View allAll Photos Tagged Manufacturing_process
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
Winter logging, 1920s
Wood manufacturing in Maryland began with hundreds of small sawmills that often used streams and water wheels to power they belt-driven machinery. Modern milling technology uses computers to scan logs and determine how best to maximize wood recovery and optimize grade and quality. Modern wood-producing mills make use of every part of a tree in a very efficient manufacturing process.
The Maryland Forest and Park services were founded in 1906. These photos were archived in celebration of their centennial in 2006.
The 275,000-square-foot school is built to serve up to 1,400 students.
Hunter XCI Foil product is used in the construction of the new Ankeny High school. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
View more: www.hunterxci.com/
Architect: DLR Group
GC/Builder: Stahl Construction
Founded in 1993 by two 25 year old engineers, Matthieu GOBBI and Jerome GIACOMONI, AEROPHILE S.A. reinvented the tethered gas balloon following an 80 year absence.
AEROPHILE S.A. has since become the world leader in tethered gas balloons through the development of three flagship products: the AERO30NG Aerophile 5500 model (30 passengers) since 1994, 50 balloons sold over 20 countries, the AERO2 model Aerophile 380 (2 passengers) since 2000, 4 systems sold and the AEROPHARE (12 passengers) since 2007, 1 system sold. Additionally AEROPHILE S.A. manufactures various types of systems, inflatables and small tethered balloons. AEROPHILE S.A. received the grand prize for innovation in 2000 and devotes a large part of its resources to research and development for the continued improvement of existing balloons and the creation of new products. Aerophile S.A. is the holder of several patents.
The tethered balloon is a highly specialist aerostat requiring strict manufacturing processes and rigorous operating practices. Not only the manufacturer, AEROPHILE S.A. is also a successful operator of their balloons in Paris, since 1999, the PanoraMagique in Disney Village since 2005, the Great Park Balloon in Irvine (California) since 2007 and in Evry2 (France) the first AEROPHARE in 2007.
AEROPHILE S.A.'s personnel comprises some thirty staff, including some fifteen pilots and technicians qualified to undertake installation, training and commissioning of all systems.
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Lean Manufacturing processes contribute to L&M's consistent quality and continual process improvement. All managers and supervisors are Lean Manufacturing Certified.
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
Product Description
From the original bamboo cutting board company, Totally Bamboo, this cutting board is a beautiful, functional, ecologically sound addition to any kitchen. Bamboo is 16% harder than maple, making it an excellent cutting surface. Bamboo is actually a grass that grows to a harvestable height of 60 feet in about 3 to 5 years, growing as much as 2 feet per day. It has an extensive root system that continually sends up new shoots, naturally replenishing itself. It does not require replanting, making it one of the most renewable resources known. Totally Bamboo uses 'Moso' timber bamboo which is neither a food source nor a habitat for the Giant Panda. Totally Bamboo's cutting boards are assembled with approved food-grade glue -- none of their products are made with formaldehyde-based glue. No dyes or stains are used in the manufacturing process. The pleasing designs are created by using the naturally occurring variations within the wood grain. Totally Bamboo prides itself on using only premium hand-selected bamboo, innovative design, exemplary craftmanship, and fair labor policies.
Green Home Products Totally Bamboo Little Kahuna Cutting Board
National Museum of Nuclear Science & History
Radiation Attenuating Gloves
International Biomedical, Inc., manufacturer of this Radiation Attenuating Surgical glove, noticed a need for protecting surgeon's hands while using radiation in treating patients. The surgeons were wearing leaded gowns and eyewear but nothing on their hands.
Why were they not protecting their hands? Unfortunately, the gloves they had at their disposal were not suited for surgical procedures because they were thick, bulky and very heavy. The surgeons could not operate with these large cumbersome gloves so they would simply not wear anything at all on their hands. The glove shown here is made of red lead oxide and a rubber product-Neoprene. Many of the standard surgical and examination gloves used today are made of Neoprene.
