View allAll Photos Tagged Manufacturing_process
The Postcard
A postally unused postcard bearing no publisher's name. The artwork was by Bob Wilkin.
-- Retreads
Retreading is a re-manufacturing process for tyres that replaces the tread on worn tyres. Retreading is applied to casings of spent tyres that have been inspected and repaired.
Retreading preserves about 90% of the material in spent tyres, and the raw material cost is about 20% of the cost of the material used to manufacture a new tyre.
In the United States, the use of retreaded tyres was common historically, but as of 2008, their popularity has waned, mainly due to discomfort on the road, safety issues and cheaper tyre brands coming on to the market.
-- The Process of Retreading
The process starts with a visual inspection of the used tyre, followed by a non-destructive inspection method such as shearography in order to locate non-visible damage and embedded debris and nails.
Casings judged to be fit for retreading first have the old tread buffed. Tyres can be retreaded multiple times if the casing is in usable condition.
Material cost for a retreaded tyre is about 20% of the cost of making a new tyre. About 90% of the original tyre by weight is retained when it is retreaded. A 1997 U.S. study estimated that the current generation of commercial vehicles tyres last up to 600,000 miles if they're retreaded two to three times.
-- The Pre-Cure Process
With the pre-cure process, a previously prepared tread strip is firmly attached to the tyre casing. This method allows more flexibility in tyre sizes, and is the most commonly used method, but it results in a seam where the ends of the strip meet.
-- The Mould-Cure Process
With the mould-cure process, raw rubber is applied to the tyre casing. It is then placed in a mould where a tread is formed. A dedicated mould is required for each tyre size and tread design.
-- Bead to Bead Moulding
Bead to bead moulding is a refinement where retreading is also applied to the tyre side walls. These tyres are given an entirely new branding and information on inflation pressure etc.
-- Retread Regulations
In Europe all retreads, by law, must be manufactured according to EC Regulation 108 (car tyres) or 109 (commercial vehicle tyres). As part of this regulation all tyres must be tested according to the same load and speed criteria as those undergone by new tyres.
In the United States, the Department of Transportation requires the marking of a DOTR number which references the name of the retreader and the date of retreading.
-- The Safety of Retreads
The United States National Highway Traffic Safety Administration recognises the public perception that retread tyres frequently used by heavy vehicles are less safe than new tyres, as evidenced by tyre debris frequently found on highways.
The NHTSA is continuing research to determine the proportion of tyre debris from retreads in comparison to new tyres. Additionally, the NHTSA is researching the cause of tyre failure in retreads.
-- The Environmental Impact of Retreads
Retread tyres lower the volume of raw materials required compared to manufacturing a new tyre. This includes a 70% reduction in the use of oil. It also means significant reductions in greenhouse gas emissions.
In addition to reducing the amount of raw materials extracted, retread tires also minimise the amount of waste that ends up in landfill.
designed in 1857 by Newcastle architect A. B. Higham for Sir Isaac Lowthian Bell - now converted to apartments access and permission to do interior shots by permission of one of the apartment owner's.
The fifth person to receive the Freedom of the County Borough of Middlesbrough was Sir Lowthian Bell Bart who was awarded freedom on 2 November 1894. A portrait of Sir Lowthian Bell Bart FRS 1826-1904 is hung in the Civic Suite in the Town Hall. It was painted by Henry Tamworth Wells RA and was presented in 1894 by Joseph Whitwell Pease MP on Tuesday 13 November in the Council Chamber at 3.00pm. Joseph Pease was Chairman of the Sir Lowthian Bell presentation committee.
It was presented to the Corporation of Middlesbrough by friends in Great Britain, Europe and America as a record of their high esteem and to commemorate his many public services and those researches in physical science by which he has contributed to the development of the staple industries of his own country and the world.
ISAAC LOWTHIAN BELL - from "Pioneers of The Cleveland Irontrade" by J. S. Jeans
THE name of Mr. Isaac Lowthian Bell is familiar as a " household word " throughout the whole North of England. As a man of science he is known more or less wherever the manufacture of iron is carried on. It is to metallurgical chemistry that his attention has been chiefly directed; but so far from confining his researches and attainments to this department alone, he has made incursions into other domains of practical and applied chemistry. No man has done more to stimulate the growth of the iron trade of the North of England. Baron Liebig has defined civilisation as economy of power, and viewed in this light civilisation is under deep obligations to Mr. Bell for the invaluable aid he has rendered in expounding the natural laws that are called into operation in the smelting process. The immense power now wielded by the ironmasters of the North of England is greatly due to their study and application of the most economical conditions under which the manufacture of iron can be carried on. But for their achievements in this direction, they could not have made headway so readily against rival manufacturers in Wales, Scotland, and South Staffordshire, who enjoyed a well-established reputation. But Mr. Bell and his colleagues felt that they must do something to compensate for the advantages possessed by the older iron- producing districts, and as we shall have occasion to show, were fully equal to the emergency, Mr. Isaac Lowthian Bell is a son of the late Mr. Thomas Bell, of the well-known firm of Messrs. Losh, Wilson, and Bell, who owned the Walker Ironworks, near Newcastle. His mother was a daughter of Mr. Isaac Lowthian, of Newbiggen, near Carlisle. He had the benefit of a good education, concluded at the Edinburgh University, and at the University of Sorbonne, in Paris. From an early age he exhibited an aptitude for the study of science. Having completed his studies, and travelled a good deal on the Continent, in order to acquire the necessary experience, he was introduced to the works at Walker, in which his father was a partner. He continued there until the year 1850, when he retired in favour of his brother, Mr. Thomas Bell. In the course of the same year, he joined his father-in-law, Mr. Pattinson, and Mr. R. B. Bowman, in the establishment of Chemical Works, at Washington. This venture was eminently successful. Subsequently it was joined by Mr. W. Swan, and on the death of Mr. Pattinson by Mr. R. S. Newall. The works at Washington, designed by Mr. Bell, are among the most extensive of their kind in the North of England, and have a wide reputation. During 1872 his connection with this undertaking terminated by his retirement from the firm. Besides the chemical establishment at Washington, Mr. Bell commenced, with his brothers, the manufacture of aluminium at the same place this being, if we are rightly informed, the first attempt to establish works of that kind in England. But what we have more particularly to deal with here is the establishment, in 1852, of the Clarence Ironworks, by Mr. I. L. Bell and his two brothers, Thomas and John. This was within two years of the discovery by Mr. Vaughan, of the main seam of the Cleveland ironstone. Port Clarence is situated on the north bank of the river Tees, and the site fixed upon for the new works was immediately opposite the Middlesbrough works of Messrs. Bolckow and Vaughan. There were then no works of the kind erected on that side of the river, and Port Clarence was literally a " waste howling wilderness." The ground on which the Clarence works are built where flooded with water, which stretched away as far as Billingham on the one hand, and Seaton Carew on the other. Thirty years ago, the old channel of the Tees flowed over the exact spot on which the Clarence furnaces are now built. To one of less penetration than Mr. Bell, the site selected would have seemed anything but congenial for such an enterprise. But the new firm were alive to advantages that did not altogether appear on the surface. They concluded negotiations with the West Hartlepool Railway Company, to whom the estate belonged, for the purchase of about thirty acres of ground, upon which they commenced to erect four blast furnaces of the size and shape then common in Cleveland. From this beginning they have gradually enlarged the works until the site now extends to 200 acres of land (a great deal of which is submerged, although it may easily be reclaimed), and there are eight furnaces regularly in blast. With such an extensive site, the firm will be able to command an unlimited "tip" for their slag, and extend the capacity of the works at pleasure. At the present time, Messrs.. Bell Brothers are building three new furnaces. The furnace lifts are worked by Sir William Armstrong's hydraulic accumulator, and the general plan of the works is carried out on the most modern and economical principles. As soon as they observed that higher furnaces, with a greater cubical capacity, were a source of economy, Messrs. Bell Brothers lost no time in reconstructing their old furnaces, which were only 50 feet in height ; and they were among the first in Cleveland to adopt the Welsh plan of utilising the waste furnace gases, by which another great economy is effected. With a considerable frontage to the Tees, and a connection joining the Clarence branch of the North-Eastern Railway, Messrs. Bell Brothers possess ample facilities of transit. They raise all their own ironstone and coal, having mines at Saltburn, Normanby, and Skelton, and collieries in South Durham. A chemical laboratory is maintained in connection with their Clarence Works, and the results thereby obtained are regarded in the trade as of standard and unimpeachable exactitude. Mr. I. L. Bell owns, conjointly with his two brothers, the iron -works at Washington. At these and the Clarence Works the firms produce about 3,000 tons of pig iron weekly. They raise from 500,000 to 600,000 tons of coal per annum, the greater portion of which is converted into coke. Their output of ironstone is so extensive that they not only supply about 10,000 tons a- week to their own furnaces, but they are under contract to supply large quantities to other works on Tees-side. Besides this, their Quarries near Stanhope will produce about 100,000 tons of limestone, applicable as a flux at the iron works. Last year, Mr. Bell informed the Coal Commission that his firm paid 100,000 a year in railway dues. Upwards of 5,000 workmen are in the employment of the firm at their different works and mines. But there is another, and perhaps a more important sense than any yet indicated, in which Mr. Bell is entitled to claim a prominent place among the " Pioneers of the Cleveland Iron Trade." Mr. Joseph Bewick says, in his geological treatise on the Cleveland district, that " to Bell Brothers, more than to any other firm, is due the merit of having fully and effectually developed at this period (1843) the ironstone fields of Cleveland. It was no doubt owing to the examinations and surveys which a younger member of that firm (Mr. John Bell) caused to be made in different localities of the district, that the extent and position of the ironstone beds became better known to the public." Of late years the subject of this sketch has come to be regarded as one of the greatest living authorities on the statistical and scientific aspects of the Cleveland ironstone and the North of England iron trade as a whole. With the Northumberland and Durham coal fields he is scarcely less familiar, and in dealing with these and cognate matters he has earned for himself no small fame as a historiographer. Leoni Levi himself could not discourse with more facility on the possible extent and duration of our coal supplies. When the British Association visited Newcastle in 1863, Mr. Bell read a deeply interesting paper " On the Manufacture of Iron in connection with the Northumberland and Durham Coal Field," in which he conveyed a great deal of valuable information. According to Bewick, he said the area of the main bed of Cleveland ironstone was 420 miles, and estimating the yield of ironstone as 20,000 tons per acre, it resulted that close on 5,000,000,000 tons are contained in the main seam. Mr. Bell added that he had calculated the quantity of coal in the Northern coal field at 6,000,000,000 tons, so that there was just about enough fuel in the one district, reserving it for that purpose exclusively, to smelt the ironstone contained in the main seam of the other. When the Yorkshire Union of Mechanics' Institutes visited Darlington in the spring of 1872, they spent a day in Cleveland under the ciceroneship of Mr. Bell, who read a paper, which he might have entitled "The Romance of Trade," on the rise and progress of Cleveland in relation to her iron manufactures; and before the Tyneside Naturalists' Field Club, when they visited Saltburn in 1866, he read another paper dealing with the geological features of the Cleveland district. Although not strictly germane to our subject, we may add here that when, in 1870, the Social Science Congress visited Newcastle, Mr. Bell took an active and intelligent part in the proceedings, and read a lengthy paper, bristling with facts and figures, on the sanitary condition of the town. Owing to his varied scientific knowledge, Mr. Bell has been selected to give evidence on several important Parliamentary Committees, including that appointed to inquire into the probable extent and duration of the coal-fields of the United Kingdom. The report of this Commission is now before us, and Mr. Bell's evidence shows most conclusively the vast amount of practical knowledge that he has accumulated, not only as to the phenomena of mineralogy and metallurgy in Great Britain, but also in foreign countries. Mr. Bell was again required to give evidence before the Parliamentary Committee appointed in 1873, to inquire into the causes of the scarcity and dearness of coal. In July, 1854, Mr. Bell was elected a member of the North of England Institute of Mining and Mechanical Engineers. He was a member of the Council of the Institute from 1865 to 1866, when he was elected one of the vice-presidents. He is a vice-president