View allAll Photos Tagged Manufacturing_process

"Raw Material Strategy for Advanced Therapies"

Cells and tissue are composed of living, functional cells which were the critical raw material from which EV therapy products are manufactured. Given these biological realities, it is essential that the manufacturing process be rigorously controlled and consistent.

 

Graham Harwood (UK), Matsuko Yokokoji (JP).

 

A coal-fired boiler powers a network of computers exploring the relationships between power and media. Coal Fired Computers explores the ecologies that have created and maintained power, and the subsequent health residues and crisis of fuelling that power. The work responds to the displacement of coal production to distant India, China or Vietnam and our industrial heritage, in particular the work of Charles Parsons whose steam turbine is used to produce 40% of today’s electricity. In many countries this rate is much higher (more than 70% in India and China).

 

According to the World Health Organization, 318.000 deaths occur annually from chronic bronchitis and emphysema caused by exposure to coal dust. The common perception is that wealthy countries have put this all behind them, displacing coal dust into the lungs of unrecorded, unknown miners in distant lands, coal returning in our lives in the form of cheap and apparently clean goods we consume.

 

Coal fired energy not only powers our computers here in Europe, but is integral to the production of the 300.000.000 computers made each year. 81% of the energy used in a computer’s life cycle is expended in the manufacturing process, now taking place in countries with high levels of coal consumption.

 

yoha.co.uk/cfc

 

www.artefact-festival.be/2011/

Graham Harwood (UK), Matsuko Yokokoji (JP).

 

A coal-fired boiler powers a network of computers exploring the relationships between power and media. Coal Fired Computers explores the ecologies that have created and maintained power, and the subsequent health residues and crisis of fuelling that power. The work responds to the displacement of coal production to distant India, China or Vietnam and our industrial heritage, in particular the work of Charles Parsons whose steam turbine is used to produce 40% of today’s electricity. In many countries this rate is much higher (more than 70% in India and China).

 

According to the World Health Organization, 318.000 deaths occur annually from chronic bronchitis and emphysema caused by exposure to coal dust. The common perception is that wealthy countries have put this all behind them, displacing coal dust into the lungs of unrecorded, unknown miners in distant lands, coal returning in our lives in the form of cheap and apparently clean goods we consume.

 

Coal fired energy not only powers our computers here in Europe, but is integral to the production of the 300.000.000 computers made each year. 81% of the energy used in a computer’s life cycle is expended in the manufacturing process, now taking place in countries with high levels of coal consumption.

 

yoha.co.uk/cfc

 

www.artefact-festival.be/2011/

As I long ago stopped updating my blog, I'll use this space to chime in on the recent Canon and Nikon DSLR announcements. If the DSLR wars interest you, read on.

 

If you haven't heard, both Canon and Nikon have just announced their next generation pro and prosumer DSLRs. Only a few months after the introduction of the Canon 1D MkIII, they've followed with the predictably-equivalent updates for the 1Ds and 30D (the 1Ds MkIII and 40D respectively). Hot on their heels, Nikon announced yesterday the D3 and D300, major improvements on the D2X and D200, respectively.

 

Without going into detail, I'll just sum up that, on paper, the new Nikon bodies are clearly superior to their nearest Canon equivalents, but with prices to match. Like the previous generation, the two companies are alternating on price points, with the popular models ranking: D40x/400D ($650) < D80 ($900) < 40D ($1300) < D300 ($1800) < 5D ($2500) < D3 ($5000) < 1Ds MkIII ($8000). To use camera terminology: Canon's prices are spaced at full-stop intervals (they double with each step up), while the Nikons are either the same price points or at the half stops in between.

 

What's missing from this picture is Canon's 1D MkIII. The 1D MkIII just got owned by Nikon's D3, which has a full-frame sensor for only $500 more. My guess is Canon will soon lower the 1D MkIII's price to $4000, but I think it will still be a hard sell, especially with the 40D absorbing essentially all of the non-pro 1D MkIII potential customers.

 

Personally, I'm considering none of these new models - I want a Canon 5D. Even if Nikon has a leg up in other areas, it still has no affordable full-frame camera. I don't care how nice a D300 (or even a 40D) may be - I'm not spending $1300-1800 on mere added convenience. Because, for everything but sports photography, that's basically all you're getting over the entry-level models for 2-3x the price.

 

By contrast, a full-frame camera gets you a larger viewfinder (possibly enabling manual focus), significantly more dynamic range, and significantly lower noise for a given number of pixels. No amount of fancy software, hi-def LCDs, or ultrasonic vibration is going to make an APS-C equivalent to full-frame in those areas.

 

The problem is, of course, price. The bulk of the extra cost of a full-frame camera is the sensor. Over short spans of time like DSLR generations, in order to make a CMOS chip cheaper you have to make it smaller. This is what Intel is doing this Fall when it introduces the next-gen Penryn processors. Current-gen Conroe chips (the CPU inside most Windows and Mac desktops and laptops sold today) are 143 sq. mm. Penryn chips will be 107 sq. mm. By comparison, a full-frame sensor is 36mm x 24mm = 864 sq. mm. That's eight times the size of a top-of-the-line dual-core processor come December. Intel's cheapest dual-core Conroe chip retails around $130 - imagine what a 16-core processor would cost, and then factor in that Intel has the most efficient CMOS manufacturing process in the world and is engaged in a vicious price war, and you begin to see just how expensive a non-Intel full-frame sensor must be. (My guess is just shy of $1000.)

 

Also, Nikonians are about to discover the quandary that Canonites have been dealing with for years. It's not just that full-frame bodies are 2-3x more expensive; they also require a comprehensive upgrade of most lens kits that can cost more than the body upgrade itself.

