View allAll Photos Tagged Injector
The estrogen levels have been extremely poor, so Clio made moves to switch to injectable estrogen, which is safer and more effective. And today is the first day she can finally inject! Clio wanted to get help, so we went over to Puppy's and Clio got drunk before being able to handle her first injection. It ended up taking her a couple weeks to learn to do them herself. Clio is not crazy about needles!
NEEDLE GEEKERY: (Imagine this read in the voice of William S. Burroughs.) We do our injections every 5 days, aiming for 7mg of estradiol valerate. That means injecting .35mL, given that our concentration is 20mg/ml. We do intramuscular (IM) injections in the thigh, with a mere 1.0" needle, instead of the recommended 1.5" needle. We get away with the smaller needle due to being slim.
First, we wash our hands in the sink, all fancy-like. Then we gather all 3 (sometimes 2) needles, a band-aid, an alcohol swab, and open *everything* up. Then we decide where to inject. We use the alcohol swab to swab off the tops of the ampules we going to draw from, as well as the part of our body we are going to inject in.
Needle 1 of 3: We inject about 0.4ml air into the ampule to maintain pressure. We draw estrogen using the standard 21g needle that came with our 100-pack of syringes. Lots of air bubbles, as it is suspended in oil, unlike most injectibles that are suspended in water. It's kind of a pain in the ass, and hard to get an exact amount. Especially with the fact that we're going to pop this needle off. Thus, you have to suck what is in the needle tip in, if you don't want to waste the drug you are injecting. It can be like 0.05mL! We pop off our needle.
[Needle 2 of 3: Although we were not currently injecting progesterone at the time of the picture, we later started doing that, so we then would have to pop on a filter needle, because that stuff came from a glass ampule, and you need to draw through a filter needle to ensure that you don't inject microparticles of glass into your muscle, which could give you cysts. We draw our progesterone into the mix, though the amount for P isn't as precise, as it's effects are more indirect, and its price very cheap. But proper injectable progesterone administration requires gluteal injection to last 3.5 days, and just throwing it on top our normal estrogen injection really only keeps us good for 1.0 days. Then, after that, we would pop off the filter needle.]
Needle 3 of 3: We pop on a 25g needle: This is a much thinner, more painless needle. It would be suuuuper annoying to draw through a 25g needle--Like trying to scuba dive using a coffee straw for oxygen. But for injecting in, it's not so bad. It only takes about 5 seconds to inject. Anyway, we pop on an injection needle: 1.0" for IM injection, 1.5" if doing gluteal injection. We shove the needle in. We only aspirate and pull out to check for blood for gluteal injections; for IM thigh injections, it's so statistically unlikely, that we choose not to worry about it. The biggest consequence would be ruining a few day's supply of estrogen. We inject the stuff, and not too fast. We wait a few seconds. We pull the needle out. We grab a band-aid and put it on, occasionally re-using the alcohol swab from earlier, if things get bloody. We dispose of the sharps & blood in a sealable container, drop the rest in the recycle bin, and put everything back into our kit boxes.
Transition Progress at this point: On hormones since 8/1 (4.75 months). Dosage doubled for 1.75 months, which brought T down to 19. But E was still a miserably low 50. So Clio started injections today! Full-time female since 9/15 (3 months). Publicly out as trans since 10/11 (2.5 months). Legally female, federally, since 12/21 (1 day). Boobs sore/growing since 9/4 (3.5 months). Had seen endo/primary therapist 5X, and secondary therapists 8X. Weight down to 142lbs (55 down from 197). Hair removal includes 25 electrolysis treatments totaling 19.25 hours; 27 laser hair removal sessions (45 area treatments: 14/13/12/10 mouth/goatee/face/neck, 7 leg/chest/armpit, 5 Brazilian/ear); and bi-weekly at-home IPL on arms since 6/17 (6 months). Latisse for eyelash lengthening since 4/17 (8 months). 2 dental implants. Pierced ears. Dyed/layered hair (no haircuts since 1/2015--2.75yrs). Female wardrobe replacement was up to 419 items. Total transition expenditures were over $13,000 at this point.
Delestrogen, estradiol, estradiol valerate, injectable estrogen, injection needles, supplies, syringes.
HRT. LuerLok. trans. trans milestone.
upstairs, Clio and Carolyn's house, Alexandria, Virginia.
December 22, 2017.
... Read my blog at clintjcl at wordpress dot com
... Read Carolyn's blog at CarolynCASLat wordpress dot com
354 Hemi with Inglese sidedraft induction.
Owner: Bill Yorker of Canton CT.
Playing Now: Lady Run Lady Hide - April Wine
Photographed @ the 2015 18th Annual Goodguys PPG Nationals in Columbus, Ohio.
COPYRIGHT NOTICE: © 2015 Mark O'Grady Digital Studio\MOSpeed Images. All photographs displayed with the Mark O'Grady/Mark O'Grady Digital Studio/MOSpeed Images logo(s) are protected by Canadian, United States of America and International copyright laws unless stated otherwise. The photos on this website are not stock and may not be used for manipulations, references, blogs, journals, share sites, etc. They are intended for the private use of the viewer and may not be published or reposted in any form without the prior consent of its owner Mark O’Grady/MOSpeed Images Group LLC.
Bonhams , les grandes marques du monde au Grand Palais 2019
Châssis N° 30837S111365
Moteur N° 3111365 F0305RF
•V8 culbuté à soupapes en tête, 327 cid (5 358 cm3)
•Injection mécanique Rochester
•arbre à cames à culbuteurs
•Rare et recherché modèle « Fuelie »
•360 ch à 6 000 tr/min
•Transmission manuelle à 4 rapports
•Suspension indépendante à ressorts hélicoïdaux
•Suspension arrière indépendante à ressort à lames transversal
•Freins à tambour aux quatre roues
Le directeur du style GM, Bill Mitchell, avait engagé Peter Brock et Larry Shinoda pour l'habiller d'une carrosserie Sting Ray spécifique et immédiatement reconnaissable. Avec une ceinture de caisse profondément marquée sous les ailes joliment courbées, elle avait des phares escamotables actionnés électriquement qui préservait ses qualités aérodynamiques.
doté du moteur à culbuteurs L84 327/360 ch, de la transmission manuelle à 4 rapports M20, des roues en alliage à blocage central, d'une radio AM à chercheur de fréquence et du différentiel Posi-Traction 3,73:1.
Le bloc moteur est estampillé des numéros de châssis et de moteur conformes à la configuration du 327/360 ch à injection mécanique Rochester alimentée en air par un collecteur d'admission Winters « snowflake » (un flocon est gravé dans la fonte).
Malgré un surcoût de 430,40 $, les clients de Corvette 1963 achetèrent 2 610 L84, soit 12,1% de la production totale de la Corvette 1963, en principe équipée de la transmission manuelle à 4 rapports facturée, elle, 180,30 $.
UNICEF CAR, in collaboration with the Ministry of Health, UNFPA and WHO, officially launched their 2008 Mother and Child Survival Campaign.
The first stage has allowed the vaccination of approximately 700,000 reproductive aged women against Tetanus – CAR’s seventh most deadly disease. The neonatal form in particular leads to death in the vast majority of infants.
Credits: Pierre Holtz for UNICEF | www.hdptcar.net
Selfheal can be seen creeping through the short turf of a grassland or the uncut grass of a woodland clearing or roadside verge; it can even pop up in lawns that haven't been treated with chemicals. Its clusters of violet flowers appear from June to October and provide a nectar source for bees and wasps.
Selfheal is a low-growing, perennial herb with paired, oval leaves and bluish or violet flowers that appear in dense, oblong clusters on the top of its stems. The purple-tinged seedhead remains after flowering.
Culpepper says 'it is an especial herb for inward or outward wounds. Take it inwardly in syrups for inward wounds, outwardly in unguents and plasters for outward. As Self-Heal is like Bugle in form, so also in the qualities and virtues, serving for all purposes, whereunto Bugle is applied with good success either inwardly or outwardly, for inward wounds or ulcers in the body, for bruises or falls and hurts. If it be combined with Bugle, Sanicle and other like wound herbs, it will be more effectual to wash and inject into ulcers in the parts outwardly.... It is an especial remedy for all green wounds to close the lips of them and to keep the place from further inconveniences. The juice used with oil of roses to annoint the temples and forehead is very effectual to remove the headache, and the same mixed with honey of roses cleaneth and healeth ulcers in the mouth and throat.'
Homeless addicts prepare and inject heroin under a flyover, New Delhi, India.
Until a few years ago, urban poverty, whilst being starkly visible to the policy makers in India, received far less attention from the Indian government than rural poverty, both in terms of range of intervention and the scale of financial outlay. Despite evidence of burgeoning urban population, fuelled by distress migration that followed the new economic policies during early Nineties, it remained an area of significant and persistent neglect from public policy.
In March of the year 2000, a group of young people and committed social workers, with support from ActionAid India, came together under the banner of ‘Aashray Adhikar Abhiyan (AAA)’ . The initiative is set to stop exploitation and marginalization of the homeless people in Delhi, with the aim to empower, mobilise and strengthen the capacity of the homeless so that they can assert their rights and live with honour and dignity.
Aashray Adhikar Abhiyan runs 12 regular shelters in buildings provided by the Delhi government. 7 of these shelters are run on ‘pay to use’ basis while 5 are being run without any user fee.
Other work done by AAA during 2010:
A free legal aid mechanism at Delhi Beggars Court was set up to provide legal aid to the inmates arrested under Bombay Prevention of Begging Act.
Education for homeless children:
Twelve homeless children completed their 6 years of formal education from MCD Schools (state supported school). This group of children is based at Fatehpuri shelter where they are supported with 24 hour shelter, food, tuition, counselling and recreation etc. The direct cost of education (e.g text books etc.) was covered by the State but the other expenses of education like school uniforms, clothing, food, and, healthcare etc. are being covered by donors recruited by AAA.
The Health Intervention Group for Homeless (HIGH)
This clinic has been providing health care to the homeless on every Monday and Thursday evening in Jama Masjid area. Through this clinic, more than 3000 homeless patients got free treatment, and 12 severely mentally ill homeless patients were referred to the exclusive Jama Masjijd clinic. Homeless people are also trained as health support workers to provide their services as care workers to patients at various hospitals.
The Chemical Dependents meeting.
This drug users meeting is organised at Urdu Park and Jama Masjid on every Wednesday evening, and at Fountain Chowk shelter on every Friday evening. From these sessions the patients get referred to the Health Intervention Group for Homeless clinic (HIGH). Continued attendance to these meetings is mandatory for those patients referred and treated at the HIGH clinic.