of the Society of Mechanical Engineers, and last year was an associate member of the Council of Civil Engineers. He is also a fellow of the Chemical Society of London. To most of these societies he has contributed papers on matters connected with the manufacture of iron. When a Commission was appointed by Parliament to inquire into the constitution and management of Durham University, the institute presented a memorial to the Home Secretary, praying that a practical Mining College might be incorporated with the University, and Mr. Bell, Mr. G. Elliot, and Mr. Woodhouse, were appointed to give evidence in support of the memorial. He was one of the most important witnesses at the inquest held in connection with the disastrous explosion at Hetton Colliery in 1860, when twenty-one miners, nine horses, and fifty-six ponies were killed; and in 1867 he was a witness for the institute before the Parliamentary Committee appointed to inquire into the subject of technical education, his evidence, from his familiarity with the state of science on the Continent, being esteemed of importance. Some years ago, Mr. Bell brought under the notice of the Mining Institute an aluminium safety lamp. He pointed out that the specific heat of aluminum was very high, so that it might be long exposed to the action of fire before becoming red-hot, while it did not abstract the rays of light so readily as iron, which had a tendency to become black much sooner. Mr. Bell was during the course of last year elected an honorary member of a learned Society in the United States, his being only the second instance in which this distinction had been accorded. Upon that occasion, Mr. Abram Hewitt, the United States Commissioner to the Exhibition of 1862, remarked that Mr. Bell had by his researches made the iron makers of two continents his debtors. Mr Bell is one of the founders of the Iron and Steel Institute of Great Britain, and has all along taken a prominent part in its deliberations. No other technical society, whether at home or abroad, has so rapidly taken a position of marked and confirmed practical usefulness. The proposal to form such an institute was first made at a meeting of the North of England Iron Trade, held in Newcastle, in September, 1868, and Mr. Bell was elected one of the first vice-presidents, and a member of the council. At the end of the year 1869 the Institute had 292 members; at the end of 1870 the number had increased to 348; and in August 1872, there were over 500 names on the roll of membership. These figures are surely a sufficient attestation of its utility. Mr. Bell's paper " On the development of heat, and its appropriation in blast furnaces of different dimensions," is considered the most valuable contribution yet made through the medium of the Iron and Steel Institute to the science and practice of iron metallurgy. Since it was submitted to the Middlesbrough meeting of the Institute in 1869, this paper has been widely discussed by scientific and practical men at home and abroad, and the author has from time to time added new matter, until it has now swollen into a volume embracing between 400 and 500 pages, and bearing the title of the " Chemical Phenomena of Iron Smelting." As a proof of the high scientific value placed upon this work, we may mention that many portions have been translated into German by Professor Tunner, who is, perhaps, the most distinguished scientific metallurgist on the Continent of Europe. The same distinction has been conferred upon Mr. Bell's work by Professor Gruner, of the School of Mines in Paris, who has communicated its contents to the French iron trade, and by M. Akerman, of Stockholm, who has performed the same office for the benefit of the manufacturers of iron in Sweden. The first president of the Iron and Steel Institute was the Duke of Devonshire, the second Mr. H. Bessemer, and for the two years commencing 1873, Mr. Bell has enjoyed the highest honour the iron trade of the British empire can confer. As president of the Iron and Steel Institute, Mr. Bell presided over the deliberations of that body on their visit to Belgium in the autumn of 1873. The reception accorded to the Institute by their Belgian rivals and friends was of the most hearty and enthusiastic description. The event, indeed, was regarded as one of international importance, and every opportunity, both public and private, was taken by our Belgian neighbours to honour England in the persons of those who formed her foremost scientific society. Mr. Bell delivered in the French language, a presidential address of singular ability, directed mainly to an exposition of the relative industrial conditions and prospects of the two greatest iron producing countries in Europe. As president of the Institute, Mr. Bell had to discharge the duty of presenting to the King of the Belgians, at a reception held by His Majesty at the Royal Palace in Brussels, all the members who had taken a part in the Belgium meeting, and the occasion will long be remembered as one of the most interesting and pleasant in the experience of those who were privileged to be present. We will only deal with one more of Mr. Bell's relations to the iron trade. He was, we need scarcely say, one of the chief promoters of what is now known as the North of England Ironmasters' Association, and he has always been in the front of the deliberations and movements of that body. Before a meeting of this Association, held in 1867, he read a paper on the " Foreign Relations of the Iron Trade," in the course of which he showed that the attainments of foreign iron manufacturers in physical science were frequently much greater than our own, and deprecated the tendency of English artizans to obstruct the introduction of new inventions and processes. He has displayed an eager anxiety in the testing and elucidation of new discoveries, and no amount of labour or cost was grudged that seemed likely, in his view, to lead to mechanical improvements. He has investigated for himself every new appliance or process that claimed to possess advantages over those already in use, and he has thus rendered yeoman service to the interest of science, by discriminating between the chaff and the wheat. For a period nearly approaching twenty- four years, Mr. Bell has been a member of the Newcastle Town Council, and one of the most prominent citizens of the town. Upon this phase of his career it is not our business to dwell at any length, but we cannot refrain from adding, that he has twice filled the chief magistrate's chair, that he served the statutory period as Sheriff of the town, that he is a director of the North-Eastern Railway, and that he was the first president of the Newcastle Chemical Society. In the general election of 1868, Mr. Bell came forward as a candidate for the Northern Division of the county of Durham, in opposition to Mr. George Elliot, but the personal influence of the latter was too much for him, and he sustained a defeat. In the general election of 1874, Mr. Bell again stood for North Durham, in conjunction with Mr. C. M. Palmer, of Jarrow. Mr. Elliott again contested the Division in the Conservative interest. After a hard struggle, Mr. Bell was returned at the head of the poll. Shortly after the General Election, Mr. Elliott received a baronetcy from Mr, Disraeli. A short time only had elapsed, however, when the Liberal members were unseated on petition, because of general intimidation at Hetton-le-Hole, Seaham, and other places no blame being, however, attributed to the two members and the result of afresh election in June following was the placing of Mr. Bell at the bottom of the poll, although he was only a short distance behind his Conservative opponent Sir George Elliott."
"Isaac Lowthian Bell, 1st Baronet FRS (1816-1904), of Bell Brothers, was a Victorian ironmaster and Liberal Party politician from Washington, Co. Durham.
1816 February 15th. Born the son of Thomas Bell and his wife Katherine Lowthian.
Attended the Academy run by John Bruce in Newcastle-upon-Tyne, Edinburgh University and the Sorbonne.
Practical experience in alkali manufacture at Marseilles.
1835 Joined the Walker Ironworks; studied the the operation of the blast furnaces and rolling mills.
A desire to master thoroughly the technology of any manufacturing process was to be one of the hallmarks of Bell's career.
1842 Married Margaret Elizabeth Pattinson
In 1844 Lowthian Bell and his brothers Thomas Bell and John Bell formed a new company, Bell Brothers, to operate the Wylam ironworks. These works, based at Port Clarence on the Tees, began pig-iron production with three blast furnaces in 1854 and became one of the leading plants in the north-east iron industry. The firm's output had reached 200,000 tons by 1878 and the firm employed about 6,000 men.
1850 Bell started his own chemical factory at Washington in Gateshead, established a process for the manufacture of an oxychloride of lead, and operated the new French Deville patent, used in the manufacture of aluminium. Bell expanded these chemical interests in the mid-1860s, when he developed with his brother John a large salt working near the ironworks.
In 1854 he built Washington Hall, now called Dame Margaret's Hall.
He was twice Lord Mayor of Newcastle-upon-Tyne and Member of Parliament for North Durham from February to June 1874, and for Hartlepool from 1875 to 1880.
1884 President of the Institution of Mechanical Engineers
In 1895 he was awarded the Albert Medal of the Royal Society of Arts, 'in recognition of the services he has rendered to Arts, Manufactures and Commerce, by his metallurgical researches and the resulting development of the iron and steel industries'.
A founder of the Iron and Steel Institute, he was its president from 1873 to 1875, and in 1874 became the first recipient of the gold medal instituted by Sir Henry Bessemer. He was president of the Institution of Mechanical Engineers in 1884.
1842 He married Margaret Pattison. Their children were Mary Katherine Bell, who married Edward Stanley, 4th Baron Stanley of Alderley and Sir Thomas Hugh Bell, 2nd Baronet.
1904 December 20th. Lowthian Bell died at his home, Rounton Grange, Rounton, Northallerton, North Riding of Yorkshire
1904 Obituary [1]
"Sir ISAAC LOWTHIAN BELL, Bart., was born in Newcastle-on-Tyne on 15th February 1816, being the son of Mr. Thomas Bell, an alderman of the town, and partner in the firm of Messrs. Losh, Wilson and Bell, of Walker Iron Works, near Newcastle; his mother was the daughter of Mr. Isaac Lowthian, of Newbiggin, Northumberland.
After studying at Edinburgh University, he went to the Sorbonne, Paris, and there laid the foundation of the chemical and metallurgical knowledge which he applied so extensively in later years.
He travelled extensively, and in the years 1839-40 he covered a distance of over 12,000 miles, examining the most important seats of iron manufacture on the Continent. He studied practical iron-making at his father's works, where lie remained until 1850, when he joined in establishing chemical works at Washington, eight miles from Newcastle. Here it was also that his subsequent firm of Messrs. Bell Brothers started the first works in England for the manufacture of aluminium.
In 1852, in conjunction with his brothers Thomas and John, he founded the Clarence Iron Works, near the mouth of the Tees, opposite Middlesbrough. The three blast-furnaces erected there in 1853 were at that time the largest in the kingdom, each being 47.5 feet high, with a capacity of 6,012 cubic feet; the escaping gases were utilized for heating the blast. In 1873 the capacity of these furnaces was much increased.
In the next year the firm sank a bore-hole to the rock salt, which had been discovered some years earlier by Messrs. Bolckow, Vaughan and Co. in boring for water. The discovery remained in abeyance till 1882, when they began making salt, being the pioneers of the salt industry in that district. They were also among the largest colliery proprietors in South Durham, and owned extensive ironstone mines in Cleveland, and limestone quarries in Weardale.
His literary career may be said to have begun in 1863, when, during his second mayoralty, the British Association visited Newcastle, on which occasion he presented a report on the manufacture of iron in connection with the Northumberland and Durham coal-fields. At the same visit he read two papers on " The Manufacture of Aluminium," and on "Thallium." The majority of his Papers were read before the Iron and Steel Institute, of which Society he was one of the founders; and several were translated into French and German.
On the occasion of the first Meeting of this Institution at Middlesbrough in 1871, he read a Paper on Blast-Furnace Materials, and also one on the "Tyne as Connected with the History of Engineering," at the Newcastle Meeting in 1881. For his Presidential Address delivered at the Cardiff Meeting in 1884, he dealt with the subject of "Iron."
He joined this Institution in 1858, and was elected a Member of Council in 1870. In 1872 he became a Vice-President, and retained that position until his election as President in 1884. Although the Papers he contributed were not numerous, he frequently took part in the discussions on Papers connected with the Iron Industry and kindred subjects.
He was a member of a number of other learned societies — The Royal Society, The Institution of Civil Engineers, the Iron and Steel Institute, of which he was President from 1873 to 1875, the Society of Chemical Industry, the Royal Society of Sweden, and the Institution of Mining Engineers, of which he was elected President in 1904.
He had also received honorary degrees from the University of Edinburgh, the Durham College of Science, and the University of Leeds. In 1885 a baronetcy was conferred upon him in recognition of his distinguished services to science and industry. In 1876 he served as a Commissioner to tile International Centennial Exhibition at Philadelphia, where he occupied the position of president of the metallurgical judges, and presented to the Government in 1877 a report upon the iron manufacture of the United States. In 1878 he undertook similar duties at the Paris Exhibition.
He was Mayor of Newcastle in 1854-55, and again in 1862-3. In 1874 he was elected Member of Parliament for Durham, but was unseated; he sat for the Hartlepools from 1875 to 1880, and then retired from parliamentary life. For the County of Durham he was a Justice of the Peace and Deputy Lieutenant, and High Sheriff in 1884. For many years he was a director of the North Eastern Railway, and Chairman of the Locomotive Committee.