 

That's why the current $2500 street price of the 5D is not truly affordable for the vast majority of amateurs (Bay Area techies notwithstanding). If I were to upgrade to that camera, I'd have to give up my EF-S 17-55mm f/2.8 IS, and even if I were to pony up $1000, the closest equivalent in full-frame land is the EF 24-105mm f/4L IS, which is a full stop slower. Meanwhile, I would doubtless finally be fed up with my EF 70-300mm f/4-5.6 IS, which, while technically full-frame, is a marginal performer even on APS-C. The closest equivalent would again be $1000, and it would have much less reach, be bigger and heavier, and require new filters.

 

So I'm hoping Canon responds to Nikon by dropping the price of the still-unrivaled 5D to something close to break even. A 5D MkII (or 4D, or 3D, or whatever you want to call it for now) at $2000-2200 would give pause to many who are about to plop down $1800 for a D300. Personally, since I am keenly aware of the additional lens cost, I'll need either a 5D at $1600, or a 5D MkII at $2000 to make me seriously consider upgrading.

 

And it just doesn't make sense for me to switch to Nikon. The 17-55 IS is what I want now, and an affordable full-frame is what I want in the near future. Kudos to Nikon for delivering a mouth-watering cornucopia of new features, but for me it's all just icing without the cake.

At Sau Hoai's Rice Noodle Factory near Can Tho on the Mekong Delta, you can see every step of the noodle manufacturing process. These noodles are all hand-made, via a method that has not changed in decades - if not centuries! You can try making a batch yourself. This family-run business also includes an open-air restaurant where you can taste freshly-made noodles: they were outstanding!

As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.

 

Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.

 

Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.

 

Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.

040

 

Friday, December 8th, 2017

Fortune Global Forum 2017

Guangzhou, China

 

8:00 AMâ9:20 AM

 

SMART MANUFACTURING AND THE INTERNET OF THINGS

 

Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a âfactory of the futureâ continues to evolve, how are companies incorporating âsmartâ and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nationâs âMade in China 2025â strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?

Hosted by The City of Guangzhou

 

Börje Ekholm, President and CEO, Ericsson Group

Till Reuter, Chief Executive Officer, KUKA

Tony Tan, Partner, Shanghai Office, McKinsey & Company

Wang Wenyin, Chairman, Amer International Group

Shoei Yamana, President and CEO, Konica Minolta

Zhang Jing, Founder and Chairman, Cedar Holdings Group

Moderator: Adam Lashinsky, Fortune

 

Photograph by Vivek Prakash/Fortune

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Grey Eagle - Hypersonic Bomber Mach 8 - 10, IO Aircraft www.ioaircraft.com

Length: 150'

Span: 71'

Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle)

1 Air Breathing Aerospike

 

Fuel: Kero / Hydrogen

Payload: Up 36 2,000 LBS JDAM's, or 80,000 LBS

Range: 10,000nm + Aerial Refueling Capable

www.ioaircraft.com/hypersonic.php

 

-----------------------------

hypersonic bomber, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjetdefense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, air force of science and research,

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)

 

for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com

Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)

 

for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com

Stemedica Cell Technologies manufacturing is focused on producing best-in-class stem cell lines for research and clinical studies and trials.

040

 

Friday, December 8th, 2017

Fortune Global Forum 2017

Guangzhou, China

 

8:00 AMâ9:20 AM

 

SMART MANUFACTURING AND THE INTERNET OF THINGS

 

Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a âfactory of the futureâ continues to evolve, how are companies incorporating âsmartâ and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nationâs âMade in China 2025â strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?

Hosted by The City of Guangzhou

 

Börje Ekholm, President and CEO, Ericsson Group

Till Reuter, Chief Executive Officer, KUKA

Tony Tan, Partner, Shanghai Office, McKinsey & Company

Wang Wenyin, Chairman, Amer International Group

Shoei Yamana, President and CEO, Konica Minolta

Zhang Jing, Founder and Chairman, Cedar Holdings Group

Moderator: Adam Lashinsky, Fortune

 

Photograph by Vivek Prakash/Fortune

John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.

 

His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.

 

Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.

 

July 11, 2023.

 

Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering

 

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 210 Passenger Hypersonic Plane - Iteration 2

 

Seating: 210 | Crew 2+4

Length: 195ft | Span: 93ft

Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.

 

Fuel: H2 (Compressed Hydrogen)

Cruising Altitude: 100,000-125,000ft

Airframe: 75% Proprietary Composites

Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs

 

Iteration 2

IO Aircraft www.ioaircraft.com

Drew Blair www.linkedin.com/in/drew-b-25485312/

 

-----------------------------

hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.

 

Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.

 

Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.

 

Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.

 

-----------

 

(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.

 

Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.

 

Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.

 

Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.

HOBO U14 data loggers display, record, and provide alarm notifications of temperature and humidity conditions. Receive out-of-range alarms notifications with the optional Auto Dialer or Remote Audible Alarm. These loggers are well-suited for use in manufacturing, processing, and storage environments where reliable monitoring and documentation of temperature and relative humidity conditions is critical.

 

www.onsetcomp.com/products/data-loggers/u14-001

Graham Harwood (UK), Matsuko Yokokoji (JP).

 

A coal-fired boiler powers a network of computers exploring the relationships between power and media. Coal Fired Computers explores the ecologies that have created and maintained power, and the subsequent health residues and crisis of fuelling that power. The work responds to the displacement of coal production to distant India, China or Vietnam and our industrial heritage, in particular the work of Charles Parsons whose steam turbine is used to produce 40% of today’s electricity. In many countries this rate is much higher (more than 70% in India and China).

