View allAll Photos Tagged Manufacturing_process
Mach 10 Hypersonic Plane - Turbine Based Combined Cycle - IO Aircraft
Drew Blair
www.linkedin.com/in/drew-b-25485312/
20 Passengers plus 3 crew
10,000 mile range
Mach 10 Cruise
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
In 1880 having been taught the use of simple lathes and machinery by his uncle,
and encouraged by William Morris, William Arthur Smith Benson began metalwork production
in Fulham, London. As his business grew Benson closely followed developments in technology, mastering all the processes of casting, turning, folding and riveting many variations of interchangeable components. He opened a showroom in Bond Street in 1887 displaying
light fittings, fireplace accessories, plant stands and hollow-ware, in silver, copper, brass,
iron and polished steel, patenting many of his popular designs to protect them from the
array of sub-standard copies that flooded the market.
WAS Benson was at the forefront of electric installation in homes all over Britain, advising on suitable lighting schemes and installation. In 1893 he electrified Philip Webb’s latest architectural commission, Standen, near East Grinstead, Sussex, now owned by the National Trust.
His metalwork and lighting designs reached iconic status, sold in galleries throughout Europe,
and in 1896 when William Morris died it was Benson with a colleague who bought Morris & Co and ran it alongside his own company until he resigned in 1917.
Benson attracted much acclaim for his metalwork designs and manufacturing processes.
The Studio Magazine of Decorative Arts, The Magazine of Art, and Herman Muthesius in
Das Englische Haus, were among the many who applauded his innovations.
Nation : Czechoslovakia
Pavilion Name : Czechoslovakia Pavilion
Subject : Handicraft
Island : Ile Notre Dame
Description : 18th Century Bohemian crystal showcased in the Hall of Traditions.
Photographer's Notes : 18th & early 19th century crystal.
General Description:
The two storey Czechoslovakia Pavilion consisted of two buildings linked by an entrance hall. A simple, clear architectural strategy provided a harmonious backdrop for the exhibition's exciting displays. The first building featured two levels of exhibition space with a central courtyard which drew some of the largest crowds at Expo. Czechoslovakian art, technology and industry were presented to visitors through an attractive mixture of light, sound and video. The Hall of Centuries exhibit showcased texts and artifacts from ancient royalty. In the Hall of Tradition, visitors could find old and new glass and crystal and learn about their manufacturing processes. The World of Children enchanted the pavilion's younger visitors featuring puppet shows performing traditional tales. The second building featured four restaurants; Le Bistro served light snacks; the Bratislava Inn was a wine tavern; the Castle Restaurant featured fine Czechoslovakian cuisine; and the Prague was home to the famous pilsener Urquell beer. Offices, a gift shop and a theatre could also be found in this second Czechoslovakian building.
The FSU cameras are ubiquitous in Europe and much of the rest of the world. They are just now, (last 10 years or so,) becoming appreciated in The United States. I have several of them, (along with Canon, Leica, Nikon and other cameras from the same era.)
It's possible to argue aesthetics, build quality, originality, innovation and other aspects of all the cameras from the 1930's through the 1960's. People have their favorites and it's a tough proposition to sway matters of the heart - or mind.
This Zorki 3M has a feature set that is a standout amongst the cameras of the golden age. It also lacks two elements that would make it one of the most desirable of the breed: 1,] a self-timer and 2,] flash synch. In this regard both the Zorki 4 and Zorki 6 are more desirable.
However compared to such cameras as the Leica IIIf, it has several notable improvements. It has a single, and very large viewfinder/rangefinder window, (1:1 view,) which has a built in diopter adjustment. The back is removable for easy film loading and is secured by two, (YES TWO,) fasteners that securely lock it in place without the need for light seals. All shutter speeds are on a single dial located on the top deck - slow shutter speeds are marked in red.
The fit and finish of the Zorki 3M seems to be just a smidgen better than the Zorki 3. The engraving is sharp and precise and the knurling is comfortable and sharp enough for a good grip without producing "Leica callouses," from very sharp points.The "balancing foot" doubles as a tripod socket and is located at the center of mass - not off to one side.
The film rails and guides are highly polished, as is the nicely enameled pressure plate. The spool is easily removable and the sprocket dogs are precise without being razor sharp. The screws and screw heads are of a sensible size and strength, (nicely polished too.)
The Jupiter 8 lens is well known as among the best of the FSU glass. This 1955 camera camera came with this 1956 lens - not an unusual situation given the manufacturing processes used in the former Soviet Union.
When I grab a preferred rangefinder camera it is either this one or a Canon P. Of course it's the view through the finder that tips the scales.
This particular Zorki 3M is in exceptional condition and as good as it can be, (not like several of my others.) When built as designed and assembled correctly these are tough and competent cameras. It has film in it and we're going for a walk tomorrow.
Saw this old canal bridge over a river in Coventry. Says Horseley Ironworks on it.
Vignoles Bridge is a Scheduled Ancient Monument in the City of Coventry in the West Midlands of England. The bridge is a single-span iron footbridge over the River Sherbourne in the Spon End area, just to the west of Coventry city centre and 100 metres (330 ft) west-north-west of Sherbourne House (an office building in use by Coventry City Council).