His death took place at his residence, Rounton Grange, Northallerton, on 20th December 1904, in his eighty-ninth year.
1904 Obituary [2]
SIR LOWTHIAN BELL, Bart., Past-President, died on December 21, 1904, at his residence, Rounton Grange, Northallerton, in his eighty-ninth year. In his person the Iron and Steel Institute has to deplore the loss of its most distinguished and most valuable member. From the time when the Institute was founded as the outcome of an informal meeting at his house, until his death, he was a most active member, and regularly attended the general meetings, the meetings of Council, and the meetings of the various committees on which he served.
Sir Lowthian Bell was the son of Mr. Thomas Bell (of Messrs. Losh, Wilson, & Bell, iron manufacturers, Walker-on-Tyne), and of Catherine, daughter of Mr. Isaac Lowthian, of Newbiggin, near Carlisle. He was born in Newcastle on February 15, 1816, and educated, first at Bruce's Academy, in Newcastle, and afterwards in Germany, in Denmark, at Edinburgh University, and at the Sorbonne, Paris. His mother's family had been tenants of a well-known Cumberland family, the Loshes of Woodside, near Carlisle, one of whom, in association with Lord Dundonald, was one of the first persons in this country to engage in the manufacture of soda by the Leblanc process. In this business Sir Lowthian's father became a partner on Tyneside. Mr. Bell had the insight to perceive that physical science, and especially chemistry, was bound to play a great part in the future of industry, and this lesson• he impressed upon his ions. The consequence was that they devoted their time largely to chemical studies.
On the completion of his studies, Lowthian Bell joined his father at the Walker Iron Works. Mr. John Vaughan, who was with the firm, left about the year 1840, and in conjunction with Mr. Bolckow began their great iron manufacturing enterprise at Middlesbrough. Mr. Bell then became manager at Walker, and blast-furnaces were erected under his direction. He became greatly interested in the ironstone district of Cleveland, and as early as 1843 made experiments with the ironstone. He met with discouragements at first, but was rewarded with success later, and to Messrs. Bell Brothers largely belongs the credit of developing the ironstone field of Cleveland. Mr. Bell's father died in 1845, and the son became managing partner. In 1852, two years after the discovery of the Cleveland ironstone, the firm acquired ironstone royalties first at Normanby and then at Skelton in Cleveland, and started the Clarence Iron Works, opposite Middlesbrough. The three blast-furnaces here erected in 1853 were at that time the largest in the kingdom, each being 47.5 feet high, with a capacity of 6012 cubic feet. Later furnaces were successively increased up to a height of. 80 feet in 1873, with 17 feet to 25 feet in diameter at the bosh, 8 feet at the hearth, and about 25,500 cubic feet capacity. On the discovery of a bed of rock salt at 1127 feet depth at Middlesbrough, the method of salt manufacture in vogue in Germany was introduced at the instance of Mr. Thomas Bell, and the firm of Bell Brothers had thus the distinction of being pioneers in this important industry in the district. They were also among the largest colliery proprietors in South Durham, and owned likewise extensive ironstone mines in Cleveland, and limestone quarries in Weardale. At the same time Mr. Bell was connected with the Washington Aluminium Works, the Wear blast-furnaces, and the Felling blast-furnaces.
Although Sir Lowthian Bell was an earnest municipal reformer and member of Parliament, he will best be remembered as a man of science. He was mayor of Newcastle in 1863, when the British Association visited that town, and the success of the gathering was largely due to his arrangements. As one of the vice-presidents of the chemical section, he contributed papers upon thallium and the manufacture of aluminium; and, jointly with the late Lord Armstrong, edited the souvenir volume entitled " The Industrial Resources of the Tyne, Wear, and Tees." In 1873, when the Iron and Steel Institute visited Belgium, Mr. Bell presided, and delivered in French an address on the relative industrial conditions of Great Britain and Belgium. Presiding at the Institute's meeting in Vienna in 1882, he delivered his address partly in English and partly in German, and expressed the hope that the ties between England and Austria should be drawn more closely.
On taking up his residence permanently at Rounton Grange, near Northallerton, Sir Lowthian made a present to the city council, on which he had formerly served for so many years, of Washington Hall and grounds, and the place is now used as a home for the waifs and strays of the city. It is known as Dame Margaret's Home, in memory of Lady Bell, who died in 1886. This lady, to whom he was married in 1842, was a daughter of Mr. Hugh Lee Pattinson, F.R.S., the eminent chemist and metallurgist.
Sir Lowthian earned great repute as an author. He was a prolific writer on both technical and commercial questions relating to the iron and steel industries. His first important book was published in 1872, and was entitled " Chemical Phenomena of Iron Smelting : An Experimental :and Practical Examination of the Circumstances which Determine the Capacity of the Blast-Furnace, the Temperature of the Air, and the Proper Condition of the Materials to be Operated upon." This book, which contained nearly 500 pages, with many diagrams, was the direct outcome of a controversy with the late Mr. Charles Cochrane, and gave details of nearly 900 experiments carried out over a series of years with a view to finding out the laws which regulate the process of iron smelting, and the nature of the reactions which take place among the substances dealt with in the manufacture of pig iron. The behaviour of furnaces under varying conditions was detailed. The book was a monument of patient research, which all practical men could appreciate. His other large work—covering 750 pages—was entitled " The Principles of the Manufacture of Iron and Steel." It was issued in 1884, and in it the author compared the resources existing in different localities in Europe and America as iron-making centres. His further investigations into the manufacture of pig iron were detailed, as well as those relating to the manufacture of finished iron and steel.
In 1886, at the instance of the British Iron Trade Association, of which he was then President, he prepared and published a book entitled " The Iron Trade of the United Kingdom compared with other Chief Ironmaking Nations." Besides these books and numerous papers contributed to scientific societies, Sir Lowthian wrote more than one pamphlet relating to the history and development of the industries of Cleveland.
In 1876 Sir Lowthian was appointed a Royal Commissioner to the Centennial Exhibition at Philadelphia, and wrote the official report relating to the iron and steel industries. -This was issued in the form of a bulky Blue-book.
As a director of the North-Eastern Railway Company Si Lowthian prepared an important volume of statistics for the use of his colleagues, and conducted exhaustive investigations into the life of a steel rail.
The majority of his papers were read before the Iron and Steel Institute, but of those contributed to other societies the following may be mentioned :— Report and two papers to the second Newcastle meeting of the British Association in 1863, already mentioned. " Notes on the Manufacture of Iron in the Austrian Empire," 1865. " Present State of the Manufacture of Iron in Great Britain," 1867. " Method of Recovering Sulphur and Oxide of Manganese, as Practised at Dieuze, near Nancy," 1867. " Our Foreign Competitors in the Iron Trade," 1868; this was promptly translated into French by Mr. G. Rocour, and published in Liege. " Chemistry of the Blast-Furnace," 1869. " Preliminary Treatment of the Materials Used in the Manufacture of Pig Iron in the Cleveland District" (Institution of Mechanical Engineers, 1871). " Conditions which Favour, and those which Limit, the Economy of Fuel in the Blast-Furnace for Smelting Iron " (Institution of Civil Engineers, 1872). "Some supposed Changes Basaltic Veins have Suffered during their Passage through and Contact with Stratified Rocks, and the Manner in which these Rocks have been Affected by the Heated Basalt " : a communication to the Royal Society on May 27, 1875. " Report to Government on the Iron Manufacture of the United States of America, and a Comparison of it with that of Great Britain," 1877. "British Industrial Supremacy," 1878. " Notes on the Progress of the Iron Trade of Cleveland," 1878. " Expansion of Iron," 1880. " The Tyne as connected with the History of Engineering " (Institution of Mechanical Engineers, 1881). " Occlusion of Gaseous Matter by Fused Silicates and its possible connection with Volcanic Agency : " a paper to the third York meeting of the British Association, in, 1881, but printed in the Journal of the Iron and Steel• Institute. Presidential Address on Iron (Institution of Mechanical Engineers, 1884). " Principles of the Manufacture of Iron and Steel, with Notes on the Economic Conditions of their Production," 1884. " Iron Trade of the United Kingdom," 1886. " Manufacture of Salt near Middlesbrough" (Institution of Civil Engineers, 1887). " Smelting of Iron Ores Chemically Considered," 1890. " Development of the Manufacture and Use of Rails in Great Britain " (Institution of Civil Engineers, 1900). Presidential Address to the Institution of Junior Engineers, 1900.
To him came in due course honours of all kinds. When the Bessemer Gold Medal was instituted in 1874, Sir Lowthian was the first recipient. In 1895 he received at the hands of the King, then. Prince of Wales, the Albert Medal of the Society of Arts, in recognition of the services he had rendered to arts, manufactures, and commerce by his metallurgical researches. From the French government he received the cross of the Legion of Honour. From the Institution of Civil Engineers he received the George Stephenson Medal, in 1900, and, in 1891, the Howard Quinquennial Prize which is awarded periodically to the author of a treatise on Iron.
For his scientific work Sir Lowthian was honoured by many of the learned societies of Europe and America. He was elected a Fellow of the Royal Society in 1875. He was an Hon. D.C.L. of Durham University; an LL.D. of the Universities of Edinburgh and Dublin; and a D.Sc. of Leeds University. He was one of the most active promoters of the Durham College of Science by speech as well as by purse; his last contribution was made only a short time ago, and was £3000, for the purpose of building a tower. He had. held the presidency of the North of England Institution of Mining and Mechanical Engineers, and was the first president of the Newcastle Chemical Society.
Sir Lowthian was a director of the North-Eastern Railway Company since 1865. For a number of years he was vice-chairman, and at the time of his death was the oldest railway director in the kingdom. In 1874 he was elected M.P. for the Borough of the Hartlepools, and continued to represent the borough till 1880. In 1885, on the advice of Mr. Gladstone, a baronetcy was conferred upon him in recognition of his great services to the State. Among other labours he served on the Royal Commission on the Depression of Trade, and formed one of the Commission which proceeded to Vienna to negotiate Free Trade in Austria-Hungary in 1866. For the County of Durham he was a Justice of the Peace and Deputy Lieutenant, and High Sheriff in 1884. He was also a Justice of the Peace for the North Riding of Yorkshire and for the city of Newcastle. He served as Royal Commissioner at the Philadelphia Exhibition in 1876, and at the Paris Exhibition of 1878. He also served as Juror at the Inventions Exhibition in London, in 1885, and at several other great British and foreign Exhibitions.
Of the Society of Arts he was a member from 1859. He joined the Institution of Civil Engineers in 1867, and the Chemical Society in 1863. He was a past-president of the Institution of Mechanical Engineers, and of the Society of Chemical Industry; and at the date of his death he was president of the Institution of Mining Engineers. He was an honorary member of the American Philosophical Institution, of the Liege Association of Engineers, and of other foreign societies. In 1882 he was made an honorary member of the Leoben School of Mines.
