View allAll Photos Tagged Iteration
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.
More Info: www.ioaircraft.com/hypersonic/raven-business.php
Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.
#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane
This image is an iteration of a third test of additive color. This test attempts to determine whether luminance provided to a surface by a light source can affect additive color.
Setup: A large rectangle of black velvet was laid flat on the floor, and three identical rectangles of white ("snowcap") cardstock were laid on top of the velvet. The camera shutter was opened. An external flash unit with a red gel was fired 2 times from a height of approximately 30 inches. One rectangle (sheet) was removed. The flash was fired 2 times again. A second sheet was removed. The flash was fired 2 times again and the third sheet was removed. The camera shutter was closed.
The sheet that appears to be on the bottom of the pile, the darkest sheet, was actually on top and the first one to be removed after 2 flashes of the strobe. The middle sheet was the second one removed after 4 flashes. The bottom sheet, with 6 flashes, is the brightest one. The edges of sheet are visible as shadow lines on the sheets underneath them.
The two brightest sheets in this image are brighter than all the sheets in the previous image.
The added light should provide more colors for light painting.
Gels used were Rogue Lighting Filters Bright Red (f-stop loss 3 1/2). The flash unit used was a Yongnuo YN-568EX II 4-Channel TTL Flash Speedlite for Canon E-TTL/E-TTL II Cameras. A flash unit was used to provide more control over the amount of light to be supplied. Its output is more measurable and repeatable than a flashlight timed by a human.
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
Fractal type:julia
Plot size (w,h):2210,2210
Maximum iterations:31000
Center Point (real, imaginary):-6.2981e-07,6.2981e-07 i
Plot Width (real):0.000398
Julia origin (real, imaginary):0.269338890712615,0.4865410849613818 i
Source mandelbrot width:8E-11
Color scheme name:Colorcode
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
Introducing the Iommian 7th iteration i-Fighter, codename: SPiNNER.
Features a control pod that rotates on the z-axis to keep the pilot stable while the fighter rolls or spins (pointless in space but it looks cool). The propulsion ring features almost 320 degrees of directional vectoring for extreme maneuverablity. Fighter operations controlled by two blue touch screens. Droid socket fits standard R2 unit (pictured here with R2-P3). Armaments include: 2 proton torpedo launchers (4 torpedoes each) and 4 laser cannons. The i-Fighter is not equipped with any kind of landing-gear, instead it relies on its repulsorlift generator to keep it hovering above the landing surface.
Built for the 2011 FBTB Alphabet Fighter Contest.
This image is an iteration of a third test of additive color. This test attempts to determine whether luminance provided to a surface by a light source can affect additive color.
Setup: A large rectangle of black velvet was laid flat on the floor, and three identical rectangles of white ("snowcap") cardstock were laid on top of the velvet. The camera shutter was opened. An external flash unit with a green gel was fired 2 times from a height of approximately 30 inches. One rectangle (sheet) was removed. The flash was fired 2 times again. A second sheet was removed. The flash was fired 2 times again and the third sheet was removed. The camera shutter was closed.
The sheet that appears to be on the bottom of the pile, the darkest sheet, was actually on top and the first one to be removed after one flash of the strobe. The middle sheet was the second one removed after two flashes. The bottom sheet, with three flashes, is the brightest one. The edges of sheet are visible as shadow lines on the sheets underneath them.
The two brightest sheets in this image are brighter than all the sheets in the previous image.
The added light should provide more colors for light painting.
The gel used was Rogue Lighting Filters Moss Green (f-stop loss 1 1/2). The flash unit used was a Yongnuo YN-568EX II 4-Channel TTL Flash Speedlite for Canon E-TTL/E-TTL II Cameras. A flash unit was used to provide more control over the amount of light to be supplied. Its output is more measurable and repeatable than a flashlight timed by a human.
The 1927 iteration of the tube map.
