View allAll Photos Tagged configuration

Pere Marquette 1225 is an American Berkshire locomotive with a 2-8-4 wheel configuration built by Lima Locomotive Works in 1941 and operated until 1951. The PM1225 is only 1 of 2 Berkshire locomotives left and is most known as the basis for the Polar Express.

 

My Model is 10 studs wide, 110 studs long (with tender), and 15 bricks tall. All Parts are genuine lego Parts except for XXL wheels which are from Big Ben Bricks. This Model is Powered by 2 Power functions Large motors and battery box that also supplies power to the front headlight and firebox (Power functions components housed in coal tender). Working model on standard lego track gauge but works best with R104 track. I’ve been building this model on and off for the past year and is my first attempt at making an accurate scale model In lego. I’ve tried to include as much detail as I possible can and rebuilt it multiple times through out designing it to get proportions and scale as close as possible.

Gorgeous redhead model goddess modeling the new Sony AR7 ! With the black 45surf surfboard and some light beach reding! Swimsuit Bikini Model Goddess Shooting Stills (Sony AR7 with 35mm F/2.8 Carl Zeiss Lens) & Video (Sony NEX6) at the same time with the 45surfer philosophy bracket! I use it on every shoot, as there is so much beauty in the world and so little time! :) Writing a book on it! :)

 

The awesome news is that 2014 will bring us all the 45SURF goddesses and pro surfers Kelly Slater & Alana Blanchard in 4K Motion thanks to the new Sony 4K Handycam FDR-AX100 announced this week at the CES! 4K video is gonna rock:

 

45surfer.wordpress.com/

 

As I’m headed down to Australia to shoot the men’s and women’s Pro Surfing Quicksilver Pro, Roxy Pro, and Ripcurl Pro, I’m psyched that Sony will be releasing their new 4K camera–the Sony 4K Handycam FDR-AX100! The Sony 4K FDR-AX100 will be replacing the 1080p camcorders and NEX cameras in the below configurations, shooting 4K vidoe alongside my Sony A7r and Nikon D800E’s which I use for stills:

 

45surfer.wordpress.com/2014/01/07/extreme-stills-motion-s...

 

The clear image on the new Sony 4K camcorder rocks, as it will be at 18x at 4K resolution or 24x at HD resolution. Now as I will be shooting stills with the the new Tamron 150-600mm (Tamron SP 150-600mm f/5-6.3 Di VC USD Lens for Nikon) on my Nikon D800E or Sony A7r, the zoom will be approximately 20x for the stills, so 4K video at 18x zoom is ideal!

 

Here's some video shot at the same time as stills using a Sony A7R for the video camera--in a couple months this will be 4K video as soon as they ship the Sony 4K Handycam FDR-AX100 to me:

 

www.youtube.com/watch?v=RiOMrZIEzg8

www.youtube.com/watch?v=Y7gq_gCk0jE

 

Shot with the Nikon D800E and Nikon 70-200mm f/2.8G ED VR II AF-S Nikkor Zoom Lens with the B W 77mm XS-Pro Kaesemann Circular Polarizer with Multi-Resistant Nano Coating filter. I always, always shoot with a CP filter--even on cloudy days!

 

Enjoy the pretty goddesses and all the best on your epic hero's journey!

 

Modeling the black & gold & American flag "Gold 45 Revolver" Gold'N'Virtue swimsuits with the main equation to Moving Dimensions Theory on the swimsuits: dx4/dt=ic. Yes I have a Ph.D. in physics! :) You can read more about my research and Hero's Journey Physics here:

herosjourneyphysics.wordpress.com/ MDT PROOF#2: Einstein (1912 Man. on Rel.) and Minkowski wrote x4=ict. Ergo dx4/dt=ic--the foundational equation of all time and motion which is on all the shirts and swimsuits. Every photon that hits my Nikon D800e's sensor does it by surfing the fourth expanding dimension, which is moving at c relative to the three spatial dimensions, or dx4/dt=ic!

 

The goddess was tall, thin, fit, and gorgeous beach goddesses! A blond and a brunette with long, long silky hair! Poseidon would approve! If he were shooting them, he'd want to capture simultaneous photographic stills and video at the same time too.

 

Best on your hero's journey from Johnny Ranger McCoy! :)

 

Falling in love with the full frame 36 megapixel e mount Sony A7R! The models make pretty photographers. :)

 

Nikon D800E photos shot in RAW as I always shoot raw!

Artist's view of the configuration of Ariane 6 using two boosters (A62).

 

ESA and European industry are currently developing a new-generation launcher: Ariane 6. This follows the decision taken at the ESA Council meeting at Ministerial level in December 2014, to maintain Europe’s leadership in the fast-changing commercial launch service market while responding to the needs of European institutional missions.

 

This move is associated with a change in the governance of the European launcher sector, based on a sharing of responsibility, cost and risk by ESA and industry.

 

The participating states are: Austria, Belgium, France, Germany, Ireland, Italy, Netherlands, Norway, Romania, Spain, Sweden and Switzerland.

 

Credit: ESA–David Ducros, 2016

The Citroën DS (French pronunciation: ​[si.tʁɔ.ˈɛn de ɛs]) is a front-engine, front-wheel-drive executive car manufactured and marketed by the French company Citroën from 1955 to 1975 in sedan, wagon/estate and convertible body configurations. Italian sculptor and industrial designer Flaminio Bertoni and the French aeronautical engineer André Lefèbvre styled and engineered the car. Paul Magès developed the hydropneumatic self-levelling suspension.

 

Noted for its aerodynamic, futuristic body design and innovative technology, the DS set new standards in ride quality, handling, and braking—and was the first production car equipped with disc brakes.

 

Citroën sold 1,455,746 examples, including 1,330,755 built at the manufacturer's Paris Quai André-Citroën production plant.

 

The DS came third in the 1999 Car of the Century poll recognizing the world's most influential auto designs and was named the most beautiful car of all time by Classic & Sports Car magazine

 

MODEL HISTORY

After 18 years of secret development as the successor to the Traction Avant, the DS 19 was introduced on 5 October 1955 at the Paris Motor Show. In the first 15 minutes of the show, 743 orders were taken, and orders for the first day totalled 12,000. During the 10 days of the show, the DS took in 80,000 deposits; a record that has stood for over 60 years.

 

Contemporary journalists said the DS pushed the envelope in the ride vs. handling compromise possible in a motor vehicle.

 

To a France still deep in reconstruction after the devastation of World War II, and also building its identity in the post-colonial world, the DS was a symbol of French ingenuity. The DS was distributed to many territories throughout the world.

 

It also posited the nation's relevance in the Space Age, during the global race for technology of the Cold War. Structuralist philosopher Roland Barthes, in an essay about the car, said that it looked as if it had "fallen from the sky". An American advertisement summarised this selling point: "It takes a special person to drive a special car".

 

Because they were owned by the technologically aggressive tire manufacturer Michelin, Citroën had designed their cars around the technically superior radial tire since 1948, and the DS was no exception.

 

The car featured a novel hydropneumatic suspension including an automatic leveling system and variable ground clearance, developed in-house by Paul Magès. This suspension allowed the DS to travel quickly on the poor road surfaces common in France.

 

In addition, the vehicle had power steering and a semi-automatic transmission (the transmission required no clutch pedal, but gears still had to be shifted by hand), though the shift lever controlled a powered hydraulic shift mechanism in place of a mechanical linkage, and a fibreglass roof which lowered the centre of gravity and so reduced weight transfer. Inboard front brakes (as well as independent suspension) reduced unsprung weight. Different front and rear track widths and tyre sizes reduced the unequal tyre loading, which is well known to promote understeer, typical of front-engined and front-wheel drive cars.

 

As with all French cars, the DS design was affected by the tax horsepower system, which effectively mandated very small engines. Unlike the Traction Avant predecessor, there was no top-of-range model with a powerful six-cylinder engine. Citroën had planned an air-cooled flat-6 engine for the car, but did not have the funds to put the prototype engine into production.

 

The DS placed third in the 1999 Car of the Century competition, and fifth on Automobile Magazine's "100 Coolest Cars" listing in 2005. It was also named the most beautiful car of all time by Classic & Sports Car magazine after a poll of 20 world-renowned car designers, including Giorgetto Giugiaro, Ian Callum, Roy Axe, Paul Bracq, and Leonardo Fioravanti.

 

NAME

Both the DS and its simpler sibling, the ID, used a punning name. "DS" is pronounced in French as "Déesse" (goddess); "ID" is pronounced as "Idée" (idea). An intermediate model was called the DW.

 

MOTORSPORT

The DS was successful in motorsports like rallying, where sustained speeds on poor surfaces are paramount, and won the Monte Carlo Rally in 1959. In the 1000 Lakes Rally, Pauli Toivonen drove a DS19 to victory in 1962.

 

In 1966, the DS won the Monte Carlo Rally again, with some controversy as the competitive BMC Mini-Cooper team was disqualified due to rule infractions. Ironically, Mini was involved with DS competition again two years later, when a drunk driver in a Mini in Sydney Australia crashed into the DS that was leading the 1968 London–Sydney Marathon, 98 miles from the finish line. The DS was still competitive in the grueling 1974 London-Sahara-Munich World Cup Rally, where it won over 70 other cars, only 5 of which even completed the entire event.

 

TECHNICAL INNOVATION - HYDRAULIC SYSTEMS

In conventional cars, hydraulics are only used in brakes and power steering. In the DS they were also used for the suspension, clutch and transmission. The cheaper 1957 ID19 did have manual steering and a simplified power-braking system. An engine driven pump pressurizes the closed system to 2,400 pounds per square inch.

 

At a time when few passenger vehicles had independent suspension on all wheels, the application of the hydraulic system to the car's suspension system to provide a self-levelling system was an innovative move. This suspension allowed the car to achieve sharp handling combined with very high ride quality, frequently compared to a "magic carpet".

 

The hydropneumatic suspension used was pioneered the year before, on the rear of another car from Citroën, the top of range Traction Avant 15CV-H.

 

IMPACT ON CITROEN BRAND DEVELOPMENT

The 1955 DS cemented the Citroën brand name as an automotive innovator, building on the success of the Traction Avant, which had been the world's first mass-produced unitary body front-wheel-drive car in 1934. In fact, the DS caused such a huge sensation that Citroën was apprehensive that future models would not be of the same bold standard. No clean sheet new models were introduced from 1955 to 1970.

 

The DS was a large, expensive executive car and a downward brand extension was attempted, but without result. Throughout the late 1950s and 1960s Citroën developed many new vehicles for the very large, profitable market segments between the 2CV and the DS, occupied by vehicles like the Peugeot 403, Renault 16 and Ford Cortina, but none made it into production. Either they had uneconomic build costs, or were ordinary "me too" cars, not up to the company's high standard of innovation. As Citroën was owned by Michelin from 1934 to 1974 as a sort of research laboratory, such broad experimentation was possible. Michelin after all was getting a powerful advertisement for the capabilities of the radial tire Michelin had invented, when such experimentation was successful.

 

New models based on the small, utilitarian 2CV economy car were introduced, notably the 1961 Ami. It was also designed by Flaminio Bertoni and aimed to combine Three-box styling with the chassis of the 2CV. The Ami was very successful in France, but less so on export markets. Many found the styling controversial, and the car noisy and underpowered. The Dyane, was a modernised 2CV with a hatchback, competed with the 2CV inspired Renault 4 Hatchback. All these 2 cylinder models were very small, so there remained a wide market gap to the DS range all through the 1960s.

 

In 1970, Citroën finally introduced a car to target the mid-range - the Citroën GS, which won the "European car of the Year" for 1971 and sold 2.5 million units. It combined a small 55 horsepower flat-4 air-cooled engine with Hydropneumatic suspension. The intended 106 horsepower Wankel rotary-engined version with more power did not reach full production.

 

REPLACING THE DS

The DS remained popular and competitive throughout its production run. Its peak production year was 1970. Certain design elements like the somewhat narrow cabin, column-mounted gearstick, and separate fenders began to seem a little old-fashioned in the 1970s.

 

Citroën invested enormous resources to design and launch an entirely new vehicle in 1970, the SM, which was in effect a thoroughly modernized DS, with similar length, but greater width. The manual gearbox was a modified DS unit. The front disc brakes were the same design. Axles, wheel bearings, steering knuckles, and hydraulic components were either DS parts or modified DS parts.

 

The SM had a different purpose than replacing the 15-year-old DS design however - it was meant to launch Citroën into a completely new luxury grand touring market segment. Only fitted with a costly, exotic Maserati engine, the SM was faster and much more expensive than the DS. The SM was not designed to be a practical 4-door saloon suitable as a large family car, the key market for vehicles of this type in Europe. Typically, manufacturers would introduce low-volume coupés based on parts shared with an existing saloon, not as unique models, a contemporary example being the Mercedes-Benz SLC-Class.

 

The SM's high price and limited utility of the 2+2 seating configuration, meant the SM as actually produced could not seize the mantle from the DS.

 

So, while the design funds invested would allow the DS to be replaced by two cars - a 'modern DS' and the smaller CX, it was left to the CX alone to provide Citroën's large family or executive car in the model range.

 

The last DS came off the production line on 24 April 1975 - the manufacturer had taken the elementary precaution of building up approximately eight-month's of inventory of the "break" (estate/station wagon) version of the DS, to cover the period till Autumn 1975 when the estate/station wagon version of the CX would be introduced.

 

DEVELOPMENT

The DS always maintained its size and shape, with easily removable, unstressed body panels, but certain design changes did occur. During the 20-year production life improvements were made on an ongoing basis.

ID 19 submodel to extend brand downwards (1957–69)

 

The 1955 DS19 was 65% more expensive than the car it replaced, the Citroën Traction Avant. This affected potential sales in a country still recovering economically from World War II, so a cheaper submodel, the Citroën ID, was introduced in 1957.

 

The ID shared the DS's body but was less powerful and luxurious. Although it shared the engine capacity of the DS engine (at this stage 1,911 cc), the ID provided a maximum power output of only 69 hp compared to the 75 hp claimed for the DS19. Power outputs were further differentiated in 1961 when the DS19 acquired a Weber-32 twin bodied carburettor, and the increasing availability of higher octane fuel enabled the manufacturer to increase the compression ratio from 7.5:1 to 8.5:1. A new DS19 now came with a promised 83 hp of power. The ID19 was also more traditional mechanically: it had no power steering and had conventional transmission and clutch instead of the DS's hydraulically controlled set-up. Initially the basic ID19 was sold on the French market with a price saving of more than 25% against the DS, although the differential was reduced at the end of 1961 when the manufacturer quietly withdrew the entry level ID19 "Normale" from sale. A station wagon variant, the ID Break, was introduced in 1958.

 

D SPECIAL AND D SUPER (1970–75)

The ID was replaced by the D Spécial and D Super in 1970, but these retained the lower specification position in the range. The D Super was available with the DS21 2175ccm engine and a 5 speed gearbox, and named the D Super 5.

 

SERIE 2 - NOSE REDESIGN IN 1962

In September 1962, the DS was restyled with a more aerodynamically efficient nose, better ventilation and other improvements. It retained the open two headlamp appearance, but was available with an optional set of driving lights mounted on the front fenders. All models in the range changed nose design at the same time, including the ID and station wagon models.

Series 3 - Nose redesign in 1967 with Directional headlights

 

In late 1967, for the 1968 model year, the DS and ID was again restyled, by Robert Opron, who also styled the 1970 SM and 1974 CX. This version had a more streamlined headlamp design, giving the car a notably shark-like appearance. This design had four headlights under a smooth glass canopy, and the inner set swivelled with the steering wheel. This allowed the driver to see "around" turns, especially valuable on twisting roads driven at high speed at night.

 

Behind each glass cover lens, the inboard high-beam headlamp swivels by up to 80° as the driver steers, throwing the beam along the driver's intended path rather than uselessly across the curved road. The outboard low-beam headlamps are self-leveling in response to pitching caused by acceleration and braking.

 

However, this feature was not allowed in the US at the time (see World Forum for Harmonization of Vehicle Regulations), so a version with four exposed headlights that did not swivel was made for the US market.

 

This 'turning headlight' feature was new to the market - it had only been seen before on the very rare three headlight 1935 Tatra 77A. The Tucker, which never was mass-produced, had a central headlight that turned with the steering. 45 years later, it is now a commonly available feature, even in the United States.

 

NEW GREEN HYDRAULIC FLUID

The original hydropneumatic system used a vegetable oil liquide hydraulique végétal (LHV), similar to that used in other cars at the time, but later switched to a synthetic fluid liquide hydraulique synthétique (LHS). Both of these had the disadvantage that they are hygroscopic, as is the case with most brake fluids. Disuse allows water to enter the hydraulic components causing deterioration and expensive maintenance work. The difficulty with hygroscopic hydraulic fluid was exacerbated in the DS/ID due to the extreme rise and fall in the fluid level in the reservoir, which went from nearly full to nearly empty when the suspension extended to maximum height and the six accumulators in the system filled with fluid. With every "inhalation" of fresh moisture- (and dust-) laden air, the fluid absorbed more water.

 

For the 1967 model year, Citroën introduced a new mineral oil-based fluid LHM (Liquide Hydraulique Minéral). This fluid was much less harsh on the system. LHM remained in use within Citroën until the Xantia was discontinued in 2001.

 

LHM required completely different materials for the seals. Using either fluid in the incorrect system would completely destroy the hydraulic seals very quickly. To help avoid this problem, Citroën added a bright green dye to the LHM fluid and also painted all hydraulic elements bright green. The former LHS parts were painted black.

 

All models, including the station wagon and ID, were upgraded at the same time. The hydraulic fluid changed to the technically superior LHM in all markets except the US and Canada, where the change did not take place until January 1969, due to local regulations.

 

INTERNATIONAL SALES AND PRODUCTION

The DS was primarily manufactured at the Quai André-Citroën in the Javel neighborhood of Paris, with other manufacturing facilities in the United Kingdom, South Africa, the former Yugoslavia (mostly Break Ambulances), and Australia.

 

Australia constructed their own D variant in the 1960s at Heidelberg, Victoria, identified as the ID 19 "Parisienne." Australian market cars were fitted with options as standard equipment such as the "DSpecial DeLuxe" that were not available on domestic European models.

 

Until 1965, cars were assembled at the manufacturer's Slough premises, to the west of London, using a combination of French made knock down kits and locally sourced components, some of them machined on site. A French electrical system superseded the British one on the Slough cars in 1962, giving rise to a switch to "continental style" negative earthing. After 1965 cars for the British market were imported fully assembled from the company's French plant. The British-built cars are distinguished by their leather seats, wooden (early ID19 models) one piece plastic (early DS19 models) dashboards, chromed number plate mount let into the front bumper, and (on pre-1962 cars) Lucas-made electrics. These were all right hand drive cars.

 

The DS was built and sold in South Africa from 1959 to 1975.

 

The DS was sold in Japan, but the models were built in France and left hand drive.

 

DS IN NORTH AMERICA

The DS was sold in North America from 1956 to 1972. Despite its popularity in Europe, it didn't sell well in the United States, and little better in Canada. While promoted as a luxury car, it did not have the basic features that American buyers expected to find on such a vehicle, such as an automatic transmission, air conditioning, power windows, or a powerful engine. The DS was designed specifically to address the French market, with punitive tax horsepower taxation of large engines, as well as very poor roads – it's no great mystery that it was a fish out of water when those constraints were removed.

 

Jay Leno described the sporadic supply of spare parts as a problem for 1970s era customers, based on his early experiences working at a Citroën dealer in Boston.

 

The DS was expensive, with a 115 hp (86 kW) vehicle costing $4,170 in 1969, when the price was $4,500 for a 360 hp (268 kW) Buick Electra 225 4 door sedan. For all years, 38,000 units were sold.

 

US regulations at the time also banned one of the car's more advanced features: its composite headlamps with aerodynamic covered lenses. Based on legislation that dated from 1940, all automobiles sold in the U.S. were required to have round, sealed beam headlamps that produced a meager 75,000 candlepower. The powerful quartz iodine swiveling headlamps designed for the 1968 model DS represented so many performance improvements at once that they were far beyond what the regulations could allow.[50] Even the aerodynamic headlight covers were illegal – as seen on the 1968 Jaguar E-Type. It took the lobbying muscle of Ford to point out that the government was requiring two contradictory things – safety, by ensuring that all headlights were best-of-breed circa 1940, and fuel economy through the CAFE standard – by definition, cars with poor aerodynamics are sacrificing fuel economy. Composite bulb lamps and aerodynamic covered headlights were not permitted until 1983.

 

The European lamps were legal in Canada, including the directional headlamps.

