaponry, as well as fuel, was to be carried internally. Main armament would be the K-100 missile (in service eventually designated R-100), stored in a large weapons bay behind the cockpit on a rotary mount. The K-100 had been under development at that time at NPO Novator, internally coded ‘Izdeliye 172’. The K-100 missile was an impressive weapon, and specifically designed to attack vital and heavily defended aerial targets like NATO’s AWACS aircraft at BVR distance.
Being 15’ (4.57 m) long and weighing 1.370 lb (620 kg), this huge ultra-long-range weapon had a maximum range of 250 mi (400 km) in a cruise/glide profile and attained a speed of Mach 6 with its solid rocket engine. This range could be boosted even further with a pair of jettisonable ramjets in tubular pods on the missile’s flanks for another 60 mi (100 km). The missile could attack targets ranging in altitude between 15 – 25,000 meters.
The weapon would initially be allocated to a specified target through the launch aircraft’s on-board radar and sent via inertial guidance into the target’s direction. Closing in, the K-100’s Agat 9B-1388 active seeker would identify the target, lock on, and independently attack it, also in coordination with other K-100’s shot at the same target, so that the attack would be coordinated in time and approach directions in order to overload defense and ensure a hit.
The 71.0’s internal mount could hold four of these large missiles, or, alternatively, the same number of the MiG-31’s R-33 AAMs. The mount also had a slot for the storage of additional mid- and short-range missiles for self-defense, e .g. three R-60 or two R-73 AAMs. An internal gun was not considered to be necessary, since the 71.0 or potential derivatives would fight their targets at very long distances and rather rely on a "hit-and-run" tactic, sacrificing dogfight capabilities for long loitering time in stand-by mode, high approach speed and outstanding acceleration and altitude performance.
Anyway, provisions were made to carry a Gsh-301-250 gun pod on a retractable hardpoint in the weapons bay instead of a K-100. Alternatively, such pods could be carried externally on four optional wing root pylons, which were primarily intended for PTB-1500 or PTB-3000 drop tanks, or further missiles - theoretically, a maximum of ten K-100 missiles could be carried, plus a pair of short-range AAMs.
Additionally, a "buddy-to-buffy" IFR set with a retractable drogue (probably the same system as used on the Su-24) was tested (71.2 was outfitted with a retractable refuelling probe in front of the cockpit), as well as the carriage of simple iron bombs or nuclear stores, to be delivered from very high altitudes. Several pallets with cameras and sensors (e .g. a high resolution SLAR) were also envisioned, which could easily replace the missile mounts and the folding weapon bay covers for recce missions.
Since there had been little official support for the project, work on the 710 up to the hardware stage made only little progress, since the MiG-31 already filled the long-range interceptor role in a sufficient fashion and offered further development potential.
A wooden mockup of the cockpit section was presented to PVO and VVS officials in 1989, and airframe work (including tests with composite materials on structural parts, including ceramic tiles for leading edges) were undertaken throughout 1990 and 1991, including test rigs for the engine nacelle and the swing wing mechanism.
Eventually, the collapse of the Soviet Union in 1991 suddenly stopped most of the project work, after two prototype airframes had been completed. Their internal designations were Izdeliye 71.1 and 71.2, respectively. It took a while until the political situation as well as the ex-Soviet Air Force’s status were settled, and work on Izdeliye 710 resumed at a slow pace.
After taking two years to be completed, 71.1 eventually made its roll-out and maiden flight in summer 1994, just when MiG-31 production had ended. MiG OKB still had high hopes in this aircraft, since the MiG-31 would have to be replaced in the next couple of years and "Izdeliye 710" was just in time for the potential procurement process. The first prototype wore a striking all-white livery, with dark grey ceramic tiles on the wings’ leading edges standing out prominently – in this guise and with its futuristic lines the slender aircraft reminded a lot of the American Space Shuttle.
71.1 was primarily intended for engine and flight tests (esp. for the eagerly awaited NK-101 engines), as well as for the development of the envisioned ramjet propulsion system for full-scale production and further development of Izdeliye 710 into a Mach 3+ interceptor. No mission avionics were initially fitted to this plane, but it carried a comprehensive test equipment suite and ballast.
Its sister ship 71.2 flew for the first time in late 1994, wearing a more unpretentious grey/bare metal livery. This plane was earmarked for avionics development and weapons integration, especially as a test bed for the K-100 missile, which shared Izdeliye 710’s fate of being a leftover Soviet project with an uncertain future and an even more corny funding outlook.
Anyway, aircraft 71.2 was from the start equipped with a complete RP-31 ('Zaslon-M') weapon control system, which had been under development at that time as an upgrade for the Russian MiG-31 fleet being part of the radar’s development program secured financial support from the government and allowed the flight tests to continue. The RP-31 possessed a maximum detection range of 400 km (250 mi) against airliner-sized targets at high altitude or 200 km against fighter-sized targets; the typical width of detection along the front was given as 225 km. The system could track 24 airborne targets at one time at a range of 120 km, 6 of which could be simultaneously attacked with missiles.