The red lead oxide is incorporated with the Neoprene in the manufacturing process and it is this lead that protects the surgeon by "reflecting" the radiation away from the glove. (The red lead oxide is what gives the glove the orange color.) There is no risk of lead poisoning from the lead because it is encapsulated by the Neoprene compound And because they are only .012" thick, the Radiation Attenuating Glove allows the surgeon the freedom of movement and dexterity needed to perform the delicate tasks associated with various surgical procedures while offering protection not afforded by standard surgical gloves
International Biomedical, Inc. is based in Austin, Texas, USA and may be contacted at 8508 Cross Park Drive, Austin, TX 78754-4532. Phone - 512.873.0033 Fax-512.873.9090 Web site: www.int-bio.com
The existing Freeport Community Center & a historic Edward B. Mallett house has been joined by a spacious addition to provide new social services offices, thrift store, teen center, coffee bar & multi-funtion community room. Not only was there a goal to preserve history landmarks....but to obtain serious energy savings!
Hunter XCI Foil product is used in the construction of the renovation & addition of the Freeport Community Center.. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
Construction by: Warren Construction
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
Hafted Scraper - "PALEO TOOLS: The kinds of tools used by the Paleoindians can tell us much about their way of life. Most of the tools surviving today are made of stone. Spear points, knives, drills, and scrapers are typical Paleoindian artifacts. They were used for a variety of tasks, including hunting and butchering animals, processing plants, and working raw materials to make other tools. Archaeological sites of the Paleoindians contain mostly chipped stone tools and waste flakes left from the manufacturing process. However it is almost certain that these people made wide use of other raw materials including bone, wood, ivory, and antler. Objects made of these materials do not preserve as well as stone and have likely decayed over the past 10,000 years. Springs, sinkholes and deep river beds offer good conditions for preserving organic materials because of their high mineral content and lack of oxygen. Fragments of bone, wood, and other plant remains will give clues to future archaeologists who research the skills that Paleoindians needed to survive in Ice Age Florida. " ~ Display at the Florida Museum of Natural History. (Photo 091712-013.jpg) Paleoindians section of the Division of Historical Resources - Florida Museum of History - Where I used to work - September 17, 2012: A Walk Down Memory Lane - revisiting College Town - Tallahassee, Florida. (c) 2012 - photography by Leaf McGowan, Thomas Baurley, Eadaoin Bineid - technogypsie.com. To purchase this photo or to obtain permission to use, go to www.technogypsie.com/photography/
"PALEOINDIANS: The earliest people who inhabited North America are called Paleoindians. They came to Florida during the end of the last Ice Age, at least 12,000 years ago. Their way of life lasted for about 2,500 years. Archaeologists have found few Paleoindian sites. If, as it seems likely, these early people lived along the coast of Florida, their settlements have been covered by the rising sea level. Compared to later Florida Indian cultures, Paleoindians lived in small, widely dispersed groups. Their artifacts are often found around outcrops of a flint-like rock called chert. Pieces of chert were chipped, or knapped, to make stone tools. Paleoindian artifacts are also found in springs, sinkholes and rivers that were probably ancient waterholes. These were important sources of fresh water in an otherwise dry landscape.
PALEO TIMELINE: 12,000 B.P. to 9,500 B.P. (Before present) - EARLY PALEO PERIOD: 12,000-10,000 BP - Simpson point on mammoth ivory foreshaft (circa 11,500 BP) - First evidence of people on the Florida peninsula, Paleoindians live a semi-nomadic life, hunt big game like mastadon, climate was drier than today, and sea level is more than 100 feet lower than today. - Bison antiguns skull with embedded spearpoint, Wacissa River (circa 11,000 BP).
LATE PALEO PERIOD: 10,000 to 9500 BP - stone bola weight (circa 10,000 BP) had most big game animals extinct, wetter climate prevails, sea level rises gradually, several new styles of stone points appear, like the side notched bolan point. " ~ Display in the Florida Museum of Natural History.