 

According to the World Health Organization, 318.000 deaths occur annually from chronic bronchitis and emphysema caused by exposure to coal dust. The common perception is that wealthy countries have put this all behind them, displacing coal dust into the lungs of unrecorded, unknown miners in distant lands, coal returning in our lives in the form of cheap and apparently clean goods we consume.

 

Coal fired energy not only powers our computers here in Europe, but is integral to the production of the 300.000.000 computers made each year. 81% of the energy used in a computer’s life cycle is expended in the manufacturing process, now taking place in countries with high levels of coal consumption.

 

yoha.co.uk/cfc

 

www.artefact-festival.be/2011/

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)

 

for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com

Custom made pedestrian Gates with hand forged grillwork on top. This is the manufacturing process before gates will be sent for powder coating painting. Visit us at Deco Design Center www.decodesigncenter.com

Bursera graveolens, known in Spanish as palo santo ("holy wood") is a tree that inhabits the coast of Ecuador. The tree belongs to the same family (Burseraceae) as frankincense and myrrh. It is widely used in folk medicine. Aged heartwood is rich in terpenes such as limonene and α-terpineol.

The use of Palo santo (or Palo Santo) from Bursera Graveolens is reported to be traditional in South America, especially in Ecuador. According to the local customs, it is used against the "mala energia" (bad energy) ("Palo Santo para limpiar tu casa de la mala energia, Palo Santo para la buena suerte" or "Palo Santo to clean your house of bad energy, Palo Santo for good luck").

As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.

 

Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.

 

Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.

 

Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.

Jelly Belly Candy Company, formerly known as Herman Goelitz Candy Company and Goelitz Confectionery Company, manufactures Jelly Belly jelly beans and other candy. It is based in Fairfield, California, with a second manufacturing facility in North Chicago, Illinois and a distribution center in Pleasant Prairie, Wisconsin. In October 2008, the company opened a 50,000 sq ft (4,645 m2) manufacturing plant in Rayong, Thailand where it produces confectionery for the international market.

 

The company's signature product, the Jelly Belly jelly bean, comes in more than 50 varieties, ranging from traditional flavors like orange, lemon, lime, and cherry, to more exotic ones like cinnamon, pomegranate, cappuccino, buttered popcorn, and chili-mango.

 

Jelly Belly Candy Company manufactures numerous specialty Jelly Belly jelly beans with licensed products like Tabasco sauce and uncommon candy tastes like egg nog and pancakes with maple syrup. A few flavors, like lychee and green tea, are sold only in markets outside the United States.

 

Several flavors have been based on popular alcoholic beverages, beginning with Mai Tai in 1977. Over the years, new additions have included blackberry brandy (now discontinued), strawberry daiquiri, margarita, mojito, and piña colada. Draft beer, a flavor inspired by Hefeweizen ale, was introduced in 2014. All such flavors are entirely alcohol-free.

 

"Bertie Bott's Every Flavour Beans" were inspired by the Harry Potter book series and featured intentionally gruesome flavors such as "Vomit", "Earwax", "Skunk Spray", and "Rotten Egg". A similar product pairs lookalike "normal" jelly beans with weird flavors in a product dubbed "BeanBoozled" which has gone through several editions.

 

"Sport Beans" are jelly beans designed to provide physical energy and enhance athletic performance. They contain carbohydrates, electrolytes (in the form of sodium and potassium), and vitamins B1, B2, B3 and C. "Extreme Sport Beans" include the additional boost of caffeine.

 

The company makes over 100 different confections, including chocolates, licorice, gummis, and candy corn.

 

The company operates three manufacturing plants in Fairfield, California; North Chicago, Illinois; and Rayong, Thailand. A fourth facility in Pleasant Prairie, Wisconsin, is for distribution.

 

The Fairfield and Pleasant Prairie locations offer free daily tours. The 1⁄4 mi-long (400 m) self-guided Fairfield tour features interactive exhibits, Jelly Belly bean art, and videos featuring the candy manufacturing process. It was named one of the best factory tours for children by FamilyFun Magazine in 2014.

 

en.wikipedia.org/wiki/Jelly_Belly

 

en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_...

040

 

Friday, December 8th, 2017

Fortune Global Forum 2017

Guangzhou, China

 

8:00 AM–9:20 AM

 

SMART MANUFACTURING AND THE INTERNET OF THINGS

 

Around the world, factory floors and assembly lines are becoming highly automated, combining human ingenuity with data and technology to revolutionize product and productivity outcomes. As the notion of a “factory of the future” continues to evolve, how are companies incorporating “smart” and connected products into their manufacturing process? From sensors and robots to 3D printing and green technology, global companies are experimenting with a variety of methods to streamline, scale, and sustain their business. Here in China, manufacturers have been asked to deliver on the nation’s “Made in China 2025” strategy and are aggressively pursuing their own strategies to become smarter, greener, and more efficient. As these changes take hold, what are the implications for those doing business in China and for supply chains worldwide? And how are companies redeploying and reeducating their workforces as traditional factory jobs become automated and the need for technically proficient talent increases?

Hosted by The City of Guangzhou

 

Börje Ekholm, President and CEO, Ericsson Group

Till Reuter, Chief Executive Officer, KUKA

Tony Tan, Partner, Shanghai Office, McKinsey & Company

Wang Wenyin, Chairman, Amer International Group

Shoei Yamana, President and CEO, Konica Minolta

Zhang Jing, Founder and Chairman, Cedar Holdings Group

Moderator: Adam Lashinsky, Fortune

 

Photograph by Vivek Prakash/Fortune

Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)

 

for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com

As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.