With these capabilities the RP-31 suite could, coupled with an appropriate carrier airframe, fulfil the originally intended airspace control function and would render a dedicated and highly vulnerable airspace control aircraft (like the Beriev A-50 derivative of the Il-76 transport) more or less obsolete. A group of four aircraft equipped with the 'Zaslon-M' suite would be able to permanently control an area of airspace across a total length of 800–900 km, while having ultra-long range weapons at hand to counter any intrusion into airspace with a quicker reaction time than any ground-based fighter on QRA duty. The 71.0, outfitted with the RP-31/K-100 system, would have posed a serious threat to any aggressor.
In March 1995 both prototypes were eventually transferred to the Kerchenskaya Guards Air Base at Savasleyka in the Oblast Vladimir, 300 km east of Mocsow, where they received tactical codes of '11 Blue' and '12 Blue'. Besides the basic test program and the RP-31/K-100 system tests, both machines were directly evaluated against the MiG-31 and Su-27 fighters by the Air Force's 4th TsBPi PLS, based at the same site.
Both aircraft exceeded expectations, but also fell short in certain aspects. The 71.0’s calculated top speed of Mach 3.2 was achieved during the tests with a top speed of 3,394 km/h (2.108 mph) at 21,000 m (69.000 ft). Top speed at sea level was confirmed at 1.200 km/h (745 mph) indicated airspeed.
Combat radius with full weapon load and internal fuel only was limited to 1,450 km (900 mi) at Mach 0.8 and at an altitude of 10,000 m (33,000 ft), though, and it sank to a mere 720 km (450 mi) at Mach 2.35 and at an altitude of 18,000 m (59,000 ft). Combat range with 4x K-100 internally and 2 drop tanks was settled at 3,000 km (1,860 mi), rising to 5,400 km (3,360 mi) with one in-flight refueling, tested with the 71.2. Endurance at altitude was only slightly above 3 hours, though. Service ceiling was 22,800 m (74,680 ft), 2.000 m higher than the MiG-31.
While these figures were impressive, Soviet officials were not truly convinced: they did not show a significant improvement over the simpler MiG-31. MiG OKB tried to persuade the government into more flight tests and begged for access to the NK-101, but the Soviet Union's collapse halted this project, too, so that both Izdeliye 710 had to keep the Soloviev D-30F6.
Little is known about the Izdeliye 710 project’s progress or further developments. The initial tests lasted until at least 1997, and obviously the updated MiG-31M received official favor instead of a completely new aircraft. The K-100 was also dropped, since the R-33 missile and later its R-37 derivative sufficiently performed in the long-range aerial strike role.
Development on the aircraft as such seemed to have stopped with the advent of modernized Su-27 derivatives and the PAK FA project, resulting in the Suchoi T-50 prototype. Unconfirmed reports suggest that one of the prototypes (probably 71.1) was used in the development of the N014 Pulse-Doppler radar with a passive electronically scanned array antenna in the wake of the MFI program. The N014 was designed with a range of 420 km, detection target of 250km to 1m and able to track 40 targets while able to shoot against 20.
Most interestingly, Izdeliye 710 was never officially presented to the public, but NATO became aware of its development through satellite pictures in the early Nineties and the aircraft consequently received the ASCC reporting codename "Fastback".
Until today, only the two prototypes have been known to exist, and it is assumed – had the type entered service – that the long-range fighter had received the official designation "MiG-41".
General characteristics:
Crew: 2 (Pilot, weapon system officer)
Length (incl. pitot): 93 ft 10 in (28.66 m)
Wingspan:
- minimum 10° sweep: 69 ft 4 in (21.16 m)
- maximum 68° sweep: 48 ft 9 in (14,88 m)
Height: 23 ft 1 1/2 in (7,06 m )
Wing area: 1008.9 ft² (90.8 m²)
Weight: 88.151 lbs (39.986 kg)
Performance:
Maximum speed:
- Mach 3.2 (2.050 mph (3.300 km/h) at height
- 995 mph (1.600 km/h) supercruise speed at 36,000 ft (11,000 m)
- 915 mph (1.470 km/h) at sea level
Range: 3.705 miles (5.955 km) with internal fuel
Service ceiling: 75.000 ft (22.500 m)
Rate of climb: 31.000 ft/min (155 m/s)
Engine:
2x Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each
and with 152 kN (34,172 lbf) with full afterburner.
Armament:
Internal weapons bay, main armament comprises a flexible missile load; basic ordnance of 4x K-100 ultra long range AAMs plus 2x R-73 short-range AAMs: other types like the R-27, R-33, R-60 and R-77 have been carried and tested, too, as well as podded guns on internal and external mounts. Alternatively, the weapon bay can hold various sensor pallets.