Frederick H Stingemore was the last designer to show the tube network in a geographical format. Stingemore's design showed closed circles for stations, and open circles for interchanges, as well as restoring the Thames (which had been removed from an earlier version).
To celebrate the London Underground's 150th anniversary, TfL commissioned five reproductions of tube maps from different periods, all made in Lego by Duncan Titmarsh, LEGO professional. Each map took approximately 4 days to complete and contained over 1,000 bricks.
The five maps come from different periods of London Undergound's history and were held at different stations over the summer:
1927 - designed by Fred Stingemore - this would be the last iteration of the map as a geographical overlay (at South Kensington)
1933 - Harry Beck's revolutionary design - the tube map became a diagram (at Piccadilly Circus)
1968 - adding the Victoria Line - the first tube line for 50 years (at Green Park)
2013 - the modern tube - the network as it is today (at Stratford)
2020 - the future view - at the tube will look in 2020 (at King's Cross)
Early preview (Iteration 3) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 210 Passenger Hypersonic Plane - Iteration 2
Seating: 210 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 2
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Iteration 3
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
Canopy / Cockpit Configuration Preview (Iteration 5, Included VTOL Inlet Doors and Inlet Ducts) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
www.ioaircraft.com/hypersonic/ranger.php
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
glide breaker, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
*******************************************************************************
This image and its name are protected under copyright. All
their rights are my own property. Any download, copy,
duplication, edition, modification, printing, resale is prohibited.
*******************************************************************************
Computed from the Jerusalem cube deformation.
Menger sponge
From Wikipedia, the free encyclopedia
An illustration of M4, the sponge after four iterations of the construction process
In mathematics, the Menger sponge (also known as the Menger cube, Menger universal curve, Sierpinski cube, or Sierpinski sponge)[1][2][3] is a fractal curve. It is a three-dimensional generalization of the one-dimensional Cantor set and two-dimensional Sierpinski carpet. It was first described by Karl Menger in 1926, in his studies of the concept of topological dimension.[4][5]
Construction
The construction of a Menger sponge can be described as follows:
Begin with a cube.
Divide every face of the cube into nine squares, like a Rubik's Cube. This sub-divides the cube into 27 smaller cubes.
Remove the smaller cube in the middle of each face, and remove the smaller cube in the center of the more giant cube, leaving 20 smaller cubes. This is a level-1 Menger sponge (resembling a void cube).
Repeat steps two and three for each of the remaining smaller cubes, and continue to iterate ad infinitum.
The second iteration gives a level-2 sponge, the third iteration gives a level-3 sponge, and so on. The Menger sponge itself is the limit of this process after an infinite number of iterations.
An illustration of the iterative construction of a Menger sponge up to M3, the third iteration
Properties
Hexagonal cross-section of a level-4 Menger sponge. (Part of a series of cuts perpendicular to the space diagonal.)
The n nth stage of the Menger sponge, M n M_{n}, is made up of 20 n {\displaystyle 20^{n}} smaller cubes, each with a side length of (1/3)n. The total volume of M n M_{n} is thus ( 20 27 ) n {\textstyle \left({\frac {20}{27}}\right)^{n}}. The total surface area of M n M_{n} is given by the expression 2 ( 20 / 9 ) n + 4 ( 8 / 9 ) n {\displaystyle 2(20/9)^{n}+4(8/9)^{n}}.[6][7] Therefore, the construction's volume approaches zero while its surface area increases without bound. Yet any chosen surface in the construction will be thoroughly punctured as the construction continues so that the limit is neither a solid nor a surface; it has a topological dimension of 1 and is accordingly identified as a curve.