For more information visit:
Paleoindians: www.technogypsie.com/science/?p=939 (expected publication December 2012)
Tallahassee: www.technogypsie.com/reviews/?p=5093 (Expected publication November 2012)
Florida: www.technogypsie.com/reviews/?p=5079 (Expected Publication December 2012)
For travel tales, visit:
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
On Scene with Watertown Volunteer with a smoky structure fire at 20 McLennan Dr in the Oakville section of town. First due crews found heavy smoke coming from Quality Automatics Inc ,a machine shop located at that address. Crews immediately stretched lines and hit the hydrant at the end of the dead end street for an additional water source. Extension ladders were used to access the roof for ventilation since powerlines prevented the aerial ladders from being used. The fire was brought under control after approximately 30 minutes but required extensive overhaul and ventilation. In addition hazmat precautions had to be taken due to the lubricants and by products of the manufacturing process at the business were mixed with the water and foam used to extinguish the blaze.
The existing Freeport Community Center & a historic Edward B. Mallett house has been joined by a spacious addition to provide new social services offices, thrift store, teen center, coffee bar & multi-funtion community room. Not only was there a goal to preserve history landmarks....but to obtain serious energy savings!
Hunter XCI Foil product is used in the construction of the renovation & addition of the Freeport Community Center.. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
Construction by: Warren Construction
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Hunter XCI Foil product is used in the construction of the new commons building at University of Northwestern Ohio. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
Made in Romania!
Traditional bag from Romania, handcrafted using wool embroidery. You may daily use it to carry different stuff. Perfect for use as a school/student purse, a jewelry bag, or other valuables for a night out dancing.
Made from natural wool painted with natural colors by popular artists. Geometrical motives used, that give these bags some traditional decorative features. The manufacturing process for this type of tissue has been kept since the early ages of the Romanian history (approx. 700 A.D.). The object behind traditional clothes and accessories in Romanian culture, is the weaving loom.
There are thousands of ways in which the talented hands of our ancestors have been crafting true treasures of beauty. Handed down from generation to generation, but preserving the personality of Romanian people, these techniques are still being used during present times.
Size: 35 X 31 cm / 13.8 x 12.2 inch
Handle: 100 cm / 39.4 inch
Weight: 400 g
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Hunter XCI Foil product is used in the construction of the new commons building at University of Northwestern Ohio. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
The existing Freeport Community Center & a historic Edward B. Mallett house has been joined by a spacious addition to provide new social services offices, thrift store, teen center, coffee bar & multi-funtion community room. Not only was there a goal to preserve history landmarks....but to obtain serious energy savings!
Hunter XCI Foil product is used in the construction of the renovation & addition of the Freeport Community Center.. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
Construction by: Warren Construction
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
The end of a new switch rail that has been painted to almost look like it's still hot from the manufacturing process.
3D computer simulations allow Ford engineers to evaluate manufacturing processes in a virtual environment.
St. Stevens Church, Birmingham, AL: Xci Class A is an exterior wall insulation panel composed of a Class A rigid polyisocyanurate foam core laminated during the manufacturing process to embossed foil facers.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
XCI Twitter: twitter.com/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
During the assembly stage, Gestamp effectively combines components of all our different manufacturing processes using welding, clinching and adhesive technologies. Our body shops use the most advanced technologies for assembling complex parts.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Iteration 3
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
On Scene with Watertown Volunteer with a smoky structure fire at 20 McLennan Dr in the Oakville section of town. First due crews found heavy smoke coming from Quality Automatics Inc ,a machine shop located at that address. Crews immediately stretched lines and hit the hydrant at the end of the dead end street for an additional water source. Extension ladders were used to access the roof for ventilation since powerlines prevented the aerial ladders from being used. The fire was brought under control after approximately 30 minutes but required extensive overhaul and ventilation. In addition hazmat precautions had to be taken due to the lubricants and by products of the manufacturing process at the business were mixed with the water and foam used to extinguish the blaze.
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
www.millionendorf-theater.de/cms/index.php (official website)
The small holes in blue enamel are inclusions caused during the manufacturing process.