 

The hydraulic fluid change in 1967 was another brain teaser for U.S. automotive regulators at the Department of Transportation. NHTSA follows the precautionary principle, also used by the Food and Drug Administration, where new innovations are prohibited until their developers can prove them to the regulators; this stifles the experimentation that automakers need to advance their products. NHTSA had already approved a brake fluid they considered safe – DOT 3 brake fluid, which is red and hygroscopic to promote internal rust. This completely different fluid, used in aircraft applications – the technically superior green LHM (Liquide Hydraulique Mineral) – took NHTSA two years to analyze for automotive use. Approval finally came in January 1969, so half the U.S. cars of the 1969 model year use red fluid and half use green fluid.

 

DESIGN VARIATIONS

PALLAS

In 1965 a luxury upgrade, the DS Pallas (after Greek goddess Pallas), was introduced. This included comfort features such as better noise insulation, a more luxurious (and optional leather) upholstery and external trim embellishments. From 1966 the Pallas model received a driver's seat with height adjustment.

 

STATION WAGON, FAMILIALE AND AMBULANCE

A station wagon version was introduced in 1958. It was known by various names in different markets (Break in France, Safari and Estate in the UK, Wagon in the US, and Citroën Australia used the terms Safari and Station-Wagon). It had a steel roof to support the standard roof rack. 'Familiales' had a rear seat mounted further back in the cabin, with three folding seats between the front and rear squabs. The standard Break had two side-facing seats in the main load area at the back.

 

The Ambulance configuration was similar to that of the Break, but with a 60/30 split in the rear folding seat to accommodate a stretcher. A 'Commerciale' version was also available for a time.

 

The Safari saw use as a camera car, notably by the BBC. The hydropneumatic suspension produces an unusually steady platform for filming while driving.

 

CONVERTIBLE

Rarest and most collectable of all DS variants, a convertible was offered from 1958 until 1973. The Cabriolet d'Usine (factory convertible) were built by French carrossier Henri Chapron, for the Citroën dealer network. It was an expensive car, so only 1,365 were sold. These DS convertibles used a special frame which was reinforced on the sidemembers and rear suspension swingarm bearing box, similar to, but not identical to the Break (Station Wagon) frame.

 

CHAPRON VARIATIONS

In addition, Chapron also produced a few coupés, non-works convertibles and special sedans (including the "Prestige", same wheelbase but with a central divider, and the "Lorraine" notchback).

 

BOSSAERT COUPE

Between 1959 and 1964, Hector Bossaert produced a coupé on a DS chassis shortened by 470 mm. While the front end remained unchanged, the rear end featured notchback styling.

 

THE REACTOR

In 1965, noted American auto customizer Gene Winfield created The Reactor, a Citroën DS chassis, with a turbocharged 180 hp (130 kW) flat-six engine from the Corvair driving the front wheels. Since the DS already had the engine behind the front wheels, the longer engine meant only one row of seats. This was draped in a streamlined, low slung, aluminum body.

 

The Reactor was seen in American Television programs of the era, such as Star Trek: The Original Series episode 2.25 ("Bread and Circuses)," Batman episodes 110 ("Funny Feline Felonies") and 111 (driven by Catwoman Eartha Kitt), and Bewitched, which devoted its episode 3.19 ("Super Car") to The Reactor.

 

MICHELIN PLR

The Michelin PLR is a mobile tire evaluation machine, based on the DS Break, built in 1972, later used for promotion.

Technical details

 

SUSPENSION

In a hydropneumatic suspension system, each wheel is connected, not to a spring, but to a hydraulic suspension unit consisting of a hydraulic accumulator sphere of about 12 cm in diameter containing pressurised nitrogen, a cylinder containing hydraulic fluid screwed to the suspension sphere, a piston inside the cylinder connected by levers to the suspension itself, and a damper valve between the piston and the sphere. A membrane in the sphere prevented the nitrogen from escaping. The motion of the wheels translated to a motion of the piston, which acted on the oil in the nitrogen cushion and provided the spring effect. The damper valve took place of the shock absorber in conventional suspensions. The hydraulic cylinder was fed with hydraulic fluid from the main pressure reservoir via a height corrector, a valve controlled by the mid-position of the anti-roll bar connected to the axle. If the suspension was too low, the height corrector introduced high-pressure fluid; if it was too high, it released fluid back to the fluid reservoir. In this manner, a constant ride height was maintained. A control in the cabin allowed the driver to select one of five heights: normal riding height, two slightly higher riding heights for poor terrain, and two extreme positions for changing wheels. (The correct term, oleopneumatic (oil-air), has never gained widespread use. Hydropneumatic (water-air) continues to be preferred overwhelmingly.)

 

The DS did not have a jack for lifting the car off the ground. Instead, the hydraulic system enabled wheel changes with the aid of a simple adjustable stand. To change a flat tyre, one would adjust the suspension to its topmost setting, insert the stand into a special peg near the flat tyre, then readjust the suspension to its lowermost setting. The flat tyre would then retract upwards and hover above ground, ready to be changed. This system, used on the SM also, was superseded on the CX by a screw jack that, after the suspension was raised to the high position, lifted the tire clear of the ground. The DS system, while impressive to use, sometimes dropped the car quite suddenly, especially if the stand was not placed precisely or the ground was soft or unlevel.

 

SOURCE AND RESERVE OF PRESSURE

The central part of the hydraulic system was the high pressure pump, which maintained a pressure of between 130 and 150 bar in two accumulators. These accumulators were very similar in construction to the suspension spheres. One was dedicated to the front brakes, and the other ran the other hydraulic systems. (On the simpler ID models, the front brakes operated from the main accumulator.) Thus in case of a hydraulic failure, the first indication would be that the steering became heavy, followed by the gearbox not working; only later would the brakes fail.

 

Two different hydraulic pumps were used. The DS used a seven-cylinder axial piston pump driven off two belts and delivering 175 bar (2,540 psi) of pressure. The ID19, with its simpler hydraulic system, had a single-cylinder pump driven by an eccentric on the camshaft.

 

GEARBOX AND CLUTCH

HYDRAULIQUE OR CITROMATIC

The DS was initially offered only with the "hydraulique" four-speed semi-automatic (bvh—"boîte de vitesses hydraulique") gearbox.

 

This was a four-speed gearbox and clutch, operated by a hydraulic controller. To change gears, the driver flicked a lever behind the steering wheel to the next position and eased-up on the accelerator pedal. The hydraulic controller disengaged the clutch, engaged the nominated gear, and re-engaged the clutch. The speed of engagement of the clutch was controlled by a centrifugal regulator sensing engine rpm and driven off the camshaft by a belt, the position of the butterfly valve in the carburettor (i.e., the position of the accelerator), and the brake circuit. When the brake was pressed, the engine idle speed dropped to an rpm below the clutch engagement speed, thus preventing friction while stopped in gear at traffic lights. When the brake was released, the idle speed increased to the clutch dragging speed. The car would then creep forward much like automatic transmission cars. This drop in idle throttle position also caused the car to have more engine drag when the brakes were applied even before the car slowed to the idle speed in gear, preventing the engine from pulling against the brakes. In the event of loss of hydraulic pressure (following loss of system fluid), the clutch would disengage, to prevent driving, while brake pressure reserves would allow safe braking to standstill.

 

MANUAL - FOUR SPEED AND FIVE-SPEED

The later and simpler ID19 had the same gearbox and clutch, manually operated. This configuration was offered as a cheaper option for the DS in 1963. The mechanical aspects of the gearbox and clutch were completely conventional and the same elements were used in the ID 19. In September 1970, Citroën introduced a five-speed manual gearbox, in addition to the original four-speed unit.

 

FULLY AUTOMATIC

In September 1971 Citroën introduced a 3-speed fully automatic Borg-Warner 35 transmission gearbox, on the DS 21 and later DS 23 models. It is ironic that the fully automatic transmission DS was never sold in the US market, where this type of transmission had gained market share so quickly that it became the majority of the market by this time. Many automatic DSs, fuel-injected DS 23 sedans with air conditioning, were sold in Australia.

 

ENGINES

The DS was originally designed around an air-cooled flat-six based on the design of the 2-cylinder engine of the 2CV, similar to the motor in the Porsche 911. Technical and monetary problems forced this idea to be scrapped.

 

Thus, for such a modern car, the engine of the original DS 19 was also old-fashioned. It was derived from the engine of the 11CV Traction Avant (models 11B and 11C). It was an OHV four-cylinder engine with three main bearings and wet liners, and a bore of 78 mm and a stroke of 100 mm, giving a volumetric displacement of 1911 cc. The cylinder head had been reworked; the 11C had a reverse-flow cast iron cylinder head and generated 60 hp (45 kW) at 3800 rpm; by contrast, the DS 19 had an aluminium cross-flow head with hemispherical combustion chambers and generated 75 hp (56 kW) at 4500 rpm.

 

Like the Traction Avant, the DS had the gearbox mounted in front of the engine, with the differential in between. Thus some consider the DS to be a mid engine front-wheel drive car.

 

The DS and ID powerplants evolved throughout its 20-year production life. The car was underpowered and faced constant mechanical changes to boost the performance of the four-cylinder engine. The initial 1911 cc three main bearing engine (carried forward from the Traction Avant) of the DS 19 was replaced in 1965 with the 1985 cc five-bearing wet-cylinder motor, becoming the DS 19a (called DS 20 from September 1969).

 

The DS 21 was also introduced for model year 1965. This was a 2175 cc, five main bearing engine; power was 109 hp This engine received a substantial increase in power with the introduction of Bosch electronic fuel injection for 1970, making the DS one of the first mass-market cars to use electronic fuel injection. Power of the carbureted version also increased slightly at the same time, owing to the employment of larger inlet valves.

 

Lastly, 1973 saw the introduction of the 2347 cc engine of the DS 23 in both carbureted and fuel-injected forms. The DS 23 with electronic fuel injection was the most powerful production model, producing 141 hp (105 kW).

 

IDs and their variants went through a similar evolution, generally lagging the DS by about one year. ID saloon models never received the DS 23 engine or fuel injection, although the Break/Familiale versions received the carburetted version of the DS 23 engine when it was introduced, supplemented the DS20 Break/Familiale.

 

The top of the range ID model, The DSuper5 (DP) gained the DS21 engine (the only model that this engine was retained in) for the 1973 model year and it was mated to a five-speed gearbox. This should not be confused with the 1985 cc DSuper fitted with an optional "low ratio" five-speed gearbox, or with the previous DS21M (DJ) five-speed.

 

IN POPULAR CULTURE

President Charles de Gaulle survived an assassination attempt at Le Petit-Clamart near Paris on August 22, 1962, planned by Algerian War veteran Jean-Marie Bastien-Thiry. The plan was to ambush the motorcade with machine guns, disable the vehicles, and then close in for the kill. De Gaulle praised the unusual abilities of his unarmoured DS with saving his life – the car was peppered with bullets, and the shots had punctured the tyres, but the car could still escape at full speed. This event was accurately recreated in the 1973 film The Day of the Jackal.

 

Beyond de Gaulle and the French aristocracy, the roomy DS also appealed to French taxi drivers.

 

Outside France, the car drew an eclectic customer mix, such as Cosmonaut Yuri Gagarin, Pope John XXIII, painter Marc Chagall, and actors Ken Berry, Jeff Bridges, and Rosamund Pike.

 

The DS appeared in several episodes of contemporary television series Mission: Impossible, including substantial appearances in 'The Slave' (ep. 2.06) and 'Robot' (ep. 4.09).

 

An ode to Jane Child's DS21 appears on her 1989 self-titled album.

 

In 1989, the film Back to the Future Part II featured a modified Citroen DS as a flying taxicab, when the main characters travel 30 years into the future (2015). Scarface (1983 film) with Al Pacino and the 2009 television series The Mentalist both feature the DS in key roles. According to Internet Movie Cars Database, the DS/ID has made over 2,000 film and television appearances so far.

 

Two films focus on the DS, including The Goddess of 1967 about a Japanese man purchasing a DS (goddess or déesse in French) in Australia, and 1995's Icelandic-Japanese road movie Cold Fever.

 

LEGACY

Citroën DS values have been rising – a 1973 DS 23 Injection Electronique "Decapotable" (Chapron Convertible) sold for EUR €176,250 (USD $209,738) at Christie's Rétromobile in February 2006. and a similar car sold by Bonhams in February 2009 brought EUR €343,497 (USD $440,436). On 18 September 2009 a 1966 DS21 Decapotable Usine was sold by Bonhams for a hammer price of UK£131,300. Bonhams sold another DS21 Decapotable (1973) on 23 January 2010 for EUR €189,000.

 

The DS's beloved place in French society was demonstrated in Paris on 9 October 2005 with a celebration of the 50th anniversary of its launch. 1,600 DS cars drove in procession past the Arc de Triomphe.

 

From 2005 to 2008, a young Frenchman named Manuel Boileau travelled around the world in a 1971 DS ambulance. It was an 80,000 kilometer journey across 38 countries called Lunaya World Tour. While traveling through Laos, he located the forlorn 1974 DS Prestige belonging to Sisavang Vatthana, the last King of the Kingdom of Laos, which is now preserved and restored by specialists in Bangkok.

 

In 2009, Groupe PSA created a new brand - DS Automobiles, intended as high quality, high specification variations on existing models, with differing mechanics and bodywork. This brand ranges across four models, the DS3, DS4, DS5, and the China-only SUV DS 6. The DS3, launched in March 2010, is based on Citroen's new C3, but is more customisable and unique, bearing some resemblance to the original DS, with its "Shark Fin" side pillar. These have created their own niches, with the DS4 being a mix of a crossover and a coupe and the DS5 mixing a coupe and an estate. Many feature hybrid-diesel engines to maximise efficiency.

 

WIKIPEDIA

With much fanfare, Air Canada recently launched its Premium Economy class, featuring wider seats, more legroom and better meals. Compared to the current economy class, the Premium Economy class seat pitch (legroom, space from one row to the next) is 6 inches farther and the seats are 1.5 inches wider.

 

Great!

 

What it doesn't tell you is for the regular cattle/ economy class, the seat pitch (legroom) will be 1 inch less and the seats 1.5 inches narrower than before.

 

As if people in the cattle class are not crammed enough already, now your fellow passengers are closer than ever to you!

 

I used to be such a fan of Air Canada, with the new seating, I probably would avoid Air Sardine Can ada as much as possible.

 

The current Air Canada Boeing 777-300 ER carries 349 passengers and the new seating arrangement would crowd 458 passengers together.

 

Honestly, I would prefer it if the airlines say due to higher costs, the cattle class air fares would increase by 25%, rather than cramming almost 30% more economy passengers into the same space.

 

Look closely at the above seating plan and you will realize the new configuration has 10 seats across, rather than 9 before.

 

www.aircanada.com/en/travelinfo/onboard/premium_economy_c...

 

www.aircanada.com/en/about/fleet/77W.html

INSTRUCTIONS AVAILABLE FOR P558 SUPERDUTY - MULTIPLE CONFIGURATIONS

 

On September 24, 2015, Ford unveiled the 2017 Ford Super Duty line at the 2015 State Fair of Texas. he frame is made from 95% high strength steel and the body (like the contemporary F-150) is made from 6000 series aluminum alloy. For the first time since 1999, both the Super Duty and F-150 lines are constructed using the same cab.

 

For 2017 production, the Super Duty line shares its powertrain lineup with its 2016 predecessor: a 6.2L gasoline V8, 6.8L V10 (F-450 and above), with a 6.7L diesel V8 available in all versions. The 6.2L gasoline V8 engine remains at 385 hp but torque rises from 405 lb-ft to 430 lb-ft. Additionally, the gasoline V8 produces its max torque at over 700 rpm less than the previous 405 lb-ft engine. The 6.7L diesel engine also remains at the same 440 hp (323 kW) but torque increases from 860 lb-ft upwards to 925 lb-ft.

 

The 2020 Super Duty debuted at the 2019 Chicago Auto Show. It features a revised grille and tailgate design, new wheel options, and higher-quality interior materials for the Limited trim. A new 7.3-liter gasoline engine is available. Nicknamed "Godzilla", it makes 430 horsepower and 475 lb-ft of torque.

 

Cab configurations continue to be 2-Door Regular Cab, 4-Door Super Cab, and 4-Door Super Crew Cab, with Short Box (6' 9") and Long Box (8') bed lengths. The truck will be available in F-250, F-350, and F-450 pickup truck models, and F-350, F-450, and F-550 chassis cab models. All will be available in both 4X2 and 4X4 configurations. The F-350 will be the only model available in either Single Rear Wheel (SRW) or Dual Rear Wheel (DRW) configurations, the F-450 and F-550 will only be available in a Dual Rear Wheel (DRW) configuration, and the F-250 will only be available in a Single Rear Wheel configuration.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

The KAI T-50 Golden Eagle (골든이글) is a family of South Korean supersonic advanced trainers and light combat aircraft, developed by Korea Aerospace Industries (KAI) with Lockheed Martin. The T-50 is South Korea's first indigenous supersonic aircraft and one of the world's few supersonic trainers.

 

The T-50 program started in the late Nineties and was originally intended to develop an indigenous trainer aircraft capable of supersonic flight, to train and prepare pilots for the KF-16 and F-15K, replacing trainers such as T-38 and A-37 that were then in service with the ROKAF. Prior South Korean aircraft programs include the turboprop KT-1 basic trainer produced by Daewoo Aerospace (now part of KAI), and license-manufactured KF-16.

 

The mother program, code-named KTX-2, began in 1992, but the Ministry of Finance and Economy suspended the original project in 1995 due to financial constraints. The basic design of the aircraft was set by 1999, and eventually the development of the aircraft was funded 70% by the South Korean government, 17% by KAI, and 13% by Lockheed Martin.

 

In general, the T-50 series of aircraft closely resembles the KF-16 in configuration, but it actually is a completely new design: the T-50 is 11% smaller and 23% lighter than an F-16, and in order to create enough space for the two-seat cockpit, the air intake was bifurcated and placed under the wing gloves, resembling the F/A-18's layout.

 

The aircraft was formally designated as the T-50 'Golden Eagle' in February 2000, the T-50A designation had been reserved by the U.S. military to prevent it from being inadvertently assigned to another aircraft model. Final assembly of the first T-50 took place between 15 January and 14 September 2001. The first flight of the T-50 took place in August 2002, and initial operational assessment from 28 July to 14 August 2003.

 

The trainer has a cockpit for two pilots in a tandem arrangement, both crew members sitting in "normal" election seats, not in the F-16's reclined position. The high-mounted canopy is applied with stretched acrylic, providing the pilots with good visibility, and has been tested to offer the canopy with ballistic protection against 4-lb objects impacting at 400 knots.

 

The ROKAF, as original development driver, placed an initial production contract for 25 T-50s in December 2003, with aircraft scheduled to be delivered between 2005 and 2009. Original T-50 aircraft were equipped with the AN/APG-67(v)4 radar from Lockheed Martin. The T-50 trainer is powered by a GE F404 engine built under license by Samsung Techwin. Under the terms of the T-50/F404-102 co-production agreement, GE provides engine kits directly to Samsung Techwin who produces designated parts as well as performing final engine assembly and testing.

 

The T-50 program quickly expanded beyond a pure trainer concept to include the TA-50 armed trainer aircraft, as well as the FA-50 light attack aircraft, which has already similar capabilities as the multirole KF-16. Reconnaissance and electronic warfare variants were also being developed, designated as RA-50 and EA-50.

 

The TA-50 variant is a more heavily armed version of the T-50 trainer, intended for lead-in fighter training and light attack roles. It is equipped with an Elta EL/M-2032 fire control radar and designed to operate as a full-fledged combat platform. This variant mounts a lightweight three-barrel cannon version of the M61 Vulcan internally behind the cockpit, which fires linkless 20 mm ammunition. Wingtip rails can accommodate the AIM-9 Sidewinder missile, a variety of additional weapons can be mounted to underwing hardpoints, including precision-guided weapons, air-to-air missiles, and air-to-ground missiles. The TA-50 can also mount additional utility pods for reconnaissance, targeting assistance, and electronic warfare. Compatible air-to-surface weapons include the AGM-65 Maverick missile, Hydra 70 and LOGIR rocket launchers, CBU-58 and Mk-20 cluster bombs, and Mk-82, -83, and -84 general purpose bombs.

 

Among the operators of the TA-50 are the Philippines, Thailand and the ROKAF, and the type has attracted a global interest, also in Europe. The young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) chose, soon after the country's independence from the United Kingdom, after its departure from the European Union in 2017, the TA-50 as a complement to its initial procurements and add more flexibility to its small and young air arm.

 

According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six [Lockheed Martin] C-130J Hercules, and a helicopter squadron”.

 

According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.

This plan was immediately set into action after the country's independence in late 2017 with the purchase of twelve refurbished Saab JAS 39A Gripen interceptors for Quick Reaction Alert duties and upgraded, former Swedish Air Force Sk 90 trainers for the RoScAC. But these second hand machines were just the initial step in the mid-term procurement plan.

