View allAll Photos Tagged incremental

Fledge; Increments of by Rebecca Newnham at the 2016 Doddington Hall Sculpture Exhibition at Doddington Hall, a Grade I listed Elizabethan mansion complete with walled courtyards and a gabled gatehouse. In Doddington, North Kesteven, Lincolnshire.

 

The Sculpture Exhibitions are held every two years and feature carefully selected national and international sculptors to complement each area and to provide an eclectic exhibition to suit all tastes, styles and budgets.

 

Curator David Waghorne has arranged the outdoor pieces to take full advantage of the back drop of Doddington Hall and our large and varied gardens. New for this year are two indoor venues with some spectacular and fragile pieces. Almost every piece on exhibition is for sale.

 

Uribelarrea es una localidad del partido de Cañuelas, provincia de Buenos Aires, Argentina.

Cuenta con 1282 habitantes (INDEC, 2010), lo que representa un incremento del 11,7% frente a los 1147 habitantes (INDEC, 2001) del censo anterior.

 

Historia

 

El pueblo fue fundado en 1890, cuando el estanciero Miguel Nemesio de Uribelarrea donó parte de sus tierras con el propósito de establecer una colonia agrícola. El 14 de julio de 1890 se inauguró la Iglesia de Nuestra Señora de Luján, diseñada por el arquitecto Pedro Benoit con influencias neogóticas.

En 1892, cuando ya había 19 construcciones en Uribelarrea, comenzó a funcionar la estación ferroviaria, que conectó al poblado con las ciudades de Cañuelas y de Lobos. El 26 de enero de 1894 se fundó la Escuela Agrotécnica Salesiana "Don Bosco", considerada la primera de su tipo en la Argentina.

En las décadas de 1930 y 1940, Uribelarrea tuvo su mayor apogeo, relacionado con la producción lechera. Llegaron a instalarse 50 tambos y varias queserías, mayormente explotados por inmigrantes vascos e italianos.

Uribelarrea ha visto durante los años 2000 un nuevo despertar, relacionado con su valorización como ambiente conservado al estilo antiguo, como curiosidad histórica y polo gastronómico de comidas tradicionales del ambiente rural (quesos con especias, embutidos, asado, e incluso comidas alemanas). Un buen número de cañuelenses, e incluso porteños establecieron allí sus residencias de fin de semana.

 

Filmes

 

Uribelarrea ha sido escenario de distintas películas, como Juan Moreira de Leonardo Favio (1973) y Evita de Alan Parker (1996). Esta última donó a la Iglesia Nuestra Señora de Luján los vitraux que se usaron para las escenas filmadas allí, sumándose estos a los auténticos.

Un escenario de fotógrafos cautivados por sus espacios verdes, su cultura, sus antigüedades, su "PALENQUE", un almacén construido hacia 1890, que también funcionó como depósito de sal para los saladeros de la zona. Actualmente es un bar y casa de comidas.

 

Estación Uribelarrea

 

Es una estación intermedia de servicios interurbanos de Trenes Argentinos Operadora Ferroviaria (Línea General Roca) con destino a Saladillo y General Alvear, con 4 servicios de ida y 4 de vuelta semanalmente.

En noviembre de 2015 se implementa un servicio regular entre Cañuelas y Lobos, parando también en Empalme Lobos. Hay dos servicios matutinos y dos vespertinos en cada sentido.

 

Mapa Turistico

 

web.archive.org/web/20120509120620/http://www.infocanuela...

 

Municipalidad de Cañuelas y otras

 

www.canuelas.gov.ar/

 

es.wikipedia.org/wiki/Juan_Bosco

 

infocanuelas.com/turismo/uribelarrea-un-oasis-muy-cerca-d...

 

www.facebook.com/uribepueblonatural/

   

Work with Puddy has shown progress in the tiniest increments imaginable over the 3+ years that she has been with us. When she lived with my parents, Puddy hissed at me whenever I came anywhere near her. Now she sleeps by my head every night and she trusts me most of the time. As you can see, she is a tiny thing. She is 15 yrs old and weighs 5 pounds.

 

This morning, though, she decided to leave the room where she has spent her entire existence (for 3 years, anyway). The house was very quiet (it being 3am), and she didn't have any problems with other cats downstairs when she wandered into the kitchen. So, next, she went upstairs. Here, I am standing on the stairs & she is looking through the railing at me.

 

I mean it when I say I am proud. How did she decide to face the potential of running into other cats, and face her fears?

 

She was so happy. While I continued to work in the kitchen, I saw her four more times, walking through the house. I would try to determine if she wanted me to close her back in her room (and put her food on the floor), but she walked in circles until I opened the door again.

El municipio de Victoria suspendió por diez días corridos todo tipo de actividad lúdica y recreativa a raíz del incremento de casos de coronavirus en los últimos días. Esta medida involucra a los rosarinos que poseen embarcaciones y suelen cruzar a las islas frente a la costa de Rosario.

Las medidas fueron decretadas este martes por la Municipalidad de Victoria e incluye a actividades tales como windsurf, canotaje, remo, vela, Stand Up Paddle, natación de aguas abiertas y pesca deportiva.

El detalle es que las autoridades de Prefectura fueron notificadas de tal restricción, por lo que los rosarinos no podrán cruzar a las islas, puesto que el canal es el que divide las jurisdicciones de Rosario y Victoria.

Más allá de la disposición del municipio de Victoria, la provincia de Santa Fe evaluaba restringir la actividad náutica en el río Paraná al entender que los incendios en las islas son intencionales. Así lo indicó este martes la ministra de Ambiente y Cambio Climático, Erika Gonnet, quien afirmó que la situación que se vive en el Delta “ha superado cualquier pronóstico” y “parece que nada alcanza”.

La situación en las islas entrerrianas está descontrolada. En los últimos días se agravaron los focos y este lunes incluso se registraron lluvias de cenizas en varias zonas de Rosario. Además, grupos ambientalistas cortaron el tránsito en el puente Rosario-Victoria para reclamar soluciones a los poderes públicos.

 

Fuente: La Capital

It works exactly the same way the development of a personality works: She will incrementally take in what she sees, hears and feels—in effect, what she lives–and that will shape her understanding of who she is in the world. From the time she’s little, everything she takes in–whether it be a healthy message, a shaming message or a lack of information–will slowly accumulate into an understanding of her sexuality.

 

A daughter’s open dialogue with her mother will stand her in good stead to develop trust and confidence in her mother and in herself.

.

 

.......***** All images are copyrighted by their respective authors ......

.

 

... marsmet525 photostream ... marsmet525 ...

 

m.flickr.com/#/photos/69858568@N07/

 

Thursday, April 3, 2014

 

.

 

m.flickr.com/#/photos/69858568@N07/6350646621/

 

2014 - Black text on white background

 

.

 

View photo size ... Large

 

m.flickr.com/#/photos/69858568@N07/6350646621/sizes/l/

 

.

 

m.flickr.com/#/activity/

 

.

.

 

.... marsmet48 photo ... Frankie Laine meets the Queen ...item 9.. The Wayward Wind ...item 6.. Cool Water ...item 2.. They Call The Wind Maria..

 

m.flickr.com/#/photos/31474974@N07/3266006064/

 

2014 - Black text on white background

Thursday, April 3, 2014

 

.

 

... marsmet48 photostream ...

 

www.flickr.com/photos/31474974@N07/?details=1

 

.

.

 

.............................................................................................................................................................................................

.

.....item 1) ... Ms. Magazine blog ... msmagazine.com/blog

 

You are here: Home / Arts / How To Model Healthy Sexuality for Our Daughters

.

....................................................

 

img code photo ... Your Daughter's Bedroom ... Joyce T. McFadden ...

 

Insights for Raising Confident Women

 

msmagazine.com/blog/files/2011/07/YourDaughtersBedroomJou...

 

....................................................

.

 

How To Model Healthy Sexuality for Our Daughters

July 7, 2011 by Meika Loe

 

msmagazine.com/blog/blog/2011/07/07/how-to-model-healthy-...

 

As a toddler, my daughter started asking about body parts. Pretty soon it became apparent that she was the only 2-year-old at her daycare who knew and used the word vagina. Even her teachers changed the subject. Was I supposed to feel guilty about teaching her about her body? Joyce McFadden, psychoanalyst and author of Your Daughter’s Bedroom: Insights for Raising Confident Women, says no.

 

After surveying more than 1,000 women on their sexuality, McFadden concludes that, even with the best intentions, generations of well-meaning mothers have ended up reinforcing sexist messaging. To counter this trend for a new generation, McFadden says, we need to nurture healthy sexuality from day one.

 

As a mother, I found this to be an insightful, courageous book full of practical advice. Let’s face it: Schools aren’t doing much sex education. So parents have to step up. And as a professor teaching courses on gender and sexuality, I believe McFadden’s interviews and survey data can also help to model candid conversation in the classroom.

 

I had a chance to talk with McFadden, below–and received a response from her 15-year-old daughter, as well!

.

 

-----..What are some small things a mother can do for her daughter when it comes to nurturing a sense of confidence and bodily comfort?

 

Some of the things I’ve done to nurture healthy sexuality in our home have been:

 

.....teaching my daughter about her anatomy from the time she was little

.....answering honestly any question she’s ever asked me

.....explaining menstruation in the years before she would likely start

.....more recently, covering issues of safe sex and discussing the emotional components of sexuality–like mutual respect, an understanding that women’s pleasure is no less important than men’s, encouraging her to listen to her own instincts, and so on

 

I’ve also shared with her stories of my own mile markers—my first period, my first sexual encounter. In a lot of these conversations over the years I’ve explicitly conveyed to her that I want her to have a happy, healthy life that includes valuing her sexual vitality.

.

 

-----..How do these conversations continue throughout a child’s life and development?

 

I think the most important thing, by far, is beginning to talk about sexuality simply and naturally when she’s a toddler, so that right off the bat, she knows it’s part of a dialogue the two of you can have. Keeping her ignorant about the fundamentals of her own body will set the stage for shame and guilt over her sexuality as she ages. If she’s old enough to know what her earlobe is, then she’s old enough to know what her vulva is, because it’s all pre-sexual in her understanding.

 

As she gets a little older, move from teaching her the correct names of body parts to explaining how they work (intercourse, how babies are made and delivered, masturbation, menstruation and so on). Later the learning should become more sophisticated and include concepts like intimacy, mutual respect, privacy, and ownership over her body and her sexual feelings and choices. It’s about always leaving the door open for these discussions so you can access each other as needed, not only when your daughter is young, but when you’re adult women together.

 

It’s also imperative that you don’t critique her body, your body, or those of other women in front of her. We have to model body confidence and the value of sexuality in the living of a life. I also make a point of making it clear how much I value her mind, her heart and her abilities so she’s less susceptible to buying into the idea all she’ll be valued for is her physicality.

.

 

-----..How does having an open dialogue about sexuality at home shape a daughter’s sense of self?

 

It works exactly the same way the development of a personality works: She will incrementally take in what she sees, hears and feels—in effect, what she lives–and that will shape her understanding of who she is in the world. From the time she’s little, everything she takes in–whether it be a healthy message, a shaming message or a lack of information–will slowly accumulate into an understanding of her sexuality.

 

A daughter’s open dialogue with her mother will stand her in good stead to develop trust and confidence in her mother and in herself.

.

 

-----..Sometimes when mothers and daughters sit down and discuss sexuality, these moments can be quite awkward. How has this worked for you? Are there ways to cut the awkwardness? Or is that discomfort just part of growing up in the U.S. with a puritanical ethic?

 

I strongly believe that, through our reluctance to be open and truthful when our girls are little, and in our difficulty in answering their questions without looking like a deer in the headlights, we introduce the awkwardness. Our daughters don’t introduce it—they learn it from us when they’re very young, then come to expect it each time the subject arises.

 

That being said, I think much of the awkwardness between a teenage daughter and her mother is endemic to being a teen. It’s developmentally appropriate and necessary for her to separate from her mother. But it’s still my job to teach my daughter what I feel is important for her to know; in the service of supporting the development of skills she’ll need to listen to her own voice and make good decisions.

 

She’s often really uncomfortable with what I want to teach her about sexuality. But she’s also really uncomfortable when I talk about alcohol, drugs, or curfews, and I can’t let her awkwardness keep me from having those discussions either.

.

 

-----..What is your relationship with your daughter like?

 

We’re extremely close, but now that she’s a teenager she needs more space and independence, so I’m trying to shift accordingly. Sometimes in these moments when we’re navigating this new territory together, I feel like I just had a drink that was too stiff… a cocktail that’s one part excitement for her maturation and one part loss for all that’s past, and I get a little emotional hangover!

 

.

-----..Are there moments when you have identified internalized sexism in yourself? Can you give an example and how you worked through this?

 

Absolutely. Whenever I wrestle with anything connected to negative body image or sexual self-consciousness, I consider internalized sexism to be the source of that thinking.

 

For example, I love being 49. You couldn’t pay me to be back in my twenties. I love the self-awareness, directness and the clarity of my priorities being 49 brings. But my body is undergoing its own little reapportionment program. The way districts of my body are represented is shifting according to the demands of the normal aging process. And there are times internalized sexism makes this feel sucky.

 

When I do find myself in these spots I tend to process the feelings on my own, because hate it when women critique themselves in front of each other, and have made a rule of trying never to do it in front of my daughter. Instead, whenever the opportunity arises, I’ll point out to her older women who catch my eye because they command my respect, or are distinctive, vibrant, compelling or gorgeous. And I also remind myself that the woman I most admired and modeled myself after was my grandmother, and I take great comfort in that.

.

 

-----..Here’s what Joyce’s daughter had to say after reading this interview:

 

Joyce’s daughter (age 15): My mom and I disagree about stuff, but are very close. I know she loves me very much, and wishes us to always be the closest we can be. [An open dialogue at home] can help one to know the normality of sexuality, and help one to feel comfortable with it. Being able to talk about sexuality at home will help one to ask questions if curious, without feeling embarrassed to do so. I have always dreaded those discussions; there really is no way to cut the awkwardness in them. However, I do know I can talk to her about anything and that means a lot to me.

 

You can purchase your copy of Joyce McFadden’s book here.

 

Photo from Reader Store

 

.

.

 

.

.............................................................................................................................................................................................

.

.....item 2).... youtube video ... Frankie Laine - They Call The Wind Maria ... 3:50 minutes ...

 

www.youtube.com/watch?v=NbDFKC-jHQo&feature=related

 

Maria

Maria

They call the wind Maria

 

Away out here they got a name

For rain and wind and fire

The rain is Tess, the fire Joe,

And they call the wind Maria

 

Maria blows the stars around

And sends the clouds a’flyin’

Maria makes the mountains sound

Like folks were up there dying

 

Maria

Maria

They call the wind Maria

 

Before I knew Maria’s name

And heard her wail and whinin’

I had a girl and she had me

And the sun was always shinin’

 

But then one day I left my girl

I left her far behind me

And now I’m lost, so gone and lost

Not even God can find me

 

Maria

Maria

They call the wind Maria

 

Out here they got a name for rain

For wind and fire only

But when you’re lost and all alone

There ain’t no word but lonely

 

And I’m a lost and lonely man

Without a star to guide me

Maria blow my love to me

I need my girl beside me

 

Maria

Maria

They call the wind Maria

 

Maria

Maria!

Blow my love to me

 

.

.

 

.

...................................................................... ...................................................................... ...............................................

.

.

.

San Sebastián es una localidad argentina de la Provincia de Buenos Aires, perteneciente al partido de Chivilcoy.

Cuenta con 166 habitantes (INDEC, 2010), lo que representa un incremento del 8,5% frente a los 153 habitantes (INDEC, 2001) del censo anterior.

En la línea general, San Sebastián es la última estación en haber sido levantada desde Puente Alsina por la firma constructora Hume Hnos., que edificaba las estaciones del FC Midland. Al llegar el tendido a San Sebastián, la sociedad constructora quedó en bancarrota como resultado de largas disputas por intereses con el Compañía General Buenos Aires. En ese momento (mediados de 1908) el Ferrocarril del Sud y el Ferrocarril del Oeste absorbieron al Midland y continuaron la construcción, reemplazando a la Hume por la Clarke, Bradbury y Co., lo que le da a las estaciones de aquí a Carhué un diseño arquitectónico totalmente distinto, similar a las estaciones del Ferrocarril Sarmiento.Fue construida por el Ferrocarril Midland de Buenos Aires, y abandonada en 1977 lo que obligó a un gran éxodo de los habitantes del lugar.

 

Las cañadas Las Saladas y La Rica, tributarias del río Salado en su curso medio, involucraron un espacio ocupado por pobladores desde las primeras décadas del siglo XIX, lugar propicio para la agricultura y para estrechar vínculos matrimoniales. Entre los primeros enfiteutas en esta región se cuenta a Santiago Barrios, Ceferino Bermúdes, Dionisio Moyano, entre otros.

Y es precisamente un descendiente de estos primeros pobladores que dará origen a la denominación de la localidad rural San Sebastián ubicada hacia el Este del partido de Chivilcoy, a unos 45 metros s.n.m. Santiago Barrios, bisabuelo materno de Sebastián Ca, había solicitado en enfiteusis al Estado en 1826, una suerte de estancia en el pasaje Las Saladas. En la mensura se destacan como antiguos pobladores a Domingo Irrasabal, Pedro Farías, José Bustamante, Francisco Lobo, Domingo Leguizamón, etc. Santiago Barrios había registrado su marca de ganado en 1822 y la propiedad recién la adquiere en 1837 totalizando 3, 5 leguas. La estancia fue subdividida entre los herederos.

Esta historia familiar se entronca con la extensión del ferrocarril Midland. A partir de 1897 el gobierno de Buenos Aires previó la construcción y explotación de nuevas líneas ferroviarias de trocha angosta, en zonas no cubiertas por las redes troncales. Pero pasaron años hasta que el 21 de diciembre de 1906, el gobernador Ignacio Darío Irigoyen aprobó los Estatutos de la Sociedad Compañía Ferrocarrilera Buenos Aires Midland Limitada, quién tendría a su cargo la construcción y explotación del ramal vinculado a la localidad de San

Sebastián, partido de Chivilcoy. El predio para la estación ferroviaria ubicada al E. del partido de Chivilcoy. El área que corresponde al actual pueblo de San Sebastián, involucraba en las primeras décadas del siglo XIX, a la suerte de estancia de Santiago Barrios heredada por sus descendientes, entre ellos Isidoro Barrios.

Aún cuando restaba el replanteo definitivo de la traza, apoderados del Midland suscribieron un convenio con la Isidora Barrios de Cá, nieta de Santiago Barrios y madre de Sebastián Ca (19), por el cual la propietaria de una amplia extensión de terreno se comprometía a donar la superficie para vías, estación y calles de circunvalación si se erigiera una plaza dentro de su campo.

El aludido convenio, suscrito el 29 de agosto de 1908, expresa el compromiso de donar gratuitamente a la empresa una fracción de terreno. “Acto inaugural del tramo Puente Alsina- San Sebastián

Una vez superado el estado de zozobra y extendido el riel hasta el Km. 128 – San Sebastián- la administración del Midland inició el comienzo de servicios el 15 de junio de 1909

En aquella mañana, empresarios, periodistas, persona

lidades e invitados especiales previamente congregados

en la Plaza de Mayo, partieron con rumbo a la estación

El nombre San Sebastián Era tradición asumida que las estaciones que iban conformándose en parajes camperos innominados, necesitaran la imposición de un nombre o indicativo, y en los casos como el que nos ocupa por donación de latierra –la plaza adoptada por padri

no al ex titular de dominio o con algo que simbolizara una cercanía afectiva hacia o del donante. Entorno al nombre asignado, corresponde al homenaje por parte de la donante, Isidoro Barios de Ca a su querido hijo, Sebastián Cá, fallecido en plena juventud

The Clackmannanshire Bridge, formerly known as the Kincardine Bridge – the world’s second-longest incrementally launched bridge – was inaugurated on November 19, 2008 by Alex Salmond, First Minister of Scotland. This €145-million project, which VINCI Construction Grands Projets (50%) carried out in collaboration with Morgan Est, consisted in the design and construction of an incrementally launched bridge over the River Forth as well as 2-km access roads on both sides. The 1,200-m span connect trunk roads north and south of the River Forth, reducing traffic congestion in the village of Kincardine, located 40 km northwest of Edinburgh. view sets 1-9

 

www.vinci-construction-projects.com/british-isles

www.morganest.com/

Le pont Clackmannanshire, anciennement nommé pont de Kincardine, deuxième pont poussé au monde par sa longueur, a été inauguré le 19 novembre 2008 par Alex Salmond, Premier ministre écossais. Sur ce projet d’un montant de 145 millions d’euros, VINCI Construction Grands Projets (50 %), en groupement avec Morgan Est, a réalisé la conception-construction du pont poussé et des 2 km de routes d’accès de part et d’autre de la rivière Forth. L’ouvrage de 1 200 m permet de relier deux axes majeurs, au nord et au sud de la rivière Forth, pour désenclaver la ville de Kincardine, située à 40 km au nord-ouest d’Edimbourg. Visualisez la construction dans les positionnements 1 - 9

  

www.vinci-construction-projects.com/british-isles

www.morganest.com/

 

Orden: Passeriformes

 

Familia: Sylvidae

 

Genero: Sylvia

 

Nombre común: Curruca cabecinegra

 

Nombre cientifico: Sylvia melanocephala Macho

 

Nombre Ingles: Sardinian Warbler male

 

Lugar de captura: La portilla del Tietar, Monfrague, Extremadura

 

Estatus: Especie catalogada de interés especial (Catálogo Nacional de Especies Amenazadas). Estatus seguro. Se estima que su población está en incremento.

 

Longevidad: Pueden vivir hasta 5 años.

 

Peso: 10-14 gramos, aproximadamente.

 

Envergadura: con las alas abiertas pueden medir alrededor de 15-18 cms.

  

Longitud: 13 cms. aproximadamente.

 

Por: Cimarron mayor Panta

 

Incremente un poco mas la luz por sugerencia de amigos

incremental improvement of life

the sun is setting more westerly each day, in increments

Este incremento supone mejorar la dotación presupuestaria en un 3,55% respecto a 2021, según ha explicado el consejero de Presidencia, Justicia e Interior de la Comunidad de Madrid, Enrique López, durante su visita al centro El Madroño, en Madrid. López ha recorrido algunos de los talleres que se desarrollan en el complejo, que cuenta además con un programa específico de atención a internas gestantes y madres con hijos menores de tres años a su cargo.

I have incremental horizontal clicks at 5-90 degrees and 15 in the vertical axis. His should keep everything equal for overlaps and make the stitching easier.

Sony RX100 M4 - Handheld 9 shot auto-bracket at 1 EV increments. Amazing little camera!

Uribelarrea es una localidad del partido de Cañuelas, provincia de Buenos Aires, Argentina.

Cuenta con 1282 habitantes (INDEC, 2010), lo que representa un incremento del 11,7% frente a los 1147 habitantes (INDEC, 2001) del censo anterior.

 

Historia

 

El pueblo fue fundado en 1890, cuando el estanciero Miguel Nemesio de Uribelarrea donó parte de sus tierras con el propósito de establecer una colonia agrícola. El 14 de julio de 1890 se inauguró la Iglesia de Nuestra Señora de Luján, diseñada por el arquitecto Pedro Benoit con influencias neogóticas.

En 1892, cuando ya había 19 construcciones en Uribelarrea, comenzó a funcionar la estación ferroviaria, que conectó al poblado con las ciudades de Cañuelas y de Lobos. El 26 de enero de 1894 se fundó la Escuela Agrotécnica Salesiana "Don Bosco", considerada la primera de su tipo en la Argentina.

En las décadas de 1930 y 1940, Uribelarrea tuvo su mayor apogeo, relacionado con la producción lechera. Llegaron a instalarse 50 tambos y varias queserías, mayormente explotados por inmigrantes vascos e italianos.

Uribelarrea ha visto durante los años 2000 un nuevo despertar, relacionado con su valorización como ambiente conservado al estilo antiguo, como curiosidad histórica y polo gastronómico de comidas tradicionales del ambiente rural (quesos con especias, embutidos, asado, e incluso comidas alemanas). Un buen número de cañuelenses, e incluso porteños establecieron allí sus residencias de fin de semana.

 

Filmes

 

Uribelarrea ha sido escenario de distintas películas, como Juan Moreira de Leonardo Favio (1973) y Evita de Alan Parker (1996). Esta última donó a la Iglesia Nuestra Señora de Luján los vitraux que se usaron para las escenas filmadas allí, sumándose estos a los auténticos.

Un escenario de fotógrafos cautivados por sus espacios verdes, su cultura, sus antigüedades, su "PALENQUE", un almacén construido hacia 1890, que también funcionó como depósito de sal para los saladeros de la zona. Actualmente es un bar y casa de comidas.

 

Estación Uribelarrea

 

Es una estación intermedia de servicios interurbanos de Trenes Argentinos Operadora Ferroviaria (Línea General Roca) con destino a Saladillo y General Alvear, con 4 servicios de ida y 4 de vuelta semanalmente.

En noviembre de 2015 se implementa un servicio regular entre Cañuelas y Lobos, parando también en Empalme Lobos. Hay dos servicios matutinos y dos vespertinos en cada sentido.

 

Mapa Turistico

 

web.archive.org/web/20120509120620/http://www.infocanuela...

 

Municipalidad de Cañuelas y otras

 

www.canuelas.gov.ar/

 

es.wikipedia.org/wiki/Juan_Bosco

 

infocanuelas.com/turismo/uribelarrea-un-oasis-muy-cerca-d...

 

www.facebook.com/uribepueblonatural/

   

Este incremento supone mejorar la dotación presupuestaria en un 3,55% respecto a 2021, según ha explicado el consejero de Presidencia, Justicia e Interior de la Comunidad de Madrid, Enrique López, durante su visita al centro El Madroño, en Madrid. López ha recorrido algunos de los talleres que se desarrollan en el complejo, que cuenta además con un programa específico de atención a internas gestantes y madres con hijos menores de tres años a su cargo.

O jordana começou a perder o brilho e resolvi incrementar com o pop up colorama, numa cópia descarada dessa mani da Bel que ficou linda. gameofnails.blogspot.com.br/2014/01/1-ns-star-passion-red...

Gente, o que é esse glitinho? Tô in love com ele. Primeiro porque minhas unhas ficaram parecendo um moranguinho, que fófis. Depois, ele é bem fácil de aplicar e nada de pescar glitters, ao contrário do branquinho esse é mais concentrado. Mas o que fez meu coração derreter foram essas micropartículas que briiiiilham muito principalmente no sol (uma pena, não consegui fotografar ao sol, mas dá pra ter uma ideia do que eu estou falando pelo vidrinho e um pouquinho de brilho que apareceu no dedinho mínimo).

Adorei esse glitter pretinho, ganhou o selinho amor eterno amor verdadeiro da Cris Beber, rsss...

add some nixie tubes and you have a clock!

These nixie tubes are NL-5440A's. The banana sockets were replaced with switches to set the hours and minutes. When the rotary switch on the left is set to OP, the clock is off, when it its set to AC, the clock is on (but can't be set) and when the switch is set to DC, the clock it still on and you can set the time using the push buttons. The ohms adjust dial on the right controls the brightness of the blue up lighting (fully off to quite bright!).

I used the schematic and PIC code from this site:

bruno.netstrefa.com.pl/radio/projekt/nixieclock/index.htm

EL VIADUCTO

 

En época del reinado de Felipe II el Alcázar de Madrid se encontraba situado en una zona elevada sobre una colina, que limitaban, por un lado el río Manzanares, a una cota inferior, y por otra por el tremendo valle que suponía el descenso por la calle Segovia. La calle se asienta sobre un pronunciado barranco, por el que pasaba el cauce del arroyo de San Pedro. Arroyo que nacía en las inmediaciones de la iglesia de San Pedro el Viejo.​ El aspecto que tenía en sus orígenes quedó reflejado en una ilustración que hizo Antoon Van Den Wijngaerde en el año 1562, donde se puede contemplar el fuerte desnivel que hay en la zona.

 

La calle Bailén se finalizaba bruscamente en las lindes de las Vistillas, quedando a la suerte de los viandantes tener que realizar el complicado descenso y ascenso para acceder a la zona del Alcazar. El acceso a la calle Segovia se realizaba por una intrincada cuesta a través de las diversas costanillas existentes en la zona. Las ideas urbanísticas de los arquitectos de Felipe II hicieron que la calle Segovia se convirtiera en un importante punto de acceso a la nueva capital, mediante la realización de la puente segoviana encargada al arquitecto Juan de Herrera, finalizaron en 1584. Por lo tanto la zona, a finales del siglo XVI, ya era un importante punto de paso a ciudad. En la zona de desnivel que prolongaba Bailén se encontraban las huertas del Manzanares (esta zona era conocida como las huertas del Pozacho o del Lozacho).

La ciudad fue expandiendo y la necesidad de un viaducto que salvara el fuerte desnivel de la calle Segovia se comenzó a concebir en la época del reinado del primer borbón. La idea inicial partía en el año 1736 por el italiano Juan Bautista Sachetti, uno de los arquitectos que trabajaba en las obras del Palacio Real.​ El proyecto finalmente no logró ejecutarse. Esta idea de un viaducto se retoma posteriormente durante el gobierno de José Bonaparte (1808-1813), en esta ocasión la motivación urbanística parte de un diseño del arquitecto real Silvestre Pérez, este proyecto fracasa igualmente sin poder materializarse, por falta de recursos monetarios.

 

A pesar de no ejecutarse completamente las ideas urbaníticas de Silvestre Pérez, se produce una fuerte remodelación del viario de la zona cercana que implicó la expropiación y el derribo de diferentes edificios de viviendas y religiosos, entre los cuales se encontraba la Iglesia de Santa María de la Almudena, considerada la más antigua de Madrid. Parte de las huertas existentes quedan desaparecidas, y se produce un incremento de edificio de viviendas. Las demoliciones se extendieron hasta el año 1883. El 31 de enero de 1872 se coloca la primera pieza de hierro. El puente había sido construido originariamente en 1874 por el ingeniero municipal Eugenio Barrón Avignón, dentro del proyecto de reforma general basándose en la calle de Bailén, consistente en la creación de una gran avenida que uniese los conjuntos monumentales del Palacio Real y de la Basílica de San Francisco el Grande, siguiendo con mucha aproximación una orientación norte-sur. La obra supuso la urbanización parcial de la morería vieja.

 

Este primer puente de hierro fue un alarde tecnológico e ingenieril de la época y su popularidad fue mucha debido a la gran luz que tenía el paso. Cruzaba el pavimento de la calle Segovia a una altura de 23 metros y poseía una longitud de 120 metros con sus 13 metros de anchura de tablero. Capaz de aguantar presiones de cuatrocientos kilos por metro cuadrado. El puente fue inaugurado el 13 de octubre de 1874, y tras una vida útil de menos de cincuenta años ya se comenzaba a pensar en la elaboración de otro viaducto debido a su mal estado de conservación. El primitivo viaducto de hierro y madera fue derribado finalmente en 1932, después de haberse realizado en él varias obras de rehabilitación y consolidación en la década de 1920.

El mal estado de conservación del viejo viaducto hace que en el año 1931, el gobierno de la Segunda República convoque un concurso para diseñar el viaducto actual; el concurso fue anulado por el Colegio de Arquitectos y vuelto a convocar al año siguiente. El proyecto ganador, de estilo racionalista, fue del arquitecto Francisco Javier Ferrero Llusiá, y de los ingenieros de caminos Luis Aldaz Muguiro y José de Juan-Aracil y Segura.​ La obra fue concluida en el año 1934.​ Al concurso se presentaron con sus proyectos técnicos de la talla del ingeniero de caminos Eduardo Torroja, y del arquitecto Secundino Zuazo. El proyecto ganador se caracteriza por empleo de hormigón armado pulido, calado en unos machones de granito.

 

El viaducto sufrió numerosos desperfectos durante la defensa de Madrid, la cercanía con el frente de batalla hace que impacten numerosos proyectiles de artillería. En 1942 hubo de ser reconstruido ante el estado de deterioro que mostraba por los daños sufridos. Ya en el periodo de posguerra el nuevo viaducto tuvo que ser restaurado, y se inauguró el 28 de marzo de 1942. El tráfico rodado a través de su tablero era muy intenso, la calle Bailén es un eje viario de gran importancia en los años cincuenta y sesenta. El uso intensivo del tráfico hizo que a los veinticinco años comenzaran a aparecer algunas grietas preocupantes en la estructura. El diseño del viaducto se había calculado para la circulación de los tranvías de ejes de trece toneladas idóneos en los años veinte, la demanda y carga estructural de comienzos de los años setenta sobre viaducto eran mucho mayores que los calculados en los años veinte.