Four hardpoints under the wing roots, the outer pair “wet” for drop tanks of up to 3.000 l capacity, ECM pods or a buddy-buddy refueling drogue system. Maximum payload mass is 9000 kg.
The kit and its assembly
The second entry for the 2017 “Soviet” Group Build at whatifmodelers.com – a true Frankenstein creation, based on the scarce information about the real (but never realized) MiG 301 and 701 projects, the Suchoj T-60S, as well as some vague design sketches you can find online and in literature.
This one had been on my project list for years and I already had donor kits stashed away – but the sheer size (where will I leave it once done…?) and potential complexity kept me from tackling it.
The whole thing was an ambitious project and just the unique layout with a massive engine nacelle on top of the slender fuselage instead of an all-in-one design makes these aircraft an interesting topic to build. The GB was a good motivator.
“My” fictional interpretation of the MiG concepts is mainly based on a Dragon B-1B in 1:144 scale (fuselage, wings), a PM Model Su-15 two seater (donating the nose section and the cockpit, as well as wing parts for the fin) and a Kangnam MiG-31 (for the engine pod and some small parts). Another major ingredient is a pair of horizontal stabilizers from a 1:72 Hasegawa A-5 Vigilante.
Fitting the cockpit section took some major surgery and even more putty to blend the parts smoothly together. Another major surgical area was the tail; the "engine box" came to be rather straightforward, using the complete rear fuselage section from the MiG-31 and adding the intakes form the same kit, but mounted horizontally with a vertical splitter.
Blending the thing to the cut-away tail section of the B-1 was quite a task, though, since I not only wanted to add the element to the fuselage, but rather make it look a bit 'organic'. More than putty was necessary, I also had to made some cuts and transplantations. And after six PSR rounds I stopped counting…
The landing gear was built from scratch – the front wheel comes mostly from the MiG-31 kit. The central bogie and its massive leg come from a VEB Plasticart 1:100 Tu-20/95 bomber, plus some additional struts. The outriggers are leftover landing gear struts from a Hobby Boss Fw 190, mated with wheels which I believe come from a 1:200 VEB Plasticart kit, an An-24. Not certain, though. The fairings are slender MiG-21 drop tanks blended into the wing training edge. For the whole landing gear, the covers were improvised with styrene sheet, parts from a plastic straw(!) or leftover bits from the B-1B.
The main landing gear well was well as the weapons’ bay themselves were cut into the B-1B underside and an interior scratched from sheet and various leftover materials – I tried to maximize their space while still leaving enough room for the B-1B kit’s internal VG mechanism.
The large missiles (two were visible fitted and the rotary launcher just visibly hinted at) are, in fact, AGM-78 ‘Standard’ ARMs in a fantasy guise. They look pretty Soviet, though, like big brothers of the already not small R-33 missiles from the MiG-31.
While not in the focus of attention, the cockpit interior is completely new, too – OOB, the Su-15 cockpit only has a floor and rather stubby seats, under a massive single piece canopy. On top of the front wheel well (from a Hasegawa F-4) I added a new floor and added side consoles, scratched from styrene sheet. F-4 dashboards improve the decoration, and I added a pair of Soviet election seats from the scrap box – IIRC left over from two KP MiG-19 kits.
The canopy was taken OOB, I just cut it into five parts for open display. The material’s thickness does not look too bad on this aircraft – after all, it would need a rather sturdy construction when flying at Mach 3+ and withstanding the respective pressures and temperatures.
Painting
As a pure whif, I was free to use a weirdo design - but I rejected this idea quickly. I did not want a garish splinter scheme or a bright “Greenbottle Fly” Su-27 finish.
With the strange layout of the aircraft, the prototype idea was soon settled – and Soviet prototypes tend to look very utilitarian and lusterless, might even be left in grey. Consequently, I adapted a kind of bare look for this one, inspired by the rather shaggy Soviet Tu-22 “Blinder” bombers which carried a mix of bare metal and white and grey panels. With additional black leading edges on the aerodynamic surfaces, this would create a special/provisional but still purposeful look.
For the painting, I used a mix of several metallizer tones from ModelMaster and Humbrol (including Steel, Magnesium, Titanium, as well as matt and polished aluminum, and some Gun Metal and Exhaust around the engine nozzles, partly mixed with a bit of blue) and opaque tones (Humbrol 147 and 127). The “scheme” evolved panel-wise and step by step. The black leading edges were an interim addition, coming as things evolved, and they were painted first with black acrylic paint as a rough foundation and later trimmed with generic black decal stripes (from TL Modellbau). A very convenient and clean solution!
The radomes on nose and tail and other di-electric panels became dark grey (Humbrol 125). The cockpit tub was painted with Soviet Cockpit Teal (from ModelMaster), while the cockpit opening and canopy frames were kept in a more modest medium grey (Revell 57). On the outside of the cabin windows, a fat, deep yellow sealant frame (Humbrol 93, actually “Sand”) was added.