 

The twelve KAI TA-50 aircraft procured as a second step were to fulfill the complex requirement for a light and cost-effective multi-purpose aircraft that could be used in a wide variety of tasks: primarily as an advanced trainer for supersonic flight and as a trainer for the fighter role (since all Scottish Gripens were single seaters and dedicated to the interceptor/air defense role), but also as a light attack and point defense aircraft.

 

Scotland was offered refurbished F-16C and Ds, but this was declined as the type was deemed to be too costly and complex. Beyond the KAI T-50, the Alenia Aermacchi M-346 Master and the BAe Hawk were considered, too, but, eventually, a modified TA-50 that was tailored to the RoScAC’s procurement plans was chosen by the Scottish government.

 

In order to fulfill the complex duty profile, the Scottish TA-50s were upgraded with elements from the FA-50 attack aircraft. They possess more internal fuel capacity, enhanced avionics, a longer radome and a tactical datalink. Its EL/M-2032 pulse-Doppler radar has been modified so that it offers now a range two-thirds greater than the TA-50's standard radar. It enables the aircraft to operate in any weather, detect surface targets and deploy AIM-120 AAMs for BVR interceptions. The machines can also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.

 

Another unique feature of the Scottish Golden Eagle is its powerplant: even though the machines are originally powered by a single General Electric F404 afterburning turbofan and designed around this engine, the RoScAC TF-50s are powered by a Volvo RM12 low-bypass afterburning turbofan. These are procured and serviced through Saab in Sweden, as a part of the long-term collaboration contract for the RoScAC’s Saab Gripen fleet. This decision was taken in order to decrease overall fleet costs through a unified engine.

 

The RM12 is a derivative of the General Electric F404-400. Changes from the standard F404 includes greater reliability for single-engine operations (including more stringent birdstrike protection) and slightly increased thrust. Several subsystems and components were also re-designed to reduce maintenance demands, and the F404's analogue Engine Control Unit was replaced with the Digital Engine Control – jointly developed by Volvo and GE – which communicates with the cockpit through the digital data buses and, as redundancy, mechanical calculators controlled by a single wire will regulate the fuel-flow into the engine.

 

Another modification of the RoScAC’s TA-50 is the exchange of the original General Dynamics A-50 3-barrel rotary cannon for a single barrel Mauser BK-27 27mm revolver cannon. Being slightly heavier and having a lower cadence, the BK-27 featured a much higher kinetic energy, accuracy and range. Furthermore, the BK-27 is the standard weapon of the other, Sweden-built aircraft in RoScAC service, so that further synergies and cost reductions were expected.

 

The Scottish Department of National Defense announced the selection of the TA-50 in August 2018, after having procured refurbished Saab Sk 90 and JAS 39 Gripen from Sweden as initial outfit of the country's small air arm with No. 1 Squadron based at Lossiemouth AB.

 

Funding for the twelve aircraft was approved by Congress on September 2018 and worth € 420 mio., making the Golden Eagle the young country’s first brand new military aircraft. Deliveries of the Golden Hawk TF.1, how the type was officially designated in Scottish service, began in November 2019, lasting until December 2020.

The first four Scottish Golden Hawk TF.1 aircraft were allocated to the newly established RoScAC No. 2 Squadron, based at Leuchars, where the RoScAC took control from the British Army. The latter had just taken over the former air base from the RAF in 2015, losing its “RAF air base” status and was consequentially re-designated “Leuchars Station”, primarily catering to the Royal Scots Dragoon Guards who have, in the meantime, become part of Scotland’s Army Corps. The brand new machines were publically displayed on the shared army and air corps facility in the RoScAC’s new paint scheme on 1st of December 2019 for the first time, and immediately took up service.

 

General characteristics:

Crew: 2

Length: 13.14 m (43.1 ft)

Wingspan (with wingtip missiles): 9.45 m (31 ft)

Height: 4.94 m (16.2 ft)

Wing area: 23.69 m² (255 ft²)

Empty weight: 6,470 kg (14,285 lb)

Max. takeoff weight: 12,300 kg (27,300 lb)

 

Powerplant:

1× Volvo RM12 afterburning turbofan, rated at 54 kN (12,100 lbf) dry thrust

and 80.5 kN (18,100 lbf) with afterburner

 

Performance:

Maximum speed: Mach 1.5 (1,640 km/h, 1,020 mph at 9,144 m or 30,000 ft)

Range: 1,851 km (1,150 mi)

Service ceiling: 14,630 m (48,000 ft)

Rate of climb: 198 m/s (39,000 ft/min)

Thrust/weight: 0.96

Max g limit: -3 g / +8 g

 

Armament:

1× 27mm Mauser BK-27 revolver cannon with 120 rounds

A total of 7 hardpoints (4 underwing, 2 wingtip and one under fuselage)

for up to 3,740 kg (8,250 lb) of payload

  

The kit and its assembly:

A rare thing concerning my builds: an alternative reality whif. A fictional air force of an independent Scotland crept into my mind after the hysterical “Brexit” events in 2016 and the former (failed) public vote concerning the independence of Scotland from the UK. What would happen to the military, if the independence would take place, nevertheless, and British forces left the country?

 

The aforementioned Scottish National Party (SNP) paper from 2013 is real, and I took it as a benchmark. Primary focus would certainly be set on air space defense, and the Gripen appears as a good and not too expensive choice. The Sk 90 is a personal invention, but would fulfill a good complementary role.

Nevertheless, another multi-role aircraft would make sense as an addition, and both M-346 and T-50 caught my eye (Russian options were ruled out due to the tense political relations), and I gave the TA-50 the “Go” because of its engine and its proximity to the Gripen.

 

The T-50 really looks like the juvenile offspring from a date between an F-16 and an F-18. There’s even a kit available, from Academy – but it’s a Snap-Fit offering without a landing gear but, as an alternative, a clear display that can be attached to the engine nozzle. It also comes with stickers instead of waterslide decals. This sounds crappy and toy-like, but, after taking a close look at kit reviews, I gave it a try.

 

And I am positively surprised. While the kit consists of only few parts, moulded in the colors of a ROCAF trainer as expected, the surfaces have minute, engraved detail. Fit is very good, too, and there’s even a decent cockpit that’s actually better than the offering of some “normal” model kits. The interior comes with multi-part seats, side consoles and dashboards that feature correctly shaped instrument details (no decals). The air intakes are great, too: seamless, with relatively thin walls, nice!

 

So far, so good. But not enough. I could have built the kit OOB with the landing gear tucked up, but I went for the more complicated route and trans-/implanted the complete landing gear from an Intech F-16, which is available for less than EUR 5,- (and not much worth, to be honest). AFAIK, there’s white metal landing gear for the T-50 available from Scale Aircraft Conversions, but it’s 1:48 and for this set’s price I could have bought three Intech F-16s…

 

But back to the conversion. This landing gear transplantation stunt sounds more complicated as it actually turned out to be. For the front wheel well I simply cut a long opening into the fuselage and added inside a styrene sheet as a well roof, attached under the cockpit floor.

For the main landing gear I just opened the flush covers on the T-50 fuselage, cut out the interior from the Intech F-16, tailored it a little and glued it into its new place.

 

This was made easy by the fact that the T-50 is a bit smaller than the F-16, so that the transplants are by tendency a little too large and offer enough “flesh” for adaptations. Once in place, the F-16 struts were mounted (also slightly tailored to fit well) and covers added. The front wheel cover was created with 0.5 mm styrene sheet, for the main covers I used the parts from the Intech F-16 kit because they were thinner than the leftover T-50 fuselage parts and feature some surface detail on the inside. They had to be adapted in size, though. But the operation worked like a charm, highly recommended!

 

Around the hull, some small details like missing air scoops, some pitots and antennae were added. In a bout of boredom (while waiting for ordered parts…) I also added static dischargers on the aerodynamic surfaces’ trailing edges – the kit comes with obvious attachment points, and they are a small detail that improves the modern look of the T-50 even more.

 

Since the Academy kit comes clean with only a ventral drop tank as ordnance, underwing pylons from a SEPECAT Jaguar (resin aftermarket parts from Pavla) and a pair of AGM-65 from the Italeri NATO Weapons set plus launch rails were added, plus a pair of Sidewinders (from a Hasegawa AAM set, painted as blue training rounds) on the wing tip launch rails.

Since the T-50 trainer comes unarmed, a gun nozzle had to be added – its position is very similar to the gun on board of the F-16, on the upper side of the port side LERX. Another addition are conformal chaff/flare dispensers at the fin’s base, adding some beef to the sleek aircraft.

  

Painting and markings:

I did not want a grey-in-grey livery, yet something “different” and rather typical or familiar for the British isles. My approach is actually a compromise, with classic RAF colors and design features inspired by camouflage experiments of the German Luftwaffe on F-4F Phantoms and Alpha Jets in the early Eighties.

 

For the upper sides I went for a classic British scheme, in Dark Green and Dark Sea Grey (Humbrol 163 and 164), colors I deem very appropriate for the Scottish landscape and for potential naval operations. These were combined with elements from late RAF interceptors: Barley Grey (Humbrol 167) for the flanks including the pylons, plus Light Aircraft Grey (Humbrol 166) for the undersides, with a relatively high waterline and a grey fin, so that a side or lower view would rather blend with the sky than the ground below.

 

Another creative field were the national markings: how could fictional Scottish roundels look like, and how to create them so that they are easy to make and replicate (for a full set for this kit, as well as for potential future builds…)? Designing and printing marking decals myself was an option, but I eventually settled for a composite solution which somewhat influenced the roundels’ design, too.

My Scottish roundel interpretationconsists of a blue disk with a white cross – it’s simple, different from any other contemporary national marking, esp. the UK roundel, and easy to create from single decal parts. In fact, the blue roundels were die-punched from blue decal sheet, and the cross consists of two thin white decal strips, cut into the correct length with the same stencil, using generic sheet material from TL Modellbau.

 

Another issue was the potential tactical code, and a small fleet only needs a simple system. Going back to a WWII system with letter codes for squadrons and individual aircraft was one option, but, IMHO, too complicated. I adopted the British single letter aircraft code, though, since this system is very traditional, but since the RoScAC would certainly not operate too many squadrons, I rather adapted a system similar to the Swedish or Spanish format with a single number representing the squadron. The result is a simple 2-digit code, and I adapted the German system of placing the tactical code on the fuselage, separated by the roundel. Keeping British traditions up I repeated the individual aircraft code letter on the fin, where a Scottish flag, a small, self-printed Fife coat-or-arms and a serial number were added, too.

 

The kit saw only light weathering and shading, and the kit was finally sealed with matt acrylic varnish (Italeri).

  

Creating this whif, based on an alternative historic timeline with a near future perspective, was fun – and it might spawn more models that circle around the story. A Scottish Sk 90 and a Gripen are certain options (and for both I have kits in the stash…), but there might also be an entry level trainer, some helicopters for the army and SAR duties, as well as a transport aircraft. The foundation has been laid out, now it’s time to fill Scotland’s history to come with detail and proof. ;-)

 

Besides, despite being a snap-fit kit, Academy’s T-50 is a nice basis, reminding me of some Hobby Boss kits but with less flaws (e .g. most of the interiors), except for the complete lack of a landing gear. But with the F-16 and Jaguar transplants the simple kit developed into something more convincing.

A VIP-configuration Boeing 727, seen parked at Stansted Airport.

 

Built in 1968, this is one of the shorter-length 727s, now designated as a -100, and has been 'quiet wing' modifications to help with engine noise regulations.

 

From what I can ascertain, its former owner was a Donald Trump of the USA! It was formerly registered as VP-BDJ; the N800AK registration appears to be reused from another B727.

Once you understand how this system works, you can play around with it and make this other configuration of stars.

 

Folded from a square of 20 cm on the side of "Casa de Papel" paper.

 

Using Ale Beber's technique for the KNB Star, similar to some of the works of O'Sorigami.

Guitar, 1912

Manuel Ramirez (1864-1916), Workshop

Madrid, Spain

Wood; Total L. 96.5 cm (37 5/8 in.); L. of body 47.9 cm (18 7/8 in.); L. of string 68 cm (26 3/4 in.); L. of lower bouts 26.9 cm (10 9/16 in.); L. of middle bouts 18.9 cm (7 7/16 in.); L. of upper bouts 22.1 cm (8 3/4 in.)

 

Andrés Segovia launched his career playing this guitar; he concertized and recorded with it from 1912 to 1937 and played it at his United States debut in New York's Town Hall in 1929. The famous luthier Manuel Ramírez was employed at Spain's National Conservatory in Madrid when this guitar was assembled in his shop in 1912.

 

From the plugged holes in the peghead, it would appear that this instrument was originally made as an eleven-string guitar, a design popular in Andalusia during the last half of the nineteenth century. It was undoubtedly converted to its present six-string configuration prior to its acquisition of Segovia.

 

In addition to the label of Manuel Ramirez, a repair label was placed inside by Santos Hernàndez, who worked for Ramirez and is believed to have been involved in its construction. The two-piece back is made of Brazilian rosewood, the two-piece top is ol spruce.

 

Gift of Emilita Segovia, Marquessa of Salobreña, 1986 (1986.353.2)

 

**

The Metropolitan Museum of Art's permanent collection contains more than two million works of art from around the world. It opened its doors on February 20, 1872, housed in a building located at 681 Fifth Avenue in New York City. Under their guidance of John Taylor Johnston and George Palmer Putnam, the Met's holdings, initially consisting of a Roman stone sarcophagus and 174 mostly European paintings, quickly outgrew the available space. In 1873, occasioned by the Met's purchase of the Cesnola Collection of Cypriot antiquities, the museum decamped from Fifth Avenue and took up residence at the Douglas Mansion on West 14th Street. However, these new accommodations were temporary; after negotiations with the city of New York, the Met acquired land on the east side of Central Park, where it built its permanent home, a red-brick Gothic Revival stone "mausoleum" designed by American architects Calvert Vaux and Jacob Wrey Mold. As of 2006, the Met measures almost a quarter mile long and occupies more than two million square feet, more than 20 times the size of the original 1880 building.

 

In 2007, the Metropolitan Museum of Art was ranked #17 on the AIA 150 America's Favorite Architecture list.

 

The Metropolitan Museum of Art was designated a landmark by the New York City Landmarks Preservation Commission in 1967. The interior was designated in 1977.

 

National Historic Register #86003556

The iPhone 7 Plus is the first iPhone to have a dual camera imaging configuration. The use of lenses with different focal lengths has greatly expanded the options for different composition without having to fall back on software zooming or cropping in tighter on the subject.

 

Ztylus and Kamerar have joined forces to produce a lens systems to utilize the dual configuration of the iPhone 7 Plus. Their "Zoom" system (see links below) consists of 2 pairs of lenses that slide over the native lenses. One of these pairs brings a fisheye lens (160 degree field of view, x 0.35 magnification) and a telephoto lens (x 1.5 magnification) to the x1 and x2 native lenses respectively. The other provides a pair of x10 macro lenses for the the x1 and x2 native lenses.

 

The photograph here was taken using one of the x10 Kamerar/Ztylus macro lenses and the x2 native lense. Although I have only been able to carry out a fairly limited set of trials so far with the macro lenses, I have been quite impressed with the sharpness of the results, as well as the low levels of geometric distortion and vignetting around the edges.

 

----------

Links for background information ...

 

kamerar.com/products/kamerar-zoom-lens-kit-for-iphone-7-plus

ztylus.com/products/kamerar-zoom-lens-kit-for-iphone-7-plus

 

----------

 

[ Location - Barton, Australian Capital Territory, Australia ]

 

----------

Photography notes ...

The photograph was taken using the following hardware ...

- iPhone 7 Plus.

- 56mm* (x2) lens [* 35mm equivalent value of the focal length].

- Gizmon TLR Bluetooth Remote Shutter.

- Gray Card made by ProCamera.

 

I acquired the photograph (4032 x 3024 pixels) with an ISO of 20, exposure time of 1/450 seconds, and an aperture of f/1.8. The iPhone flash was used. A x10 Kamerar/Ztylus macro lens was used in combination with the x2 native lens.

 

Post-processing ...

- I downloaded the photographs from my iPhone 7 Plus to the MacBook Air 11" using a lightning/USB cable and the iExplorer app (Macroplant).

- Sometimes I do this over WiFi using PhotoSync (touchbyte GmbH). Notably, I have found that iExplorer does not handle properly the images that have been edited using the native Apple iPhone "Photos" app (i.e., it will only transfer the original image, not the edited image).

- I viewed and sorted the photographs that were taken using XnViewMP (Pierre-e-Gougelet) and Lightroom (Adobe Systems Incorporated). Saved the images that had some chance of being posted online.

 

Lightroom - Applied basic lighting and color adjustments.

PhotoSync - Copied the JPEG file to my iPad Mini for final processing, review, enjoyment, and posting to social media.

 

@MomentsForZen #MomentsForZen #MFZ #iPhone7Plus #iPhone #iExplorer #Lightroom #XnViewMP #PhotoSync #Kamerar #Ztylus #Macro #Closeup #Moth #Antennae

The Supermarine Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and many other Allied countries during and after the Second World War. The Spitfire was built in many variants, using several wing configurations, and was produced in greater numbers than any other British aircraft. It was also the only British fighter to be in continuous production throughout the war. The Spitfire continues to be a popular aircraft, with approximately 55 Spitfires being airworthy, while many more are static exhibits in aviation museums all over the world.

 

The Spitfire was designed as a short-range, high-performance interceptor aircraft by R. J. Mitchell, chief designer at Supermarine Aviation Works (which operated as a subsidiary of Vickers-Armstrong from 1928). In accordance with its role as an interceptor, Mitchell designed the Spitfire's distinctive elliptical wing to have the thinnest possible cross-section; this thin wing enabled the Spitfire to have a higher top speed than several contemporary fighters, including the Hawker Hurricane. Mitchell continued to refine the design until his death from cancer in 1937, whereupon his colleague Joseph Smith took over as chief designer, overseeing the development of the Spitfire through its multitude of variants.

 

During the Battle of Britain (July–October 1940), the Spitfire was perceived by the public to be the RAF fighter, though the more numerous Hawker Hurricane shouldered a greater proportion of the burden against the Luftwaffe. However, because of its higher performance, Spitfire units had a lower attrition rate and a higher victory-to-loss ratio than those flying Hurricanes.

 

After the Battle of Britain, the Spitfire superseded the Hurricane to become the backbone of RAF Fighter Command, and saw action in the European, Mediterranean, Pacific and the South-East Asian theatres. Much loved by its pilots, the Spitfire served in several roles, including interceptor, photo-reconnaissance, fighter-bomber and trainer, and it continued to serve in these roles until the 1950s. The Seafire was a carrier-based adaptation of the Spitfire which served in the Fleet Air Arm from 1942 through to the mid-1950s. Although the original airframe was designed to be powered by a Rolls-Royce Merlin engine producing 1,030 hp (768 kW), it was strong enough and adaptable enough to use increasingly powerful Merlin and, in later marks, Rolls-Royce Griffon engines producing up to 2,340 hp (1,745 kW); as a consequence of this the Spitfire's performance and capabilities improved, sometimes dramatically, over the course of its life.

 

Mk V (Types 331, 349 & 352)

 

Spitfire LF.Mk VB, BL479, flown by Group Captain M.W.S Robinson, station commander of RAF Northolt, August 1943. This Spitfire has the wide bladed Rotol propeller, the internal armoured windscreen and "clipped" wings.

Late in 1940, the RAF predicted that the advent of the pressurised Junkers Ju 86P bomber series over Britain would be the start of a new sustained high altitude bombing offensive by the Luftwaffe, in which case development was put in hand for a pressurised version of the Spitfire, with a new version of the Merlin (the Mk VI). It would take some time to develop the new fighter and an emergency stop-gap measure was needed as soon as possible: this was the Mk V.

 

The basic Mk V was a Mk I with the Merlin 45 series engine. This engine delivered 1,440 hp (1,074 kW) at take-off, and incorporated a new single-speed single-stage supercharger design. Improvements to the carburettor also allowed the Spitfire to use zero gravity manoeuvres without any problems with fuel flow. Several Mk I and Mk II airframes were converted to Mk V standard by Supermarine and started equipping fighter units from early 1941. The majority of the Mk Vs were built at Castle Bromwich.

 

The VB became the main production version of the Mark Vs. Along with the new Merlin 45 series the B wing was fitted as standard. As production progressed changes were incorporated, some of which became standard on all later Spitfires. Production started with several Mk IBs which were converted to Mk VBs by Supermarine. Starting in early 1941 the round section exhaust stacks were changed to a "fishtail" type, marginally increasing exhaust thrust. Some late production VBs and VCs were fitted with six shorter exhaust stacks per side, similar to those of Spitfire IXs and Seafire IIIs; this was originally stipulated as applying specifically to VB(trop)s. After some initial problems with the original Mk I size oil coolers, a bigger oil cooler was fitted under the port wing; this could be recognised by a deeper housing with a circular entry. From mid-1941 alloy covered ailerons became a universal fitting.