Enamels: 2 (blue & white).
Finish: n/a.
Material: White metal.
Fixer: Pin.
Size: ¾” across x 7/8” down (about 19mm x 23mm).
Process: Die-stamped.
Maker: Max Kremhelmer, München (Munich).
Thank you for reading.
Stuart.
Watch cases under manufacture - post polishing.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
iPlay V1
Our design had to be cheap to manufacture, with minimal manufacture processes and a low overall cost. Keeping this in mind I sketched my basic idea and then rendered it. After exporting the DXF files I lasercut them and had my first prototype.
There is an everlasting debate amongst gamers as to which console and controller is the best. I found that the PS3 controller was the most popular second being Xbox 360. The PS3 controller is symettrical unlike the Xbox controller and is so ergonomoic you can often forget you are holding it.
I illustrated the PS3 controller outline to kickstart the CAD process. My design consists of 3 layers of 5mm acrylic creating an iphone cavity depth of 10mm (iPhone 4 has a thickness of 9.3mm) and an overall thickness of 15mm. The structure would be held together with tight fit acrylic rods. I need to carry out test pieces on 2.99+-0.1mm radii to decide what are the best dimensions to use for these slots bearing in mind the lasercutter burns away material.
The whole in the bottom layer is so the device can be pushed out from the case after use.
V2
I asked some students to test the V1 prototype. They liked the product especially its simplicity. There were points that I could develop and improve.
Not all iPhone games auto orientate, hence it was essential I adapted my design so the phone could be rotated 180 degress. This would be easy by simply duplicating the button slots.
In addition to this there was no camera hole. If I were to introduce a camera holeto the design it would have to be duplicated 180 degrees to ensure photos could be taken no matter what orientation the iPhone was.
Taking this on board I designed and manufactured iPlay V2. Although acrylic rod would create a tight fit, 4 drops of dichloromethane would chemically weld the components together for a long lasting permanent fit. After this I used a buffing wheel to create round edges making the product more ergonomic to hold.
V3
Once again I asked some students for feedback on my prototype. They were impressed with how I addressed the previous issues. The only negative point raised was that it would not fit in your pocket. This was the next challenge I faced.
I considered hinging the lower two arms and making them lock into the back of the case. However this would make the design more complex and increase cost and manufacturing processes.
I moved the top pair of holes further up to better distribute the stress. I decided to split the product in half. My V3 model has alternating layers this creates cavities that allow it to be locked together together when not in use as photographed. This would easily fit in you pocket.
The problem the alternating layers created is a less ergonomic shape. Secondly there was nothing holding the two half together when placed on the phone.
In my V4 model I introduced a rubber band which kept the two half together when on the phone. It would also prevent one half form being lost. This created a new problem; the top half of the rubber band would not always line up as there was nothing guiding it. This was my next problem to solve.
V4
My final model would be made from acrylic but I was not going to buff it as that would add a manufacture process and would siginificanty increase the manufacture time. Since I was already using the laser cutter for cutting my components I thought I may aswell engrave some sort of graphics onto the top layer. I decided to remove the gaps in between the layers to make it better to hold and to remodel the rubberband tracks.
V5
I solved the problem of the inconvenient rubber band with two more locating rods on the top. These extra rods would keep the rubber band guided along the correct track. I made a MDF prototype to test my idea and it worked successfully even with coffee stirrers replicating the acrylic rod.
Satisfied with my idea I finally created an acrylic version. This required a bit more thought than previously as I had to accomodate for the thick rubber band. I decided to use 3mm acrylic instead of 5mm to create a thinner profile. This meant I needed a total of 5 layers to accomodate an iPhone 4.
Since I was already using a lasercutter and I wanted the product to appeal to gamers I decided to engrave some patterns. I was going to use a translucent coloured acrylic for the bottom layer and adjust the design so that it covers the camera and flash. This way the case will act as a camera filter and the flash/torch will produce coloured light.