Las grietas detectadas hacen que se encargue al ingeniero de caminos Florencio del Pozo Frutos un estudio técnico-estructural. En el año 1974, y a la luz de los resultados del estudio técnico se propone ante el Ayuntamiento de Madrid su restauración. Se procede ese mismo año a una reducción del tonelaje de paso, y en 1976 se interrumpe totalmente el tráfico por el viaducto. El tráfico por calle Bailén queda durante un periodo de varios años en la década de los setenta completamente interrumpido. Posteriormente fue restaurado entre 1977 y 1978, tras plantearse la posibilidad de derruirlo y sustituirlo por uno más moderno; finalmente se optó por mantenerlo.​ La fuerte remodelación mantuvo la forma del segundo viaducto, aumentó la altura dos metros y la luz a casi 200 metros. El tablero más amplio y capaz de soportar un mayor flujo de tráfico.

 

En octubre de 1998, el Ayuntamiento de Madrid instaló diferentes pantallas transparentes de seguridad junto a las barandillas del viaducto, con el fin de evitar los suicidios que venían sucediéndose desde el siglo XIX. A comienzos del siglo XXI es un viaducto operativo, con tráfico rodado y peatonal.

  

MADRID DE LOS AUSTRIAS

 

Por Madrid de los Austrias, también llamado barrio de los Austrias, se conoce una amplia zona de la capital española, sin entidad administrativa, correspondiente al primitivo trazado medieval de la ciudad y a la expansión urbanística iniciada por los monarcas de la Casa de Austria, a partir de los reinados de Carlos I y, especialmente, de Felipe II, que, en el año 1561, estableció la Corte en Madrid. A efectos turísticos, el nombre se emplea para promocionar los conjuntos monumentales de una gran parte de los barrios administrativos de Sol y Palacio, que representa aproximadamente una cuarta parte de la citada zona. Además de su acepción geográfica, el término Madrid de los Austrias también tiene una acepción histórica. Según esta perspectiva, la expresión se emplea para designar la evolución, preferentemente urbanística, de la ciudad entre los reinados de Carlos I (r. 1516–1556), el primero de los Austrias, y Carlos II (r. 1665–1700), con el que se extinguió la rama española de esta dinastía.

Los límites del Madrid de los Austrias difieren significativamente según el punto de vista adoptado, ya sea histórico o turístico.

 

Límites históricos

  

Durante el reinado de Carlos I, Madrid estaba integrado por dos núcleos principales: el recinto comprendido dentro de la muralla cristiana, de origen medieval, y los arrabales. El casco urbano se extendía, de oeste a este, desde el Palacio Real hasta la Puerta del Sol; y, de norte a sur, desde la plaza de Santo Domingo hasta la plaza de la Cebada.

 

A partir de 1561, con la capitalidad, la ciudad creció de forma vertiginosa, expandiéndose principalmente hacia el este. El plano de Madrid realizado por Pedro Teixeira en el año 1656, casi un siglo después del establecimiento de la Corte, da una idea precisa de las dimensiones del casco urbano, en tiempos de Felipe IV (r. 1621–1665).​

 

La villa estaba rodeada por una cerca, mandada construir por el citado monarca en el año 1625, levantada, hacia el norte, sobre las actuales calles de Génova, Sagasta, Carranza y Alberto Aguilera (conocidas popularmente como los bulevares); hacia el sur, sobre las rondas de Toledo, Valencia y Embajadores; hacia el este, sobre los paseos del Prado y Recoletos; y hacia el oeste, sobre los terraplenes del valle del río Manzanares.

 

Extramuros,​ se situaban los jardines, parajes agrestes y recintos palaciegos del Buen Retiro, en la parte oriental de la ciudad; de la Casa de Campo, en la occidental; y del El Pardo, en la noroccidental.

 

La cerca de Felipe IV sustituyó a una anterior, promovida por Felipe II (r. 1556–1598) y que enseguida quedó obsoleta. Fue erigida para detener el crecimiento desordenado que estaba experimentando la ciudad y actuó como una auténtica barrera urbanística, que limitó la expansión de la urbe hasta el siglo XIX. Fue derribada en 1868.

 

A grandes rasgos, el espacio comprendido dentro de la cerca de Felipe IV se corresponde en la actualidad con el distrito Centro. Su superficie es de 523,73 hectáreas y comprende los barrios administrativos de Cortes, Embajadores, Justicia, Palacio, Sol y Universidad.

 

Límites turísticos

 

A diferencia de los límites históricos, perfectamente establecidos a través de la cerca de Felipe IV, la zona promocionada turísticamente como Madrid de los Austrias carece de una delimitación precisa. Se circunscribe a un ámbito sensiblemente menor, que comprende parcialmente los barrios administrativos de Sol y Palacio, pertenecientes al distrito Centro de la capital.

 

Se estaría hablando de las áreas de influencia de las calles Mayor, Arenal, Segovia, carrera de San Francisco, Bailén y Toledo y de las plazas de la Cebada, de la Paja, Mayor, Puerta del Sol y de Oriente, donde se hallan barrios y áreas sin entidad administrativa, como La Latina, Ópera o Las Vistillas.

 

Aquí se encuentran conjuntos monumentales construidos tanto en los siglos XVI y XVII, cuando reinó en España la dinastía Habsburgo, como en épocas anteriores y posteriores. Por lo general, todos ellos quedan incluidos en los itinerarios turísticos que utilizan la expresión Madrid de los Austrias. Es el caso de las iglesias medievales de san Nicolás de los Servitas y san Pedro el Viejo, de los siglos XII y XIV, respectivamente, y del Palacio Real, erigido en el siglo XVIII.

 

En orden inverso, existen monumentos promovidos por los Austrias no integrados en las citadas rutas, al situarse fuera de los barrios de Sol y Palacio. Algunos ejemplos son el Salón de Reinos y el Casón del Buen Retiro, que formaron parte del desaparecido Palacio del Buen Retiro, y los jardines homónimos.

 

También quedan excluidas de esta clasificación turística zonas de menor valor monumental, pero con un gran significado histórico en la época de los Austrias. Es el caso del barrio de las Letras, articulado alrededor de la calle de las Huertas, donde coincidieron algunos de los literatos más destacados del Siglo de Oro español, tales como Félix Lope de Vega, Miguel de Cervantes o Francisco de Quevedo; o de la Casa de Campo, concebida por Felipe II como una finca de recreo y reserva de caza. En la primera mitad del siglo XVI, antes de su designación como capital, Madrid era una villa de tamaño medio entre las urbes castellanas, con cierta relevancia social e influencia política. Tenía entre 10 000 y 20 000 habitantes y formaba parte del grupo de dieciocho ciudades que disfrutaban del privilegio de tener voz y voto en las Cortes de Castilla.​

 

Había acogido en numerosas ocasiones las Cortes del Reino y, desde la época de los Trastámara, era frecuentada por la monarquía, atraída por su riqueza cinegética. Además, uno de sus templos religiosos, San Jerónimo el Real, fue elegido por la monarquía como escenario oficial del acto de jura de los príncipes de Asturias como herederos de la Corona.​ El primero en hacerlo fue Felipe II (18 de abril de 1528), que 33 años después fijaría la Corte en Madrid, y la última Isabel II (20 de junio de 1883).

Carlos I (r. 1516–1556), el primer monarca de la Casa de Austria, mostró un interés especial por la villa, tal vez con la intención de establecer de forma definitiva la Corte en Madrid. Así sostiene el cronista Luis Cabrera de Córdoba (1559–1623), en un escrito referido a Felipe II

El emperador impulsó diferentes obras arquitectónicas y urbanísticas en Madrid. A él se debe la conversión del primitivo castillo de El Pardo en palacio, situado en las afueras del casco urbano. Las obras, dirigidas por el arquitecto Luis de Vega, se iniciaron en 1547 y concluyeron en 1558, durante el reinado de Felipe II. De este proyecto sólo se conservan algunos elementos que, como el Patio de los Austrias, quedaron integrados en la estructura definitiva del Palacio Real de El Pardo, fruto de la reconstrucción llevada a cabo en el siglo XVIII, tras el incendio de 1604.

 

Otro de los edificios que el monarca ordenó reformar fue el Real Alcázar de Madrid, un castillo de origen medieval, que fue pasto de las llamas en 1734 y en cuyo solar se levanta en la actualidad el Palacio Real. Duplicó su superficie con diferentes añadidos, entre los que destacan el Patio y las Salas de la Reina y la llamada Torre de Carlos I, a partir de un diseño de Luis de Vega y Alonso de Covarrubias.

 

Entre los proyectos urbanísticos promovidos por Carlos I, figura la demolición de la Puerta de Guadalaxara, el acceso principal de la antigua muralla cristiana de Madrid, y su sustitución por una más monumental, con tres arcos. Fue levantada hacia 1535 a la altura del número 49 de la actual calle Mayor y el 2 de septiembre de 1582 desapareció en un incendio.​

 

Durante su reinado, se inauguraron algunos templos religiosos, entre ellos el santuario de Nuestra Señora de Atocha, que data de 1523. Fue derribado en 1888, ante su mal estado, y reconstruido como basílica en el siglo XX.

 

En 1541, se dispuso la ampliación de la Iglesia de San Ginés, situada en la calle del Arenal, mediante un anejo parroquial en la calle de la Montera, que recibió el nombre de San Luis Obispo. Abrió sus puertas en 1689, en tiempos de Carlos II, y fue incendiado en 1935. Sólo se conserva su fachada principal, que fue trasladada e integrada en la estructura de la Iglesia de Nuestra Señora del Carmen, en la calle del Carmen.

 

El Convento de San Felipe el Real, de 1547, fue uno de los puntos de encuentro más importantes del Madrid de los Austrias. Su lonja recibió el sobrenombre de mentidero de la villa, por los rumores que allí se fraguaban.​ El edificio, destruido en 1838, poseía un relevante claustro renacentista, compuesto por 28 arcos en cada una de sus dos galerías.

 

Otro templo de la época es la Iglesia de San Sebastián (1554–1575), que tuvo que ser reconstruida tras ser alcanzada por una bomba durante la Guerra Civil.

 

La Capilla del Obispo es, sin duda, la construcción religiosa de mayor interés arquitectónico llevada a cabo en Madrid, en tiempos de Carlos I.​ Fue levantada entre 1520 y 1535, como un anejo de la iglesia medieval de San Andrés. Responde a una iniciativa de la familia de los Vargas, una de las más poderosas del Madrid medieval y renacentista. Debe su nombre a Gutierre de Vargas y Carvajal, obispo de Plasencia, su principal impulsor.

 

En el terreno social, el religioso Antón Martín creó en 1552 el Hospital de Nuestra Señora del Amor de Dios, que estuvo en la calle de Atocha, cerca de la plaza que lleva el nombre de su fundador.

 

En 1529, Carlos I ordenó que el Real Hospital de la Corte, de carácter itinerante ya que acompañaba a la Corte en sus desplazamientos, quedara establecido de forma fija en Madrid. Su edificio, conocido como Hospital del Buen Suceso, estaba integrado por un recinto hospitalario y una iglesia, que fueron concluidos en 1607. A mediados del siglo XIX, se procedió a su derribo dentro de las obras de ampliación de la Puerta del Sol, donde se encontraba.

 

En cuanto a las residencias palaciegas, cabe mencionar la de Alonso Gutiérrez de Madrid, tesorero del emperador, cuya estructura fue aprovechada, durante el reinado de Felipe II, para la fundación del Monasterio de las Descalzas Reales. Recientes intervenciones en este edificio han puesto al descubierto elementos originales del patio principal del citado palacio.​

 

El Palacio de los condes de Paredes de Nava o Casa de San Isidro, donde tiene sus instalaciones el Museo de los Orígenes, se encuentra en la plaza de San Andrés. Fue construido en el solar de un antiguo edificio donde, según la tradición, vivió Iván de Vargas, quien, en el siglo XI, dio alojamiento y trabajo a san Isidro. Data de la primera mitad del siglo XVI.

 

Por su parte, la Casa de Cisneros data del año 1537 y está construida en estilo plateresco. Situada entre la calle del Sacramento y la plaza de la Villa, su primer propietario fue Benito Jiménez de Cisneros, sobrino del cardenal Cisneros (1436–1517), de quien toma su nombre.

 

Reinado de Felipe II

 

En 1561, Felipe II (r. 1556–1598) estableció la Corte en Madrid. Tal designación provocó un aumento de la población vertiginoso: de los 10 000 - 20 000 habitantes que podía haber en la villa antes de la capitalidad se pasó a 35 000 - 45 000 en el año 1575 y a más de 100 000 a finales del siglo XVI.

 

Para hacer frente a este crecimiento demográfico, el Concejo de Madrid, respaldado por la Corona, elaboró un proyecto de ordenación urbanística, consistente en la alineación y ensanchamiento de calles, el derribo de la antigua muralla medieval, la adecuación de la plaza del Arrabal (antecedente de la actual Plaza Mayor) y la construcción de edificios públicos como hospitales, hospicios, orfanatos, instalaciones de abastos y templos religiosos.

 

Felipe II puso al frente de este plan al arquitecto Juan Bautista de Toledo. Sin embargo, la falta de medios y lentitud burocrática del consistorio y el desinterés mostrado por la Corona en la aportación de recursos ralentizaron su desarrollo. La consecuencia fue un crecimiento urbano rápido y desordenado, que se realizó preferentemente hacia el este del centro histórico, dada la accidentada orografía de la parte occidental, orientada a los barrancos y terraplenes del valle del río Manzanares.

 

Los nuevos edificios se construyeron siguiendo la dirección de los caminos que partían de la villa y, a su alrededor, surgió un entramado de calles estrechas, aunque dispuestas hipodámicamente. El que conducía hasta Alcalá de Henares (hoy calle de Alcalá) vertebró el crecimiento urbano hacia el este, al igual que el camino que llevaba a San Jerónimo el Real, sobre el que se originó la carrera de San Jerónimo. Por el sudeste, la expansión tomó como eje principal el camino del santuario de Nuestra Señora de Atocha (actual calle de Atocha).

 

Hacia el sur, las nuevas casas se alinearon alrededor del camino de Toledo (calle de Toledo) y, por el norte, la referencia urbanística estuvo marcada por los caminos de Hortaleza y de Fuencarral (con sus respectivas calles homónimas), si bien hay que tener en cuenta que, en estos dos lados de la ciudad, el crecimiento fue más moderado.

 

Antes de la capitalidad, en 1535, la superficie de Madrid era de 72 hectáreas, cifra que aumentó hasta 134 en 1565, sólo cuatro años después de establecerse la Corte en la villa. A finales del reinado de Felipe II, el casco urbano ocupaba 282 hectáreas y tenía unos 7590 inmuebles, tres veces más que en 1563 (2250), al poco tiempo de la designación de Madrid como capital.

 

La intensa actividad inmobiliaria de este periodo no fue suficiente para satisfacer la demanda de viviendas, por parte de cortesanos y sirvientes de la Corona. Tal situación llevó al monarca a promulgar el edicto conocido como Regalía de Aposento, mediante el cual los propietarios de inmuebles de más de una planta estaban obligados a ceder una de ellas a una familia cortesana.

 

Este decreto favoreció el desarrollo de las llamadas casas a la malicia, un tipo de vivienda con el que sus propietarios intentaban evitar el cumplimiento de la norma, mediante diferentes soluciones (una única planta, compartimentación excesiva de los interiores, ocultación a la vía pública del piso superior...).

 

En 1590, la Corona y el Concejo crearon la Junta de Policía y Ornato, organismo presidido por el arquitecto Francisco de Mora, con el que se intentó poner fin a los desarreglos urbanísticos provocados por la rápida expansión de la ciudad. La correcta alineación de las calles, mediante la supresión de los recovecos existentes entre los inmuebles, fue uno de sus objetivos.

 

Felipe II promovió la realización de diferentes infraestructuras urbanas, caso del Puente de Segovia, la calle Real Nueva (actual calle de Segovia) y la Plaza Mayor. Los proyectos inicialmente previstos para estas tres obras no pudieron llevarse a cabo plenamente, adoptándose soluciones menos ambiciosas, ante las limitaciones presupuestarias.

 

Las dos primeras se enmarcaban dentro del mismo plan, consistente en la creación de una gran avenida, de aire monumental, que, salvando el río Manzanares por el oeste, conectase el antiguo camino de Segovia con el Real Alcázar. Finalmente, sólo pudo ejecutarse el puente (1582–1584), atribuido a Juan de Herrera, mientras que la avenida quedó reducida a unas nivelaciones del terreno sobre el barranco del arroyo de San Pedro y al derribo de varios edificios, que dieron origen a la calle de Segovia, terminada en 1577.

 

Con respecto a la Plaza Mayor, levantada sobre la antigua plaza del Arrabal, el centro comercial de la villa en aquel entonces, el monarca encargó su diseño a Juan de Herrera en el año 1580. Durante su reinado, se demolieron los edificios primitivos y dieron comienzo las obras de la Casa de la Panadería (1590), proyectada por Diego Sillero. Fue su sucesor, Felipe III, quien dio el impulso definitivo al recinto.

 

Felipe II continuó con las reformas y ampliaciones del Real Alcázar, iniciadas por su padre, con la edificación de la Torre Dorada, obra de Juan Bautista de Toledo, y la decoración de las distintas dependencias. También ordenó la construcción, en las inmediaciones del palacio, de la Casa del Tesoro, las Caballerizas Reales y la Armería Real. Todos estos conjuntos han desaparecido.

 

Pero tal vez su proyecto más personal fuese la Casa de Campo, paraje que convirtió en un recinto palaciego y ajardinado para su recreo. Se debe a un diseño de Juan Bautista de Toledo, que siguió el modelo de naturaleza urbanizada, acorde con el gusto renacentista de la época, a modo de conexión con el Monte de El Pardo.​ De este proyecto sólo se conservan partes del trazado de los jardines y algunos restos del palacete.

 

Asimismo, fueron levantados distintos edificios religiosos y civiles. El Monasterio de las Descalzas Reales fue fundado en 1559 por Juana de Austria, hermana del monarca, y en 1561 comenzaron las obras del Convento de la Victoria, que, como aquel, también estuvo muy vinculado con la Corona.

 

En 1583 abrió su puertas el corral de comedias del Teatro del Príncipe (en cuyo solar se levanta ahora el Teatro Español), institución clave en el Siglo de Oro español.15​ En 1590, fue inaugurado el Colegio de María de Córdoba y Aragón (actual Palacio del Senado), que toma su nombre de una dama de la reina Ana de Austria, principal impulsora del proyecto.

 

Entre los palacios nobiliarios, hay que destacar la Casa de las Siete Chimeneas (1574–1577), actual sede del Ministerio de Cultura, situada en la plaza del Rey. Su primer propietario fue Pedro de Ledesma, secretario de Antonio Pérez.

 

En la calle de Atocha se encontraban las casas de Antonio Pérez y en la plaza de la Paja se halla el Palacio de los Vargas, cuya fachada fue transformada en el siglo XX, adoptándose una solución historicista, a modo de continuación de la contigua Capilla del Obispo.

Reinado de Felipe III

En 1601, pocos años después de subir al trono Felipe III (r. 1598–1621), Madrid perdió la capitalidad a favor de Valladolid. Consiguió recuperarla cinco años después, tras el pago a la Corona de 250 000 ducados y el compromiso por parte del Concejo de abastecer de agua potable al Real Alcázar, entre otras infraestructuras.

 

Con tal fin, el consistorio realizó los denominados viajes de agua (conducciones desde manantiales cercanos a la villa), entre los cuales cabe destacar el de Amaniel (1614–1616). De ellos también se beneficiaron algunos conventos y palacios, además de los propios vecinos, a través de las fuentes públicas.​ En 1617 fue creada la llamada Junta de Fuentes, organismo encargado de su mantenimiento y conservación.

 

Bajo el reinado de Felipe III, se proyectaron numerosos edificios religiosos y civiles, algunos de los cuales fueron inaugurados en la época de Felipe IV. Es el caso de la Colegiata de San Isidro; de la nueva fachada del Real Alcázar (1610–1636), obra de Juan Gómez de Mora, que perduró hasta el incendio del palacio en 1734;​ y del Convento de los Padres Capuchinos, en El Pardo, fundado por el rey en 1612, cuyo edificio definitivo no pudo comenzarse hasta 1638.

 

Las nuevas edificaciones se construyeron con mayor calidad arquitectónica que en los periodos anteriores, al tiempo que se impuso un estilo propio, típicamente madrileño, de aire clasicista y de clara influencia herreriana,​ aunque también se observan rasgos prebarrocos.

 

Además, se establecieron arquetipos arquitectónicos, que, en relación con las casas palaciegas, quedaron definidos en un trazado de planta rectangular, dos o más alturas de órdenes, portadas manieristas, cubiertas abuhardilladas de pizarra y torres cuadrangulares, por lo general dos, con chapiteles rematados en punta, en la línea escurialense.

 

Este esquema, uno de los que mejor definen la arquitectura madrileña de los Austrias y de periodos posteriores, empezó a gestarse en tiempos de Felipe III, con ejemplos tan notables como las Casas de la Panadería y de la Carnicería, en la Plaza Mayor; el Palacio del marqués de Camarasa, ubicado en la calle Mayor y sede actual de diferentes dependencias municipales; el proyecto de reconstrucción del Palacio Real de El Pardo, incendiado el 13 de marzo de 1604; y la ya citada fachada del Real Alcázar. No obstante, fue con Felipe IV cuando alcanzó su máxima expresión.

 

Por su parte, el Palacio de los Consejos (también llamado del duque de Uceda) puede ser considerado un precedente en lo que respecta a la organización del espacio y fachadas, si bien carece de las torres de inspiración herreriana. Fue diseñado por Francisco de Mora, quien contó con la colaboración de Alonso de Trujillo, al frente las obras entre 1608 y 1613.

 

En cuanto a los templos religiosos, la mayoría de las construcciones utilizó como referencia el modelo jesuítico, de planta de cruz latina, que tiene su origen en la Iglesia del Gesú (Roma, Italia). La Colegiata de San Isidro, que, como se ha referido, fue diseñada en tiempos de Felipe III y terminada con Felipe IV, responde a esta pauta.

 

Mención especial merece el Real Monasterio de la Encarnación (1611–1616), fundado por Margarita de Austria, esposa del rey. Su fachada, obra de Juan Gómez de Mora (aunque posiblemente proyectada por su tío, Francisco de Mora), fue una de las más imitadas en la arquitectura castellana del siglo XVII y buena parte del XVIII.​

 

Un ejemplo es el Monasterio de la Inmaculada Concepción, en Loeches (Madrid), que, como aquel, presenta fachada rectangular con pórtico, pilastras a ambos lados y frontón en la parte superior.

 

La lista de edificios religiosos levantados durante el reinado de Felipe III es amplia. El Convento de San Ildefonso de las Trinitarias Descalzas (o, sencillamente, de las Trinitarias), del año 1609, se encuentra en el Barrio de las Letras y en él fue enterrado Miguel de Cervantes. Del Convento del Santísimo Sacramento, fundado en 1615 por Cristóbal Gómez de Sandoval y de la Cerda, valido del rey, sólo se conserva su iglesia (actual Catedral Arzobispal Castrense), levantada en tiempos de Carlos II.

 

El Monasterio del Corpus Christi o de las Carboneras y la Iglesia de Nuestra Señora del Carmen fueron empezados en 1607 y 1611, respectivamente, y ambos se deben a Miguel de Soria. La Iglesia de San Antonio de los Alemanes, de 1606, es una de las más singulares del primer tercio del siglo XVII, por su planta oval.21​ Su interior está decorado al fresco por Lucas Jordán, Juan Carreño de Miranda y Francisco Rizi.

 

Las iglesias de San Ildefonso (1619) y de Santos Justo y Pastor (hacia 1620) se encuentran entre las últimas fundaciones religiosas llevadas a cabo antes de la muerte del monarca en 1621. La primera, destruida completamente durante la Guerra Civil Española, fue reconstruida en la década de 1950.

 

Pero, sin duda, el proyecto urbanístico más importante llevado a cabo por el monarca fue la Plaza Mayor. En 1619, Felipe III finalizó las obras, que había iniciado su antecesor, con un nuevo diseño, firmado y desarrollado por Juan Gómez de Mora. Este arquitecto fue también responsable de la Casa de la Panadería, que preside el conjunto, si bien su aspecto actual corresponde a la reconstrucción realizada por Tomás Román, tras el incendio acaecido en 1672.

 

Además de este recinto, se procedió a adecuar otras plazas, como la de la Cebada y la desaparecida de Valnadú, esta última resultado de la demolición en el año 1567 de la puerta homónima, en la época de Felipe II. Otro de sus logros urbanísticos fue la reorganización del territorio en las riberas del río Manzanares y en el Real Camino de Valladolid, mediante la eliminación de las compartimentaciones internas y la estructuración de los plantíos.​

 

En el terreno de la escultura, destaca la estatua ecuestre del propio rey, traída desde Italia como obsequio del Gran Duque de Florencia. Realizada en bronce, fue comenzada por Juan de Bolonia y terminada por su discípulo, Pietro Tacca, en 1616.

 

Estuvo emplazada en la Casa de Campo, recinto que fue objeto de una especial atención por parte del monarca con la construcción de nuevas salas en el palacete (del Mosaico y de las Burlas) y la instalación de diferentes fuentes y adornos en los jardines. En 1848, la escultura fue trasladada al centro de la Plaza Mayor, donde actualmente se exhibe, por orden de Isabel II.

 

Reinado de Felipe IV

Felipe IV (r. 1621–1665) accedió al trono a la edad de dieciséis años, tras la inesperada muerte de su padre. Tradicionalmente ha sido considerado como un mecenas de las letras y de las artes, principalmente de la pintura.​ Durante su reinado, Madrid se convirtió en uno de los principales focos culturales de Europa y en el escenario donde se fraguaron muchas de las grandes creaciones del Siglo de Oro español. Además, la ciudad albergó la mayor parte de la colección pictórica del monarca, una de las más importantes de la historia del coleccionismo español

 

En el ámbito de la arquitectura, se levantaron numerosos edificios civiles y religiosos, al tiempo que se construyó una nueva residencia regia en el entorno del Prado de los Jerónimos, en el lado oriental del casco urbano. El Palacio del Buen Retiro desplazó hacia el este buena parte de la actividad política, social y cultural de la villa, que hasta entonces gravitaba únicamente sobre el Real Alcázar, situado en el extremo occidental.

En líneas generales, la arquitectura palaciega del reinado de Felipe IV siguió el modelo post-escurialense, de rasgos barrocos contenidos, que comenzó a forjarse con Felipe III. Este estándar aparecía en estado puro en el desaparecido Palacio del Buen Retiro, cuyo origen fue el llamado Cuarto Real, un anexo del Monasterio de los Jerónimos, que, desde tiempos de los Reyes Católicos, era frecuentado por la realeza para su descanso y retiro.

 

Siguiendo una iniciativa del Conde-Duque de Olivares,29​ en 1632 Felipe IV ordenó al arquitecto Alonso Carbonel la ampliación del recinto y su conversión en residencia veraniega. El palacio fue concebido como un lugar de recreo, función que quedó remarcada mediante una configuración articulada alrededor de dos grandes patios, diseñados a modo de plazas urbanas.30​ La Plaza Principal estaba reservada a la Familia Real, mientras que la Plaza Grande, de mayores dimensiones, era utilizada para la celebración de fiestas, actos lúdico-culturales y eventos taurinos.

 

La primera fase, correspondiente al núcleo central (Plaza Principal), se concluyó en 1633, sólo un año después de realizarse el encargo. Por su parte, las obras de la Plaza Grande, el Picadero, el Salón de Baile, el Coliseo y los jardines se prolongaron, a lo largo de diferentes etapas, hasta 1640.

 

El recinto palaciego sufrió graves desperfectos durante la Guerra de la Independencia y, finalmente, fue demolido en la época de Isabel II, ante la imposibilidad de recuperación. Sólo se conservan el Salón de Reinos y el Salón de Baile (o Casón del Buen Retiro), si bien con importantes transformaciones en relación con el diseño original.

 

En lo que respecta a los jardines, el Parque de El Retiro es heredero del trazado llevado a cabo en la época de Felipe IV, aunque su fisonomía actual responde a múltiples remodelaciones ejecutadas en periodos posteriores, principalmente en los siglos XVIII y XIX. Entre los elementos primitivos que aún se mantienen, cabe citar algunos complejos hidráulicos, como el Estanque Grande y la Ría Chica.

 

Además del Buen Retiro, el monarca mostró una especial predilección por el Real Sitio de El Pardo, donde mandó construir el Palacio de la Zarzuela, actual residencia de la Familia Real, y ampliar la Torre de la Parada, a partir de un diseño de Juan Gómez de Mora. Este último edificio fue erigido como pabellón de caza por Felipe II y resultó completamente destruido en el siglo XVIII.

 

La arquitectura civil tiene en el Palacio de Santa Cruz y en la Casa de la Villa, ambos proyectados por Juan Gómez de Mora en el año 1629, dos notables exponentes.

 

El primero albergó la Sala de Alcaldes de Casa y Corte y la Cárcel de Corte y, en la actualidad, acoge al Ministerio de Asuntos Exteriores. Se estructura alrededor de dos patios cuadrangulares simétricos, unidos mediante un eje central que sirve de distribuidor y acceso al edificio. La horizontalidad de su fachada principal, que da a la Plaza de la Provincia, queda rota por los torreones laterales de inspiración herreriana y la portada con dos niveles de triple vano. Fue terminado en 1636 y ha sido objeto de numerosas reformas en siglos posteriores.

 

Por su parte, la Casa de la Villa fue diseñada como sede del gobierno municipal y Cárcel de Villa. Sus obras comenzaron en 1644, quince años después de realizarse el proyecto, y finalizaron en 1696. Junto a Gómez de Mora, colaboraron José de Villarreal, a quien se debe el patio central, Teodoro Ardemans y José del Olmo.

 

Entre las residencias nobiliarias, figuran el Palacio del duque de Abrantes, construido por Juan Maza entre 1653 y 1655 y transformado sustancialmente en el siglo XIX, y el Palacio de la Moncloa. Este último fue erigido en el año 1642, a iniciativa de Melchor Antonio Portocarrero y Lasso de la Vega, conde de Monclova y virrey del Perú, su primer propietario. La estructura actual corresponde a la reconstrucción y ampliación llevadas a cabo en el siglo XX, tras los daños sufridos durante la Guerra Civil.

La arquitectura religiosa del reinado de Felipe IV presenta dos fases, coincidentes con los procesos evolutivos que se dieron en el arte barroco español a lo largo del siglo XVII.

 

En la primera mitad, se mantuvo la austeridad geométrica y espacial, arrastrada del estilo herreriano, con escasos y calculados motivos ornamentales, salvo en los interiores, que, en clara contraposición, aparecían profusamente decorados. En la segunda mitad del siglo, el gusto por las formas favoreció un progresivo alejamiento del clasicismo y la incorporación de motivos naturalistas en las fachadas.

 

Dentro de la primera corriente, que puede ser denominada como barroco clasicista, se encuentran la Colegiata de San Isidro, la Ermita de San Antonio de los Portugueses y el Convento de San Plácido.

 

La Colegiata de San Isidro (1622–1664) fue fundada como iglesia del antiguo Colegio Imperial,​ situado dentro del mismo complejo. El templo se debe a un proyecto del hermano jesuita Pedro Sánchez de hacia 1620, iniciándose su construcción en 1622. A su muerte, en 1633, se hará cargo de la obra el hermano Francisco Bautista junto con Melchor de Bueras. Es de planta de cruz latina y destaca por su fachada monumental, realizada en piedra de granito y flanqueada por dos torres en los lados. Fue la catedral provisional de Madrid desde 1885 hasta 1993.

 

La Ermita de San Antonio de los Portugueses estuvo ubicada en una isla artificial, en medio de un estanque lobulado, dentro de los Jardines del Buen Retiro. Fue edificada entre 1635 y 1637 por Alonso Carbonel y derribada en 1761, para levantar, sobre su solar, la Real Fábrica de Porcelana de la China, igualmente desaparecida. Su torre cuadrangular, rematada con chapitel herreriano, y su suntuosa portada, configurada por cuatro grandes columnas de mármol blanco y capiteles de mármol negro, eran sus elementos más notables.