 

Spitfire VC(trop), fitted with Vokes filters and "disc" wheels, of 417 Squadron RCAF in Tunisia in 1943.

A constant flow of modifications were made as production progressed. A "blown" cockpit hood, manufactured by Malcolm, was introduced in an effort to further increase the pilot's head-room and visibility. Many mid to late production VBs - and all VCs - used the modified, improved windscreen assembly with the integral bullet resistant centre panel and flat side screens introduced with the Mk III. Because the rear frame of this windscreen was taller than that of the earlier model the cockpit hoods were not interchangeable and could be distinguished by the wider rear framing on the hood used with the late-style windscreen.

 

Different propeller types were fitted, according to where the Spitfire V was built: Supermarine and Westland manufactured VBs and VCs used 10 ft 9 in (3.28 m) diameter, 3 bladed de Havilland constant speed units, with narrow metal blades, while Castle Bromwich manufactured VBs and VCs were fitted with a wide bladed Rotol constant speed propeller of either 10 ft 9 in (3.28 m) diameter, with metal blades, or (on late production Spitfires) 10 ft 3 in (3.12 m) diameter, with broader, "Jablo" (compressed wood) blades. The Rotol spinners were longer and more pointed than the de Havilland leading to a 3.5 in (8.9 cm) increase in overall length. The Rotol propellers allowed a modest speed increase over 20,000 ft (6,100 m) and an increase in the service ceiling. A large number of Spitfire VBs were fitted with "gun heater intensifier" systems on the exhaust stacks. These piped additional heated air into the gun bays. There was a short tubular intake on the front of the first stack and a narrow pipe led into the engine cowling from the rear exhaust.

 

The VB series were the first Spitfires able to carry a range of specially designed "slipper" drop tanks which were fitted underneath the wing centre-section. Small hooks were fitted, just forward of the inboard flaps: when the tank was released these hooks caught the trailing edge of the tank, swinging it clear of the fuselage.

 

With the advent of the superb Focke Wulf Fw 190 in August 1941 the Spitfire was for the first time truly outclassed, hastening the development of the "interim" Mk IX. In an effort to counter this threat, especially at lower altitudes, the VB was the first production version of the Spitfire to use "clipped" wingtips as an option, reducing the wingspan to 32 ft 2 in (9.8 m).The clipped wings increased the roll rate and airspeed at lower altitudes. Several different versions of the Merlin 45/50 family were used, including the Merlin 45M which had a smaller "cropped" supercharger impeller and boost increased to +18 lb. This engine produced 1,585 hp (1,182 kW) at 2,750 ft (838 m), increasing the L.F VB's maximum rate of climb to 4720 ft/min (21.6 m/s) at 2,000 ft (610 m).

 

VB Trop of 40 Squadron SAAF fitted with the "streamlined" version of the Aboukir filter, a broad-bladed, 10 ft 3 in (3.12 m) diameter Rotol propeller, and clipped wings.

The Mk VB(trop) (or type 352) could be identified by the large Vokes air filter fitted under the nose; the reduced speed of the air to the supercharger had a detrimental effect on the performance of the aircraft, reducing the top speed by 8 mph (13 km/h) and the climb rate by 600 ft/min (3.04 m/s), but the decreased performance was considered acceptable. This variant was also fitted with a larger oil tank and desert survival gear behind the pilot's seat. A new "desert" camouflage scheme was applied. Many VB(trop)s were modified by 103 MU (Maintenance Unit-RAF depots in which factory fresh aircraft were brought up to service standards before being delivered to squadrons) at Aboukir, Egypt by replacing the Vokes filter with locally manufactured "Aboukir" filters, which were lighter and more streamlined. Two designs of these filters can be identified in photos: one had a bulky, squared off filter housing while the other was more streamlined. These aircraft were usually fitted with the wide blade Rotol propeller and clipped wings.

 

Triumph Spitfire Mk I Roadster

 

The Triumph Spitfire is a small English two-seat sports car, introduced at the London Motor Show in 1962.[3] The vehicle was based on a design produced for Standard-Triumph in 1957 by Italian designer Giovanni Michelotti. The platform for the car was largely based upon the chassis, engine, and running gear of the Triumph Herald saloon, and was manufactured at the Standard-Triumph works at Canley, in Coventry. As was typical for cars of this era, the bodywork was fitted onto a separate structural chassis, but for the Spitfire, which was designed as an open top or convertible sports car from the outset, the ladder chassis was reinforced for additional rigidity by the use of structural components within the bodywork. The Spitfire was provided with a manual hood for weather protection, the design improving to a folding hood for later models. Factory-manufactured hard-tops were also available.

 

The Triumph Spitfire was originally devised by Standard-Triumph to compete in the small sports car market that had opened up with the introduction of the Austin-Healey Sprite. The Sprite had used the basic drive train of the Austin A30/35 in a light body to make up a budget sports car; Triumph's idea was to use the mechanicals from their small saloon, the Herald, to underpin the new project. Triumph had one advantage, however; where the Austin A30 range was of unitary construction, the Herald featured a separate chassis. It was Triumph's intention to cut that chassis down and clothe it in a sports body, saving the costs of developing a completely new chassis / body unit.

 

Italian designer Michelotti—who had already penned the Herald—was commissioned for the new project, and came up with a traditional, swooping body. Wind-up windows were provided (in contrast to the Sprite/Midget, which still featured sidescreens, also called curtains, at that time), as well as a single-piece front end which tilted forwards to offer unrivaled access to the engine. At the dawn of the 1960s, however, Standard-Triumph was in deep financial trouble, and unable to put the new car into production; it was not until the company was taken over by the Leyland organization funds became available and the car was launched. Leyland officials, taking stock of their new acquisition, found Michelotti's prototype hiding under a dust sheet in a corner of the factory and rapidly approved it for production.

 

Spitfire 4 or Mark I (1962-1964)

 

Overview:

Production1962–1964

45,753 made

Powertrain:

Engine1,147 cc (1.1 l) I4

Transmission4-speed manual with optional overdrive on top and third from 1963 onwards

Dimensions:

Curb weight1,568 lb (711 kg) (unladen U.K.-spec)

 

The production car changed little from the prototype, although the full-width rear bumper was dropped in favour of two part-bumpers curving round each corner, with overriders. Mechanicals were basically stock Herald. The engine was an 1,147 cc (1.1 l) 4-cylinder with a pushrod OHV cylinder head and 2 valves per cylinder, mildly tuned for the Spitfire, fed by twin SU carburettors. Also from the Herald came the rack and pinion steering and coil-and-wishbone front suspension up front, and at the rear a single transverse-leaf swing axle arrangement. This ended up being the most controversial part of the car: it was known to "tuck in" and cause violent over steer if pushed too hard, even in the staid Herald. In the sportier Spitfire (and later the 6-cylinder Triumph GT6 and Triumph Vitesse) it led to severe criticism. The body was bolted to a much-modified Herald chassis, the outer rails and the rear outriggers having been removed; little of the original Herald chassis design was left, and the Spitfire used structural outer sills to stiffen its body tub.

 

The Spitfire was an inexpensive small sports car and as such had very basic trim, including rubber mats and a large plastic steering wheel. These early cars were referred to both as "Triumph Spitfire Mark I" and "Spitfire 4", not to be confused with the later Spitfire Mark IV.

 

In UK specification the in-line four produced 63 bhp (47 kW) at 5750 rpm, and 67 lb·ft (91 N·m)of torque at 3500 rpm. This gave a top speed of 92 mph (148 km/h), and would achieve 0 to 60 mph (97 km/h) in 17.3 seconds. Average fuel consumption was 31mpg.

 

For 1964 an overdrive option was added to the 4-speed manual gearbox to give more relaxed cruising. Wire wheels and a hard top were also available.

 

Text regarding the Supermarine Spitfire aeroplane and Triumph Spitfire Roadster has been taken from excerpts of Wikipedia articles on each model.

 

The Supermarine Spitfire Mk VB aircraft and 1962 Triumph Spitfire Mk I road car have been modelled in Lego miniland-scale for Flickr LUGNuts' 79th Build Challenge, - 'LUGNuts goes Wingnuts, ' - featuring automotive vehicles named after, inspired by, or with some relationship to aircraft.

The church dedicated to the Saviour's Configuration ("Metamorfosi tou Sotira") is built in the middle of "Palio Chorio" ("Old Village"). It was constructed in the 16th century (1520) and it has the same architectural style as the other two small churches of the village, that of "Panagia Theotokos" and that of Saint George "Perachoritis". Up until 1994, liturgies were conducted daily since it was considered as the village's main church.

It is a rectangular church of the Basilica style and with elements of the Byzantine style. It can accommodate up to 100-150 faithful. Externally it is made of stone and whitewashed.

The inhabitants built extensions to the church in 1880 and 1960 because the village was continuously growing. When they dug the floor they discovered many pieces of frescoes, which surely came from this church. Indeed, they were able to read the name of the hagiographer who was named Symeon Afxentis. He is known for his frescoes of the "Panagia Theotokos" and "Archangel" churches in the village of Galata.

The icon screen is woodcut, as also are the two Psalters that can be found in the church.

There are various remarkable representations dating back to the 16th and 17th century. The icon screen is of various different chronologies.

www.kakopetriavillage.com/churches.html

 

The settlement of Kakopetria, although mentioned by the mediaeval annalists, existed -at least- since the Frank domination era. The village's region was inhabited around the 6th - 7th century and the various excavations that have been conducted in 1938 around the old village of Kakopetria (in the Ailades venue) prove this. During the excavations a dispenser of an ancient shrine -most probably belonging to the goddess Athena- came to light. A large number of movable findings were found, mainly terra-cotta, many of which depict the goddess Athena, as well as small, limestone, statues and parts of statues and bronze and iron shafts from spearheads and arrows. The findings most probably date back to the Archaic and Classic eras of Cyprus. Other statuettes represent Hercules and are an indication that he was also worshiped in the area along with the goddess Athena. These findings are found in the Archaeological Museum of Nicosia.

en.wikipedia.org/wiki/Kakopetria

 

The Supermarine Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and many other Allied countries during and after the Second World War. The Spitfire was built in many variants, using several wing configurations, and was produced in greater numbers than any other British aircraft. It was also the only British fighter to be in continuous production throughout the war. The Spitfire continues to be a popular aircraft, with approximately 55 Spitfires being airworthy, while many more are static exhibits in aviation museums all over the world.

 

The Spitfire was designed as a short-range, high-performance interceptor aircraft by R. J. Mitchell, chief designer at Supermarine Aviation Works (which operated as a subsidiary of Vickers-Armstrong from 1928). In accordance with its role as an interceptor, Mitchell designed the Spitfire's distinctive elliptical wing to have the thinnest possible cross-section; this thin wing enabled the Spitfire to have a higher top speed than several contemporary fighters, including the Hawker Hurricane. Mitchell continued to refine the design until his death from cancer in 1937, whereupon his colleague Joseph Smith took over as chief designer, overseeing the development of the Spitfire through its multitude of variants.

 

During the Battle of Britain (July–October 1940), the Spitfire was perceived by the public to be the RAF fighter, though the more numerous Hawker Hurricane shouldered a greater proportion of the burden against the Luftwaffe. However, because of its higher performance, Spitfire units had a lower attrition rate and a higher victory-to-loss ratio than those flying Hurricanes.

 

After the Battle of Britain, the Spitfire superseded the Hurricane to become the backbone of RAF Fighter Command, and saw action in the European, Mediterranean, Pacific and the South-East Asian theatres. Much loved by its pilots, the Spitfire served in several roles, including interceptor, photo-reconnaissance, fighter-bomber and trainer, and it continued to serve in these roles until the 1950s. The Seafire was a carrier-based adaptation of the Spitfire which served in the Fleet Air Arm from 1942 through to the mid-1950s. Although the original airframe was designed to be powered by a Rolls-Royce Merlin engine producing 1,030 hp (768 kW), it was strong enough and adaptable enough to use increasingly powerful Merlin and, in later marks, Rolls-Royce Griffon engines producing up to 2,340 hp (1,745 kW); as a consequence of this the Spitfire's performance and capabilities improved, sometimes dramatically, over the course of its life.

 

Mk V (Types 331, 349 & 352)

 

Spitfire LF.Mk VB, BL479, flown by Group Captain M.W.S Robinson, station commander of RAF Northolt, August 1943. This Spitfire has the wide bladed Rotol propeller, the internal armoured windscreen and "clipped" wings.

Late in 1940, the RAF predicted that the advent of the pressurised Junkers Ju 86P bomber series over Britain would be the start of a new sustained high altitude bombing offensive by the Luftwaffe, in which case development was put in hand for a pressurised version of the Spitfire, with a new version of the Merlin (the Mk VI). It would take some time to develop the new fighter and an emergency stop-gap measure was needed as soon as possible: this was the Mk V.

 

The basic Mk V was a Mk I with the Merlin 45 series engine. This engine delivered 1,440 hp (1,074 kW) at take-off, and incorporated a new single-speed single-stage supercharger design. Improvements to the carburettor also allowed the Spitfire to use zero gravity manoeuvres without any problems with fuel flow. Several Mk I and Mk II airframes were converted to Mk V standard by Supermarine and started equipping fighter units from early 1941. The majority of the Mk Vs were built at Castle Bromwich.

 

The VB became the main production version of the Mark Vs. Along with the new Merlin 45 series the B wing was fitted as standard. As production progressed changes were incorporated, some of which became standard on all later Spitfires. Production started with several Mk IBs which were converted to Mk VBs by Supermarine. Starting in early 1941 the round section exhaust stacks were changed to a "fishtail" type, marginally increasing exhaust thrust. Some late production VBs and VCs were fitted with six shorter exhaust stacks per side, similar to those of Spitfire IXs and Seafire IIIs; this was originally stipulated as applying specifically to VB(trop)s. After some initial problems with the original Mk I size oil coolers, a bigger oil cooler was fitted under the port wing; this could be recognised by a deeper housing with a circular entry. From mid-1941 alloy covered ailerons became a universal fitting.

 

Spitfire VC(trop), fitted with Vokes filters and "disc" wheels, of 417 Squadron RCAF in Tunisia in 1943.

A constant flow of modifications were made as production progressed. A "blown" cockpit hood, manufactured by Malcolm, was introduced in an effort to further increase the pilot's head-room and visibility. Many mid to late production VBs - and all VCs - used the modified, improved windscreen assembly with the integral bullet resistant centre panel and flat side screens introduced with the Mk III. Because the rear frame of this windscreen was taller than that of the earlier model the cockpit hoods were not interchangeable and could be distinguished by the wider rear framing on the hood used with the late-style windscreen.

 

Different propeller types were fitted, according to where the Spitfire V was built: Supermarine and Westland manufactured VBs and VCs used 10 ft 9 in (3.28 m) diameter, 3 bladed de Havilland constant speed units, with narrow metal blades, while Castle Bromwich manufactured VBs and VCs were fitted with a wide bladed Rotol constant speed propeller of either 10 ft 9 in (3.28 m) diameter, with metal blades, or (on late production Spitfires) 10 ft 3 in (3.12 m) diameter, with broader, "Jablo" (compressed wood) blades. The Rotol spinners were longer and more pointed than the de Havilland leading to a 3.5 in (8.9 cm) increase in overall length. The Rotol propellers allowed a modest speed increase over 20,000 ft (6,100 m) and an increase in the service ceiling. A large number of Spitfire VBs were fitted with "gun heater intensifier" systems on the exhaust stacks. These piped additional heated air into the gun bays. There was a short tubular intake on the front of the first stack and a narrow pipe led into the engine cowling from the rear exhaust.

 

The VB series were the first Spitfires able to carry a range of specially designed "slipper" drop tanks which were fitted underneath the wing centre-section. Small hooks were fitted, just forward of the inboard flaps: when the tank was released these hooks caught the trailing edge of the tank, swinging it clear of the fuselage.

 

With the advent of the superb Focke Wulf Fw 190 in August 1941 the Spitfire was for the first time truly outclassed, hastening the development of the "interim" Mk IX. In an effort to counter this threat, especially at lower altitudes, the VB was the first production version of the Spitfire to use "clipped" wingtips as an option, reducing the wingspan to 32 ft 2 in (9.8 m).The clipped wings increased the roll rate and airspeed at lower altitudes. Several different versions of the Merlin 45/50 family were used, including the Merlin 45M which had a smaller "cropped" supercharger impeller and boost increased to +18 lb. This engine produced 1,585 hp (1,182 kW) at 2,750 ft (838 m), increasing the L.F VB's maximum rate of climb to 4720 ft/min (21.6 m/s) at 2,000 ft (610 m).

 

VB Trop of 40 Squadron SAAF fitted with the "streamlined" version of the Aboukir filter, a broad-bladed, 10 ft 3 in (3.12 m) diameter Rotol propeller, and clipped wings.

The Mk VB(trop) (or type 352) could be identified by the large Vokes air filter fitted under the nose; the reduced speed of the air to the supercharger had a detrimental effect on the performance of the aircraft, reducing the top speed by 8 mph (13 km/h) and the climb rate by 600 ft/min (3.04 m/s), but the decreased performance was considered acceptable. This variant was also fitted with a larger oil tank and desert survival gear behind the pilot's seat. A new "desert" camouflage scheme was applied. Many VB(trop)s were modified by 103 MU (Maintenance Unit-RAF depots in which factory fresh aircraft were brought up to service standards before being delivered to squadrons) at Aboukir, Egypt by replacing the Vokes filter with locally manufactured "Aboukir" filters, which were lighter and more streamlined. Two designs of these filters can be identified in photos: one had a bulky, squared off filter housing while the other was more streamlined. These aircraft were usually fitted with the wide blade Rotol propeller and clipped wings.

 

Triumph Spitfire Mk I Roadster

 

The Triumph Spitfire is a small English two-seat sports car, introduced at the London Motor Show in 1962.[3] The vehicle was based on a design produced for Standard-Triumph in 1957 by Italian designer Giovanni Michelotti. The platform for the car was largely based upon the chassis, engine, and running gear of the Triumph Herald saloon, and was manufactured at the Standard-Triumph works at Canley, in Coventry. As was typical for cars of this era, the bodywork was fitted onto a separate structural chassis, but for the Spitfire, which was designed as an open top or convertible sports car from the outset, the ladder chassis was reinforced for additional rigidity by the use of structural components within the bodywork. The Spitfire was provided with a manual hood for weather protection, the design improving to a folding hood for later models. Factory-manufactured hard-tops were also available.

 

The Triumph Spitfire was originally devised by Standard-Triumph to compete in the small sports car market that had opened up with the introduction of the Austin-Healey Sprite. The Sprite had used the basic drive train of the Austin A30/35 in a light body to make up a budget sports car; Triumph's idea was to use the mechanicals from their small saloon, the Herald, to underpin the new project. Triumph had one advantage, however; where the Austin A30 range was of unitary construction, the Herald featured a separate chassis. It was Triumph's intention to cut that chassis down and clothe it in a sports body, saving the costs of developing a completely new chassis / body unit.

 

Italian designer Michelotti—who had already penned the Herald—was commissioned for the new project, and came up with a traditional, swooping body. Wind-up windows were provided (in contrast to the Sprite/Midget, which still featured sidescreens, also called curtains, at that time), as well as a single-piece front end which tilted forwards to offer unrivaled access to the engine. At the dawn of the 1960s, however, Standard-Triumph was in deep financial trouble, and unable to put the new car into production; it was not until the company was taken over by the Leyland organization funds became available and the car was launched. Leyland officials, taking stock of their new acquisition, found Michelotti's prototype hiding under a dust sheet in a corner of the factory and rapidly approved it for production.

 

Spitfire 4 or Mark I (1962-1964)

 

Overview:

Production1962–1964

45,753 made

Powertrain:

Engine1,147 cc (1.1 l) I4

Transmission4-speed manual with optional overdrive on top and third from 1963 onwards

Dimensions:

Curb weight1,568 lb (711 kg) (unladen U.K.-spec)

 

The production car changed little from the prototype, although the full-width rear bumper was dropped in favour of two part-bumpers curving round each corner, with overriders. Mechanicals were basically stock Herald. The engine was an 1,147 cc (1.1 l) 4-cylinder with a pushrod OHV cylinder head and 2 valves per cylinder, mildly tuned for the Spitfire, fed by twin SU carburettors. Also from the Herald came the rack and pinion steering and coil-and-wishbone front suspension up front, and at the rear a single transverse-leaf swing axle arrangement. This ended up being the most controversial part of the car: it was known to "tuck in" and cause violent over steer if pushed too hard, even in the staid Herald. In the sportier Spitfire (and later the 6-cylinder Triumph GT6 and Triumph Vitesse) it led to severe criticism. The body was bolted to a much-modified Herald chassis, the outer rails and the rear outriggers having been removed; little of the original Herald chassis design was left, and the Spitfire used structural outer sills to stiffen its body tub.