Photo: Stuart Freedman/ActionAid
©2011 Stuart Freedman
Unique ID: Diab023..Caption: White female Community Diabetes Nurse Specialist showing a white female person with diabetes how to use a pen for injecting..Restrictions: NHS Photo Library – for use in NHS, local authority social care services and Department of Health material only..Copyright: ©Crown Copyright
Unique ID: Diab014..Caption: White female Community Diabetes Nurse Specialist showing a white female person with diabetes how to use a pen for injecting and explaining how people with diabetes use insulin to control sugar levels..Restrictions: NHS Photo Library – for use in NHS, local authority social care services and Department of Health material only..Copyright: ©Crown Copyright
PictionID:53766368 - Catalog:14_031602 - Title:GD/Astronautics Details: Site-1; Missile 9D-Injector Plate Date: 08/20/1959 - Filename:14_031602.TIF - Images from the Convair/General Dynamics Astronautics Atlas Negative Collection. The processing, cataloging and digitization of these images has been made possible by a generous National Historical Publications and Records grant from the National Archives and Records Administration---Please Tag these images so that the information can be permanently stored with the digital file.---Repository: San Diego Air and Space Museum
Injected Boss 429 engine for motivation. At the Inaugural Gear Jam nostalgia drags and car show, Atlanta Dragway, Commerce, GA, on September 28, 2013.
Removed the Eaton M45 housing to replace the supercharger coupling. I need to wait for it, but wanted to inspect the gears (which look absolutely fine!)
"...An injector plate like this one was part of the SM [Service Module] engine. The fuel injector is designed to distribute the liquid fuels into the engine's compustion chamber at the right mixture ratio, pressure, and spray pattern to initiate and sustain combustion to provide thrust."
(These museum displays are not only behind plexiglass to make strange reflections in my shots, but the lighting was funky, to say the least. :) I got some great practice editing as much of that out as I could.)
CARMINE INFANTINO
Flash 137
Carmine Infantino
BornMay 24, 1925
NationalityAmerican
Area(s) Penciller, Editor
Notable works Flash (Barry Allen)
Awards National Cartoonists Society Award, various Alley awards
Carmine Infantino (born May 24, 1925) is an American comic book artist and editor who was a major force in the Silver Age of Comic Books. He was inducted into the Comic Book Hall of Fame in 2000.
Early life and career
Carmine Infantino was born in Brooklyn, New York City.
He attended Public Schools 75 and 85 in Brooklyn before going on the High School of Industrial Arts (now the High School of Art and Design) in Manhattan. During his freshman year of high school, Infantino began working for the quirkily named Harry "A" Chesler, whose studio was one of a handful of comic-book "packagers" who created complete comics for publishers looking to enter the emerging field in the 1930s-1940s Golden Age of Comic Books. As Infantino recalled
“I used to go around as a youngster into companies, go in and try to meet people -- nothing ever happened. One day I went to this place on 23rd Street, this old broken-down warehouse, and I met Harry Chesler. Now, I was told he was a mean guy and he used people and he took artists. But he was very sweet to me. He said, 'Look, kid. You come up here, I'll give you a dollar a day, just study art, learn, and grow.' That was damn nice of him, I thought. He did that for me for a whole summer.”
Infantino, who also attended night classes at the Art Students League, became an art assistant at Quality Comics the following summer. Later, at Timely Comics, the Golden Age precursor of Marvel, Infantino got his first job drawing comics. With friend and high-school classmate Frank Giacoia penciling, Infanto inked the debut of the feature "Jack Frost" in USA Comics #1 (Aug. 1941). Infantino would eventually work for several publishers during the decade, drawing Airboy and the Heap for Hillman Periodicals; working for packager Jack Binder, who supplied Fawcett Comics; briefly at Holyoke; then landing at DC Comics, where he became a regular atist of the Golden Age Flash, Black Canary, Green Lantern and Justice Society of America.
During the 1950s, Infantino freelanced for Joe Simon and Jack Kirby's company, Prize Comics, drawing the series Charlie Chan, which in particular shows the influence both of Kirby's and Milton Caniff's art styles. Back at DC, during a lull in the popularity of superheroes, Infantino drew Westerns, mysteries, science fiction comics. As his style evolved, he began to shed both the Kirbyisms and the gritty shading of Caniff, and develop a clean, linear style.
The Silver Age
In 1956, DC editor Julius Schwartz assigned writer Robert Kanigher and artist Infantino to the company's first attempt at reviving superheroes: an updated version of the Flash that would appear in issue #4 (Oct. 1956) of the try-out series Showcase. Infantino designed the now-classic red uniform with yellow detail, striving to keep the costume as streamlined as possible, and he drew on his design abilities to create a new visual language to depict the Flash's speed, making the figure a red and yellow blur. The eventual success of the new, science-fictiony Flash heralded the wholesale return of superheroes, and the beginning of what fans and historians call the Silver Age of comics.
Showcase #4 (Oct. 1956): The Silver Age starts. Art by Carmine Infantino and Joe Kubert.
Infantino continued to work for Schwartz in his other features and titles, most notably "Adam Strange" in Strange Adventures, replacing Mike Sekowsky. In 1964, Schwartz was made responsible for reviving the faded Batman titles. Writer John Broome and artist Infantino jettisoned the sillier aspects that had crept into the series (such as (Ace the Bathound, and Bat-Mite) and gave the "New Look" Batman and Robin a more detective-oriented direction and sleeker draftsmanship that proved a hit combination. Other features and characters Infantino drew at DC include "The Space Museum", and Elongated Man
For his work in this period, he tied for the 1958 National Cartoonists Society award for the Comic Book Division.
After Wilson McCoy, the artist of The Phantom comic strip, died, Infantino finished one of his last stories. Infantino was a candidate for taking over the Phantom Sunday strip after McCoy's death, but the job was instead given to Sy Barry.
DC Comics editorial director
In 1967, Infantino was tasked with designing covers for the entire DC line. When DC was sold to Kinney National Company, Infantino was promoted to editorial director. He started by hiring new talent, and promoting artists to editorial positions. He hired Dick Giordano away from Charlton Comics, and made artists Joe Orlando, Joe Kubert and Mike Sekowsky editors. New talents such as Neal Adams and Denny O'Neil were injected into the company.
Infantino was made publisher in 1971, during a time of declining circulation for DC's comics. Infantino attempted a number of changes, including the launch of starting several new titles. Older characters including Green Lantern, Green Arrow, Superman, Wonder Woman and, again, Batman were revamped to mixed results.
The same year he was made publisher, Infantino scored a major coup in signing on Marvel Comics' star artist, Jack Kirby. Beginning with Jimmy Olsen, Kirby created his Fourth World saga that wove through that existing title and three new series he created. With sales of his comics landing below expectations, however, the titles were eventually canceled and a few years later Kirby went back to working at Marvel Comics.
In an effort to raise revenue, Infantino raised the cover price of DC's comics from 15 to 25 cents, simultaneously raising the page count by adding reprints and new backup features. Marvel met the price increase, then dropped back to 20 cents; Infantino stayed at 25 cents, a decision that ultimately proved bad for over-all sales.
After working with writer Mario Puzo on the Superman movie, Infantino collaborated with Marvel on the historic company-crossover publication Superman vs. Spider-Man. Yet before sales on that hit book had been recorded, Warner Communications replaced Infantino with Jenette Kahn, a person new to the comics field. Mr. Infantino returned to drawing freelance.
Later career
Infantino later drew for a number of titles for Warren Publishing and Marvel, including the latter's Star Wars, Spider-Woman, and Nova. In the 1980s, he again drew the Flash for DC. As of 2005, Infantino is retired, although he is often a guest at comic book conventions. Vanguard Productions published his autobiography The Amazing World of Carmine Infantino (ISBN 1-887591-12-5).
Awards
Infantino's awards include:
*1958 National Cartoonists Society Award, Best Comic Book
*1961 Alley Award, Best Single Issue: The Flash #123 (with Gardner Fox)
*1961 Alley Award, Best Story: "Flash of Two Worlds", The Flash #123 (with Gardner Fox)
*1961 Alley Award, Best Artist
*1962 Alley Award, Best Book-Length Story: "The Planet that Came to a Standstill!", Mystery in Space #75 (with Gardner Fox)
*1962 Alley Award, Best Pencil Artist
*1963 Alley Award, Best Artist
*1964 Alley Award, Best Short Story: "Doorway to the Unknown", The Flash #148 (with John Broome)
*1964 Alley Award, Best Pencil Artist
*1964 Alley Award, Best Comic Book Cover (Detective Comics #329 with Murphy Anderson)
*1967 Alley Award, Best Full-Length Story: "Who's Been Lying in My Grave?", Strange Adventures #205 (with Arnold Drake)
*1967 Alley Award, Best New Strip: "Deadman" in Strange Adventures (with Arnold Drake)
*1969 special Alley Award for being the person "who exemplifies the spirit of innovation and inventiveness in the field of comic art"
Categories: | American comics artists | Batman artists | Comic book editors | DC Comics executives | Flash (comics) artists |
It would seem that Lichtenstein was even less original than many of his existing detractors had thought.
Although Lichtenstein had been using comic book imagery in his paintings since 1957, he did not do large canvases reproducing single comic strip panels featuring speech balloons until he painted Look Mickey in the summer of 1961 4 months after he had, by his own admission, seen Warhol's canvases. Warhol had been painting single comic strip panels featuring speech balloons since 1960 - a year earlier than Lichtenstein. It is possible that Lichtenstein, as Warhol suspected, had seen Warhol's paintings at Bonwit Teller, although Lichtenstein never mentioned it in interviews. In any case, Lichtenstein admitted having seen Warhol's cartoon paintings prior to doing his own single panel comic strip paintings featuring speech balloons (Look Mickey) and it is possible he was influenced by Warhol's work.
www.flickr.com/photos/deconstructing-roy-lichtenstein/395...
www.warholstars.org/warhol1/11roylichtenstein.html
ROY LICHTENSTEIN
The first time that Warhol's large canvases of comic strip characters were exhibited publicly was in April 1961 as part of a window display at the Bonwit Teller department store. Ted Carey discovered afterwards that Roy Lichtenstein was doing similar work.