 

Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.

 

Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.

 

Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.

Grey Eagle - Hypersonic Bomber Mach 8 - 10, IO Aircraft www.ioaircraft.com

Length: 150'

Span: 71'

Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle)

1 Air Breathing Aerospike

 

Fuel: Kero / Hydrogen

Payload: Up 36 2,000 LBS JDAM's, or 80,000 LBS

Range: 10,000nm + Aerial Refueling Capable

www.ioaircraft.com/hypersonic.php

 

-----------------------------

hypersonic bomber, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjetdefense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, air force of science and research,

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)

 

for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com

Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)

 

for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com

Each skein has about 30-45 yards of silk pieces of fabric attached to each other. The silk strips are about .75 inches wide. There is some variance due to the way this yarn is created. It's created by the collection of silk remnants of clothing (mainly saris) in the truing and trimming of fabric during the manufacturing process. Then the strips are attached together to make this great yarn by sewing the ends together.

 

There are brocade pieces of material in this yarn so if you have any kind of allergies to metal by example I would choose another yarn! But if you have no allergies, this yarn has such cool colors and textures even if you don't knit with it, you can use it on plenty of projects and even wrapping gifts (my personal favorite).

 

Also, please note, that this yarn is from Nepal and I worked with women's co-ops to ensure proper and fair wages were provided to the women who made this yarn. That's important because we all need to

 

RETHINK YOUR CRAFTING! Only from Darn Good Yarn purveyors of Fine Recycled Silk Yarn, Free Knitting and Crochet Patterns and more!

Graham Harwood (UK), Matsuko Yokokoji (JP).

 

A coal-fired boiler powers a network of computers exploring the relationships between power and media. Coal Fired Computers explores the ecologies that have created and maintained power, and the subsequent health residues and crisis of fuelling that power. The work responds to the displacement of coal production to distant India, China or Vietnam and our industrial heritage, in particular the work of Charles Parsons whose steam turbine is used to produce 40% of today’s electricity. In many countries this rate is much higher (more than 70% in India and China).

 

According to the World Health Organization, 318.000 deaths occur annually from chronic bronchitis and emphysema caused by exposure to coal dust. The common perception is that wealthy countries have put this all behind them, displacing coal dust into the lungs of unrecorded, unknown miners in distant lands, coal returning in our lives in the form of cheap and apparently clean goods we consume.

 

Coal fired energy not only powers our computers here in Europe, but is integral to the production of the 300.000.000 computers made each year. 81% of the energy used in a computer’s life cycle is expended in the manufacturing process, now taking place in countries with high levels of coal consumption.

 

yoha.co.uk/cfc

 

www.artefact-festival.be/2011/

Hella Jongerius (1963) - Coloured Vases, 2010

 

Porselein, 300 zelfgemaakte kleuren, resulterend uit het mengen van oude en nieuwe glazuren; sommige vazen: glazuren en verf. Unica

Porcelain, 300 selfmade colours through a mix of old and new glazes; some vases: glazes + spray lacquer. One-offs

 

Op de vloer staan ook 300 vazen opgesteld in uiteenlopende kleurschakeringen: de nieuwe serie Coloured Vases (serie 3). Deze serie is afgelopen zomer ontwikkeld in nauwe samenwerking met Koninklijke Tichelaar Makkum. De Coloured Vases laten kleurexperimenten zien, waarbij telkens een bestaande vaas is gebruikt als ‘canvas’. De kleuren bestaan uit een mix van oude glazuren en nieuwe synthetische glazuren. Sommige vazen zijn voorzien van een extra laag industriële verf. Kleur is een belangrijk element in de ontwerppraktijk van Hella Jongerius en dat ziet u overal in de tentoonstelling terugkomen.

 

Hella Jongerius (1963) geldt internationaal als een van de belangrijkste ontwerpers van haar generatie. In 1993 start zij in Rotterdam haar studio Jongeriuslab, waar zij zowel in eigen beheer als in opdracht van nationale en internationale bedrijven producten ontwerpt. Jongerius introduceert in de jaren negentig ambachtelijke imperfecties en individualiteit in industriële productiemethodes. Ambachtelijke kwaliteiten zijn volgens Jongerius niet afleesbaar aan de perfectie waarmee dingen zijn gemaakt, maar aan de afwijkingen, ‘misfits’, de zichtbare sporen van de hand van de maker.

  

Standing on the floor are 300 vases, arranged in a variety of colour schemes: the new series of Coloured Vases (series 3). Jongerius developed this series during the summer in close collaboration with Royal Tichelaar Makkum. The Coloured Vases are experiments with colour, using an existing vase as a ‘canvas’. The colours consist of a mix of historical mineral glaze recipes and modern chemical glaze recipes. Some vases have an extra layer of industrial paint. Colour is an important element in Hella Jongerius’s design practice, as you will see throughout the exhibition.

 

Hella Jongerius (1963) is internationally regarded as one of the most important designers of her generation. She began her own studio Jongeriuslab in Rotterdam in 1993, designing products for international clients and also self-initiated projects. In the 1990s she introduced imperfections and individuality into the industrial manufacturing process. Jongerius believes that the quality of craftsmanship is not legible in perfect products but only in the ‘misfits’ that betray the process and the hand of the maker.

In spring 1917, the British Royal Flying Corps introduced the Sopwith Triplane, a three-winged version of the earlier Sopwith Pup fighter. The “Tripe” was only built in limited numbers, but it was issued to elite pilots, such as the famous “Black Flight” of the Royal Naval Air Service—commanded by ace Raymond Collishaw, the Black Flight’s five Triplanes shot down 87 German aircraft in three months.