The weapon bay was painted in a yellow-ish primer tone (seen on pics of Tu-160 bombers) while the landing gear wells received a mix of gold and sand; the struts were painted in a mixed color, too, made of Humbrol 56 (Aluminum) and 34 (Flat White). The green wheel discs (Humbrol 131), a typical Soviet detail, stand out well from the rather subdued but not boring aircraft, and they make a nice contrast to the red Stars and the blue tactical code – the only major markings, besides a pair of MiG OKB logos under the cockpit.
Decals were puzzled together from various sheets, and I also added a lot of stencils for a more technical look. In order to enhance the prototype look further I added some photo calibration markings on the nose and the tail, made from scratch.
A massive kitbashing project that I had pushed away for years - but I am happy that I finally tackled it, and the result looks spectacular. The "Firefox" similarity was not intended, but this beast really looks like a movie prop - and who knwos if the Firefox was not inspired by the same projects (the MiG 301 and 701) as my kitbash model?
The background info is a bit lengthy, but there's some good background info concerning the aforementioned projects, and this aircraft - as a weapon system - would have played a very special and complex role, so a lot of explanations are worthwhile - also in order to emphasize that I di not simply try to glue some model parts together, but rather try to spin real world ideas further.
Mighty bird!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the late 1970s the Mikoyan OKB began development of a hypersonic high-altitude reconnaissance aircraft. Designated "Izdeliye 301" (also known as 3.01), the machine had an unusual design, combining a tailless layout with variable geometry wings. The two engines fueled by kerosene were located side by side above the rear fuselage, with the single vertical fin raising above them, not unlike the Tu-22 “Blinder” bomber of that time, but also reminiscent of the US-American SR-71 Mach 3 reconnaissance aircraft.
Only few and rather corny information leaked into the West, and the 301 was believed not only to act as a reconnaissance plane , it was also believed to have (nuclear) bombing capabilities. Despite wind tunnel testing with models, no hardware of the 301 was ever produced - aven though the aircraft could have become a basis for a long-range interceptor that would replace by time the PVO's Tupolew Tu-28P (ASCC code "Fiddler"), a large aircraft armed solely with missiles.
Despite limitations, the Tu-28P served well in its role, but the concept of a very fast interceptor aircraft, lingered on, since the Soviet Union had large areas to defend against aerial intruders, esp. from the North and the East. High speed, coupled with long range and the ability to intercept an incoming target at long distances independently from ground guidance had high priority for the Soviet Air Defence Forces. Even though no official requirement was issued, the concept of Izdeliye 301 from the Seventies was eventually developed further into the fixed-wing "Izdeliye 701" ultra-long-range high-altitude interceptor in the 1980ies.
The impulse for this new approach came when Oleg S. Samoylovich joined the Mikoyan OKB after having worked at Suchoi OKB on the T-60S missile carrier project. Similar in overall design to the former 301, the 701 was primarily intended as a kind of successor for the MiG-31 Foxhound for the 21st century, which just had completed flight tests and was about to enter PVO's front line units.
Being based on a long range cruise missile carrier, the 701 would have been a huge plane, featuring a length of 30-31m, a wing span of 19m (featuring a highly swept double delta wing) and having a maximum TOW of 70 tons! Target performance figures included a top speed of 2.500km/h, a cruising speed of 2.100km/h at 17.000m and an effective range of 7.000km in supersonic or 11.000km in subsonic mode. Eventually, the 701 program was mothballed, too, being too ambitious and expensive for a specialized development that could also have been a fighter version of the Tu-22 bomber!
Anyway, while the MiG-31 was successfully introduced in 1979 and had evolved in into a capable long-range interceptor with a top speed of more than Mach 3 (limited to Mach 2.8 in order to protect the aircraft's structural integrity), MiG OKB decided in 1984 to take further action and to develop a next-generation technology demonstrator, knowing that even the formidable "Foxhound" was only an interim solution on the way to a true "Four plus" of even a 6th generation fighter. Other new threats like low-flying cruise missiles, the USAF's "Project Pluto" or the assumed SR-71 Mach 5 successor “Aurora” kept Soviet military officials on the edge of their seats, too.
Main objective was to expand the Foxhound's state-of the-art performance, and coiple it with modern features like aerodynamic instability, supercruise, stealth features and further development potential.
The aircraft's core mission objectives comprised:
- Provide strategic air defense and surveillance in areas not covered by ground-based air defense systems (incl. guidance of other aircraft with less sophisticated avionics)
- Top speed of Mach 3.2 or more in a dash and cruise at Mach 3.0 for prolonged periods
- Long range/high speed interception of airspace intruders of any kind, including low flying cruise missiles, UAVs and helicopters
- Intercept cruise missiles and their launch aircraft from sea level up to 30.000m altitude by reaching missile launch range in the lowest possible time after departing the loiter area
Because funding was scarce and no official GOR had been issued, the project was taken on as a private venture. The new project was internally known as "Izdeliye 710" or "71.0". It was based on both 301 and 701 layout ideas and the wind tunnel experiences with their unusual layouts, as well as Oleg Samoylovich's experience with the Suchoi T-4 Mach 3 bomber project and the T-60S.