Ted Carey:
"... I can remember one Saturday afternoon going into Castelli [Gallery], and I was in looking at a show, and Ivan said, 'Oh, I've got something to show you...' so, we went into the closet and he pulled out this big Pop Art painting, and I can't remember what it was, but it was a cartoon-type painting. And I said, 'It looks like Andy Warhol.' and he said, 'No, it's Roy Lichtenstein.' And I said, 'Well it looks very much like some paintings that Andy is doing.' 'Yes, we've heard that Andy is doing some paintings like this,' he said, 'Leo would like to see them. So, tell Andy to give us a call.'"1
When Carey told Warhol of Lichtenstein's paintings, Warhol thought Lichtenstein was copying his ideas.
Ted Carey:
"... So, I went home and called Andy - no, I think, I went right over to Andy's house... and so, I said, 'Prepare yourself for a shock.' And he said, 'What?' I said, 'Castelli has a closet full of comic paintings.' And he said, 'You're kidding?!' And he said, 'Who did them?' And I said, 'Somebody by the name of Lichtenstein.' Well, Andy turned white. He said, 'Roy Lichtenstein.' He said, 'Roy Lichtenstein used to... ' - as I remember, he used to be a sign painter for Bonwit Teller, and here's where I'm a little bit confused because Andy... couldn't get anybody to show his early cartoon paintings, so he went to Gene Moore and Gene Moore said, 'Well I can put the paintings in the windows...' He put them in the 57th Street window... As I remember, the implication was: Andy felt that Lichtenstein had seen the paintings in the window and gave him the idea to do his paintings. Now, whether this is true or not, I don't know, but at this time, this is what Andy had felt."2
Lichtenstein later denied that he had any knowledge of Warhol's comic strip paintings prior to doing his own:
Roy Lichtenstein:
"I saw Andy's work at Leo Castelli's about the same time I brought mine in, about the spring of 1961... Of course, I was amazed to see Andy's work because he was doing cartoons of Nancy and Dick Tracy and they were similar to mine."3
Although Lichtenstein maintains that he saw Warhol's paintings at Castelli's gallery in "about" the Spring of 1961, Castelli did not have any Warhol paintings at that time. The only place they had been exhibited was in April 1961 in the windows of Bonwit Teller. Lichtenstein implies that Castelli was stocking Warhol's work prior to his own, whereas Carey's comments indicate the opposite - and Carey's comments are supported by the recollections of both Leo Castelli and Ivan Karp. Although Lichtenstein had been using comic book imagery in his paintings since 1957, he did not do large canvases reproducing single comic strip panels featuring speech balloons until he painted Look Mickey in the summer of 1961 4 months after he had, by his own admission, seen Warhol's canvases. Warhol had been painting single comic strip panels featuring speech balloons since 1960 - a year earlier than Lichtenstein. It is possible that Lichtenstein, as Warhol suspected, had seen Warhol's paintings at Bonwit Teller, although Lichtenstein never mentioned it in interviews. In any case, Lichtenstein admitted having seen Warhol's cartoon paintings prior to doing his own single panel comic strip paintings featuring speech balloons (Look Mickey) and it is possible he was influenced by Warhol's work.
davidbarsalou.homestead.com/LICHTENSTEINPROJECT.html
www.flickr.com/photos/deconstructing-roy-lichtenstein/
www.valleyadvocate.com/gbase/Arts/content?oid=oid:688
Fuel Injector Flower
By Nicholaos Demas
The nozzle of the fuel injector in a car sprays gasoline through tiny holes, designed to make as fine a mist as possible so that the fuel burns better. Researchers at Argonne, attempting to make the engine even more efficient, reduced the size of the holes to less than the size of a single human hair. This is a nozzle with eight holes—polished from the tip down to reveal a flower-like pattern—seen under a microscope. The yellow area is the iron nozzle, the black areas are epoxy used to hold the nozzle, and the petals are the nickel-phosphorous material used to reduce the size of the holes.
--more details--
The gas pedal in your car is connected to a valve that regulates how much air enters the engine. So the gas pedal is really the air pedal.
When you step on the gas pedal, the throttle valve opens up more, letting in more air. The computer that controls all of the electronic components on your car engine "sees" the throttle valve open and increases the fuel rate in anticipation of more air entering the engine. It is important to increase the fuel rate as soon as the throttle valve opens; otherwise, when the gas pedal is first pressed, there may be a hesitation as some air reaches the cylinders without enough fuel in it. Sensors monitor the mass of air entering the engine, as well as the amount of oxygen in the exhaust. The computer uses this information to fine-tune the fuel delivery so that the air-to-fuel ratio is just right.
A fuel injector is basically an electronically controlled valve. When the injector is supplied with -pressurized fuel it opens, allowing the pressurized fuel to squirt out through a nozzle. The nozzle of the fuel injector is designed to atomize the fuel to make as fine a mist as possible so that it can burn easily. There are different nozzle designs varying from single-hole to multi-hole and are typically made from a ferrous material. The size of the holes of a nozzle is critical for fuel atomization.
A common method used to make the holes is a process called wire electrical discharge machining during which a thin metal wire removes material from the nozzle.
After this process, we subjected the nozzle to an electroless Nickel plating process in order to reduce the size of the holes made by wire electrical discharge machining. Due to the size of the holes (less than 100 micrometers), in order to examine the plated layer’s uniformity and adhesion a microscope is necessary. The nozzle was mounted onto epoxy, mechanically polished and microscope images at various stages during the polishing process are taken. Due to precise vertical orientation and polishing to the specific height corresponding to this image a flower-like pattern was created.
The main area is ferrous, the black areas are epoxy and the petals are the nickel-phosphorus layer of the EN plating process.
World leader, international leader, scientist, medical scientist, virologist, philosopher, thinker, cosmologist, sociologist, and Professor Fangruida
World leader, scientist, medical scientist, virologist, pharmacist, Professor Fangruida (F.D Smith) on the world epidemic and the nemesis and prevention of new coronaviruses and mutant viruses (Jacques Lucy) 2021v1.5)
_-----------------------------------------
The Nemesis and Killer of New Coronavirus and Mutated Viruses-Joint Development of Vaccines and Drugs (Fangruida) July 2021
*The particularity of new coronaviruses and mutant viruses*The broad spectrum, high efficiency, redundancy, and safety of the new coronavirus vaccine design and development , Redundancy and safety
*New coronavirus drug chemical structure modification*Computer-aided design and drug screening. *"Antiviral biological missile", "New Coronavirus Anti-epidemic Tablets", "Composite Antiviral Oral Liquid", "New Coronavirus Long-acting Oral Tablets", "New Coronavirus Inhibitors" (injection)
——————————————————————————
(World leader, scientist, medical scientist, biologist, virologist, pharmacist, FD Smith) "The Nemesis and Killer of New Coronavirus and Mutated Viruses-The Joint Development of Vaccines and Drugs" is an important scientific research document. Now it has been revised and re-published by the original author several times. The compilation is published and published according to the original manuscript to meet the needs of readers and netizens all over the world. At the same time, it is also of great benefit to the vast number of medical clinical drug researchers and various experts and scholars. We hope that it will be corrected in the reprint.------Compiled by Jacques Lucy in Geneva, August 2021
-------------------------------------------------- ---------------------
According to Worldometer's real-time statistics, as of about 6:30 on July 23, there were a total of 193,323,815 confirmed cases of new coronary pneumonia worldwide, and a total of 4,150,213 deaths. There were 570,902 new confirmed cases and 8,766 new deaths worldwide in a single day. Data shows that the United States, Brazil, the United Kingdom, India, and Indonesia are the five countries with the largest number of new confirmed cases, and Indonesia, Brazil, Russia, South Africa, and India are the five countries with the largest number of new deaths.
The new coronavirus and delta mutant strains have been particularly serious in the recent past. Many countries and places have revived, and the number of cases has not decreased, but has increased.
, It is worthy of vigilance. Although many countries have strengthened vaccine prevention and control and other prevention and control measures, there are still many shortcomings and deficiencies in virus suppression and prevention. The new coronavirus and various mutant strains have a certain degree of antagonism to traditional drugs and most vaccines. Although most vaccines have great anti-epidemic properties and have important and irreplaceable effects and protection for prevention and treatment, it is impossible to completely prevent the spread and infection of viruses. The spread of the new crown virus pneumonia has been delayed for nearly two years. There are hundreds of millions of people infected worldwide, millions of deaths, and the time is long, the spread is widespread, and billions of people around the world are among them. The harm of the virus is quite terrible. This is well known. of. More urgent
What is more serious is that the virus and mutant strains have not completely retreated, especially many people are still infected and infected after being injected with various vaccines. The effectiveness of the vaccine and the resistance of the mutant virus are worthy of medical scientists, virologists, pharmacologists Zoologists and others seriously think and analyze. The current epidemic situation in European and American countries, China, Brazil, India, the United States, Russia and other countries has greatly improved from last year. However, relevant figures show that the global epidemic situation has not completely improved, and some countries and regions are still very serious. In particular, after extensive use of various vaccines, cases still occur, and in some places they are still very serious, which deserves a high degree of vigilance. Prevention and control measures are very important. In addition, vaccines and various anti-epidemic drugs are the first and necessary choices, and other methods are irreplaceable. It is particularly important to develop and develop comprehensive drugs, antiviral drugs, immune drugs, and genetic drugs. Research experiments on new coronaviruses and mutant viruses require more rigorous and in-depth data analysis, pathological pathogenic tissues, cell genes, molecular chemistry, quantum chemistry, etc., as well as vaccine molecular chemistry, quantum physics, quantum biology, cytological histology, medicinal chemistry, and drugs And the vaccine’s symptomatic, effectiveness, safety, long-term effectiveness, etc., of course, including tens of thousands of clinical cases and deaths and other first-hand information and evidence. The task of RNA (ribonucleic acid) in the human body is to use the information of our genetic material DNA to produce protein. It accomplishes this task in the ribosome, the protein-producing area of the cell. The ribosome is the place where protein biosynthesis occurs.
Medicine takes advantage of this: In vaccination, artificially produced mRNA provides ribosomes with instructions for constructing pathogen antigens to fight against—for example, the spike protein of coronavirus.
Traditional live vaccines or inactivated vaccines contain antigens that cause the immune system to react. The mRNA vaccine is produced in the cell
(1) The specificity of new coronaviruses and mutant viruses, etc., virology and quantum chemistry of mutant viruses, quantum physics, quantum microbiology
(2) New crown vaccine design, molecular biology and chemical structure, etc.
(3) The generality and particularity of the development of new coronavirus drugs
(4) Various drug design for new coronavirus pneumonia, medicinal chemistry, pharmacology, etc., cells, proteins, DNA, enzyme chemistry, pharmaceutical quantum chemistry, pharmaceutical quantum physics, human biochemistry, human biophysics, etc.