In the Iron and Steel Institute he took special interest. One of its original founders in 1869, he filled the office of president from 1873 to 1875, and was, as already noted, the first recipient of the gold medal instituted by Sir Henry Bessemer. He contributed the following papers to the Journal of the Institute in addition to Presidential Addresses in 1873 and 1874: (1) " The Development of Heat, and its Appropriation in Blast-furnaces of Different Dimensions" (1869). (2) " Chemical Phenomena of Iron Smelting : an experimental and practical examination of the circumstances which determine the capacity of the blast-furnace, the temperature of the air, and the proper conditions of the materials to be operated upon " (No. I. 1871; No. II. 1871; No. I. 1872). (3) " Ferrie's Covered Self-coking Furnace" (1871). (4) "Notes on a Visit to Coal and Iron Mines and Ironworks in the United States " (1875). (5) " Price's Patent Retort Furnace " (1875). (6) " The Sum of Heat utilised in Smelting Cleveland Ironstone" (1875). (7) "The Use of Caustic Lime in the Blast-furnace" (1875). (8) "The Separation of Carbon, Silicon, Sulphur, and Phosphorus in the Refining and Puddling Furnace, and in the Bessemer Converter " (1877). (9) " The Separation of Carbon, Silicon, Sulphur, and Phosphorus in the Refining and Puddling Furnaces, in the Bessemer Converter, with some Remarks on the Manufacture and Durability of Railway Bars" (Part II. 1877). (10) " The Separation of Phosphorus from Pig Iron" (1878). (11) " The Occlusion or Absorption of Gaseous Matter by fused Silicates at High Temperatures, and its possible Connection with Volcanic Agency" (1881). (12) " On Comparative Blast-furnace Practice" (1882). (13) "On the Value of Successive Additions to the Temperature of the Air used in Smelting Iron " (1883). (14) "On the Use of Raw Coal in the Blast-furnace" (1884). (15) "On the Blast-furnace value of Coke, from which the Products of Distillation from the Coal, used in its Manufacture, have been Collected" (1885). (16) "Notes on the Reduction of Iron Ore in the Blast-furnace" (1887). (17) "On Gaseous Fuel" (1889). (18) " On. the Probable Future of the Manufacture of Iron " (Pittsburg International Meeting, 1890). (19) " On the American Iron Trade and its Progress during Sixteen Years" (Special American Volume, 1890). (20) " On the Manufacture of Iron in its Relations with Agriculture " (1892). (21) " On the Waste of Heat, Past, Present, and Future, in Smelting Ores of Iron " (1893). (22) " On the Use of Caustic Lime in the Blast-furnace" (1894).
Sir Lowthian Bell took part in the first meeting of the Institute in 1869, and was present at nearly all the meetings up to May last, when he took part in the discussion on pyrometers, and on the synthesis of Bessemer steel. The state of his health would not, however, permit him to attend the American meeting, and he wrote to Sir James Kitson, Bart., Past-President, a letter expressing his regret. The letter, which was read at the dinner given by Mr. Burden to the Council in New York, was as follows :— ROUNTON GRANGE, NORTHALLERTON, 12th October 1904.
MY DEAR SIR JAMES KITSON,-Four days ago I was under the knife of an occulist for the removal of a cataract on my right eye. Of course, at my advanced age, in deference to the convenience of others, as well as my own, I never entertained a hope of being able to accompany the members of the Iron and Steel Institute in their approaching visit to the United States.
You who knew the regard, indeed, I may, without any exaggeration, say the affection I entertain for my friends on the other side of the Atlantic, will fully appreciate the nature of my regrets in being compelled to abstain from enjoying an opportunity of once more greeting them.
Their number, alas, has been sadly curtailed since I first met them about thirty years ago, but this curtailment has only rendered me the more anxious again to press the hands of the few who still remain.
Reference to the records of the Iron and Steel Institute will show that I was one of its earliest promoters, and in that capacity I was anxious to extend its labours, and consequently its usefulness, to every part of the world where iron was made or even used; with this view, the Council of that body have always taken care to have members on the Board of Management from other nations, whenever they could secure their services. Necessarily the claims upon the time of the gentlemen filling the office of President are too urgent to hope of its being filled by any one not a resident in the United Kingdom. Fortunately, we have a gentleman, himself a born subject of the United Kingdom, who spends enough of his time in the land of his birth to undertake the duties of the position of Chief Officer of the Institute.
It is quite unnecessary for me to dwell at any length upon the admirable way in which Mr. Andrew Carnegie has up to this time discharged the duties of his office, and I think I may take upon me to declare in the name of the Institute that the prosperity of the body runs no chance of suffering by his tenure of the Office of President.— Yours faithfully, (Signed) LOWTHIAN BELL.
The funeral of Sir Lowthian Bell took place on December 23, at Rounton, in the presence of the members of his family, and of Sir James Kitson, Bart., M.P., past-president, and Sir David Dale, Bart., past-president. A memorial service was held simultaneously at the Parish Church, Middlesbrough, and was attended by large numbers from the North of England. A dense fog prevailed, but this did not prevent all classes from being represented. The Iron and Steel Institute was represented by Mr. W. Whitwell, past-president, Mr. J Riley, vice-president, Mr. A. Cooper and Mr. Illtyd Williams, members of council, Mr. H. Bauerman, hon. member, and the Secretary. The Dean of Durham delivered an address, in which he said that Sir Lowthian's life had been one of the strenuous exertion of great powers, full of bright activity, and he enjoyed such blessings as go with faithful, loyal work and intelligent grappling with difficult problems. From his birth at Newcastle, in 1816, to the present day, the world of labour, industry, and mechanical skill had been in constant flow and change. Never before had there been such a marvellous succession of advances, and in keeping pace with these changes Sir Lowthian might be described as the best scientific ironmaster in the world. He gave a lifelong denial to the statement that Englishmen can always " muddle through," for he based all his action and success on clearly ascertained knowledge.
The King conveyed to the family of the late Sir Lowthian Bell the expression of his sincere sympathy on the great loss which they have sustained. His Majesty was pleased to say that he had a great respect for Sir Lowthian Bell, and always looked upon him as a very distinguished man.
Immediately before the funeral an extraordinary meeting of council was held at the offices of Bell Brothers, Limited, Middlesbrough, when the following resolution was unanimously adopted :— " The council of the Iron and Steel Institute desire to place on record their appreciation of the loss which the Institute has sustained by the death of Sir Lowthian Bell, Bart., a past-president and one of the founders of the Institute. The council feel that it would be difficult to overrate the services that Sir Lowthian rendered to the Institute in the promotion of the objects for which it was formed, and his constant readiness to devote his time and energies to the advancement of these objects. His colleagues on the council also desire to assure his family of their most sincere sympathy in the loss that has befallen them." Find a Grave.
Isaac Lowthian Bell was born in Newcastle upon Tyne on the 16th of February 1816. He was the son of Thomas Bell, a member of the firm of Losh, Wilson and Bell Ironworks at Walker. Bell was educated at Dr Bruce’s Academy (Newcastle upon Tyne), Edinburgh University, and the University of the Sorbonne (Paris).
In 1850 Bell was appointed manager of Walker Ironworks. In the same year he established a chemical works at Washington with Mr Hugh Lee Pattinson and Mr R. B. Bowman (the partnership was severed in 1872). In 1852 Bell set up Clarence Ironworks at Port Clarence, Middlesbrough, with his brothers Thomas and John which produced basic steel rails for the North Eastern Railway (From 1865 to 1904, Bell was a director of North Eastern Railway Company). They opened ironstone mines at Saltburn by the Sea (Normanby) and Skelton (Cleveland). Bell Brothers employed around 6,000 workmen. They employed up to the minute practises (for example, utilizing waste gases which escaped from the furnaces) and were always keen to trial improvements in the manufacture of iron. In 1882 Bell Brothers had a boring made at Port Clarence to the north of the Tees and found a stratum of salt, which was then worked. This was sold to Salt Union Ltd in 1888.
Bell’s professional expertise was used after an explosion at Hetton Colliery in 1860. He ascertained that the cause of the explosion was due to the presence of underground boilers.
In 1861 Bell was appointed to give evidence to the Commission to incorporate a Mining College within Durham University. Durham College of Science was set up 1871 in Newcastle with Bell as a Governor. He donated £4,500 for the building of Bell Tower. Large collection of books were donated from his library by his son to the College.
Bell served on the Royal Commission on the Depression of Trade. He was a Justice of Peace for County of Durham, Newcastle and North Riding of Yorkshire, and was Deputy-lieutenant and High Sheriff for Durham in 1884. In 1879 Bell accepted arbitration in the difficulty with the miners during the General Strike of County Durham miners
Between 1850 and 1880 Bell sat on the Town Council of Newcastle upon Tyne. In 1851 he became sheriff, was elected mayor in 1854, and Alderman in 1859. In 1874 Bell was the Liberal Member of Parliament for North Durham, but was unseated on the ground of general intimidation by agents. Between 1875 and 1880 he was the Member of Parliament for the Hartlepools.
Bell was an authority on mineralogy and metallurgy. In 1863 at the British Association for the Advancement of Science, held in Newcastle, he read a paper ‘On the Manufacture of Iron in connection with the Northumberland and Durham Coalfield’ (Report of the 33rd meeting of the British Association for the Advancement of Science, held at Newcastle upon Tyne, 1863, p730).
In 1871 Bell read a paper at a meeting of the Iron and Steel Institute, Middlesbrough on ‘Chemical Phenomena of Iron smelting’. (The Journal of the Iron and Steel Institute, 1871 Vol I pp85-277, Vol II pp67-277, and 1872 Vol I p1). This was published with additions as a book which became an established text in the iron trade. He also contributed to ‘The Industrial Resources of the Tyne, Wear and Tees (1863)’.
In 1854 Bell became a member of the North of England Institute of Mining and Mechanical Engineers and was elected president in 1886. Bell devoted much time to the welfare and success of the Institute in its early days.
During his life Bell was a founder member of the Iron and Steel Institute (elected President in 1874); a Fellow of the Royal Society and of the Chemical Society of London; a member of the Society of Arts, a member of the British Association for the Advancement of Science; a member of the Institution of Civil Engineers; President of the Institution of Mechanical Engineers; President of the Society of Chemical Industry; and a founder member of the Institution of Mining Engineers (elected President in 1904)
Bell was the recipient of Bessemer Gold Medal, from Iron and Steel Institute in 1874 and in 1885 recieved a baronetcy for services to the State. In 1890 he received the George Stephenson Medal from The Institute of Civil Engineers and in 1895 received the Albert Medal of the Society of Arts for services through his metallurgical researches.
Bell was a Doctor of Civil Law (DCL) of Durham University, a Doctor of Laws (LLD) of Edinburgh University and Dublin University, and a Doctor of Science (DSc) of Leeds University.
Bell married the daughter of Hugh Lee Pattinson in 1842 and together they had two sons and three daughters. The family resided in Newcastle upon Tyne, Washington Hall, and Rounton Grange near Northallerton.
Lowthian Bell died on the 21st of December 1904. The Council of The Institution of Mining Engineers passed the following resolution:
“The Council have received with the deepest regret intimation of the death of their esteemed President and colleague, Sir Lowthian Bell, Bart, on of the founders of the Institution, who presided at the initial meeting held in London on June 6 th 1888, and they have conveyed to Sir Hugh Bell, Bart, and the family of Sir Lowthian Bell an expression of sincere sympathy with them in their bereavement. It is impossible to estimate the value of the services that Sir Lowthian Bell rendered to the Institution of Mining Engineers in promoting its objects, and in devoting his time and energies to the advancement of the Institution.”
Information taken from: - Institute of Mining Engineers, Transactions, Vol XXXIII 1906-07
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Sir Joseph Wilson Swan
Sir Joseph Wilson Swan was born in Pallion Hall in 1828. His father was the manager of the estate’s limestone quarry. He became a physicist and chemist whose works have had an incredible impact on not only the lives of the Victorians but also on ours today.
He became an apprentice to Hudson and Osbaldiston’s pharmacy in Sunderland before joining the firm of John Mawson in Newcastle later becoming a partner in the firm of manufacturing chemists. Swan’s great contribution to civilisation was the invention of the first practical incandescent electric light bulb that he was able to demonstrate for the first time in Newcastle in 1878. However, this was not his only achievement. He also invented the dry photographic plate, an important improvement in photography and a step in the development of modern photographic film, as well as an early synthetic fibre manufacturing process.
He was knighted in 1904 and died in 1914.
The special Kenworth T680 Advantage on display at Mid-America is specified with the latest technology, components and driver amenities, including the new PACCAR 40K tandem rear axle. Innovative technologies and advanced manufacturing processes deliver a fuel efficient, light weight design resulting in a lower cost of ownership. With a first-of-its-kind pinion thru-shaft design, it keeps loads moving forward efficiently and reliably.
