View allAll Photos Tagged Module
Ever want to build a S.H.I.P? Never have the pieces? Thats me. Then I thought " well if moonabase can be assembled by multiple people, why couldn't a ship?
Description:
We design, develop, manufacture and sell variety of monocrystalline modules ranging from 5 W to 290 W in power output, built to general specifications for use in a wide range of on-grid and off-grid residential, commercial, industrial and other solar power generation systems.
To assemble solar modules, we interconnect multiple solar cells by taping and stringing the cells into a desired electrical configuration. The interconnected cells are laid out, laminated in a vacuum, cured by heating and then packaged in a protective light-weight aluminum frame. Once sealed, our solar modules become weatherproofed and are able to withstand high levels of ultraviolet radiation and moisture.
Our 220W series modules conform to IEC61215 and IEC61730 electrical and quality standards. With continuous commitment to research and design, our engineers work every day to improve quality, efficiency and reliability of our modules. Manufactured under ISO9001 and ISO14000 certified conditions, our modules are engineered to withstand extreme temperatures and harsh weather conditions.
Product benefits
Applies to commercial, residential and utility scale applications
Easily installed ground, roof, building face or tracking system
Smart choice for on-grid and off-grid applications
Reduces electricity bill and creates energy independence
Modular, no moving parts, fully scalable and easily installed
Reliable and virtually maintenance-free power generation
Helps environment by reducing air, water and land pollution
Provides clean, quiet and reliable electricity generation
Increases resale value of the property the day installed
Product features
High powered modules from 165W to 290W, providing solutions for variety of applications.
All modules designed and manufactured at an ISO 9001 certified and ISO14000 factory.
Modules are IEC61730 safety rated for high wind pressure, hail impact, snow load and fire.
Integrated bypass diodes to protect the solar cell circuit from hot spots during partial shadowing.
Anodized aluminum frame improves load resistance capabilities for heavy wind loads.
Our module technology ensures there are no problems of water freezing and warping.
Low power tolerance of +/-3% helps higher output power, by reducing module string mismatch losses.
High efficiency 156x156mm photovoltaic cells technology for improved performance and reliability, its efficiency reach to 17.25%.
Highly transparent, low-iron, and tempered glass and antireflective coating increases energy yield.
New eco-friendly packaging minimizes cardboard waste and requires less transportation and storage space.
The Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell on Monday, November 11. The spacecraft has been stationed in the FAST cell since July 2019 for mating and closeout processing.
The service module and crew module were moved separately into the cell, stacked and connected together for the mission.
After lifting out of the cell, Orion will be attached to a tool called a verticator that rotates the stack from its vertical configuration to a horizontal configuration for transport to NASA’s Plum Brook Station in Sandusky, Ohio, USA, where it will undergo full environmental testing to certify the complete vehicle for flight.
Once the vehicle returns to NASA's Kennedy Space Centre it will return to the FAST cell for installation of final panels left off for environmental testing purposes and the service module’s four solar arrays.
Credit: NASA–Rad Sinyak
The Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell on Monday, November 11. The spacecraft has been stationed in the FAST cell since July 2019 for mating and closeout processing.
The service module and crew module were moved separately into the cell, stacked and connected together for the mission.
After lifting out of the cell, Orion will be attached to a tool called a verticator that rotates the stack from its vertical configuration to a horizontal configuration for transport to NASA’s Plum Brook Station in Sandusky, Ohio, USA, where it will undergo full environmental testing to certify the complete vehicle for flight.
Once the vehicle returns to NASA's Kennedy Space Centre it will return to the FAST cell for installation of final panels left off for environmental testing purposes and the service module’s four solar arrays.
Credit: NASA–Rad Sinyak
1 Brick Lights: Mini kit + 1 extra module used in this Gunship
Weapons & interior light are controlled independently
# of lights in the Republic Gunship:
- 2 green Missile launchers
- 2 white Rear Jet (blue lego pieces needed to create the blue glow)
- 2 white Cockpit
- 2 white Interior
Light installation photos/instructions are in my Website Gallery
See many other sets with Brick Lights installed
"Brick Lights" available at my
Web store and ebay store.