Now that the product was split into halfs the individual components were so small that cutting a single iPlay V5 uses less than an A4 sized amount of 3mm acrylic (the 2D Design screenshot has an A3 page layout). This also meant that it would fit both an iPhone 4 & 5 as the rubber can stretch to accomodate for an iPhone 5. Apart from the height of the iPhone 5 the dimensions are very similair to those of the 4.
I am very pleased with the final product and getting through to the next stage with KFDS. If I were to develop the product further I would find a way to lock the two halves together when not on the phone. This could be done like a jigsaw puzzle or by manipulating the rods into a dowel joint.
JCC received a grant award through the Western New York Regional Economic Development Council’s Consolidated Funding Application to offer the Machinist Training Program which features classroom and hands-on training and consists of a mixture of college credit and non-credit classes spread over 12 months. Training for the manufacturing environment includes drafting, shop math, CNC machining, teamwork, and lean manufacturing processes.
This is the famous "Hörder Fackel", over 80m high. The surplus gas from the steel manufacturing process was burned here. The torch was in use for some decades and was one of the towns landmarks. It was blown up in January 2004.
The pictures were taken on a freezing cold February morning in 2003. It was the last chance to catch this wonderful light composition of winter morning, cold air and low sun. The steelworks was taken down later that year.
Taken with my Canon T90, then scanned from slide.
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
This is one of my christmas gifts for Haldis. A 110 page notebook made from scratch! It's in A6 format, and the cover is made from an old vinyl record. The manufacturing process was recorded and uploaded to Flickr as private content as the process went along. Now it's unwrapped, and here it is. To view the process from the start click here or browse my stream.
Only the spine left to finish. I cut it and sanded the edges when i cut the other vinyl parts. A lenght of black BilTema duct tape makes up the adhesive part of the spine.
First I put the vinyl spine down on the adhesive side of the tape, and then i added another strip of tape, cut narrower, to mask the not covered parts of the tape that was not supposed to stick to anything. I proceeded to stick it all in place. Cutting and folding down the ends to give it a smooth finish.
The last three pics show the finished book. I still have to think of something romantic to write inside the cover, and wrap it for christmas, but that does not need documentation.
The project was started Nov. 27th, and finished Dec. 1st. Pics uploaded and described as the project went on. Has been in hiding as private content ever since then...
© Jarle Vikør Ekanger
3D computer simulations allow Ford engineers to evaluate manufacturing processes in a virtual environment.
Changyeong Jeong, PhD Candidate in Electrical and Computer Engineering, handles an ultrathin Ag film based OLED inside Professor Jay Guo’s lab at 3537 G.G. Brown on North Campus in Ann Arbor MI on May 5, 2021.
Guo’s group is systematically improving the light power distribution in OLEDs by removing the waveguide mode and optimizing the organic stacks and the ultrathin AG anode. This simple yet effective method leads to significantly enhanced performance of the external quantum efficiency of the OLED.
Jeong and Guo’s solution is not only simple in process but also can achieve high throughput and low cost with excellent compatibility with the large-scale manufacturing process in the display industry. In principle, the modal elimination approach introduced in this work could be extended to other solid-state light emitting diodes (LEDs) such as perovskites, quantum-dots, or III-V based LEDs since all of which are susceptible to the issue of light trapping as waveguide mode.
Photo: Robert Coelius/University of Michigan Engineering, Communications & Marketing
The current Prim range.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
iPlay V1
Our design had to be cheap to manufacture, with minimal manufacture processes and a low overall cost. Keeping this in mind I sketched my basic idea and then rendered it. After exporting the DXF files I lasercut them and had my first prototype.
There is an everlasting debate amongst gamers as to which console and controller is the best. I found that the PS3 controller was the most popular second being Xbox 360. The PS3 controller is symettrical unlike the Xbox controller and is so ergonomoic you can often forget you are holding it.
I illustrated the PS3 controller outline to kickstart the CAD process. My design consists of 3 layers of 5mm acrylic creating an iphone cavity depth of 10mm (iPhone 4 has a thickness of 9.3mm) and an overall thickness of 15mm. The structure would be held together with tight fit acrylic rods. I need to carry out test pieces on 2.99+-0.1mm radii to decide what are the best dimensions to use for these slots bearing in mind the lasercutter burns away material.