Each face of the construction becomes a Sierpinski carpet, and the intersection of the sponge with any diagonal of the cube or any midline of the faces is a Cantor set. The cross-section of the sponge through its centroid and perpendicular to a space diagonal is a regular hexagon punctured with hexagrams arranged in six-fold symmetry.[8] The number of these hexagrams, in descending size, is given by a n = 9 a n − 1 − 12 a n − 2 {\displaystyle a_{n}=9a_{n-1}-12a_{n-2}}, with a 0 = 1 , a 1 = 6 {\displaystyle a_{0}=1,\ a_{1}=6}.[9]
The sponge's Hausdorff dimension is log 20/log 3 ≅ 2.727. The Lebesgue covering dimension of the Menger sponge is one, the same as any curve. Menger showed, in the 1926 construction, that the sponge is a universal curve, in that every curve is homeomorphic to a subset of the Menger sponge, where a curve means any compact metric space of Lebesgue covering dimension one; this includes trees and graphs with an arbitrary countable number of edges, vertices and closed loops, connected in arbitrary ways. Similarly, the Sierpinski carpet is a universal curve for all curves that can be drawn on the two-dimensional plane. The Menger sponge constructed in three dimensions extends this idea to graphs that are not planar and might be embedded in any number of dimensions.
The Menger sponge is a closed set; since it is also bounded, the Heine–Borel theorem implies that it is compact. It has Lebesgue measure 0. Because it contains continuous paths, it is an uncountable set.
Experiments also showed that cubes with a Menger sponge structure could dissipate shocks five times better for the same material than cubes without any pores.[10]
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
Iteration 6 (Iteration 6, Included VTOL Cockpit Description, Inlet Doors and Inlet Ducts) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
www.ioaircraft.com/hypersonic/ranger.php
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (7,000+ non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
glide breaker, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Another iteration of the bathroom counter faceplate clip. Clipped and unclipped.
Unfortunately, when I mounted this iteration the inner walls were too thin and the oval knobs sheared off. I had hollowed them out from the bottom as was done in the original injection-molded part.
Apparently, this is not an injection molding process.
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
Ciji and I wrestling... we were the only girls at the neighbor gathering... so we wrestled each other. I beat her 3 out of 4 times... she got me once with the left arm. It was a good time! My paint ran because I had put on both of Ciji's wigs...
Photo by Kiff.
Another iteration of my Amtrak ridership map -- I had a request for a version centered on Pennsylvania, where the Pennsylvanian to Pittsburgh is threatened (I think all state-supported "corridor" routes are losing federal subsidies).
It looks like I haven't yet input data for stations between New Haven and Boston on the NEC...
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 210 Passenger Hypersonic Plane - Iteration 2
Seating: 210 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 2
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
To add:
* Clean up cords
* Wall wart hiding box on floor
* attach a slide out platform (from old desk) on the bottom shelf for the keyboard, need more distance
*******************************************************************************
This image and its name are protected under copyright. All
their rights are my own property. Any download, copy,
duplication, edition, modification, printing, resale is prohibited.
*******************************************************************************
Menger torus, computed from the deformations and copies of eight Menger cylinders.
~10M vertices
~15M triangles
The 1927 iteration of the tube map.
Frederick H Stingemore was the last designer to show the tube network in a geographical format. Stingemore's design showed closed circles for stations, and open circles for interchanges, as well as restoring the Thames (which had been removed from an earlier version).
To celebrate the London Underground's 150th anniversary, TfL commissioned five reproductions of tube maps from different periods, all made in Lego by Duncan Titmarsh, LEGO professional. Each map took approximately 4 days to complete and contained over 1,000 bricks.
The five maps come from different periods of London Undergound's history and were held at different stations over the summer:
1927 - designed by Fred Stingemore - this would be the last iteration of the map as a geographical overlay (at South Kensington)
1933 - Harry Beck's revolutionary design - the tube map became a diagram (at Piccadilly Circus)
1968 - adding the Victoria Line - the first tube line for 50 years (at Green Park)
2013 - the modern tube - the network as it is today (at Stratford)
2020 - the future view - at the tube will look in 2020 (at King's Cross)
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
Rota (Iteration I)
2018
20 x 26.75 inches (508 x 680 millimeters)
Archival inkjet print on paper
© 2018 Tony DeVarco & Mayako Nakamura
Rota (Iteration II)
2018
20 x 26.75 inches (508 x 680 millimeters))
Acrylic, charcoal, pastel, pencil on archival digital print on paper
© 2018 Tony DeVarco & Mayako Nakamura
Part of the new series Bonnie DeVarco is calling "Figure | Ground" in collaboration with the Japanese Artist Mayako Nakamura.