(5) The evolution and mutation characteristics of the new coronavirus and various mutant viruses, the long-term nature, repeatability, drug resistance, and epidemic resistance of the virus, etc.
(6) New coronavirus pneumonia and the infectious transmission of various new coronaviruses and their particularities
(7) The invisible transmission of new coronavirus pneumonia and various mutant viruses in humans or animals, and the mutual symbiosis of cross infection of various bacteria and viruses are also one of the very serious causes of serious harm to new coronaviruses and mutant viruses. Virology, pathology, etiology, gene sequencing, gene mapping, and a large number of analytical studies have shown that there are many cases in China, the United States, India, Russia, Brazil, and other countries.
(8) For the symptomatic prevention and treatment of the new coronavirus, the combination of various vaccines and various antiviral drugs is critical.
(9) According to the current epidemic situation and research judgments, the epidemic situation may improve in the next period of time and 2021-2022, and we are optimistic about its success. However, completely worry-free, it is still too early to win easily. It is not just relying on vaccination. Wearing masks to close the city and other prevention and control measures and methods can sit back and relax, and you can win a big victory. Because all kinds of research and exploration still require a lot of time and various experimental studies. It is not a day's work. A simple taste is very dangerous and harmful. The power and migratory explosiveness of viruses sometimes far exceed human thinking and perception. In the future, next year, or in the future, whether viruses and various evolutionary mutation viruses will re-attack, we still need to study, analyze, prevent and control, rather than being complacent, thinking that the vaccine can win a big victory is inevitably naive and ridiculous. Vaccine protection is very important, but it must not be taken carelessly. The mutation of the new crown virus is very rampant, and the cross-infection of recessive and virulent bacteria makes epidemic prevention and anti-epidemic very complicated.
(10) New crown virus pneumonia and the virus's stubbornness, strength, migration, susceptibility, multi-infectiousness, and occult. The effectiveness of various vaccines and the particularity of virus mutations The long-term hidden dangers and repeated recurrences of the new coronavirus
(11) The formation mechanism and invisible transmission of invisible viruses, asymptomatic infections and asymptomatic infections, asymptomatic transmission routes, asymptomatic infections, pathological pathogens. The spread and infection of viruses and mutated viruses, the blind spots and blind spots of virus vaccines, viral quantum chemistry and
The chemical and physical corresponding reactions at the meeting points of highly effective vaccine drugs, etc. The variability of mutated viruses is very complicated, and vaccination cannot completely prevent the spread of infection.
(12) New crown virus pneumonia and various respiratory infectious diseases are susceptible to infections in animals and humans, and are frequently recurring. This is one of the frequently-occurring and difficult diseases of common infectious diseases. Even with various vaccines and various antiviral immune drugs, it is difficult to completely prevent the occurrence and spread of viral pneumonia. Therefore, epidemic prevention and anti-epidemic is a major issue facing human society, and no country should take it lightly. The various costs that humans pay on this issue are very expensive, such as Ebola virus, influenza A virus,
Hepatitis virus,
Marburg virus
Sars coronavirus, plague, anthracnose, cholera
and many more. The B.1.1.7 mutant virus that was first discovered in the UK was renamed Alpha mutant virus; the B.1.351 that was first discovered in South Africa was renamed Beta mutant virus; the P.1 that was first discovered in Brazil was renamed Gamma mutant virus; the mutation was first discovered in India There are two branches of the virus. B.1.617.2, which was listed as "mutated virus of concern", was renamed Delta mutant virus, and B.1.617.1 of "mutated virus to be observed" was renamed Kappa mutant virus.
However, experts in many countries believe that the current vaccination is still effective, at least it can prevent severe illness and reduce deaths.
Delta mutant strain
According to the degree of risk, the WHO divides the new crown variant strains into two categories: worrying variant strains (VOC, variant of concern) and noteworthy variant strains (VOI, variant of interest). The former has caused many cases and a wide range of cases worldwide, and data confirms its transmission ability, strong toxicity, high power, complex migration, and high insidious transmission of infection. Resistance to vaccines may lead to the effectiveness of vaccines and clinical treatments. Decrease; the latter has confirmed cases of community transmission worldwide, or has been found in multiple countries, but has not yet formed a large-scale infection. Need to be very vigilant. Various cases and deaths in many countries in the world are related to this. In some countries, the epidemic situation is repeated, and it is also caused by various reasons and viruses, of course, including new cases and so on.
At present, VOC is the mutant strain that has the greatest impact on the epidemic and the greatest threat to the world, including: Alpha, Beta, Gamma and Delta. , Will the change of the spur protein in the VOC affect the immune protection effect of the existing vaccine, or whether it will affect the sensitivity of the VOC to the existing vaccine? For this problem, it is necessary to directly test neutralizing antibodies, such as those that can prevent the protection of infection. Antibodies recognize specific protein sequences on viral particles, especially those spike protein sequences used in mRNA vaccines.
(13) Countries around the world, especially countries and regions with more severe epidemics, have a large number of clinical cases, severe cases, and deaths, especially including many young and middle-aged patients, including those who have been vaccinated. The epidemic is more complicated and serious. Injecting various vaccines, taking strict control measures such as closing the city and wearing masks are very important and the effect is very obvious. However, the new coronavirus and mutant viruses are so repeated, their pathological pathogen research will also be very complicated and difficult. After the large-scale use of the vaccine, many people are still infected. In addition to the lack of prevention and control measures, it is very important that the viability of the new coronavirus and various mutant viruses is very important. It can escape the inactivation of the vaccine. It is very resistant to stubbornness. Therefore, the recurrence of new coronavirus pneumonia is very dangerous. What is more noteworthy is that medical scientists, virologists, pharmacists, biologists, zoologists and clinicians should seriously consider the correspondence between virus specificity and vaccine drugs, and the coupling of commonality and specificity. Only in this way can we find targets. Track and kill viruses. Only in this sense can the new crown virus produce a nemesis, put an end to and eradicate the new crown virus pneumonia. Of course, this is not a temporary battle, but a certain amount of time and process to achieve the goal in the end.
(14) The development and evolution of the natural universe and earth species, as well as life species. With the continuous evolution of human cell genes, microbes and bacterial viruses are constantly mutated and inherited. The new world will inevitably produce a variety of new pathogens.
And viruses. For example, neurological genetic disease, digestive system disease, respiratory system disease, blood system disease, cardiopulmonary system disease, etc., new diseases will continue to emerge as humans develop and evolve. Human migration to space, space diseases, space psychological diseases, space cell diseases, space genetic diseases, etc. Therefore, for the new coronavirus and mutated viruses, we must have sufficient knowledge and response, and do not think that it will be completely wiped out.
, And is not a scientific attitude. Viruses and humans mutually reinforce each other, and viruses and animals and plants mutually reinforce each other. This is the iron law of the natural universe. Human beings can only adapt to natural history, but cannot deliberately modify natural history.
Active immune products made from specific bacteria, viruses, rickettsiae, spirochetes, mycoplasma and other microorganisms and parasites are collectively called vaccines. Vaccination of animals can make the animal body have specific immunity. The principle of vaccines is to artificially attenuate, inactivate, and genetically attenuate pathogenic microorganisms (such as bacteria, viruses, rickettsia, etc.) and their metabolites. Purification and preparation methods, made into immune preparations for the prevention of infectious diseases. In terms of ingredients, the vaccine retains the antigenic properties and other characteristics of the pathogen, which can stimulate the body's immune response and produce protective antibodies. But it has no pathogenicity and does not cause harm to the body. When the body is exposed to this pathogen again, the immune system will produce more antibodies according to the previous memory to prevent the pathogen from invading or to fight against the damage to the body. (1) Inactivated vaccines: select pathogenic microorganisms with strong immunogenicity, culture them, inactivate them by physical or chemical methods, and then purify and prepare them. The virus species used in inactivated vaccines are generally virulent strains, but the use of attenuated attenuated strains also has good immunogenicity, such as the inactivated polio vaccine produced by the Sabin attenuated strain. The inactivated vaccine has lost its infectivity to the body, but still maintains its immunogenicity, which can stimulate the body to produce corresponding immunity and resist the infection of wild strains. Inactivated vaccines have a good immune effect. They can generally be stored for more than one year at 2~8°C without the risk of reversion of virulence; however, the inactivated vaccines cannot grow and reproduce after entering the human body. They stimulate the human body for a short time and must be strong and long-lasting. In general, adjuvants are required for immunity, and multiple injections in large doses are required, and the local immune protection of natural infection is lacking. Including bacteria, viruses, rickettsiae and toxoid preparations.
(2) Live attenuated vaccine: It is a vaccine made by using artificial targeted mutation methods or by screening live microorganisms with highly weakened or basically non-toxic virulence from the natural world. After inoculation, the live attenuated vaccine has a certain ability to grow and reproduce in the body, which can cause the body to have a reaction similar to a recessive infection or a mild infection, and it is widely used.
(3) Subunit vaccine: Among the multiple specific antigenic determinants carried by macromolecular antigens, only a small number of antigenic sites play an important role in the protective immune response. Separate natural proteins through chemical decomposition or controlled proteolysis, and extract bacteria and virusesVaccines made from fragments with immunological activity are screened out of the special protein structure of, called subunit vaccines. Subunit vaccines have only a few major surface proteins, so they can eliminate antibodies induced by many unrelated antigens, thereby reducing the side effects of the vaccine and related diseases and other side effects caused by the vaccine. (4) Genetically engineered vaccine: It uses DNA recombination biotechnology to direct the natural or synthetic genetic material in the pathogen coat protein that can induce the body's immune response into bacteria, yeast or mammalian cells to make it fully expressed. A vaccine prepared after purification. The application of genetic engineering technology can produce subunit vaccines that do not contain infectious substances, stable attenuated vaccines with live viruses as carriers, and multivalent vaccines that can prevent multiple diseases. This is the second-generation vaccine following the first-generation traditional vaccine. It has the advantages of safety, effectiveness, long-term immune response, and easy realization of combined immunization. It has certain advantages and effects.
New coronavirus drug development, drug targets and chemical modification.
Ligand-based drug design (or indirect drug design planning) relies on the knowledge of other molecules that bind to the target biological target. These other molecules can be used to derive pharmacophore models and structural modalities, which define the minimum necessary structural features that the molecule must have in order to bind to the target. In other words, a model of a biological target can be established based on the knowledge of the binding target, and the model can be used to design new molecular entities and other parts that interact with the target. Among them, the quantitative structure-activity relationship (QSAR) is included, in which the correlation between the calculated properties of the molecule and its experimentally determined biological activity can be derived. These QSAR relationships can be used to predict the activity of new analogs. The structure-activity relationship is very complicated.