"Izdeliye 710" was from the start intended only as a proof-of-concept prototype, yet fully functional. It would also incorporate new technologies like heat-resistant ceramics against kinetic heating at prolonged high speeds (the airframe had to resist temperatures of 300°C/570°F and more for considerable periods), but with potential for future development into a full-fledged interceptor, penetrator and reconnaissance aircraft.
Overall, “Izdeliye 710" looked like a shrinked version of a mix of both former MiG OKB 301 and 701 designs, limited to the MiG-31's weight class of about 40 tons TOW. Compared with the former designs, the airframe received an aerodynamically more refined, partly blended, slender fuselage that also incorporated mild stealth features like a “clean” underside, softened contours and partly shielded air intakes. Structurally, the airframe's speed limit was set at Mach 3.8.
From the earlier 301 design,the plane retained the variable geometry wing. Despite the system's complexity and weight, this solution was deemed to be the best approach for a combination of a high continuous top speed, extended loiter time in the mission’s patrol areas and good performance on improvised airfields. Minimum sweep was a mere 10°, while, fully swept at 68°, the wings blended into the LERXes. Additional lift was created through the fuselage shape itself, so that aerodynamic surfaces and therefore drag could be reduced.
Pilot and radar operator sat in tandem under a common canopy with rather limited sight. The cockpit was equipped with a modern glass cockpit with LCD screens. The aircraft’s two engines were, again, placed in a large, mutual nacelle on the upper rear fuselage, fed by large air intakes with two-dimensional vertical ramps and a carefully modulated airflow over the aircraft’s dorsal area.
Initially, the 71.0 was to be powered by a pair of Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each, and with 152 kN (34,172 lbf) with full afterburner. These were the same engines that powered the MiG-31, but there were high hopes for the Kolesov NK-101 engine: a variable bypass engine with a maximum thrust in the 200kN range, at the time of the 71.0's design undergoing bench tests and originally developed for the advanced Suchoj T-4MS strike aircraft.
With the D-30F6, the 71.0 was expected to reach Mach 3.2 (making the aircraft capable of effectively intercepting the SR-71), but the NK-101 would offer in pure jet mode a top speed in excess of Mach 3.5 and also improve range and especially loiter time when running as a subsonic turbofan engine.
A single fin with an all-moving top and an additional deep rudder at its base was placed on top of the engine nacelle. Additional maneuverability at lower speed was achieved by retractable, all-moving foreplanes, stowed in narrow slits under the cockpit. Longitudinal stability at high speed was improved through deflectable stabilizers: these were kept horizontal for take-off and added to the overall lift, but they could be folded down by up to 60° in flight, acting additionally as stabilizer strakes.
Due to the aircraft’s slender shape and unique proportions, the 71.0 quickly received the unofficial nickname "жура́вль" (‘Zhurávl' = Crane). The aircaft’s stalky impression was emphasized even more through its unusual landing gear arrangement: Due to the limited internal space for the main landing gear wells between the weapons bay, the wing folding mechanisms and the engine nacelle, MiG OKB decided to incorporate a bicycle landing gear, normally a trademark of Yakovlew OKB designs, but a conventional landing gear could simply not be mounted, or its construction would have become much too heavy and complex.
In order to facilitate operations from improvised airfields and on snow the landing gear featured twin front wheels on a conventional strut and a single four wheel bogie as main wheels. Smaller, single stabilizer wheels were mounted on outriggers that retracted into slender fairings at the wings’ fixed section trailing edge, reminiscent of early Tupolev designs.
All standard air-to-air weaponry, as well as fuel, was to be carried internally. Main armament would be the K-100 missile (in service eventually designated R-100), stored in a large weapons bay behind the cockpit on a rotary mount. The K-100 had been under development at that time at NPO Novator, internally coded ‘Izdeliye 172’. The K-100 missile was an impressive weapon, and specifically designed to attack vital and heavily defended aerial targets like NATO’s AWACS aircraft at BVR distance.
Being 15’ (4.57 m) long and weighing 1.370 lb (620 kg), this huge ultra-long-range weapon had a maximum range of 250 mi (400 km) in a cruise/glide profile and attained a speed of Mach 6 with its solid rocket engine. This range could be boosted even further with a pair of jettisonable ramjets in tubular pods on the missile’s flanks for another 60 mi (100 km). The missile could attack targets ranging in altitude between 15 – 25,000 meters.
The weapon would initially be allocated to a specified target through the launch aircraft’s on-board radar and sent via inertial guidance into the target’s direction. Closing in, the K-100’s Agat 9B-1388 active seeker would identify the target, lock on, and independently attack it, also in coordination with other K-100’s shot at the same target, so that the attack would be coordinated in time and approach directions in order to overload defense and ensure a hit.