Mayako Nakamura's Flickr site: www.flickr.com/photos/ma85/
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
The final iteration of the P5 appeared in September 1967. Now powered by the 3,528-cubic-centimetre (215.3 cu in) Rover V8 engine also used in the 3500, the car was badged as the "3.5 Litre", and commonly known as the 3½ Litre. The final letter in the "P5B" model name came from Buick, the engine's originator. Rover did not have the budget to develop a new engine, hence they chose to redevelop the lightweight aluminium engine available from Buick.
Output of 160 hp (120 kW) was claimed along with improved torque. When introduced in 1967 the Buick designed V8 produced 160 PS (118 kW; 158 hp) at 5,200 rpm and 210 lb⋅ft (280 N⋅m) of torque at 2,600 rpm.
The exterior was mostly unchanged, apart from bold '3.5 Litre' badging, a pair of fog lights which were added below the head lights, creating a striking 4 light array, and the fitting of chrome Rostyle wheels with black painted inserts. The P5B existed as both the 4-door coupé and saloon body style until end of production. Production ended in 1973, by when 9,099 coupés and 11,501 saloons had been built.
The 3½ Litre saloon variant was a favourite of high-ranking Government Ministers, and served as Prime Ministerial transport for Harold Wilson, Edward Heath, James Callaghan and Margaret Thatcher. As testament to their suitability, the last batch of P5Bs to roll off the Rover line in June 1973 was purchased by the British government and placed in storage, to be released for government use as required.
As for most of the models built his November, the Rover P5B 3.5 Litre is a major redesign of a previously created model. In LUGNuts there was a build challenge named 'Redo or Redemption' just for this type of build.
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
This image is an iteration of a third test of additive color. This test attempts to determine whether luminance provided to a surface by a light source can affect additive color.
Setup: A large rectangle of black velvet was laid flat on the floor, and three identical rectangles of white ("snowcap") cardstock were laid on top of the velvet. The camera shutter was opened. An external flash unit with a blue gel was fired once from a height of approximately 30 inches. One rectangle (sheet) was removed. The flash was fired again. A second sheet was removed. The flash was fired for a third time and the third sheet was removed. The camera shutter was closed.
The sheet that appears to be on the bottom of the pile, the darkest sheet, was actually on top and the first one to be removed after one flash of the strobe. The middle sheet was the second one removed after two flashes. The bottom sheet, with three flashes, is the brightest one. The edges of sheet are visible as shadow lines on the sheets underneath them.
The added light should provide more colors for light painting.
The gel used was Rogue Lighting Filters Just Blue (f-stop loss 2 1/3). The flash unit used was a Yongnuo YN-568EX II 4-Channel TTL Flash Speedlite for Canon E-TTL/E-TTL II Cameras. A flash unit was used to provide more control over the amount of light to be supplied. Its output is more measurable and repeatable than a flashlight timed by a human.
Lightful Eddy (Iteration I)
2017
20 x 26.75 inches (508 x 680 millimeters)
Archival inkjet print on paper
© 2017 Tony DeVarco and Mayako Nakamura
Lightful Eddy (Iteration II)
2017
20 x 26.75 inches (508 x 680 millimeters)
Acrylic, charcoal, pastel, pencil on archival digital print on paper
© 2017 Tony DeVarco and Mayako Nakamura
Part of the new series Bonnie DeVarco is calling "Figure | Ground" in collaboration with the Japanese Artist Mayako Nakamura.
Mayako Nakamura's Flickr site: www.flickr.com/photos/ma85/