Thomas Telford developed the first techniques for maximising the potential of cast iron as a construction material, realising that the lighter frames could use flatter angles and less substantial foundations than timber bridges while preserving the single span, and thus the navigability of the waterways they cross. English Heritage, which is responsible for scheduling ancient monuments in England, considers all examples of iron bridges "which retain significant original fabric" to be of importance. Vignoles Bridge is of particular interest because it "survives well and retains its original features thus demonstrating its engineering design and reflecting the manufacturing process", despite having been moved from its original site.
The bridge originally occupied a site on the Oxford Canal (which runs from Coventry to Oxford). It is cast iron and was built at Horseley Iron Works—whose name is cast into the span of the bridge on one side—in Tipton around 1835. The bridge, which was designed by Charles Vignoles (after whom it is named), was moved to its current site in 1969. The walkway is covered with tarmac and has cast iron balustrades either side, while the abutments connecting the bridge to the river bank are brick.
Map the Miner, also known as Map Kernow or the Son of Cornwall, is a 7-metre (23 ft) statue commemorating the Cornish mining history of the town of Kapunda in South Australia. Built by Ben van Zetten, the statue stands to at the southern entrance to the town, and is regarded as one of Australia's Big Things. The statue was destroyed by fire in 2006, but it was rebuilt and rededicated 12 months later.
The Kapunda copper mine operated from 1844 to 1878, and was the first metal mine in Australia to achieve success. It produced over £1 million worth of copper ore, and relied heavily on Cornish immigrants for its operation. In 1986 local resident John Davidson suggested that a memorial be built to commemorate the influence that the Cornish miners had on Kapunda's (and South Australia's) development, and he sought funding through South Australia's sesquicentenary celebrations. Although funding was not forthcoming, the process brought him into contact with Ben van Zetten, a Dutch artist living in a nearby town. Van Zetten agreed to design and build the work, so Davidson turned to the local Rotary Club for support, who then organised a successful community fundraising campaign.
Located on Gawler Road to the south of the town, the statue took three months to build and was opened during Australia's Bicentenary celebrations by the South Australian Minister for Mines and Energy, Ron Payne. The ceremony included a speech by the Cornish Association's Ron Daw, and Trelawny was played while participants "partied on saffron cake and clotted cream".
The original statue stood until 1 June 2006 when it was destroyed. A local teenager poured Eranol (molecular iodine) around the statue, splashing some of the accelerant on the statue's right leg. Although his intent was to take a photo of the statue surrounded by a "ring of fire", and he did not intend to cause significant harm to the work, the resulting fire caused A$95,000 worth of damage and the statue had to be demolished.
Fortunately the statue was insured for A$140,000, and the original artist—Ben van Zetten with help from artist Lawry Love Grima—agreed to rebuild the work. The new statue was rededicated on the site of the old on 3 June 2007, just over a year after the original was destroyed. The replacement Map the Miner was said to be "much more resistant to damage" than the original, and the artist stated that the new version looked "far better than before", as the manufacturing process allowed the bronze colouring to be more apparent.
The core of the original statue was a steel frame that was attached to a concrete base. The artist then layered fiberglass over the frame, using "freehand grinding and chipping" techniques to form the final texture. The process took approximately three months. The statue stood 7 metres (23 ft) tall and depicted a "mid-nineteenth century" miner, wearing a felt hat and bearing a mallet in one hand and a pick over his shoulder. A candle was attached to his hat, and spare candles were worn around his neck. The new statue takes the same form, but unlike the original cold cast bronze was employed in the construction.
The sculptor Kai Nielsen visited Kähler for the first time in 1921. Only three years before his death.
During those three years, he was very productive, but many of his works were discarded due to his extreme self-criticism. His ambition was to achieve broad reach. He would rather sell his works and produce thousands of copies than have them on display in a museum.
He produced a number of small figures, which were copies of his larger sculptures in order to disseminate knowledge of his art. This was also a good idea in terms of his earnings.
Kai Nielsen teamed with Thirslund and organised a large production of figures in 1922. These figures were made in old bronze moulds, which had previously been used to cast bronze sculptures.
The names of these figures were just as creative as the manufacturing process: ”Dovendyret”, ”Susanne i badet”, ”Prinsessen på ærten”, ”Eva på æblet”, ”Nina på kuglen” and ”Globetrotteren”, ("Sloth", "Susanna in the bath", "Princess and the Pea", "Eve at the apple", "Nina on the ball" and "Globetrotting") just to mention a few.
The figures became very popular in Denmark and abroad. After a trip to Denmark, a dealer brought ”Prinsessen på ærten” (Princess and the Pea) back with him to San Francisco and put it on display at his shop. However, a US women’s organisation was strongly opposed to ”Princess and the Pea” as they believed that the figure thrust her abdomen forward.
Even though Kai Nielsen’s objective was to bring art to the people, the question is whether he was actually known for this work. Most people will probably remember him for his large sculptures such as ”Vandmoderen” (Water Mother), which is located in the winter garden at the Glyptothek in Copenhagen.