The 71.0’s internal mount could hold four of these large missiles, or, alternatively, the same number of the MiG-31’s R-33 AAMs. The mount also had a slot for the storage of additional mid- and short-range missiles for self-defense, e .g. three R-60 or two R-73 AAMs. An internal gun was not considered to be necessary, since the 71.0 or potential derivatives would fight their targets at very long distances and rather rely on a "hit-and-run" tactic, sacrificing dogfight capabilities for long loitering time in stand-by mode, high approach speed and outstanding acceleration and altitude performance.
Anyway, provisions were made to carry a Gsh-301-250 gun pod on a retractable hardpoint in the weapons bay instead of a K-100. Alternatively, such pods could be carried externally on four optional wing root pylons, which were primarily intended for PTB-1500 or PTB-3000 drop tanks, or further missiles - theoretically, a maximum of ten K-100 missiles could be carried, plus a pair of short-range AAMs.
Additionally, a "buddy-to-buffy" IFR set with a retractable drogue (probably the same system as used on the Su-24) was tested (71.2 was outfitted with a retractable refuelling probe in front of the cockpit), as well as the carriage of simple iron bombs or nuclear stores, to be delivered from very high altitudes. Several pallets with cameras and sensors (e .g. a high resolution SLAR) were also envisioned, which could easily replace the missile mounts and the folding weapon bay covers for recce missions.
Since there had been little official support for the project, work on the 710 up to the hardware stage made only little progress, since the MiG-31 already filled the long-range interceptor role in a sufficient fashion and offered further development potential.
A wooden mockup of the cockpit section was presented to PVO and VVS officials in 1989, and airframe work (including tests with composite materials on structural parts, including ceramic tiles for leading edges) were undertaken throughout 1990 and 1991, including test rigs for the engine nacelle and the swing wing mechanism.
Eventually, the collapse of the Soviet Union in 1991 suddenly stopped most of the project work, after two prototype airframes had been completed. Their internal designations were Izdeliye 71.1 and 71.2, respectively. It took a while until the political situation as well as the ex-Soviet Air Force’s status were settled, and work on Izdeliye 710 resumed at a slow pace.
After taking two years to be completed, 71.1 eventually made its roll-out and maiden flight in summer 1994, just when MiG-31 production had ended. MiG OKB still had high hopes in this aircraft, since the MiG-31 would have to be replaced in the next couple of years and "Izdeliye 710" was just in time for the potential procurement process. The first prototype wore a striking all-white livery, with dark grey ceramic tiles on the wings’ leading edges standing out prominently – in this guise and with its futuristic lines the slender aircraft reminded a lot of the American Space Shuttle.
71.1 was primarily intended for engine and flight tests (esp. for the eagerly awaited NK-101 engines), as well as for the development of the envisioned ramjet propulsion system for full-scale production and further development of Izdeliye 710 into a Mach 3+ interceptor. No mission avionics were initially fitted to this plane, but it carried a comprehensive test equipment suite and ballast.
Its sister ship 71.2 flew for the first time in late 1994, wearing a more unpretentious grey/bare metal livery. This plane was earmarked for avionics development and weapons integration, especially as a test bed for the K-100 missile, which shared Izdeliye 710’s fate of being a leftover Soviet project with an uncertain future and an even more corny funding outlook.
Anyway, aircraft 71.2 was from the start equipped with a complete RP-31 ('Zaslon-M') weapon control system, which had been under development at that time as an upgrade for the Russian MiG-31 fleet being part of the radar’s development program secured financial support from the government and allowed the flight tests to continue. The RP-31 possessed a maximum detection range of 400 km (250 mi) against airliner-sized targets at high altitude or 200 km against fighter-sized targets; the typical width of detection along the front was given as 225 km. The system could track 24 airborne targets at one time at a range of 120 km, 6 of which could be simultaneously attacked with missiles.
With these capabilities the RP-31 suite could, coupled with an appropriate carrier airframe, fulfil the originally intended airspace control function and would render a dedicated and highly vulnerable airspace control aircraft (like the Beriev A-50 derivative of the Il-76 transport) more or less obsolete. A group of four aircraft equipped with the 'Zaslon-M' suite would be able to permanently control an area of airspace across a total length of 800–900 km, while having ultra-long range weapons at hand to counter any intrusion into airspace with a quicker reaction time than any ground-based fighter on QRA duty. The 71.0, outfitted with the RP-31/K-100 system, would have posed a serious threat to any aggressor.
In March 1995 both prototypes were eventually transferred to the Kerchenskaya Guards Air Base at Savasleyka in the Oblast Vladimir, 300 km east of Mocsow, where they received tactical codes of '11 Blue' and '12 Blue'. Besides the basic test program and the RP-31/K-100 system tests, both machines were directly evaluated against the MiG-31 and Su-27 fighters by the Air Force's 4th TsBPi PLS, based at the same site.