 

The German Luftstreitskrafte reacted with shock. To this point, the Germans had usually enjoyed a qualitative advantage over the Allies in the air with their Albatros D.IIIs The Triplane could operate higher and was faster than German fighters, which gave their British and Canadian adversaries the advantage in a dogfight. Germany embarked on a crash program to field their own triplanes, with 37 manufacturers all producing prototypes. The best by far, however, was Fokker’s Dreidekker I, abbreviated Dr.I. After a short period of testing of prototypes, two pre-production aircraft were built and sent to the Western Front for evaluation. Both were given to exceptional pilots—Manfred von Richthofen and Werner Voss. Richthofen, testing the Dr.I in combat for the first time in September 1917, promptly shot down two aircraft and proclaimed the Dr.I a superb aircraft, if tricky to fly. If there was any doubt of its lethality, it was removed on 23 September, when Voss engaged nine British SE.5s of 56 Squadron, all of which were flown by British aces with more than ten victories apiece. Though Voss was killed, his skill and the Dr.I’s manueverability held off nine British aces for ten minutes. Fokker immediately received a production order for 300 Dr.Is.

 

In combat, the Dr.I was not as fast as the Albatros, but it had a higher rate of climb and phenomenal manueverability—the design was slightly unstable, but an experienced pilot could use its high lift, light controls, and the torque of the engine to make snap rolls to the right almost within the length of the aircraft. It required an experienced pilot, especially on landing, where the torque of the engine and the wings also had a tendency to ground-loop the aircraft. This could be fatal, because the position of the two Spandau machine guns extending into the cockpit could cause a crash-landing pilot to hurtle forward into the gun butts, face-first. The Oberursel engine had a tendency to fall off in power at higher altitudes due to poor lubrication. By far, however, the worst drawback of the Dr.I was its tendency towards wing failures, which were initially believed due to poor workmanship by Fokker. It would be not until after the war that it was learned that the very triple-winged design of the Dreidekker was the problem: the top wing exerted more lift than the bottom two, with the result that the top wing would literally lift itself away from the rest of the aircraft. While it was possible to still fly with the missing top wing, the Dr.I would not fly for long and the pilot would have to make a high-speed landing in an aircraft notorious for crash landings.

 

Though the Dr.I was issued to two Jasta wings, including von Richthofen’s, in 1917-1918, it was never very popular with the majority of German pilots, and the production of the superb Fokker D.VII, which started about the same time, meant that the Luftstreitskrafte already had a fighter that was faster and more durable than the Dr.I, if not quite as manueverable. A few German aces still preferred the Dr.I, namely von Richthofen—because of the Dreidekker was good at something, it was attacking from ambush. A skilled ace could quickly gain altitude over an unsuspecting enemy, dive down, attack, and then use the kinetic energy built in the dive to zoom back to position, or manuever out of trouble with a quick right roll. Von Richthofen would score his last 20 (out of 80) kills in the Dr.I.

 

Following the end of World War I, nearly all of Germany’s fighters were purposely burned, either by their own pilots or by the Allies. By World War II, only one Dr.I was known to exist, one of von Richthofen’s aircraft, preserved in a museum in Berlin; the museum was flattened in an Allied bombing raid in 1944. Today, only scattered pieces of original Dr.Is exist. However, the simple manufacturing process of World War I fighters meant that reproductions could easily be built, and several dozen Dr.I replicas continue to fly today.

 

Not much can be found about this particular replica, other than it has been in the possession of the Warhawk Air Museum for some time, and is flyable. Nicknamed the "Blue Max" for both the medal and obvious reasons, it is not supposed to represent any particular German aircraft of the war, though certainly these sort of bright markings would not have been unusual. The "Blue Max," also known as the Pour le Merite, was the highest honor a German soldier or airman could be awarded during World War I, and was generally presented by the Kaiser himself; a small reproduction of the medal is carried behind the cowling.

en.wikipedia.org/wiki/De_Havilland_Dove#Variants

 

en.wikipedia.org/wiki/Yorkshire_Air_Museum#Collection

 

The de Havilland DH.104 Dove is a British short-haul airliner developed and manufactured by de Havilland. The design, which was a monoplane successor to the pre-war Dragon Rapide biplane, came about from the Brabazon Committee report which, amongst other aircraft types, called for a British-designed short-haul feeder for airlines.

 

The Dove was a popular aircraft and is considered to be one of Britain's most successful postwar civil designs, with over 500 aircraft manufactured between 1946 and 1967. Several military variants were operated, such as the Devon by the Royal Air Force and the Sea Devon by the Royal Navy, and the type also saw service with a number of overseas military forces.

 

A longer four-engined development of the Dove, intended for use in the less developed areas of the world, was the Heron. A considerably re-designed three-engined variant of the Dove was built in Australia as the de Havilland Australia DHA-3 Drover.

 

The development team for the Dove was headed by Ronald Bishop, the creator of the de Havilland Mosquito, a wartime fighter-bomber, and the de Havilland Comet, the first commercial jet aircraft in the world. It had been developed to meet the Type VB requirement issued by the Brabazon Committee. In concept, the Dove was developed to be the replacement of the pre-war Dragon Rapide. It was also required to be competitive with the large numbers of surplus military transports in the aftermath of the Second World War, such as the Douglas DC-3. Unlike the Dragon Rapide, the Dove's structure was entirely metal. It featured innovations including constant-speed propellers, flaps, and a retractable tricycle undercarriage.