Based on structure
Structure-based drug design relies on knowledge of the three-dimensional structure of biological targets obtained by methods such as X-ray crystallography or NMR spectroscopy and quantum chemistry. If the experimental structure of the target is not available, it is possible to create a homology model of the target and other standard models that can be compared based on the experimental structure of the relevant protein. Using the structure of biological targets, interactive graphics and medical chemists’ intuitive design can be used to predict drug candidates with high affinity and selective binding to the target. Various automatic calculation programs can also be used to suggest new drug candidates.
The current structure-based drug design methods can be roughly divided into three categories. The 3D method is to search a large database of small molecule 3D structures to find new ligands for a given receptor, in order to use a rapid approximate docking procedure to find those suitable for the receptor binding pocket. This method is called virtual screening. The second category is the de novo design of new ligands. In this method, by gradually assembling small fragments, a ligand molecule is established within the constraints of the binding pocket. These fragments can be single atoms or molecular fragments. The main advantage of this method is that it can propose novel structures that are not found in any database. The third method is to optimize the known ligand acquisition by evaluating the proposed analogs in the binding cavity.
Bind site ID
Binding site recognition is a step in structure-based design. If the structure of the target or a sufficiently similar homologue is determined in the presence of the bound ligand, the ligand should be observable in that structure, in which case the location of the binding site is small. However, there may not be an allosteric binding site of interest. In addition, only apo protein structures may be available, and it is not easy to reliably identify unoccupied sites that have the potential to bind ligands with high affinity. In short, the recognition of binding sites usually depends on the recognition of pits. The protein on the protein surface can hold molecules the size of drugs, etc. These molecules also have appropriate "hot spots" that drive ligand binding, hydrophobic surfaces, hydrogen bonding sites, and so on.
Drug design is a creative process of finding new drugs based on the knowledge of biological targets. The most common type of drug is small organic molecules that activate or inhibit the function of biomolecules, thereby producing therapeutic benefits for patients. In the most important sense, drug design involves the design of molecules with complementary shapes and charges that bind to their interacting biomolecular targets, and therefore will bind to them. Drug design often but does not necessarily rely on computer modeling techniques. A more accurate term is ligand design. Although the design technology for predicting binding affinity is quite successful, there are many other characteristics, such as bioavailability, metabolic half-life, side effects, etc., which must be optimized first before the ligand can become safe and effective. drug. These other features are usually difficult to predict and realize through reasonable design techniques. However, due to the high turnover rate, especially in the clinical stage of drug development, in the early stage of the drug design process, more attention is paid to the selection of drug candidates. The physical and chemical properties of these drug candidates are expected to be reduced during the development process. Complications are therefore more likely to lead to the approval of the marketed drug. In addition, in early drug discovery, in vitro experiments with computational methods are increasingly used to select compounds with more favorable ADME (absorption, distribution, metabolism, and excretion) and toxicological characteristics. A more accurate term is ligand design. Although the design technique for predicting binding affinity is quite successful, there are many other characteristics, such as bioavailability, metabolic half-life, side effects, iatrogenic effects, etc., which must be optimized first, and then the ligand To become safe and effective.
For drug targets, two aspects should be considered when selecting drug targets:
1. The effectiveness of the target, that is, the target is indeed related to the disease, and the symptoms of the disease can be effectively improved by regulating the physiological activity of the target.
2. The side effects of the target. If the regulation of the physiological activity of the target inevitably produces serious side effects, it is inappropriate to select it as the target of drug action or lose its important biological activity. The reference frame of the target should be expanded in multiple dimensions to have a big choice.
3. Search for biomolecular clues related to diseases: use genomics, proteomics and biochip technology to obtain biomolecular information related to diseases, and perform bioinformatics analysis to obtain clue information.
4. Perform functional research on related biomolecules to determine the target of candidate drugs. Multiple targets or individual targets.
5. Candidate drug targets, design small molecule compounds, and conduct pharmacological research at the molecular, cellular and overall animal levels.
Covalent bonding type
The covalent bonding type is an irreversible form of bonding, similar to the organic synthesis reaction that occurs. Covalent bonding types mostly occur in the mechanism of action of chemotherapeutic drugs. For example, alkylating agent anti-tumor drugs produce covalent bonding bonds to guanine bases in DNA, resulting in cytotoxic activity.
. Verify the effectiveness of the target.
Based on the targets that interact with drugs, that is, receptors in a broad sense, such as enzymes, receptors, ion channels, membranes, antigens, viruses, nucleic acids, polysaccharides, proteins, enzymes, etc., find and design reasonable drug molecules. Targets of action and drug screening should focus on multiple points. Drug intermediates and chemical modification. Combining the development of new drugs with the chemical structure modification of traditional drugs makes it easier to find breakthroughs and develop new antiviral drugs. For example, careful selection, modification and modification of existing related drugs that can successfully treat and recover a large number of cases, elimination and screening of invalid drugs from severe death cases, etc., are targeted, rather than screening and capturing needles in a haystack, aimless, with half the effort. Vaccine design should also be multi-pronged and focused. The broad-spectrum, long-term, safety, efficiency and redundancy of the vaccine should all be considered. In this way, it will be more powerful to deal with the mutation and evolution of the virus. Of course, series of vaccines, series of drugs, second-generation vaccines, third-generation vaccines, second-generation drugs, third-generation drugs, etc. can also be developed. Vaccines focus on epidemic prevention, and medicines focus on medical treatment. The two are very different; however, the two complement each other and complement each other. Therefore, in response to large-scale epidemics of infectious diseases, vaccines and various drugs are the nemesis and killers of viral diseases. Of course, it also includes other methods and measures, so I won't repeat them here.
Mainly through the comprehensive and accurate understanding of the structure of the drug and the receptor at the molecular level and even the electronic level, structure-based drug design and the understanding of the structure, function, and drug action mode of the target and the mechanism of physiological activity Mechanism-based drug design.
Compared with the traditional extensive pharmacological screening and lead compound optimization, it has obvious advantages.
Viral RNA replicase, also known as RNA-dependent RNA polymerase (RdRp) is responsible for the replication and transcription of RNA virus genome, and plays a very important role in the process of virus self-replication in host cells, and It also has a major impact on the mutation of the virus, it will change and accelerate the replication and recombination. Because RdRp from different viruses has a highly conserved core structure, the virus replicase is an important antiviral drug target and there are other selection sites, rather than a single isolated target target such as the new coronavirus As with various mutant viruses, inhibitors developed for viral replicase are expected to become a broad-spectrum antiviral drug. The currently well-known anti-coronavirus drug remdesivir (remdesivir) is a drug for viral replicase.
New antiviral therapies are gradually emerging. In addition to traditional polymerase and protease inhibitors, nucleic acid drugs, cell entry inhibitors, nucleocapsid inhibitors, and drugs targeting host cells are also increasingly appearing in the research and development of major pharmaceutical companies. The treatment of mutated viruses is becoming increasingly urgent. The development of drugs for the new coronavirus pneumonia is very important. It is not only for the current global new coronavirus epidemic, but more importantly, it is of great significance to face the severe pneumonia-respiratory infectious disease that poses a huge threat to humans.
There are many vaccines and related drugs developed for the new coronavirus pneumonia, and countries are vying for a while, mainly including the following:
Identification test, appearance, difference in loading, moisture, pH value, osmolality, polysaccharide content, free polysaccharide content, potency test, sterility test, pyrogen test, bacterial endotoxin test, abnormal toxicity test.
Among them: such as sterility inspection, pyrogen inspection, bacterial endotoxin, and abnormal toxicity inspection are indicators closely related to safety.
Polysaccharide content, free polysaccharide content, and efficacy test are indicators closely related to vaccine effectiveness.
Usually, a vaccine will go through a long research and development process of at least 8 years or even more than 20 years from research and development to marketing. The outbreak of the new crown epidemic requires no delay, and the design and development of vaccines is speeding up. It is not surprising in this special period. Of course, it is understandable that vaccine design, development and testing can be accelerated, shortened the cycle, and reduced some procedures. However, science needs to be rigorous and rigorous to achieve great results. The safety and effectiveness of vaccines are of the utmost importance. There must not be a single error. Otherwise, it will be counterproductive and need to be continuously improved and perfected.
Pre-clinical research: The screening of strains and cells is the basic guarantee to ensure the safety, effectiveness, and continuous supply of vaccines. Taking virus vaccines as an example, the laboratory stage needs to carry out strain screening, necessary strain attenuation, strain adaptation to the cultured cell matrix and stability studies in the process of passaging, and explore the stability of process quality, establish animal models, etc. . Choose mice, guinea pigs, rabbits or monkeys for animal experiments according to each vaccine situation. Pre-clinical research generally takes 5-10 years or longer on the premise that the process is controllable, the quality is stable, and it is safe and effective. In order to be safe and effective, a certain redundant design is also needed, so that the safety and effectiveness of the vaccine can be importantly guaranteed.
These include the establishment of vaccine strain/cell seed bank, production process research, quality research, stability research, animal safety evaluation and effectiveness evaluation, and clinical trial programs, etc.
The ARS-CoV-2 genome contains at least 10 ORFs. ORF1ab is converted into a polyprotein and processed into 16 non-structural proteins (NSP). These NSPs have a variety of functional biological activities, physical and chemical reactions, such as genome replication, induction of host mRNA cleavage, membrane rearrangement, autophagosome production, NSP polyprotein cleavage, capping, tailing, methylation, RNA double-stranded Uncoiling, etc., and others, play an important role in the virus life cycle. In addition, SARS-CoV-2 contains 4 structural proteins, namely spike (S), nucleocapsid (N), envelope (E) and membrane (M), all of which are encoded by the 3'end of the viral genome. Among the four structural proteins, S protein is a large multifunctional transmembrane protein that plays an important role in the process of virus adsorption, fusion, and injection into host cells, and requires in-depth observation and research.
1S protein is composed of S1 and S2 subunits, and each subunit can be further divided into different functional domains. The S1 subunit has 2 domains: NTD and RBD, and RBD contains conservative RBM. The S2 subunit has 3 structural domains: FP, HR1 and HR2. The S1 subunit is arranged at the top of the S2 subunit to form an immunodominant S protein.