Both aircraft exceeded expectations, but also fell short in certain aspects. The 71.0’s calculated top speed of Mach 3.2 was achieved during the tests with a top speed of 3,394 km/h (2.108 mph) at 21,000 m (69.000 ft). Top speed at sea level was confirmed at 1.200 km/h (745 mph) indicated airspeed.
Combat radius with full weapon load and internal fuel only was limited to 1,450 km (900 mi) at Mach 0.8 and at an altitude of 10,000 m (33,000 ft), though, and it sank to a mere 720 km (450 mi) at Mach 2.35 and at an altitude of 18,000 m (59,000 ft). Combat range with 4x K-100 internally and 2 drop tanks was settled at 3,000 km (1,860 mi), rising to 5,400 km (3,360 mi) with one in-flight refueling, tested with the 71.2. Endurance at altitude was only slightly above 3 hours, though. Service ceiling was 22,800 m (74,680 ft), 2.000 m higher than the MiG-31.
While these figures were impressive, Soviet officials were not truly convinced: they did not show a significant improvement over the simpler MiG-31. MiG OKB tried to persuade the government into more flight tests and begged for access to the NK-101, but the Soviet Union's collapse halted this project, too, so that both Izdeliye 710 had to keep the Soloviev D-30F6.
Little is known about the Izdeliye 710 project’s progress or further developments. The initial tests lasted until at least 1997, and obviously the updated MiG-31M received official favor instead of a completely new aircraft. The K-100 was also dropped, since the R-33 missile and later its R-37 derivative sufficiently performed in the long-range aerial strike role.
Development on the aircraft as such seemed to have stopped with the advent of modernized Su-27 derivatives and the PAK FA project, resulting in the Suchoi T-50 prototype. Unconfirmed reports suggest that one of the prototypes (probably 71.1) was used in the development of the N014 Pulse-Doppler radar with a passive electronically scanned array antenna in the wake of the MFI program. The N014 was designed with a range of 420 km, detection target of 250km to 1m and able to track 40 targets while able to shoot against 20.
Most interestingly, Izdeliye 710 was never officially presented to the public, but NATO became aware of its development through satellite pictures in the early Nineties and the aircraft consequently received the ASCC reporting codename "Fastback".
Until today, only the two prototypes have been known to exist, and it is assumed – had the type entered service – that the long-range fighter had received the official designation "MiG-41".
General characteristics:
Crew: 2 (Pilot, weapon system officer)
Length (incl. pitot): 93 ft 10 in (28.66 m)
Wingspan:
- minimum 10° sweep: 69 ft 4 in (21.16 m)
- maximum 68° sweep: 48 ft 9 in (14,88 m)
Height: 23 ft 1 1/2 in (7,06 m )
Wing area: 1008.9 ft² (90.8 m²)
Weight: 88.151 lbs (39.986 kg)
Performance:
Maximum speed:
- Mach 3.2 (2.050 mph (3.300 km/h) at height
- 995 mph (1.600 km/h) supercruise speed at 36,000 ft (11,000 m)
- 915 mph (1.470 km/h) at sea level
Range: 3.705 miles (5.955 km) with internal fuel
Service ceiling: 75.000 ft (22.500 m)
Rate of climb: 31.000 ft/min (155 m/s)
Engine:
2x Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each
and with 152 kN (34,172 lbf) with full afterburner.
Armament:
Internal weapons bay, main armament comprises a flexible missile load; basic ordnance of 4x K-100 ultra long range AAMs plus 2x R-73 short-range AAMs: other types like the R-27, R-33, R-60 and R-77 have been carried and tested, too, as well as podded guns on internal and external mounts. Alternatively, the weapon bay can hold various sensor pallets.
Four hardpoints under the wing roots, the outer pair “wet” for drop tanks of up to 3.000 l capacity, ECM pods or a buddy-buddy refueling drogue system. Maximum payload mass is 9000 kg.
The kit and its assembly
The second entry for the 2017 “Soviet” Group Build at whatifmodelers.com – a true Frankenstein creation, based on the scarce information about the real (but never realized) MiG 301 and 701 projects, the Suchoj T-60S, as well as some vague design sketches you can find online and in literature.
This one had been on my project list for years and I already had donor kits stashed away – but the sheer size (where will I leave it once done…?) and potential complexity kept me from tackling it.
The whole thing was an ambitious project and just the unique layout with a massive engine nacelle on top of the slender fuselage instead of an all-in-one design makes these aircraft an interesting topic to build. The GB was a good motivator.
“My” fictional interpretation of the MiG concepts is mainly based on a Dragon B-1B in 1:144 scale (fuselage, wings), a PM Model Su-15 two seater (donating the nose section and the cockpit, as well as wing parts for the fin) and a Kangnam MiG-31 (for the engine pod and some small parts). Another major ingredient is a pair of horizontal stabilizers from a 1:72 Hasegawa A-5 Vigilante.