 

The Spitfire was an inexpensive small sports car and as such had very basic trim, including rubber mats and a large plastic steering wheel. These early cars were referred to both as "Triumph Spitfire Mark I" and "Spitfire 4", not to be confused with the later Spitfire Mark IV.

 

In UK specification the in-line four produced 63 bhp (47 kW) at 5750 rpm, and 67 lb·ft (91 N·m)of torque at 3500 rpm. This gave a top speed of 92 mph (148 km/h), and would achieve 0 to 60 mph (97 km/h) in 17.3 seconds. Average fuel consumption was 31mpg.

 

For 1964 an overdrive option was added to the 4-speed manual gearbox to give more relaxed cruising. Wire wheels and a hard top were also available.

 

Text regarding the Supermarine Spitfire aeroplane and Triumph Spitfire Roadster has been taken from excerpts of Wikipedia articles on each model.

 

The Supermarine Spitfire Mk VB aircraft and 1962 Triumph Spitfire Mk I road car have been modelled in Lego miniland-scale for Flickr LUGNuts' 79th Build Challenge, - 'LUGNuts goes Wingnuts, ' - featuring automotive vehicles named after, inspired by, or with some relationship to aircraft.

This new bridge will unite existing campus roads on both sides of the I-5 freeway: Gilman Drive on the west and Medical Center Drive on the east. Travelers will be able to go from one side of campus to the other without driving on busy city streets such as La Jolla Village Drive and Genesee Ave. Traffic on these roadways will be reduced and getting across campus will be quicker and more efficient.

 

To facilitate smooth traffic flow, the bridge and intersections on both sides will have three-lane configurations: One lane of traffic each way with a protected left-hand turn lane. Sidewalks and bicycle lanes will also be included on the bridge.

Configuration options for the WMR.

 

From top to bottom, the machine gun (WMR-MG), assault rifle (WMR-AR), and shotgun (WMR-SG) derivatives for the WMR.

 

This is not for the contest, if you must know.

Manufacturer: Boeing

Operator: Qatar Emiri AIr Force/ Boeing

Type: F-15QA Ababil (QA536) multirole fighter aircraft

Evnet/ Location: 2024 RIAT/ RAF Fairford

Comment: The demonstration of the Qatari Boeing two F-15QA consisted of two different configurations: one with a 'clean' fit, the second with a simulated full weapons load to demonstrate how little the aircraft's aerodynamic performance is affected by the additional weight/drag. The aircraft themselves were en route to Qatar on their delivery flights from the US, with the demos at RIAT provided by Boeing test-pilots.

shadow box from Tim Holtz 'Configurations' decorated with individually hand cut paper from various suppliers, notably K&Co, 7 Gypsies, & Basic Grey. interior boxes have five separate pieces cut to fit box dimensions. Exterior has about six to eight pieces attached. exterior edges coverd with Tim Holtz tissue tape. interior edges hand sanded and retouched with Ranger 'rusty hinge' distress ink. charms and embellishment various sources; Tim Holtz, Industrial Chic, Blue Moon etc including personal stash. Legs from Tim Holtz. natural pieces: sticks, twigs, moss, lichen from my back yard. birds, nests and eggs from Michaels Crafts.

irrestible to nature & bird lovers! my first attempt at such a project; it took over a year to complete.

Nikon D800E + 70-200mm F/2.8 Nikkor Lens vs. Sony A7r + 35mm F/2.8 Carl Zeiss Lens! Both in 45surfer bracket configurations, with Sony NEX-6 cameras attached to the upper cameras with a bracket, for shooting stills and video at the same time! Guess which is heavier! :) The new 45surfer rig is a bit lighter, but that will change a bit when Sony comes out with longer zooms for the Sony A7r.

 

Both are great! The Sony NEX-6 bracketed to the D800E has the 50mm F/1.8 lens on it, while the Sony NEX-6 bracketed to the Sony A7R has the 35mm F/2.8 lens on it!

 

Check out some video!

www.youtube.com/watch?v=RiOMrZIEzg8

www.youtube.com/watch?v=Y7gq_gCk0jE

 

The Sony ILCE7R A7r rocks! Was using the B+W 49mm Kaesemann Circular Polarizer MRC Filter on partly cloudy day with some intermittent sun, but mostly cloudy. Check out the low glare off the rocks and water and dramatic, polarizwer-enhanced sky! Super sharp images and crystal-clear pictures!

 

Was testing the Sony HVL-F60M External Flash on the Sony A7r. You can see it going off in some of the photos (check the exif if in doubt)--worked great, but it overheated a bit sooner than my Nikon flash on the D800E. But it's all good!

 

Here's some epic goddess video shot at the same time as stills using my 45surfer method/philosophy:

www.youtube.com/watch?v=bUbE0ay7UeI

www.youtube.com/watch?v=eC-M9fVwk9k

 

Join Johnny Ranger McCoy's youtube channel for goddess video shot @ the same time as the stills with the Sony A7 !

 

www.youtube.com/user/bikiniswimsuitmodels

 

Beautiful swimsuit bikini model goddess on a beautiful December Malibu afternoon! Shot it yesterday. :) Love, love, love the new Sony A7 R!

 

Was a fun test shoot. Many, many more to come!

 

All the best on your Epic Hero's Journey from Johnny Ranger McCoy!

 

Join my facebook!

www.facebook.com/45surfHerosJourneyMythology

Follow me on facebook www.facebook.com/elliot.mcgucken !

  

In Russian this configuration would be known as kapić .... where the fireplace/hearth serves as the structural and familial center of the house. The house literally "hangs from the stack" and the Family life is "centered" in the structure.

 

We have recycled so many items in the building of this Vorwerk, but I can honestly say, that it is not so much to "save the Planet" as it is that the "old stuff" just looks so good. Patina caused by age just cannot ever be duplicated as well.

 

Teak, stone, wool, oak, wrought iron, bronze, leather.... great combinations.

 

A Boeing B-17G Flying Fortress on a very foggy morning in Destin, Florida.

 

From the foundation's web page:

No longer avoiding anti-aircraft fire or the terror of enemy fighters, the B-17 stands as a living history exhibit for the nation.

The most widely recognized and revered aircraft type of World War II, the B-17 Flying Fortress, takes to the skies again. The B-17G (Serial # 44-83575) has been returned to its wartime configuration under the auspices of the nonprofit Collings Foundation of Stow, MA and given the name Nine-O-Nine.

 

The Collings Flying Fortress was built at Long Beach, CA by the Douglas Aircraft Company and accepted on April 7, 1945. Although she was too late for combat, #44-83575 did serve as part of the Air/Sea 1st Rescue Squadron and later in the Military Air Transport Service.

 

In April 1952, #44-83575 was instrumented and subjected to the effects of three different nuclear explosions. After a thirteen-year “cool down” period, #44-83575 was sold as part of an 800-ton scrap pile and Aircraft Specialties Company began the restoration of the aircraft.

 

Damaged skin was fabricated and replaced on site; engines and props were stripped, cleaned, repaired, and tested; four thousand feet of new control cable was installed; all electrical wiring and instrumentation was replaced. As she neared completion, the jeers and laughter of those who said she would never fly again faded as the sounds of four 1200 HP Wright-Cyclone engines echoed across the desert and Yucca Lady rose as the phoenix and climbed into the sky.

 

For twenty years, without a major problem or incident, #44-83575 served as a fire bomber dropping water and borate on forest fires. She was sold in January 1986 to the Collings Foundation. Restored back to her original wartime configuration by Tom Reilly Vintage Aircraft, she represented one of the finest B-17 restorations and won several awards.

 

In August 1987, while performing at an airshow in western Pennsylvania, Nine-O-Nine was caught by a severe crosswind moments after touchdown. The right wing lifted in the air, finally coming down too far down the runway. Despite the efforts of her crew, she rolled off the end of the runway, crashed through a chain link fence, sheared off a power pole and roared down a 100-foot ravine to a thundering stop. The landing gear sheared off, the chin turret was smashed and pushed into the nose; the Plexiglas nose was shattered; bomb bay doors, fuselage, fuselage, ball turret, wing and nacelles all took a tremendous beating. Engines and propellers were also torn form their mounts. Fortunately, there were no fatalities to the crew or riders although there were injuries.

 

For a second time, this B-17 “rose from the ashes”. With nacelles from the famed B-17 Shoo Shoo Shoo Baby, thousands of volunteer hours, support from the folks of Beaver Falls, PA, and donations from individuals and corporations, she was made whole again to carry on the proud and rugged heritage of the B-17.

 

Since the crash at Beaver Falls, the B-17 has succeeded in visiting over 1200 tour stops. This means that millions, who would otherwise never seen the Flying Fortress, have been able to experience first hand the plane that helped change the history of the world fifty years ago.

 

The Collings Foundation B-17 was named Nine-O-Nine in honor of a 91st Bomb Group, 323rd Squadron plane of the same name which completed 140 missions without an abort or loss of a crewman.

 

The original Nine-O-Nine was assigned to combat on February 25, 1944. By April 1945, she had made eighteen trips to Berlin, dropped 562,000 pounds of bombs, and flown 1,129 hours. She had twenty-one engine changes, four wing panel changes, fifteen main gas tank changes, and 18 Tokyo tank changes (long-range fuel tanks). She also suffered from considerable flak damage.

 

After European hostilities ceased, Nine-O-Nine, with its six-hundred patched holes, flew back to the United States. While the rigors of war never stopped the historic Nine-O-Nine, she succumbed at last to the scrappers guillotine, along with thousands of other proud aircraft.

 

Wingspan 103 feet, 9 inches

Length 74 feet, 9 inches

Height 19 feet, 1 inch

Empty Weight 36,135 pounds

Max. Weight 72,000 pounds

Powerplants 4 1,200 hp Wright R-1820-97 Engines

Armament 13 M2 .50 Cal Browning Machine Guns

Crew 10

Max Speed 250 Mph

Service Ceiling 35,000 feet

Range 2,400 miles

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background (including material from fellow modeler Devilfish at whatifmodelers.com):

The SEPECAT Cheetah was a more sophisticated variable geometry wing derivative of the Anglo-French Jaguar attack aircraft, similar to the Su-7 and later Su-17/2022 evolution.

 

The Jaguar programme began in the early 1960s, in response to a British requirement for an advanced supersonic jet trainer to replace the Folland Gnat T1 and Hawker Hunter T7, and a French requirement (ECAT or École de Combat et d'Appui Tactique, "Tactical Combat Support Trainer") for a cheap, subsonic dual role trainer and light attack aircraft to replace the Fouga Magister, Lockheed T-33 and Dassault Mystère IV.

 

Cross-channel negotiations led to the formation of SEPECAT (Société Européenne de Production de l'Avion d'École de Combat et d'Appui Tactique – the "European company for the production of a combat trainer and tactical support aircraft") in 1966 as a joint venture between Breguet and the British Aircraft Corporation to produce the airframe.

 

Though based in part on the Breguet Br.121, using the same basic configuration and an innovative French-designed landing gear, the Jaguar as built also incorporated major elements designed by BAC – notably the wing and high lift devices. Production of the aircraft components would be split between Breguet and BAC and these would be assembled on two production lines; one in the UK and one in France.

 

The first of eight prototypes flew on 8 September 1968, a two-seat design fitted with the first production model Adour engine. The second prototype flew in February 1969; a total of three prototypes appeared in flight at the Paris Air Show that year. The first French "A" prototype flew in March 1969. In October a British "S" conducted its first flight.

 

A navalized "M" prototype flew in November 1969. The "M" had a strengthened airframe, an arrester hook and different undercarriage: twin nose wheel and single mainwheels. After testing in France it went to RAE at Thurleigh for carrier landing trials from their land based catapult. In July 1970 it made real take offs and landings from the French carrier Clemenceau.

 

The RAF accepted delivery of the first of 165 single-seat Jaguar GR1s (the service designation of the Jaguar S) in 1974, and it remained in service until 2007. Anyway, the Jaguar's all-weather capacity was limited and the airframe still offered development potential, so that from 1976 on the Anglo-French SEPECAT consortium looked at improved versions with radar, more powerful engines and improved avionics and aerodynamics.

 

This led in late 1975 to the Cheetah project, which incorporated a variable geometry wing that could be mounted to the Jaguar's airframe without major structural modifications.

 

The Cheetah was designed as a multirole, twin-engined aircraft designed to excel at low-level penetration of enemy defences, but also for battlefield reconnaissance and maritime patrol duties, and both naval and land-based versions were developed.

 

The Cheetah’s primary mission envisaged during the Cold War was the delivery of conventional and nuclear ordnance on the invading forces of the Warsaw Pact countries of Eastern Europe. Advanced navigation and flight computers, including the then-innovative fly-by-wire system, greatly reduced the workload of the pilot during low-level flight and eased control of the aircraft.

 

Compared with the Jaguar, the Cheetah’s nose section was widened to carry an Ericsson PS 37 X-band mono pulse radar, which used a mechanically steered parabolic dish housed in a radome. This radar performed several functions, including air-to-ground telemetry, search, track, terrain-avoidance and cartography. Air-to-air telemetry was also provided. This capability was not the system’s functional focus, but allowed the Cheetah to engage in all weather air-to-air combat and to act as a point defense interceptor with short range AAMs (e. g. up to six AIM-9 Sidewinder).

 

Honeywell provided an automatic digital flight control system for the Cheetah, one of the first such systems in a production aircraft. To assist low altitude flight and navigation, a Honeywell radar altimeter with transmitter and receiver was used, and the aircraft was also fitted with a Decca Type 72 Doppler navigation radar. TILS (Tactical Instrument Landing System), a landing-aid system made by Cutler-Hammer AIL, improved landing accuracy to 30 m.

 

From this basis, the Cheetah’s airframe was adapted to a naval version first, which featured a more rigid structure, a beefed-up landing gear for carrier operations and other suitable modifications. This evolved into the Cheetah FRS.1 for the Royal Navy. The FRS.1 was a separate development from the Jaguar, and catered to a very different specification. By the late 60's the Royal navy knew that their big carriers were due for scrapping and that plans for the proposed CVA 01 carrier were already being shelved. In a desperate attempt to hold on to naval air power, the Admiralty put forward a plan to buy two ex-US Navy Kittyhawk class supercarriers and refit them with British equipment (mostly salvaged from the outgoing carriers, Ark Royal and Eagle).

 

Because of the cancellation of TSR.2, the treasury, in a strange turn of events, agreed that air power at sea was definitively needed. They approved the acquisition of at first one, then later a second US carrier. To supplement them, two Centaur class carriers were to be retrofitted to act as tactical carriers to aid in smaller conflicts.

 

As these were not big enough to carry and deploy the larger American types being used on the supercarriers, a smaller multi-purpose aircraft was needed. With the Cheetah, BAC offered a version of the Jaguar, fitted with the variable geometry wing, then being designed for the MRCA, to aid with slower and shorter take offs and landings. Renamed the Cheetah, the FRS.1 entered service aboard the HMS Hermes in 1978, seeing service during the Falklands conflict in 1982.

 

The land-based Cheetah differed in many details from the naval version, though, the first prototype flew in early 1977 and the RAF’s GR.2 was primarily designed for the RAF Germany forces, since the continental theatre of operations was regarded as the most critical NATO flank of that time. The RAF Cheetahs were supposed to carry out conventional and nuclear point strikes against targets in the GDR, Poland and Czechoslovakia, and defend coastal lines against fast invasion fleets, esp. in the Baltic Sea.

 

The biggest visible difference to the FRS.1 was a different variable wing geometry mechanism and a modified wing shape with a dog tooth close to the pivot section and an extended leading edge fairing at the wing roots. The GR.2’s VG mechanism was more compact than the Tornado structure originally used in the FRS.1, but also simpler in order to save as much weight as possible.

 

The GR.2’s wings could be swept backwards between 16° and 72°, and the horizontal stabilizers were adapted in shape to form a quasi delta wing when the wings were fully swept back, allowing for minimal drag during the critical low-level dash towards a well-prepared enemy. The sweep angle could be altered manually by the pilot, but also automatically. The different VG wings basically improved low altitude aerodynamics and handling of the Cheetah, as well as its STOL capabilities. With its rugged undercarriage, lent from the Jaguar, the Cheetah GR.2 was, more than the bigger and heavier Tornado, suited for tactical front line service from improvised airstrips, together with the RAF’s Harrier fleet.

 

The Cheetah FRS.1 and the GR.2 carried the Jaguar’s pair of 30mm cannon, but due to the different wing structures the hardpoints for external ordnance differed. The Cheetah was typically equipped with a total of seven hardpoints: three underneath the fuselage, and more under the wings. The FRS.1 had four wing pylons which could, thanks to the Tornado ancestry, be swept together with the wings.

The GR.2’s capacity was more limited, as it carried two large tandem pylons under each wing root, each also carrying a launch rail for defensive AAMs, and a further pair of optional wing-mounted, fixed hardpoints. This facility was rarely used, though, and they were basically reserved for drop tanks for ferry flights, but could also take weapon racks. External ordnance capacity was similar to the original Jaguar, with 10,000 lb (4,500 kg).

 

The first Cheetah GR.2 entered RAF service in 1980, and replaced basically the RAF Buccaneers as well as an early part of the Jaguar GR.1 fleet (the Jaguars kept in service were later modernized to GR.3 standard).

 

The RAF Cheetahs served together with the Jaguar Force until 2007, when both types were retired. Following their retirement from flying service, some Cheetahs continue to serve as ground instructional airframes, most notably at RAF Cosford, used in the training of RAF fitters.

  

General characteristics:

Crew: One

Length: 16.83 m (55 ft 2½ in)

Wingspan: 13.97 m (45 ft 10 in) spread 16°, XXX swept 72°

Height: 4.89 m (16 ft 0½ in)

Wing area: 37.35 m² spread, 34.16 m² swept (402.05 ft² / 367.71 ft²)

Empty weight: 7,848 kg (17,286 lb)

Loaded weight: 12,200 kg (26,872 lb)

Max. takeoff weight: 15,700 kg (34,612 lb)

 

Powerplant:

2 × Rolls-Royce/Turbomeca Adour Mk 105 turbofans

with 24.50 kN (5,508 lbf) dry thrust each and 35.5 kN (7,979 lbf) with afterburner

 

Performance:

Maximum speed: Mach 1.8 (1,870 km/h, 1,161 mph) at 11,000 m (36,000 ft)

Mach 1.1 (1,350 km/h, 839 mph) at sea level

Combat radius: 908 km (490 nmi, 564 mi) (lo-lo-lo, external fuel)

Ferry range: 3,524 km (1,902 nmi, 2,190 mi)

Service ceiling: 14,000 m (45,900 ft)

Rate of climb: 200 m/s (39,400 ft/min)

Climb to 9,145 m (30,000 ft): 1 min 30 sec

 

Armament:

2× 30 mm (1.18 in) DEFA cannons in the lower front fuselage, 150 RPG

7 hardpoints; 1× center-line pylon stations Fore & Aft plus a pair of pylons in front of the main landing gear wells; twin inner pylon (Fore & Aft) plus launch rails for AAMs, and single Outer Pylon pair under the wings, non-moveable. Total capacity of 10,000 lb (4,500 kg) for a wide range of guided and unguided ordnance, including:

- Matra rocket pods with 18× SNEB 68 mm rockets each (up to seven at once)

- AS.37 Martel anti-radar missiles

- AS-30L laser guided air-to-ground missiles

- Various unguided or laser-guided bombs of up to 2.000 lb (907 kg) caliber

- 2× WE177A nuclear bombs

- 1× AN-52 nuclear bomb

- ECM protection pods

- Reconnaissance pods

- ATLIS laser/electro-optical targeting pod

- External drop tanks for extended range/loitering time

  

The kit and its assembly:

The final contribution to the “Cold War” Group Build at whatifmodelers.com, and another realization of a plan from the long agenda – and triggered by a similar build at the board from fellow modeler Devilfish who built a naval VG Jaguar with Tornado wings in 1:48. I took the opportunity and inspiration to build my interpretation of that theme, lending the Cheetah designation from Devilfish’s build, though, and some of the naval version’s background.

 

Anyway, my conversion plan had been different. I wanted to create an RAF aircraft, true to the Jaguar’s strike/recce role, and the VG mechanism and wings would come from a MiG-23 – inspired by a similar transplant with a Mirage F.1C I saw many moons ago (and a beautiful result, I want to try that stunt, too!).

I also had the donation kits stashed away: a Heller SEPECAT Jaguar A (actually, I had already piled up four kits for this task…) and an Academy MiG-23S.