With thanks to:
Shimano has released only 1000 of these sets to North America. If you are a collector or someone that just likes the best, than this is for you. This group is almost too beautiful to put on your bike.
The Dura-Ace name speaks for itself. You can feel the quality and see the attention to detail when you hold the parts. It is quality that has made Dura-Ace successful for 25 years.
The shifts are very fast and accurate with a smooth action. The refined dual pivot brakes stop on a dime even in wet conditions. The bearings of the bottom bracket and hubs are smooth. The new SPDR pedal locks your foot to the pedal better than anything we have tried.
The components are based on the 1999 Dura-Ace 7700 series components, but there are significant differences. Component surfaces have been hand polished to a mirror like finish and more titanium hardware is used throughout the group. Each components is also identified with a special 25th Anniversary emblem. Detailed specifications are provided with the group.
The components are packaged in ready-to-display condition in a handsome aluminum presentation case which also provides ample protection for long term storage. The package also includes a book which details the history of the group, briefly explains the manufacturing process, and provides comments from the people who have been closely involved with Dura-Ace over the years.
When Dura-Ace first appeared in Europe, cycling enthusiasts thought there was little chance a Japanese component maker could make inroads into the conservative and tradition-bound sport of professional bicycle racing. Much to everyone’s surprise, Shimano’s commitment to quality, innovative engineering, and attention to the needs of racing cyclists resulted in Dura-Ace becoming a very popular and well respected component group. It is estimated that more than 60 percent of high-end road racers are now riding Dura-Ace.
The dependability and functionality of the components are integral to the performance of the racing bicycle and the athlete riding it. Dura-Ace is designed to create a highly efficient link between the racer and the bicycle. It’s an interface that allows racing cyclists to concentrate more on the race, and less on controlling the bicycle. As a result, Dura-Ace is now recognized by road racers and cycling enthusiasts around the world as the performance standard for racing components.
A team of Central Oregon high school students led by an Oregon State University – Cascades computer science junior Andras Mihaly are building sensors that Oregon firms can use to advance manufacturing processes and extend the life of their equipment. The project is a partnership of the OSU-Cascades Innovation Co-Lab, Oregon Manufacturing Extension Partnership, Central Oregon STEM Hub and Oregon Department of Education CTE program. Photos by Joe Kline.
2Roses world-class inventory management system ensures our Just-In-Time manufacturing process meets global demand for stuff.
If you’re in the market for firefighting gear and equipment, you know that there are plenty of options out there. However, if you want products that are as tough and capable as the men and women using them, there’s only one choice: Safety2Go. We make the toughest firefighting gear on the market, because we know that performance matters when lives are on the line.
What makes Safety2Go’s firefighting equipment different from that of our competitors? First off, all of our products are made in the United States, from US-made materials. Our facility is ISO-9001:2008 certified, meaning our quality and manufacturing process is of the highest grade possible. When you buy from Safety2Go, you know you’re getting the best in workmanship and material.
Every product we make is made from the best seatbelt-quality nylon, rated for up to 6,000 pounds of force. Our material is tested regularly for abrasion and flame resistance, and our manufacturing systems are calibrated weekly to ensure every piece of gear meets our exacting standards. And each piece of new gear is hand-inspected for quality, so that nothing slips through the cracks.
The firefighters and rescue workers who use our products have nothing but great things to say about them. We frequently hear that the durability of our firefighting gear is beyond anyone’s expectations – some have even said that it’s “fireman-proof,” or that the bags will last longer than the tools they’re used to carry. And if you don’t believe us, you can see for yourself just how tough our stuff is.
If that sounds like the kind of durability and performance that your fire department needs, then Safety2Go is your only choice. We’re focused on quality and safety above all else, and we know that the departments that buy our products are too.
If you want to learn more about the different products we offer and how your fire fighters can benefit from our firefighting gear, take a look at our website or just contact one of our representatives today. We’d be honored to help you find the right gear for your needs.
For more information
On Firefighter Equipment
Please visit
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Here at Kids Kicks we simply adore Mini Melissa's shoes. Made in Brazil from 100% recyclable, non-toxic PVC known as Melflex, which brings comfort and durability to every pair of Melissa's footwear, what's not to love? Using environmentally friendly manufacturing processes, all shoes are vegan-friendly and cruelty-free.For more information visit : kidskicks.com.au/collections/mini-melissa
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
»You & Me« from the Scrappies series - cast in 925 Sterling silver.
The body parts of the Scrappies are inspired by everything that can be found in a scrapyard: Old bolts and nuts, rusty coils, pipes, parts of ball bearings, tin cans, and more.
The figurines are cast in minute detail, including "rust holes" and traces of an alleged "welding". The scrap metal look gives the characters their own special, irresistible charm.
Each of the pendants is individually and uniquely created in a complex, novel manufacturing process:
It all begins with a digital 3D design which is then used to build a wax model. The wax model is created layer by layer on a special 3D wax printer. The wax model is used to produce a negative, heat-resistant shell around the wax.
Heat is applied to the outer shell such that the wax melts out and leaves room for liquid silver to be poured in. Finally, the shell has to be destroyed to take the finished object out.