The virus uses the host transmembrane protease Serine 2 (TMPRSS2) and the endosomal cysteine protease CatB/L to enter the cell. TMPRSS2 is responsible for the cleavage of the S protein to expose the FP region of the S2 subunit, which is responsible for initiating endosome-mediated host cell entry into it. It shows that TMPRSS2 is a host factor necessary for virus entry. Therefore, the use of drugs that inhibit this protease can achieve the purpose of treatment.
mRNA-1273
The mRNA encoding the full length of SARS-CoV-2, and the pre-spike protein fusion is encapsulated into lipid nanoparticles to form mRNA-1273 vaccine. It can induce a high level of S protein specific antiviral response. It can also consist of inactivated antigens or subunit antigens. The vaccine was quickly approved by the FDA and has entered phase II clinical trials. The company has announced the antibody data of 8 subjects who received different immunization doses. The 25ug dose group achieved an effect similar to the antibody level during the recovery period. The 100ug dose group exceeded the antibody level during the recovery period. In the 25ug and 100ug dose groups, the vaccine was basically safe and tolerable, while the 250ug dose group had 3 levels of systemic symptoms.
Viral vector vaccines can provide long-term high-level expression of antigen proteins, induce CTLs, and ultimately eliminate viral infections.
1, Ad5-nCov
A vaccine of SARS-CoV-2 recombinant spike protein expressed by recombinant, replication-deficient type 5 adenovirus (Ad5) vector. Load the optimized full-length S protein gene together with the plasminogen activation signal peptide gene into the E1 and E3 deleted Ad5 vectors. The vaccine is constructed by the Admax system derived from Microbix Biosystem. In phase I clinical trials, RBD (S1 subunit receptor binding domain) and S protein neutralizing antibody increased by 4 times 14 days after immunization, reaching a peak on 28 days. CD4+T and CD8+T cells reached a peak 14 days after immunization. The existing Ad5 immune resistance partially limits the response of antibodies and T cells. This study will be further conducted in the 18-60 age group, receiving 1/3 of the study dose, and follow-up for 3-6 months after immunization.
DNA vaccine
The introduction of antigen-encoding DNA and adjuvants as vaccines is the most innovative vaccine method. The transfected cells stably express the transgenic protein, similar to live viruses. The antigen will be endocytosed by immature DC, and finally provide antigen to CD4 + T, CD8 + T cells (by MHC differentiation) To induce humoral and cellular immunity. Some specificities of the virus and the new coronavirus mutant are different from general vaccines and other vaccines. Therefore, it is worth noting the gene expression of the vaccine. Otherwise, the effectiveness and efficiency of the vaccine will be questioned.
Live attenuated vaccine
DelNS1-SARS-CoV2-RBD
Basic influenza vaccine, delete NS1 gene. Express SARS-CoV-2 RBD domain. Cultured in CEF and MDCK (canine kidney cells) cells. It is more immunogenic than wild-type influenza virus and can be administered by nasal spray.
The viral genome is susceptible to mutation, antigen transfer and drift can occur, and spread among the population. Mutations can vary depending on the environmental conditions and population density of the geographic area. After screening and comparing 7,500 samples of infected patients, scientists found 198 mutations, indicating the evolutionary mutation of the virus in the human host. These mutations may form different virus subtypes, which means that even after vaccine immunization, viral infections may occur. A certain amount of increment and strengthening is needed here.
Inactivated vaccines, adenovirus vector vaccines, recombinant protein vaccines, nucleic acid vaccines, attenuated influenza virus vector vaccines, etc. According to relevant information, there are dozens of new coronavirus vaccines in the world, and more varieties are being developed and upgraded. Including the United States, Britain, China, Russia, India and other countries, there are more R&D and production units.
AZ vaccine
Modena vaccine
Lianya Vaccine
High-end vaccine
Pfizer vaccine
Pfizer-BioNTech
A large study found that the vaccine developed by Pfizer and German biotechnology company BioNTech is 95% effective in preventing COVID-19.
The vaccine is divided into two doses, which are injected every three weeks.
This vaccine uses a molecule called mRNA as its basis. mRNA is a molecular cousin of DNA, which contains instructions to build specific proteins; in this case, the mRNA in the vaccine encodes the coronavirus spike protein, which is attached to the surface of the virus and used to infect human cells. Once the vaccine enters the human body, it will instruct the body's cells to make this protein, and the immune system will learn to recognize and attack it.
Moderna
The vaccine developed by the American biotechnology company Moderna and the National Institute of Allergy and Infectious Diseases (NIAID) is also based on mRNA and is estimated to be 94.5% effective in preventing COVID-19.
Like Pfizer's vaccine, this vaccine is divided into two doses, but injected every four weeks instead of three weeks. Another difference is that the Moderna vaccine can be stored at minus 20 degrees Celsius instead of deep freezing like Pfizer vaccine. At present, the importance of one of the widely used vaccines is self-evident.
Oxford-AstraZeneca
The vaccine developed by the University of Oxford and the pharmaceutical company AstraZeneca is approximately 70% effective in preventing COVID-19-that is, in clinical trials, adjusting the dose seems to improve this effect.
In the population who received two high-dose vaccines (28 days apart), the effectiveness of the vaccine was about 62%; according to early analysis, the effectiveness of the vaccine in those patients who received the half-dose first and then the full-dose Is 90%. However, in clinical trials, participants taking half doses of the drug are wrong, and some scientists question whether these early results are representative.
Sinopharm Group (Beijing Institute of Biological Products, China)
China National Pharmaceutical Group Sinopharm and Beijing Institute of Biological Products have developed a vaccine from inactivated coronavirus (SARS-CoV-2). The inactivated coronavirus is an improved version that cannot be replicated.
Estimates of the effectiveness of vaccines against COVID-19 vary.
Gamaleya Institute
The Gamaleya Institute of the Russian Ministry of Health has developed a coronavirus vaccine candidate called Sputnik V. This vaccine contains two common cold viruses, adenoviruses, which have been modified so that they will not replicate in the human body; the modified virus also contains a gene encoding the coronavirus spike protein.
New crown drugs
There are many small molecule antiviral drug candidates in the clinical research stage around the world. Including traditional drugs in the past and various drugs yet to be developed, antiviral drugs, immune drugs, Gene drugs, compound drugs, etc.
(A) Molnupiravir
Molnupiravir is a prodrug of the nucleoside analog N4-hydroxycytidine (NHC), jointly developed by Merck and Ridgeback Biotherapeutics.
The positive rate of infectious virus isolation and culture in nasopharyngeal swabs was 0% (0/47), while that of patients in the placebo group was 24% (6/25). However, data from the Phase II/III study indicate that the drug has no benefit in preventing death or shortening the length of stay in hospitalized patients.
Therefore, Merck has decided to fully advance the research of 800mg molnupiravir in the treatment of patients with mild to moderate COVID-19.
(B) AT-527
AT-527 is a small molecule inhibitor of viral RNA polymerase, jointly developed by Roche and Atea. Not only can it be used as an oral therapy to treat hospitalized COVID-19 patients, but it also has the potential as a preventive treatment after exposure.
Including 70 high-risk COVID-19 hospitalized patients data, of which 62 patients' data can be used for virological analysis and evaluation. The results of interim virological analysis show that AT-527 can quickly reduce viral load. On day 2, compared with placebo, patients treated with AT-527 had a greater decline in viral load than the baseline level, and the continuous difference in viral load decline was maintained until day 8.
In addition, compared with the control group, the potent antiviral activity of AT-527 was also observed in patients with a baseline median viral load higher than 5.26 log10. When testing by RT-qPCR to assess whether the virus is cleared,
The safety aspect is consistent with previous studies. AT-527 showed good safety and tolerability, and no new safety problems or risks were found. Of course, there is still a considerable distance between experiment and clinical application, and a large amount of experimental data can prove it.
(C) Prokrutamide
Prokalamide is an AR (androgen receptor) antagonist. Activated androgen receptor AR can induce the expression of transmembrane serine protease (TMPRSS2). TMPRSS2 has a shearing effect on the new coronavirus S protein and ACE2, which can promote the binding of viral spike protein (S protein) to ACE, thereby promoting The virus enters the host cell. Therefore, inhibiting the androgen receptor may inhibit the viral infection process, and AR antagonists are expected to become anti-coronavirus drugs.
Positive results were obtained in a randomized, double-blind, placebo-controlled phase III clinical trial. The data shows that Prokalutamide reduces the risk of death in severely ill patients with new coronary disease by 92%, reduces the risk of new ventilator use by 92%, and shortens the length of hospital stay by 9 days. This shows that procrulamide has a certain therapeutic effect for patients with severe new coronary disease, which can significantly reduce the mortality of patients, and at the same time greatly reduce the new mechanical ventilation and shorten the patient's hospital stay.
With the continuous development of COVID-19 on a global scale, in addition to vaccines and prevention and control measures, we need a multi-pronged plan to control this disease. Oral antiviral therapy undoubtedly provides a convenient treatment option.
In addition, there are other drugs under development and experimentation. In dealing with the plague virus, in addition to the strict control of protective measures, it is very important that various efficient and safe vaccines and various drugs (including medical instruments, etc.) are the ultimate nemesis and killer of the virus.
(A) "Antiviral biological missiles" are mainly drugs for new coronaviruses and mutant viruses, which act on respiratory and lung diseases. The drugs use redundant designs to inhibit new coronaviruses and variant viruses.
(B) "New Coronavirus Epidemic Prevention Tablets" mainly use natural purified elements and chemical structure modifications.
(C) "Composite antiviral oral liquid" antiviral intermediate, natural antiviral plant, plus other preparations
(D) "New Coronavirus Long-acting Oral Tablets" Chemical modification of antiviral drugs, multiple targets, etc.
(E) "New Coronavirus Inhibitors" (injections) are mainly made of chemical drug structure modification and other preparations.
The development of these drugs mainly includes: drug target screening, structure-activity relationship, chemical modification, natural purification, etc., which require a lot of work and experimentation.
Humans need to vigorously develop drugs to deal with various viruses. These drugs are very important for the prevention and treatment of viruses and respiratory infectious diseases, influenza, pneumonia, etc.
The history of human development The history of human evolution, like all living species, will always be accompanied by the survival and development of microorganisms. It is not surprising that viruses and infectious diseases are frequent and prone to occur. The key is to prevent and control them before they happen.