 

Wing transplantation went straightforward and with surprisingly little difficulties. The MiG’s wings were cut out together with the spinal section and the lower wing gloves, so that the VG geometry remained unchanged. On the other side, this package went into a shallow gap that I carved out from the Jag’s ventral section. Some putty and body sculpting merged the parts, easier than expected.

 

The rest saw only minor modifications. A radome was implanted (from an Italeri F-18 Hornet), which needed some body sculpting around the nose and the MiG-23’s stabilizers were used, too, in order to form a clean wing shape. I tailored their trailing edges a bit, so that the shape would not remind too much of the MiG heritage.

 

An RAF style radar warning receiver, scratched from 1.5mm styrene, was installed into the French version’ fin. Under the wing roots a pair of pylons from a Matchbox F-14 were added, together with Sidewinder launch rails from a Tornado ADV (Italeri). The jet exhausts were drilled open for more depth, and some sensors/pitots added to the nose, made from wire. Cockpit and landing gear were taken OOB, even though I used a different ejection seat and faired the original dashboard over with a piece of styrene.

 

The BL 755 bombs and their twin racks come OOB from the Heller kit, the Sidewinders from an ESCI kit, IIRC.

  

Painting and markings:

The RAF was settled as an operator, but for a whiffy twist I applied the all-green scheme that the RAF’s Harrier GR.5 carried in the late Eighties – exclusively, AFAIK. While the all NATO Green upper side appears a bit dull, the Lichen Green underside and the very low waterline look rather psychedelic and unique. Anyway, it works well on the Cheetah, and I can imagine that other RAF aircraft would also look cool in this simple scheme?

 

The basic colors I used are Humbrol 105 (Army Green) and 120 (Light Green, FS 34227), both are pretty approximates. The basic paintwork was later panel-shaded with lighter mixes of these two tones – actually brightened up with RAF Cockpit Green (Humbrol 78). In fact, the Heller Jaguar is almost totally devoid of any surface detail... A light black ink wash was also used to emphasize edges and deepen the contrast. The wings’ leading edges were painted in a very dark green (Humbrol 91) and the cockpit interior was painted in dark grey (FS 36076 from Model Master). The landing gear struts were painted light grey, while the wells and covers became Zinc Chromate Yellow.

 

The decals are a mix of the OOB Heller sheet and aftermarket sheets for RAF Jaguars, an Italeri Tornado and a Harrier GR.5. A coat of matt acrylic varnish finally sealed everything and the ordnance was mounted.

  

An interesting conversion, and the result looks very plausible! I am certain that this thing would make people seriously wonder and think when displayed on a convention. The VG Jag looks very natural – but not much sexier than the original? Anyway, the transplantation does not look out of place, because the Jaguar’s layout is very similar to the Panavia Tornado, so that the VG wing does not appear like the total fake it actually is. ^^

The primary hardware infrastructure for the System Integration Test Facility is being constructed at NASA's Marshall Space Flight Center. The configuration of the structure is designed to functionally represent the forward skirt, intertank and engine section of the SLS core stage, where avionics components are located. The structure supports the mounting of flight-equivalent avionics boxes and flight-length cables, in addition to simulation and test system components.

 

Image credit: NASA/MSFC

 

Read more:

www.nasa.gov/exploration/systems/sls/multimedia/gallery/s...

www.nasa.gov/exploration/systems/sls/sls-avionics.html

 

More about SLS:

www.nasa.gov/exploration/systems/sls/index.html

 

More SLS Photos:

www.nasa.gov/exploration/systems/sls/multimedia/gallery/S...

 

Space Launch System Flickr photoset:

www.flickr.com/photos/28634332@N05/sets/72157627559536895/

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

The Supermarine Spitfire was a British single-seat fighter aircraft used by the Royal Air Force and other Allied countries before, during and after World War II. Many variants of the Spitfire were built, using several wing configurations, and it was produced in greater numbers than any other British aircraft. It was also the only British fighter produced continuously throughout the war.

 

The Spitfire was designed as a short-range, high-performance interceptor aircraft by R. J. Mitchell, chief designer at Supermarine Aviation Works, which operated as a subsidiary of Vickers-Armstrong from 1928. Mitchell pushed the Spitfire's distinctive elliptical wing designed by Beverley Shenstone to have the thinnest possible cross-section, helping give the aircraft a higher top speed than several contemporary fighters, including the Hawker Hurricane. Mitchell continued to refine the design until his death in 1937, whereupon his colleague Joseph Smith took over as chief designer, overseeing the Spitfire's development through its multitude of variants and many sub-variants. These covered the Spitfire in development from the Merlin to Griffon water-cooled inline engines, the high-speed photo-reconnaissance variants and the different wing configurations.

 

One exception was the Spitfire Mk. X: it was the only variant powered by a radial engine, and it looked quite different from its sleek Merlin-powered brethren. Early in its development, the Merlin engine's lack of fuel injection meant that Spitfires and Hurricanes, unlike the Bf 109E, were unable to simply nose down into a steep dive. This meant a Luftwaffe fighter could simply "bunt" into a high-power dive to escape an attack, leaving the Spitfire behind, as its fuel was forced out of the carburetor by negative "g". An alternative engine was to solve this issue. Another factor that suggested an air-cooled engine were theatres of operations in the Far East, primarily India: the hot and humid climate was expected to be a severe operational problem for the liquid-cooled Merlin. As a further side effect a radial engine was expected to be easier to maintain under these conditions than the Merlin.

 

The project of a radial-powered Spitfire variant was eventually launched in late 1940. The choice for the power unit fell on a Bristol Taurus II 14-Cylinder engine, which had an appreciable small diameter, was available in ample numbers and had about the same power output as the early Merlin variants used in the Spitfire Mk. I and II (1.030 hp/740kW). In order to save time and keep the radial engine variant as close as possible to the Spitfire V design, the production type of that era. The new type’s structure and fuselage were only adapted to a minimum to allow the bulkier power unit and its periphery to be taken. The fuselage was widened in front of the cockpit section, a new engine mount was integrated and the Merlin’s radiator bath and respective piping were removed. The oil cooler under the port wing was retained, though, and the Taurus engine was from the start outfitted with dust filters, so that all resulting Spitfire Mk. Xs left the factory tropicalized. Like the Spitfire Mk. V, different wing armaments were available, e.g. an “A” wing with eight .303 in machine guns and a “B” wing with two 20 mm cannon and four machine guns.

 

The first Spitfire Mk. Xs, finally outfitted with a more powerful Taurus VI engine, were delivered to homeland RAF units for evaluation from May 1941 onwards. From the start, the radial-powered Spitfire proved to be inferior to the Merlin-powered variants - even to the early Mk. Is – and they were no match to the modern German fighters, especially at high altitude. As a consequence many Mk. Xs received clipped wing tips for better roll characteristics at low altitude (receiving an additional “L.F.” designation), but this did not significantly improve the type’s overall mediocre performance. Only a few Mk. Xs were actually employed by front line units, most were quickly relegated to training units. Later production aircraft were immediately shipped to the Far East or to units in Northern Africa, where they could be used more effectively.

A few machines were also delivered to Egypt (30), the Netherlands (12 for the East Indies NL-KNIL, which eventually ended up in RAAF service) and Turkey (24). In 1942, many machines still based in Great Britain were handed over to the USAAF, being either used for USAAF pilot and conversion training, or they were allocated to the Northern Africa invasion force during Operation Torch.

 

Since the Taurus-powered Spitfire turned out to be quite ineffective (it was no good either in the fighter or in an alternative ground attack role and 20 mph slower than the comparable Mk. V), production was already stopped in late 1942 after 353 aircraft. At the same time, the Spitfire Mk. IX with a much more powerful Merlin engine entered service, and all resources were immediately allocated to this more potent fighter variant and the idea of the Spitfire with a radial engine was ultimately dropped. Since the Taurus-powered type was quickly phased out of frontline service, the designation was later re-used for a pressurized high-altitude photo reconnaissance variant of the Spitfire, the PR.X, of which only 16 machines were built.

  

General characteristics:

Crew: one pilot

Length: 29 ft 6 in (9.00 m)

Wingspan: 32 ft 2 in (9.80 m)

Height: 11 ft 5 in (3.86 m)

Wing area: 242.1 ft2 (22.48 m²)

Airfoil: NACA 2213 (root)

NACA 2209.4 (tip)

Empty weight: 5,065 lb (2,297 kg)

Loaded weight: 6,622 lb (3,000 kg)

Max. takeoff weight: 6,700 lb (3,039 kg)

 

Powerplant:

1× Bristol Taurus VI 14-Cylinder sleeve valve radial engine, 1.130 hp (830 kW)

 

Performance:

Maximum speed: 350 mph (312 kn, 565 km/h)

Combat radius: 410 nmi (470 mi/756 km)

Ferry range: 991 nmi (1,135 mi/1,827 km)

Service ceiling: 36,500 ft (11,125 m)

Rate of climb: 2,535 ft/min (12.9 m/s)

Wing loading: 27.35 lb/ft2 (133.5 kg/m²)

Power/mass: 0.22 hp/lb (0.36 kW/kg)

 

Armament:

2× 20 mm Hispano Mk II with 60 RPG

4× .303 in Browning Mk II machine guns with 350 RPG

  

The kit and its assembly:

My third contribution to the “RAF Centenary” Group Build at whatifmodelers.com, and the next one in chronological order. This one was spawned by the simple thought of “What would a Spitfire with a radial engine look like…?”. I have seen this stunt done in the form of a Fw190/Spitfire kitbash – nice result, but it did IMHO just not look like a “real” Spitfire with a radial engine, rather like an Fw 190 with elliptical wings. And the fact that I had already successfully transplanted a Centaurus engine onto a P-51 airframe made me feel positive that the stunt could be done!

 

Consequently, the conversion was pretty straightforward. The basis is a Revell 1:72 Spitfire VB (1996 mold), which was – except for the nose section – taken OOB. A simple, nice kit, even though it comes with some flaws, like a depression at the rear of the wing/fuselage intersection and the general need for PSR – not much, but I expected a better fit for such a relatively young mold?

 

For the engine, I used a personal replacement favorite, the cowling and the engine block from a Mitsubishi A6M2 “Zero” (Hasegawa). The Nakajima Sakae radial engine has a relatively small diameter, so that it serves well as a dummy for the compact Bristol Taurus engine – a replacement I have already used for a radial-powered Westland Whirlwind. The other benefit of the small diameter is that it is relatively easy to blend the round front end into the oval and very slender fuselage of the early Spitfire airframe. This was realized through massive body sculpting from scratch with 2C putty, widening the area in front of the cockpit and expanding its width to match the cowling – I guess that real life engineers would have followed a similar, simple path.

 

Since the radial engine would not need a radiator, I simple omitted this piece (cut out from the single piece lower wing half) and faired the respective underwing area over with a piece of styrene sheet and PSR. The asymmetrical oil cooler was retained, though. The propeller is a replacement from the scrap box, with a smaller diameter spinner and more slender blades which better suit the open cowling.

 

Since the Taurus had its best performance at low altitudes, I used the Revell kit’s OOB option of clipped wing tips – a move that makes the aircraft look much faster, esp. with the new, deeper nose section.

  

Painting and markings:

I did not want classic RAF markings, but still keep the model well within the Centenary GB confines. The original plan had been a classic Dark Green/Ocean Grey livery, which all Spitfire’s in USAAF service and based in the UK received. But I rather wanted to create a frontline aircraft, operated during Operation Torch in late 1942/early 1943 with American roundels – and the grey/green look would not look plausible on a machine taking part in the North African campaign. In fact, any Spitfire with American roundels I found that was used in North Africa carried the RAF Tropical Scheme in Dark Earth/Middle Stone. And, AFAIK, during Operation 'Torch' all British aircraft received American markings in the hope that the Vichy French, who were anti-British due to them bombing their ships in 1940, would switch to the allied cause. They were supposed to think that the Americans would be invading, not British troops as well. So I eventually switched to the classic Tropical Scheme (using Humbrol 29 and Modelmaster 2052 as basic tones), and it does not look bad at all - even though the yellow trim around the roundels does not stand out as much as on a Grey/Green aircraft.

 

Typically, the RAF codes were retained, as well as – at least during the early phases of Operation Torch – the RAF fin flash. A little personal twist is the pale blue (Humbrol 23, Duck Egg Blue) underside of the aircraft, instead of the typical Azure Blue. The rationale behind is that the Tropical Scheme was originally designed with Sky undersides, and the blue shades were later modifications after initial field experience.

The red spinner is a typical Northern Africa marking, and found on many 5th FS aircraft.

 

The interior (cockpit, landing gear wells) was painted with RAF Cockpit Green (Modelmaster), while wheels and struts became light grey.

 

As a standard procedure, the kit received a light black ink wash and a post shading treatment.

 

The decals were puzzled together from various sheets and sources, the design benchmark was a real USAAF Spitfire Vb from Operation Torch, though. The code letters were taken from an Xtradecal sheet, the roundels come from a Carpena Spitfire sheet, even though I placed American markings in all six positions – the roundels without yellow trim under the wings were taken from a Hobby Boss F6F sheet.

The serial number comes from the Revell kit’s OOB sheet, because it fits perfectly into the kit’s intended time frame. The nose art comes from a P-38 sheet (PrintScale) – not a typical feature for an RAF Spitfire, but a frequent personal decoration among USAAF machines during Operation Torch (e.g. on P-40s).

The Allied yellow ID markings on the wings’ leading edges, which were typically carried by Operation Torch Spitfires, too, were created with generic yellow decal sheet (TL Modellbau), while the maroon machine gun nozzle covers are part of Revell’s OOB sheet.

 

Finally, the kit received some soot stains around gun and exhaust nozzles, and was finally sealed with matt acrylic varnish.

  

A bold experiment, and it turned out well. The Zero’s cowling has the perfect diameter for this transplant, and the scratch-sculpted new front fuselage section blends well with the new engine – the whole thing really looks intentional! I am just not certain if the resulting aircraft still deserves the “Spitfire” designation? Even though only the engine was changed, the aircraft looks really different and has a Ki-43ish aura? I guess that a dark green livery and some hinomaru would also look great and pretty plausible?

 

A quick snap for some discussions on my '2nd backup' kit and configs. The main setup is the top left of EOSM, 11-22mm ultra wide, E2 GPS unit and Finder/Scope attached to the back. The other shots are using the EF adapter with some of my Canon 5D3 lenses on. The Rokinon 8mm is interesting as it gives a very useful full frame 12mm lens with moderate distortion

Bus no.: 786

Classification: Airconditioned Provincial Operation Bus

Seating Configuration: 2x2

Seating Capacity: 40 Passengers

Manufacturer : Xiamen Kinglong United ( Kinglong )

Model : Xmq 6115 j1b " Joyride "

Chassis: King Long XMQ6111RJ1

Engine :Nissan Diesel PE6T

Suspension: Leaf Spring Suspension

(Note: Specification are subjected for verification and may be changed without prior notice.)

 

Shot Location: Araneta Center Bus Terminal Cubao, Quezon City

What does it mean to create a truly autonomous machine, independent from human control? And what happens when organs live outside of a body? Could this help us understand that the power of the human body lies in its ability to be different and to take on unexpected forms and identities?

 

Violently entangled within the performance space are three elements: an artificially intelligent prosthesis, out-of-body organic wombs and a human body. The prosthesis uses artificial intelligence algorithms to learn in real time how to move, exist and perform on stage. The wombs live and pulsate through the activity of microbial cultures. The sounds of the performer’s body are re-synthesised and transformed into a powerful and visceral auditory experience.

 

Credit: vog.photo

jsc2022e062416 (July 8, 2022) - A view of the full Gateway configuration.

 

Credit: NASA

jsc2022e062417 (July 29, 2022) - A view of the full Gateway configuration with Orion attached.

 

Credit: NASA

previous Yutong model to Olongapo...

 

Bus No: 818136

Year released: 2010

Capacity: 45; 2x2 seating configuration

Route: Cubao-Olongapo via SM San Fernando/Dau/SCTEX

Body: Yutong Bus Ltd.

Model: 2010 Yutong ZK6100H Series

Engine: Yuchai

Fare: Airconditioned

Aircon System: Yutong overhead a/c

Transmission System: M/T

Plate No. TXY-549

Taken on: August 9, 2011

Location: Mabalacat Bus Terminal, Brgy. Dau, Mabalacat, Pampanga

The Supermarine Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and many other Allied countries during and after the Second World War. The Spitfire was built in many variants, using several wing configurations, and was produced in greater numbers than any other British aircraft. It was also the only British fighter to be in continuous production throughout the war. The Spitfire continues to be a popular aircraft, with approximately 55 Spitfires being airworthy, while many more are static exhibits in aviation museums all over the world.

 

The Spitfire was designed as a short-range, high-performance interceptor aircraft by R. J. Mitchell, chief designer at Supermarine Aviation Works (which operated as a subsidiary of Vickers-Armstrong from 1928). In accordance with its role as an interceptor, Mitchell designed the Spitfire's distinctive elliptical wing to have the thinnest possible cross-section; this thin wing enabled the Spitfire to have a higher top speed than several contemporary fighters, including the Hawker Hurricane. Mitchell continued to refine the design until his death from cancer in 1937, whereupon his colleague Joseph Smith took over as chief designer, overseeing the development of the Spitfire through its multitude of variants.

 

During the Battle of Britain (July–October 1940), the Spitfire was perceived by the public to be the RAF fighter, though the more numerous Hawker Hurricane shouldered a greater proportion of the burden against the Luftwaffe. However, because of its higher performance, Spitfire units had a lower attrition rate and a higher victory-to-loss ratio than those flying Hurricanes.

 

After the Battle of Britain, the Spitfire superseded the Hurricane to become the backbone of RAF Fighter Command, and saw action in the European, Mediterranean, Pacific and the South-East Asian theatres. Much loved by its pilots, the Spitfire served in several roles, including interceptor, photo-reconnaissance, fighter-bomber and trainer, and it continued to serve in these roles until the 1950s. The Seafire was a carrier-based adaptation of the Spitfire which served in the Fleet Air Arm from 1942 through to the mid-1950s. Although the original airframe was designed to be powered by a Rolls-Royce Merlin engine producing 1,030 hp (768 kW), it was strong enough and adaptable enough to use increasingly powerful Merlin and, in later marks, Rolls-Royce Griffon engines producing up to 2,340 hp (1,745 kW); as a consequence of this the Spitfire's performance and capabilities improved, sometimes dramatically, over the course of its life.

 

Mk V (Types 331, 349 & 352)

 

Spitfire LF.Mk VB, BL479, flown by Group Captain M.W.S Robinson, station commander of RAF Northolt, August 1943. This Spitfire has the wide bladed Rotol propeller, the internal armoured windscreen and "clipped" wings.

Late in 1940, the RAF predicted that the advent of the pressurised Junkers Ju 86P bomber series over Britain would be the start of a new sustained high altitude bombing offensive by the Luftwaffe, in which case development was put in hand for a pressurised version of the Spitfire, with a new version of the Merlin (the Mk VI). It would take some time to develop the new fighter and an emergency stop-gap measure was needed as soon as possible: this was the Mk V.

 

The basic Mk V was a Mk I with the Merlin 45 series engine. This engine delivered 1,440 hp (1,074 kW) at take-off, and incorporated a new single-speed single-stage supercharger design. Improvements to the carburettor also allowed the Spitfire to use zero gravity manoeuvres without any problems with fuel flow. Several Mk I and Mk II airframes were converted to Mk V standard by Supermarine and started equipping fighter units from early 1941. The majority of the Mk Vs were built at Castle Bromwich.

 

The VB became the main production version of the Mark Vs. Along with the new Merlin 45 series the B wing was fitted as standard. As production progressed changes were incorporated, some of which became standard on all later Spitfires. Production started with several Mk IBs which were converted to Mk VBs by Supermarine. Starting in early 1941 the round section exhaust stacks were changed to a "fishtail" type, marginally increasing exhaust thrust. Some late production VBs and VCs were fitted with six shorter exhaust stacks per side, similar to those of Spitfire IXs and Seafire IIIs; this was originally stipulated as applying specifically to VB(trop)s. After some initial problems with the original Mk I size oil coolers, a bigger oil cooler was fitted under the port wing; this could be recognised by a deeper housing with a circular entry. From mid-1941 alloy covered ailerons became a universal fitting.

 

Spitfire VC(trop), fitted with Vokes filters and "disc" wheels, of 417 Squadron RCAF in Tunisia in 1943.

A constant flow of modifications were made as production progressed. A "blown" cockpit hood, manufactured by Malcolm, was introduced in an effort to further increase the pilot's head-room and visibility. Many mid to late production VBs - and all VCs - used the modified, improved windscreen assembly with the integral bullet resistant centre panel and flat side screens introduced with the Mk III. Because the rear frame of this windscreen was taller than that of the earlier model the cockpit hoods were not interchangeable and could be distinguished by the wider rear framing on the hood used with the late-style windscreen.