 

El edificio actual del Convento de San Plácido, obra de Lorenzo de San Nicolás, data de 1641. La decoración interior es la parte más sobresaliente y en él se conserva un Cristo yacente de Gregorio Fernández.

 

Conforme fue avanzando el siglo XVII, los exteriores sobrios fueron perdiendo vigencia y se impuso un estilo plenamente barroco, sin apenas concesiones al clasicismo. Esta evolución puede apreciarse en la ya citada Casa de la Villa, que, dado su prolongado proceso de construcción (el diseño se hizo en 1629 y el edificio se terminó en 1696), fue incorporando diferentes elementos ornamentales en su fachada clasicista, acordes con las nuevas tendencias.

 

La Capilla de San Isidro ejemplifica el apogeo del barroco. Fue construida como un anejo de la iglesia de origen medieval de San Andrés para albergar los restos mortales de san Isidro. La primera piedra se puso en 1642, a partir de un proyecto de Pedro de la Torre. En 1657, José de Villarreal realizó un segundo proyecto, cuyas obras fueron inauguradas por Felipe IV y su esposa Mariana de Austria en un acto institucional. Fue terminada en 1699.

 

Junto a la basílica neoclásica de San Francisco el Grande (siglo XVIII), se halla la Capilla del santo Cristo de los Dolores para la Venerable Orden Tercera de San Francisco (1662–1668), realizada por el arquitecto Francisco Bautista. En su interior sobresale la decoración barroca, con especial mención al baldaquino, hecho en maderas, jaspes y mármoles, donde se guarda la talla del Cristo de los Dolores.

 

El Convento de Nuestra Señora de la Concepción o de las Góngoras es otro ejemplo del barroco madrileño. Debe su nombre a Juan Jiménez de Góngora, ministro del Consejo de Castilla, quien procedió a su creación, por encargo directo del rey, como ofrenda por el nacimiento de su hijo Carlos (a la postre Carlos II). Fue inaugurado en 1665 y ampliado en 1669, según un proyecto de Manuel del Olmo.

 

Dentro del capítulo de arquitectura religiosa, también hay que destacar la reconstrucción de la iglesia medieval de San Ginés, llevada a cabo, a partir de 1645, por el arquitecto Juan Ruiz. Es de planta de cruz latina, de tres naves, con crucero y cúpula.

 

Escultura

Las numerosas fundaciones religiosas llevadas a cabo con Felipe IV generaron una importante actividad escultórica, destinada a la realización de tallas y retablos. Hacia 1646 se estableció en la Corte Manuel Pereira, a quien se debe el retablo de la Iglesia de San Andrés, desaparecido durante la Guerra Civil, y la estatua de San Bruno, considerada una de sus obras maestras, que se conserva en la Real Academia de Bellas Artes de San Fernando.

 

Fuera del ámbito religioso, la producción escultórica se desarrolló a través de dos vías: la ornamentación de calles y plazas, mediante la construcción de fuentes artísticas (es el caso de la Fuente de Orfeo, diseñada por Juan Gómez de Mora y terminada en 1629), y los encargos reales, entre los que sobresale la estatua ecuestre de Felipe IV (1634–1640).

 

Se trata de las primera escultura a caballo del mundo en la que éste se sostiene únicamente sobre sus patas traseras.34​ Es obra de Pietro Tacca, quien trabajó sobre unos bocetos hechos por Velázquez y, según la tradición, contó con el asesoramiento científico de Galileo Galilei. Conocida como el caballo de bronce, estuvo inialmente en el Palacio del Buen Retiro y, en tiempos de Isabel II, fue trasladada a la Plaza de Oriente, su actual ubicación.

En el terreno urbanístico, Felipe IV ordenó la construcción de una cerca alrededor del casco urbano, mediante la cual quedaron establecidos los nuevos límites de la villa, tras los procesos expansivos de los periodos anteriores. Desde la fundación de Madrid en el siglo IX, había sido costumbre cercar el caserío, bien con una finalidad defensiva (murallas musulmana y cristiana), bien para el control fiscal de los abastos e inmigración (cerca medieval de los arrabales y Cerca de Felipe II).

 

La Cerca de Felipe IV provocó varios efectos en el desarrollo urbano: por un lado, impidió la expansión horizontal de Madrid hasta bien entrado el siglo XIX, cuando fue demolida y pudieron acometerse los primeros ensanches; y, por otro, favoreció un cierto crecimiento vertical, dando lugar a las corralas, viviendas dispuestas en varias alturas y organizadas en corredera, alrededor de un gran patio común.

 

De la citada cerca, realizada en ladrillo y mampostería, aún se mantienen en pie algunos restos, como los situados en la Ronda de Segovia, en los alrededores de la Puerta de Toledo.

 

El Puente de Toledo es otro de los proyectos urbanísticos impulsados por el rey. Su función era enlazar directamente el casco urbano con el camino de Toledo, salvando el río Manzanares por la parte suroccidental de la ciudad. Fue construido por José de Villarreal entre 1649 y 1660, a partir de un proyecto de Juan Gómez de Mora.

 

El puente quedó destruido en una riada y en 1671, durante el reinado de Carlos II, se levantó uno nuevo, que también desapareció por los mismos motivos. La estructura definitiva que ha llegado a la actualidad corresponde al primer tercio del siglo XVIII y es obra de Pedro de Ribera.

Reinado de Carlos II

Con la llegada al trono de Carlos II (r. 1665–1700), se frenó el ritmo constructor del reinado anterior, sobre todo en lo que respecta a las edificaciones civiles. Entre éstas, tan sólo cabe mencionar la Puerta de Felipe IV (1680), que, pese a su nombre, fue erigida en honor de María Luisa de Orleáns, primera esposa de Carlos II. Trazada por Melchor Bueras, estuvo inicialmente emplazada en la Carrera de San Jerónimo, hasta su traslado, a mediados del siglo XIX, a la calle de Alfonso XII, donde sirve de acceso al Parque de El Retiro.

 

En cuanto a las fundaciones religiosas, se levantaron algunos templos de interés artístico, que abandonaron definitivamente el aspecto austero de la primera mitad del siglo XVII e incorporaron plenamente las tendencias barrocas.

 

Es el caso de la Iglesia de Nuestra Señora de Montserrat, que forma parte del convento homónimo.​ Fue trazada en el año 1668 por el arquitecto Sebastián Herrera Barnuevo, si bien su proyecto fue transformado por Gaspar de la Peña, Juan de Torija, Pedro de la Torre, Francisco Aspur y Pedro de Ribera, que intervinieron, en diferentes fases, hasta la conclusión del conjunto en 1720. El edificio destaca por su exterior profusamente ornamentado, en especial la torre que flanquea uno de sus lados, con abundantes motivos naturalistas en su parte superior y alrededor de los vanos.

 

El gusto por las formas también está presente en la Iglesia de las Calatravas (1670–1678), situada en la calle de Alcalá. Se debe a un diseño de fray Lorenzo de San Nicolás, terminado por Isidro Martínez y Gregorio Garrote. Presenta planta de cruz latina y, en su crucero, se alza una cúpula con tambor de ocho vanos, cuatro abiertos y cuatro cegados. La capilla mayor está adornada con un retablo de José Benito de Churriguera, realizado en tiempos de Felipe V.

 

Del Monasterio del santísimo Sacramento, fundado por Cristóbal Gómez de Sandoval en la época de Felipe IV, sólo se conserva su iglesia, actual Catedral Arzobispal Castrense. El templo se construyó con Carlos II, entre 1671 y 1744, a partir de un proyecto firmado por Francisco Bautista, Manuel del Olmo y Bartolomé Hurtado García.

 

Su fachada, labrada en sillares de granito, se estructura en tres niveles horizontales y está rematada por un frontón circular. La decoración exterior consiste en diferentes molduras que recorren los vanos, con motivos naturales, y en un relieve dedicado a san Benito y san Bernardo, instalado en el nivel intermedio.

 

Pese a las corrientes barrocas del momento, el Convento de las Comendadoras de Santiago se aproxima más al arquetipo arquitectónico de la primera mitad del reinado de Felipe IV, caracterizado por su sobriedad. El edificio, que empezó a construirse en 1667, destaca por su iglesia, de planta de cruz griega, fachada inspirada en el modelo del Real Monasterio de la Encarnación y torres con chapiteles herrerianos en los lados.

  

San Sebastián es una localidad argentina de la Provincia de Buenos Aires, perteneciente al partido de Chivilcoy.

 

Cuenta con 166 habitantes (INDEC, 2010), lo que representa un incremento del 8,5% frente a los 153 habitantes (INDEC, 2001) del censo anterior.

 

En la línea general, San Sebastián es la última estación en haber sido levantada desde Puente Alsina por la firma constructora Hume Hnos., que edificaba las estaciones del FC Midland. Al llegar el tendido a San Sebastián, la sociedad constructora quedó en bancarrota como resultado de largas disputas por intereses con el Compañía General Buenos Aires. En ese momento (mediados de 1908) el Ferrocarril del Sud y el Ferrocarril del Oeste absorbieron al Midland y continuaron la construcción, reemplazando a la Hume por la Clarke, Bradbury y Co., lo que le da a las estaciones de aquí a Carhué un diseño arquitectónico totalmente distinto, similar a las estaciones del Ferrocarril Sarmiento.Fue construida por el Ferrocarril Midland de Buenos Aires, y abandonada en 1977 lo que obligó a un gran éxodo de los habitantes del lugar.

   

Las cañadas Las Saladas y La Rica, tributarias del río Salado en su curso medio, involucraron un espacio ocupado por pobladores desde las primeras décadas del siglo XIX, lugar propicio para la agricultura y para estrechar vínculos matrimoniales. Entre los primeros enfiteutas en esta región se cuenta a Santiago Barrios, Ceferino Bermúdes, Dionisio Moyano, entre otros.

 

Y es precisamente un descendiente de estos primeros pobladores que dará origen a la denominación de la localidad rural San Sebastián ubicada hacia el Este del partido de Chivilcoy, a unos 45 metros s.n.m. Santiago Barrios, bisabuelo materno de Sebastián Ca, había solicitado en enfiteusis al Estado en 1826, una suerte de estancia en el pasaje Las Saladas. En la mensura se destacan como antiguos pobladores a Domingo Irrasabal, Pedro Farías, José Bustamante, Francisco Lobo, Domingo Leguizamón, etc. Santiago Barrios había registrado su marca de ganado en 1822 y la propiedad recién la adquiere en 1837 totalizando 3, 5 leguas. La estancia fue subdividida entre los herederos.

 

Esta historia familiar se entronca con la extensión del ferrocarril Midland. A partir de 1897 el gobierno de Buenos Aires previó la construcción y explotación de nuevas líneas ferroviarias de trocha angosta, en zonas no cubiertas por las redes troncales. Pero pasaron años hasta que el 21 de diciembre de 1906, el gobernador Ignacio Darío Irigoyen aprobó los Estatutos de la Sociedad Compañía Ferrocarrilera Buenos Aires Midland Limitada, quién tendría a su cargo la construcción y explotación del ramal vinculado a la localidad de San

 

Sebastián, partido de Chivilcoy. El predio para la estación ferroviaria ubicada al E. del partido de Chivilcoy. El área que corresponde al actual pueblo de San Sebastián, involucraba en las primeras décadas del siglo XIX, a la suerte de estancia de Santiago Barrios heredada por sus descendientes, entre ellos Isidoro Barrios.

 

Aún cuando restaba el replanteo definitivo de la traza, apoderados del Midland suscribieron un convenio con la Isidora Barrios de Cá, nieta de Santiago Barrios y madre de Sebastián Ca (19), por el cual la propietaria de una amplia extensión de terreno se comprometía a donar la superficie para vías, estación y calles de circunvalación si se erigiera una plaza dentro de su campo.

 

El aludido convenio, suscrito el 29 de agosto de 1908, expresa el compromiso de donar gratuitamente a la empresa una fracción de terreno. “Acto inaugural del tramo Puente Alsina- San Sebastián

Una vez superado el estado de zozobra y extendido el riel hasta el Km. 128 – San Sebastián- la administración del Midland inició el comienzo de servicios el 15 de junio de 1909

En aquella mañana, empresarios, periodistas, personalidades e invitados especiales previamente congregados

en la Plaza de Mayo, partieron con rumbo a la estación

El nombre San Sebastián Era tradición asumida que las estaciones que iban conformándose en parajes camperos innominados, necesitaran la imposición de un nombre o indicativo, y en los casos como el que nos ocupa por donación de latierra –la plaza adoptada por padrino al ex titular de dominio o con algo que simbolizara una cercanía afectiva hacia o del donante. Entorno al nombre asignado, corresponde al homenaje por parte de la donante, Isidoro Barios de Ca a su querido hijo, Sebastián Cá, fallecido en plena juventud

New increments of Quercus roburs sapling growing on the meadow in Pushchino, Moscow region

Petty Officer 3rd Class Tilford Breedlove, aviation boatswain’s mate (handling) (left), Petty Officer 1st Class Joe Flores, aviation boatswain’s mate (handling (center), and Petty Officer 1st class Alejandro Perez, aviation boatswain’s mate (handling) (right), wear a Joint Service Mask Leak Tester to check the integrity of their newly issued gas masks aboard the aircraft carrier USS Ronald Reagan (CVN 76). The JSMLT head tent fills with mineral oil mist while the user does a series of 5 different breathing exercises over the course of twelve minutes. Ronald Reagan is currently in a Compressed Incremental Availability period while moored in its home port of San Diego. (Photo by: Seaman Benjamin Jernigan)

Navy Visual News Service

Location:SAN DIEGO, US

Date Taken:12.08.2010

Related Photos: dvidshub.net/r/9o6wuq

The Jaguar E-Type, or the Jaguar XK-E for the North American market, is a British sports car, which was manufactured by Jaguar Cars Ltd between 1961 and 1975. Its combination of beauty, high performance, and competitive pricing established the marque as an icon of the motoring. At a time when most cars had drum brakes, live rear axles, and mediocre performance, the E-Type sprang on the scene with 150 mph and a sub-7 second 0–60 time, monocoque construction, disc brakes, rack and pinion steering, independent front and rear suspension, and unrivalled looks. The E-Type was based on Jaguar's D-Type racing car which had won the 24 Hours of Le Mans three consecutive years (1955–1957) and, as such, it employed the racing design of a body tub attached to a tubular framework, with the engine bolted directly to the framework.

 

On its release Enzo Ferrari called it "the most beautiful car ever made". In 2004, Sports Car International magazine placed the E-Type at number one on their list of Top Sports Cars of the 1960s. In March 2008, the Jaguar E-Type ranked first in The Daily Telegraph online list of the world's "100 most beautiful cars" of all time. In popular culture the car features in the Austin Powers film series which parodies the Swinging London fashion scene of the 1960s.

 

OVERVIEW

The E-Type was initially designed and shown to the public as a rear-wheel drive grand tourer in two-seater coupé form (FHC or Fixed Head Coupé) and as a two-seater convertible (OTS or Open Two Seater). A "2+2" four-seater version of the coupé, with a lengthened wheelbase, was released several years later.

 

Later model updates of the E-Type were officially designated "Series 2" and "Series 3", and over time the earlier cars have come to be referred to as "Series 1." As with other largely hand made cars of the time, changes were incremental and ongoing, which has led to confusion over exactly what is a Series 1 car. This is of more than academic interest, as Series 1 E-Types—and particularly Series 1 OTS (convertible) examples—have values far in excess of Series 2 and 3 models.

 

Some transitional examples exist. For example, while Jaguar itself never recognised a "Series 1½" or "Series 1.5," over time, this sub-category has been recognised by the Jaguar Owners Club of Great Britain and other leading authorities. The "pure" 4.2 litre Series 1 was made in model years 1965-1967 (earlier Series 1 models had a smaller, 3.8 litre engine with less torque). The 4.2 litre Series 1 has serial or VIN numbers 1E10001 - 1E15888 (in the case of the left hand drive OTS), and 1E30001 - 1E34249 (in the case of the left hand drive hardtop, or FHC). The Series 1.5 left hand drive OTS has serial numbers 1E15889 - 1E18368, with the hardtop version of the Series 1.5 having VIN numbers 1E34250 - 1E35815.[10] Series 1.5 cars were made in model year 1968.

 

The Series 1 cars, which are by far the most valuable, essentially fall into two categories: Those made between 1961 and 1964, which had 3.8 litre engines and non-synchromesh transmissions, and those made between 1965-1967, which increased engine size and torque by around 10%, added a fully synchronised transmission, and also provided new reclining seats, an alternator in place of the prior generator, an electrical system switched to negative earth, and other modern amenities, all while keeping the same classic Series 1 styling. The 4.2 litre Series 1 E-Types also replaced the brake servo of the 3.8 litre with a more reliable unit. "The 4.2 became the most desirable version of the famous E-Type due to their increased power and usability while retaining the same outward appearance as the earlier cars."

 

As of the end of 2014, the most expensive regular production Jaguar E-Types sold at auction included a 4.2 litre Series 1 OTS, with matching numbers, original paint and interior, under 80,000 original miles, and a history of being in the original buyer's family for 45 years (this car sold for $467,000 in 2013) and a 1961 "flat floor" Series 1, selling for $528,000 in 2014. Special run racing lightweights go for far more still, with a Series 1 lightweight - one of just twelve built - selling for more than £5 million (+/- $7.5 million USD) in early 2015.

 

Being a British made car of the 1960s, there are some rather rare sub-types of Series 1 E-Types, particularly at the beginning and end of the Series 1 production. For example, the first 500 Series 1 cars had flat floors and external bonnet latches. At the close of the Series 1 production run, there were a small number of cars produced that are identical in every respect to other Series 1 units (including triple SU carbs, button actuated starter, toggle switches, etc.), except that the headlight covers were removed for better illumination. It is not known exactly how many of these Series 1 cars (sometimes referred to as for convenience sake as "Series 1.25," but per Jaguar, Series 1) were produced, but given that 1,508 Series 1 OTS cars were produced worldwide for 1967, combined with the fact that these examples were made in just the last several months of Series 1 production, means that these, like the flat floor examples that began the Series 1 production run, are the lowest volume Series 1 variant, save of course for the special lightweights.

 

Worldwide, including both left and right hand drive examples, a total of 7,828 3.8 litre Series 1 roadsters were built, with 6,749 of the later 4.2 litre Series 1 roadsters having been manufactured.

 

While the 1968 Series 1.5 cars maintained the essential design of the Series 1 models, emission regulations caused US models to lose the Series 1 triple SU carburetors; these were replaced in the Series 1.5 by less powerful twin Zenith-Stromberg units, dropping horsepower from 265 to 246 and torque from 283 to 263.

 

Of the "Series 1" cars, Jaguar manufactured some limited-edition variants, inspired by motor racing:

 

The "'Lightweight' E-Type" which was intended as a sort of follow-up to the D-Type. Jaguar planned to produce 18 units but ultimately only a dozen were reportedly built. Of those, two have been converted to low drag form and two others are known to have been wrecked and deemed to be beyond repair, although one has now been rebuilt. These are exceedingly rare and sought after by collectors. *The "Low Drag Coupé" was a one-off technical exercise which was ultimately sold to a Jaguar racing driver. It is presently believed to be part of the private collection of the current Viscount Cowdray. In 2014, Jaguar announced its intention to build the remaining six lightweights, at a cost of approximately £1 million each.

 

Safety and emissions regulations in the North American market forced the Series 2 and 3 E-Types to lose "the original's purity, with a larger grille, wider wheel arches and bigger bumpers being added that distorted the (Series 1's) looks."

 

The New York City Museum of Modern Art recognised the significance of the E-Type's design in 1996 by adding a blue roadster to its permanent design collection, one of only six automobiles to receive the distinction. The MoMA XKE is a Series 1 roadster.

 

CONCEPT VERSIONS

E1A (1957)

After the company's success at the Le Mans 24 hr through the 1950s, Jaguar's defunct racing department was given the brief to use D-Type style construction to build a road-going sports car, replacing the XK150.

 

The first prototype (E1A) featured a monocoque design, Jaguar's fully independent rear suspension and the well proven "XK" engine. The car was used solely for factory testing and was never formally released to the public. The car was eventually scrapped by the factory.

 

E2A (1960)

Jaguar's second E-Type concept was E2A which, unlike the E1A, was constructed from a steel chassis with an aluminium body. This car was completed as a racing car as it was thought by Jaguar at the time it would provide a better testing ground. E2A used a 3-litre version of the XK engine with a Lucas fuel injection system.

 

After retiring from the Le Mans 24 hr the car was shipped to America to be used for racing by Jaguar privateer Briggs Cunningham. In 1961, the car returned to Jaguar in England to be used as a test vehicle. Ownership of E2A passed to Roger Woodley (Jaguar's customer competition car manager) who took possession on the basis the car not be used for racing. E2A had been scheduled to be scrapped. Roger's wife owned E2A until 2008 when it was offered for sale at Bonham's Quail Auction, where it sold for US$4,957,000.

 

PRODUCTION VERSIONS

SERIES 1 (1961–68)

The Series 1 was introduced, initially for export only, in March 1961. The domestic market launch came four months later in July 1961. The cars at this time used the triple SU carburetted 3.8 litre six-cylinder Jaguar XK6 engine from the XK150S. Earlier built cars utilised external bonnet latches which required a tool to open and had a flat floor design. These cars are rare and more valuable. After that, the floors were dished to provide more leg room and the twin bonnet latches moved to inside the car. The 3.8-litre engine was increased to 4.2 litres in October 1964.

 

The 4.2-litre engine produced the same power as the 3.8-litre (265 bhp; 198 kW) and same top speed (150 mph;241 km/h), but increased torque from 240 to 283 lb·ft (325 to 384 N·m). Acceleration remained pretty much the same and 0 to 60 mph (0 to 97 km/h) times were around 6.4 seconds for both engines, but maximum power was now reached at 5,400rpm instead of 5,500rpm on the 3.8-litre. That all meant better throttle response for drivers that did not want to shift down gears. The 4.2 litre resulted in increased torque of approximately 10% across the power band. Its new block was also longer and was completely redesigned to make room for 5mm larger bores, and Jaguar also redesigned the crankshaft to use newer bearings. Other engine upgrades included a new alternator/generator and an electric cooling fan for the radiator.

 

Autocar road tested a UK spec E-Type 4.2 fixed head coupe in May 1965. The maximum speed was 246 km/h, the 0–60 mph (0–97 km/h) time was 7.6 seconds and the 402 m from a standing start took 15.1 seconds. They summarised it as "In its 4.2 guise the E-type is a fast car (the fastest we have ever tested) and offers just about the easiest way to travel quickly by road.".

 

Motor magazine road tested a UK spec E-Type 4.2 fixed head coupe in Oct 1964. The maximum speed was 241 km/h, the 0-60 mph time was 7 seconds and the  1⁄4 mile time was 14.9 seconds.They summarised it as "The new 4.2 supersedes the early 3.8 as the fastest car Motor has tested. The absurd ease which 100 mph can be exceeded in a  1⁄4 mile never failed to astonish. 3,000 miles of testing confirms that this is still one of the worlds outstanding cars".

 

All E-Types featured independent coil spring rear suspension with torsion bar front ends, and four wheel disc brakes, in-board at the rear, all were power-assisted. Jaguar was one of the first vehicle manufacturers to equip cars with disc brakes as standard from the XK150 in 1958. The Series 1 (except for late 1967 models) can be recognised by glass-covered headlights (up to 1967), small "mouth" opening at the front, signal lights and tail-lights above bumpers and exhaust tips under the number plate in the rear.

 

3.8-litre cars have leather-upholstered bucket seats, an aluminium-trimmed centre instrument panel and console (changed to vinyl and leather in 1963), and a Moss four-speed gearbox that lacks synchromesh for first gear ("Moss box"). 4.2-litre cars have more comfortable seats, improved brakes and electrical systems, and an all-synchromesh four-speed gearbox. 4.2-litre cars also have a badge on the boot proclaiming "Jaguar 4.2 Litre E-Type" (3.8 cars have a simple "Jaguar" badge). Optional extras included chrome spoked wheels and a detachable hard top for the OTS. When leaving the factory the car was originally fitted with Dunlop 6.40 × 15 inch RS5 tyres on 15 × 5K wire wheels (with the rear fitting 15 × 5K½ wheels supplied with 6.50 X15 Dunlop Racing R5 tyres in mind of competition). Later Series One cars were fitted with Dunlop 185 - 15 SP41 or 185 VR 15 Pirelli Cinturato as radial ply tyres.

 

A 2+2 version of the coupé was added in 1966. The 2+2 offered the option of an automatic transmission. The body is 9 in (229 mm) longer and the roof angles are different. The roadster and the non 2+2 FHC (Fixed Head Coupe) remained as two-seaters.

 

Less widely known, right at the end of Series 1 production, but prior to the transitional "Series 1½" referred to below, a small number of Series 1 cars were produced, with open headlights. These series one cars had their headlights modified by removing the covers and altering the scoops they sit in, but these Series 1 headlights differ in several respects from those later used in the Series 1½ (or 1.5), the main being they are shorter at 143mm from the Series 1½ at 160mm . Production dates on these machines vary but in right hand drive form production has been verified as late as March 1968. Exact production numbers of these later Series 1 open headlight cars are not precisely known. They are not "rare" in the sense of the build of the twelve lightweights, but they are certainly uncommon; they were not produced until January 1967, and their production ended that same summer, with the Series 1.5 production beginning in August 1967 as model year 1968 models. These calendar year/model year Series 1 E-Type 's are identical to other 4.2 litre Series 1 examples in every respect except for the open headlights; all other component areas, including the exterior, the interior, and the engine compartment are the same, with the same three SU carburetors, polished aluminum cam covers, center dash toggle switches, etc.

 

Following the Series 1 there was a transitional series of cars built in 1967–68 as model year 1968 cars, unofficially called "Series 1½." Due to American pressure the new features were not just open headlights, but also different switches (black plastic rocker switches as opposed to the Series 1 toggle switches), de-tuning (using two Zenith-Stromberg carburetters instead of the original three SUs) for US models, ribbed cam covers painted black except for the top brushed aluminum ribbing, hood frames on the OTS that have two bows, and other changes. Series 1½ cars also have twin cooling fans and adjustable seat backs. The biggest change between 1961-1967 Series 1 E-Types and the 1968 Series 1.5 was the reduction in the number of carburetors from 3 to just 2, resulting in a loss in horsepower from 265 to 246 and a loss in torque from 283 to 263. Series 2 features were gradually introduced into the Series 1, creating the unofficial Series 1½ cars, but always with the Series 1 body style. A United States federal safety law affecting 1968 model year cars sold in the US was the reason for the lack of headlight covers and change in dash switch design in the "Series 1.5" of 1968. An often overlooked change, one that is often "modified back" to the older style, is the wheel knock-off "nut." US safety law for 1968 models also forbid the winged-spinner knockoff, and any 1968 model year sold in the US (or earlier German delivery cars) should have a hexagonal knockoff nut, to be hammered on and off with the assistance of a special "socket" included with the car from the factory. This hexagonal nut carried on into the later Series 2 and 3. The engine configuration of the US Series 1.5s was the same as is found in the Series 2, and per the JCNA Judges' Guide, "only MY '68 E-types are true Series 1.5s."

 

An open 3.8-litre car, actually the first such production car to be completed, was tested by the British magazine The Motor in 1961 and had a top speed of 240.0 km/h and could accelerate from 0 to 60 mph (0 to 97 km/h) in 7.1 seconds. A fuel consumption of 21.3 miles per imperial gallon (13.3 L/100 km; 17.7 mpg-US) was recorded. The test car cost £2,097 including taxes.

 

The cars submitted for road test by the popular motoring journals of the time (1961) such as The Motor, The Autocar and Autosport magazines were specially prepared by the Jaguar works to give better-than-standard performance figures. This work entailed engine balancing and subtle work such as gas-flowing the cylinder heads and may even have involved fitting larger diameter inlet valves.

 

Both of the well-known 1961 road test cars: the E-type Coupe Reg. No. 9600 HP and E-type Convertible Reg. No. 77 RW, were fitted with Dunlop Racing Tyres on test, which had a larger rolling diameter and lower drag co-efficient. This goes some way to explaining the 240 km/h maximum speeds that were obtained under ideal test conditions. The maximum safe rev limit for standard 6-cylinder 3.8-litre E-type engines is 5,500 rpm. The later 4.2-Litre units had a red marking on the rev counter from just 5,000 rpm. Both test cars must have reached or exceeded 6,000 rpm in top gear when on road test in 1961.

 

Production numbers from Robson:

15,490 3.8s

17,320 4.2s

10,930 2+2s

 

SERIES 2 (1968–71)

The Series 2 introduced a number of design changes, largely due to U.S. design legislation. The most distinctive exterior feature is the absence of the glass headlight covers, which affected several other imported cars, like the Citroën DS, as well. Unlike other cars, this retrograde step was applied worldwide for the E-Type, not just to Americans living under the authority of the National Highway Traffic and Safety Administration.

 

Other hallmarks of Series 2 cars are a wrap-around rear bumper, re-positioned and larger front indicators and tail lights below the bumpers, an enlarged "mouth" which aided cooling but detracted for the Series I design purity, twin electric fans, plastic rocker switches in place of the Series I toggle switches, and, of course most importantly, a material downgrading in performance resulting from a switch from the three SU carburetors used in Series I models to a mere two "smogged" Stromberg carbs, reducing horsepower from 265 to 246 and reducing torque from 283 to 263.

 

A combination steering lock and ignition key was fitted to the steering column, which replaced the dashboard mounted ignition switch and charismatic push button starter. A new steering column was fitted with a collapsible section in the event of an accident.

 

New seats were fitted which allowed the fitment of head restraints, as required by U.S. law beginning in 1969. The interior and dashboard were also redesigned; rocker switches that met US health and safety regulations were substituted for toggle switches. The dashboard switches also lost their symmetrical layout.

 

The engine is easily identified visually by the change from smooth polished cam covers to a more industrial "ribbed" appearance. It was de-tuned in the US with twin Strombergs and larger valve clearances, but in the UK retained triple SUs and the much tighter valve clearances. (Series 1½ cars also had ribbed cam covers). This detuned engine produced 245 hp, a drop of 20 hp.

 

Air conditioning and power steering were available as factory options.

 

Production according to Robson is 13,490 of all types.

 

SERIES 3 (1971–75)

The E-Type Series 3 was introduced in 1971, with a new 5.3 L twelve cylinder Jaguar V12 engine, uprated brakes and standard power steering. Optionally an automatic transmission, wire wheels and air conditioning were available. The brand new V12 engine was originally developed for the 24 Hours of Le Mans. It was equipped with four Zenith carburettors. The final engine was claimed produced 203 kW (272 hp), massive torque and an acceleration of 0-60 mph in less than 7 seconds, but this bhp figure was reduced in later production. The short wheelbase FHC body style was discontinued and the V12 was available only as a convertible and 2+2 coupé.

 

Performance was very competitive with contemporaries.

 

The newly used longer wheelbase now offered significantly more room in all directions. The Series 3 is easily identifiable by the large cross-slatted front grille, flared wheel arches, wider tyres, four exhaust tips and a badge on the rear that proclaims it to be a V12.

 

Cars for the US market were fitted with large projecting rubber bumper over-riders (in 1973 these were on front, in 1974 both front and rear) to meet local 8 km/h impact regulations, but those on European models were considerably smaller. US models also have side indicator repeats on the front wings. There were also a very limited number of six-cylinder Series 3 E-Types built. These were featured in the initial sales procedure but the lack of demand stopped their production. When leaving the factory the V12 Open Two Seater and V12 2 ± 2 originally fitted Dunlop E70VR − 15 inch tyres on 15 × 6K wire or solid wheels.

 

The Jaguar factory claimed that fitting a set of Jaguar XJ12 saloon steel-braced radial-ply tyres to a V12 E-Type raised the top speed by as much as 8 mph. The production car was fitted with textile-braced radial ply tyres. This fact was reported by the editor of The Motor magazine in the long-term test of his E-type edition dated 4 August 1973, who ran a V12 fixed head for a while.

 

Robson lists production at 15,290.[

 

LIMITED EDITIONS

Two limited production E-Type variants were made as test beds, the low drag coupe and lightweight E-Type, both of which were raced:

 

LOW DRAG COUPE (1962)

Shortly after the introduction of the E-Type, Jaguar management wanted to investigate the possibility of building a car more in the spirit of the D-Type racer from which elements of the E-Type's styling and design were derived. One car was built to test the concept designed as a coupé. Unlike the steel production E-Types, the LDC used lightweight aluminium. Malcolm Sayer retained the original tub with lighter outer panels riveted and glued to it. The front steel sub frame remained intact, the windshield was given a more pronounced slope, and the rear hatch was welded shut. Rear brake cooling ducts appeared next to the rear windows, and the interior trim was discarded, with only insulation around the transmission tunnel. With the exception of the windscreen, all cockpit glass was perspex. A tuned version of Jaguar's 3.8-litre engine with a wide-angle cylinder head design tested on the D-Type racers was used.