 

In 1946, aviation magazine Flight praised the qualities of the newly developed Dove, noting its "modernity" as well as the aircraft's load-carrying capacity, safe engine-failure performance, and positive maintenance features. Considerable attention was paid to aspects of maintainability, many of the components being designed to be interchangeable and easy to remove or replace, such as the rudder, elevator, and power units; other areas include the mounting of the engines upon four quick-release pickup points, the routing of cables and piping, and the detachable wings and tail cone. The extensive use of special Redux metal-bonding adhesives reduced the need for riveting during the manufacturing process, reducing overall weight and air-skin friction.

 

While standard passenger versions of the Dove would carry between eight and eleven passengers, the cabin was designed to allow operators to convert between higher and lower density seating configurations. Features such as a single aircraft lavatory and an aft luggage compartment could be removed to provide increased seating. Various specialised models were produced for other roles, such as aerial survey, air ambulance, and flying classroom. A strengthened cabin floor structure was used to enable concentrated freight loads to be carried as well. The Dove could also serve as an executive transport, and in such a configuration it was capable of seating five passengers; the executive model proved to be popular with various overseas customers, particularly those in the United States.

 

The crew typically consisted of a pilot and radio operator, although rapidly removable dual flight controls could be installed for a second flying crewmember. A combination of large windows and a transparent perspex cabin roof provided a high level of visibility from the cockpit. From a piloting perspective, the Dove was noted for possessing easy flying qualities and mild stall qualities. A TKS anti-icing system was available for the Dove, involving an alcohol-based jelly delivered via porous metal strips embedded on the leading edges of the wings and tail.

 

The Dove first flew on 25 September 1945. In December 1946, the Dove entered service with Central African Airways. Initial production of the Dove took place at de Havilland's Hatfield factory, but from 1951 the aircraft were built at the company's Broughton facility near Chester. The final example of the type was delivered in 1967. Production of the Dove and its variants totalled 544 aircraft, including two prototypes, 127 military-orientated Devons and 13 Sea Devons.

 

From 1946, large numbers were sold to scheduled and charter airlines around the world, replacing and supplementing the pre-war designed de Havilland Dragon Rapide and other older designs. The largest order for the Dove was placed by Argentina, which ultimately took delivery of 70 aircraft, the majority of which were used by the Argentine Air Force. LAN Chile took delivery of twelve examples and these were operated from 1949 onwards until the aircraft were sold to several small regional airlines in the United States in 1954.

 

In excess of 50 Doves were sold to various operators in the United States by Jack Riley, an overseas distributor for the type. De Havilland later assumed direct control of U.S. sales, but did not manage to match this early commercial success for the type.

 

An early batch of 30 Devons was delivered to the Royal Air Force and they were used as VIP and light transports for over 30 years. The Royal New Zealand Air Force acquired 30 Devons between 1948 and 1954, and these remained in service for VIP, crew-training and light transport duties into the 1970s.

 

The Biafran Air Force operated a single Dove during the Nigerian Civil War; the aircraft was lost, to be subsequently found in 1970 on the premises of a school in Uli. A second US-registered Riley Dove, N477PM delivered in 1967 to Port Harcourt from Switzerland, never reached Biafra because it was stopped by Algerian authorities.

 

A few Doves and civilianised Devons remained in use in 2011 in the United Kingdom, Canada, Germany and elsewhere with small commercial firms and with private pilot owners.

 

The Yorkshire Air Museum & Allied Air Forces Memorial is an aviation museum in Elvington, York on the site of the former RAF Elvington airfield, a Second World War RAF Bomber Command station. The museum was founded, and first opened to the public, in the mid 1980s.

 

The museum is one of the largest independent air museums in Britain. It is also the only Allied Air Forces Memorial in Europe. The museum is an accredited museum under Arts Council accreditation scheme. It is a Member of Friends of the Few (Battle of Britain Memorial), the Royal Aeronautical Society, the Museums Association and the Association of Independent Museums.

 

The Museum is a registered charity (No. 516766) dedicated to the history of aviation and was also set up as a Memorial to all allied air forces personnel, particularly those who served in the Royal Air Force during the Second World War.

 

Site

Further information: RAF Elvington

The 20-acre (81,000 m2) parkland site includes buildings and hangars, some of which are listed. It incorporates a 7-acre (28,000 m2) managed environment area and a DEFRA and Environment Agency supported self sustainability project called "Nature of Flight". The museum is situated next to a 10,000 ft runway, which is privately owned.

 

History

Whilst the Royal Air Force carried on using the runway for aircraft landing and take off training until 1992, the buildings and hangars had long been abandoned. In 1980 Rachel Semlyen approached the owners of "what was then an abandoned and derelict wartime site, with the idea of restoring the buildings and creating a museum". In 1983, a group started clearing the undergrowth and the site was ready to be unveiled as the Yorkshire Air Museum in 1986.

 

Events

The Museum undertakes several annual events each year within the general attraction / entertainment area as well as educational / academic events for specific audiences, plus several corporate events in association with companies such as Bentley, Porsche, banking, government agencies etc. The unique annual Allied Air Forces Memorial Day takes place in September.

 

Exhibits

The Museum has over 50 aircraft spanning the development of aviation from 1853 up to the latest GR4 Tornado. Several aircraft including Victor, Nimrod, Buccaneer, Sea Devon, SE5a, Eastchurch Kitten, DC3 Dakota are kept live and operated on special "Thunder Days" during the year. Over 20 historic vehicles and a Registered Archive containing over 500,000 historic artefacts and documents are also preserved at the Museum, which is also the Official Archive for the National Aircrew Association and National Air Gunners Association. It is nationally registered and accredited through DCMS/Arts Council England and is a registered charity.