 

Different propeller types were fitted, according to where the Spitfire V was built: Supermarine and Westland manufactured VBs and VCs used 10 ft 9 in (3.28 m) diameter, 3 bladed de Havilland constant speed units, with narrow metal blades, while Castle Bromwich manufactured VBs and VCs were fitted with a wide bladed Rotol constant speed propeller of either 10 ft 9 in (3.28 m) diameter, with metal blades, or (on late production Spitfires) 10 ft 3 in (3.12 m) diameter, with broader, "Jablo" (compressed wood) blades. The Rotol spinners were longer and more pointed than the de Havilland leading to a 3.5 in (8.9 cm) increase in overall length. The Rotol propellers allowed a modest speed increase over 20,000 ft (6,100 m) and an increase in the service ceiling. A large number of Spitfire VBs were fitted with "gun heater intensifier" systems on the exhaust stacks. These piped additional heated air into the gun bays. There was a short tubular intake on the front of the first stack and a narrow pipe led into the engine cowling from the rear exhaust.

 

The VB series were the first Spitfires able to carry a range of specially designed "slipper" drop tanks which were fitted underneath the wing centre-section. Small hooks were fitted, just forward of the inboard flaps: when the tank was released these hooks caught the trailing edge of the tank, swinging it clear of the fuselage.

 

With the advent of the superb Focke Wulf Fw 190 in August 1941 the Spitfire was for the first time truly outclassed, hastening the development of the "interim" Mk IX. In an effort to counter this threat, especially at lower altitudes, the VB was the first production version of the Spitfire to use "clipped" wingtips as an option, reducing the wingspan to 32 ft 2 in (9.8 m).The clipped wings increased the roll rate and airspeed at lower altitudes. Several different versions of the Merlin 45/50 family were used, including the Merlin 45M which had a smaller "cropped" supercharger impeller and boost increased to +18 lb. This engine produced 1,585 hp (1,182 kW) at 2,750 ft (838 m), increasing the L.F VB's maximum rate of climb to 4720 ft/min (21.6 m/s) at 2,000 ft (610 m).

 

VB Trop of 40 Squadron SAAF fitted with the "streamlined" version of the Aboukir filter, a broad-bladed, 10 ft 3 in (3.12 m) diameter Rotol propeller, and clipped wings.

The Mk VB(trop) (or type 352) could be identified by the large Vokes air filter fitted under the nose; the reduced speed of the air to the supercharger had a detrimental effect on the performance of the aircraft, reducing the top speed by 8 mph (13 km/h) and the climb rate by 600 ft/min (3.04 m/s), but the decreased performance was considered acceptable. This variant was also fitted with a larger oil tank and desert survival gear behind the pilot's seat. A new "desert" camouflage scheme was applied. Many VB(trop)s were modified by 103 MU (Maintenance Unit-RAF depots in which factory fresh aircraft were brought up to service standards before being delivered to squadrons) at Aboukir, Egypt by replacing the Vokes filter with locally manufactured "Aboukir" filters, which were lighter and more streamlined. Two designs of these filters can be identified in photos: one had a bulky, squared off filter housing while the other was more streamlined. These aircraft were usually fitted with the wide blade Rotol propeller and clipped wings.

 

Triumph Spitfire Mk I Roadster

 

The Triumph Spitfire is a small English two-seat sports car, introduced at the London Motor Show in 1962.[3] The vehicle was based on a design produced for Standard-Triumph in 1957 by Italian designer Giovanni Michelotti. The platform for the car was largely based upon the chassis, engine, and running gear of the Triumph Herald saloon, and was manufactured at the Standard-Triumph works at Canley, in Coventry. As was typical for cars of this era, the bodywork was fitted onto a separate structural chassis, but for the Spitfire, which was designed as an open top or convertible sports car from the outset, the ladder chassis was reinforced for additional rigidity by the use of structural components within the bodywork. The Spitfire was provided with a manual hood for weather protection, the design improving to a folding hood for later models. Factory-manufactured hard-tops were also available.

 

The Triumph Spitfire was originally devised by Standard-Triumph to compete in the small sports car market that had opened up with the introduction of the Austin-Healey Sprite. The Sprite had used the basic drive train of the Austin A30/35 in a light body to make up a budget sports car; Triumph's idea was to use the mechanicals from their small saloon, the Herald, to underpin the new project. Triumph had one advantage, however; where the Austin A30 range was of unitary construction, the Herald featured a separate chassis. It was Triumph's intention to cut that chassis down and clothe it in a sports body, saving the costs of developing a completely new chassis / body unit.

 

Italian designer Michelotti—who had already penned the Herald—was commissioned for the new project, and came up with a traditional, swooping body. Wind-up windows were provided (in contrast to the Sprite/Midget, which still featured sidescreens, also called curtains, at that time), as well as a single-piece front end which tilted forwards to offer unrivaled access to the engine. At the dawn of the 1960s, however, Standard-Triumph was in deep financial trouble, and unable to put the new car into production; it was not until the company was taken over by the Leyland organization funds became available and the car was launched. Leyland officials, taking stock of their new acquisition, found Michelotti's prototype hiding under a dust sheet in a corner of the factory and rapidly approved it for production.

 

Spitfire 4 or Mark I (1962-1964)

 

Overview:

Production1962–1964

45,753 made

Powertrain:

Engine1,147 cc (1.1 l) I4

Transmission4-speed manual with optional overdrive on top and third from 1963 onwards

Dimensions:

Curb weight1,568 lb (711 kg) (unladen U.K.-spec)

 

The production car changed little from the prototype, although the full-width rear bumper was dropped in favour of two part-bumpers curving round each corner, with overriders. Mechanicals were basically stock Herald. The engine was an 1,147 cc (1.1 l) 4-cylinder with a pushrod OHV cylinder head and 2 valves per cylinder, mildly tuned for the Spitfire, fed by twin SU carburettors. Also from the Herald came the rack and pinion steering and coil-and-wishbone front suspension up front, and at the rear a single transverse-leaf swing axle arrangement. This ended up being the most controversial part of the car: it was known to "tuck in" and cause violent over steer if pushed too hard, even in the staid Herald. In the sportier Spitfire (and later the 6-cylinder Triumph GT6 and Triumph Vitesse) it led to severe criticism. The body was bolted to a much-modified Herald chassis, the outer rails and the rear outriggers having been removed; little of the original Herald chassis design was left, and the Spitfire used structural outer sills to stiffen its body tub.

 

The Spitfire was an inexpensive small sports car and as such had very basic trim, including rubber mats and a large plastic steering wheel. These early cars were referred to both as "Triumph Spitfire Mark I" and "Spitfire 4", not to be confused with the later Spitfire Mark IV.

 

In UK specification the in-line four produced 63 bhp (47 kW) at 5750 rpm, and 67 lb·ft (91 N·m)of torque at 3500 rpm. This gave a top speed of 92 mph (148 km/h), and would achieve 0 to 60 mph (97 km/h) in 17.3 seconds. Average fuel consumption was 31mpg.

 

For 1964 an overdrive option was added to the 4-speed manual gearbox to give more relaxed cruising. Wire wheels and a hard top were also available.

 

Text regarding the Supermarine Spitfire aeroplane and Triumph Spitfire Roadster has been taken from excerpts of Wikipedia articles on each model.

 

The Supermarine Spitfire Mk VB aircraft and 1962 Triumph Spitfire Mk I road car have been modelled in Lego miniland-scale for Flickr LUGNuts' 79th Build Challenge, - 'LUGNuts goes Wingnuts, ' - featuring automotive vehicles named after, inspired by, or with some relationship to aircraft.

Languishing at the back of the Depot is Ballina Based Leyland Leopard E8(CZA668).

Converted into a Ambulance Configuration These vehicles were used to bring disabled pilgrims from the railway station at Claremorris to the shrine at Knock. After some years out of use E8 was brought to Dromod for preservation in September 1994.

Lunar eclipses present an excellent opportunity to learn how to observe the atmospheres of those exoplanets in stellar systems that are appropriately and fortuitously oriented in space. The geometric configuration of the three bodies involved is similar when both produce a visible transit of a planet across the face of a star.

 

As seen from the Moon during a total lunar eclipse, the Earth passes in front of the Sun and almost completely shadows the face of the Moon from direct sunlight whilst it remains in umbral shadow. However, because the Earth has an atmosphere, some of the sunlight that grazes the limb is refracted and scattered towards the hidden Moon to paint it a deep, blood-red hue.

 

In regions free from cloud and high mountains, these grazing sunbeams will travel along a path containing up to about eighty times as much atmosphere as you would look through when observing a star at the zenith from sea level. This very long path, twice as long as a sunset or sunrise, imprints a strong signature of the atmospheric composition of the Earth on the light that reaches the Moon. By capturing this dim lunar light with a telescope and a spectrograph on or near the Earth we can interpret this signature to compile a detailed picture our own atmosphere.

 

While an exoplanet transit will not provide an umbral shadow that is accessible to us, it can place us in its penumbra. Teasing the signature of the exoplanet's atmosphere from a signal that is almost completely dominated by the unshadowed starlight requires a great deal of care and a large telescope. But it can, and has now quite often, been done. Although we do not yet have the telescopes to achieve this for exoplanets as small as Earth, several are now (2021) being constructed or planned.

 

This plot of the spectrum of a low Sun and two lunar eclipses is presented to show what the results look like and what they show.

 

Each of them reveal what is essentially the transmission of the Earth's atmosphere. This is calculated by taking the ratio of the transmitted light to the source which is, of course, the Sun. By taking this ratio, we remove all the spectral features arising at the Sun, leaving only those formed by the Earth's atmospheric absorption and scattering: we call these the 'telluric' lines and bands.

 

The top (blue line) spectrum is from the low Sun (altitude 8.4°) observed in Munich in August 2011. The visible part was obtained with a JAZ spectrometer while the infrared (from ~950nm) is from a NirQuest, both from Ocean Optics. In this case the ratio was taken with observations earlier in the day with a solar altitude of 51°.

 

The bottom (red line) spectrum, kindly supplied by Enric Pallé, is from the Moon in the Earth's umbral shadow taken from La Palma during the lunar eclipse of 16 August 2008. This was obtained by visible and infrared spectrographs on different telescopes. Full descriptions can be found in the Nature paper by Pallé et al. (Vol 459|11 June 2009|doi:10.1038/nature08050) along with supplementary information. See:

 

arxiv.org/abs/0906.2958

 

The central (green line) spectrum shows a low resolution representation of a considerably higher resolution spectrum extending up to 1000nm observed from China during the 10 December 2011 lunar eclipse. The detailed analysis of these observations is presented in the paper by Yan et al. (International Journal of Astrobiology 14 (2): 255–266, 2015). See:

 

arxiv.org/abs/1405.4780

 

Both of the eclipse spectra show the ratio of the measurements of the lunar surface during the umbral part of the eclipse to that of the same part of the bright Moon out of eclipse taken at closely adjacent times. This procedure removes not only the solar spectral features but also those resulting from the lunar surface itself and from the atmospheric path between the Moon and the telescope, leaving a clean measurement of the long grazing (tangential) path taken by the sunlight reaching the Moon past the Earth.

 

The infrared part of the spectrum, above 1000nm, is dominated by overtones of the fundamental water vapour bands associated with the stretching a bending of the water molecule (en.wikipedia.org/wiki/Electromagnetic_absorption_by_water). In addition to some carbon dioxide and methane absorptions, there are two important and interesting features associated with collisions between two oxygens and, in one case, between oxygen and nitrogen molecules. These are called Collision Induced Absorptions (CIA) which, because they require the close proximity of two molecules, have a strength which depends on the square of atmospheric density and so become especially strong when sunlight takes a path through the low atmosphere. In the plots, some of the stronger CIA bands are marked in pale green. The oxygen-oxygen collisions are labelled O_4. A modern quantum mechanical description of the formation of these bands can be found at: www.theochem.ru.nl/files/theses/karman-phdthesis-2018.pdf

 

Note the great strength of the O_4 + N_2•N_2 band in the umbral spectrum of the 2008 eclipse (red line) when almost all of the sunlight reaching the Moon has travelled though the low atmosphere.

 

The visible spectrum is marked by strong scattering (Rayleigh and aerosol) extinction and by very intense ozone (Chappuis band) absorption, the combination of which provides the colour palette of a lunar eclipse ranging from deep red-orange to ultramarine blue.

 

Of interest in the 2011 eclipse spectrum (green line) is the weakness of the water absorption spectrum. The tangent path of the sunlight reaching the Moon in this umbral spectrum passed over the coast of Antarctica south of Australia. Here the very low temperatures freeze out the water to give an extraordinarily dry atmosphere.

 

More details of the interpretations of the eclipse spectra can be found in the papers referred to above and also in an article entitled "How the Sun Paints the Sky" which can be found on the Herschel Society website at:

 

herschelsociety.org.uk/wp-content/uploads/2021/01/How-the...

 

In this 4th post for my "new" Hasselblad 500C/M camera, I have shown the main components of the configuration pictured in the 3rd post separated out from one another. This helps to make the point that this is a "system" camera - i.e., that the camera has a modular architecture that permits the photographer to readily swap out many of the major components for alternatives.

 

The Hasselblad 500C/M medium format film camera that I got as a Christmas present had a fairly standard configuration - 80mm lens, A12 film back, and waist-level viewfinder. Knowing that there are different options for these components, I turned to the internet to see what was on offer. It came as no surprise to read that there were a range of different lenses for the camera - this is a feature that is available for many cameras. It is a little more unusual that there are quite a few different viewfinders options available. But what really stood out was that the camera back could be swapped out, even in the middle of a roll of film. Having inserted a sheet of metal known as a "dark slide" that stops light from reaching the film, the back can be separated from the rest of the camera. It can then be replaced with a different back, perhaps one with a different film type in it - e.g., a color film versus B&W, a film with a different ISO, etc.

 

And then the biggest surprise of all - that the film back can be replaced with a digital back. These backs have a CPU to control the unit, a light sensitive digital sensor array, a compact flash card storage system, and a screen for viewing the controls and the pictures that are taken. Based on sensor resolution, there are 3 different lines of digital backs for the Hasselblad 500 (V) series of cameras - 16MP, 39MP and 50MP. Shown here is a CFV16 II second generation 16MP digital back. Having bought this digital back, I now have a camera that can shoot with both film and digital formats. The latter is proving to be very useful as I begin to learn how to use the camera. The immediate feedback obtained with a digital system is speeding up the learning process considerably!

 

----------

Following are some of the technical details of the configuration that is shown here.

 

Hasselblad 500C/M body

- 500 stands for 1/500 (i.e., the top shutter speed in seconds), C for classic, and M for modified.

- Serial # 10EI24806.

- Manufactured in 1994, the final year of manufacture of this model (i.e., 1970 to 1994).

 

Hasselblad Acute Matte D 42262 Focusing Screen with split image, Micro Prism and Cross Hair.

 

Hasselblad CFV II Digital Back for Hasselblad V mount camera 16MP

- Serial # 3DSR12142

- Manufactured in 2008.

 

Hasselblad 45 Degree Viewfinder PME-45 42297

- Serial # 403SV2796

- Manufactured in 2001.

 

Carl Zeiss - Hasselblad SYNCHRO COMPUR Planar 80mm C f2.8 V-series lens.

- Serial # 4598852.

- Manufactured in 1968.

 

FotodioX B50 Lens Hood for Hasselblad Standard Length C Lenses.

 

Hasselblad leather camera case (mustard yellow color).

 

[Approximate weight in this configuration of 2.14kg (4.1lbs).]

 

----------

Barton, Australian Capital Territory, Australia.

 

----------

iPhone 6s Plus - The photograph were taken with the back-facing camera on an iPhone 6s Plus.

NightCap Pro - This camera replacement app was used in standard mode to capture an image with 4032 x 3024 pixels (12MP).

Photoshop Express - The image was straightened and cropped to square 1:1 format (2203 x 2203 pixels).

Handy Photo - The "Retouch" tool was used to remove some small blemishes from the background elements.

Simply B&W - The image was transformed to Black & White using a red color filter.

Pixlr - Approximately 50% of the "Soft" dark vignette was added to the image.

ExifEditor - EXIF data from the original photograph was transferred to the final image.

Atlas V 411 configuration

The Supermarine Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and many other Allied countries during and after the Second World War. The Spitfire was built in many variants, using several wing configurations, and was produced in greater numbers than any other British aircraft. It was also the only British fighter to be in continuous production throughout the war. The Spitfire continues to be a popular aircraft, with approximately 55 Spitfires being airworthy, while many more are static exhibits in aviation museums all over the world.

 

The Spitfire was designed as a short-range, high-performance interceptor aircraft by R. J. Mitchell, chief designer at Supermarine Aviation Works (which operated as a subsidiary of Vickers-Armstrong from 1928). In accordance with its role as an interceptor, Mitchell designed the Spitfire's distinctive elliptical wing to have the thinnest possible cross-section; this thin wing enabled the Spitfire to have a higher top speed than several contemporary fighters, including the Hawker Hurricane. Mitchell continued to refine the design until his death from cancer in 1937, whereupon his colleague Joseph Smith took over as chief designer, overseeing the development of the Spitfire through its multitude of variants.

 

During the Battle of Britain (July–October 1940), the Spitfire was perceived by the public to be the RAF fighter, though the more numerous Hawker Hurricane shouldered a greater proportion of the burden against the Luftwaffe. However, because of its higher performance, Spitfire units had a lower attrition rate and a higher victory-to-loss ratio than those flying Hurricanes.

 

After the Battle of Britain, the Spitfire superseded the Hurricane to become the backbone of RAF Fighter Command, and saw action in the European, Mediterranean, Pacific and the South-East Asian theatres. Much loved by its pilots, the Spitfire served in several roles, including interceptor, photo-reconnaissance, fighter-bomber and trainer, and it continued to serve in these roles until the 1950s. The Seafire was a carrier-based adaptation of the Spitfire which served in the Fleet Air Arm from 1942 through to the mid-1950s. Although the original airframe was designed to be powered by a Rolls-Royce Merlin engine producing 1,030 hp (768 kW), it was strong enough and adaptable enough to use increasingly powerful Merlin and, in later marks, Rolls-Royce Griffon engines producing up to 2,340 hp (1,745 kW); as a consequence of this the Spitfire's performance and capabilities improved, sometimes dramatically, over the course of its life.

 

Mk V (Types 331, 349 & 352)

 

Spitfire LF.Mk VB, BL479, flown by Group Captain M.W.S Robinson, station commander of RAF Northolt, August 1943. This Spitfire has the wide bladed Rotol propeller, the internal armoured windscreen and "clipped" wings.

Late in 1940, the RAF predicted that the advent of the pressurised Junkers Ju 86P bomber series over Britain would be the start of a new sustained high altitude bombing offensive by the Luftwaffe, in which case development was put in hand for a pressurised version of the Spitfire, with a new version of the Merlin (the Mk VI). It would take some time to develop the new fighter and an emergency stop-gap measure was needed as soon as possible: this was the Mk V.

 

The basic Mk V was a Mk I with the Merlin 45 series engine. This engine delivered 1,440 hp (1,074 kW) at take-off, and incorporated a new single-speed single-stage supercharger design. Improvements to the carburettor also allowed the Spitfire to use zero gravity manoeuvres without any problems with fuel flow. Several Mk I and Mk II airframes were converted to Mk V standard by Supermarine and started equipping fighter units from early 1941. The majority of the Mk Vs were built at Castle Bromwich.

 

The VB became the main production version of the Mark Vs. Along with the new Merlin 45 series the B wing was fitted as standard. As production progressed changes were incorporated, some of which became standard on all later Spitfires. Production started with several Mk IBs which were converted to Mk VBs by Supermarine. Starting in early 1941 the round section exhaust stacks were changed to a "fishtail" type, marginally increasing exhaust thrust. Some late production VBs and VCs were fitted with six shorter exhaust stacks per side, similar to those of Spitfire IXs and Seafire IIIs; this was originally stipulated as applying specifically to VB(trop)s. After some initial problems with the original Mk I size oil coolers, a bigger oil cooler was fitted under the port wing; this could be recognised by a deeper housing with a circular entry. From mid-1941 alloy covered ailerons became a universal fitting.

 

Spitfire VC(trop), fitted with Vokes filters and "disc" wheels, of 417 Squadron RCAF in Tunisia in 1943.

A constant flow of modifications were made as production progressed. A "blown" cockpit hood, manufactured by Malcolm, was introduced in an effort to further increase the pilot's head-room and visibility. Many mid to late production VBs - and all VCs - used the modified, improved windscreen assembly with the integral bullet resistant centre panel and flat side screens introduced with the Mk III. Because the rear frame of this windscreen was taller than that of the earlier model the cockpit hoods were not interchangeable and could be distinguished by the wider rear framing on the hood used with the late-style windscreen.