More at www.indiegogo.com/you-n-me
Funding provided by DOE's Competitiveness Improvement Project and technical support from the National Renewable Energy Laboratory were key to enabling Pika Energy of Westbrook, Maine, to develop and test its innovative manufacturing process that reduced the end-user cost of its wind turbine by more than $3,000. (Photo from Pika Energy)
Jelly Belly Candy Company, formerly known as Herman Goelitz Candy Company and Goelitz Confectionery Company, manufactures Jelly Belly jelly beans and other candy. It is based in Fairfield, California, with a second manufacturing facility in North Chicago, Illinois and a distribution center in Pleasant Prairie, Wisconsin. In October 2008, the company opened a 50,000 sq ft (4,645 m2) manufacturing plant in Rayong, Thailand where it produces confectionery for the international market.
The company's signature product, the Jelly Belly jelly bean, comes in more than 50 varieties, ranging from traditional flavors like orange, lemon, lime, and cherry, to more exotic ones like cinnamon, pomegranate, cappuccino, buttered popcorn, and chili-mango.
Jelly Belly Candy Company manufactures numerous specialty Jelly Belly jelly beans with licensed products like Tabasco sauce and uncommon candy tastes like egg nog and pancakes with maple syrup. A few flavors, like lychee and green tea, are sold only in markets outside the United States.
Several flavors have been based on popular alcoholic beverages, beginning with Mai Tai in 1977. Over the years, new additions have included blackberry brandy (now discontinued), strawberry daiquiri, margarita, mojito, and piña colada. Draft beer, a flavor inspired by Hefeweizen ale, was introduced in 2014. All such flavors are entirely alcohol-free.
"Bertie Bott's Every Flavour Beans" were inspired by the Harry Potter book series and featured intentionally gruesome flavors such as "Vomit", "Earwax", "Skunk Spray", and "Rotten Egg". A similar product pairs lookalike "normal" jelly beans with weird flavors in a product dubbed "BeanBoozled" which has gone through several editions.
"Sport Beans" are jelly beans designed to provide physical energy and enhance athletic performance. They contain carbohydrates, electrolytes (in the form of sodium and potassium), and vitamins B1, B2, B3 and C. "Extreme Sport Beans" include the additional boost of caffeine.
The company makes over 100 different confections, including chocolates, licorice, gummis, and candy corn.
The company operates three manufacturing plants in Fairfield, California; North Chicago, Illinois; and Rayong, Thailand. A fourth facility in Pleasant Prairie, Wisconsin, is for distribution.
The Fairfield and Pleasant Prairie locations offer free daily tours. The 1⁄4 mi-long (400 m) self-guided Fairfield tour features interactive exhibits, Jelly Belly bean art, and videos featuring the candy manufacturing process. It was named one of the best factory tours for children by FamilyFun Magazine in 2014.
en.wikipedia.org/wiki/Jelly_Belly
en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_...
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Other companies began to be involved in the project, using the advanced manufacturing process known as RP (Rapid Prototyping). This involves turning the scanned data into .stl (stereo-lithography) files. Then the computer model is sliced into 0.1mm layers and manufacture is from the bottom up. So if the machine was starting from the base of a standing figure then it would begin by cutting the feet, then ankles, then knees etc. Each layer is only a tenth of a millimeter thick so it would take 500 layers to make a foot.
The Rear Leg was made by The Innovative Manufacturing Centre and UMAK Limited. And the process that they used is called LOM - Laminated Object Manufacture. Here a laser cuts the contour of an object on a 0.1mm layer of paper then another layer is laid down and next contour of the object is cut. The part is then broken out from the cut layers.
The final section was about 100 x 40 x 50 centimetres and was made by glueing together 5 LOM parts then inserting steel rods down the leg to ensure that the parts do not separate. The parts were treated so that they are stable in a range of temperatures and humidities. This is so that the layers do not delaminate. Steve Upcraft (IMC), Simon Graham (Umak) and Paul Webber (IMC) can be seen here.
The compost mixer is made out of recycled material and can be re-grinded and re-used in the manufacturing process of future products.
Old Cemetery, Ipswich, Suffolk
In loving memory of Robert Charles Ransome, born June 1st 1830, died March 5th 1886. Also of his wife Elizabeth Ransome, born November 12th 1840, died July 6th 1935
Robert Charles Ransome and his wife Elizabeth lived with four children and six servants at Orwell Lodge, a large house on Belstead Road, Ipswich, a road where several prominent Ipswich families had large houses. Elizabeth was Robert's second wife, and outlived him by half a century.
Robert's grandfather, also called Robert Ransome, had invented a cold iron manufacturing process which was particularly suitable for the sharp implements required for agriculture. His foundry in Ipswich grew into what would become the largest factory for the manufacturer of agricultural machinery in Europe.
Robert Charles Ransome became chairman of the family firm of Ransome and Sons in the early 1860s. Soon afterwards, two of his brothers broke away from the firm by mutual consent to form a new company, Ransomes & Rapier, which would concentrate on heavy engineering, particularly the construction of steam trains and cranes. Ransome and Sons evolved into Ransome, Sims and Jefferies, by the early 20th century the largest employer that Ipswich would ever know. The firm survived until the recession of the late 1980s, when most of Ipswich's heavy engineering firms went out of business.