 

The only test bed car was completed in summer of 1962 but was sold a year later to Jaguar racing driver Dick Protheroe. Since then it has passed through the hands of several collectors on both sides of the Atlantic and is now believed to reside in the private collection of the current Viscount Cowdray.

 

Peter Lindner, the Jaguar distributor in Germany, had his Lightweight modified by the factory to include the Sayer low drag roof and rear panels as part of an effort to win the GT class at LeMans. Lindner's car was more than a match for the Ferrari 250 GTO but mechanical problems forced it out of the race. Lindner was later killed in a racing accident that demolished his car, which has recently been restored.

 

Jaguar waited too long before committing to a racing program in earnest and what could have been a world champion in 1962 was not competitive by 1965.

 

LiIGHTWEIGHT E-TYPE (1963–64, 2014–PRESENT)

Twelve cars plus two spare bodies were made by Jaguar.

 

In some ways, this was an evolution of the low drag coupé. It made extensive use of aluminium alloy metal, in the body panels and other components. However, with at least one exception, it remained an open-top car in the spirit of the D-Type to which this car is a more direct successor than the production E-Type which is more of a GT than a sports car. The cars used an aluminium block tuned version of the production 3.8-litre Jaguar engine with 300 bhp (220 kW) output rather than the 265 bhp (198 kW) produced by the "ordinary" version. Factory-built lightweights were homologated by Jaguar with three 45DCO3 Weber carburettors in addition to a Lucas mechanical fuel injection system. Early cars were fitted with a close-ratio version of the four speed E-type gearbox, with some later cars being fitted with a ZF five speed gearbox.

 

The cars were entered in various races but, unlike the C-Type and D-Type racing cars, they did not win at Le Mans or Sebring but were reasonably successful in private hands and in smaller races.

 

One lightweight was modified into a low drag coupé (the Lindner/Nöcker car), by Malcolm Sayer.

 

Another lightweight was modified into a unique low drag design (the Lumsden/Sargent car), by Dr Samir Klat of Imperial College. Along with the factory LDC, this lightweight is now believed to reside in the private collection of the current Viscount Cowdray.

 

Many were fitted with more powerful engines as developments occurred.

 

On 14 May 2014, Jaguar's Heritage Business announced it would be building the six 'remaining' lightweights. The original run of lightweights was meant to be 18 vehicles; however only 12 were built. The new cars, using the unused chassis codes, will be hand built to exactly the same specification as the originals. Availability was prioritised for established collectors of Jaguars, with a focus on those who have an interest in historic race cars.

 

MOTORSPORT

Bob Jane won the 1963 Australian GT Championship at the wheel of a "lightweight" E-Type.

 

The Jaguar E-Type was very successful in SCCA Production sports car racing with Group44 and Bob Tullius taking the B-Production championship with a Series-3 V12 racer in 1975. A few years later, Gran-Turismo Jaguar from Cleveland Ohio campaigned a 4.2-litre six-cylinder FHC racer in SCCA production series, and in 1980 won the National Championship in the SCCA C-Production Class, defeating a fully funded factory Nissan Z-car team with Paul Newman.

 

WIKIPEDIA

Pictured are the Coldstream Guards (part of the British Army's Public Duties Incremental Companies and their Bands) during the Major General Londist Summer Dress Inspection.

 

London District (LONDIST) is the name given by the British Army to the area of operations encompassing the Greater London area.

It was established in 1870 as Home District.

 

The Coldstream Guards have two roles in the Army.

 

The first is as of an Infantry unit famous for being the oldest regiment in the British Army in continuous service. The second is of a ceremonial Battalion trained to be involved in any state or royal ceremonial tasks.

 

The Coldstream Guards have previously been deployed to Northern Ireland, the Balkans, Iraq and Afghanistan...The Coldstream Guards is one of the seven regiments in the Household Division - the personal troops of Her Majesty the Queen..Formed in 1650 as part of the New Model Army during the English Civil War, the regiment swore allegiance to King Charles II in 1660 and has guarded the country's monarchs since.

 

The primary role of the Coldstream Guards is as light role infantry, capable of deploying anywhere in the world at short notice to conduct any task.

 

Conventional warfare, counter-insurgency, peace support and 'hearts and minds' civil aid tasks are all part of the Regiment's demanding daily regime.

-------------------------------------------------------

© Crown Copyright 2014

Photographer: Cpl Timothy Jones

Image 45162115.jpg from www.defenceimages.mod.uk

  

Use of this image is subject to the terms and conditions of the MoD News Licence at www.defenceimagery.mod.uk/fotoweb/20121001_Crown_copyrigh...

 

For latest news visit www.gov.uk/government/organisations/ministry-of-defence

Follow us:

www.twitter.com/defenceimages

Pictured are the Grenadier Guards (part of the British Army's Public Duties Incremental Companies and their Bands) during the Major General Londist Summer Dress Inspection.

 

London District (LONDIST) is the name given by the British Army to the area of operations encompassing the Greater London area.

It was established in 1870 as Home District.

 

The Grenadier Guards has one of the finest, longstanding reputations as a tough fighting force.

 

A regiment which has a proud history of service to the sovereign in times of war and peace – be it on operations in Iraq and Afghanistan or guarding the royal palaces.

 

This is a regiment in which you will make friends for life because no matter who you are, or where you are from, the deal is this: “Once a Grenadier...always a Grenadier”.

-------------------------------------------------------

© Crown Copyright 2014

Photographer: Cpl Timothy Jones

Image 45162113.jpg from www.defenceimages.mod.uk

  

Use of this image is subject to the terms and conditions of the MoD News Licence at www.defenceimagery.mod.uk/fotoweb/20121001_Crown_copyrigh...

 

For latest news visit www.gov.uk/government/organisations/ministry-of-defence

Follow us:

www.twitter.com/defenceimages

264 metre gauge steam locomotives of the YL class were built between 1952 and 1956. The first ten engines - including this 5001 - were built by Robert Stephenson & Hawthorns in the United Kingdom. The further 254 were built by Hitachi, Henschel and Mavag.

____________________

 

LOCOMOTIVES OF INDIA

The locomotives of India presently consist of electric and diesel locomotives. Steam locomotives are no longer used in India, except in heritage trains. A locomotive is also called loco or engine.

 

The Bengal Sappers of the Indian Army were the first to run a steam locomotive in India. The steam locomotive named ‘Thomason’ ran with two wagons for carrying earth from Roorkee to Piran Kaliyar in 1851, two years before the first passenger train ran from Bombay to Thane in 1853.

 

CLASSIFICATION OF LOCOMOTIVES

In India, locomotives are classified according to their track gauge, motive power, the work they are suited for and their power or model number. The class name includes this information about the locomotive. It comprises 4 or 5 letters. The first letter denotes the track gauge. The second letter denotes their motive power (Diesel or Electric) and the third letter denotes the kind of traffic for which they are suited (goods, passenger, mixed or shunting). The fourth letter used to denote locomotives' chronological model number. However, from 2002 a new classification scheme has been adopted. Under this system, for newer diesel locomotives, the fourth letter will denote their horsepower range. Electric locomotives don't come under this scheme and even all diesel locos are not covered. For them this letter denotes their model number as usual.

 

A locomotive may sometimes have a fifth letter in its name which generally denotes a technical variant or subclass or subtype. This fifth letter indicates some smaller variation in the basic model or series, perhaps different motors, or a different manufacturer. With the new scheme for classifying diesel locomotives (as mentioned above) the fifth item is a letter that further refines the horsepower indication in 100 hp increments: 'A' for 100 hp, 'B' for 200 hp, 'C' for 300 hp, etc. So in this scheme, a WDP-3A refers to a 3100 hp loco, while a WDM-3F would be a 3600 hp loco.

 

Note: This classification system does not apply to steam locomotives in India as they have become non-functional now. They retained their original class names such as M class or WP class.

 

THE CLASSIFICATION SYNTAXES

THE FIRST LETTER (GAUGE)

- W – Indian broad gauge (the "W" Stands for Wide Gauge - 5 ft 6 in)

- Y – metre gauge (the "Y" stands for Yard Gauge - 3 ft or 1000mm)

- Z – narrow gauge(2 ft 6 in)

- N – narrow gauge (toy gauge) (2 ft)

 

THE SECOND LETTER (MOTIVE POWER)

- D – diesel

- C – DC electric (can run under DC overhead line only)

- A – AC electric (can run under AC overhead line only)

- CA – both DC and AC (can run under both AC and DC overhead line); 'CA' is considered a single letter

- B – Battery electric locomotive (rare)

 

THE THIRD LETTER (JOB TYPE)

- G – goods

- P – passenger

- M – mixed; both goods and passenger

- S – shunting (also known as switching engines or switchers in the USA and some other countries)

- U – multiple units (EMU/DMU)

- R – Railcars

 

For example, in "WDM 3A":

- "W" means broad gauge

- "D" means diesel motive power

- "M" means suitable for both goods and passenger service

- "3A" means the locomotive's power is 3,100 hp ('3' stands for 3000 hp, 'A' denotes 100 hp more)

 

Or, in "WAP 5":

"W" means broad gauge

"A" mean AC electric traction motive power

"P" means suitable for Passenger service

"5" denotes that this locomotive is chronologically the fifth electric locomotive model used by the railways for passenger service.

 

BROAD GAUGE (5 ft 6 in) LOCOMOTIVES USED IN INDIA

STEAM TRACTION

COMPANY DESIGNS

In the nineteenth century, the various railway concessions ordered locomotives to their own specification, usually from British manufacturers. This multiplicity of similar, but different designs, increased manufacturers' costs and slowed production. During the 1890s, British manufacturers had full order books, so Indian railway companies looked to Germany and the United States for locomotives.

 

BENGAL NAGPUR RAILWAY

- Class F – 0-6-0

- Class GM – 2-6-0. Probably modified.

- BNR class HSG – 2-8-0+0-8-2 Garratt homed at Bengal Nagpur Railway (BNR) now Eastern Railway and South-Eastern Railway. First successful Garratts in India.

- Class M – 4-6-2. Probably modified.

- BNR class N – 4-8-0+0-8-4 Garratt. Largest locomotive to run in India. Highest capacity to hold water as compared to any Garratt in the world. One is preserved at National Rail Museum, Delhi.

- BNR class NM – 4-8-0+0-8-4 Garratt. Similar to N class. Ten built in 1931 by Beyer Peacock. Withdrawn in the late 1960s.

- BNR class P – 4-8-2+2-8-4 Garratt. Four built by Beyer Peacock in 1939. In the early 1970s, they were at Bhilai (BIA) shed before being withdrawn.

 

BOMBAY, BARODA AND CENTRAL INDIAN RAILWAY

- BB&CI class P – 4-6-2;

- Class A - 2-4-0T. Probably an Atlantic. Belonged to Palej shed.

- Class U36 – 0-4-2 used for hauling suburban trains at Mumbai.

- Class D1 – 4-4-0. One of them named Princess May.

- Class M – 4-6-2. Probably modified.

 

EASTERN BENGAL RAILWAY

EAST INDIAN RAILWAY COMPANY

- Class CT – 0-6-4T. Probably converted to Super-heater.

- EIR class G – 2-2-2T. First two named Express and Fairy Queen Built in 1856, the latter is the world's oldest locomotive to be in working order. Later rebuilt by Perambur Loco Works. Housed at E.I.R.

- EIR class P – 4-6-0;

 

GREAT INDIAN PENINSULA RAILWAY

- GIPR classes Y1, Y2, Y3, and Y4 – 0-8-4T. Used on Thull ghat as bankers (for pushing trains up the ghat).

- GIPR Class F – 2-6-0.

- GIPR Class F3 – 2-6-0.

- GIPR class J1 – 0-6-0

- Class D4 – 4-6-0. One named Hero.

- Class D5 – 4-6-0 Passenger locomotive.

- Class E1 – 4-4-2 Atlantic built by North British Locomotive Co. Ltd between 1907-8. Rebuilt with super-heater between 1925-28.

- Class T – Tank locomotive was used for hauling Mumbai suburban trains on G.I.P.R.

- Class Y – 2-8-4T

- Crane Tank – 0-6-0T. One is preserved at National Rail Museum, New Delhi.

 

MADRAS AND SOUTHERN MAHRATTA RAILWAY

- M&SM class V – 4-4-0. One is preserved.

- Class BTC – 2-6-4T. Based on BESA specifications.

- Class T – 0-4-2 at Madras.

 

NIZAM´S GUARANTEED STATE RAILWAY

- NSR class A - 2-6-0T owned by Nizam State Railway (NSR). One (No. 48) preserved at National Rail Museum,Delhi. Probably an Atlantic.

 

NORTH WESTERN RAILWAY (BRITISH INDIA)

- Class EM – 4-4-2 probably modified. One preserved at National Rail Museum,Delhi.

- NWR class GAS – 2-6-2+2-6-2 Garratt owned by North

Western Railway (NWR) now most of which is in Pakistan. Only one built in 1925. Retired in 1937.

- NWR class P – 2-4-0;

- Class E1 – 4-4-2.

- Class N1 – 4-8-0

 

OUDH AND ROHILKHAND RAILWAY

- Class B26 – 0-6-0. One preserved at National Rail Museum,Delhi.

 

SOUTH INDIAN RAILWAY

OTHERS

- Class B – 2-6-0.

- Class E – 2-4-0.

- Class F – 2-8-2 built between 1926-1950 by Nasmyth Wilson for service on Central Railway (CR).

- Class G – 2-6-0 probably meant for freight.

- Class NA2 –

- Class PTC – 2-6-4T owned by Delhi at Northern Railway (N.R.). Probably Converted Passenger locomotives.

- Class Y2 – 2-8-2T. These are reclassified L2.

- Phoenix – 0-4-0T. One is preserved at National Rail Museum, Delhi

- Ramgotty – 2-2-0T. One is preserved at National Rail Museum, Delhi. Converted to Broad Gauge. Oldest locomotive at National Rail Museum, Delhi.

- Sultan, Sahib and Sindh – These are the ones which hauled the legendary train from VT to Thana in 1853.

 

BRITISH ENGINEERING STANDARDS ASSOCIATION (BESA) DESIGNS

After acrimonious words in The Times and Parliament, the British Engineering Standards Committee (later British Engineering Standards Association or BESA) began to design a series of locomotives for use by all railways in India. The first two designs emerged in 1903: a 4-4-0 passenger, and 0-6-0 goods. The designs were revised in 1905 and 1906 with additional types added due to requests for heavier and more powerful locomotives:

 

- Class SP – Standard Passenger – 4-4-0;

- Class SG – Standard Goods – 0-6-0;

- Class PT – Passenger Tank – 2-6-4T;

- Class HP – Heavy Passenger – 4-6-0;

- Class AP – Atlantic Passenger – 4-4-2;

- Class HG – Heavy Goods – 2-8-0;

- Class HT – Heavy Tank – 2-8-2T.

 

These BESA designs however were advisory, not mandatory, and were customized by the railway companies to their own taste. The railway companies could not even agree to use the same classification system: only the state operated railways used the class designations SP, SG, PT, HP, AP, HG and HT. Once superheating became accepted, superheated versions were classified SPS, SGS, etc. if built with superheaters, and SPC, SGC, etc. if converted from saturated to superheated.

 

INDIAN RAILWAYS STANDARD (IRS) DESIGNS

After World War I, new, larger, more powerful locomotives were designed by the British consulting engineers to the Indian Government. These started to appear from 1927 onwards:

 

- Class XA – branch passenger 4-6-2 design, 12.5-ton axleload;

- Class XB – light passenger 4-6-2 design, 17-ton axleload;

- Class XC – heavy passenger 4-6-2 design, 19.5-ton axleload;

- Class XD – light goods 2-8-2 design, 17-ton axleload;

- Class XE – heavy goods 2-8-2 design, 22.5-ton axleload;

- Class XF – light shunting 0-8-0 design, 18-ton axleload;

- Class XG – heavy shunting 0-8-0 design, 23-ton axleload;

- Class XH – 4-cylinder 2-8-2, 28-ton axleload (none built);

- Class XP – experimental passenger 4-6-2, 18.5-ton axleload;

- Class XS – experimental 4-cylinder 4-6-2, 21.5-ton axleload;

- Class XT – light tank 0-4-2T, 15-ton axleload.

 

WORLD WAR II DESIGNS

During World War II, large numbers of 2-8-2 locomotives were acquired from the United States and Canada, and were designated as classes AWD and CWD respectively. The Baldwin Locomotive Works adapted the USATC S160 Class locomotive design India which became class AWC. 60 broad gauge locomotives were built in 1944 as part of an order of 180 locomotives to the S160 design. In addition to modified frame spreaders, axles, cylinders, and cab, the Indian locomotives had a turbo-generator and electric lighting fitted, which was not included in the standard design for use in Europe. Many parts, including boilers, were identical to those used for the standard gauge locomotives.

 

INDIAN GOVERNMENT RAILWAYS (IGR) STANDARD DESIGNS

Shortly before World War II, new classes were designed; but it would post-war before many of them came into service. These new designs were signalled by the change of broad gauge prefix from 'X' to 'W'. In addition, plans were put into place to start manufacturing locomotives in India. The new classes were:

 

- Class WP – passenger 4-6-2, 18.5-ton axleload;

- Class WG – goods 2-8-2, 18.5-ton axleload;

- Class WL (1st) – light 4-6-2, 16-ton axleload (four for North Western Railway in 1939; all to Pakistan at Partition);

- Class WL (2nd) – light 4-6-2, 16.75-ton axleload;

- Class WM – 2-6-4T, 16.25-ton axleload;

- Class WT – 2-8-4T, 18-ton axleload;

- Class WU – 2-4-2T, 16.5-ton axleload;

- Class WV – 2-6-2T, 16.25-ton axleload;

- Class WW – 0-6-2T, 16.5-ton axleload.

 

All broad gauge steam locomotives in India have been withdrawn from normal service, with only occasional steam specials continuing to operate.

 

DIESEL TRACTION

CLASSIFICATION CODES

- WDM – Wide Diesel Mixed

- WDP – Wide Diesel Passenger

- WDG – Wide Diesel Goods

- WDS – Wide Diesel Shunter

- WCDS – Wide Converted Diesel Shunter

 

MIXED TYPE LOCOMOTIVES

- WDM 1 (First mainline diesel electric locomotives used in India. Introduced in 1957. Imported from ALCO. Out of service now. 1950 hp)

- WDM 2 (Most widely used and first homemade mainline diesel-electric locomotives in India. Original prototypes were made by ALCO. Introduced in 1962. More than 2700 have been made. Rated at 2600 hp)

- WDM 2A,WDM 2B (Technical variants of WDM 2. WDM2A stands are dual braked and WDM2B are air braked usually)

- WDM 2G It is the first Multi-Gen-set locomotive of Indian Railway manufactured by DLMW, Patiala in 2013. As of February 2014 only one loco has entered service and has been numbered as #80000. It has been cleared for a max. speed of 105 km/h.

- WDM 3 (Only 8 were imported. They used hydraulic transmission and are currently non-functional. 2500 hp. 120 km/h. Built in 1970 by Henschel & Son)

WDM 3A (Formerly WDM 2C. Another WDM 2 variant. It is not related to WDM 3. Max speed 120 km/h. 30450kgf of tractive effort. Built since 1994) One of the most heavily used diesel locomotives in India at present.

- WDM 3A R (Formerly WDM 2. It is a rebuilt with DBR fitted on Short Hood. It is not related to WDM 3. They are rebuilt at DLMW, Patiala)

- WDM 3B (Co-Co bogies. Rated at 120 km/h. Homed at Uttar Pradesh sheds. 23 built by DLW. Similar to WDM3D. 3100 hp)

- WDM 3C, WDM 3D (higher powered versions of WDM 3A. 3300 hp. WDM3C is rebuilt from WDM2. WDM3C max speed 120 km/h. WDM3D max speed 160 km/h)

- WDM 3E (Reclassified as WDM 3D. Restricted to freight at 105 km/h. 8 units known. Manufactured by DLW. 3500 hp)

- WDM 3F Manufactured by Diesel Locomotive Works (DLW). 3600 hp. HAHS bogies. Conventional DBR. Air brake only.

- WDM 4 (Entered service along with WDM 2. Prototypes designed by General Motors. Though considered superior to WDM 2 in many ways, these locomotives weren't chosen as General Motors did not agree to a technology transfer agreement. 2600 hp)

- WDM 6 (Very rare class; only two were made; Exported to Sri Lanka. Rated at 1350 hp. Max speed 75 km/h. 19200kgf tractive effort. Fabricated Bo-Bo bogies)

- WDM 7 (Fifteen of these locos were built from June 1987 through 1989, they were designed for branch-line duties, but they are now used mostly for shunting. Rated at 2000 hp)

 

Note: No locomotive class was designated as WDM 5 in India.

 

PASSENGER LOCOMOTIVES

- WDP 1 (Bo-Bo bogies. 80 tons weight. Rated speed of 140 kmph. 12 cylinder engine. 2300 hp. Built by DLW in 1970. Homed at Vijayawada and Tughlakabad sheds only.)

- WDP 2 (New class name WDP 3A. Dedicated passenger diesel locomotive. Entered service in 1998. Max speed 140kmph. Built by DLW. 29.25 tons of tractive effort. 3100 hp)

- WDP 3 (These locomotives are actually prototypes of the class WDP 1 and never entered serial production. Designed in 1996 by DLW. 2300 hp. Co-Co bogies.)

- WDP 4 (EMD (former GM-EMD) GT46PAC, fundamentally a passenger version of the WDG 4 (GT46MAC). 4000 hp)

- WDP 4B (EMD (former GM-EMD) GT46PAC, An improved version of the WDP 4, this is a more powerful version and has 6 traction motors, just like the WDG 4. Also comes with wider cabin to aid visibility and minor exterior design changes.As of now,serial production of the single cab locomotives has been stopped. 4500 hp)

- WDP 4D (EMD (former GM-EMD) GT46PAC, This is basically a - WDP 4B with twin cabs. Minor changes were made to the locomotive to facilitate the addition of a second cabin. This locomotive comes with LCD instrument display and toilet for the drivers. Has entered serial production and regular service. 4500 hp.

 

GOODS LOCOMOTIVES

- WDG 2 (New class name WDG 3A. These class is actually a technically upgraded form of WDM 2. Max speed 100 km/h. Built by DLW)

- WDG 3B, WDG 3C, WDG 3D (Technical upgraded forms of WDG 2 or WDG 3A. WDG 3B and WDG 3C are rebuilt to WDG 3A. WDG 3C is rated at 3330 hp.)

- WDG 4 (Dedicated goods locomotives. These are General motors' GT46MAC models. First units were imported in 1999. They are numbered from #12000 upward till #12999 and #70000 upwards. Local production started in 2002. 4000-4500 hp)

- WDG 4D (Technical variant of WDG4 with dual cabs. IGBT. Max speed 105 km/h restricted to 100 km/h. Air conditioned cabs. First dual cab freight dedicated diesel engine in India)

- WDG 5 (Another Freight dedicated Locomotive developed by Diesel Locomotive Works and Supported by Electro Motive Diesels. First unit was rolled out from DLW on 25 February 2012. They are numbered from #50001 upward (Two produced as of 29 April 2015). Rated at 5500 hp. Equipped with Fire Control System, TFT Display and Driver's Toilet. The locomotive/series is named 'BHEEM', after the strong Pandav brother from epic of Mahabharat. The locomotive has completed its trials and has entered serial production. These locomotives are assigned to the Sabarmati Diesel Loco Shed.

 

SHUNTING LOCOMOTIVES (also known as switching engines)

- WDS 1 (First widely deployed and successful diesel locomotives used in India. Imported in 1944-45. currently out of service. 386 hp)

- WDS 2 (o-C-o bogies. 8 cylinder engine. Homed at Central Railway. Max speed 54 kmph. Built by Kraus Maffei in 1954-55. 440 hp. 15420kgf of tractive effort)

- WDS 3 (All locomotives of this class were rebuilt and reclassified as WDS 4C in 1976-78. 618 hp. 17100kgf of tractive effort. Built in 1961)

- WDS 4,WDS 4A,WDS 4B,WDS 4D (Designed by Chittaranjan Locomotive Works. 600-700 hp. C bogies. Built between 1968-97.)

- WDS 4C (Rebuilt by CLW, WDS 3 locos as mentioned above. 700 hp. 18000kgf tractive effort. C bogies. Out of service. Max speed 65kmph.)

- WDS 5 (Some of these locomotives are used for industrial shunting. A few are used on Indian Railways. Rated at 1065 hp)

- WDS 6 (Heavy-haul shunters made in large numbers for industrial concerns as well as for Indian Railways Rated at 1200/1350 hp)

- WDS 6R, WDS 6SL and WDS 6AD (Technical variants of WDS 6. WDS6SL is exported to Sri Lanka. WDS6AD has a max speed of 50 kmph and a 6-cylinder engine.)

- WDS 8 (Only five of these were made by CLW, and all were transferred to steel works 800 hp. Max speed 35kmph. 22000kgf tractive effort)

 

There were also a few hydraulic diesel shunters in use at Integral Coach Factory, Diesel Locomotive Works and Chittaranjan Locomotive Works. These were rated at 250 hp.

 

Note: There is no electric shunting engine in India. Classes from WDS 1 to WDS 4D have hydraulic transmission. The WDS 4, 4B, 4C and 4D are the only still existing broad gauge locomotives with diesel-hydraulic transmission.

 

CONVERTED LOCOMOTIVES

WCDS6 is a converted YDM4 locomotive into a broad gauge locomotive. This rebuilding was carried out by the Golden Rock shed. It was built for large industrial concerns. The first one was delivered to RITES. Rest being same, new water and air lines are added. They also have a modified control stand and dual brake system. Also, they have Broad Gauge bogies and under-frames.

 

DIESEL MUTIPLE UNITS

A few routes in India currently have Diesel multiple unit service. Depending on the transmission system they are classified as DEMU (diesel-electric transmission) or DHMU (diesel-hydraulic transmission). There are diesel railcar service in a few places known as 'railbus'.

 

DC ELECTRIC TRACTION

Note: These locomotives are no longer used, or were used only in sections around and in Mumbai which is the only location in India still or was using DC traction. The power operated is 1500V DC.

 

MIXED TYPE LOCOMOTIVES

- WCM 1 (First electric locomotives with the now familiar Co-Co wheel arrangement to be used in India. Seven built by English Electric at Vulcan Foundry in 1954–55. 3700 hp)

- WCM 2 (Out of service. Co-Co bogies. 120 kmph speed. 12 Built by Vulcan Foundry between 1956-57. Modified by RDSO. 3120 hp)

- WCM 3 (3600 hp. Co-Co – Used in Kolkata, then transferred to Mumbai; three built by Hitachi in 1958. Out of service. Max speed 120kmph)

- WCM 4 (4000 hp. Co-Co – seven built by Hitachi in 1960. Out of service. Rated at 120 kmph. Meant for freight. 31300kgf tractive effort)

- WCM 5 (Built by Chittaranjan locomotive works to RDSO's design specifications. Auxiliaries by Westinghouse and North Boyce. Built in 1962, these are India's first indigenously designed DC electric locomotives. The first was named Lokamanya after the freedom fighter Bal Gangadhar Tilak. 3700 hp Co-Co.)

- WCM 6 (5000 hp, only two were built in 1995 by CLW. Now converted to run on AC power. 105kmph initially now restricted to 65kmph )

 

PASSENGER LOCOMOTIVES

- WCP 1, WCP 2 (GIPR EA/1 and EA/2. Historically very important locomotives as these are the very first electric loco to be used in India. The first locomotive was named as Sir Roger Lumley and is currently preserved in the National Rail Museum, New Delhi. Swiss Locomotive and Machine Works (SLM) built one in 1928 and 21 in 1930 (WCP1), and one in 1938 (WCP2). 1′Co2′ wheel arrangement; 2160 hp)

- WCP 3, WCP 4 (GIPR EB/1 and EC/1, these are also among the earliest electric locos used in India. One of each class built by Hawthorn Leslie and Company in 1928; 2′Co2′ wheel arrangement.)

 

GOODS LOCOMOTIVES

- WCG 1 (GIPR EF/1. These are Swiss crocodile locomotives imported in 1928 from Swiss Locomotive and Machine Works (ten) and Vulcan Foundry (30). These are among the earliest electric locos used in India. The first locomotive was named as Sir Leslie Wilson and is currently preserved in the National Rail Museum, New Delhi. 2600–2950 hp)

- WCG 2 (Designed by Chittaranjan locomotive works in 1970. 57 built until 1977. 4200 hp. Max speed 90kmph. 35600kgf tractive effort. Were used extensively around the year 2000 when Mumbai was out of traction power. Out of service.

 

ELECTRIC MULTIPLE UNITS

WCU 1 to WCU 15 (Used in Mumbai region only)

 

AC ELECTRIC TRACTION

The 25 kV AC system with overhead lines is used throughout the rest of the country.

 

MIXED TYPE LOCOMOTIVES

- WAM 1 (Among the first AC electric locomotives used in India. Introduced in 1959. Now out of service. 3010 hp. Max speed 112kmph)

- WAM 2 (Out of service. Bo-Bo Bogies. Max speed 112 kmph. Built by Mitsubishi between 1960-64. 2910 hp. 25240kgf tractive effort)

- WAM 3 (Out of service. Bo-Bo bogies. Same as WAM 2 except for reverse pantographs. Built in 1964 by Mitsubishi)

- WAM 4 (Indigenously designed by Chittaranjan Locomotive Works in 1970. Highly powerful class. One of the most successful locomotives in India. 3850 hp)

- WAM 4B, WAM 4P, WAM 4PD, WAM 4PR, WAM 4PDBHS, WAM 46PD, WAM 4PDB3P, WAM 42S3P, WAM 46PDBHS, WAM 46PE, WAM 4G, WAM 4H and WAM 4E (Technical variants of WAM4)

 

PASSENGER LOCOMOTIVES

- WAP 1 (Designed by Chittaranjan locomotive works in 1980 for the Kolkata-Delhi Rajdhani Express. A very successful class. 3900 hp. Max speed 130 kmph).

- WAP 2 (Decommissioned in the late 1980s. Similar to WAM2 & 3. 4 built. Also had Flexicoil Mark-ll bogies. 2910 hp. Only 4 units built)

- WAP 3 (Rebuilt to WAP-1. Similar to WAP-1. Approximated speed of 160 kmph restricted to 145 kmph. 5 Built since 1987.)

- WAP 4 (Upgraded from WAP 1 for higher loads by Chittaranjan locomotive works in 1994. One of the most successful locomotives in India. Very powerful class. 5000 hp. Tested for Max speed 160 kmph. Restricted to 140 kmph)

- WAP 5 (Imported in 1995 from Switzerland and used on premier express trains. 5450 hp. Max speed tested for 184 kmph. Restricted to 160 kmph)

- WAP 6 (Most of them rebuilt to WAP-4. Max speed 170 kmph. 16 built by Chittaranjan Locomotive Works in 1997. 5000 hp.)