The whole in the bottom layer is so the device can be pushed out from the case after use.
V2
I asked some students to test the V1 prototype. They liked the product especially its simplicity. There were points that I could develop and improve.
Not all iPhone games auto orientate, hence it was essential I adapted my design so the phone could be rotated 180 degress. This would be easy by simply duplicating the button slots.
In addition to this there was no camera hole. If I were to introduce a camera holeto the design it would have to be duplicated 180 degrees to ensure photos could be taken no matter what orientation the iPhone was.
Taking this on board I designed and manufactured iPlay V2. Although acrylic rod would create a tight fit, 4 drops of dichloromethane would chemically weld the components together for a long lasting permanent fit. After this I used a buffing wheel to create round edges making the product more ergonomic to hold.
V3
Once again I asked some students for feedback on my prototype. They were impressed with how I addressed the previous issues. The only negative point raised was that it would not fit in your pocket. This was the next challenge I faced.
I considered hinging the lower two arms and making them lock into the back of the case. However this would make the design more complex and increase cost and manufacturing processes.
I moved the top pair of holes further up to better distribute the stress. I decided to split the product in half. My V3 model has alternating layers this creates cavities that allow it to be locked together together when not in use as photographed. This would easily fit in you pocket.
The problem the alternating layers created is a less ergonomic shape. Secondly there was nothing holding the two half together when placed on the phone.
In my V4 model I introduced a rubber band which kept the two half together when on the phone. It would also prevent one half form being lost. This created a new problem; the top half of the rubber band would not always line up as there was nothing guiding it. This was my next problem to solve.
V4
My final model would be made from acrylic but I was not going to buff it as that would add a manufacture process and would siginificanty increase the manufacture time. Since I was already using the laser cutter for cutting my components I thought I may aswell engrave some sort of graphics onto the top layer. I decided to remove the gaps in between the layers to make it better to hold and to remodel the rubberband tracks.
V5
I solved the problem of the inconvenient rubber band with two more locating rods on the top. These extra rods would keep the rubber band guided along the correct track. I made a MDF prototype to test my idea and it worked successfully even with coffee stirrers replicating the acrylic rod.
Satisfied with my idea I finally created an acrylic version. This required a bit more thought than previously as I had to accomodate for the thick rubber band. I decided to use 3mm acrylic instead of 5mm to create a thinner profile. This meant I needed a total of 5 layers to accomodate an iPhone 4.
Since I was already using a lasercutter and I wanted the product to appeal to gamers I decided to engrave some patterns. I was going to use a translucent coloured acrylic for the bottom layer and adjust the design so that it covers the camera and flash. This way the case will act as a camera filter and the flash/torch will produce coloured light.
Now that the product was split into halfs the individual components were so small that cutting a single iPlay V5 uses less than an A4 sized amount of 3mm acrylic (the 2D Design screenshot has an A3 page layout). This also meant that it would fit both an iPhone 4 & 5 as the rubber can stretch to accomodate for an iPhone 5. Apart from the height of the iPhone 5 the dimensions are very similair to those of the 4.
I am very pleased with the final product and getting through to the next stage with KFDS. If I were to develop the product further I would find a way to lock the two halves together when not on the phone. This could be done like a jigsaw puzzle or by manipulating the rods into a dowel joint.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
We all fancy designer and classy looking variety of footwears in distinct attractive shades and patterns, which when paired up with a matching outfit makes our overall appearance sassy, stylish, and trendy. The manually operated manufacturing process of the footwear in the earlier times today is directed efficiently and effectively with the help of various mechanical devices like Shoe Moulds and Shoe Dies.
Visit Webpage: www.gpbrothers.com/
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
iPlay V1
Our design had to be cheap to manufacture, with minimal manufacture processes and a low overall cost. Keeping this in mind I sketched my basic idea and then rendered it. After exporting the DXF files I lasercut them and had my first prototype.