By the time of his death, Robert Charles Ransome was probably the richest man in Ipswich, but his Quaker faith probably explains the relatively simple memorial when compared with the more ostentatious gravemarkers of other prominent Ipswich families like the Pauls, the Prettys, the Fisons and the Catchpoles.
Having done steel fabrication, erection and other iron work in my younger days I'm endlessly fascinated with the steel industry and all the things related. Bridges, buildings, the heavy equipment, manufacture, processing and the human element as well. Many of the bridges in the Pittsburgh area have or had some connection to American Bridge which was owned by and affiliated with US Steel up until 1987.
Fascinating photos and history at their website www.americanbridge.net or for the history section go to: www.americanbridge.net/images/Brochure/Brochure.pdf
The sculptor Kai Nielsen visited Kähler for the first time in 1921. Only three years before his death.
During those three years, he was very productive, but many of his works were discarded due to his extreme self-criticism. His ambition was to achieve broad reach. He would rather sell his works and produce thousands of copies than have them on display in a museum.
He produced a number of small figures, which were copies of his larger sculptures in order to disseminate knowledge of his art. This was also a good idea in terms of his earnings.
Kai Nielsen teamed with Thirslund and organised a large production of figures in 1922. These figures were made in old bronze moulds, which had previously been used to cast bronze sculptures.
The names of these figures were just as creative as the manufacturing process: ”Dovendyret”, ”Susanne i badet”, ”Prinsessen på ærten”, ”Eva på æblet”, ”Nina på kuglen” and ”Globetrotteren”, ("Sloth", "Susanna in the bath", "Princess and the Pea", "Eve at the apple", "Nina on the ball" and "Globetrotting") just to mention a few.
The figures became very popular in Denmark and abroad. After a trip to Denmark, a dealer brought ”Prinsessen på ærten” (Princess and the Pea) back with him to San Francisco and put it on display at his shop. However, a US women’s organisation was strongly opposed to ”Princess and the Pea” as they believed that the figure thrust her abdomen forward.
Even though Kai Nielsen’s objective was to bring art to the people, the question is whether he was actually known for this work. Most people will probably remember him for his large sculptures such as ”Vandmoderen” (Water Mother), which is located in the winter garden at the Glyptothek in Copenhagen.
With thanks to:
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
The IMPAC-O door is a high speed door that opens and closes using a vertical pack away operation, as with our other high-speed doors the IMPAC-O model is suitable for applications where high speed opening and closing times are required.
This type of door is suited for larger size openings and is designed for prolonged everyday use both internally and externally with minimal maintenance.
OCM strives to achieve the optimum solution for all high-speed door solutions. This is achieved through a strict quality environment and controlled manufacturing process.
For any further information visit our website or contact us:
OCM Industrial Doors Srl
Via Mongilardi, 3
13900 Biella Italy
Tel.: (+39) 015 . 840 83 01
Fax: (+39) 015 . 849 26 60
Gps: N 45°32'52'',E 8°02'55''
Press 'F' if you like and press'L' to view it better.
This is a factory in Jamshedpur for steel manufacturing process. Its world 5th largest in terms of area and 2nd largest in terms of production. Owned by TATA here is the picture.
In spring 1917, the British Royal Flying Corps introduced the Sopwith Triplane, a three-winged version of the earlier Sopwith Pup fighter. The “Tripe” was only built in limited numbers, but it was issued to elite pilots, such as the famous “Black Flight” of the Royal Naval Air Service—commanded by ace Raymond Collishaw, the Black Flight’s five Triplanes shot down 87 German aircraft in three months.
The German Luftstreitskrafte reacted with shock. To this point, the Germans had usually enjoyed a qualitative advantage over the Allies in the air with their Albatros D.IIIs The Triplane could operate higher and was faster than German fighters, which gave their British and Canadian adversaries the advantage in a dogfight. Germany embarked on a crash program to field their own triplanes, with 37 manufacturers all producing prototypes. The best by far, however, was Fokker’s Dreidekker I, abbreviated Dr.I.
After a short period of testing of prototypes, two pre-production aircraft were built and sent to the Western Front for evaluation. Both were given to exceptional pilots—Manfred von Richthofen and Werner Voss. Richthofen, testing the Dr.I in combat for the first time in September 1917, promptly shot down two aircraft and proclaimed the Dr.I a superb aircraft, if tricky to fly. If there was any doubt of its lethality, it was removed on 23 September, when Voss engaged nine British SE.5s of 56 Squadron, not one of which was flown by a pilot with less than ten victories. Though Voss was killed, his skill and the Dr.I’s manueverability held off nine British aces for ten minutes. Fokker immediately received a production order for 300 Dr.Is.