 

Different propeller types were fitted, according to where the Spitfire V was built: Supermarine and Westland manufactured VBs and VCs used 10 ft 9 in (3.28 m) diameter, 3 bladed de Havilland constant speed units, with narrow metal blades, while Castle Bromwich manufactured VBs and VCs were fitted with a wide bladed Rotol constant speed propeller of either 10 ft 9 in (3.28 m) diameter, with metal blades, or (on late production Spitfires) 10 ft 3 in (3.12 m) diameter, with broader, "Jablo" (compressed wood) blades. The Rotol spinners were longer and more pointed than the de Havilland leading to a 3.5 in (8.9 cm) increase in overall length. The Rotol propellers allowed a modest speed increase over 20,000 ft (6,100 m) and an increase in the service ceiling. A large number of Spitfire VBs were fitted with "gun heater intensifier" systems on the exhaust stacks. These piped additional heated air into the gun bays. There was a short tubular intake on the front of the first stack and a narrow pipe led into the engine cowling from the rear exhaust.

 

The VB series were the first Spitfires able to carry a range of specially designed "slipper" drop tanks which were fitted underneath the wing centre-section. Small hooks were fitted, just forward of the inboard flaps: when the tank was released these hooks caught the trailing edge of the tank, swinging it clear of the fuselage.

 

With the advent of the superb Focke Wulf Fw 190 in August 1941 the Spitfire was for the first time truly outclassed, hastening the development of the "interim" Mk IX. In an effort to counter this threat, especially at lower altitudes, the VB was the first production version of the Spitfire to use "clipped" wingtips as an option, reducing the wingspan to 32 ft 2 in (9.8 m).The clipped wings increased the roll rate and airspeed at lower altitudes. Several different versions of the Merlin 45/50 family were used, including the Merlin 45M which had a smaller "cropped" supercharger impeller and boost increased to +18 lb. This engine produced 1,585 hp (1,182 kW) at 2,750 ft (838 m), increasing the L.F VB's maximum rate of climb to 4720 ft/min (21.6 m/s) at 2,000 ft (610 m).

 

VB Trop of 40 Squadron SAAF fitted with the "streamlined" version of the Aboukir filter, a broad-bladed, 10 ft 3 in (3.12 m) diameter Rotol propeller, and clipped wings.

The Mk VB(trop) (or type 352) could be identified by the large Vokes air filter fitted under the nose; the reduced speed of the air to the supercharger had a detrimental effect on the performance of the aircraft, reducing the top speed by 8 mph (13 km/h) and the climb rate by 600 ft/min (3.04 m/s), but the decreased performance was considered acceptable. This variant was also fitted with a larger oil tank and desert survival gear behind the pilot's seat. A new "desert" camouflage scheme was applied. Many VB(trop)s were modified by 103 MU (Maintenance Unit-RAF depots in which factory fresh aircraft were brought up to service standards before being delivered to squadrons) at Aboukir, Egypt by replacing the Vokes filter with locally manufactured "Aboukir" filters, which were lighter and more streamlined. Two designs of these filters can be identified in photos: one had a bulky, squared off filter housing while the other was more streamlined. These aircraft were usually fitted with the wide blade Rotol propeller and clipped wings.

 

Triumph Spitfire Mk I Roadster

 

The Triumph Spitfire is a small English two-seat sports car, introduced at the London Motor Show in 1962.[3] The vehicle was based on a design produced for Standard-Triumph in 1957 by Italian designer Giovanni Michelotti. The platform for the car was largely based upon the chassis, engine, and running gear of the Triumph Herald saloon, and was manufactured at the Standard-Triumph works at Canley, in Coventry. As was typical for cars of this era, the bodywork was fitted onto a separate structural chassis, but for the Spitfire, which was designed as an open top or convertible sports car from the outset, the ladder chassis was reinforced for additional rigidity by the use of structural components within the bodywork. The Spitfire was provided with a manual hood for weather protection, the design improving to a folding hood for later models. Factory-manufactured hard-tops were also available.

 

The Triumph Spitfire was originally devised by Standard-Triumph to compete in the small sports car market that had opened up with the introduction of the Austin-Healey Sprite. The Sprite had used the basic drive train of the Austin A30/35 in a light body to make up a budget sports car; Triumph's idea was to use the mechanicals from their small saloon, the Herald, to underpin the new project. Triumph had one advantage, however; where the Austin A30 range was of unitary construction, the Herald featured a separate chassis. It was Triumph's intention to cut that chassis down and clothe it in a sports body, saving the costs of developing a completely new chassis / body unit.

 

Italian designer Michelotti—who had already penned the Herald—was commissioned for the new project, and came up with a traditional, swooping body. Wind-up windows were provided (in contrast to the Sprite/Midget, which still featured sidescreens, also called curtains, at that time), as well as a single-piece front end which tilted forwards to offer unrivaled access to the engine. At the dawn of the 1960s, however, Standard-Triumph was in deep financial trouble, and unable to put the new car into production; it was not until the company was taken over by the Leyland organization funds became available and the car was launched. Leyland officials, taking stock of their new acquisition, found Michelotti's prototype hiding under a dust sheet in a corner of the factory and rapidly approved it for production.

 

Spitfire 4 or Mark I (1962-1964)

 

Overview:

Production1962–1964

45,753 made

Powertrain:

Engine1,147 cc (1.1 l) I4

Transmission4-speed manual with optional overdrive on top and third from 1963 onwards

Dimensions:

Curb weight1,568 lb (711 kg) (unladen U.K.-spec)

 

The production car changed little from the prototype, although the full-width rear bumper was dropped in favour of two part-bumpers curving round each corner, with overriders. Mechanicals were basically stock Herald. The engine was an 1,147 cc (1.1 l) 4-cylinder with a pushrod OHV cylinder head and 2 valves per cylinder, mildly tuned for the Spitfire, fed by twin SU carburettors. Also from the Herald came the rack and pinion steering and coil-and-wishbone front suspension up front, and at the rear a single transverse-leaf swing axle arrangement. This ended up being the most controversial part of the car: it was known to "tuck in" and cause violent over steer if pushed too hard, even in the staid Herald. In the sportier Spitfire (and later the 6-cylinder Triumph GT6 and Triumph Vitesse) it led to severe criticism. The body was bolted to a much-modified Herald chassis, the outer rails and the rear outriggers having been removed; little of the original Herald chassis design was left, and the Spitfire used structural outer sills to stiffen its body tub.

 

The Spitfire was an inexpensive small sports car and as such had very basic trim, including rubber mats and a large plastic steering wheel. These early cars were referred to both as "Triumph Spitfire Mark I" and "Spitfire 4", not to be confused with the later Spitfire Mark IV.

 

In UK specification the in-line four produced 63 bhp (47 kW) at 5750 rpm, and 67 lb·ft (91 N·m)of torque at 3500 rpm. This gave a top speed of 92 mph (148 km/h), and would achieve 0 to 60 mph (97 km/h) in 17.3 seconds. Average fuel consumption was 31mpg.

 

For 1964 an overdrive option was added to the 4-speed manual gearbox to give more relaxed cruising. Wire wheels and a hard top were also available.

 

Text regarding the Supermarine Spitfire aeroplane and Triumph Spitfire Roadster has been taken from excerpts of Wikipedia articles on each model.

 

The Supermarine Spitfire Mk VB aircraft and 1962 Triumph Spitfire Mk I road car have been modelled in Lego miniland-scale for Flickr LUGNuts' 79th Build Challenge, - 'LUGNuts goes Wingnuts, ' - featuring automotive vehicles named after, inspired by, or with some relationship to aircraft.

Mile End - South Australia AN Roadrailer van - soft sided unit in road configuration attached to prime mover (b07-39a)

6/17/12. Tillamook, Oregon. Canon Rebel XTi, Canon EF-S 15-85mm IS USM, handheld, sooc.

 

Another use for the V16 configuration is in medium-speed diesel engines. Here, manufacturers tend to work with a common cylinder size across a wide range of engines, and size the engine by the number of cylinders for different power requirements. Thus, many users of medium speed diesel engines such as railroad locomotives use V16 powerplants, including most Electro-Motive Diesel and GE Transportation Systems locomotives. EMD's 16-cylinder two-stroke diesel, with 710 CID per cylinder (hence known as the 16-710), can produce over 4,300 hp (3.2 MW). Engines such as these are also popular for marine applications and for large emergency generator sets (which frequently use available marine engines, since weight is unimportant). GE's four-stroke V16 diesels, the 7FD Series (used in marine, locomotive, and stationary applications), have 668 CID per cylinder and can produce over 4,400 hp (3.3 MW). GE also manufactures the GEVO line of engines; the V16 version, known as the GEVO-16, produces over 6,000 hp (4.47 MW).

  

restoreoregon.org/dirigible-hangar-b-tillamook/

 

Significance

 

Hangar B was constructed at Naval Air Station Tillamook for the mooring and maintenance of blimps during World War II. Using over 3.3 million board feet of lumber, Hangar B is considered to be one of the largest wood clear span buildings in the entire world and is reportedly one of only seven similar blimp hangars remaining in the United States.

History

 

Naval Air Station Tillamook’s Hangar B is highly significant for its role in World War II national defense as well as its unique design characteristics. Completed on August 15, 1943, Hangar B was one of two identical blimp hangars built in Tillamook to house a squadron of blimps, ZP-33, that patrolled the coastline from California to the Canadian border during World War II.

 

The eight “K” series blimps housed in Tillamook during the war years were 252 feet long and were armed with four depth chargers and two 50‐caliber machine guns. Hangar B was decommissioned in 1948 and became Tillamook Air Museum in 1994.

 

Structurally, Hangar B is one of the largest wood buildings in the world, measuring 1,072 feet long, 296 feet wide and 192 feet high. According to the National Register nomination, “Pressure-treated Pacific Northwest lumber was used for the vast number of structural framing members with the object of conserving steel for the overseas war effort. The roof support system, consisting of nearly parabolic open-web truss arch ribs on reinforced concrete bents spaced at 20-foot intervals, tested building technology of the day.” The identical Hangar A was destroyed by fire in 1992.

Why it’s Endangered

 

Located within the Port of Tillamook Bay Industrial Park, Hangar B is in dire need of rehabilitation. While additional assessments are needed, a 2011 study identified that the 430,000 sq. ft roof needs replacement due to rusting and rapid deterioration caused by recurrent heavy rains and high winds. The immense doors on the south end of the hangar have become inoperable, and the north end doors need immediate repair to maintain operability. Estimates for rehab are approximately $15 million. While the building will continue to serve as Tillamook Air Museum until the current tenant’s lease ends in 2016, the cash flow generated by the museum is insufficient to cover even a fraction of the mounting repair bill.

Our Near-term Goals

 

Funding for the phased rehabilitation of Hangar B is critical if the building is to survive into the future. With the pending relocation of private planes housed in the Air Museum, an updated plan for building use and outside financial support must be identified.

These heavy freight tank engines were designed in the early years of the 20th century to haul heavy coal trains from the South Wales coal fields. Some were later converted to a 2-8-2T configuration. Classified by British Railways as a 7F

Valentine sunset with Kercam21, Trevor Tutt and Mic Steel

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The P-74 "Charger" was a fighter aircraft built by Lockheed for the United States Army Air Forces (USAAF). Its configuration was unusual as it was designed as a twin boom pusher configuration, where the propeller is mounted in the rear of the fuselage, pushing the aircraft forward.

 

The P-74 entered service with the USAAF in late 1944, its conception dated back to 1939 when the U.S. Army Air Corps requested with the Circular Proposal R40C domestic manufacturers to develop high performance fighter types, allowing (even demanding) unusual configurations. Lockheed did not respond immediately and missed the chance to sign a development contract in mid-1940 until early 1941. Twenty-three proposals were submitted to R40C, and after a fist selection of ideas three companies, Vultee with the large XP-54 Swoose Goose, Curtiss with its XP-55 Ascender and Northrop's XP-56 Black Bullet were able to secure prototype contracts.

 

Vultee eventually won the competition, but all these innovative new aircraft suffered from various flaws or development delays, missing various performance goals, so that none ever entered service.

 

In the meantime, Lockheed had been working on the 1939 request in the background on a private venture basis, as it was clear that by 1944 a successor to the company's own P-38 Lightning had to be offered to the USAAC.

The new North American P-51 Mustang was also a sharp competitor, esp. for the Pacific conflict theatre where long range was needed. This role was filled out very well by the P-38, but it was a relatively large and complicated aircraft, so an alternative with a single engine was strived for. Even though jet engines already showed their potential, it was clear that the requested range for the new type could only be achieved through a piston engine.

 

This aircraft became the XP-74, originally christened “Laelaps”, following Lockheed’s tradition, after a female Greek mythological dog who never failed to catch what she was hunting. It was presented as a mock-up to USAAC officials on August 8th 1942 and immediately found sponsorship: with the disappointing results from the XP-54,55 and 56 was immediately ushered into the prototype stage. Its name, though, was rejected, and the more common name “Charger” was adopted.

 

Just like Lockheed’s successful P-38 the XP-74 Charger was designed as a twin-boom aircraft, but it was driven by only a single Packard (License-built Rolls Royce Merlin) V-1650 pusher engine in the aft part of the fuselage. The tail was mounted rearward between two mid-wing booms, with a four-bladed 12-ft propeller between them. The design also included a "ducted wing section" developed by the NACA that enabled installation of cooling radiators and intercoolers in the wing root section.

 

The advantages of a pusher design are that the view forward is unobstructed and armament can be concentrated in the nose, while a major drawback is difficulty in escaping from the aircraft in an emergency, as the pilot could get drawn into the propeller blades. Lockheed deliberated between systems that would eject the pilot, or jettison the propeller or the engine, via a system of explosive bolts. Lockheed eventually installed an early ejector seat which was driven by pressurized air, combined with a mechanism that would blow the canopy off. The system was successfully tested in summer 1943, even though skepticism remained among pilots.

 

Initial armament comprised one 20mm Hispano cannon and four 12.7mm Browning machine guns, the same as in the P-38, but two machine guns were relocated from the nose into the front ends of the tail booms because of the new aircraft’s smaller overall dimensions.

 

The first prototype was ready in October 1943, with a different engine and heavier armor fitted. The second prototype was built to this specification from the start, which would become the serial production standard, the P-74A.

The P-74A used the new V-1650-9 engine, a version of the Merlin that included Simmons automatic supercharger boost control with water injection, allowing War Emergency Power as high as 2,218 hp (1,500 kW). Another change concerned the armament: a longer weapon range was deemed necessary, so the gun armament was changed into four 20mm Hispano cannons, two of the placed in the fuselage nose and one in each tail boom front end. Each gun was supplied with 250 RPG.

 

Alternatively, a nose installment with a single 37mm cannon and two 12.7mm Browning MGs was tested on the first prototype, but this arrangement was found to be less effective than the four 20mm cannons. Another factor that turned this option down was the more complicated logistics demands for three different calibers in one aircraft.

 

The P-74A was ready for service in summer 1944, but its deployment into the Pacific region took until December – the 5th Air Force first units replaced most of its P-38 and also early P-47Ds with the P-74A.These new aircraft had their first clashes with Japanese forces in January 1945.

 

The P-74 was used in a variety of roles. It was designed as an intreceptor against bombers, but its good range and handling at all altitudes made it suitable for tasks like fighter sweeps against enemy airfields, support for U.S. ground forces and protection of sea convoys and transport routes.

While the P-74 could not out-turn the A6M Zero and most other Japanese fighters when flying below 200 mph (320 km/h), its superior speed coupled with a good rate of climb meant that it could utilize energy tactics, making multiple high-speed passes at its target. Also, its focused firepower was deadly to lightly armored Japanese warplanes.

 

Because of its late service introduction, only 305 P-74s were ever produced until the end of hostilities, and they were exclusively used in the Pacific theatre. The P-74's service record shows mixed results, but usually because of misinformation. P-74s have been described as being harder to fly than traditional, single-engined aircraft, but this was because of inadequate training in the first few months of service.

Another drawback was the ejection seat system – it worked basically well, but the tank for the pressurized air turned out to be very vulnerable to enemy fire. Several P-74s literally exploded in midair after cannon fire hits, and this poeblem could only be cured when the tank section behind the cockpit received a more rigid structure and additional armor. Anyway, the P-74 was quickly retired after WWII, as the USAAF focussed on P-47 and P-51.

  

General characteristics

Crew: 1

Length: 10.45 m (34 ft 3 in)

Wingspan: 11.6 m (38 ft 0 in)

Height: 3.97 (13 ft 0 in)

Wing area: 22.2 m² (238.87 ft²)

Empty weight: 3,250 kg (7,165 lb)

Loaded weight: 4,150 kg (9,149 lb)

Max. take-off weight: 4,413 kg (9,730 lb)

 

Powerplant:

1× Packard (License-built Rolls Royce Merlin) V-1650-9 ,

rated at 1,380 hp (1,030 kW) and 2,218 hp (1,500 kW) w. water injection

 

Performance

Maximum speed: 640 km/h (343 knots, 398 mph)

Cruise speed: 495 km/h (265 knots, 308 mph)

Range: 1,105 mi (1,778 km)

Ferry range: 1,330 nmi (1,530 mi, 2,460 km)

Service ceiling: 11,000 m (36,090 ft)

Rate of climb: 15 m/s (2,950 ft/min)

 

Armament

4× 20 mm (0.79 in) Hispano-Suiza HS.404 cannons with 250 RPG

2× hardpoints for up to 2,000 lb (907 kg) of bombs, 6 or 10× T64 5.0 in (127 mm) H.V.A.R rockets

  

The kit and its assembly:

This whif was inspired by a CG rendition of a Saab J21 in a natural metal finish and with (spurious) USAAF markings, probably a skin for a flight simulator. Anyway, I was more or less enchanted by the NMF on the Saab – I had to build one, and it would become the P-74, the only USAF fighter code that had never been used.

 

The kit is the venerable Heller Saab J21A, an “old style” design with raised panel lines. But it is still around and affordable. No big mods were made to the kit during its transition into a USAAF fighter, even though I changed some minor things:

● Main landing gear was completely exchanged through struts from an Airfix A-1 Skyraider and the wheels from a Hasegawa P-51D; thin wire was added as hydraulic tubes

● New propeller blades: instead of the three-bladed original I added four much broader blades with square tips (from a Heller P-51D) to the original spinner

● Different exhaust stubs, which actually belong to a Spitfire Merlin (Special Hobby kit)

● Underfuselage flap was slightly opened

● A pilot figure was added to the nice cockpit

● The gun barrels were replaced with hollow styrene tubes

  

Painting and markings:

NMF was certain, but the rest…? I wanted to have a colorful aircraft, and eventually settled for a machine in the Pacific theatre of operations. When I browsed for options I eventually decided to apply broad black stripes on wings and fuselage, typical 5th Air Force markings that were used e. g. on P-47Ds and P-51Ds.

 

Overall design benchmark for my aircraft is a P-47D-28 of 310th FS/58th FG. The tail would be all white, and the rudder sported red and white stripes, early war insignia. The red nose trim and the deep yellow spinner were taken over from this aircraft, too. The blue individual code number is a personal addition, as well as the nose art, which was puzzled together from a Czech 'Perdubice' Meeting MiG-21 and leftover bits from a Pacific use P-51.

 

The aircraft was basically painted with Aluminum Metallizer (Humbrol 27002) and Polished Steel Metallizer (Modelmaster), and some panels were contrasted with Aluminum (Humbrol 56).

The anti-glare panel in front of the cockpit was painted in Olive Drab (Humbrol 66), the red nose trim with Humbrol 19. The tail was painted with a mix of Humbrol 34 & 196, for a very light grey, and later dry-painted with pure white.

 

The black ID stripes as well as the red and blue rudder trim were not painted, but rather created through decal sheet material (from TL Modellbau), cut to size and shape to fit into their respective places. The tail was a PITA, but for the black stripes this turned out to be very effective and convenient - an experiment that willcertainly see more future use.

 

Cockpit interior was painted in Humbrol 226 (Cockpit Green) and Zinc Chromate Green from Model Master, the landing gear wells received a chrome yellow primer (Humbrol 225) finish.

The landing gear struts were kept in bare Aluminum.

 

For weathering the kit received a rubbing treatment with grinded graphite, which adds a dark, metallic shine and emphasizes the kit’s raised panel lines. Some dry painting with Aluminum was added, too, simulating chipped paint on the leading edges, and on the black ID stripes some dark grey shading was added.

  

A relatively simple whif, but I love how the Saab 21 looks in the unusual, shiny NMF finish - and the USAAF markings with the prominent ID stripes suit it well, even though it looks a bit like a circus attraction now?

1 2 ••• 32 33 35 37 38 ••• 79 80