Beyond Prototyping is a research project looking at the dynamics between the designer, manufacturing process and the consumer in creating everyday products in the age of digital fabrication. The “meaning” of an artifact transcends its physical utility and technical characteristics and is increasingly a personal narrative. The three case studies, Ciphering, Locatable and Highlight illustrate different strategies of how the experts and the target audience can together create meaningful, unique artifacts, based on an algorithmic design idea and through an online platform for intuitive interaction.
credit: Michael Burk
Hunter XCI Foil product is used in the construction of the new commons building at University of Northwestern Ohio. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
სამხედრო სამეცნიერო-ტექნიკური ცენტრი ,,დელტა’’ 2005 წელს პრეზიდენტის ბრძანებულების საფუძველზე შეიქმნა. დღესდღეობით, საწარმოში 6000 ადამიანია დასაქმებული, რომელთა საშუალო ხელფასი 1000 ლარზე მეტია. ,,დელტას’’ თანამშრომლები სხვადასხვა სოციალური ბენეფიტებით სარგებლობენ.
,,დელტაში’’ გაერთიანებულია რამდენიმე მსხვილი საწარმო, მათ შორის ,,თბილავიამშენი’’, რომელიც ქართულ იარაღსა და საბრძოლო ტექნიკას აწარმოებს. საწარმოში 15-მდე სახეობის იარაღი და სამხედრო აღჭურვილობა მზადდება.
,,დელტაში’’ იწარმოება საქართველოს შეიარაღებული ძალების სიამაყე მუხლუხებიანი ქვეითთა საბრძოლო მანქანა ,,ლაზიკა’’. მხოლოდ ,,ლაზიკას’’ წარმოებაზე ასამდე სპეციალისტია დასაქმებული. მთლიანობაში, ქართული იარაღისა და ტექნიკის წარმოებაზე 1500 ადამიანი მუშაობს.
,,დელტაშია’’ ასევე დამზადებული ჯავშანმანქანა ,,დიდგორი’’, ზალპური ცეცხლის რეაქტიული სისტემა და უპილოტო საჰაერო აპარატი.
იარაღისა და სამხედრო ტექნიკის წარმოების დაწყებამდე, ტარდება კვლევები და ნიმუშების მეცნიერულ დონეზე დამუშვება ხდება. ,,დელტაში’’ გაერთიანებულია 6 სამეცნიერო-კვლევითი ინსტიტუტი, სადაც სამოქალაქო და სამხედრო კვლევები მიმდინარეობს. ფიზიკის, მანქანათა მექანიკის, სამთო, მეტალურგიის, ოპტიკისა და ნანოტექნოლოგიების ინსტიტუტებში დასაქმებულ 400-ზე მეტ მეცნიერს საკუთარი წვლილი შეაქვს ქართული იარაღის წარმოების განვითარებაში.
როგორც ,,დელტაში’’ იარაღის წარმოებაზე დასაქმებული ადამიანები აცხადებენ, მათთვის დიდი პატივია საკუთარი წვლილი შეიტანონ ქვეყნის შეიარაღებული ძალების განვითარების პროცესში და ამავდროულად, საკუთარი საქმიანობით სარგებელი მოუტანონ ოჯახებს.
Military Scientific-Technical Centre “Delta” of Ministry of Defence was established in 2005 on the basis of the Decree of the Georgian president. Currently, the number of enterprise personnel is 6000, whose average salary amounts to over GEL 1000. “Delta” employees also enjoy different social benefits.
“Delta” incorporates several large enterprises, including “Tbilaviamsheni”, which manufactures Georgian armament and combat technique. The enterprise works on production of around 15 series of weaponry and military equipment.
“Delta” produces the tracked infantry fighting vehicle “Lazika”, which is the Georgian pride. 100 specialists are employed in “Lazika”`s manufacturing process. In total, 1500 personnel are involved in the production of the Georgian armament.
The other Georgian armament- multiple rocket launcher system, armored infantry vehicle “Didgori” and unmanned aerial system are also the products of “Delta”.
Before launching production of weaponry and military technique, scientific researches and processing of models are conducted in the enterprise. “Delta” incorporates 6 scientific-research institutes, which carry out civil-military research activities. More than 400 scientists working in the institutes of Physics, Auto Mechanic, Mines, Metallurgy, Optics and Nanotechnology provide their share of contribution in the national military industry development.
According to the “Delta” employees, it is a great honor for them to take part in the development of armed forces and to bring benefit to the Georgian families by their activities.
Whitehall Rowboats are considered one of the most refined rowboats of the 1800s. The basic design is much older and of European ancestry. It strongly resembles a sailing ship's gig or a Thames river wherry. They were first made in the U.S. at the foot of Whitehall Street in New York City to be used to ferry goods, services, and sailors on and off the boats coming into New York Harbor. The boats range from 14 to 22 ft in length, the larger requiring two people to row them. A Whitehall Gig, which is the slightly longer version is 25 ft in length, requiring four rowers and a Coxswain for a crew of 5.
They were the first boats to incorporate an inverted-hull frame set up to speed up the manufacturing process.
The hull shape is characterized by a nearly straight stem, and slight flare to the bow, rounded sides, with a keel running the entire length of the bottom and a distinctive wine glass transom with a full skeg. Considered one of the most beautiful row-boats, they are designed to handle the harbor chop and yet track straight. Speed was the issue with these boats, as the first to the ship with the goods generally received the lion's share of the sales. Later the shore patrol used these boats for customs, police issues, water taxi, and newspaper reporting.
Whitehalls in the early 1900s were a popular recreational boat and were known as the "Bicycle of the sea". A beginning rower finds it easier to row this design in a straight line because of the tracking type keel. Turning requires stronger strokes on one side, and by braking with one oar and pulling with the other the boat can be turned in its own length.
Whitehall designs are currently being built in wood, and also manufactured fiberglass usually with wood trims, and more recently thermoformed in co-polymer plastic. These boats are either traditional fixed seat row boats or slide seat rowing boats. Some models or also including sailing rigs. Many designs are mistakenly being called Whitehalls when they are not actually true to the design criteria. The Mystic Seaport Maritime Museum has a comprehensive collection of authentic Whitehall Lines. Also see volume one of John Gardener's book "Building Classic Small Craft" for a great description of this extraordinary boat.
Mystic Seaport Mystic Ct.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
David Mellor Visitor Centre
David Mellor is internationally famous for his cutlery.
His chic factory in Hathersage, designed by Sir Michael Hopkins, and purpose-built on the site of the old gasworks, is hailed as a minor masterpiece of modern architecture.
Built in local gritstone with a spectacular lead roof, it blends beautifully into the rural landscape. The factory is open for viewing on Sundays and visitors are welcome to take a look around and watch the various designs being made.
The manufacturing process is surprisingly low-tech and most of it done by hand – if nothing else this explains why the cutlery is so expensive (and so collectable).
In addition to the factory, there is also a stylish shop, a classy café and an interesting design museum.
David Mellor died in 2009, and his talented son Corin continues the design tradition at Hathersage.
The Round Building
by Sir Michael Hopkins
My image shows The Round Building on a cloudy afternoon.
Old Cemetery, Ipswich, Suffolk
Memorials to members of Ipswich's famous Ransome family.
The white cross remembers Robert Charles Ransome and his wife Elizabeth, who lived with four children and six servants at Orwell Lodge, a large house on Belstead Road, Ipswich, a road where several prominent Ipswich families had large houses. Robert's grandfather, also called Robert Ransome, had invented a cold iron manufacturing process which was particularly suitable for the sharp implements required for agriculture. His foundry in Ipswich grew into what would become the largest factory for the manufacturer of agricultural machinery in Europe.
Robert Charles Ransome became chairman of the family firm of Ransome and Sons in the early 1860s. Soon afterwards, two of his brothers broke away from the firm by mutual consent to form a new company, Ransomes & Rapier, which would concentrate on heavy engineering, particularly the construction of steam trains and cranes. Ransome and Sons evolved into Ransome, Sims and Jefferies, by the early 20th century the largest employer that Ipswich would ever know. The firm survived until the recession of the late 1980s, when most of Ipswich's heavy engineering firms went out of business.
By the time of his death, Robert Charles Ransome was probably the richest man in Ipswich, but his Quaker faith probably explains the relatively simple memorial when compared with the more ostentatious gravemarkers of other prominent Ipswich families like the Pauls, the Prettys, the Fisons and the Catchpoles.
from blog.quibids.com/above-and-beyond-managers-mike-domingos/
Each month at QuiBids we get to celebrate a particular manager or employee whose work steps up above and beyond what’s expected of them and achieves that rare, particular balance between quantity and innovation: working hard while working smart.
This month it’s Mike Domingos, who’s our director of strategic sourcing! Mike spends his time building relationships with suppliers so we can offer you the most competitive retail prices we can! He also drinks enough coffee each day to keep a whole stable of horses caffeinated. Here’s your chance to get to know him!
Where did you work before QuiBids?I have been a principle in seven companies over the last few decades. Primarily involved in the food business with a focus on manufacturing, processing, distribution, sales, marketing and merchandising of products sold globally. Other ‘side’ companies included a house restoration company and a coffee company. Just prior to QuiBids, for eight years I owned a consulting company with a focus on moving companies from third-tier buying practices to first-tier procurement, which ties in very well with QuiBids as does much of my background. Clients included major companies like the MGM/Mirage Resorts out of Las Vegas. I also worked closely with the FDA and FBI intermittently for a period in 2008 and 2009 on projects focused on Agro-Terrorism. I have always enjoyed variety in my work efforts and QuiBids provides that in a fun and exciting manner!
How many mugs of coffee do you think you drink in a given week? Give us your best casual estimate.
I drink at least eight mugs of coffee every day. I am typically up by 5:30 a.m. and in the office well before 7:00. Fortunately recent news states that men who drink five cups of coffee each day will reduce their potential for diabetes II by 50%, so now I don’t let people tell me I drink too much coffee!
You’re a Disney Land enthusiast. What’s your favorite attraction out there?I’ve been to Disney Land well over 50 times and Disney World about 4 times. Indiana Jones is my favorite in Disney Land.
Got a favorite movie, and/or TV show?For TV – give me CNN NEWS! Love it! Don’t tell anybody but I’m getting pretty good at Tiger Woods Golf on my PlayStation3!
What’s something that most of your QuiBids coworkers don’t know about you?There’s a Catch 22 — if I told you they would all know! Hmmmmmm … my youngest son was in gymnastics for years with Matt Beckham and that’s why I’ve known him since he was about twelve years old .
Fill in the blank: Given 72 hours and a big bag of money to do whatever I want, I go to Las Vegas _______.
and play CRAPS because I’m good at it.
Tell us about somebody who had a meaningful and positive impact in your life?Other than my parents who were supreme, my uncle John, my father’s brother, whose dedication and hard work ethics helped me understand many facets and directions incorporated into my life.
So one day a Hollywood director shoots a film about your life. Who do you pick to play you? Al Pacino
What’s your favorite part about working for QuiBids?
Watching and being a part of the growth and success of this company. Appreciating the capabilities and the determination of the executive branch and very much enjoying the youth of this company and the fun and spirit they exude — they keep me young! (Well, at heart anyway!)
Museu del Disseny / Design Museum Barcelona, Spain
The Museu del Disseny de Barcelona brings together, under one roof, the collections of the Museu de les Arts Decoratives, the Museu de Ceràmica, the Museu Tèxtil i d'Indumentària and the Gabinet de les Arts Gràfiques, to showcase its vast heritage of more than 70,000 objects.
The Museu del Disseny is based on a common theme «From the decorative arts to design», and is dedicated to the culture of the object, focusing on pieces that are often from the everyday sphere, their design, manufacturing process, use and distribution, aesthetic and functional obsolescence, all from a 21st-century perspective.
The Disseny Hub Barcelona building was designed by MBM architects. The building comprises two parts: an underground section made possible by the change in level caused by the redevelopment of the square; and a block at street level, which cantilevers out towards the Plaça de les Glòries, 14.5 metres above the ground. This block houses the venues for long- and short-term temporary exhibitions, as well as a hall for events and a large auditorium. Most of the building's floor space is located below this level and houses key areas such as the main exhibition gallery, the documentation centre, research rooms, the bar and restaurant and the shop. The entire project complies with high environmental quality and sustainability standards which are achieved through a large-scale, self-sufficient energy system.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Moon Motor Car Company of St. Louis, Missouri. (1905 - 1930)
on display in the lobby of the Harrisburg International Airport
Harrisburg, PA
Feb 2013
The company had a venerable reputation among the buying public, as it was known for fully assembled, easily affordable mid-level cars using high-quality parts. Often this meant the manufacturing process required more human intervention, leading to operating losses.