In combat, the Dr.I was not as fast as the Albatros, but it had a higher rate of climb and phenomenal manueverability—the design was slightly unstable, but an experienced pilot could use its high lift, light controls, and the torque of the engine to make snap rolls to the right almost within the length of the aircraft. It required an experienced pilot, especially on landing, where the torque of the engine and the wings also had a tendency to ground-loop the aircraft. This could be fatal, because the position of the two Spandau machine guns extending into the cockpit could cause a crashlanding pilot to hurtle forward into the gun butts. The Oberursel engine had a tendency to fall off in power at higher altitudes due to poor lubrication.
By far, however, the worst drawback of the Dr.I was its tendency towards wing failures, which were initially believed due to poor workmanship by Fokker. It would be not until after the war that it was learned that the very triple-winged design of the Dreidekker was the problem: the top wing exerted more lift than the bottom two, with the result that the top wing would literally lift itself away from the rest of the aircraft. While it was possible to still fly with the missing top wing, the Dr.I would not fly for long and the pilot would have to make a high-speed landing in an aircraft notorious for groundlooping and killing its occupant.
Though the Dr.I was issued to two Jasta wings, including von Richthofen’s, in 1917-1918, it was never very popular with the majority of German pilots, and the production of the superb Fokker D.VII, which started about the same time, meant that the Luftstreitskrafte already had a fighter that was faster and more durable than the Dr.I, if not quite as manueverable. A few German aces still preferred the Dr.I, namely von Richthofen—because of the Dreidekker was good at something, it was attacking from ambush. A skilled ace could quickly gain altitude over an unsuspecting enemy, dive down, attack, and then use the kinetic energy built in the dive to zoom back to position, or manuever out of trouble with a quick right roll. Von Richthofen would score his last 20 (out of 80) kills in the Dr.I.
Following the end of World War I, nearly all of Germany’s fighters were purposely burned, either by their own pilots or by the Allies. By World War II, only one Dr.I was known to exist, one of von Richthofen’s aircraft, preserved in a museum in Berlin; the museum was flattened in an Allied bombing raid in 1944. Today, only scattered pieces of original Dr.Is exist. However, the simple manufacturing process of World War I fighters meant that reproductions could easily be built, and several dozen Dr.I replicas continue to fly today.
Dad picked the 1/72 Revell Dr. I to do Manfred von Richthofen's aircraft. This was the Red Baron's "show" plane, used for war bond tours; it is not known if Richthofen used it operationally. As with all his aircraft, this Dr. I was painted overall dark red, with a white cowl and stripes to pick out the Iron Cross national insignia (note that these are the earlier Maltese crosses, rather than the Latin crosses more often used by Luftstreitskrafte pilots after 1916). The real aircraft was the sole Dr.I survivor destroyed in Berlin in 1944.
China Baths And China Sanitary Wares
Everybody loves a good China bath. More than that, everybody loves a clean and gleaming China sanitary ware. Here’s the lowdown on the best products and practices to taking China baths and taking care of your China sanitary ware. In taking the best China baths, here are some of the products that should be in your China sanitary ware. Moisturizing soap/body wash A good soap or cream applied to the skin can counter dryness. Exposure to everyday weather can strip off your skin of its natural oils so it is essential that you have a good moisturizing soap or body wash when you take a China bath. Aromatherapy oils Lavender is one of the best aromatherapy oils to include in your China bath. It is used for treating wounds, enhancing memory and aiding sleep by combating anxiety and insomnia. Other popular scents include eucalyptus, rose, jasmine and bergamot.Aromatherapy oils are relaxing. They lower stress. Body buff This is used to slough off dead skin cells. This will in part reveal, new, clean and smooth skin. When taking China baths, our bodies are soaked in water, which makes the exfoliating process so much more easier. Candles Whether you take your China bath at the start of your day or when you end it, it is absolutely refreshing to light a few candles when you soak up. The soft illumination and fresh scent of your candle will give you good vibes all day or all night. Now that you know how to take a really good China bath, here are tips on keeping your China sanitary ware in tip-top shape.
1. You’ll be needing the following China sanitary ware-cleansers. Strong, liquid cleanser that’s bacteria fighting as well. Spray cleansers that’s antiseptic. Glass cleaners and tile cleaners, too. Plus some mops, sponges and an old toothbrush if you must. Whoever said that cleaning your China sanitary ware is a piece of cake.
2. Spray shower and tub with strong cleanser. The labels on your China bath cleaning products will say what kind of stuff is in it- so make sure you get the ones with really strong bacteria-fighting stuff.
3. Pour cleaner into the toilet bowl, and spray the outside with the same cleaner. Let the chemicals do the cleaning for a while and return to scrubbing it after you do the other stuff. 4. Clean mirrors, chrome, China sanitary ware scale, and light fixtures with glass cleaner. Never interchange cleaners. There’s a big difference with cleansers and mirror cleaners. So take note! 5. Vacuum everything! This will remove dust and hair that is so hard to get up when surfaces are wet.
6. Empty and clean the wastepaper basket. Dispose of all the filth and make sure you have a fresh new plastic to replace it with. Remember to spray your wastepaper basket with a good old cleanser.
7. Clean the sink. Working from the top of the toilet down, clean the outside, and brush and flush the inside.
8. Scrub the floor with a strong cleanser. Tough tile floors can be most easily cleaned by hand with the scrub-brush side of a China sanitary ware-only sponge.One more tip: spaghetti mops are more efficient at getting into tough corners than sponge mops. Many types can even be thrown in the washing machine between cleanings. With these tips, you are on your way to the best China bath experience. Because taking a China bath is more than just taking a China bath!