Subscribe & Follow us for More!
Leave your comments below, thanks!
Le programme Apollo de la NASA, visant à poser un homme sur la Lune avant la fin 1970, est lancé par le président américain Kennedy le 25 mai 1961, essentiellement pour des raisons de prestige et de politique internationale. En effet, les succès de l'astronautique soviétique, qui vient de réussir un grand nombre de premières spatiales depuis le début de l'ère spatiale (premier satellite artificiel, première sonde spatiale, premier homme dans l'espace), portent un coup à l'image de puissance dominante des États-Unis, alors que la guerre froide entre les deux superpuissances bat son plein. Les dirigeants soviétiques ne relèvent pas le défi spatial américain en partie parce qu'ils sous-estiment la capacité de la NASA à rattraper son retard. Dès 1960, Sergueï Korolev, à l'origine des succès les plus éclatants de l'astronautique soviétique, commence pourtant à concevoir une mission lunaire reposant sur le développement de la fusée géante N-1, mais son projet n'obtient aucun soutien. Toutefois, avec trois ans de retard sur les américains, le dirigeant soviétique Khrouchtchev décide, en constatant les progrès de la NASA, de lancer le 3 août 1964 le Programme lunaire habité soviétique. Pour disposer d'un lanceur suffisamment puissant, Korolev réclame le développement de moteurs cryogéniques performants (c'est-à-dire utilisant de l'hydrogène liquide, comme ceux en cours de développement aux États-Unis), mais il se heurte au refus de Valentin Glouchko, qui possède un quasi-monopole sur la fabrication des moteurs-fusées de forte puissance. En l'absence d'alternative immédiatement disponible, Korolev doit utiliser des moteurs beaucoup moins performants : la capacité du lanceur N-1, utilisé pour placer en orbite les vaisseaux lunaires soviétiques, est seulement 70 % celle de la fusée Saturn V jouant un rôle équivalent pour la Lune.
The day started sunny and calm, but by the time I had done my chores it was cloudy and windy so didn't go on my planned excursion to a waterfall.
Decided to have my first go at Camera School Module 3 indoors. As it was cloudy outside, it was even darker inside and it was impossible to get the degree of blurred water, yet showing a sense of movement, with the recommended CS settings. I found around 1/15-1/30 portrayed this best, but to achieve this a high ISO, coupled with a small F number was required. Another difficulty I had was with the large dynamic range between the dark sink/tiles, and the bright water and the need for a reflector which lightened the darker bits, but also blew the highlights. An ND filter was not required in these dull conditions.
I won't therefore be using any of these shots for homework, but put them up as my first venture into this module. On a bright day this setup might work and I might give it another go.
Neon modules before installation.
Warszawa, Kępa Potocka, October 24th, 2009
Digital, Mark II, 24-70 Canon Zoom Lens, 21 MgPx
neon executed by Jacek Hanak & his Team Reklama Sp. z O.O.
120 middle modules
540 short modules
1230 long modules
1890 modules total
Finished model: www.flickr.com/photos/87520232@N03/10005735185/
N scale town module -- various kits
One of my favourite places in this module -- the steps leading up to the Market Square.
From left to right: Oliver Juckenhöfel, Airbus, Mark Kirasich, NASA, Mike Hawes, Lockheed Martin, Bremen Lord Mayor Carsten Sieling, David Parker, ESA, Bas Theelen, Airbus.
The European Service Module that will power and propel the Orion spacecraft on its first mission around the Moon ships from Bremen to the United States. It will take off in an Antonov An-124 aircraft in the early hours of 5 November and arrive at Kennedy Space Center in Florida, US on 6 November.
Designed and manufactured in Italy and Germany, the powerful workhorse is Europe’s contribution to humanity’s return to the Moon.
Credits: Airbus
Small rotation module. This module is the first part of the rotary table. A second module will later in the other direction. Insects coming in the nodal point. They remain centered in the picture even when rotating. There are small attachments on this rotary table. There is an internal brake, thus, the insects remain beautiful in their place. The brake consists of a nylon sleeve which is tightened by means of a screw. The braking force can be perfectly arranged.