- WAP 7 (Same design as WAG 9 with modified gear ratio. Highly powerful class. 6000 hp. Tested for 155 kmph. Restricted to 140 kmph. Built by CLW since 2000)

 

GOODS LOCOMOTIVES

- WAG 1 (Out of service after 2002. B-B bogies. Max speed 80 km/h. Built by several builders between 1963-66. 2930 hp. First freight dedicated locomotive under AC traction)

- WAG 1S (Technical variants of WAG 1)

- WAG 2 ( Out of service. B-B bogies. Max speed 80 km/h. WAP 2 are technical variants of WAG 2. Built by several builders between 1964-65. 3450 hp)

- WAG 3 (Out of service. Monomotor bogies. Max speed 80 km/h. 10 Built in 1965. 3590 hp. 30000 kgf tractive effort. Above 6000 tons hauling capacity up to 70 km/h on level track)

- WAG 3A (Technical variant of WAG 3)

- WAG 4 (Out of service. B-B bogies. Max speed 80 km/h. Technical variants are WAG 4A,D. Built by Chittaranjan Locomotive Works between 1966-71. 3590 hp)

- WAG 5 (The most successful electric locomotives in India. Designed by Chittaranjan locomotive works in 1984. More than 1100 were made. 3850 hp)

(WAG 5A, WAG 5B, WAG 5D, WAG 5E, WAG 5H, WAG 5HA, WAG 5HB, WAG 5HD, WAG 5HE, WAG 5PE, WAG 5RH - Technical variants of WAG 5)

- WAG 6A (Imported from Allmänna Svenska Elektriska Aktiebolaget (ASEA). 6110 hp. Max speed 100 km/h. Bo-Bo-Bo Bogies. The most powerful non-3 phase AC electric locomotives in India)

- WAG 6B, WAG 6C (Variants of WAG 3A. Built by Hitachi in 1988. Regenerative brakes. 44950 kgf tractive effort. Upgradeable to 160 km/h)

- WAG 7 (Very successful class. Built by CLW and BHEL. 5350 hp. 41000kgf. Max speed 100kmph. 123tons in weight)

- WAG 7H (Technical variant of WAG7 with 132tons of weight and 45000kgf of tractive effort. Two units built)

- WAG 8 (Out of service. Similar in looks to WCAM 2 and technically to WCAM 3. Built by BHEL in 1998. Experimental class)

- WAG 9 (Currently the most powerful class in India, rated at 6350 hp. Same design as WAP 7 with modified gear ratio. Designed by Adtranz, Switzerland.)

(WAG 9H, WAG9i and WAG9Hi - Technical variants of WAG9. WAG9H is the heavier version. WAG9i is the one fitted with IGBT traction converters. WAG9Hi is probably a combination of WAG9H and WAG9i)

 

ELECTRIC MULTIPLE UNITS

- WAU 1 to WAU 4

 

DUAL (both AC and DC) traction

Main article: Indian Railways WCAM class

 

Note: These locomotives are used only in sections around Mumbai. They can run under AC traction too. The main purpose behind the manufacture of these type of locomotives was to provide transportation in and out Mumbai area without changing the engine.

 

-MIXED TYPE LOCOMOTIVES

WCAM 1 (Designed by Chittaranjan Locomotive works, total 53 were built and supplied between 1975-79. All owned by Western Railway) Only locomotive currently used having reverse pantographs. Now decommissioned.

- WCAM 2/2P (Designed by Bharat Heavy Electricals Limited, total 20 were built and supplied between 1995-96. Tested 135kmph under AC)

- WCAM 3 (50 Designed by Bharat Heavy Electricals Limited. 4600 hp under DC traction and 5000 hp under AC traction. All owned by Central Railway. Most widely used loco in the Mumbai Pune section).

 

GOODS LOCOMOTIVES

- WCAG 1 (12 Designed by Bharat heavy electricals limited between 1999-2000. Similar to the WCAM 3 in outer structure. 4600 hp under DC traction and 5000 hp under AC traction.

 

Note: There is no dedicated dual current passenger locomotive in India, but in Mumbai area, there are some EMUs which can run under dual traction.

 

BATTERY TRACTION

In 1927, English Electric and WBC built 2 shunters for use in yards at Bombay(now Mumbai). They had Bo-Bo bogies. Rated at 240 hp. They weighed 58 tons.

 

METRE GAUGE (3 ft 3⅜ in) LOCOMOTIVES USED IN INDIA

STEAM TRACTION

 

COMPANY TYPES

Nilgiri Mountain Railway X class

 

BESA DESIGNS

Passenger 4-6-0

Mixed-traffic 4-6-0

Goods 4-8-0

Tank 2-6-2T

 

WARTIME DESIGNS

Class MAWD – 2-8-2 USATC S118 Class

Class MWGX – 4-6-2+2-6-4 Garratt

 

INDIAN RAILWAY STADARDS DESIGNS

- Class YA – 4-6-2 with 9-ton axleload (none built);

- Class YB – 4-6-2 with 10-ton axleload

- Class YC – 4-6-2 with 12-ton axleload

- Class YD – 2-8-2 with 10-ton axleload

- Class YE – 2-8-2 with 12-ton axleload (none built)

- Class YF – 0-6-2; later examples were 2-6-2

- Class YK – 2-6-0 version of the 2-6-2 YF

- Class YL – 2-6-2

- Class YT – light 0-4-2T

- Class YG – 2-8-2 goods locomotive

- Class YP – 4-6-2 passenger locomotive

 

DIESEL TRACTION (MIXED TYPE ONLY)

- YDM 1 - The first diesel locomotives on 1,000 mm (3 ft 3 3⁄8 in) metre gauge. Imported from Britain in 1955. They were 20 in number. Mainly found on Western Railway. Phased out by the 1990s.

- YDM 2 - Originally used on Southern Railway. Built by CLW. Only 41 in numbers. Mostly used for shunting purposes or to pull short passenger trains.

- YDM 3 - Produced by GM-EMD in 1961-62. (Model no. GA-12). Mainly found near Ahmedabad. (Sabarmati Loco Shed).

- YDM 4 - Most widely and successful diesel locomotive used in India on meter gauge. 550 units produced by DLW (Varanasi) and Alco. Found in Mhow, Sabarmati Phulera, Lumding, Coonoor, Villupuram, Izatnagar Sheds and many other sheds.

- YDM 4A - The 99 locos supplied by Montreal Locomotive Works in 1964-69.

- YDM 5 - Same specifications as of YDM-3 but an addition of 10 t (9.8 long tons; 11.0 short tons) weight to the axles. Supplied by GM-EMD in 1964.

 

Currently all diesel locomotives except YDM-4 and YDM-4A are supposed to be withdrawn from service.

 

ELECTRIC TRACTION

ELECTRIC LOCOMOTIVES

- YCG 1 (These locomotives are among the earliest electric locomotives in India. This class was imported to serve the Chennai area in the early 1930s.)

- YAM 1 (These locomotives were in service until 2002 around Chennai. 1740 hp). 20 were Imported from Japan

 

ELECTRIC MULTIPLE UNITS

- YAU class (First EMU service in India. Introduced in the 1920s in Chennai area).

 

NARROW GAUGE (2 ft 6 in and 2 ft) LOCOMOTIVES USED IN INDIA

STEAM TRACTION (2 ft 6 in)

 

COMPANY DESIGNS

- Barsi Light Railway class A – 0-8-4T

- Barsi Light Railway class B – 4-8-4T

- Barsi Light Railway class C – 0-6-0ST

- Barsi Light Railway class D – 0-4-0

- Barsi Light Railway class E – Sentinel railcars

- Barsi Light Railway class F – 2-8-2

- Barsi Light Railway class G – 4-6-4

 

INDIAN RAILWAY STANDARDS DESIGNS

- Class ZA – 2-6-2 with 4.5-ton axleload (none built);

- Class ZB – 2-6-2 with 6-ton axleload;

- Class ZC – 2-8-2 with 6-ton axleload (none built);

- Class ZD – 4-6-2 with 8-ton axleload (none built);

- Class ZE – 2-8-2 with 8-ton axleload;

- Class ZF – 2-6-2T with 8-ton axleload

 

STEAM TRACTION (2 ft)

COMPANY DESIGNS

DARJEELING HIMALAYAN RAILWAY

- DHR A Class – 0-4-0WT;

- DHR B Class – 0-4-0ST; 777 and 778 preserved

- DHR C Class – 4-6-2

- DHR D Class – 0-4-0+0-4-0 Garratt

 

INDIAN RAILWAY STANDARDS DESIGNS

- QA – 2-6-2 with 4.5-ton axleload (none built).

- QB – 2-6-2 with 6-ton axleload (none built);

- QC – 2-8-2 with 6-ton axleload (none built).

 

DIESEL TRACTION (2 ft 6 in) (mixed type only)

- ZDM 1 (Available at Gwalior Junction)

- ZDM 2

- ZDM 3 (Later rebuilt as ZDM 4C class)

- ZDM 4 (Available at Gwalior Junction)

- ZDM 4A

- ZDM 4B, 4C, 4D

- ZDM 5

 

DIESEL TRACTION (2 ft) (mixed type only)

- NDM-1 - for the Matheran Hill Railway

- NDM-5 - for The Maharaja Railways of India

- NDM-6 – this class is currently in operation on the Darjeeling Himalayan Railway and the Matheran Hill Railway

 

BATTERY TRACTION

- NBM 1 – designed by BHEL in 1987; powered by battery.

 

Note: All narrow gauge locomotives in India are mixed type locomotives.

 

Note: There is no narrow gauge electric locomotive in India.

 

WIKIPEDIA

PORT ORCHARD, Wash. (Oct. 5, 2016) USS Nimitz (CVN 68) transits Sinclair Inlet as it gets underway from Puget Sound Naval Shipyard for the first time in 21 months. The underway signifies the conclusion of the ship’s extended planned incremental availability. (U.S. Navy photo by Petty Officer 2nd Class Vaughan Dill/Released)

E acabei incrementando ainda mais esse esmaltinho lindo da Ste com uma coberturinha holo. Pra matar a vontade de holográfico pastel. O efeito ficou bem sutil e delicado, gostei bastante. Na luz artificial o efeito ficou mais evidente, mas não consegui fotografar. E esse TC não deixa o esmalte de base acinzentado, ponto pra ele.

Presentinho certeiro da Eli!!!

A theory of the function of prime numbers in spiral formation and in life in general.

 

The Spiral of Life is a number spiral which forms a cross in the form of a vertical and horizontal axis of numbers. Emerging from a set of alignments 1, 2, and 3 enter like Magi bearing gifts.

 

Before I continue, I should explain that I am describing a 3-dimensional object in largely two dimensions - as a tetraskele of overlapping spirals - so there is some distortion in this simplified description. The graphic highlights the sequences involved in expansion and does not layout an exact physical pathway. Alignments along the south column extend to the finial circle and give rise to a new spiral whose West arm values retrace the steps of the parent spiral's south column. In other words, West describes where the new spiral emerges from the south column after the parent spiral has been rotated 90 degrees clockwise.

 

Viewed in three dimensions, 1, 2 and 3 enter from above as a stem joins an apple; 2 and 3 are so tightly bound they share virtually Identical shaped paths like those of twin stars. Because they share the same location and shape at the spiral center their values are combined to 5 only when considering the spiral's southbound formula for once applied at the start it is felt at every subsequent location. 3 and 4 are the respective centered numbers of the column and the crossbar. They exist one above the other with the interval path of 4 shaped like a near circular spiral staircase.

 

Like the journey of the Magi, the path on which they embark requires them to return along a different route to avoid a collision with the powers that be. Two essential paths emerge. The first path is the spiraling set of natural numbers which may either expand as a disc or move along as a helix.

 

The second path is the straight sequence on a Southern heading which gives birth to the spiraling natural numbers; she is a master chef and more formulaic than the flowing set she spawns. This straight path can be described using two recursive sequences - the Golden Egg sequence and the Fibonacci sequence. Upon reaching the finial circle, her offspring's arm returns in the direction she came but on a different route. The labyrinth offers a visual aid if we can imagine the straight path to her center being connected to a return path at a different elevation. Those are the two ways of describing the paths: one as rotation, and the other as ray. Taken altogether, what appears from the West are the stepping stones to a spiral which begins as a tight central ring and emerges with two more rings before finishing off with the Finial Circle.

 

Spiraling from the center loop at 3 and 4, a pattern of growth is reached in each compass direction by incrementally summing two terms along each axis and adding one. It should be noted that when the formula x + y + 1 = z is reached in one axis it is guaranteed to exist in the other three axes. As a result, four rays of whole number sequences extend outwards from center. Multiply this equation by three and twelve alternating radii of whole number sequences result. (For a look at the six-fold symmetry resulting from this model, explore the purple image "The Pillars of the Holy Cross" in this photo set.)

 

From this arrangement, a Fibonacci sequence (times six) emerges alongside the South column: 6, 12, 18, 30, 48, 78....

 

The Golden Egg Sequence defines the Spiral of Life's path of origin. She is born from the West near the spiral's center and returns Westward (on a different plane) to 88 at the Finial Circle.

 

The formula for the spiral's path of origin, the Golden Egg Sequence, begins with two zeros or "goose eggs" (0 + 0 + 1 = 1 ). (0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88...) The rays headed East and West form the composite crossbar of Spiral 935. The North and South constitute her prime column. In each compass direction the rays follow the formula x + y + 1 = z.

 

Prime numbers dominate the vertical column between finials 77 and 99. Composite numbers dominate the horizontal crossbar between finials 88 and 112. 7 is the only prime on the crossbar and 9 is the sole composite on the column. Their product (63) marks the start of the second half of the Spiral of Life; 1 to 62 marks her first half. Altogether the two halves underscore a rhythm of 124 intervals punctuated by sets of 76 and 48.

 

The South Column marks the location of key triple composites 77 and 125. The spiral gives rise to successive generations born from a unique relationship among the cross numbers leading to a specific location of regeneration as the South Column passes through the Finial Circle. Triple composite 125 marks this interval; it is an odd composite integer which when divided into two parts separated by one, yields an even part and a composite odd part. Therefore, all three properties - her obvious value and her two parts when separated by one, are all composite. Even-odds are odd numbers which can be divided into an even number and the same even number plus one. The first several triple composites among the even-odds are as follows:

 

49 = 24 + 25

65 = 32 + 33

69 = 34 + 35

77 = 38 + 39

125* = 62 + 63

 

Of these triple composites only 69, 77 and 125 are cross numbers. They are distinguishable by an additional composite feature; the sum of their respective digits are composite since 6 + 9 = 15; 7 + 7 = 14; and 1 + 2 + 5 = 8. Because they possess four composite qualities it seems appropriate to shorten their name from cross-number-triple composites to tetra-composites. (Use Ctrl F "framework" to read more about the triple composites.)

 

* 125 has the property of being in position 1 of 124 in a second generation spiral. A new spiral emerges 90 degrees offset from the previous one. Thus 496 intervals are required to complete one full gyration of the Spiral of Life's wave motion viewed in cross-section as a tetraskele of overlapping spirals.

 

From 77 to 125 the spire known as the Finial Circle has 48 intervals. Presuming a circle (in cross-section) is formed by this arrangement - for instance, by particles arriving at an orbit - there would be a very slight shift to the left of cross and crossbar with the South interval 77 remaining stable. 101 would emerge as the North column finial and 89 and 113 would mark the new East and West crossbar finials. 77 and 125 would emerge one above the other. The point of this is to demonstrate that if we sum the values of the intervals which form two distinct religious symbols - the Star of David, and the Cross of Lorraine - (particularly as shown on the tampion of the submarine Rubis) we find their values both equal 707. In fact, any two bars horizontally crossing the circle at any height will satisfy this result. I include both 77 and 125 in both calculations of 707. A cross with a single crossbar (at any height) will produce a value of 505. The trinity of the sole finial primes 89, 101, and 113 sum to 303.

 

I'd like to stress first and foremost that this spiral is meant to demonstrate mathematical relationships, not mere curiosities. However, if this model can lead to increased pattern recognition then I would be remiss not to point out areas of similitude with real-world objects and symbols. Furthermore, like viewing celebrity look alikes, it may not only provide entertainment but serve to improve memory and perception skills.

 

Mathematics also stands to benefit from this model particularly in the area of sums. The sum of 1 - 100 was a problem which the young Carl Friedrich Gauss found a solution to by adding 1 to 100, then dividing 100 by 2 and finally multiplying 101 x 50 to reach 5050. In the spiral we find this sum is equal to the sum of the finial circle plus 101. Finial circle 77 ~ 125 = 4949 + North finial 101 = 5050. It is also the value of the cross (505) x 10. When Descartes invented the Cartesian coordinate system it opened a new chapter in the history of mathematics. The Spiral of Life is poised to do the same.

 

In ascribing values to symmetric shapes like the cross or the Star of David the end values not only come together but exist one above the other. I refer to this type of sum as a k-sum, or knotted sum since the ends are not unlaced but overlap to form a node, or knot.

 

Are the k-sums of symmetrical points along a spire mathematically relevant? I would argue they are. When we count our fingers, for example, we do not count every joint making up our fingers. If our ancestors had considered the radius and ulna as the two parts of a node at our wrists then they may have counted to 7 using each hand. for a total of 14, the sum of which (1 - 14) would be 3 x 5 x 7 or 77 in base 14. We could easily have ended up with a base 14 system! And yet when you examine your hand, you soon realize all the five digits extend through the palm to form an aligned node of parts, most especially the thumb and pinky.

 

The good news is that considering this model in a different base system would have little but cosmetic impact. A key position marker of the Finial Circle, for instance, does not rely on the "prettiness" of having double digits but in reaching the same ratio of 8/13 in the un-shifted spiral model at each end of the crossbar in relation to the next spire (88/143 and 112/182). Furthermore all the key characteristics of a number such as primality or compositeness remain despite their conversion to any base system. In other words, the numbers representing the Spiral of Life's intervals might look different in a new base but their function and properties would remain exactly the same.

 

Goose eggs and knotted sums. Later in this essay I will be describing the goose eggs as the points of equivalence along the south column where it meets the Finial Circle. I have explained the concept of knotted sums where the ends of sums form a knot or a node along the South column. I have pointed out that if we add 101 to the sum of the Finial Circle (from 77 ~ 125) it equals the sum of 1 ~ 100. However I have not yet given an explanation as to how adding 101 to the sum of the Finial Circle may occur. From a symmetric standpoint it stands to reason if one considers 77/125 as a knot whose sum totals to 202 then an opposite node of a circle connecting them would have the same sum value, 202. We already find 101 at the North but where specifically might an additional 101 come from? One possibility is that it might come from a shared electron path, or another spiral model up-side down in orientation to the first thereby creating a situation where the sum of 1 ~ 100 would be equal to the double-knotted sum of the Finial Circle (sum of 77 ~ 125 plus 101).

 

Introducing the Pythagorean Localization - a Method for Justifying Migration of Cross bar Finial Values to 89 and 113 from 88 and 112.

 

(This method is also called the Pythagorean Shift.) Below we consider column values expressed as an interval of 3 (for example: 36~38 or 37 x 3). Summing two, stacked, column-centered, three-interval arcs and dividing by 2 identifies matches (shown in parenthesis) with the cross bar values on the right. Averaging the localized values with the spiral values leads to the precise adjustment (to 89 and 113) at the exact moments where the cross bar meets the Finial Circle.

 

(37 x 3 + 23 x 3) / 2 = 90 -- 88 (average 89)

(23 x 3 + 13 x 3) / 2 = (54) -- 54 match

(13 x 3 + 9 x 3) / 2 = (33) --- 33 match

(9 x 3 + 3 x 3) / 2 = 18 -----------

(3 x 3 + 5 x 3) / 2 = (12) ------ sum of 3~5; product of center knot 3 & 4.

(5 x 3 + 11 x 3) / 2 = 24 -----------

(11 x 3 + 17 x 3) / 2 = (42) ---- 42 match

(17 x 3 + 29 x 3) / 2 = (69) -- 69 match

(29 x 3 + 47 x 3) / 2 = 114 ----112 (average 113)

 

54, 33 and 42, 69 are the symmetric cross bar values leading to the Finial Circle. I have also marked the value 12 which in this chart lies midway between the four intersecting crossbar values. Perhaps not coincidentally 12 is also the value of the product of column 3 and crossbar 4, the knot at the center of the spiral. It is also the sum of the first three cross values: 3, 4 and 5 - a Pythagorean triple. The values separating 33, 42, 54, and 69 are 9, 12, and 15 also a Pythagorean triple.

 

Holy Pythagoras!

 

Mapping out Pythagorean triplets on the Spiral of Life produces either right triangles or straight lines. Here are some examples of right triangles:

 

3, 4*, 5

5, 12*, 13

7, 24*, 25

8, 15*, 17

9, 40*, 41

11, 60*, 61

12, 35*, 37

13, 84, 85

15, 112*, 113

33, 56*, 75

36, 77, 85*

39, 80*, 89

48*, 55, 73

 

The Pythagorean triplet values are mapped out such that each value represents the location of an angle formed by a triangle connecting the values. An asterisk is used to mark the location of the right angle. We find that most Pythagorean triplets produce an additional right triangle but of different dimensions. In the case of mapping spiral values 8, 15*, and 17 on the Spiral of Life the resulting shape is a 3-4-5 right triangle. Is this an illusion based on a differing perspective? These values promise to be very useful for bringing the shape of the Spiral of Life into clearer focus.

 

For example the cross values seem to indicate nodes and near-circular orbits at the spiral center. 1|2|3|4, 5|11, 7|12, 9|13, and 17|29 are locations where overlap may occur if we consider the three circular knotted spires: one at 1, 2, 3, 4, 5; another at 9, 10, 11, 12, 13 and the third at 17, 20, 23, 26, 29. One Pythagorean triplet - 20, 21, and 29 stands out because it does not appear to form a square triangle on a flattened out Spiral of Life. Two explanations emerge: the shape of the spire at that location might be different as highly indicated by the cross numbers; or not every Pythagorean triplet forms a right triangle on the Spiral of Life.

 

The justification for the Pythagorean Localization lies in the circular spires and nodes which appear at spiral center. It was a surprise to find the values from 33 to 69 were unaffected by considering the 3-interval column-centered arcs where the overlapping nodes appear. The localization is so-named because it preserves the Pythagorean Triple between intervals 33 and 69.

 

Passion Flower

 

Comparing the Spiral of Life to the string-petaled Passion Flower: the flower has an anchor petal where the south column meets the Finial Circle at 77 and 125 marking the highly composite zone of the spiral. Upon inspection of the flower (in a method and location described below) three grooves may be observed: north, one appears between two petals; east, marking an offset location of the East petal; and west where a notch exactly bifurcates one petal. The notches exist in only 3 of the 4 compass directions while a unique "anchor" petal exists South where there is no visible groove. I will demonstrate mathematically how the south column is a special location of The Holy Grail Spiral of Life, capable of blending, birthing, and other neat stuff. It is the most likely location for a central anchor petal to emerge. On the passion flower it is one of five green leafy petals and is the sole petal which has what can best be described as the flower's eyelash. It is easy to overlook because the eyelash structure is surrounded by a full ring of lashes which we may call her brow. This feature may only be seen after cutting the stem from bottom and clipping the stamen on top; applying pressure to the cut stem from the bottom will invert the bulb revealing the eyelash.

 

A memorable moment of David LaPoint's Primer Fields occurs when he presses a metallic Ping-Pong ball through the hole in his magnetic bowl causing it to shoot out the other end. It was a surprise to find that the flower's hard stamen popped in and out in a similar manner but not completely unexpected as the mathematics of the cross indicates strong congruence when values near center are flipped. Adjacent petals along the horizontal crossbar form a strong triangle. The flower's axis runs above the right petal's midpoint (bottom-view) which corresponds to the gradual counterclockwise shift in Spiral 935's axes with each generation of 124 intervals. Two more petals are located symmetrically on each side of the North Column making a total of five symmetric petals in a strong triangular base. Of course, to view the leafy petals, one must turn the blossom upside-down since her top-view is dominated by a profusion of white and purple strings numbering 88.

 

The Goose that laid the Golden Egg

 

The Spiral of Life's path of origin begins with two goose eggs. These goose eggs represent key points of equivalence. And what we find is that from these two goose eggs emerges a spiral. And from this spiral a column of primes. And on this column sets of equivalent points emerge - one highly overlapping pair at 17 and 23 and a second mature, divided set at 47 and 77.

 

How it works: The sets may be thought of as stages of an emerging wave where division occurs as expansion unfolds. The first sets are immature and overlap considerably and don't precisely align along the column but the final sets are where alignment on the south column occurs and it's here we find our goose eggs. The sets share but one number - 47. Let's take a closer look at these sets and The Rule of Five Cross Numbers.

 

High Five: The Rule of Five Cross Numbers

 

Each of the final two sets along the south column share one mathematical property: The sum of four consecutive cross numbers is equal to the fifth consecutive cross number times three. This is the Rule of Five Cross Numbers where the Cross Numbers in question represent the five digits of a hand. The sum of four consecutive cross values is represented by the four fingers and is equal to the thumb - or fifth cross value - times three. In fact, the sum of the length of all four fingers from tip to knuckle matches the length of one's entire thumb times three.

 

Also try this. Use your hands to separate the 10 digits into two groups, the low five and the high five. First count the low five then count only the four fingers of the high five, "6, 7, 8, and 9." Now add these four numbers together and divide by three - the result is 10 which satisfies the Rule of Five Cross Numbers, As an expression of a successful alignment we might imagine the satisfying of the rule of five - the appearance of the goose eggs - as being celebrated with a "thumbs up" or a "high five". The sets demonstrate how shape is maintained and copied as expansion unfolds uniformly along a central column. The model itself may shed light on how quantum science influences everything - from our language to our biology.

 

An Important Organizing Principle

 

The location where the Rule of Five Cross Numbers applies among the cross values is marked by start and end values along the prime column. Off-column matches of the rule are not shown.

 

(11 + 12 + 13 + 15 = 17 x 3) South Column

(23 + 26 + 29 + 33 = 37 x 3) North Column

 

The final two sets leading to the Finial Circle are the first contiguous sets of the column having starting points of 29 and 47. This contiguity will continue forever beyond the Finial Circle if and only if one condition is met which we will discuss shortly. At this stage, it is worth noting how proportion is maintained as expansion drives the process of individuation.

 

(29 + 33 + 37 + 42 = 47 x 3) South Column

(47 + 54 + 61 + 69 = 77 x 3) South Column

 

This rule of the Cross Numbers is also called the Rule of Five Executives and it highlights points of equivalence directed in a path along the south column as she crosses through the Finial Circle. At 47 the sum of the preceding 4 cross values is equal to the value of 47 repeated 3 times. That's the first point of equivalence or "goose egg". And the same holds true for 77 since 47 + 54 + 61 + 69 = 77 x 3 which brings us to the second goose egg after which a new spiral emerges with a value of 1 at location 125.

 

Additional observations: The values of the new spiral along the south column do not replace the south column values from 125 onward; they exist on a different plane. However the regenerating or motion part of spiral 935 always takes this path. Therefore 124 times the number of generations passed is added to each spiral value. The spiral values which emerge South at location 125 follow the Golden Egg Sequence 1, 2, 4... Most interestingly, subtracting the terms of the Golden Egg Sequence (starting with 1) from the south column values beyond the Finial Circle (from 125) results in a sequence which satisfies the Rule of Five Executives thereafter to infinity. When I first observed this, it was a thrilling moment. I had already known about the "goose eggs" which gave rise to the Golden Egg Sequence; I had known about the smooth prime ring at the Finial Circle (Cntrl F "distribution") broken only by a highly composite opening at 77 / 125. The evidence pointing to the birth of a new Golden Egg Sequence was gathering momentum.

 

The center of the new spiral emerges from above the finial circle's 77th interval as interval 125 comes very close to full circle. Under certain circumstances as when rotations come together at this location a spin is produced and a new spiral emerges. One wave motion of The Spiral of Life requires four generations. Here what I am describing is a basic, ironed-out representation of a cross-section. The kinds of forms that she can take range from the plate to the cone to the cylinder to the Mexican hat and as far as one's imagination can conceive. It is a symbolic representation which nevertheless highlights - by means of measure or sequence - mathematical and physical symmetries. What kind of physical reality does it describe? Rotation.

 

The Spiral of Life gives rise to another ray of origin (and a new spiral) starting from the South column's 125 and this process repeats ad infinitum creating a gyration or wave motion observed in cross-section. In number theory these progressive terms along the axes are called Lucas numbers and are similar to the Fibonacci Sequence with the exception being that a set amount is also added to the previous term. In the illustration, this value is '1'; however, since Spiral-935 is a dynamic model, values other than one will also be explored particularly as the point of origin ebbs and wanes. Spiral 935 is a significant breakthrough in our understanding of life's origin and sheds light on the occurence of tantalizing patterns among the prime numbers. Within this model, symmetry after symmetry ties intimately with the properties of the integers themselves to reveal not only an architecture of all natural numbers but an exceptional understanding of the concepts of zero and one. I invite you to bookmark this page as I will be adding and editing it regularly. The organization of this essay is somewhat spiral. I have placed newer information up top and pushed back previous findings. So you may find areas which repeat or that have been changed.

 

Vertically, there are eleven numbers between 77 and 99 on the above column and ten are prime. The ten prime numbers I refer to as cross primes. The remaining number, 9 is a cross prime square. The ten cross primes and 1 square form pairs opposite each other on the column with the exception of center 3 at the core of the spiral's engine.. The first cross pair are 5, 9 followed by 11, 13, and 17, 23 and 29, 37; finishing with 47, 61. Numbers 77 and 99 I refer to as column finials. 77 is a biprime and 99 is a square prime repdigit which mark the end of the sequence of cross primes. When the column pairs are set as fractions or divisors are being multiplied the finial pair prove themselves to be a very useful set.

 

Horizontally, there exists an eleventh cross prime on Spiral 935's crossbar between finials 88 and 112. It is number 7 and lies just to the left of column center 3. The crossbar has her own centered number - 4 - which one may visualize as being very close to column center 3. Seven is the only prime number on the crossbar. For a more complete understanding of how Spiral-935 evolved please explore Spiral-31 and other images within this photoset.

 

The engine driving Spiral-935 needs priming and an energy source To get it started we simply add the value of 2 to the centered 3 to give it a total value of 5. Then we put the formula to work.

 

The formula is x + y + 1 = z.

 

x, y, and z are 3 numbers on a column segment ascending in value with x equal to or nearest to center 3.

 

Spiral-935 takes its shape from a centered 3-number column segment having values of 9, 3, and 5 from top to bottom - notated as 9-3-5. Starting at the center number 3, we can calculate the next number set (z) in the column using the formula since we are given the initial values for x and y in both directions, namely, 3, 9 moving upward and 3(+2), 5 moving downward.. .

 

moving down the column from center:

(2) +3 + 5 + 1 = 11

5 + 11 + 1 = 17

11 + 17 + 1 = 29

17 + 29 + 1 = 47

29 + 47+ 1 = 77

 

moving up the column from center:

3 + 9 + 1 = 13

9 + 13 + 1 = 23

13 + 23 + 1 = 37

23 + 37 + 1 = 61

37 + 61 + 1 = 99

 

how to create Spiral 935 from zero

 

It is also possible to create Spiral 935 using the formula by starting with '0' for values x and y. This method establishes values for Spiral 935's horizontal axis, or crossbar starting from center and extending right when spiraling counterclockwise, the preferred viewpoint for reasons explained at the end of this essay; (The illustration above spirals clockwise.) Using the formula with starting values of x and y at zero, the progressive values attained are 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, etc. I refer to this series created by the spiral formula, as the Golden Egg sequence as it begins with two "goose eggs" one for x, the other for y.

 

0 + 0 (+1) = 1

0 + 1 (+1) = 2

1 + 2 (+1) = 4

2 + 4 (+1) = 7

.....

Zero Origin relates to the model for "priming" the spiral by adding '2' to the centered 3. The spiral owes her start to a force of attraction between two objects which combine regularly with three to reach a point of equivalence (with five) allowing the spiral to form. The zero/zero start of x and y is thus reflected in the priming formula of (3+2) + 5 + 1 = 11 at column center. The concept of equivalence lies at the heart of Zero. The Fibonacci sequence starts with two equivalent numbers, 1 and 1. In Spiral 935 many Fibonacci sequences are found including the double eleven sequence beginning with 11 and 11

 

The Golden Key

 

Starting from center ANY three consecutive numbers on Spiral 935's column or crossbar may be reduced to one by subtracting the smallest two numbers from the largest. The symmetry of Spiral 935 reaches to the core and through it. Following the formula in reverse reveals other sequences such as the Golden Key sequence linked to the North Column.

 

From Cross to The Golden Key

 

South : 11 - 05 - 01 = 05 ------05 + 05 + 01 = 11-----05 + 11 + 01 = 17

+East : 10 - 04 - 01 = 05 ----->04 + 05 + 01 = 10-----05 + 10 + 01 = 16-----10 + 16 + 01 = 27,

North : 09 - 03 - 01 = 05 ----->03 + 05 + 01 = 09 ---- 05 + 09 + 01 = 15----09 + 15 + 01 = 25<

+West : 07 - 04 - 01 = 02 ----- 04 + 02 + 01 = 07-----02 + 07 + 01 = 10

South : 05 - 03 - 01 = 01------- 03 + 01 + 01 = 05-----01 + 05 + 01 = 07

 

The formula creating the column and crossbar loops through the core to create new sequences intersecting but not on the cross. Associated with the North Column and moving from 9-3-5-9- to 15 the Golden Key sequence forms the triangular shape of a key before straightening and dividing the Finial Circle at her golden mean. The sequence of the Golden Key is

 

9, 3, 5, 9, 15. 25, 41, 67, 109, 177, 287, 465, 753, 1219...