 

A permanent exhibition on RAF Bomber Command was opened at the museum by life member, Sir David Jason. In 2010 a new exhibition called "Pioneers of Aviation", and funded by the Heritage Lottery Fund, was opened featuring the lives and achievements of Sir George Cayley, Sir Barnes Wallis, Robert Blackburn, Nevil Shute and Amy Johnson.

 

Principal on-site businesses include: Restaurant, Retail Shop, Events, Aircraft Operation Engineering Workshops, Archives and Corporate Business Suite. The museum is also a location for TV and film companies.

 

Building 1 – Airborne Forces Display & No. 609 Squadron RAF Room

Building 2 – Uniform Display

Building 3 – Air Gunners' Exhibition

Building 4 – Archives & Reference Library

Building 5 – Museum Shop

Building 7 – Memorial Garden

Building 8 – Museum HQ, Main Entrance

Building 9 – Against the Odds

Building 10 – Elvington Corporate Room

Building 11 – Museum NAAFI Restaurant

Building 12 – Control Tower

Building 13 – French Officers' Mess

Building 14 – Airmens Billet and Station MT Display

Building 15 – Royal Observer Corp

Building 16 – Signal Square

Building 17 – Hangar T2 Main Aircraft exhibition

Building 18 – Archive & Collections Building

Building 19 – Handley Page Aircraft Workshop

Building 20 – Pioneer of Aviation Exhibition

 

Collection

Aircraft on display

Pre-World War II

Avro 504K – Replica

Blackburn Mercury – Replica

Cayley Glider – Replica

Mignet HM.14 Pou-du-Ciel

Port Victoria P.V.8 Eastchurch Kitten Replica

Royal Aircraft Factory BE.2c – Replica

Royal Aircraft Factory SE.5a – Replica

Wright Flyer – Replica

 

World War II

Avro Anson T.21 VV901

Douglas Dakota IV KN353

Fairchild Argus II FK338

Gloster Meteor F.8 WL168

Gloster Meteor NF.14 WS788

Handley Page Halifax III LV907

Hawker Hurricane I – Replica

Messerschmitt Bf 109 G-6 – Replica

Slingsby T.7 Kirby Cadet RA854

Supermarine Spitfire I – Replica

Waco Hadrian 237123

 

Post World War II

Air Command Commander Elite

Beagle Terrier 2 TJ704

Canadair CT-133 Silver Star 133417

de Havilland Devon C.2 VP967

de Havilland Vampire T.11 XH278

Europa Prototype 001

Mainair Demon

Saunders-Roe Skeeter AOP.12 XM553

Westland Dragonfly HR.5 WH991

 

Cold War

BAC Jet Provost T.4 XP640

Blackburn Buccaneer S.2 XN974

Blackburn Buccaneer S.2B XX901

British Aerospace Harrier GR.3 XV748

British Aerospace Nimrod MR.2 XV250

Dassault Mirage IIIE 538

Dassault Mirage IVA 45/BR

English Electric Canberra T.4 WH846

English Electric Lightning F.6 XS903 which arrived during June 1988.

Fairey Gannet AEW.3 XL502

Gloster Javelin FAW.9 XH767

Handley Page Victor K.2 XL231

Hawker Hunter FGA.78 QA10

Hawker Hunter T.7 XL572

Panavia Tornado GR.1 ZA354

Panavia Tornado GR.4 XZ631

 

Ground vehicles

Second World War

Thompson Brothers Aircraft Refueller

1938 Ford Model E

1940 "Tilly" Standard 12 hp Mkl RAF Utility Vehicle

1941 Chevrolet 4x4 CMP

1942 Austin K2 NAAFI Wagon

1942 Thornycroft ‘Amazon’ Coles Crane

 

Cold War

1947 Commer one and a half deck airport coach

1949 Citroen 11BL

1948 David Brown VIG.2 Aircraft Tractor

1949 David Brown VIG.3 Aircraft Tractor

1951 David Brown GP Airfield Tractor

1953 Alvis Saracen 12ton APC

1953 Austin Champ Cargo 4x4 General Purpose Vehicle

1956 Green Goddess Self Propelled Pump

1958 Commer Q4 Bikini Fire Pump Unit

1958 Lansing Aircraft Carrier Type Tug

1959 Daimler Ferret ASC MK.2/3/7

1966 Chieftain Main Battle Tank

1970 Douglas P3 nuclear aircraft 25 tonne tug

1971 Pathfinder Fire Engine 35ton (ex. Manchester Airport)

1972 TACR2 Range Rover - 6 wheeled fast response fire unit

1974 GMC 6 wheeled fast response airfield fire truck

1976 Dennis Mercury 17.5 tonne aircraft tug

Pathfinder Fire Engine

Description:

 

The high quality of the cosmetic powder brush allows you to apply product more evenly, giving you a beautiful look. With elaborate manufacture process, the profession petal shaped multifunction cosmetic powder brush are so luxury for women. You can use them to make up relieved because of the disinfected process. Every cosmetic powder brush can make its own different affection. Using cheap powder brush in the right way, you can make yourself more and more beautiful and noble. Using the makeup brush gives you a daily massage every time you apply your makeup.