Yuyao Huaneng China sanitary ware China factory is specialized in production of plumbing fittings. ‘Aige’ sanitary ware series are well received not only by supporting factories but also customers both at home and abroad. The products are well sold at home and exported to the world as well.
Supor China sanitary ware manufacture processing scheme stainless steel faucets, stainless steel sinks, stainless steel showers, stainless steel China China bathroom accessori…
Related Sanitary Wares China Manufacturers Articles
See more about China Baths And China Sanitary Wares
(Posted by Douzer Bathroom)
Fremont is a town in Fremont Township, Steuben County, Indiana, United States. The population was 2,138 at the 2010 census. Settled in 1834 as Willow Prairie, it became the Village of Brockville when it was platted in 1837. In 1848, it was renamed to honor John C. Frémont, "the Great Pathfinder", in part because there was already a Brockville in Indiana. Fremont is home to several manufacturing facilities, including Cold Heading, Swager Communications, New Horizons Baking Company and Dexter Axle. Among others is Cardinal IG, which came to Fremont in March 1998. Cardinal IG, manufacturers of glass products, have been recognized as a green company, recycling virtually all of the plastic, paper and cardboard used in manufacturing processes.
en.wikipedia.org/wiki/Fremont,_Indiana
en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_...
040
Friday, December 8th, 2017
Fortune Global Forum 2017
Guangzhou, China
8:00 AM–9:20 AM
SMART MANUFACTURING AND THE INTERNET OF THINGS
Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a “factory of the future” continues to evolve, how are companies incorporating “smart” and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nation’s “Made in China 2025” strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?
Hosted by The City of Guangzhou
Börje Ekholm, President and CEO, Ericsson Group
Till Reuter, Chief Executive Officer, KUKA
Tony Tan, Partner, Shanghai Office, McKinsey & Company
Wang Wenyin, Chairman, Amer International Group
Shoei Yamana, President and CEO, Konica Minolta
Zhang Jing, Founder and Chairman, Cedar Holdings Group
Moderator: Adam Lashinsky, Fortune
Photograph by Vivek Prakash/Fortune
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
040
Friday, December 8th, 2017
Fortune Global Forum 2017
Guangzhou, China
8:00 AMâ9:20 AM
SMART MANUFACTURING AND THE INTERNET OF THINGS
Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a âfactory of the futureâ continues to evolve, how are companies incorporating âsmartâ and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nationâs âMade in China 2025â strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?
Hosted by The City of Guangzhou
Börje Ekholm, President and CEO, Ericsson Group
Till Reuter, Chief Executive Officer, KUKA
Tony Tan, Partner, Shanghai Office, McKinsey & Company
Wang Wenyin, Chairman, Amer International Group
Shoei Yamana, President and CEO, Konica Minolta
Zhang Jing, Founder and Chairman, Cedar Holdings Group
Moderator: Adam Lashinsky, Fortune
Photograph by Vivek Prakash/Fortune
Prototek Sheet Metal Manufacturing began in 1987 as a family owned and operated business as a supplier of quick turn precision sheet metal and machined products for the prototype markets. Today we are still a family owned and operated business, and many of our employees are from our original team. We have since launched into rapid prototyping of precision machining production as well. Our quality and turn times continue to be among the best in the industry. Serving industries such as robotics, semi-conductor, telecommunications, military, pharmaceutical, medical, computer technologies and aeronautics. Prototek's capabilities include punching and cutting of sheet metal from 0.010" - 0.375" thick, forming, installing hardware, welding, machining, plating, painting, powder coating, silk screening, stamping, part marking, and assembly all under a single roof to help save our customers time and money on their finished parts while ensuring Prototek's trademark quality! At Prototek, our punch press, 4000 watt laser, and two LC-C1 Punch/Laser combination cells run 24/7 which translates to faster turn times for our customers. Our highly qualified staff of employees take measures to ensure parts flow through our manufacturing process quickly and efficiently. Each operation goes through an in-process inspection to ensure the highest level of quality.
ABERDEEN PROVING GROUND, Md. (Dec. 19, 2014) -- The U.S. Army is seeking to implement a new mortar manufacturing process to provide improved weapons at a lower cost, officials said.
The Army introduced a nickel super-alloy called Inconcel to produce mortars in 2008, but its properties make it challenging to manufacture. Researchers have been working on an alternative method to overcome the difficulties, said Chris Humiston, a mechanical engineer with the Armament Research, Development and Engineering Center at Watervliet Arsenal, New York.
Read more:
Once the octagon circle is ironed to the block, I stitch around it with a buttonhole stitch, using monofilament thread. To get eighteen repeats, I'm using nine repeats from one side of the fabric (torn along the fold) and nine repeats from the other side. When you do this, there is some stretching of the fabric in the manufacturing process, so you're not going to get exact repeats. But, I really wanted eighteen repeats, so I think these are close enough to make a nice block.