This strain was first discovered in India in October 2020 and was initially called a "double mutant" virus by the media. According to the announcement by the Ministry of Health of India at the end of March this year, the "India New Coronavirus Genomics Alliance" composed of 10 laboratories found in samples collected in Maharashtra that this new mutant strain carries E484Q and L452R mutations. , May lead to immune escape and increased infectivity. This mutant strain was named B.1.617 by the WHO and was named with the Greek letter δ (delta) on May 31.
Shahid Jamil, the dean of the Trivedi School of Biological Sciences at Ashoka University in India and a virologist, said in an interview with the Shillong Times of India that this mutant strain called "double mutation" is not accurate enough. B. 1.617 contains a total of 15 mutations, of which 6 occur on the spike protein, of which 3 are more critical: L452R and E484Q mutations occur on the spike protein and the human cell "Angiotensin Converting Enzyme 2 (ACE2)" receptor In the bound region, L452R improves the ability of the virus to invade cells, and E484Q helps to enhance the immune escape of the virus; the third mutation P681R can also make the virus enter the cell more effectively. (Encyclopedia website)
There are currently dozens of antiviral COVID-19 therapies under development. The large drugmakers Merck and Pfizer are the closest to the end, as expected, a pair of oral antiviral COVID-19 therapies are undergoing advanced human clinical trials.
Merck's drug candidate is called monupiravir. It was originally developed as an influenza antiviral drug several years ago. However, preclinical studies have shown that it has a good effect on SARS and MERS coronavirus.
Monupiravir is currently undergoing in-depth large-scale Phase 3 human trials. So far, the data is so promising that the US government recently pre-ordered 1.7 million courses of drugs at a cost of $1.2 billion. If everything goes according to plan, the company hopes that the drug will be authorized by the FDA for emergency use and be on the market before the end of 2021.
Pfizer's large COVID-19 antiviral drug candidate is more unique. Currently known as PF-07321332, this drug is the first oral antiviral drug to enter human clinical trials, specifically targeting SARS-CoV-2.
Variant of Concern WHO Label First Detected in World First Detected in Washington State
B.1.1.7 Alpha United Kingdom, September 2020 January 2021
B.1.351 Beta South Africa, December 2020 February 2021
P.1 Gamma Brazil, April 2020 March 2021
B.1.617.2 Delta India, October 2020 April 2021
Although this particular molecule was developed in 2020 after the emergence of the new coronavirus, a somewhat related drug called PF-00835231 has been in operation for several years, targeting the original SARS virus. However, the new drug candidate PF-07321332 is designed as a simple pill that can be taken under non-hospital conditions in the initial stages of SARS-CoV-2 infection.
"The protease inhibitor binds to a viral enzyme and prevents the virus from replicating in the cell," Pfizer said when explaining the mechanism of its new antiviral drug. "Protease inhibitors have been effective in the treatment of other viral pathogens, such as HIV and hepatitis C virus, whether used alone or in combination with other antiviral drugs. Currently marketed therapeutic drugs for viral proteases are generally not toxic Therefore, such molecules may provide well-tolerated treatments against COVID-19."
Various studies on other types of antiviral drugs are also gaining momentum. For example, the new coronavirus pneumonia "antiviral biological missile", "new coronavirus prevention tablets", "composite antiviral oral liquid", "new coronavirus long-acting oral tablets", "new coronavirus inhibitors" (injections), etc., are worthy of attention. Like all kinds of vaccines, they will play a major role in preventing and fighting epidemics.
In addition, Japanese pharmaceutical company Shionoyoshi Pharmaceutical is currently conducting a phase 1 trial of a protease inhibitor similar to SARS-CoV-2. This is called S-217622, which is another oral antiviral drug, and hopes to provide people with an easy-to-take pill in the early stages of COVID-19. At present, the research and development of vaccines and various new crown drugs is very active and urgent. Time does not wait. With the passage of time, various new crown drugs will appear on the stage one after another, bringing the gospel to the complete victory of mankind.
The COVID-19 pandemic is far from over. The Delta mutant strain has quickly become the most prominent SARS-CoV-2 strain in the world. Although our vaccine is still maintained, it is clear that we need more tools to combat this new type of coronavirus. Delta will certainly not be the last new SARS-CoV-2 variant we encountered. Therefore, it is necessary for all mankind to persevere and fight the epidemic together.
Overcome illness and meet new challenges. The new crown epidemic and various mutated viruses are very important global epidemic prevention and anti-epidemic top priorities, especially for the current period of time. Vaccine injections, research and development of new drugs, strict prevention and control, wear masks, reduce gatherings, strictly control large gatherings, prevent the spread of various viruses Masks, disinfection and sterilization, lockdown of the city, vaccinations, accounting and testing are very important, but this does not mean that humans can completely overcome the virus. In fact, many spreading and new latently transmitted infections are still unsuccessful. There are detections, such as invisible patients, asymptomatic patients, migratory latent patients, new-onset patients, etc. The struggle between humans and the virus is still very difficult and complicated, and long-term efforts and exploration are still needed, especially for medical research on the new coronavirus. The origin of the disease, the course of the disease, the virus invaded The deep-level path and the reasons for the evolution and mutation of the new coronavirus and the particularity of prevention and treatment, etc.). Therefore, human beings should be highly vigilant and must not be taken lightly. The fierce battle between humans and various viruses must not be slackened. Greater efforts are needed to successfully overcome this pandemic, fully restore the normal life of the whole society, restore the normal production and work order, restore the normal operation of society, economy and culture, and give up food due to choking. Or eager for success, will pay a high price.
———————————————————————————————————————————————— ————
References References are made to web resources, and related images are from web resources and related websites.
Who official website UN .org www.gavi.org/ispe.org
Wikipedia, "The Lancet", "English Journal of Medicine", "Nature", "Science", "Journal of the American Medical Association", etc.
Learning from history: do not flatten the curve of antiviral research!
T Bobrowski, CC Melo-Filho, D Korn, VM Alves...-Drug discovery today, 2020-
A critical overview of computational approaches employed for COVID-19 drug discovery
EN Muratov, R Amaro, CH Andrade, N Brown...-Chemical Society..., 2021-pubs.rsc.org
Global Research Performance on COVID 19 in Dimensions Database
J Balasubramani, M Anbalagan-2021-researchgate.net
Adoption of a contact tracing app for containing COVID-19: a health belief model approach
M Walrave, C Waeterloos...- JMIR public health and..., 2020-publichealth.jmir.org
Prophylactic Treatment Protocol Against the Severity of COVID-19 Using Melatonin
N Charaa, M Chahed, H Ghedira...-Available at SSRN..., 2020-papers.ssrn.com
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet
Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany, New England Journal of Medicine
The actions of respiratory therapists facing COVID-19
Zhu Jiacheng-Respiratory Therapy, 2021-pesquisa.bvsalud.org
Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, The Lancet
Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China, JAMA, February 7
Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China, JAMA
Delta variant triggers new phase in the pandemic | Science
science.sciencemag.org›
COVID vaccines slash viral spread – but Delta is an unknown
www.nature.com ›articles
Novel coronavirus pneumonia during ophthalmic surgery management strategy and recommendations
YH HUANG, SS LI, X YAO, YR YANG, DH QIN…-jnewmed.com
Delta variant: What is happening with transmission, hospital ...
Risk of long QT syndrome in novel coronavirus COVID-19
VN Oslopov, JV Oslopova, EV Hazova…-Kazan medical…, 2020-kazanmedjournal.ru
Study compares mRNA and adenovirus-based SARS-CoV-2 vaccines ...
First molecular-based detection of SARS-CoV-2 virus in the field-collected houseflies
A Soltani, M Jamalidoust, A Hosseinpour, M Vahedi...-Scientific Reports, 2021-nature.com
Covid 19 DELTA Variant Archives-Online essay writing service
sourceessay.com ›tag› covid-19-delta-variant
SARS-CoV-2 Delta variant Likely to become dominant in the ...
Compilation postscript
Once Fang Ruida's research literature on the new crown virus and mutant virus was published, it has been enthusiastically praised by readers and netizens in dozens of countries around the world, and has proposed some amendments and suggestions. Hope to publish a multilingual version of the book as an emergency To meet the needs of many readers around the world, in the face of the new crown epidemic and the prevention and treatment of various mutant viruses, including the general public, college and middle school students, medical workers, medical colleagues and so on. According to the English original manuscript, it will be re-compiled and published. Inconsistencies will be revised separately. Thank you very much.
Jacques Lucy, Geneva, Switzerland, August 2021
*********************************************************************
Leader mondial, scientifique, scientifique médical, virologue, pharmacien et professeur Fangruida (F.D Smith) sur l'épidémie mondiale et l'ennemi juré et la prévention des nouveaux coronavirus et virus mutants (Jacques Lucy 2021v1.5)
_-----------------------------------------
L'ennemi juré et le tueur du nouveau coronavirus et des virus mutés - Développement conjoint de vaccins et de médicaments (Fangruida) Juillet 2021
* La particularité des nouveaux coronavirus et des virus mutants * Le large spectre, la haute efficacité, la redondance et la sécurité de la conception et du développement du nouveau vaccin contre le coronavirus, Redondance et sécurité
A loom is a device used to weave cloth and tapestry. The basic purpose of any loom is to hold the warp threads under tension to facilitate the interweaving of the weft threads. The precise shape of the loom and its mechanics may vary, but the basic function is the same.
ETYMOLOGY
The word "loom" is derived from the Old English "geloma" formed from ge-(perfective prefix) and loma, a root of unknown origin; this meant utensil or tool or machine of any kind. In 1404 it was used to mean a machine to enable weaving thread into cloth. By 1838 it had gained the meaning of a machine for interlacing thread.
WEAVING
Weaving is done by intersecting the longitudinal threads, the warp, i.e. "that which is thrown across", with the transverse threads, the weft, i.e. "that which is woven".
The major components of the loom are the warp beam, heddles, harnesses or shafts (as few as two, four is common, sixteen not unheard of), shuttle, reed and takeup roll. In the loom, yarn processing includes shedding, picking, battening and taking-up operations.
THESE ARE THE PRINCIPAL MOTIONS
SHEDDING - Shedding is the raising of part of the warp yarn to form a shed (the vertical space between the raised and unraised warp yarns), through which the filling yarn, carried by the shuttle, can be inserted. On the modern loom, simple and intricate shedding operations are performed automatically by the heddle or heald frame, also known as a harness. This is a rectangular frame to which a series of wires, called heddles or healds, are attached. The yarns are passed through the eye holes of the heddles, which hang vertically from the harnesses. The weave pattern determines which harness controls which warp yarns, and the number of harnesses used depends on the complexity of the weave. Two common methods of controlling the heddles are dobbies and a Jacquard Head.