Fitting the cockpit section took some major surgery and even more putty to blend the parts smoothly together. Another major surgical area was the tail; the "engine box" came to be rather straightforward, using the complete rear fuselage section from the MiG-31 and adding the intakes form the same kit, but mounted horizontally with a vertical splitter.
Blending the thing to the cut-away tail section of the B-1 was quite a task, though, since I not only wanted to add the element to the fuselage, but rather make it look a bit 'organic'. More than putty was necessary, I also had to made some cuts and transplantations. And after six PSR rounds I stopped counting…
The landing gear was built from scratch – the front wheel comes mostly from the MiG-31 kit. The central bogie and its massive leg come from a VEB Plasticart 1:100 Tu-20/95 bomber, plus some additional struts. The outriggers are leftover landing gear struts from a Hobby Boss Fw 190, mated with wheels which I believe come from a 1:200 VEB Plasticart kit, an An-24. Not certain, though. The fairings are slender MiG-21 drop tanks blended into the wing training edge. For the whole landing gear, the covers were improvised with styrene sheet, parts from a plastic straw(!) or leftover bits from the B-1B.
The main landing gear well was well as the weapons’ bay themselves were cut into the B-1B underside and an interior scratched from sheet and various leftover materials – I tried to maximize their space while still leaving enough room for the B-1B kit’s internal VG mechanism.
The large missiles (two were visible fitted and the rotary launcher just visibly hinted at) are, in fact, AGM-78 ‘Standard’ ARMs in a fantasy guise. They look pretty Soviet, though, like big brothers of the already not small R-33 missiles from the MiG-31.
While not in the focus of attention, the cockpit interior is completely new, too – OOB, the Su-15 cockpit only has a floor and rather stubby seats, under a massive single piece canopy. On top of the front wheel well (from a Hasegawa F-4) I added a new floor and added side consoles, scratched from styrene sheet. F-4 dashboards improve the decoration, and I added a pair of Soviet election seats from the scrap box – IIRC left over from two KP MiG-19 kits.
The canopy was taken OOB, I just cut it into five parts for open display. The material’s thickness does not look too bad on this aircraft – after all, it would need a rather sturdy construction when flying at Mach 3+ and withstanding the respective pressures and temperatures.
Painting
As a pure whif, I was free to use a weirdo design - but I rejected this idea quickly. I did not want a garish splinter scheme or a bright “Greenbottle Fly” Su-27 finish.
With the strange layout of the aircraft, the prototype idea was soon settled – and Soviet prototypes tend to look very utilitarian and lusterless, might even be left in grey. Consequently, I adapted a kind of bare look for this one, inspired by the rather shaggy Soviet Tu-22 “Blinder” bombers which carried a mix of bare metal and white and grey panels. With additional black leading edges on the aerodynamic surfaces, this would create a special/provisional but still purposeful look.
For the painting, I used a mix of several metallizer tones from ModelMaster and Humbrol (including Steel, Magnesium, Titanium, as well as matt and polished aluminum, and some Gun Metal and Exhaust around the engine nozzles, partly mixed with a bit of blue) and opaque tones (Humbrol 147 and 127). The “scheme” evolved panel-wise and step by step. The black leading edges were an interim addition, coming as things evolved, and they were painted first with black acrylic paint as a rough foundation and later trimmed with generic black decal stripes (from TL Modellbau). A very convenient and clean solution!
The radomes on nose and tail and other di-electric panels became dark grey (Humbrol 125). The cockpit tub was painted with Soviet Cockpit Teal (from ModelMaster), while the cockpit opening and canopy frames were kept in a more modest medium grey (Revell 57). On the outside of the cabin windows, a fat, deep yellow sealant frame (Humbrol 93, actually “Sand”) was added.
The weapon bay was painted in a yellow-ish primer tone (seen on pics of Tu-160 bombers) while the landing gear wells received a mix of gold and sand; the struts were painted in a mixed color, too, made of Humbrol 56 (Aluminum) and 34 (Flat White). The green wheel discs (Humbrol 131), a typical Soviet detail, stand out well from the rather subdued but not boring aircraft, and they make a nice contrast to the red Stars and the blue tactical code – the only major markings, besides a pair of MiG OKB logos under the cockpit.
Decals were puzzled together from various sheets, and I also added a lot of stencils for a more technical look. In order to enhance the prototype look further I added some photo calibration markings on the nose and the tail, made from scratch.
A massive kitbashing project that I had pushed away for years - but I am happy that I finally tackled it, and the result looks spectacular. The "Firefox" similarity was not intended, but this beast really looks like a movie prop - and who knwos if the Firefox was not inspired by the same projects (the MiG 301 and 701) as my kitbash model?
The background info is a bit lengthy, but there's some good background info concerning the aforementioned projects, and this aircraft - as a weapon system - would have played a very special and complex role, so a lot of explanations are worthwhile - also in order to emphasize that I di not simply try to glue some model parts together, but rather try to spin real world ideas further.
Mighty bird!