One of the most daring projects ever undertaken by General Motors, the Allanté was a luxury two-seat roadster that combined a Cadillac chassis and running gear with a body manufactured by Italian coachbuilder Pininfarina.
Just over 21.000 cars were assembled - at a high cost - during the production run from 1986 to 1993. Completed bodies had to be flown from Italy to Detroit for final assembly, creating a very expensive manufacturing process with little chance of making a profit.
The first cars were powered by a 4,1-litre petrol V8 producing 170 PS; in 1989, the engine was upgraded to a 4,5-litre V8 producing a more sports car-like 200 PS. A final - and significant - power upgrade arrived in 1992 with the Northstar V8 engine, a 4,6-litre V8 with nearly 300 PS. Unfortunately, this engine arrived too late to turn the tide on slowing sales, and production ended in 1993.
Iowa is a U.S. state in the Midwestern United States, a region sometimes called the "American Heartland". Iowa is bordered by the Mississippi River on the east and the Missouri River and the Big Sioux River on the west; it is the only U.S. state whose eastern and western borders are formed entirely by rivers. Iowa is bordered by Wisconsin and Illinois to the east, Missouri to the south, Nebraska and South Dakota to the west, and Minnesota to the north.
In colonial times, Iowa was a part of French Louisiana; its current state flag is patterned after the flag of France. After the Louisiana Purchase, settlers laid the foundation for an agriculture-based economy in the heart of the Corn Belt.
In the latter half of the 20th century, Iowa's agricultural economy made the transition to a diversified economy of advanced manufacturing, processing, financial services, information technology, biotechnology, and green energy production. Iowa is the 26th most extensive in land area and the 30th most populous of the 50 United States. Its capital and largest city is Des Moines. Iowa has been listed as one of the safest states in which to live.
en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_...
www.keyatwinscrew.com/compounding-system/sk-series-co-rot...
SK series twin screw extruder is the crystallization of more than 30 years'experience in the equipment manufacturing industry, more than 400 kinds of material technology application and thousands of working conditions verification of KY. Screw diameter can be selected from 26 mm to 135 mm.
SK Series double screw extruder adopts the welding and manufacturing process of international leading standards. It provides the best stability and reliability in operation and has successfully succeeded in replacing imported products in China.
e, the system is smaller and equipped with more powerful lubrication and cooling system, which enables users to use extruders safely and quietly.
British BiBBY torque limiter with high sensitivity and reliability can effectively avoid equipment shutdown due to improper operation or accidental overload.
Siemens's global joint insurance ILE0 series inverter motor has the characteristics of high efficiency, energy-saving, safety and so on. It provides technical support and service for localization.
Optimizing Processing Section
The processing section of the SK series double screw extruder can be flexibly configured for transportation, plasticization, mixing, shearing, homogenization, devolatilization and pressure according to the technological requirements of users' materials.
The screw and barrel can be made of HIP powder metallurgy material, which can achieve high wear resistance, high corrosion resistance and other extensive fields of operation.
The involute spline of the German standard (DIN5480) is adopted to meet the requirements of higher torque and higher speed.
Optimized screw size-diameter ratio (D0:D=1.55), reliable inter-model amplification effect
Internet-based New Generation Control System
The control system of SK series twin screw extruder can choose conventional instruments, PLC, PCC, DSC to meet different needs.
Modular design, the touch screen can be compactly installed on the mainframe
Customized programming design is satisfied with the upstream and downstream matching equipment of different mixing projects
Provide formulation, project management functions, process and production data visualization
Integrating computer technology, mobile Internet technology and industrial automation technology to realize real-time data management and control of multi-terminal
Parameter of SK Series Co-rotating Twin Screw Extruder
SK Series Co-rotating Twin Screw Extruder ModelProduction capacity kg/hr (reference value)
Material Process CategoryTypical MaterialSK26SK36SK53SK63SK73SK96SK136
Filling modificationPE, PP, EVA, etc. + calcium carbonate, talcum powder, titanium dioxide5~1045~90150~300300~500600~8001200~15001800~2700
ABS, PC, PS, etc. + aluminum hydroxide, magnesium hydroxide, antimony oxide
PP, PA, ABS, etc. + iron powder, magnetic powder, ceramic powder10~2090~135180~300380~500700~9001300~18001800~3000
blending modificationPP, PE, PS + SBS; PP, PA + epdmpp + NBE; EVA + silicone rubber, etc5~1060~100150~240270~450500~7501000~17001600~3000
PE, PA, PC, CPE + ABS; ABS + TPU; PBT + pet; PP + PE, etc5~1045~90120~240270~380450~6001000~15001200~3000
MasterbatchPE, PP, ABS, EVA, PS, etc. + pigment and other additives3~845~75150~230270~360380~500900~1200900~1800
Functional MasterbatchDegradable masterbatch: PE, PS, etc. + starch, etc3~845~90140~230230~330380~500900~1200900~1800
Flame retardant masterbatch: PP, PA, ABS, PBT, etc. + flame retardant and other auxiliaries3~860~100150~270300~450500~7501200~17001500~2700
Double control masterbatch: PE + antifogging agent, stabilizer, etc.; high insulation masterbatch; cooling masterbatch; rheological modified masterbatch3~845~75100~150270~360420~540900~1200900~1800
Carbon black masterbatch: PE, EVA, ABS, etc. + carbon black3~830~6090~150230~330380~500800~1000900~1500
Glass fiber (carbon fiber) reinforced modificationPP, PBT, ABS, as, PA6, PA66, PC, POM, PPS, pet, etc. + long fiber or short fiber or whisker5~1075~120180~270300~450450~700900~14001500~2400
PP, PBT, ABS, as, PA6, PA66, PC, POM, PPS, pet, etc. + carbon fiber5~1045~90150~240270~330380~500900~12001000~2100
Special materialsEVA hot melt adhesive, polyurethane3~845~9090~140150~230300~380700~800700~1500
Fluororubber, fluoroplastics3~830~6060~120150~230230~300600~750700~1400
Optical cable coating material, acetate fiber, PP cigarette filter material3~845~90150~230300~380450~6001200~15001500~2400
TPR shoe sole3~890~150230~300450~500700~8001300~17001500~3000
Luminescent plastics, antibacterial plastics, UV resistant plastics, PE crosslinkable tube materials3~860~90180~270330~450500~600900~12001000~1800
Various cable materialsHDPE, LDPE, LLDPE, MDPE insulation material and sheath material; PE radiation crosslinking cable material; PE silane crosslinking cable material3~845~90150~230270~380450~600750~10001000~1700
Flame retardant polyolefin cable material, PP cable material3~890~120180~270380~450600~7001100~14001200~1800
Low smoke and low halogen flame retardant PVC cable material5~1030~60120~180230~300380~500800~1000900~1500
Reactive extrusionPolyamide polycondensation, polyester melt polymerization, polyurethane addition polymerization, polycarbonate polycondensation, bulk continuous polymerization of POM1~230~50150~230300~380450~600750~900700~1500
Post treatment of exhaust devolatilizationChlorinated polypropylene, super absorbent resin, K-Resin, chlorosulfonated polyethylene, fluoro rubber, etc1~2Max75Max150Max300Max450Max900Max1500
powder coatingPolyester type, epoxy type, propyl ester type, polyurethane type, acrylate type, etc3~8150~230300~450600~7501000~12002100~23002200~4500
Grey Eagle - Hypersonic Bomber Mach 8 - 10, IO Aircraft www.ioaircraft.com
Length: 150'
Span: 71'
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle)
1 Air Breathing Aerospike
Fuel: Kero / Hydrogen
Payload: Up 36 2,000 LBS JDAM's, or 80,000 LBS
Range: 10,000nm + Aerial Refueling Capable
www.ioaircraft.com/hypersonic.php
-----------------------------
hypersonic bomber, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjetdefense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, air force of science and research,
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
The Asiel RF is our top of the line, flagship carbon racing frame. It is the result of 20 years of technological advancement, offering superior materials, manufacturing processes, and design. The Asiel RF is hand made with a tapered head tube/fork, BB30 bottom bracket (or Italian thread), and an integrated seat post. This makes for a no-compromises race frame that is unmatched in performance and is 20% lighter and 27% stiffer than the Asiel. A new paint scheme has also been developed to give this high caliber frame a unique and stunning look.
The current Prim range.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
NOTE -- HUGE (4.5 MB) image also available. This image could be nicely cropped.
Tarco Formulates a New Self-adhering Underlayment for Metal and Tile Roofing: PS200MU
PS200MU is a premium, high temperature, self-adhering, modified bituminous underlayment with non-abrasive polyolefinic upper surface with good walkability
LITTLE ROCK, ARKANSAS – Tarco today announced LeakBarrier PS200MU Ice and Water Armor, a self-adhesive, glass fiber reinforced, modified bituminous underlayment especially for metal roofing. It helps protect a building’s deck or internal structure against leaks caused by ice and water damming and wind-driven rain.
PS200MU is specially formulated for use in high temperature environments. The upper side is made of a nonabrasive polyolefinic film that has anti-skid properties for good walkability. Two key attributes of a metal roofing underlayment are that it slides under the metal roof without scratching it; and that it is tolerant of high temperatures often reached beneath a metal roof. PS200MU offers both of these features.
PS200MU is highly effective in critical roofing areas such as valleys, ridges, coping joints, chimneys, vents, dormers, skylights, and low-slope sections. While ideally suited for use under metal roofing, it is also an excellent choice as an underlayment for shingles, slate, and mechanically attached tiles.
The polymer-modified asphalt gives excellent pliability and the film surface is UV resistant. An anti-skid treatment allows for good walkability. This underlayment is exceptionally durable with high tensile and tear strengths. Glass fiber reinforcement imparts high dimensional stability.
It is a cost-effective sheet for clean, easy-to-handle, self-adhering applications. The split-back release film peels off for easy installation and handling and PS200MU adheres to a variety of substrates. The membrane lays flat and resists wrinkling for ease of application and a 60-day exposure allows for long term dry in. It provides instant watertight laps and self-seals around nails.
The SBS-based membrane is specially formulated to provide high-temperature stability to 250 degrees Fahrenheit, making it ideal for use as an underlayment in metal roofing applications. The high temperature stability of the PS200MU membrane makes it especially attractive for residential and commercial metal roofing applications, although it is also suitable for shingle, slate and tile.
Tarco’s family of LeakBarrier Ice and Water Armor membranes now includes three metal roofing underlayment products, including PS200MU, PS200HT and NR500HT.
All three products withstand high temperatures and they are nonabrasive and provide good walkability. The main difference is upper surface: PS200MU uses polyolefin and PS200HT uses polyester, while NR500HT is a premium 40 mil (1 mm) thick, non-reinforced roofing underlayment with an upper surface of cross-laminated polyethylene-based Valeron film.
PS200MU Meets ASTM D1970. It has Miami-Dade County Approval NOA No. 08-0804.10 and meets ICC-ES ESR-2116 as well as Florida Building Code FL 10450-R1.
It is listed under the UL Prepared Roofing File No. 16744. It is not for use in adhesive (foam) set tile applications and it is not recommended for extreme high temperature environments such as under copper or zinc metal roofing.
Each of the metal underlayment products is covered by a “Thirty Year Self Adhesive Metal and Tile Underlayment Material Warranty.” Coverage and conditions pertaining to coverage are detailed in the warranty, which is available on the Tarco Website.
“Tarco now manufactures three distinct underlayment products suitable for metal roofing and other high temperature environments,” says Steve Ratcliff, President of Tarco. “That means more choices for roofing contractors. Metal roofing projects are not all the same and contractors have different preferences. Between PS200MU and PS200HT and NR500HT roofing contractors can find exactly the right features in a peel-and-stick underlayment for metal roofing applications. Tarco is pleased to be in a position to provide these premium SBS-based underlayments to this fast-growing segment of the roofing industry.”