 

At 15 the key sequence makes her final appearance on the cross and at 25 diverges, taking a course close to but moving gradually away from the crossbar. At 109 the hidden sequence intersects the Finial Circle at 111 degrees, dividing the spiral arm exactly at 16 / 26ths.

 

125 - 109 = 16

125 - 099 = 26

-------------->16 / 26

 

This is the precise ratio (0.615384 or 8/13) both crossbar finials reach in relation to their larger cross number. (88/143 and 112/182) This fraction may be expressed as a ratio of the sum of the first two cross numbers + 1 divided by the sum of the first three cross numbers + 1. An interesting relationship with between the golden finial fractions of the crossbar and column has been observed. Subtracting the crossbar finial's 8/13 from the south column finial's 77/125 (.616) and multiplying by 1,000 yields 8/13. .616 divided by crossbar finials 88 and 112 yields exactly .007 and .0055, respectively. These are important Golden Relationships.

 

(.616 - (8/13)) x 1,000 = 8/13

.616 / 88 = .007

.616 / 112 = .0055

.616 = (29 x 08) / 100 x .05 + 1/2 (similar to a formula found on Professor Steven J. Finch's page on the determination of critical value)

 

Astounding Symmetry: Crossbar Squares and the Golden Ratio .616

 

There is one set of 5 crossbar numbers between Finial 88 and Cross Center. We'll call this set A. And another set of 5 crossbar numbers between Finial 112 and Cross Center we'll call set B. If we take the sum of the square values of each set and add to each set the column value 99 located above and directly between each set, then the ratio between set A and B will equal the South Column Finial Ratio of 77/125 or .616.

 

Set A: 7^2 + 12^2 + 20^2 + 33^2 + 54^2 + 99 = 4697

Set B: 10^2 + 15^2 + 26^2 + 42^2 + 69^2 + 99 = 7625

 

4697 / 7625 = 77 / 125 = .616

 

Not only does the hidden Golden Key of Spiral-935 form the shape of a key, it is the master key linking Spiral 935 to the Fibonacci sequence. From 25 onward, one need only subtract the hidden key numbers from the nearest crossbar number to arrive at the Fibonacci sequence.

 

Crossbar values - 15, 26, 42, 69, 112, 182, 295, 478...

The Golden Key - 15, 25, 41, 67, 109, 177, 287, 465...

Fibonacci values - 00, 01, 01, 02, 003, 005, 008, 013...

 

Golden Key Sequence Essentials: Dividing the Spiral in Halves, Thirds, and The Golden Mean

1.) The Golden Key divides the Finial Circle at 111 /180 degrees, the Golden Mean.

2.) The Golden Key and the Golden Egg sequences divide Spiral-93 in half. Golden Egg 54, for example, divides 109 into two whole integers separated by 1: 54 and 55.

3.) The Golden Key divides the spiral rotation into thirds. At the finial circle the rotation is 48 along spiral values (125 - 77 = 48).

 

125 - Golden Key 109 = 16

16 / 48 = 1 / 3

 

The Lost Fibonacci Sequence

 

Comparing opposite sides of the Spiral we find an inverse relationship between Fibonacci and Golden Key formulas. They swap roles. Where the Fibonacci sequence defined the "altitude" lifting off from the crossbar that role belongs to the spiral values, or 'golden egg' values of crossbar 88. Instead of adding the golden egg sequence to the opposite crossbar we subtract it creating a descending ray starting at cross bar values 20 and 33 where the initial values are 0 and 0; then we begin descent with value 1 reducing 54 to 53, The sequence of the Golden Egg is the same spiral formula - only starting with x and y at Zero. Subtracting the Golden Egg sequence from the Crossbar values reveals the Lost Fibonacci Sequence.

 

++88 Crossbar: 20, 33, 54, 88. 143, 232, 376 ,609 ...

++Golden Egg: 00, 00, 01, 02, 004, 007, 012, 020 ...

Lost Fibonacci: 20, 33, 53, 86, 139, 225, 364, 589 ...

 

The Lost Fibonacci Sequence is as much a part of the Fibonacci Sequence as the North Column is a part of The Golden Key Sequence: they are one path having two parts which come together at the core and connect at the cross. To recover the Lost Fibonacci Sequence we backtrack through the Fibonacci sequence using the same rule that applies to cross values between 3 and 5 at the cross center . We add 2 to 3 going out from center and subtract 2 from 3 going in. So 8 - 5 = 3 (-2) = 1. After we've subtracted 2 we have crossed the threshold and may begin adding again with '1' as the new core number: 5 + 1 = 6: 6 + 1 = 7; 7 + 6 = 13; and so on.

 

The Lost Fibonacci Sequence is:

1, 6, 7, 13, 20, 33, 53, 86, 139, 225, 364, 589, 953, 1542, 2495, 4037, 6532, 10569, 17101..

 

Fibonacci sequences and Golden sequences are paired. Where the Golden Key divides one side of the spiral at her golden mean, Lost Fibonacci divides the other. Where Fibonacci defines the "ascent" of the Golden Key on one side, a Golden sequence will define the "descent" on the other. It demonstrates how corresponding formulas may achieve an effect dependent on their location. When placed at opposite locations their roles may reverse.

 

Valentine's Day, Mega-Fibonacci, and The Tressarian Twins Sequence

 

On Valentine's Day 2013 Tressa Montalvo gave birth in Houston, Texas to two sets of identical twins - Ace, Blaine, Cash, and Dylan. The odds of such a birth are said to be one in several million...and to occur on Valentine's Day must make the odds astronomically small.

 

For awhile I've been debating what to call the two sets of twin Fibonacci sequences formed by the cross. Quadronacci or Tetranacci might be nice but they are in current use for sequences having four terms added.. The sequence formed by the cross divides every full rotation into two halves - left and right - one slightly larger than the other however with each half having two equal parts. This unique sequence is the direct product of the cross - representing the organizing forces of attraction.

 

Due to the timing of contemplation I first considered naming it the Beligyre Sequence, an anagram of Lee Rigby, the UK police officer slain by a follower of an evil man whose fantasy to torture and murder his questioning aunt and uncle made its way to nauseating posterity in Surah 111. However, wishing for a more jubilant association, I decided to name the twin set of integers the Tressarian Sequence since it alludes to a double set of twin Fibonacci sequences. I also refer to it as the Tressacci Twin or TT sequence for short recognizing that in shape TT resembles Pi and in name - a sports car from Audi. However if one is willing to part with $700,000 or more then a sports car can be yours that will go from 0 to 60mph in Pi (3.14) seconds - the Ferrari Enzo. Only 400 were made so they are very hard to find.. But every now and then they are abandoned - particularly in countries with stiff debt laws like Dubai.

 

Starting with center 3 and moving to crossbar center 4 establishes the first digit - 1. Moving to South Column 5 offers the second digit - 1. From 5 to Crossbar 7 we arrive at 2 and another 2 brings us to the North Column's 9. From that point forward we continue along the spiral in same manner, making note of the count from one cross value to the next with each one-quarter rotation. The Tressarian Sequence is:

 

1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 7, 7, 8, 8, 11, 11, 13, 13, 16, 16, 21, 21, 29, 29, 34, 34, 47, 47, 55, 55, 76, 76, 89, 89...

 

The Tressarian Sequence will help explain how the Fibonacci Sequence works in the growth patterns we see in nature. When we observe the sequence in petals, pinecones, or even in the bracts of pineapples we may infer a pattern of twin sequences at work - one for each half of the petal. Once the concept of a twin sequence emerges based on natural forces it is possible to fathom a multiple of twin sequences at work in the creation of a single cone. And that's just the beginning. Spiral-935 has also demonstrated how the Fibonacci Sequence not only appears in spiral shapes but also as a rate of elevation marking successive points of equal division. The implications are that the twin Fibonacci Sequences found imbedded within the Tressarian Sequence may open the door to the discovery of a variety of other growth patterns that have previously been thought unrelated to Fibonacci.

 

Column and Crossbar Center

 

Four represents the centered number in Spiral 935's crossbar as three represents the centered number in the cross column. It is likely the first centered number was two and the center shifted as more numbers gravitated. Spiral-935 differs from other spiral representations which typically use "0" as both the point of origin and centered number of the spiral. My purpose is to describe a spiral of numbers in motion, dynamic, and living. The crossbar values from center to right are: 4, 10, 15, 26, 42, 69, 112, 182, 295, 478, 774, 1253, etc. By lining the columns of values side by side we may extrapolate the vertical column numbers and cross primes by the following method:

 

(4 + 7 - 10) x 2 + 1 = 3

(7 + 12 - 15) x 2 + 1 = 9

(12 + 20 - 26) x 2 + 1 = 13

(20 + 33 - 42) x 2 + 1 = 23

(33 + 54 - 69) x 2 + 1 = 37

(54 + 88 - 112) x 2 + 1 = 61

(88 + 143 - 182) x 2 + 1 = 99

(143 + 232 - 295) x 2 + 1 = 161

(232 + 376 - 478) x 2 + 1 = 261

 

circle versus spiral values at the finial circle The illustration represents a hypothetical tightening of the belt at 77 with the foreshortening of the Finial Circle from 125 to 121. With the discovery of equivalent fractions at the crossbar finials along spiral values I find it useful to consider a compression/expansion model of the belt at the Finial Circle in keeping with spiral values. UPDATE: Continue reading through "evening the odds" for a more complete explanation of the Finial Circle's creation and properties.

 

circle values (77, 88, 99, 110, 121)

(for measuring circle properties between column or crossbar pairs)

121 - 99 = 22 (the count of numbers at 180 degrees of this spire)

22 + 99 = 121 (adding the same amount to form a 360 degree circle)

121 - 77 = 44 (the total count of numbers forming the circle's circumference)

 

spiral values (77, 88, 99, 112, 125)

125 - 99 = 26

26 + 99 = 125

125 - 77 = 48 (the total count of numbers forming the spiral's finial circumference

 

evening the odds at the finial circle

 

Prime symmetry found between the even-odds of the finial circle. First observed in Spiral-935's column, the symmetry of prime numbers occurs at the finial circle in her sum values. Odd numbers may be thought of as the sum of two numbers with a difference of 1 between them. If the lowest of these two numbers is an even number then the inspected number is called an even-odd number. If the lowest number is odd, it's an odd-odd number. From 77 to 125 there are 13 even-odds but only the middle 11 - centered precisely around 101 - share a characteristic which solves the mystery of the finial circle. Between 9 squared and 11 squared lie the eleven even-odds: 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, and 121. Five of the eleven are prime numbers outright and contain no primes in their pairings. The remaining six are each paired with prime numbers. Considering the count in this way (important when translating mathematics to chemistry and biology) brings the even-odd count of prime numbers between 9 squared and 11 squared to 11.

 

If a circle can be created from a spiral one would anticipate the point at which the circle is formed to have weaker bonds which can unlock and join with an adjacent arc to form a circle. The weaker bonds may appear not only in the divisible even numbers (which, in many cases, may have strong bonds) but in the important even-odds. Of course not all even-odds have necessarily weak bonds; however 77 and 125 - nonprimes which are both the sum of consecutive nonprime integers - stand out in their neighborhood.

 

the Holy Grail

 

The numbers below illustrate the framework around which the creation of a circle from a spiral occurs around the stronger bonds between nine squared (81) and eleven squared (121). By viewing the Finial Circle through the lens of her even-odds it reveals a smooth distribution of prime numbers:

 

77 = 38 + 39

81 = 40 + 41prime

85 = 42 + 43prime

89 = 44 + 45 (prime sum)

93 = 46 + 47prime

97 = 48 + 49 (prime sum)

101 = 50 + 51 (prime sum)

105 = 52 + 53prime

109 = 54 + 55 (prime sum)

113 = 56 + 57 (prime sum)

117 = 58 + 59prime

121 = 60 + 61prime

125 = 62 + 63

 

The above represents a close-up of Spiral-935's Finial Circle as seen through the even-odds. 77 and 125 are triple composites. They are actually tetra composites if we consider that each of their digit sums is also composite. In stark contrast, every even-odd number between 77 and 125 either 1.) has a prime part in one of her two parts separated by one (we may call these partial primes) ; or 2.) is a prime number outright. It is worth noting that none of the prime number even-odds along the Finial Circle has a prime part - each one being comprised of two composite parts separated by one. This property gives the Finial Circle her "smoothness" in terms of the distribution of primes.

 

The sum value is 1111. (11 * 101) for the even-odds. (81 - 121)

The sum value is 1212 (12 * 101) for the odd-odds.

The sum value is 1313 (13 * 101) for the even-odds (77 - 125)

The sum of all primes is 813 (271 * 3)

The sum of all 6 non-primes is 298 (81-121)

The sum of all 8 non-primes is 500 (77 - 125)

 

What makes the even-odds and odd-odds relevant?

 

Symmetric patterns are created around them throughout the spiral making adding, dividing, and multiplying much easier - key to making replicas and creating life. The Golden Key Sequence, for example, not only divides the spiral along her Golden Mean but also serves to divide the entire spiral length in nearly equal portions (like a coiled tape measure) - from point of origin 1 (near spiral center 3) to her mid-way point (along the Golden Egg Sequence) and ending at her Golden Key (a ray rising just north of the opposite crossbar).

 

Odd numbers appear every third number on the crossbar extending through the core. A similar pattern exists along the column (comprised exclusively of odd numbers) with odd-odd numbers occurring at every third value from North and through the Golden Key Sequence.) The crossbar center is flanked by odd-odd 7 and odd-even 10. Extending outward odd numbers occur at every third interval, alternating between even-odds and odd-odds.

 

To refresh, the Golden Egg Sequence is the crossbar from Center to 88 and beyond (4, 7, 12, 20, 33, 54, 88, 143, etc.) The Golden Key originates from the North but loops through the center and forms a ray, lifting off from the opposite crossbar at a rate of elevation equal to the ascending Fibonacci Sequence. It is located on the opposite side of the spiral towards 110/112.

 

Dividing the length of Spiral 935 is accomplished by dividing the Golden Key values into two whole integers separated by one. For example Golden Key value 67 divides to 33 (Golden Egg) and 34. Golden Key 109 divides to 54 (Golden Egg) and 55. This organization gives Spiral 935 flexibility and deeply ties the Golden Mean to the ability to grow spiraling structures into nearly equal parts.

 

Most of us are accustomed to counting in ten increments of ten numbers. However, from the start we can see numbers are easily divided between odd and evens. And taking it one step further, between even-odds, odd-evens, odd-odds and even-evens (such as 1, 2, 3, and 4 respectively.) Even-odds start at 1 and may be thought of as the primordial numbers - meaning they reflect back to the original '1' ; they are always the first number - of each successive four-number grouping. The first 43 even-odds are:

 

001, 005, 009, 013, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97

101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169...

 

There are several possible ways of counting the sum of all numbers at the Finial Circle yet whichever method we pick - one number - a factor of every combination of finial sums - stands out - and that number is 41.

 

sum of even-odds -81-121 ---1111

sum of odd-evens- 81-121 ---1000

sum of odd-odds--- 81-121----1010

sum of even-evens-81-121----1020

Total ---------------------------------4141----(41 * 101)

 

41 and prime-hunting

 

Her symmetric properties make 41 a major player in the world of prime-hunting. There are several formulas involving 41 perhaps the least complicated of which is that if you start with any two integers totaling 41; squaring one of them and adding to it the value of the other integer,will most likely result in a prime number - or else a multiple of five (4+1).

 

To commemorate the latest discoveries at the finial circle, I went prime hunting using the above formula with a twist. Instead of two integers summing to 41 I used two integers summing to 4141 (41 x 101). Only 7 of 22 were prime using only the above formula. However I was able to predict primality with 100% accuracy by considering the number of prime numbers that appeared after dividing the last two-digits of the two integers (un-squared) into either two equal parts (odd-evens or even-evens) or two parts separated by 1 (odd-odds or even-odds) If 2 or 3 prime numbers appeared In these parts, the result was prime but If less than 2 prime numbers appeared, the result was not prime.

 

Choosing integers for use in the above formula with sum values of the form 41 x 10101, or 41 x 1010101... has shown positive results in terms of prime prediction. 271 - a prime factor of 813 (271 * 3) - has demonstrated even greater reliability. 813, as you may recall, is the sum total of the prime even-odd numbers and the nonprime even-odd' numbers' prime offspring at the finial circle. Engaging in his recreational exercise allowed me to see that 271 x 41 = 11111, The sum of all even odds at the finial circle is 1111. An early Christmas present. Thank you for being there to observe the mysteries of the finial circle come to light.

 

3.1415, 23, 41, and 8,888

 

Since this area ties in with the Finial Circle I thought to mention another aspect which ties into today's calendar day - Pi Day or 3.14. The Finial Circle is formed around an arc of primes and prime parts between 9 and 11 squared. The place where the circle starts and ends is in an area with a higher degree of compositeness compared with the other numbers at the finial circle. Notably 77 and 125 mark the composite area where the circle forms. If we sum the four numbers from 77 to 80 (1 prior to nine-squared) we arrive at 314, the first three digits of Pi and - due to the compositeness of the location - what I call the "mouth" of the Finial Circle. For a hungry circle, Pi is the perfect order! Happy Pi Day, everybody!

 

Since we have reached a milestone in 8,888 views I wish to explore some properties of this fascinating number in relation to Spiral 935. Pi quite nicely divides 8888 in the following cross number multiples of Pi.

 

8888 / 23 Pi = 123.00 = 3 x 41

8888 / 69 Pi = 41.00

 

No other multiples of PI - cross or otherwise - dvides 8888 so precisely as do the pi multiples of 23. In a related property of Spiral 935 so far it appears that prime column pairings (prime numbers at opposite sides of the column) occur at multiples of 23 of the column height. However testing primality for column pairs at height multiples of 23 requires greater computing power than my laptop offers.

 

Factors of 8888 include 88 and 101 - both located on the Finial Circle.

 

11 x 808 = 8888

88 x 101 = 8888

 

8888 / 70* Pi = 40.41 While 70 is one-off from cross number 69 the resulting fraction is nonetheless pattern-forming; and we see a similar re-occurrence in cross number 112.

8888 / 112 Pi = 25.26

 

About 8888 and 41. I recommend using the search function on this page and noting all the occurrences of 41....in the even-odds for example...or at the finial circle it's in the Finial Circle's upper-bound breakdown of 9 squared, (40 and 41) 81's prime 41. (Compare to the upper-bound breakdown of Finial Circle's 11 squared...121's prime 61.)

 

When multiplied by 77/125 (.616), 8888 yields ((11+11)^2 x 1414 ) / 125

 

Pi The Golden Ratio, zero and the core of spiral-935

 

The circumference of the Finial Circle is 48 along spiral value 112. The foreshortening of the Finial Circe to 44 occurs when ending the spiral formula by adding a half arc equal to the preceding 22-count arc between 77 and 99. 44 divided by pi yields 14 (which is exactly equal to the column height of 14 between spiral numbers 100-124.) The Finial Circle is the only location along the entire column where Pi equals the circumference divided by the diameter when the diameter is defined by the column count . At the core the diameter is compressed and pulsing (not static) and beyond the finials it is rapidly expanding. For the count of column numbers to be equal to the diameter well beyond the finial circle would require Spiral-935's numbers to be moving very fast (creating a helix) and for their speed to be increasing. Also if the numbers represent objects which are very tiny relative to the space between this may alter our perception of the spiral's shape.

 

The Finial Circle itself may be thought of as the "Zero" of Spiral-935. Zero, in this sense, does not mean the absence of anything but rather reaching a point of equivalence. For example at the finials, the Golden Ratio of .61 (and 1.61) is fully reached. Now imagine for a moment we divided every number in Spiral 935 by 100. Everything would essentially be the same - albeit smaller - but notice how the finial circle as It crosses the column would exist between column numbers .61 and 1.61 - phi and PHI, the two ratios of the Divine Proportion.

 

Golden convergence begins at 26/42 on the crossbar and 29/47 on the column. However it fails to fully converge until reaching the finials. (I define the point of golden convergence to be when the first two digits of the mean appear in decimal form .61 at both ends of crossbar and column.) As a rule, all additive sequences resolve to the Golden Ratio except one. The question of convergence then becomes a matter of how and when not if. That is why the location of total golden convergence between column numbers 61 and 161 coupled with Pi at the finials (44/pi = column height 14) presents a memorable confluence of form and event. The only explanation I may provide for this is the unique center of Spiral 935. Among the competing ratios at the core, 3/5 stands out as the centerpiece and at .60 is as close to the Divine Proportion as can be formed by single digits. Indeed, the whole of Spiral 935, with its Finial Circle and vertical column resembles the very symbol of Phi.

 

Subtracting the ratios at the two crossbar finials 88/143 and 112/182 leaves a remainder of zero as both are represented by the repeat decimal .615384. Unique symmetry at the finials can also be found in square calculations. Each set of three square numbers lie on the cross (within both column and crossbar) and end at the finials.

 

4.4121 x 42^2 + 69^2 = 112^2

4.4233 x 29^2 + 47^2 = 77^2

4.4334 x 33^2 + 54^2 = 88^2

4.4411 x 37^2 + 61^2 = 99^2

 

Whole numbers 3, 4, and 5 (3+2) comprise the spiral center. Since the decimal values above all fall within the range of these core numbers I thought to investigate what the core would look like as an initial cube value in the formula. To my surprise, the decimal values converge to a whole number. Spiral 935's inner core may be represented (in formula) by the following three decimal fractions before reaching 5 (the cube root of 5 cubed) at the completion of the spiral's first fifteen digits. ( 5^3 + 10^2 = 15^2) 5 emerges at the center as the relation completes at 15, a location where - in perfect symmetry - the Fibonacci sequence begins at zero.

 

4.44796^3 + 9^2 = 13^2 (column values from center north)

4.56290^3 + 7^2 = 12^2 (cross bar values from center west)

4.57885^3 + 5^2 = 11^2 (column values from center south)

5.00000^3 + 10^2=15^2 (crossbar values from center east)

 

When the value of 5 is reached near the column center it creates a point of equivalency tipped by the addition of 1 to reach 11, the first column number beyond the inner core. (3+2) + 5 + 1 = 11. This may symbolically be represented as two open hands with the 3 longer fingers of each hand curving inward to meet the tips of the shorter fingers to become 5. As the compressed fingertips of both hands meet it expands into a ball of space and energy between them before turning into the symbol for '11' as the hands compress, palms together.

 

88 and the piano numbers

 

The piano numbers appear from 03 to 23 and are of two basic kinds. Those which lie on the cross form the notes of the cross scales while those numbers between the cross (against the field) form the notes of the field scales. Thru 10 all crossbar numbers are counted as field numbers except 7.

 

The cross scales include numbers 11, 12, 13, 15, 17, and 20 [ A, A#, B, C#, D#, F# ]

A five-tone cross scale may be comprised of numbers 13, 15, 17, 20, transitional [ 23 (A) ]

The field scales include numbers 14, 16, 18, 19, 21, and 22 [ C, D, E, F, G, (and G#) ]

 

Most scales can be broadly categorized into these two basic divisions. One interesting feature of both cross and field scales is how they resolve respectively to B Major, C Major, E Major, or alternately, to the chromatic scale. The cross and field scales divide the 88 keys of the piano in the most elegant way possible. Different nuances are imparted when descending versus ascending so be sure to try the scales in both directions. If there exists a more beautiful way than the cross and field scales to bifurcate the 88 piano keys then I am eager to hear it.

 

Alternating between the cross and field scales brings to mind Dizzy Gillespie and Frank Paparellli's "A Night In Tunisia" (lyrics below) given the song's use of half-step up and half-step down chord changes. Written in Texas, it was originally entitled, Interlude after Dizzy noticed the melody he laid down lie at the crossroad of Asiatic and Western scales. It was written during a break from making a short film. Using the bottom of a trash bin as a makeshift table, stool or drum perhaps Dizzy wrote it at a time when the lights of the heavens were just starting to make their appearance.

 

lyrics to 'A Night In Tunisia'

 

The moon is the same moon above you

Aglow with its cool evening light

But shining at night, in Tunisia

Never does it shine so bright

 

The stars are aglow in the heavens

But only the wise understand

That shining at night in Tunisia

They guide you through the desert sand

 

Words fail, to tell a tale

Too exotic to be told

Each nights a deeper night

In a world, ages old

 

The cares of the day seem to vanish

The ending of day brings release

Each wonderful night in Tunisia

Where the nights are filled with peace

 

There are thousands of other songs matching the cross and field scales. The reason I've brought attention to this one is that Dizzy himself recognized that there was something special about this song that had raised it from "the vicissitude of the contingent" to its exalted place "in the realm of metaphysics."

 

Below are a few examples of some highly matching scales.

 

cross scales: (group one) B Major; A# Harmonic Minor; A Prometheus Neopolitan (group two ) D major, E major, A major, E melodic minor, B natural minor and A major pentatonic

 

field scales: C Major; F dim Lydian; D Blues; F Kumoi; D Locrian 2; C Mixolydian flat 6

 

Piano numbers are so-named because the sum of the six-note cross scale numbers is 88 -- a common number of keys on a piano; Interestingly, the sum of the five-note cross scale is also 88. The sum of the field numbers is 110. Subtracting the G# (22, a highly transitional tone) from the field scales, yields a remainder of 88.

 

Eleven through twenty-two (11 - 22) correspond to the 12 tones of the chromatic scale. In the illustration the spiral formula breaks down to allow for a tightening circular ring between 77 and 99 (as opposed to a spiral ring around 125). The result is that 110 appears as a finial at one end of the crossbar (instead of 112) and 88 appears at the other, reflecting the two sums of the piano series represented horizontally, both cross and field.

 

defining attributes and symmetry of the 9-3-5 column)

 

13 - 9 = sum of 3 and 5 divided by 2

11 - 5 = sum of 3 and 9 divided by 2

37 - 23 = sum of 11 and 17 divided by 2

29-17 = sum of 9 and 13 divided by 2

99 - 61 = sum of 29 and 47 divided by 2

77 - 47 = sum of 23 and 37 divided by 2

 

9 - 3 - 1 = 5

5 + 3 + 1 = 9

 

reaching for the stars

 

The column of Spiral 9-3-5 reaches indefinitely upwards and downwards still forming pairs at each end only one pair of which are known prime numbers and the others being odd numbers that can be factored into prime numbers. The occurrence in terms of location and timing of these divisors form patterns that not only are very useful in terms of prediction but also interesting in terms of how they originate. The column numbers can get quite large so to make it easier to put them into categories and discuss them I've given them names in addition to the column height value I have assigned them. The first pair of non-primes appear at a column height of 13 and are 99 and 77. The pair of divisor sets are 3,3,11 and 7,11; 99 and 77 are called trizor 11 and bizor 11 respectively. Of course, 1 is also a divisor, but for the sake of efficiency, I've decided not to reflect that fact in the names since it is well-understood that 1 is a divisor of all integers. Therefore bizor is a number having two divisors (excluding '1") A trizor is a number having three divisors (exluding 1). Other terms are quadzor, pentzor, hexzor and so on. A number following these terms may either be the lowest divisor of that number or the common divisor when describing a set of numbers. For brevity, numbers such as 77 and 99 may both be referred to as zor-11's as they share a common divisor in 11.

 

other attributes of the cross primes and finials

93 = The square root of (112^2 - 88^2 + 99^2 - 77^2 - 23).

93 = The sum of every other cross column prime (starting on 37 and ending on 29 which includes center cross prime 3. The remaining column numbers total 162 or 9^2*2 or 161 plus 1. Eliminating the square 9 results in 153 or 3*51; matching nicely with 3*31 or 93. The sum of prime column numbers is thus 3*31 + 3*51 = 6*41. Subtracting the sum of the South column's alternating primes, 93, from the sum of the North Column's alternating primes, 153, yields 60 which is equal to the repeating cycle of 60 digits on the column in the one's place. So while not evident at first glance, intervals of 10 turn up very significantly from calculations Involving Spiral-935' prime column. Subtracting the lower alternating prime sum 93 from the higher prime sum of 153 plus square 9 yields 69 or 23*3 - equal to the final cross value of Spiral-935 prior to reaching the first finial, 77, at the South Column.

 

93 = The sum of the first three cross primes from the bottom, 47, 29, and 17.

93 = The centered number of the sole trinity of consecutive composite odds - 91, 93, 95 - (bounded by prime numbers 89 and 97.)

48 = The count of integers at the Finial Circle (77 - 124)

76 = The count of integers up to the Finial Circle (1 - 76)

`124 = The total count of the primary integers of Spiral 93 comprising one generation.

41 = The sum of the first five column numbers - (3, 5, 9, 11, and 13.)

31 = The sum of four consecutive cross numbers beginning with 5. ( 5, 7, 9, 10)

42 = The sum of five consecutive cross numbers beginning with 5. (5, 7, 9, 10, 11)

28 = The sum of the first 5 cross numbers - (3, 4, 5, 7, 9)

19 = The sum of the first 4 cross numbers - (3, 4, 5, 7)

121 = The sum of the first three cross primes from the top: 61, 37, and 23.

 

The cross primes (and square) 9, 3, 5, 11, 17 appear to express that the sum of 9, 3, and 5 is equal ( | | ) to 17 which is a true statement. Apparently God has a sense of humor.

255 = The sum of all cross numbers including 9 on the column. In mathematics, 255 is the tenth perfect Totient number the first two Totients being cross prime 3 and cross square 9.

85/255 = 1/3 The numerator, 85, is the sum of all five sexy prime quintuplets: 5, 11, 17, 23, and 29. The denominator, 255, is the sum of all 11 cross numbers on the column (10 primes and one square).

256 = 2^8 The sum of all cross column numbers inside the finial circle including 1. (2 and 4 are a part of the cross bar; 1 and 3 belong to the column.) 1, 2, 3 and 4 form a stem at spiral center which is an extension of the knot at 3 and 4. As a power of 8, 256 is the first zenzizenzizenzic number greater than 1.

 

priming the center to achieve the spiral effect.

 

Priming the center occurs when moving from center 3 to the next column number, 5. We add 2 to center 3 for a total value of 5. Priming and an adequate energy supply are key in allowing spirals to form their shape. From nine to thirteen the numbers appear to rotate with greater distance between them as if being propelled at a higher speed. It is conceivable that by mirroring the rotation of spiral galaxies using numbers it could yield results which reflect the properties of spiral galaxies whose rotation speeds are higher near the center. Some argue the black holes thought to be at the center of spiral galaxies do not exist but are better classified as neutron stars having a magnetic pole with a force of debatable consequence. It has also been proposed that spiral galaxies form from the inside out and begin with a large compressed core which fragments over time. It's helpful to think of the generated numbers of this spiral as intervals marking moments in time like a clock. The prime column produces Fibonacci-like sequences of numbers that mirror real life spirals. The advantage of these cross primes is they describe a sequence that has a beginning, a middle, an ending and can replicate so long as there is an energy source.

 

sign of the cross

 

Going up from center 3 we do not need to add 2 to center 3 because the center has already been "primed" and has added the '2' on its journey south to 5 before heading north to 9. The value of an engine car may be '3' but the added energy output is consumed as it passes through each car and doesn't skip cars. At 77 and 99 Spiral-935 reaches a column height of 13 numbers allowing for the formation of a circular frame around the 10 primes and 1 squared number. I was amazed that after completing its prime column with a pair of twin-digit numbers, the shape of Spiral-935 could either continue spiraling to column number 125 (5 cubed) or alternately - by duplicating her previous half-spire count - converge into a circle at 121 (with 77), at exactly 11 squared! 77 and 99 appear to act as finials for the column marking the end of prime progression in harmony with crossbar finials 88 and 112 (or 110 for the circle) If a strobe were to flash in turns at every multiple of 11 (11, 22, 33, 44....) one may observe how closely the pattern resembles the tradition of the sign of the cross.

 

Merging the spiral with the circle yields a circumference of 44. Continuing hypothetically with the spiral formula (without circle convergence) will reveal other primes and semi-primes but the next pair of prime numbers (one at top and one at the bottom of the column) will occur at a column height of 23 numbers and at a height of 31 numbers we find a prime number on top and a semi-prime below, bizor-31 with a property unique to all column numbers known at this time of correspondence.