The impressive three-storeyed Ynys y Pandy slate processing works, which served the Gorseddau Quarry, was built in 1856-7 by Evan Jones of Garndolbenmaen and was probably designed by the famous Scottish civil engineer of his day, James Brunlees.
It is ingeniously planned so that the natural fall of the site assisted the manufacturing process. A deep trench inside accommodated a large overshot water wheel 8m in diameter, and on the south side a long curving ramp brought branches of the tramway from Gorseddau Quarry into the mill at two different levels, serving the middle and upper floors.
Gorsedda Slate Quarry was in operation for only two decades, as the slate here was found to be not worth quarrying. Gorsedda is a classic example of a quarry where the rock was worked in stepped benches known as ‘galleries’.
The quarry was connected by railway in 1856, using a system involving horses and gravity – again, the work of engineer James Brunlees. This system transported slate to Ynys y Pandy Mill and on to the harbour at Porthmadog by horses.
The grand, round-headed openings are closely spaced like a Roman aqueduct. The eastern gable is surmounted by a decorative feature incorporating a false chimney stack where now ravens nest. The west gable windows have at some time had window frames or shutters.
The mill specialised in the production of slate slabs for floors, dairies, troughs, urinals, gravestones etc. In its heyday, in 1860, it was producing over 2,000 tons per annum, but seven years later production was down to 25 tons per annum due to poor quality of the quarried slate; the business went into liquidation in 1871., just 15 years after it was built.
The building provided a venue for eisteddfodau until the roof was removed in 1906, ironically, for its slate!
Joseph Webster of Penns (1783-1856)
Joseph Webster III was the Great Grandson of the founder of the company. His father died when he was 3 years old and the business was run by his mother, Phoebe Webster, until he was 19. Joseph served an apprenticeship in wire drawing and was given a thorough training on the shop floor in the production of iron and crucible steel while still a minor.
In 1820 he added manganese to his steel in the smelting process, creating a metal far harder and more ductile than any other known at the time. He call his wire Homogenous Wire or Improved Music Wire. Joseph cornered the market in piano wire. It was this wire which was also used in the manufacture of the Trans-Atlantic Telegraph Cables of 1865 and 1866.
James Horsfall (1813-1887)
James Horsfall invented Patent Steel Wire in 1847 which incorporated an intermediate heat treatment process. This revolutionary new way of manufacturing steel wire led to the internal combustion engine air travel and many other mechanised processes. His invention has never been improved upon and the wire is still manufactured today throughout the world.
This bust by George Slater Barkentine (1841-1906) was exhibited at Birmingham Society of Artists’ Annual Exhibition in 1860. It is the earlies known likeness of James Horsfall and was made when he was 47.
Henry Herbert Coldwell-Horsfall (1856-1947)
Henry Herbert Coldwell-Horsfall was the adopted son of James Horsfall and apprenticed as a wire drawer at Hay Mills in 1874. Due to his thorough grounding in the art of wire drawing he was able to produce shaped steel wires when no other wire manufacture in the country considered it possible to do so. His skill made the manufacturing process of Telford Bachelor’s Locked Coil Rope viable.
On loan from Webster and Horsfall Ltd.
040
Friday, December 8th, 2017
Fortune Global Forum 2017
Guangzhou, China
8:00 AM–9:20 AM
SMART MANUFACTURING AND THE INTERNET OF THINGS
Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a “factory of the future” continues to evolve, how are companies incorporating “smart” and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nation’s “Made in China 2025” strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?
Hosted by The City of Guangzhou
Börje Ekholm, President and CEO, Ericsson Group
Till Reuter, Chief Executive Officer, KUKA
Tony Tan, Partner, Shanghai Office, McKinsey & Company
Wang Wenyin, Chairman, Amer International Group
Shoei Yamana, President and CEO, Konica Minolta
Zhang Jing, Founder and Chairman, Cedar Holdings Group
Moderator: Adam Lashinsky, Fortune
Photograph by Vivek Prakash/Fortune
Lalitha, a factory worker sorts freshly dried leaves in one of the large drying troughs. The manufacturing process employs both males and females on an equal wage structure introduced by state law.
Women’s rights are a contentious issue around the world as they are in India today, where recently the issue has been highlighted. Alexander Walker documented one of the traditional Indian industries in one of the south-western states.
The tea industry in India is heavily dominated by a female workforce but in the state of Kerala, which has been vigorously promoting the rights of women for many years it has led to unexpected problems for the industry.
The state has for decades had its politics rooted in socialism, having in 1957 become the first state in the world to democratically elect a communist government. In relation to its population, this has meant they have reaped huge benefits in terms of welfare, education levels and high quality of life. For women this has meant the realization of parity in education and wages.
However today’s high levels of education, for both men and women, means a mismatch between labour supply and demand. Young educated women no longer wish to be employed in the physically demanding and lowly paid jobs offered by the tea industry.
Herein lies the challenge faced by the tea estates in Kerala. The group of women workers currently employed may be the last of their generation from Chundale village to do this work as if these positions cannot be filled from inside the community, the company will be forced to use migrant workers from other states or turn to mechanisation.
© Alex Walker/Arvor