For more details, contact Tarco, One Information Way, Suite 225, Little Rock, AR 72202. Phone 501-945-4506, Toll Free 800-365-4506, Fax 501-945-7718. Visit Tarco on the Internet at www.tarcoroofing.com.
# # #
Tarco Offers 30-year Material Warranty on Three Self-adhering Metal and Tile Underlayments
LITTLE ROCK, ARKANSAS – Tarco today announced coverage of three products in its LeakBarrier family of premium underlayment products. The warranty is titled the “Thirty Year Self-Adhesive Metal and Tile Underlayment Material Warranty.”
Coverage and conditions pertaining to warranty coverage are detailed in the warranty, which is available on the Tarco Website. The warranty applies to any of Tarco’s three self-adhering, metal and tile roofing underlayment products, including PS200MU, PS200HT and NR500HT Ice and Water Armor.
Each of these underlayment products is specially formulated for use in high temperature environments. Their differences are as follows:
· PS200MU Ice and Water Armor is a self-adhesive, glass-fiber reinforced, modified bituminous underlayment with a nonabrasive polyolefinic film that has anti-skid properties for good walkability.
· PS200HT Ice and Water Armor is a self-adhesive, glass-fiber reinforced, modified bituminous underlayment with a polyester upper-side that provides good walkability and excellent tile foam attachment properties.
· NR500HT Ice and Water Armor is a premium 40 mil (1 mm) thick, non-reinforced, self-adhering roofing underlayment with an upper surface of cross-laminated polyethylene-based Valeron film, which also provides good walkability.
All three products withstand high temperatures and provide good walkability. Two key attributes of a metal roofing underlayment are that it slides under the metal roof without scratching it; and that it is tolerant of high temperatures often reached beneath a metal roof. All three of these products have these features, and so all three are suitable for use under metal as well as tile.
“The Thirty Year Material Warranty for these metal and tile roofing underlayment products reflects the application,” says Steve Ratcliff, President of Tarco. “Tarco has perfected its membrane formulations, product designs and manufacturing processes sufficiently so that it can offer these 30-year warranties with complete confidence.”
According to Ratcliff, metal or tile roofs typically have long service lives so there is an expectation that the underlayment also will last for decades. In these applications, the metal or tile serves as a primary roof, protecting the underlayment from physical damage, but metal and tile are not completely watertight. Hence, a watertight underlayment is necessary to protect the interior of the building from moisture penetration. “The two system components – primary roof and secondary water barrier -- complement each other perfectly,” concludes Ratcliff.
For more details, contact Tarco, One Information Way, Suite 225, Little Rock, AR 72202. Phone 501-945-4506, Toll Free 800-365-4506, Fax 501-945-7718. Visit Tarco on the Internet at www.tarcoroofing.com.
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
...from seashoretaffy.com
THE ACCIDENTAL TAFFY
Legend has it that Salt Water Taffy received its name by accident. A young candy merchant, opened a taffy stand on the first Atlantic City Boardwalk - then just two steps above sea level. One night a generous tide brought in a lively surf which sprayed sea foam over his establishment and dampened his stock of candy. The next morning, the merchant was dismayed to find his merchandise wet and responded to a girl's request for taffy with a sarcastic but witty, "you mean Salt Water Taffy." The name, stuck!
FROM FISH MERCHANT TO CANDY MAKER
At the same time Joseph Fralinger, a former glassblower and fish merchant, opened a retail store on the Boardwalk. Within a year, Fralinger had added a taffy concession and spent the winter perfecting the Salt Water Taffy formula, first using molasses, then chocolate and vanilla, eventually reaching 25 flavors
As Fralinger's grew to six locations, he decided that Salt Water Taffy should return home with resort visitors. Using experience from his fish merchant days, he packed one pound oyster boxes with Salt Water Taffy, making it the first "Atlantic City Souvenir." The one pound box still remains the most popular souvenir almost 125 years later. By 1899 Salt Water Taffy had become a household word across America!
PULLING THE HISTORY TOGETHER
Meanwhile, confectioner Enoch James and his sons claim to have been making Salt Water Taffy before they introduced it on the Atlantic City Boardwalk in the 1880's. After many years of working for large candy companies throughout the country, Mr. James brought his family to Atlantic City to sell their "original" Salt Water Taffy.
Enoch James developed a high quality recipe that would not pull out one's teeth. He also eliminated the stickiness that made the taffy and its wrapper inseparable. The result was a smooth, rich, wholesome taffy available in a variety of flavors and a new "Cut-to-fit-the-mouth" shape. The James' product line soon extended to chocolate dipped Salt Water Taffy, filled centers, chocolate taffy pops, macaroons and boardwalk fudge. Enoch James' packaged his confections in seashore novelties such as the "barrel" and "satchel" that are still popular today.
COOK, PULL, CUT AND WRAP -
MAKING SALT WATER TAFFY!
In the 1880's, Salt Water Taffy was cooked in copper kettles over open coal fires, cooled on marble slabs, and pulled on a large hook on the wall. Pulling the taffy was designed to add air to the corn syrup and sugar confection. By draping 10 to 25 pounds of cooled taffy over the hook and then pulling it away from the hook, the taffy stretched. When the taffy reached five or six feet in length, the puller looped the taffy back over the hook, folding it onto itself and trapping air between the two lengths.
An accomplished taffy puller would work quickly and listen for the familiar swish sound, then the smack or slap sound of the two lengths as they joined as one. This process of aeration helped to keep the taffy soft and prevented stickiness. The pulled taffy was then shaped by hand rolling it on a marble or wooden table into ¼ inch diameter snake. It was then cut to the proper length with scissors. And finally, the taffy was wrapped in a pre-cut piece of paper with a twist at both ends. All of this was done by hand and usually within the sight of Boardwalk strollers who were eager for entertainment.
By 1907, the James' family had updated the manufacturing process to include taffy wrapping machines, the first candy pulling machines, electric tempering ovens, and vacuum cooking kettles. These machines made great strides for the taffy manufacturing process and are the basis of how taffy is still made today.
*NOT MY PICTURE!*
Does anyone know how Blythe's are manufactured? Like, what process is used - which materials?
I only ask as I am planning to write a little short story about a Blythe doll, and the opening chapter is going to be about the manufacturing process. I'm in no way a writer - it's just something that has always interested me, and I thought what better thing to write about than what I know best - blythe! Though admittedly I'm having problems with the making of them... all I seem to have found is how Barbies are made and I gather Blythes are made a bit differently?
Any help will be greatly appreciated! Thank you so much!
4A Stepper Driver was manufactured for stepper motors used in CNC milling machine LILDIYCNC.
You can see the manufacturing process of this driver and have access to the entire documentation at the School of Architecture and Design PUCV website:
wiki.ead.pucv.cl/index.php/Desarrollo_Electr%C3%B3nica_DI...
or the project gallery on Flickr:
www.flickr.com/photos/111210627@N08/collections/721576486...
You can also see the process of construction of the machine in the following video:
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
The Green Corridor Farmer's Market and neighboring community garden are the anchor of a 3.5-mile initiative in Milwaukee, WI, that is seeing implementation of stormwater management practices and sustainable products and technologies.
The farmer’s market plaza, designed and spearheaded by Bryan Simon of Simon Landscape Co., is aesthetically unique, with the pavers used to visually define the space. The 66 10x10 stalls were created using CalStar Autumn blend pavers, each bordered by an 8-inch gray soldier course. CalStar pavers in tumbled natural, arranged in a 90-degree herringbone pattern, create the 8-foot-wide aisles. The look connects to the community garden via winding pathways made from CalStar
permeable pavers.
CalStar’s manufacturing process incorporates 37% local recycled material as the binder
and avoids the energy-intensive kiln firing required for clay pavers and the use of
Portland cement contained in concrete pavers, resulting in 84% less CO2 emitted and up
to 81% less energy used versus the manufacture of conventional pavers.
The plaza is designed to direct water flow in one direction, where it is then captured, filtered, and
recirculated through a 5,000-gallon AquaBlox rainwater harvesting system. The rainwater
collected will eventually be employed for the community garden, which includes an
amphitheater, pergola-covered seating areas, interactive water feature, and in-ground
garden plots and raised beds for rental.
Last Idiolecture of 2006:
“But that’s the direction things are going in: to each his own Free-Press, his own pop music, his own pad, etc. And in all that, centralism like we’ve never seen before.”
–Félix Guattari, The Anti-Oedipus Papers, ca. 1970-1971
“A worker who buys a small movie camera or a still camera and films his vacation is making a political film. That’s what I call a political film. That’s the only film he can make. It so happens that he’s allowed to film his vacation, but strangely enough, he’s not allowed to film his work.”
–Jean-Luc Godard, Interview 1972
“But the essential usage of the image recorder seems to me to be elsewhere, in its private use for the manufacture of one's own gaze upon the world, and first and foremost upon oneself. Pleasure tied to the self-directed gaze: Narcissus after Echo. Eroticism as an appropriation of the body.
The new instrument thus emerging will find its real usage only in the production, by the consumer himself, of the final object, the movie made from virgin film. The consumer, completing the mutation that began with the tape recorder and photography, will thus become a producer and will derive at least as much of his satisfaction from the manufacturing process itself as from the object he produces. He will institute the spectacle of himself as the supreme usage.”
–Jacques Attali, Noise 1977/1985
MAC posing in front of...
TimeWalker Chronograph DLC and Hugh Jackman.
The TimeWalker collection celebrates its 10th anniversary
With the debut of the TimeWalker Collection in 2004, Montblanc launched a new family of watches and simultaneously defined a new design vocabulary. Its salient features include architectonic lines, 43-millimetre case, narrow bezel and elegantly skeletonised horns, plus a large, planar dial with Arabic numerals in a distinctive, clearly contoured typography and characteristic lancet-shaped hands. This innovative look, lost none of its appeal during the preceding decade, combining masculine technology with sporty elegance and has made the TimeWalker line one of Montblanc’s most successful watch collections. Now Montblanc kicks off the second decade of this iconographic watch line with the presentation of the new TimeWalker Extreme Chronograph DLC.
“Diamond like carbon”
A “DLC” (for the “diamond-like carbon” material) treatment ensures that the toughness of the stainless steel case’s surface has been increased to the utmost. Miniscule glass spherules are blasted under high pressure to give the steel a microscopic texture to which the DLC coating can almost inseparably adhere, thus producing a fine matte finish on the surface. The same process is used on the other stainless steel components: i.e. the readily grasped crown, the chronograph’s buttons, the midnight-black pronged buckle, and the screwed back with its pane of sapphire crystal. The colour of the diamond-like carbon coating is described as “Black 4”, which stands for “very black”. The window in the case back offers a clear view of the automatic mechanical Calibre MB 4810/507. Equipped with an integrated chronograph function, this calibre is manufactured in accord with all the rules that govern the art of Swiss watchmaking. It ticks at a steady pace of 28,800 semi-oscillations per hour (4 Hz), so the chronograph’s elapsed-second hand advances in eighth-of-a-second increments – the exact measurement of brief intervals.
MB_TimeWalker Extreme_111684_front
A black stage set
The black of the new TimeWalker chronograph´s case continues on the large planar dial, which expresses the artistry of the cadraniers, as dial-makers are known in specialized horological language. The various displays of this watch’s face are presented on different levels. The middle stratum, which covers the centre and the periphery of the dial, is embellished with a fine embossed pattern of circular striations. The periphery bears the seconds scale for the chronograph’s slender elapsed-seconds hand and is subdivided into readily legible quarter-of-a-second increments to match the 4 Hz pace of the movement. The three subdials – one for the continually running second-hand and two for the chronograph’s elapsed-time counters – are positioned at the “6”, the “9” and the “12”. The matte black hour-circle without textural embellishment is positioned slightly above the middle plane and bears strongly luminescent Superluminova numerals in the patented TimeWalker typography, along with equally clearly legible double indices. Wholly dedicated to time measurement, this no-frills landscape is an excellent example of attention to legibility. It’s accentuated by a set of anthracite-grey ruthenium-coloured hands that clearly contrast with the midnightblack background. Five of the hands have the typical lancet shape and are inset with Superluminova; the chronograph’s elapsed-seconds hand is counterweighted and culminates in a red tip. The final display is the date window at “4:30”, where the current date appears against a black background in white numerals in the TimeWalker typography.