 

sexy primes

 

Outside the Finial Circle, prime column pairs are scarce. At a column height of 23 the prime pairs are 863 and 1,109. Another prime pair is located at a column height of 69 (23*3). Within the bounds of the Finials, 23 is also noteworthy for being the last of only two cross primes which are the average of two other cross primes: 11 (5 and 17) and 23 (17 and 29). 11 and 23 are the co-anchors for sexy prmes 5, 11, 17, 23 and 29. Sexy primes are prime numbers separated by 6. They are named after the Latin word for six which is 'sex'. (Nos 1 - 11 in Latin are unum, duae or duo, tres, quattuor, quinque, sex, septem, octo, novem, decem, and undecim.) Remarkably, the five, sexy prime quintuplets are also cross primes given all five of them reside on the cross column. They comprise 50% of all cross primes (excluding cross square 9) and their sum (85) comprises 33.33% of the sum of all column numbers between the fnials (255).

 

At a height of 31 we find the only semi-prime whose divisor 31 matches the column height its circle forms with column numbers 5,921 and 7,607. No perfect prime pair beyond height 23 has ever been found. (Important Update: At a column hei

Exposure modes: Program (Auto-Multi Program and Vari-Program), aperture preferred, shutter preferred, manual; manual and shutter preferred modes allow setting shutter speeds in 1/3 EV increments

Metering range: EV -1-21 at ISO 100 with f/1.4 lens (3-21 with spot metering)

Metering type: 8-zone matrix, center weighted, spot; meter stays on for about 8 seconds after removing finger from shutter release; matrix metering not functional with AI, AI-S lenses.

Exposure compensation: ±5 stops in 1/3 stop increments

Auto exposure lock: yes, using AEL lever

Film speed range: ISO 25-5000, automatically set by DX film cartridge, manual settings from 6-6400

Autofocus modes: single AF sensor, single-servo (focus-and-lock) and continuous focus AF, focus-priority can be disabled

Autofocus range: about EV -1 to 19 with ISO 100, requires f/5.6 or faster lens

Viewfinder: 0.78x magnification with 50mm lens, 92% frame coverage, interchangable screen

Lens mount: Nikon AF. Will meter with non-AF lenses.

Shutter: 30-1/8000 sec.

Flash sync: 1/250 sec., also slow sync and rear curtain sync options, high speed sync with Nikon SB-28

Built-in flash: no

Accessory shoe: standard hot shoe with ready light, monitor light, and TTL contacts

Flash modes: automatic balanced fill flash in AE modes, second curtain sync, red eye reduction

Film advance: about 4.3 frames per second in high mode, 4.1 with focus tracking, 2.0 in low mode

Battery: 4 AA alkaline, manganese, NiCad, or lithium. CR123A lithium battery only with MB-10 vertical grip.

Dimensions (W x H x D), body only: 6.1" x 4.2" x 2.7" (154 x 106 x 69mm)

Weight: 26.6 oz. (755g) without battery

A slowly regenerating Russian army is making incremental gains in eastern Ukraine against valiant but underequipped Ukrainian forces. The United States and its allies are racing to deliver the enormous quantities of weaponry the Ukrainians urgently need if they are to hold the Russians at bay.

Both sides are fighting furiously, both sides are suffering heavy casualties, and for both sides it has become a race against time.

If the Ukrainians can hold out long enough for the new weaponry to arrive, there is a good chance they can not only reverse Russia’s gains but inflict a decisive defeat that could inhibit Russian ambitions in Europe for years, analysts and U.S. and Western officials say.

The Russians are under pressure to make gains before the new weapons arrive and before their own exhausted troops and depleted armor reach the limits of their capacity to advance. The Russian military is in the process of reviving and resupplying their forces, resurrecting units that were depleted or destroyed in the first weeks of fighting, and slowly but steadily funneling them into eastern Ukraine.

The Russians are also stepping up missile strikes against fuel and ammunition storage depots and critical infrastructure such as railway lines used for the delivery of weapons. A growing shortage of fuel across Ukraine has stirred concerns about its ability to sustain supplies of fuel to the front lines.

“The question is, can we crush the Russians before the Russians get back on their feet,” said Ben Hodges, a former commanding general of the U.S. Army in Europe. “If we are not able to deliver enough of the things Ukraine needs to disrupt and destroy Russian artillery, Russian rocket fire and Russian forces before the Russians complete their reconstitution, then this could drag on for a very long time.”

“Then they’ll consolidate and wait for us to lose interest,” he added.

By aiming for a Ukrainian victory, the United States and its allies are casting a vote of faith in the Ukrainian military, whose performance has far exceeded initial expectations, as well as recognizing that Russia’s army is far less capable than had been assumed. It’s a major strategic shift from the first weeks of the war, when the Biden administration was making plans for a Ukrainian government-in-exile to be based in Warsaw.

The goal now is what Defense Secretary Lloyd Austin called a “weakened” Russia, one that won’t be able in the future to “do the kinds of things that it has done in invading Ukraine.”

But first the supplies of weaponry, notably long-range artillery, have to be delivered, and the Ukrainians have to be trained to use new Western systems, a process that is underway but will take weeks more. The United States and its allies are speeding up the deliveries they’ve promised. But transferring them from Eastern Europe into Ukraine is going to require an unprecedented logistical effort at a time when the main supply lines are increasingly being targeted by Russian missiles, Hodges said.

New Russian tactics for new terrain

In recent days, the pace of what the Pentagon has described as “anemic” Russian advances of about a mile a day has slowed. The Ukrainians, meanwhile, are retaking territory in some areas, notably around the northeastern town of Kharkiv, where military officials said Thursday they have launched a counteroffensive.

Russia has not yet demonstrated it can overcome the multiple shortcomings that thwarted its attempt to seize Kyiv, including logistics problems, poor command and control and the low morale of its troops, officials say.

But the Russians have adapted their tactics to the open, flat terrain of the Donbas region, which gives them an advantage over the nimbler but less heavily armed Ukrainian military. The Russians’ slow pace appears to be a deliberate effort to mitigate the heavy casualties they suffered in the first weeks of the war, when armored columns surged down tree-lined roads and became easy prey for Ukrainian ambush teams.

Now the Russians are standing back from Ukrainian lines, pounding towns and villages with artillery, then moving in when the Ukrainians are forced under withering fire to withdraw.

In some instances, the Russians are then abandoning the villages and the Ukrainians are simply moving back in, U.S. officials say. With territory changing hands on a daily basis along a 300-mile front line, it is hard in some places to discern which side has the advantage.

It’s a punishing, scorched-earth warfare that takes a heavy toll on civilians. Videos posted on pro-Russian social media show Russian forces moving into destroyed, depopulated villages, rendered uninhabitable by the force of the fire rained down on them.

Get the Post Most Newsletter

The most popular and interesting stories of the day to keep you in the know. In your inbox, every day.

It’s also taking a toll on the Ukrainian military, which is starting to feel the strain of more than two months of continual fighting on multiple fronts, Ukrainians have acknowledged.

The Ukrainians have refrained from issuing their own casualty figures, but for the first time they are admitting that they are suffering heavy losses.

The Russians are losing soldiers at a higher rate than the Ukrainians, “but we are not super people. We have casualties as well,” Oleksandr Danylyuk, a defense and intelligence adviser to the Ukrainian government, said in an interview.

Burning through huge amounts of everything

The Ukrainians’ most urgent need is heavy caliber, long-range artillery to let them strike deep behind Russian lines, he and other military experts say. The first of the 155 mm Howitzers promised by the United States have reached the front lines and are being used, Austin told a Senate hearing on Tuesday.

Further U.S. deliveries will include Humvees, M-113 armored personnel carriers, Mi-17 helicopters, along with hundreds of thousands of rounds of ammunition, and other allies have pledged additional supplies.

The fighting is so ferocious that Ukraine is burning through huge amounts of everything it needs, from ammunition to armored vehicles, drones and fuel, Danylyuk said. “We are so far from actually reaching our needs it is difficult even to comment,” he said.

The Russians have “changed their strategy to a much better one. They’ve started treating Ukrainian forces as a serious opponent, which is not good for us,” he added. “Our troops still have superiority in terms of professionalism and knowledge of the terrain. But the price of that success is very high.”

Ukraine’s backers are watching anxiously yet hopefully. “Probably, these hours for the Ukrainian army are the darkest and most decisive hours of all,” said Kusti Salm, the permanent secretary in the Ministry of Defense of Estonia, which has been one of Ukraine’s staunchest supporters.

He said he is confident the Ukrainians “can hold the front.” Then, once the weapons arrive, he said, “there will be a turning point where it will become easier for the Ukrainians to achieve their goals.”

In some ways, they already have. By forcing the Russians to undertake a humiliating retreat from the battle for Kyiv, the Ukrainians have secured their capital and their sovereignty, and the war has turned into a fight over how much Russia will have to show for its effort to capture the country, said Rob Lee, a former U.S. Marine who is now with the Foreign Policy Research Institute.

In narrowing their goals to the Donbas area and the southeast of Ukraine, the Russians are able to bring greater force to bear in those places than they did when they were still fighting around Kyiv. The Russian force, though heavily depleted by massive casualties in the first weeks of the war, still has offensive capability. If the Russians are able to continue to amass forces, it is likely they will make further gains, Lee said.

La ferrovia di Flåm è considerata un capolavoro della ingegneria norvegese. Il percorso che unisce Flaam con Myrdal è infatti una delle linee ferroviarie a scartamento normale più ripide del mondo. la pendenza si mantiene al ritmo di 55 m di incremento per ogni 1000 m per almeno l'80% della linea. , vale a dire un gradiente di uno su diciotto. I tunnel a spirale che si torcono dentro e fuori della montagna sono tra le manifestazioni più audaci ed abili della storia della ingegneria ferroviaria norvegese di storia.

  

La Flamsbanaha ha molto da offrire: uno selvaggio e bellissimo scenario di montagna, con tante cose da fare e vedere tra vette innevate, fertili pascoli e tradizioni storiche risalenti ai periodo pre-cristiano. Gli orari cambiano durante i vari periodi della stagione, in ogni caso la ferrovia è aperta tutto l'anno. La frequnza dei treni raggiunge il suo massimo nel periodo compreso tra metà giugno e fine settembre, con 10 treni giornalieri, dalle 8:35 alle 19:45, ad un minimo di quattro corse giornaliere (tra le 9 e le 17) durnte l'autunno e l'inverno. Nel caso i tempi d'attesa siano lunghi (la bigliettteria è sempre presa d'assalto!) esistono dei percorsi per fare delle passeggiate nei dintorni della stazione ferroviaria, di varia durata e difficoltà, tutte comunque piacevoli.

 

Circondata da montagne fino a 1400 metri di altezza, la Flamsbana comincia il suo percorso dal mare fino al cuore dei monti. Il treno parte dal blu dei fiordi (braccio di Aurlandsfjord), dove si gode del mite e fertile clima costiero. Dopo una salita di circa tre chilometri si può vedere la piccola, marrone, chiesa in legno di legno Flåm, che risale al 1667, immersa nel bellissimo paesaggio. A fianco della chiesa, dove si trova una fattoria, si può vedere l’alta pietra monumentale eretta in memoria del poeta Per Sivle, che lì nacque. La splendida cima del monte Vidmesnosi torreggia verso il cielo sullo sfondo in background, con la cascata Rjoandefossen che ne impreziosisce la vista. L'impressionante cascata di Rjoandefossen compie un notevole salto di 140 metri dai fianchi della montagna. Il treno lascia i campi verdi ed i frutteti della valle prima di continuare lungo il fiume che la Flamsbana attraversa per tre volte, ma non ci sono ponti sul fiume. Invece dei ponti, gli ingegneri norvegesi hanno scavato dei tunnel per il fiume, che quindi passa in galleria al di sotto della linea ferroviaria.

 

Presso la stazione di Berekvam c'è una sezione a doppio binario che consente ai treni di incontrarsi e di passarsi a vicenda. Qui ci sono belle viste panoramiche, tra montagne aspre e una serie di torrenti tumultuosi che si precipitano giù per la ripida valle, formando bianche vie di schiuma ben al di sotto della ferrovia, lungo le profonde e strette gole che stringono il fiume. A Blomheller, i viaggiatori diventano consapevoli che c'è un altro aspetto della Valle di Flaam oltre che l’idilliaco e bel paesaggio. La montagna è piena di segni e tracce di valanghe, un promemoria delle forze naturali che hanno più volte messo paura e timore nei cuori dei viaggiatori.

 

A Kårdal si trova una moderna azienda agricola di montagna. Specializzata in capre. Qui troverete 300 capre sono molto popolari tra i fotografi. Il paesaggio che circonda la fattoria montana e l'abbondanza di rendono Kårdal una delle stazioni più interessanti del percorso. Come il treno esce da Nåli, la Flamsbana affronta la più lunga galleria (1320 metri), mentre si intravedono i tratti più spettacolari e interessanti della salita verso Myrdal. La ferrovia vi apparirà posta su 4 diversi livelli sul fianco della montagna, con in cima parte della stazione Myrdal. Allo stesso tempo, vedrete la vecchia strada tortuosa salire attraverso 21 tornanti la ripida montagna del Myrdalsberget. Il treno si ferma poi a Kjosfossen, il punto più spettacolare del percorso. Non vi è alcun altro luogo sulla terra dove viaggiatori su di un treno hanno la possibilità di vedere un'enorme cascata, che decorrere dalla piattaforma come a Kjosfossen. Il fiume si getta fragoroso come un tuono in un mare di schiuma, ed una grande piattaforma da la possibilità a tutti di scattare una foto ricordo della spettacolare cascata. Può anche capitare di assistere a momenti musicali che evocano leggende e miti legati alla cascata.

 

Il treno passa attraverso un tunnel che salendo gira a 180°, e all'uscita del tunnel si apre una magnifica vista panoramica sul paesaggio selvaggio. Diverse centinaia di metri giù dal finestrino il percorso fluviale assomiglia a un nastro d'argento che giace sul fondovalle, mentre si vede la montagna ripida con il tracciato del binario tagliato in una stretta sporgenza. Il treno passa poi da Reinungvatnet, un vero lago di montagna, poco prima di reagalrvi la vostra ultimo magnifica vista sulle montagne e brughiere a Vatnahalsen. L’ Hotel Vatnahalsen, conosciuto anche come "la St. Moritz del nord", si trova proprio qui. Si tratta di un popolare hotel tra gli appassionati di trekking di montagna, o per quelli che amano il ciclismo su strada o lo sci durante la stagione invernale.

 

Il viaggio poi continua attraverso gallerie protette dalla neve e cadute valanghe. L'apertura nel paesaggio offre un ultimo sguardo sulla Valle di Flåm prima di arrivare alla stazione finale e cioè Myrdal stazione. I Viaggiatori che continuano sulla ferrovia Oslo-Bergen, devono cambiare i treni a Myrdal. Chi ha comprato il biglietto andata-ritorno da Flam, può rimanere sul treno che effettua il percorso a ritroso.

 

I took this picture in increments (from the left to the right)...maybe 4-5 pictures and then combined it all in one picture to have a panoramic view.

NO photoshop here, just a collage.

 

There is a program out there that combines multiple pictures into one panoramic image: ArcSoft Panorama Maker

 

-Added to the Cream of the Crop pool as my personal favorite.

Nadie os obligó a ser políticos. Ninguno de nosotros os pidió que sirvierais al país. Fue vuestra decisión, libre y soberana, así que no vamos a bajar el listón de nuestra exigencia, al contrario, vamos a incrementarlo como nunca antes lo habíamos hecho y vamos a convertir nuestra determinación en el motor de una revolución pacífica que no podréis ni soñar en detener.

Nosotros sustentamos la nación con nuestro trabajo y sostenemos al estado con nuestros impuestos. Nosotros parimos los hijos, los educamos para que continúen manteniendo la nación cuando les llegue el turno y los alojamos en nuestras casas más tiempo del necesario para su vuelo. Y vosotros no habéis hecho vuestra parte del trabajo.

 

Ahora no tenemos pan para alimentar a muchos de los nuestros. Ahora una generación entera mejor preparada que ninguna otra antes está agonizando sin futuro. Por vuestra culpa.

 

Ahora lo sabemos: con vuestra hambre de prebendas y vuestra medrosa intemperancia habéis vendido nuestro país y nos habéis vendido a nosotros. Lo peor es que también queréis que paguemos la factura de vuestras pavorosas componendas.

 

Nosotros cuidamos de los ancianos, mantenemos el ritmo económico del país y hacemos que el progreso sea una realidad para todos inventando internet, descubriendo los principios activos de los medicamentos, aportando ayuda para paliar cualquier desgracia colectiva, viajando a lugares remotos para llevar consuelo o conocimientos, creando los puestos de trabajo y limpiando el chapapote mental con que vuestra negligencia nos roba vidas, haciendas y esperanzas.

 

Somos nosotros los que morimos por vuestras decisiones, demasiadas veces equivocadas: y es que nosotros ponemos los muertos en los accidentes, en los atentados, en las guerras y en las catástrofes. Vosotros solo nos miráis desde arriba, insaciables, pidiendo más y más y más.

 

Ahora, cuando las cosas van mal, así sea individual o colectivamente, seguimos siendo nosotros los que apechugamos para salir del hoyo que vosotros cavasteis. Y de paso os sacamos también a vosotros, ingratos, que encima sonreís y os ponéis la medallita que solo es de la masa, de la gente, de la muchedumbre. De la ciudadanía. Nuestra. Y ya hemos llegado al final de nuestro aguante.

 

Hasta hoy os hemos pedido poco, muy poco. Solamente que no metierais mano en la caja, que no anduvieseis a la gresca por una silla apenas unos centímetros más alta que la otra, que conocierais y respetarais la Constitución, que entendierais nuestras necesidades como sociedad, que fuerais demócratas en el más estricto sentido de la palabra y que protegierais a los más frágiles de entre nosotros. Los servidores públicos sois vosotros y estáis a nuestra disposición, pero lo olvidasteis hace décadas y vendisteis muy barato nuestras vidas, nuestras haciendas, nuestras esperanzas.

 

Os pedimos muchas veces que nos respetarais como a iguales, que dejarais de perder el tiempo en nimias controversias sobre el tamaño de vuestros egos, enormes por demás. Os gritamos que fuerais más constructivos, capaces y tolerantes, que no dierais tan mal ejemplo a todos los que os hemos estado mirando, atónitos.

 

Ha llegado el momento de recordaros algo muy importante: este país es nuestro, no vuestro. Y os lo vamos a hacer saber con cuanta determinación y esfuerzos sean necesarios.

 

Ha llegado el momento. Vamos a recuperar nuestras vidas, nuestras haciendas y, por encima de todo, nuestras esperanzas y nunca más volveréis a robárnoslas.

 

Ha llegado el momento. Somos más y cada uno de nosotros vale más que todos vosotros juntos porque a nosotros nos mueve la confianza en el nuevo tiempo al que pertenecemos y no vuestro miedo a perder un tiempo que ya murió.

 

Ha llegado el momento. Vamos a recuperar la sociedad de una nación a la que queremos más que vosotros, con más sensatez y mejores capacidades. Una sociedad que sabe lo que quiere, cómo lo quiere y cuándo lo quiere; una sociedad segura de sí y que sabe bien lo que no quiere: a vosotros.

 

Ha llegado el momento de abrir la caja de Pandora: y ahora solo resta que os vayáis y dejéis el campo libre para que podamos hacer las cosas bien, con la participación de todos y con la hermosa bandera de la Democracia Real izada en nuestros pabellones. No lo pongáis difícil empecinados en vuestra arrogancia.

 

Id a casa, politiquillos. Id ahora cuando todavía os cabe el honor de la retirada silenciosa. Después no habrá tiempo y será muy doloroso.

 

Estáis despedidos. Sin 45 días. Ni paro.

 

"Puerta del Sol, Madrid, Mayo de 2011"

    

Nikon D3

Nikon 85mm 1.4

  

© Manuel Orero

www.orerofotografia.com

All rights reserved

Todos los derechos reservados

 

Cualquiera de las fotografías publicadas en este Flickr, están a la venta en mi sitio web, o bien contactando en orerofotografia@gmail.com

 

Cualquiera de las imágenes publicadas en este Flickr, estan registradas. El uso sin consentimiento por mi parte de ellas, reportará la denuncia al registro de propiedad intelectual.

 

Any of the images published in this Flickr are registered. Use without consent on my part of it, will report the complaint to the registration of intellectual property.

 

Any photographs published in this Flickr are for sale on my website or by contacting orerofotografia@gmail.com

Pictured are the Grenadier Guards (part of the British Army's Public Duties Incremental Companies and their Bands) during the Major General Londist Summer Dress Inspection.

 

London District (LONDIST) is the name given by the British Army to the area of operations encompassing the Greater London area.

It was established in 1870 as Home District.

 

The Grenadier Guards has one of the finest, longstanding reputations as a tough fighting force.

 

A regiment which has a proud history of service to the sovereign in times of war and peace – be it on operations in Iraq and Afghanistan or guarding the royal palaces.

 

This is a regiment in which you will make friends for life because no matter who you are, or where you are from, the deal is this: “Once a Grenadier...always a Grenadier”.

-------------------------------------------------------

© Crown Copyright 2014

Photographer: Cpl Timothy Jones

Image 45162112.jpg from www.defenceimages.mod.uk

  

Use of this image is subject to the terms and conditions of the MoD News Licence at www.defenceimagery.mod.uk/fotoweb/20121001_Crown_copyrigh...

 

For latest news visit www.gov.uk/government/organisations/ministry-of-defence

Follow us:

www.twitter.com/defenceimages

20 x 5 Spodumene Dolomite

20 Spodumene

20 Dolomite

20 Ball Clay

20 Frit 3134 (subbed with 169)

20 Silica

 

Increments of Ilmenite from

Top left to right

0.5%, 1%, 2%, 3%

Bottom left to right

4%, 5%, 8%, 10%

 

As early as 2006, and again in 2014, Israeli historian Ilan Pape referred to Israeli policy towards the Gaza strip as an "incremental" genocide.

 

electronicintifada.net/content/israels-incremental-genoci...

 

Others have previously referred to it as a "slow motion" genocide, but now with the recent devastating assault on Gaza on a totally unprecedented scale, it is highly questionable whether we can still use such qualifying adjectives as 'incremental' or 'slow motion.'

 

On 26 October 2023, five days after this photograph was taken during a huge Palestine solidarity march in London, the Jewish philosopher and scholar Judith Butler, interviewed by Democracy Now commented -

 

"Let me simply say that everyone on this show who you have interviewed in Palestine has used the word “genocide.” And I think we need to take this word quite seriously, because it does describe the situation in which a population is targeted — not just the military part, but the civilian part — and bombarded, dislocated forcibly, and plans are being made for relocation or the absolute razing of Gaza itself. So, as you know, there are legal groups, like the Center for Constitutional Rights, that has published a 40-page study on why it is correct to call what is happening to Palestinians now genocide. And other groups are studying international law and showing that genocide is not — it doesn’t always look like the Nazi regime, but it can be the systematic undercutting of the livelihood, the health, the well-being and the capacity to persist. This is exactly what is happening."

 

www.democracynow.org/2023/10/26/judith_butler_ceasefire_g...

 

According to an emergency briefing paper issued by expert attorneys from the US-based Centre for Constitutional Rights

 

"there is a credible case, based on powerful evidence, that Israel is attempting to commit or committing genocide in the occupied Palestinian territory, and specifically against the Palestinian people in the Gaza Strip."

 

ccrjustice.org/home/press-center/press-releases/rights-la...

 

As early as 16 October, journalist Chris McGreal, writing in the Guardian, pointed out that the language used to describe Palestinians was "genocidal." In particular he cited the comments of Israel's president, Isaac Herzog -

 

"It’s an entire nation out there that is responsible. This rhetoric about civilians not aware, not involved, it’s absolutely not true. They could’ve risen up, they could have fought against that evil regime."

 

He noted that there was now a worrying and commonly shared sentiment among Israelis and echoed elsewhere "that the Palestinians are collectively responsible for the actions of Hamas in killing of about 1,300 Israelis and abduction of 199 – and therefore deserve what is coming to them."

 

www.theguardian.com/commentisfree/2023/oct/16/the-languag...

 

##########################

 

On Saturday 21 October 2023, possibly as many as 300,000 people demonstrated in London in solidarity with Palestinians. It was not just a reaction to the devastating bombing of Gaza and the total blockade of energy, fuel, electricity, food and water from 2.3 million Palestinians living in the city and the surrounding strip.

 

وفي يوم السبت 21 أكتوبر/تشرين الأول، تظاهر آلاف الأشخاص في لندن تضامناً مع الفلسطينيين. ولم يكن ذلك مجرد رد فعل على القصف المدمر على غزة والحصار الكامل للطاقة والوقود والكهرباء والغذاء والمياه عن 2.3 مليون فلسطيني يعيشون في المدينة والقطاع المحيط بها.

 

It was also a determination to see an end to -

 

كما دعا المتظاهرون إلى إنهاء جميع العوامل الرئيسية التي تغذي الصراع.

 

1) An end to Palestinian suffering from 75 years of Israeli occupation. The Israeli occupation of the West Bank, East Jerusalem and the Gaza Strip since 1967 is officially recognised by the United Nations and most of the world despite the fact that the occupation is often ignored or sometimes even denied by Western media. As Amnesty International reports Israeli occupation has resulted in "systematic human rights violations against Palestinians living there."

 

نهاية معاناة الفلسطينيين من 75 عاما من الاحتلال الإسرائيلي. إن الاحتلال الإسرائيلي للضفة الغربية والقدس الشرقية وقطاع غزة منذ عام 1967 معترف به رسميًا من قبل الأمم المتحدة ومعظم دول العالم على الرغم من أن وسائل الإعلام الغربية غالبًا ما يتم تجاهل الاحتلال أو حتى إنكاره في بعض الأحيان. وكما أفادت منظمة العفو الدولية، فإن الاحتلال الإسرائيلي قد أدى إلى "انتهاكات منهجية لحقوق الإنسان ضد الفلسطينيين الذين يعيشون هناك".

 

www.amnesty.org/en/latest/campaigns/2017/06/israel-occupa...

 

2) An end to Palestinians living under a highly restrictive Apartheid regime as recognised by Amnesty International, Human Rights Watch and War on Want. Across the West Bank Palestinians are banned from driving on numerous roads that cross the region and as War on Want explains "Jewish Israelis and Palestinians are treated differently in almost every aspect of life: housing, education, health, employment, family life, residence and freedom of movement. Dozens of Israeli laws and policies institutionalise this prevailing system of racial discrimination and domination."

 

وضع حد للفلسطينيين الذين يعيشون في ظل نظام فصل عنصري شديد التقييد كما اعترفت به منظمة العفو الدولية وهيومن رايتس ووتش ومنظمة الحرب على العوز. في جميع أنحاء الضفة الغربية، يُمنع الفلسطينيون من القيادة على العديد من الطرق التي تعبر المنطقة، وكما توضح مؤسسة "الحرب على العوز" الخيرية، "يتم التعامل مع اليهود الإسرائيليين والفلسطينيين بشكل مختلف في كل جانب من جوانب الحياة تقريبًا: السكن والتعليم والصحة والتوظيف والأسرة". الحياة والإقامة وحرية التنقل.. عشرات القوانين والسياسات الإسرائيلية تضفي الطابع المؤسسي على هذا النظام السائد من التمييز العنصري والسيطرة.

 

waronwant.org/news-analysis/israeli-apartheid-factsheet?g...

 

3) An end to restrictions on movement. Across the West Bank there are some 650 Israeli military checkpoints through which only some Palestinians are allowed to pass, often with humiliating questioning and delays, so that they can travel to other towns whether to visit families, seeking medical treatment or for any other reason. In Gaza, travel is even more difficult and only a tiny minority with work permits have been allowed to cross the border - the rest have to remain in what is often described as the world's largest open air prison - the densely populated Gaza strip housing some 2.3 million people.

 

إنهاء القيود المفروضة على الحركة. يوجد في جميع أنحاء الضفة الغربية حوالي 650 نقطة تفتيش عسكرية إسرائيلية لا يُسمح إلا لبعض الفلسطينيين بالمرور من خلالها، مع استجواب وتأخير مهين، حتى يتمكنوا من السفر إلى مدن أخرى سواء لزيارة عائلاتهم أو طلب العلاج الطبي أو لأي سبب آخر. وفي غزة، يعد السفر أكثر صعوبة ولم يُسمح إلا لأقلية صغيرة من حاملي تصاريح العمل بعبور الحدود - أما الباقون فيجب أن يبقوا في ما يوصف في كثير من الأحيان بأنه أكبر سجن مفتوح في العالم - وهو قطاع غزة المكتظ بالسكان والذي يضم حوالي 2.3 نسمة. مليون شخص.

 

3) An end to the 16 years of siege imposed by Israel on Gaza which means that around 56% of children were suffering from anemia and only 4% had access to safe drinking water even before the outbreak of conflict this month.

 

إنهاء الحصار الذي تفرضه إسرائيل على غزة منذ 16 عاماً. ويعني الحصار أن حوالي 56% من الأطفال كانوا يعانون من فقر الدم وأن 4% فقط كانوا يحصلون على مياه الشرب الآمنة حتى قبل اندلاع النزاع هذا الشهر.

 

www.unicef.org/sop/what-we-do/wash-water-sanitation-and-h....

 

www.ncbi.nlm.nih.gov/pmc/articles/PMC4391478/

 

4) The never ending process of Israeli expansion across Palestinian land, including the demolition of 55,000 Palestinian homes since 1967, occurring on a near monthly basis as well as the cutting down of fields of olive trees and the ploughing up of Palestinian farms to make room for yet more illegal settlements subsidised by the Israeli government.

 

These settlements are illegal under international law, which rightly recognises the 1967 border. However, since 1967, Israel has constructed 250 of them across the West Bank in which over 633,000 Israelis live in subsidised and often luxurious housing with swimming pools and manicured lawns, an unimaginable privilege to the vast majority of Palestinians.

 

وضع حد للتوسع الإسرائيلي الذي لا ينتهي عبر الأراضي الفلسطينية، بما في ذلك هدم 55.000 منزل فلسطيني منذ عام 1967، والذي يحدث على أساس شهري تقريبًا، فضلاً عن قطع حقول أشجار الزيتون وحراثة المزارع الفلسطينية. وترتكب هذه الجرائم ضد الفلسطينيين لإفساح المجال أمام إقامة المستوطنات الإسرائيلية غير القانونية التي تدعمها الحكومة الإسرائيلية

 

ومن الواضح أن المستوطنات غير قانونية بموجب القانون الدولي، الذي يعترف بحق بحدود عام 1967. ومع ذلك، منذ عام 1967، شيدت إسرائيل 250 منها في جميع أنحاء الضفة الغربية، حيث يعيش أكثر من 633 ألف إسرائيلي في مساكن مدعومة وفاخرة في كثير من الأحيان مع حمامات سباحة ومروج مشذبة، وهو امتياز لا يمكن تصوره لجميع الفلسطينيين تقريبًا.

 

icahd.org/2020/03/15/end-home-demolitions-an-introduction/

 

www.ochaopt.org/sites/default/files/westbank_a0_25_06_202...

 

5) Never ending acts of settler terrorism against Palestinians. Western media rightly condemns occasional Palestinian attacks on Israeli civilians, including the appalling atrocities committed by Hamas on 7 October. However, for years illegal Israeli settlers in the West Bank have staged attacks against Palestinians, sometimes motivated sheerly by hatred, but often by the desire to inflict terror and to ethnically cleanse an area. The most recent incident was an attack on Wednesday 11 October in which masked settlers killed three Palestinian villagers and then killed a Palestinian father and son attending the funeral the next day.

 

وضع حد لأعمال الإرهاب التي يمارسها المستوطنون ضد الفلسطينيين. وتدين وسائل الإعلام الغربية عن حق الهجمات الفلسطينية العرضية على المدنيين الإسرائيليين، بما في ذلك الفظائع المروعة التي ارتكبتها حماس في 7 تشرين الأول/أكتوبر. ومع ذلك، ظل المستوطنون الإسرائيليون غير الشرعيين في الضفة الغربية لسنوات يشنون هجمات ضد الفلسطينيين، بدافع الكراهية في بعض الأحيان، ولكن في كثير من الأحيان بسبب التصميم على ترويع الفلسطينيين وتطهيرهم عرقيًا من منطقة ما. وكانت آخر الحوادث هي الهجوم الذي وقع يوم الأربعاء 11 تشرين الأول/أكتوبر، حيث قتل مستوطنون ملثمون ثلاثة قرويين فلسطينيين ثم قتلوا أبًا فلسطينيًا وابنه كانا يحضران الجنازة في اليوم التالي.

 

theintercept.com/2023/10/13/israel-settlers-gaza-palestin...

 

arabcenterdc.org/resource/the-dynamics-of-israeli-settler...