There is an everlasting debate amongst gamers as to which console and controller is the best. I found that the PS3 controller was the most popular second being Xbox 360. The PS3 controller is symettrical unlike the Xbox controller and is so ergonomoic you can often forget you are holding it.
I illustrated the PS3 controller outline to kickstart the CAD process. My design consists of 3 layers of 5mm acrylic creating an iphone cavity depth of 10mm (iPhone 4 has a thickness of 9.3mm) and an overall thickness of 15mm. The structure would be held together with tight fit acrylic rods. I need to carry out test pieces on 2.99+-0.1mm radii to decide what are the best dimensions to use for these slots bearing in mind the lasercutter burns away material.
The whole in the bottom layer is so the device can be pushed out from the case after use.
V2
I asked some students to test the V1 prototype. They liked the product especially its simplicity. There were points that I could develop and improve.
Not all iPhone games auto orientate, hence it was essential I adapted my design so the phone could be rotated 180 degress. This would be easy by simply duplicating the button slots.
In addition to this there was no camera hole. If I were to introduce a camera holeto the design it would have to be duplicated 180 degrees to ensure photos could be taken no matter what orientation the iPhone was.
Taking this on board I designed and manufactured iPlay V2. Although acrylic rod would create a tight fit, 4 drops of dichloromethane would chemically weld the components together for a long lasting permanent fit. After this I used a buffing wheel to create round edges making the product more ergonomic to hold.
V3
Once again I asked some students for feedback on my prototype. They were impressed with how I addressed the previous issues. The only negative point raised was that it would not fit in your pocket. This was the next challenge I faced.
I considered hinging the lower two arms and making them lock into the back of the case. However this would make the design more complex and increase cost and manufacturing processes.
I moved the top pair of holes further up to better distribute the stress. I decided to split the product in half. My V3 model has alternating layers this creates cavities that allow it to be locked together together when not in use as photographed. This would easily fit in you pocket.
The problem the alternating layers created is a less ergonomic shape. Secondly there was nothing holding the two half together when placed on the phone.
In my V4 model I introduced a rubber band which kept the two half together when on the phone. It would also prevent one half form being lost. This created a new problem; the top half of the rubber band would not always line up as there was nothing guiding it. This was my next problem to solve.
V4
My final model would be made from acrylic but I was not going to buff it as that would add a manufacture process and would siginificanty increase the manufacture time. Since I was already using the laser cutter for cutting my components I thought I may aswell engrave some sort of graphics onto the top layer. I decided to remove the gaps in between the layers to make it better to hold and to remodel the rubberband tracks.
V5
I solved the problem of the inconvenient rubber band with two more locating rods on the top. These extra rods would keep the rubber band guided along the correct track. I made a MDF prototype to test my idea and it worked successfully even with coffee stirrers replicating the acrylic rod.
Satisfied with my idea I finally created an acrylic version. This required a bit more thought than previously as I had to accomodate for the thick rubber band. I decided to use 3mm acrylic instead of 5mm to create a thinner profile. This meant I needed a total of 5 layers to accomodate an iPhone 4.
Since I was already using a lasercutter and I wanted the product to appeal to gamers I decided to engrave some patterns. I was going to use a translucent coloured acrylic for the bottom layer and adjust the design so that it covers the camera and flash. This way the case will act as a camera filter and the flash/torch will produce coloured light.
Now that the product was split into halfs the individual components were so small that cutting a single iPlay V5 uses less than an A4 sized amount of 3mm acrylic (the 2D Design screenshot has an A3 page layout). This also meant that it would fit both an iPhone 4 & 5 as the rubber can stretch to accomodate for an iPhone 5. Apart from the height of the iPhone 5 the dimensions are very similair to those of the 4.
I am very pleased with the final product and getting through to the next stage with KFDS. If I were to develop the product further I would find a way to lock the two halves together when not on the phone. This could be done like a jigsaw puzzle or by manipulating the rods into a dowel joint.