 

Features:

 

* Total Length: 6.5cm/2.6in

* Hair Length: 3.5cm/1.4in

* Diameter : 5cm/2in

* Material: Persian hair

 

Specifications:

 

* The makeup brush is easy to carry and use

* High-quality makeup brush is an essential for the professional artist

* Makeup brush is the most important beauty tool

* Makeup brush is made for easy and flawless makeup applications

* It makes you feel good knowing that you are the best

* Using the beauty makeup brush gives you a daily massage every time you apply your makeup

* Because the quality is good, the beauty brush is perfect for individuals with normal to sensitive skin and will not irritate you

 

Package Included:

 

1 x Powder Brush

  

www.casesinthebox.com/profession-petal-shaped-multifuncti...

Graham Harwood (UK), Matsuko Yokokoji (JP).

 

A coal-fired boiler powers a network of computers exploring the relationships between power and media. Coal Fired Computers explores the ecologies that have created and maintained power, and the subsequent health residues and crisis of fuelling that power. The work responds to the displacement of coal production to distant India, China or Vietnam and our industrial heritage, in particular the work of Charles Parsons whose steam turbine is used to produce 40% of today’s electricity. In many countries this rate is much higher (more than 70% in India and China).

 

According to the World Health Organization, 318.000 deaths occur annually from chronic bronchitis and emphysema caused by exposure to coal dust. The common perception is that wealthy countries have put this all behind them, displacing coal dust into the lungs of unrecorded, unknown miners in distant lands, coal returning in our lives in the form of cheap and apparently clean goods we consume.

 

Coal fired energy not only powers our computers here in Europe, but is integral to the production of the 300.000.000 computers made each year. 81% of the energy used in a computer’s life cycle is expended in the manufacturing process, now taking place in countries with high levels of coal consumption.

 

yoha.co.uk/cfc

 

www.artefact-festival.be/2011/

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

GL Mustang series. I added the convertible to this piece. Notice that big ass scratch across the windshield that sucks. Must have happen during the manufacturing process.

Grey Eagle - Hypersonic Bomber Mach 8 - 10, IO Aircraft www.ioaircraft.com

Length: 150'

Span: 71'

Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle)

1 Air Breathing Aerospike

 

Fuel: Kero / Hydrogen

Payload: Up 36 2,000 LBS JDAM's, or 80,000 LBS

Range: 10,000nm + Aerial Refueling Capable

www.ioaircraft.com/hypersonic.php

 

-----------------------------

hypersonic bomber, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjetdefense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, air force of science and research,

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.

 

Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.

 

Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.

 

Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.

YTONG has been successfully developed and implemented a building system for more than 80 years, been used in residential and commercial applications.

 

The short- and long-term benefits of these systems are realized by owners, developers, designers and contractors. The benefits are achieved by the various material properties and methods that are associated with the established approach to construction.

 

For the Owner

One of the main benefits of YTONG is safety. An owner using YTONG Blocks creates a sound, functional and safe building. Another benefit of the YTONG Building System is versatility. YTONG can provide many architectural features that will enhance and project a unique architectural image for the building and its owner. YTONG construction is insect and termite proof. Therefore, the need for expensive insect and pest treatment as well as long term maintenance costs will be greatly reduced. Furthermore, the superior thermal properties associated with all of the YTONG products will translate into increased energy savings.

 

For the Developer

The cost savings realized when using YTONG products, mainly related to the shorter construction time, will be dramatic. The advantages of YTONG include low maintenance costs, good sound insulation and excellent thermal insulation. It easily meets energy codes.

 

For the Designer

Creative designs cannot be realized without the use of a highly adaptable construction material. YTONG can be adapted to suit most architectural designs while still providing a simple construction system that can meet all load requirements.

 

For the Contractor

Buildings can be constructed quickly and safely using YTONG building systems. The product itself is lightweight; therefore easily handled. YTONG's workability (e.g. anchoring, routing, and drilling characteristics) is well developed and can be easily performed. YTONG material also produces less waste. By using the right combination of YTONG products, productivity will be increased. YTONG will reduce the amount of time spent on job sites due to its ease of handling.

 

Conclusion

All these factors relate to cost, time and labor savings for the project.

 

In general, there is no end of advantages when it comes to choosing YTONG's products. We build excellence into everything we make, so that it's as good as it possibly can be.

 

Just look at the 48 product advantages and you will find there is every reason to select them:

 

Build quality

Made to accurate dimensions

CE marked, meeting the latest European Standards

Employs the latest technology

Excellent thermal insulation

Reduces or eliminates the need for additional insulation

Helps to create a comfortable living environment

Provides even temperature range in winter or summer

Distributes moisture throughout the building

Excellent sound insulation

Fire resistant

Class [A1] surface spread of flame

Fast to build with

Great productivity benefits from YTONG products

YTONG Panels are quick to lay

Versatile

Accepts a wide range of finishes

Multi-purpose - use to build the entire dwelling

Adaptable for use in innovative designs

Easy to alter during or after the build process

User-friendly

Easy to fix to

Can hold heavy fixings or loadings

Easy to work using simple hand tools

Maintenance-free

Easy to achieve airtight construction

Shrink-wrapped for protection and cleanliness

Delivered on pallets for easy movement and storage

Lightweight

Easy to transport

Less than half the weight of the equivalent aggregate block

Reduces the building load in high rise construction

Enables wider spans in beam and block floors

Strong

Load-bearing

Robust and Durable

Low wear and tear

Water-resistant

Frost-resistant

Does not rot or decay

Excellent impact (ballistic) resistance

Environmentally friendly

Easy to cut, reducing on-site waste

Recyclable as aggregates

Low embodied energy

Lightweight means more can be delivered at once, reducing journeys

Improves EcoHomes ratings

Most production waste material is recycled back into the manufacturing process

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

1 2 ••• 26 27 29 31 32 ••• 79 80