The module is actually a 1/2 Windmill Base with colour-change. The top left module [pink] shows the front side while the top right one [blue] shows the reverse side. Below are two modules assembled. 4 modules can be assembled to form a Greek Cross while 3 modules can be assembled to from a cube corner. The modules are folded from 7.5cm square Kami.
Lunar Module 2 was the second spacecraft built by Grumman Aerospace for use in the Apollo program. Originally, it was supposed to have flown in space, but the flight of Lunar Module 1 during the Apollo 5 mission was so successful that a second unmanned flight was considered unnecessary. Instead, Lunar Module 2 was used in drop tests to evaluate the performance of the landing gear. This craft is very similar to Eagle (Lunar Module 5), which carried Apollo 11 astronauts Armstrong and Aldrin to the surface of the Moon in 1969.
The Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell on Monday, November 11. The spacecraft has been stationed in the FAST cell since July 2019 for mating and closeout processing.
The service module and crew module were moved separately into the cell, stacked and connected together for the mission.
After lifting out of the cell, Orion will be attached to a tool called a verticator that rotates the stack from its vertical configuration to a horizontal configuration for transport to NASA’s Plum Brook Station in Sandusky, Ohio, USA, where it will undergo full environmental testing to certify the complete vehicle for flight.
Once the vehicle returns to NASA's Kennedy Space Centre it will return to the FAST cell for installation of final panels left off for environmental testing purposes and the service module’s four solar arrays.
Credit: NASA–Rad Sinyak
A crowded club pulsing with tooth-rattling techno beats is a must for the micro moonbase. Features four connections and a slightly "illegal" building technique.
Ross Hypersparc CPU module for Ross Hyperstation and Sun Microsystems Mbus-based workstations and servers
N scale town module -- various kits
The individual mini lights were still wrapping around the roof of the town hall. I've decided to leave them on for the photo shoot.
No, this is not a model for a Belgian town. I just threw on the flag from the kit for the hell of it.
En 1960, Korolev prévoit d'envoyer des hommes à la surface de la Lune selon le scénario dit de « rendez-vous orbital terrestre » qui avait également été étudié puis abandonné par la NASA en 1961. Selon ce scénario, un ensemble pesant 200 tonnes est assemblé en orbite basse terrestre à partir d'éléments lancés par trois tirs de la fusée N1. Le « train lunaire » comprend un étage de 138 tonnes chargé de lancer l'ensemble vers la Lune, un étage de 40 tonnes chargé de freiner et de poser un vaisseau à la surface de la Lune. Ce dernier qui pèse 21 tonnes dispose d'un moteur à poussée modulable pour effectuer un atterrissage en douceur. Il redécolle en laissant le train d'atterrissage sur la Lune et propulse le vaisseau Soyouz L1 en direction de la Terre. Ce scénario, très couteux à implémenter, est refusé par les dirigeants soviétiques.
Pour poser un homme sur la Lune, Korolev choisit finalement comme les américains le scénario du « rendez-vous orbital lunaire » qui permet d'optimiser la masse à lancer : une fusée unique (la N1 pour les soviétiques, Saturn V pour les américains) propulse vers la Lune un ensemble comprenant :
un vaisseau destiné à revenir sur Terre (vaisseau LOK pour les soviétiques) ;
un étage (bloc D) chargé de placer en orbite lunaire l'ensemble puis d'annuler pratiquement toute la vitesse orbitale ;
un module, baptisé LK, dont le seul rôle est de poser son équipage sur le sol lunaire puis de le ramener en orbite. Contrairement au module lunaire Apollo, LK ne comprend pas un étage de descente et un étage de remontée : le même ensemble de propulsion prend en charge ces deux opérations. Le module lunaire est abandonné sur l'orbite lunaire par son équipage qui revient sur Terre à bord du vaisseau LOK. Ce dernier est une version dérivée du vaisseau Soyouz