Innovative materials for the Wrist
Montblanc is living up to the preservation of the traditional craftsmanship values following the principles of the Swiss haute horlogerie and at the same time striving for innovative technologies and concepts. This quest for performance and innovation is reflected not only in unprecedented developments in the watchmaking world but as well in the materials used. The black wristband of the TimeWalker Extreme Chronograph DLC likewise makes an exceptionally technical and sportily elegant impression. It deserves special attention because of the complexity of its material combination and manufacturing process. The strap’s inlay is made of black “Vulcarboné” cautchouc which gives the wristband extreme strength and flexibility. Breakage-resistant twine in a colour that matches the leather’s hue is used to sew the cowhide to the upper surface of the rubber “soul”.
MB_TimeWalker_Extreme_
A laborious process textures the leather and simultaneously impregnates it with a treatment that doesn’t merely coat the leather, but conjoins with it and increases its structural strength – this innovative leather treatment leads to high-performance material with special shielding properties providing extra protection for the leather against abrasion, water, and fire. It is used for various elements through the different Montblanc product categories – a further proof that the complexity as well as the innovation and performance demands of Montblanc`s wristwatches are not limited solely to their movements, but also include other components such as wristbands, case construction and dials. This model’s high-tech wristband is secured by a black stainless steel pronged buckle which, like the other stainless steel parts, is micro-bead blasted and coated with a layer of Black 4 DLC.
The new Montblanc TimeWalker Extreme Chronograph DLC will become available in autumn 2014.
Crafted for New Heights
Yorkdale Mall signage.
Neat little Hemingray No 11 insulator. This is an early exchange pony style insulator that was replaced by the CD 113 Hemingray No 12, and the production of these was fairly slimmer than the production of the number 12's. I hear these are usually found in average condition with chipping on the base and such, but this one is one of the best I've seen so far. There's a unique feature on one of the drip points that I thought was a chip at first. Turns out that the empty spot is an opening into an air bubble inside the base of the insulator, must've been a small error in the manufacturing process. I've been trying to get my hands on one of these for awhile, as I've always liked early Hemingray insulators, and I finally was able to come across one.
(F-Skirt) HEMINGRAY/ No 11 (R-Skirt) PATENT MAY 2 1893 SDP
Index #010
In 1720 John Webster owned two mills in Perry Barr where he began to produce wire. The business rapidly expanded, and in 1752 Webster’s son, Joseph Webster I (1720-1780) leased Penns Mill at Walmley. Over the next 100 years manufacturing centred at Penns and the neighbouring forge at Plants Brook, Minworth. The workforce had expanded rapidly, and many skilled workers relocated from Birmingham. By the time Joseph Webster III inherited the business in 1801, it included two wire mills at Perry Barr, Penns Mill, Hints Forge, Plants Brook Iron Works, an office in Digbeth and a warehouse in Mount Street central Birmingham. In 1822 Joseph III acquired Killamarsh Forge and Rolling Mills in Derbyshire. From 1824 onwards, Killamarsh became the main supply source for Penns. During his time managing the company, Joseph also built cottages for his workforce as well as providing allotment gardens and sports facilities.
In 1851 James Horsfall established a steam powered wire mill at Hay Mills on the River Cole. Affectionally known as The Works, the Hay Mills site has remained the centre of the family business for over 170 years. 100 years after James, Colonel John Henry Coldwell-Horsfall modernised The Works after the two world wars and built a wire factory at Three Rivers in Quebec, Canada.
Arthur Lockwood’s watercolours of Webster and Horsfall and Latch and Batchelor offer a unique insight into one of Birmingham’s oldest surviving manufacturing companies. He had unprecedented access in 1997 and created a comprehensive record of each stage of the manufacturing process. He chose to document the factory during operating hours and therefore captured the company’s skilled workforce creating a fascinating contrast between people and machine. Many of the men in the images have been identified. Arthur created over 40 detailed watercolours and sketches. In this exhibition two rotations of images will be shown. A second display of Arthur’s watercolours will be shown from the 20th July 2020.
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Silberline is a family owned business founded in the USA in 1945 which is now recognised as a major world leader in the manufacture and supply of aluminum effect pigments. The company has manufacturing, technical and research centres in Europe, Asia and North America. The European manufacturing headquarters are based in Leven, Fife.
Colt was approached for recommendations on improving the year round working environment and fire protection within two main production bays during ongoing improvements to the manufacturing process and buildings at the Leven plant.
Colt provided an integrated system of Colt WCO ventilators to provide natural, weathered extract ventilation, and ColtAir Inflow Units with filters and hot water heating coils to provide warm air during the winter months. Colt Seefire ventilators have been installed for smoke ventilation. The work is being carried out in two phases, with the second phase being installed in early 2014.
Contact: Jim Connor
Phone: +44 7767 230372
Email: jim.connor@uk.coltgroup.com
040
Friday, December 8th, 2017
Fortune Global Forum 2017
Guangzhou, China
8:00 AMâ9:20 AM
SMART MANUFACTURING AND THE INTERNET OF THINGS
Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a âfactory of the futureâ continues to evolve, how are companies incorporating âsmartâ and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nationâs âMade in China 2025â strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?
Hosted by The City of Guangzhou
Börje Ekholm, President and CEO, Ericsson Group
Till Reuter, Chief Executive Officer, KUKA
Tony Tan, Partner, Shanghai Office, McKinsey & Company
Wang Wenyin, Chairman, Amer International Group
Shoei Yamana, President and CEO, Konica Minolta
Zhang Jing, Founder and Chairman, Cedar Holdings Group
Moderator: Adam Lashinsky, Fortune
Photograph by Vivek Prakash/Fortune
040
Friday, December 8th, 2017
Fortune Global Forum 2017
Guangzhou, China
8:00 AM–9:20 AM
SMART MANUFACTURING AND THE INTERNET OF THINGS
Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a “factory of the future” continues to evolve, how are companies incorporating “smart” and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nation’s “Made in China 2025” strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?
Hosted by The City of Guangzhou
Börje Ekholm, President and CEO, Ericsson Group
Till Reuter, Chief Executive Officer, KUKA
Tony Tan, Partner, Shanghai Office, McKinsey & Company
Wang Wenyin, Chairman, Amer International Group
Shoei Yamana, President and CEO, Konica Minolta
Zhang Jing, Founder and Chairman, Cedar Holdings Group
Moderator: Adam Lashinsky, Fortune
Photograph by Vivek Prakash/Fortune
From 1972, missing 1. It's fairly dirty, with a number of vertical lines running through it. I don't think it's a result of mistreatment by the previous owner, I suspect it was dirty equipment in the manufacturing process, and it was captured by the waxy coating MB used back then.
🎯🎯BULK BAG WITH LINERS
✅These particular bulk big bags come with pre-installed PE liners (Poly liners) that are affixed during the manufacturing process. These FIBCs with liners can contain dry bulk materials such as fertilizer, animal feed, and seeds, increasing protection against sifting, moisture, and other contaminants.
✅EPP’s durable, reusable big bags with liners offer both an additional layer of our high-quality material and long-term cost and time savings.
✅Jumbo Bags with Liners are offered in a variety of sizes and constructions. The most common type is spout top and discharge bottom big bags with 4 lifting loops. For custom sizes and design requests, please contact our product specialists at +84986002888.
==
🎯🎯BAO JUMBO CÓ LÓT TRONG LINER
✅Kiểu bao bì jumbo đặc biệt này này đi kèm với túi lót trong PE (PE liner) được lồng sẵn vào bên trong bao khi sản xuất. Những bao FIBC lồng PE này có thể chứa các vật liệu dạng khối và bột khô như phân bón, thức ăn gia súc và hạt giống, tăng khả năng bảo vệ khỏi hơi ẩm và các chất gây ô nhiễm khác.
✅Bao jumbo lồng túi lót PE bền chắc và có thể tái sử dụng của EPP cung cấp thêm một lớp bảo vệ chất lượng cao vừa giúp tiết kiệm thời gian và chi phí lâu dài cho quý khách hàng.
✅Bao Jumbo có lót liner được sản xuất với nhiều kích cỡ và cấu tạo khác nhau. Loại bao thông dụng nhất là dạng bao jumbo ống nạp đáy xả với 4 đai nâng. Đối với kích thước tùy chỉnh và yêu cầu thiết kế, vui lòng liên hệ với các chuyên gia sản phẩm của chúng tôi tại +84986002888.
==
🌐Website:https://epp.vn// eppvietnam.trustpass.alibaba.com/
📲Ms. Jennifer: +84 962 055 998 - sales02@epp.vn
📲Ms. Charlie: +84 986 002 888 - sales@epp.vn
#HighQualityBulkaBag #PPWovenJumboSuperSacks #SlingBigBagForCement #VentedJumboSacks #perforatedbulkbags #perforatedlogbags #intermediatedcontainerbag #Tontotebag #FIBCbigtotebag #HighQuality1TonToteBags #2tontotebags #pharmaceuticalindustrybigbag #HighQualityJumboBag #polypropylenebigbag #PPwovenbigbag #bulkbigbag #bigbag1000kg #bigbagPolypropylene #1000kgfibcbag #FIBCcementbags #Meshjumbobags #cementcontainerbag #Vietnamesecontainerbag #toteFIBCbag #TypeCbigbag #FIBCbagsforflammablepowders #jumbobagvietnam #bigbag700kg #wovenbulkbagVietnam #tonneBulkaBags #breathablebulkabags1tonne #CementJumboBags #BigVentedLogBag #1tontotebagsametricbag #groundablebulkbag #TypeCjumbobags
"Urban Green: Bamboo Bicycle" tackles the construction of biodegradable bamboo bicycles. Despite their environmentally friendly reputation, their construction is a time-consuming process using synthetic sealants and toxic paints. To address these problems, the students developed a new manufacturing process that replaces the manual gluing and sanding of bamboo joints with faster steps. This is achieved through a combination of 3D printing and injection molding. Environmentally friendly materials such as bio-resin lignin and resin are used.
Winner of a YOUNG PROFESSIONALS AWARD of Distinction in the u19-create your world category of the Prix Ars Electronica 2021.
Credit: Angelina Djukic, Lukas Gabesam, Japleen Khurana, Alina Schweighofer, Euregio HTBLVA Ferlach
JACKSONVILLE, Fla. (May 10, 2017) – Hans-Mill Corporation, one of the nation’s leading manufacturers of metal and plastic household products, will soon open a state-of-the-art manufacturing center near JAXPORT’s North Jacksonville marine terminals. The 121,000-square-foot facility will be used for manufacturing, assembling and distributing stainless steel trash cans and plastic household products sold at major retailers around the world.
Hans-Mill will use JAXPORT to import materials used in its manufacturing process from Asia, as well as for the import of finished goods for U.S. distribution. In addition, the company has been granted permission to operate within JAXPORT’s Foreign Trade Zone No. 64. The facility, which already serves as the company’s headquarters, represents an $11 million investment in Northeast Florida and creates 23 new, direct jobs.
“The efficiencies Northeast Florida provides have allowed us to bring some of the manufacturing that is traditionally done overseas back to the United States,” said Kenneth Ubillus, Hans-Mill Director of Operations. “We felt welcome in Jacksonville from the very beginning and look forward to being a visible part of this community.”
“Hans-Mill’s decision to invest here highlights the many advantages we offer the industry,” said Eric Green, JAXPORT interim CEO. “Excellent ocean service options from Asia, cost-effective transportation, 60 million plus consumers nearby and a business-friendly environment, all continue to attract manufacturing here.”
Hans-Mill joins other household names, including Michaels Stores, Inc., Coach, Inc. and Bacardi Limited, in taking advantage of FTZ No. 64’s cost savings and streamlined Customs processes.
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.