  

6) The division of Palestinian land by the separation wall. The 708 km Separation Wall, completed in 2005, was supposedly built to protect Israel from any Palestinians that might be able to enter the country without permission, but 85% of it runs up to 18 km inside the internationally recognised 1967 boundary ("Green Line"), frequently dividing Palestinians villagers from their farmland as well as running through the middle of farms and dividing arable land from key water supplies.

 

Some 10% of the West Bank now lies between the wall and the 1967 border, an area into which everyone, except Palestinians, is allowed entry. Not surprisingly, the International Court of Justice has issued an advisory opinion that the separation wall is a contravention of international law and in 2003 the UN General Assembly passed a resolution demanding its removal by 144 votes to just 4. Analysts also fear that the wall acts as a de facto annexation of all the Palestinian land that lies to the west of it.

 

en.wikipedia.org/wiki/Israeli_West_Bank_barrier

 

7) The myth of Palestinian rejectionism. Western mainstream media usually maintains falsely that it is Palestinians that have constantly rejected a two-state solution, whereas the opposite is the case. Arab states and the Palestinians have frequently made clear their willingness to negotiate a future two-state solution on the basis of the 1967 frontiers, while Israel is committed to preventing any such solution and continuing its territorial expansion.

 

As early as 1976, Egypt, Syria and Jordan presented a two-state solution resolution to the UN Security Council based on the 1967 Green Line (in accordance with the international consensus) but it was vetoed outright by the United States, even though Washington at the time publicly acknowledged the illegality of all Israeli settlements across the Palestinian West Bank. The same happened again in 1980.

 

Later in 1988, the PLO put forward their position in a declaration by the Palestinian National Council calling for a Palestinian state alongside Israel with guarantees of security to both countries. However in May 1989, Israel's Likud-Labour coalition government made it crystal clear that they would not accept an "additional" Palestinian state between Jordan and Israel, regardless of what Jordanians, Palestinians or the rest of the world might think. The founding charter of Benjamin Netanyahu's Likud Party still "flatly rejects the establishment of a Palestinian state west of the Jordan river."

 

en.wikipedia.org/wiki/Likud

 

8) The frequent killing by Israeli security forces of peaceful protesters, women, children, journalists and medics, including the assassination of renowned Al Jazeera correspondent Shireen Abu Akleh in May last year. In the nine months of 2023 prior to 7 October, 248 Palestinians, 40 of them children, had been killed by Israeli soldiers, but these deaths attracted almost no attention in the Western media. Palestinian lives have always been very cheap.

 

www.youtube.com/watch?v=KMIZTiN-TrE

 

9) The current refusal of Israel to allow any journalists into the Gaza Strip so they can see and report on, obviously at their own risk, the destruction and casualties and suffering of the civilian population.

 

10) An end to "administrative detentions" across the West Bank under which thousands of Palestinians have been detained without any right to be told under what charges they are being held, let alone any right to a free trial. As the Israeli human rights organisation B'Tselem explains

 

"Administrative detention is incarceration without trial or charge, alleging that a person plans to commit a future offense. It has no time limit, and the evidence on which it is based is not disclosed. Israel employs this measure extensively and routinely, and has used it to hold thousands of Palestinians for lengthy periods of time. While detention orders are formally reviewed, this is merely a semblance of judicial oversight, as detainees cannot reasonably mount a defense against undisclosed allegations. Nevertheless, courts uphold the vast majority of orders."

 

www.btselem.org/topic/administrative_detention

 

11) An end to Israeli soldiers controlling access to and frequently preventing Muslims from visiting the Al Aqsa Mosque in Israeli occupied East Jerusalem [Al Quds], considered the third holiest site in Islam after Mecca and Medina. On several occasions, Israeli troops and/or police have also attacked worshippers using batons, stun grenades and tear gas, igniting understandable anger across the Islamic World. Radical Israeli settlers also sometimes enter under the protection of Israeli security forces and some also perform Jewish rituals in contravention of current agreements about non-Muslims being allowed in, but only as visitors.

 

www.newarab.com/news/israeli-settlers-storm-aqsa-compound...

 

www.aljazeera.com/news/2019/3/12/israeli-police-assault-w...

 

######################################

 

This photograph has been used in the following online article by Chris Hedges

 

braveneweurope.com/chris-hedges-exterminate-the-brutes

 

as well as the following article by Sarah Gertler

 

www.laprogressive.com/the-media-in-the-united-states/sile...

 

San Sebastián es una localidad argentina de la Provincia de Buenos Aires, perteneciente al partido de Chivilcoy.

 

Cuenta con 166 habitantes (INDEC, 2010), lo que representa un incremento del 8,5% frente a los 153 habitantes (INDEC, 2001) del censo anterior.

 

En la línea general, San Sebastián es la última estación en haber sido levantada desde Puente Alsina por la firma constructora Hume Hnos., que edificaba las estaciones del FC Midland. Al llegar el tendido a San Sebastián, la sociedad constructora quedó en bancarrota como resultado de largas disputas por intereses con el Compañía General Buenos Aires. En ese momento (mediados de 1908) el Ferrocarril del Sud y el Ferrocarril del Oeste absorbieron al Midland y continuaron la construcción, reemplazando a la Hume por la Clarke, Bradbury y Co., lo que le da a las estaciones de aquí a Carhué un diseño arquitectónico totalmente distinto, similar a las estaciones del Ferrocarril Sarmiento.Fue construida por el Ferrocarril Midland de Buenos Aires, y abandonada en 1977 lo que obligó a un gran éxodo de los habitantes del lugar.

   

Las cañadas Las Saladas y La Rica, tributarias del río Salado en su curso medio, involucraron un espacio ocupado por pobladores desde las primeras décadas del siglo XIX, lugar propicio para la agricultura y para estrechar vínculos matrimoniales. Entre los primeros enfiteutas en esta región se cuenta a Santiago Barrios, Ceferino Bermúdes, Dionisio Moyano, entre otros.

 

Y es precisamente un descendiente de estos primeros pobladores que dará origen a la denominación de la localidad rural San Sebastián ubicada hacia el Este del partido de Chivilcoy, a unos 45 metros s.n.m. Santiago Barrios, bisabuelo materno de Sebastián Ca, había solicitado en enfiteusis al Estado en 1826, una suerte de estancia en el pasaje Las Saladas. En la mensura se destacan como antiguos pobladores a Domingo Irrasabal, Pedro Farías, José Bustamante, Francisco Lobo, Domingo Leguizamón, etc. Santiago Barrios había registrado su marca de ganado en 1822 y la propiedad recién la adquiere en 1837 totalizando 3, 5 leguas. La estancia fue subdividida entre los herederos.

 

Esta historia familiar se entronca con la extensión del ferrocarril Midland. A partir de 1897 el gobierno de Buenos Aires previó la construcción y explotación de nuevas líneas ferroviarias de trocha angosta, en zonas no cubiertas por las redes troncales. Pero pasaron años hasta que el 21 de diciembre de 1906, el gobernador Ignacio Darío Irigoyen aprobó los Estatutos de la Sociedad Compañía Ferrocarrilera Buenos Aires Midland Limitada, quién tendría a su cargo la construcción y explotación del ramal vinculado a la localidad de San

 

Sebastián, partido de Chivilcoy. El predio para la estación ferroviaria ubicada al E. del partido de Chivilcoy. El área que corresponde al actual pueblo de San Sebastián, involucraba en las primeras décadas del siglo XIX, a la suerte de estancia de Santiago Barrios heredada por sus descendientes, entre ellos Isidoro Barrios.

 

Aún cuando restaba el replanteo definitivo de la traza, apoderados del Midland suscribieron un convenio con la Isidora Barrios de Cá, nieta de Santiago Barrios y madre de Sebastián Ca (19), por el cual la propietaria de una amplia extensión de terreno se comprometía a donar la superficie para vías, estación y calles de circunvalación si se erigiera una plaza dentro de su campo.

 

El aludido convenio, suscrito el 29 de agosto de 1908, expresa el compromiso de donar gratuitamente a la empresa una fracción de terreno. “Acto inaugural del tramo Puente Alsina- San Sebastián

Una vez superado el estado de zozobra y extendido el riel hasta el Km. 128 – San Sebastián- la administración del Midland inició el comienzo de servicios el 15 de junio de 1909

En aquella mañana, empresarios, periodistas, personalidades e invitados especiales previamente congregados

en la Plaza de Mayo, partieron con rumbo a la estación

El nombre San Sebastián Era tradición asumida que las estaciones que iban conformándose en parajes camperos innominados, necesitaran la imposición de un nombre o indicativo, y en los casos como el que nos ocupa por donación de latierra –la plaza adoptada por padrino al ex titular de dominio o con algo que simbolizara una cercanía afectiva hacia o del donante. Entorno al nombre asignado, corresponde al homenaje por parte de la donante, Isidoro Barios de Ca a su querido hijo, Sebastián Cá, fallecido en plena juventud

The Messerschmitt Me 410 Hornisse ("Hornet") is a German heavy fighter and Schnellbomber used by the Luftwaffe during World War II. Though essentially an incremental improvement of the Me 210, it had a new wing plan, longer fuselage, and engines of greater power. The changes were significant enough to be designated the Me 410.

 

Development of the Me 210 had been under way since 1939 but the aircraft proved unstable and was never considered for full-scale production. Modifications to the layout produced the Me 210C and 210D, which proved somewhat superior. As studies progressed on the Me 210D, and with a separate parallel attempt to improve upon the 210 with the Messerschmitt Me 310 in the second half of 1943 — which provided almost no aerodynamic improvement over the 210's risky handling qualities — it was instead decided to introduce a new model, the Me 410.

 

The major change between the Me 210 and 410 was the introduction of the larger (at 44.5 litre, 2,715 in3 displacement) and more powerful Daimler-Benz DB 603A engines, which increased power to 1,750 PS (1,730 hp, 1,290 kW) compared to the 1,475 PS DB 605s used on the Me 210C - the interim Me 310 design experiment actually used the DB 603 powerplant choice first. The engine performance increased the Me 410's maximum speed to 625 km/h (388 mph), greatly improved rate of climb, service ceiling, and most notably the cruising speed which jumped to 579 km/h (360 mph). It also improved payload capability to the point where the aircraft could lift more war load than could fit into the bomb bay under the nose. To address this, shackles were added under the wings for four 50 kg (110 lb) bombs. The changes added an extra 680 kg (1,500 lb) to the Me 210 design, but the extra engine power more than made up for the difference.

 

The new version included a lengthened fuselage and new, automatic leading edge slats, both of which had been tested on Me 210s and were found to dramatically improve handling. The slats had originally been featured on the earliest Me 210 models, but had been removed on production models due to poor handling. When entering a steep turn, the slats had a tendency to open due to the high angle of attack, analogous to the opening of the slats during the landing approach. (This problem was first observed on the Bf 109V14 and V15 prototypes for the Bf 109E), which added to the problems keeping the aircraft flying smoothly. However, when the problems with the general lateral instability were addressed, this was no longer a real problem. The wing panels of the earlier Me 210 had been designed with a planform geometry that placed the aerodynamic center in a rearwards direction in comparison to the earlier Bf 110, giving the outer sections of the wing planform beyond each engine nacelle a slightly greater, 12.6° leading edge sweepback angle than the inner panels' 6.0° leading edge sweep angle. This resulted in unreasonable handling characteristics in flight for the original Me 210 design. The new Me 410 outer wing panels had their planform geometry revised to bring the aerodynamic center further forwards in comparison to the Me 210, thus making the leading edge sweepback of the outer panels identical to the inner wing panels with both having identical 5.5° sweepback angles, which improved handling.

 

Deliveries began in January 1943, two years late and continued until September 1944, by which point a total of 1,160 of all versions had been produced by Messerschmitt Augsburg and Dornier München. When it arrived, it was liked by its crews, even though its improved performance was not enough to protect it from the swarms of high performance Allied fighters they faced at this stage of the war.

 

The Me 410 night bomber proved to be an elusive target for the RAF night fighters. The first unit to operate over the UK was V./KG 2, which lost its first Me 410 on the night of 13–14 July 1943, when it was shot down by a de Havilland Mosquito of No. 85 Squadron RAF.

 

The Me 410 was also used as a bomber destroyer against the daylight bomber formations of the USAAF, upgraded through the available Umrüst-Bausätze factory conversion kits, all bearing a /U suffix, for the design — these suffixes could vary in meaning between subtypes. As one example, the earlier Me 410 A-1/U1 designation signified a camera-fitting in the undernose ordnance bay for reconnaissance use (as the A-3 was meant to do from its start), while the same /U1 designation or the later Me 410 B-2 signified a mount of a pair of the long-barreled, 30mm calibre MK 103 cannon in the undernose ordnance bay. The /U2 suffix designated a fitment of two additional 20 mm MG 151/20 cannons in the under-nose ordnance bay instead — the A-1/U4 subtype fitted the massive, 540 kg (1,190 lb) weight Bordkanone series 50 mm (2 in) BK 5 cannon, loaded with 21 rounds in the same undernose ordnance bay in place of either the /U1's cameras or MK 103s, or the /U2's added pair of MG 151/20 autocannon. For breaking up the bomber formations, many Me 410s also had four underwing tubular launchers, two per wing panel, firing converted 21 cm (8 in) Werfer-Granate 21 infantry barrage rockets. Two Geschwader, Zerstörergeschwader 26 and 76, were thus equipped with the Me 410 by late 1943.

 

They were moderately successful against unescorted bombers through 1943, with a considerable number of kills against USAAF day bomber formations being achieved. However, the Me 410 was no match in a dogfight with the lighter Allied single-engine fighters such as the North American P-51 Mustang and Supermarine Spitfire. In early 1944, the Me 410 formations encountered swarms of Allied fighters protecting the bomber streams, usually flying far ahead of the combat box formations as an air supremacy move in clearing the skies of any Luftwaffe opposition, resulting in the Me 410's previous successes against escorted bombers now often being offset by their losses. An example of this — as part of a campaign started two days earlier by the USAAF — was on 6 March 1944 during an attack on Berlin by 750 8th AF heavy bombers, when 16 Me 410s were shot down in return for eight B-17s and four P-51s (which were destroyed by Bf 109 and Fw 190 fighters escorting the Me 410s). The following month on 11 April, with 8th AF raids hitting Sorau, Rostock and Oschersleben, II./ZG 26's Me 410s accounted for a rare clear success, initially bringing down 10 B-17s without any losses. During the course of the same raid, their second sortie was intercepted by P-51s that destroyed eight Me 410s and three Bf 110s. Sixteen crewmen were killed and three wounded.

 

From mid-1944, despite being Hitler's favourite bomber destroyer, the Me 410 units were taken from Defence of the Reich duties and production was phased out in favour of heavily armed single-engine fighters as dedicated bomber destroyers, with the Me 410s remaining in service flying on reconnaissance duties only. Some Me 410s were used with Junkers Ju 188s during the Battle of Normandy, for high-altitude night reconnaissance.

 

The basic A-series aircraft were armed with two 7.92 mm (.312 in) MG 17 machine guns and two 20 mm MG 151/20 cannons in the nose and delivered as the Me 410 A-1 light bomber. The originally planned Me 410 A-2 heavy fighter was cancelled because the dual 30 mm (1.18 in) MK 103 cannon mount, also available for the later Me 410B-2 subtype as the aforementioned Umrüst-Bausatz /U1 factory ordnance upgrade available by 1944, was not ready in time. The Me 410A featured a bomb bay for carrying air-to-ground ordnance or for the installation of additional air-to-air weaponry or other equipment. Initially, three Umrüst-Bausätze (factory conversion kits) were available, U1 contained a palette of cameras for the photo-reconnaissance role, U2 two 20 mm MG 151/20 cannon with 250 rpg for the heavy fighter use, and U4 used the 50 mm (2 in) Bordkanone series weapon, the BK-5 cannon with 22 rounds (21 rounds to load and 1 extra round already loaded into the cannon), to turn either an Me 410A or B-series aircraft into a dedicated bomber destroyer. The BK 5 cannon - derived from the Panzer III tank's main armament, the 50 mm (2 in) KwK 39 L/60 - allowed the Me 410s to shoot at their targets from over 914 m (1,000 yd), a distance at which the bombers' defensive armament, usually consisting of the "light-barrel", .50 calibre AN/M2 aviation version of the M2 Browning machine guns, was useless. Frequent problems with jamming and limited ammunition supply, together with the extra 540 kg (1,200 lb) weight of the large-calibre gun under the nose, made the other anti-bomber versions of Me 410, especially those with extra 20 mm MG 151/20s, much more useful. The dedicated reconnaissance version Me 410 A-3 received a deeper fuselage for additional cameras and fuel. The Me 410 A-3 entered service in small numbers in early 1944, and equipped three long-range reconnaissance Aufklärungsstaffel reconnaissance squadrons, usually assembled with other recon squadrons as parts of larger, three or four-squadron Fernaufklärungsgruppen (one Gruppe on the Western Front and the other two on the Eastern Front).

 

The Me 410B-series was largely the same as the A-series, but replaced the pair of 7.92 mm (.312 in) MG 17s with a pair of the harder-hitting 13 mm (.51 in) MG 131 machine guns. The originally planned 1,900 hp (1,400 kW) DB 603G engine had been cancelled in early 1944, so all Me 410Bs used DB 603A or DB 603AA engines. The DB 603G would have increased the maximum speed to 630 km/h (392 mph), and cruising speed to 595 km/h (370 mph), although the weights increased once again. The versions were the same as with the A-series, the Me 410 B-1, and Me 410 B-3 filling the same roles as the earlier A-1, and A-3 versions, also with the options of using the same Umrüst-Bausätze factory conversion kits as the A-series aircraft used.

 

Several experimental models were also developed. The Me 410 B-5 added shackles under the fuselage to carry a torpedo, and removed the MG 131s in the nose to make room for the FuG 200 Hohentwiel 550 MHz UHF-band maritime patrol radar. The bomb bay was not used in this version in order to make room for a 650 L (170 US gal) fuel tank, and the rearward-firing remote turrets were replaced by another 700 L (180 US gal) fuel tank for long-range missions. The Me 410 B-6 was a similar anti-shipping conversion, but intended for the short-range coastal defence role only. For this mission, it did not use a torpedo, and was instead a simple modification of the B-1 with the FuG 200 radar. The Me 410 B-7/B-8 were updated B-3 reconnaissance models that were only built as prototypes.

 

The Me 410C was a high-altitude version drawn up in early 1944, with two new wing designs that increased span to 18.25 m (60 ft) or 20.45 m (67 ft). The larger wings allowed the gear to retract directly to the rear. A new universal engine mount would allow for the use of any of the DB 603JZ or BMW 801J turbocharged engines or the Jumo 213E two-stage mechanically supercharged engines, driving a new four-blade propeller with very wide blades. The BMW 801 radials were air-cooled and the DB 603 and Jumo 213 used an annular radiator, all housed as unitized Kraftei (power-egg) engine "modules" onto an airframe for ease of installation and field maintenance, so the normal under-wing radiators were removed. None were ever built, as Me 410 production was canceled before the engines matured.

 

The Me 410D was a simpler upgrade to the B-series to improve altitude performance, but not to the same degree as the C-series. It would be powered by the DB 603JZ engines, and had a revised forward fuselage to increase the field of view of the pilot and reduce drag. It also replaced portions of the outer wing panels with ones made of wood to conserve strategic materials. Several were built, but like many other attempts at wood construction by the German aviation industry late in World War II, the loss of the Goldschmitt Tego film factory in Wuppertal, in a Royal Air Force nighttime bombing raid, meant the acidic replacement adhesives available were too corrosive to the materials being bonded, and the wooden portions tended to fail. Production was eventually cancelled to concentrate on Bf 109Gs in August 1944, after 1,160 Me 410s had been built, the month after the Jägernotprogramm had gone into effect (Wikipedia).

110114 -- SAN VICENTE PACAYA --

Debido al incremento de la actividad del volcán Pacaya registrado hoy, la Secretaría Ejecutiva de la Coordinadora Nacional para la Reducción de Desastres –SE-CONRED-, movilizó a la Unidad de Prevención de Volcanes, Equipo de Respuesta Inmediata –ERI- y un Equipo de Intervención como medida de prevención en zonas cercanas al coloso.

Como parte de las acciones inmediatas las autoridades determinaron el abastecimiento de insumos en los Cuartos de Reacción Inmediata, ubicados en San Vicente Pacaya y Villa Canales. De igual manera, fue restringido el acceso a turistas al Parque Nacional Pacaya.

Foto/Conred

Chiroxiphia linearis

Toledo, saltarin colilargo

4 Esquinas, Orotina

 

Historia Natural

 

Reproducción

 

Los machos se reúnen en parejas o tríos y llevan a cabo despliegues de cortejo en una maraña densa y sombreada. El despliegue se realiza en una rama con los machos separados por 30 cm., los cuales en forma alterna aletean y brincan en línea recta hacia arriba, para descender de nuevo al mismo sitio. Los saltos se efectúan a menor altura a medida que la danza incrementa. La danza rueda de carreta usualmente se ejecuta con una hembra presente; cada macho aletea y da vuelta hacia atrás, y desciende al mismo sitio donde está su compañero de danza. Solo un macho de cada pareja o trío, con su plumaje de adulto, copula con la hembra. El macho alpha es el responsable de llevar a cabo todas las copulaciones, mientras que los machos beta asisten a los despliegues de cortejo. El papel del macho en la reproducción se circunscribe solamente al cortejo y a la cópula.

Las aves son muy sensibles a cualquier tipo de disturbio y los despliegues se interrumpen y se reinician continuamente. Finalmente, cuando el despliegue ha terminado, esto es señalado con una nota de tono alto emitida por un macho dominante, un macho ejecuta un único despliegue precopulatorio para la hembra, que para entonces se encuentra en la percha del despliegue. El macho cambia de percha y describe un círculo horizontal (de varios metros de diámetro) alrededor de la hembra; pasa de percha en percha, con un tipo de vuelo flotante muy lento, parecido al vuelo de la mariposa azul (Morpho sp.). Si este despliegue es exitoso, sobreviene la copulación y la hembra se retira sola para criar los pichones.

El éxito del apareamiento está correlacionado con el porcentaje, duración o persistencia del despliegue de cortejo; esto sugiere que la selección sexual influencia la cantidad de despliegues efectuados por los machos.

Su nido consiste en una copa poco profunda sujeta por un lado a una horqueta horizontal. Está hecho de micelios de hongos, musgo, hojas de hierbas, pecíolos y telaraña, con hojas secas colgantes en la parte de afuera. Se encuentra a una altura de 0.6 a 2 m., casi siempre sobre una quebrada seca o un espacio abierto.

Ponen 2 huevos y menos frecuentemente uno. Los huevos son de color crema claro, con manchas café chocolate entre escasas o abundantes, que miden de 20.3 a 24.0 mm. de largo y de 15.5 a 18.0 mm. de ancho. Se reproducen de abril a julio.

Las parejas macho-macho normalmente persisten a través de toda la época de cría y al menos algunas asociaciones persisten de año a año.

La hembra remueve las semillas, después que los pichones regurgitan, al igual que los excrementos.

 

Alimentación

 

Se alimentan de frutos, especialmente de tucuico papaturro de pava (Ardisia revoluta). También comen frutos de huevos de caballo (Stemmadenia donnell-smithii, Apocynaceae). Los individuos de esta especie aparentemente conocen la localización de los árboles en fructificación de su territorio, a los que visitan cada día, cada estación, y año tras año.

Se les ha observado consumir frutos de lagarto jobo (Sciadodendron excelsum).

 

Comportamiento

 

Los machos de esta especie requieren de 3 a 5 años para obtener el plumaje de adulto. Con cada muda sucesiva se asemejan más a los machos adultos y menos a las hembras; exhiben una mezcla de plumas azules, rojas, negras y verdes.

Habitat y Distribución

 

Habitat

 

Viven en el interior y en los bordes de los bosques de galería, en bordes de manglares y bosques secundarios maduros.

 

Distribución

 

Es una especie residente común, abundante en algunos sitios, desde el nivel del mar hasta cerca de los 1500 m. al norte de la vertiente del Pacífico; se extiende hasta la Reserva Biológica Carara y la región de Dota por el sur, inclusive el Valle Central. Se extiende a la vertiente del Caribe desde Ochomogo hasta Juan Viñas (żantiguamente?) y localmente a lo largo de la Cordillera de Guanacaste.

 

Distribución fuera de Costa Rica

 

Se localizan del sur de México hasta Costa Rica.

 

Distribución de Area de conservación

 

GuanacastePacifico CentralTempisqueArenalCordillera Volcanica Central

 

Descripción

 

Descripción científica

 

Mide 11.5 cm. y pesa 19 grs. Las timoneras centrales alargadas le agregan de 10 a 15 cm. al largo total de los machos adultos, y de 2 a 3 cm. al de las hembras. Poseen frente abrupta y patas anaranjadas distintivas; es el único saltarín en la mayor parte de su distribución.

El macho es eminentemente negro, pero la coronilla, incluso la cresta bífida en la parte de atrás de la coronilla, es de color carmesí resplandeciente. La espalda es azul celeste, y muestra las timoneras centrales largas y muy angostas.

La hembra es verde oliva por encima y en el pecho, y exhibe la garganta más clara con un tinte grisáceo. Por debajo, la región posterior es oliva pálido, y se torna blancuzco en la parte baja del abdomen y la región infracaudal. En raras ocasiones presenta algo de rojo en la coronilla.

Los ejemplares inmaduros requieren de 3 a 4 años para adquirir el plumaje definitivo de adulto; al año tienen la coronilla roja, la cara fusca y las timoneras centrales más o menos alargadas. A los 2 años tienen el resto de la cabeza negruzca, algo de azul en la espalda y negro por debajo.

Los especímenes juveniles son similares a la hembra adulta, pero con el abdomen algo más claro.

 

Información taxonómica

 

Reino: Animalia

Filo: Chordata

Clase: Aves

Orden: Passeriformes

Familia: Pipridae

Género: Chiroxiphia

Keyboardist, composer, visual programmer and producer Gerald Peter (AT) combines stylistic elements from rock, jazz, neoclassical, cinematic and electronic music. At the Ars Electronica Center's Deep Space 8K he presents his new album "Incremental Changes."

 

Photo: Gerald Peter

Orden: Passeriformes

 

Familia: Sylvidae

 

Genero: Sylvia

 

Nombre común: Curruca cabecinegra

 

Nombre cientifico: Sylvia melanocephala Macho

 

Nombre Ingles: Sardinian Warbler male

 

Lugar de captura: La portilla del Tietar, Monfrague, Extremadura

 

Estatus: Especie catalogada de interés especial (Catálogo Nacional de Especies Amenazadas). Estatus seguro. Se estima que su población está en incremento.

 

Longevidad: Pueden vivir hasta 5 años.

 

Peso: 10-14 gramos, aproximadamente.

 

Envergadura: con las alas abiertas pueden medir alrededor de 15-18 cms.

  

Longitud: 13 cms. aproximadamente.

 

Por: Cimarron mayor Panta

 

20 x5

20 Kaolin, 20 Dolomite, 20 Silica, 20 Spodumene, 18 Frit 169.

 

Although the Si:Al ratio indicates that the glaze is losing gloss as the alumina increases (adding free kaolin), I do not see a definitive difference in the overall gloss of the individual tiles from the least to the most. But with the added rutile, the effect of decreased variegation and phase separation is visually apparent. As the alumina increases and stiffens the glaze, the reactive surface decreases until it is almost uniformly melted and glossy. The first tile #1 with the least alumina, has a fine variegated surface and opalescence.

The recipe 20g of each

EPK, Dolomite, Silica, Spodumene, Frit 169

#1 Added 1/4 more Kaolin (5g) and recalculated for a total of 24g.

#2 Added 1/3 more Kaolin (6.6g) and ...a total of 25g.

#3 Added 2/4 more Kaolin (10g) and ...a total of 27g.

#4 Added 2/3 more Kaolin (13.3g)and...a total of 29g.

#5 Added 3/4 more Kaolin (15g) and... a total of 30g.

 

Alisa Liskin Clausen

San Sebastián es una localidad argentina de la Provincia de Buenos Aires, perteneciente al partido de Chivilcoy.

 

Cuenta con 166 habitantes (INDEC, 2010), lo que representa un incremento del 8,5% frente a los 153 habitantes (INDEC, 2001) del censo anterior.

 

En la línea general, San Sebastián es la última estación en haber sido levantada desde Puente Alsina por la firma constructora Hume Hnos., que edificaba las estaciones del FC Midland. Al llegar el tendido a San Sebastián, la sociedad constructora quedó en bancarrota como resultado de largas disputas por intereses con el Compañía General Buenos Aires. En ese momento (mediados de 1908) el Ferrocarril del Sud y el Ferrocarril del Oeste absorbieron al Midland y continuaron la construcción, reemplazando a la Hume por la Clarke, Bradbury y Co., lo que le da a las estaciones de aquí a Carhué un diseño arquitectónico totalmente distinto, similar a las estaciones del Ferrocarril Sarmiento.Fue construida por el Ferrocarril Midland de Buenos Aires, y abandonada en 1977 lo que obligó a un gran éxodo de los habitantes del lugar.

   

Las cañadas Las Saladas y La Rica, tributarias del río Salado en su curso medio, involucraron un espacio ocupado por pobladores desde las primeras décadas del siglo XIX, lugar propicio para la agricultura y para estrechar vínculos matrimoniales. Entre los primeros enfiteutas en esta región se cuenta a Santiago Barrios, Ceferino Bermúdes, Dionisio Moyano, entre otros.

 

Y es precisamente un descendiente de estos primeros pobladores que dará origen a la denominación de la localidad rural San Sebastián ubicada hacia el Este del partido de Chivilcoy, a unos 45 metros s.n.m. Santiago Barrios, bisabuelo materno de Sebastián Ca, había solicitado en enfiteusis al Estado en 1826, una suerte de estancia en el pasaje Las Saladas. En la mensura se destacan como antiguos pobladores a Domingo Irrasabal, Pedro Farías, José Bustamante, Francisco Lobo, Domingo Leguizamón, etc. Santiago Barrios había registrado su marca de ganado en 1822 y la propiedad recién la adquiere en 1837 totalizando 3, 5 leguas. La estancia fue subdividida entre los herederos.

 

Esta historia familiar se entronca con la extensión del ferrocarril Midland. A partir de 1897 el gobierno de Buenos Aires previó la construcción y explotación de nuevas líneas ferroviarias de trocha angosta, en zonas no cubiertas por las redes troncales. Pero pasaron años hasta que el 21 de diciembre de 1906, el gobernador Ignacio Darío Irigoyen aprobó los Estatutos de la Sociedad Compañía Ferrocarrilera Buenos Aires Midland Limitada, quién tendría a su cargo la construcción y explotación del ramal vinculado a la localidad de San

 

Sebastián, partido de Chivilcoy. El predio para la estación ferroviaria ubicada al E. del partido de Chivilcoy. El área que corresponde al actual pueblo de San Sebastián, involucraba en las primeras décadas del siglo XIX, a la suerte de estancia de Santiago Barrios heredada por sus descendientes, entre ellos Isidoro Barrios.

 

Aún cuando restaba el replanteo definitivo de la traza, apoderados del Midland suscribieron un convenio con la Isidora Barrios de Cá, nieta de Santiago Barrios y madre de Sebastián Ca (19), por el cual la propietaria de una amplia extensión de terreno se comprometía a donar la superficie para vías, estación y calles de circunvalación si se erigiera una plaza dentro de su campo.

 

El aludido convenio, suscrito el 29 de agosto de 1908, expresa el compromiso de donar gratuitamente a la empresa una fracción de terreno. “Acto inaugural del tramo Puente Alsina- San Sebastián

Una vez superado el estado de zozobra y extendido el riel hasta el Km. 128 – San Sebastián- la administración del Midland inició el comienzo de servicios el 15 de junio de 1909

En aquella mañana, empresarios, periodistas, personalidades e invitados especiales previamente congregados

en la Plaza de Mayo, partieron con rumbo a la estación

El nombre San Sebastián Era tradición asumida que las estaciones que iban conformándose en parajes camperos innominados, necesitaran la imposición de un nombre o indicativo, y en los casos como el que nos ocupa por donación de latierra –la plaza adoptada por padrino al ex titular de dominio o con algo que simbolizara una cercanía afectiva hacia o del donante. Entorno al nombre asignado, corresponde al homenaje por parte de la donante, Isidoro Barios de Ca a su querido hijo, Sebastián Cá, fallecido en plena juventud

YM Increment Bosphorus 6th July 2017

1 2 ••• 4 5 7 9 10 ••• 79 80