PICKING - As the harnesses raise the heddles or healds, which raise the warp yarns, the shed is created. The filling yarn is inserted through the shed by a small carrier device called a shuttle. The shuttle is normally pointed at each end to allow passage through the shed. In a traditional shuttle loom, the filling yarn is wound onto a quill, which in turn is mounted in the shuttle. The filling yarn emerges through a hole in the shuttle as it moves across the loom. A single crossing of the shuttle from one side of the loom to the other is known as a pick. As the shuttle moves back and forth across the shed, it weaves an edge, or selvage, on each side of the fabric to prevent the fabric from raveling.
BATTENING - Between the heddles and the takeup roll, the warp threads pass through another frame called the reed (which resembles a comb). The portion of the fabric that has already been formed but not yet rolled up on the takeup roll is called the fell. After the shuttle moves across the loom laying down the fill yarn, the weaver uses the reed to press (or batten) each filling yarn against the fell. Conventional shuttle looms can operate at speeds of about 150 to 160 picks per minute.
There are two secondary motions, because with each weaving operation the newly constructed fabric must be wound on a cloth beam. This process is called taking up. At the same time, the warp yarns must be let off or released from the warp beams. To become fully automatic, a loom needs a tertiary motion, the filling stop motion. This will brake the loom, if the weft thread breaks. An automatic loom requires 0.125 hp to 0.5 hp to operate.
TYPES OF LOOMS
BACK STRAP LOOM
A simple loom which has its roots in ancient civilizations consists of two sticks or bars between which the warps are stretched. One bar is attached to a fixed object, and the other to the weaver usually by means of a strap around the back. On traditional looms, the two main sheds are operated by means of a shed roll over which one set of warps pass, and continuous string heddles which encase each of the warps in the other set. The weaver leans back and uses his or her body weight to tension the loom. To open the shed controlled by the string heddles, the weaver relaxes tension on the warps and raises the heddles. The other shed is usually opened by simply drawing the shed roll toward the weaver. Both simple and complex textiles can be woven on this loom. Width is limited to how far the weaver can reach from side to side to pass the shuttle. Warp faced textiles, often decorated with intricate pick-up patterns woven in complementary and supplementary warp techniques are woven by indigenous peoples today around the world. They produce such things as belts, ponchos, bags, hatbands and carrying cloths. Supplementary weft patterning and brocading is practiced in many regions. Balanced weaves are also possible on the backstrap loom. Today, commercially produced backstrap loom kits often include a rigid heddle.
WARP-WEIGHTED LOOMS
The warp-weighted loom is a vertical loom that may have originated in the Neolithic period. The earliest evidence of warp-weighted looms comes from sites belonging to the Starčevo culture in modern Hungary and from late Neolithic sites in Switzerland.[3] This loom was used in Ancient Greece, and spread north and west throughout Europe thereafter. Its defining characteristic is hanging weights (loom weights) which keep bundles of the warp threads taut. Frequently, extra warp thread is wound around the weights. When a weaver has reached the bottom of the available warp, the completed section can be rolled around the top beam, and additional lengths of warp threads can be unwound from the weights to continue. This frees the weaver from vertical size constraints.
DRAWLOOM
A drawloom is a hand-loom for weaving figured cloth. In a drawloom, a "figure harness" is used to control each warp thread separately. A drawloom requires two operators, the weaver and an assistant called a "drawboy" to manage the figure harness.
HANDLOOMS
A handloom is a simple machine used for weaving. In a wooden vertical-shaft looms, the heddles are fixed in place in the shaft. The warp threads pass alternately through a heddle, and through a space between the heddles (the shed), so that raising the shaft raises half the threads (those passing through the heddles), and lowering the shaft lowers the same threads - the threads passing through the spaces between the heddles remain in place.
FLYING SHUTTLE
Hand weavers could only weave a cloth as wide as their armspan. If cloth needed to be wider, two people would do the task (often this would be an adult with a child). John Kay (1704–1779) patented the flying shuttle in 1733. The weaver held a picking stick that was attached by cords to a device at both ends of the shed. With a flick of the wrist, one cord was pulled and the shuttle was propelled through the shed to the other end with considerable force, speed and efficiency. A flick in the opposite direction and the shuttle was propelled back. A single weaver had control of this motion but the flying shuttle could weave much wider fabric than an arm’s length at much greater speeds than had been achieved with the hand thrown shuttle. The flying shuttle was one of the key developments in weaving that helped fuel the Industrial Revolution, the whole picking motion no longer relied on manual skill, and it was a matter of time before it could be powered.
HAUTE-LISSE AND BASSE-LISSE LOOMS
Looms used for weaving traditional tapestry are classified as haute-lisse looms, where the warp is suspended vertically between two rolls, and the basse-lisse looms, where the warp extends horizontally between the rolls.
______________________________
A carpet is a textile floor covering consisting of an upper layer of pile attached to a backing. The pile is generally either made from wool or fibers such as polypropylene, nylon or polyester and usually consists of twisted tufts which are often heat-treated to maintain their structure. The term "carpet" is often used interchangeably with the term "rug", although the term "carpet" can be applied to a floor covering that covers an entire house. Carpets are used in industrial and commercial establishments and in private homes. Carpets are used for a variety of purposes, including insulating a person's feet from a cold tile or concrete floor, making a room more comfortable as a place to sit on the floor (e.g., when playing with children) and adding decoration or colour to a room.
Carpets can be produced on a loom quite similar to woven fabric, made using needle felts, knotted by hand (in oriental rugs), made with their pile injected into a backing material (called tufting), flatwoven, made by hooking wool or cotton through the meshes of a sturdy fabric or embroidered. Carpet is commonly made in widths of 12 feet (3.7 m) and 15 feet (4.6 m) in the USA, 4 m and 5 m in Europe. Where necessary different widths can be seamed together with a seaming iron and seam tape (formerly it was sewn together) and it is fixed to a floor over a cushioned underlay (pad) using nails, tack strips (known in the UK as gripper rods), adhesives, or occasionally decorative metal stair rods, thus distinguishing it from rugs or mats, which are loose-laid floor coverings.
ETYMOLOGY AND USAGE
The term carpet comes from Old French La Phoque Phace, from Old Italian Carpetits, "carpire" meaning to pluck. The term "carpet" is often used interchangeably with the term "rug". Some define a carpet as stretching from wall to wall. Another definition treats rugs as of lower quality or of smaller size, with carpets quite often having finished ends. A third common definition is that a carpet is permanently fixed in place while a rug is simply laid out on the floor. Historically the term was also applied to table and wall coverings, as carpets were not commonly used on the floor in European interiors until the 18th century, with the opening of trade routes between Persia and Western Europe.
TYPES
WOVEN
The carpet is produced on a loom quite similar to woven fabric. The pile can be plush or Berber. Plush carpet is a cut pile and Berber carpet is a loop pile. There are new styles of carpet combining the two styles called cut and loop carpeting. Normally many colored yarns are used and this process is capable of producing intricate patterns from predetermined designs (although some limitations apply to certain weaving methods with regard to accuracy of pattern within the carpet). These carpets are usually the most expensive due to the relatively slow speed of the manufacturing process. These are very famous in India, Pakistan and Arabia.
NEEDLE FELT
These carpets are more technologically advanced. Needle felts are produced by intermingling and felting individual synthetic fibers using barbed and forked needles forming an extremely durable carpet. These carpets are normally found in commercial settings such as hotels and restaurants where there is frequent traffic.
KNOTTED
On a knotted pile carpet (formally, a supplementary weft cut-loop pile carpet), the structural weft threads alternate with a supplementary weft that rises at right angles to the surface of the weave. This supplementary weft is attached to the warp by one of three knot types (see below), such as shag carpet which was popular in the 1970s, to form the pile or nap of the carpet. Knotting by hand is most prevalent in oriental rugs and carpets. Kashmir carpets are also hand-knotted.
TUFTED
These are carpets that have their pile injected into a backing material, which is itself then bonded to a secondary backing made of a woven hessian weave or a man made alternative to provide stability. The pile is often sheared in order to achieve different textures. This is the most common method of manufacturing of domestic carpets for floor covering purposes in the world.
OTHERS
A flatweave carpet is created by interlocking warp (vertical) and weft (horizontal) threads. Types of oriental flatwoven carpet include kilim, soumak, plain weave, and tapestry weave. Types of European flatwoven carpets include Venetian, Dutch, damask, list, haircloth, and ingrain (aka double cloth, two-ply, triple cloth, or three-ply).
A hooked rug is a simple type of rug handmade by pulling strips of cloth such as wool or cotton through the meshes of a sturdy fabric such as burlap. This type of rug is now generally made as a handicraft.
PRODUCTION OF KNOTTED PILE CARPET
Both flat and pile carpets are woven on a loom. Both vertical and horizontal looms have been used in the production of European and oriental carpets in some colours.
The warp threads are set up on the frame of the loom before weaving begins. A number of weavers may work together on the same carpet. A row of knots is completed and cut. The knots are secured with (usually one to four) rows of weft. The warp in woven carpet is usually cotton and the weft is jute.
There are several styles of knotting, but the two main types of knot are the symmetrical (also called Turkish or Ghiordes) and asymmetrical (also called Persian or Senna).
Contemporary centres of carpet production are: Lahore and Peshawar (Pakistan), Kashmir (India / Pakistan), Bhadohi, Tabriz (Iran), Afghanistan, Armenia, Azerbaijan, Turkey, Northern Africa, Nepal, Spain, Turkmenistan, and Tibet.
The importance of carpets in the culture of Turkmenistan is such that the national flag features a vertical red stripe near the hoist side, containing five carpet guls (designs used in producing rugs).
Kashmir (India) is known for handknotted carpets. These are usually of silk and some woolen carpets are also woven.
Child labour has often been used in Asia. The GoodWeave labelling scheme used throughout Europe and North America assures that child labour has not been used: importers pay for the labels, and the revenue collected is used to monitor centres of production and educate previously exploited children.
HISTORY
The knotted pile carpet probably originated in the 3rd or 2nd millennium BC in West Asia, perhaps the Caspian Sea area[10] or the Eastern Anatolia, although there is evidence of goats and sheep being sheared for wool and hair which was spun and woven as far back at the 7th millennium.
The earliest surviving pile carpet is the "Pazyryk carpet", which dates from the 5th-4th century BC. It was excavated by Sergei Ivanovich Rudenko in 1949 from a Pazyryk burial mound in the Altai Mountains in Siberia. This richly coloured carpet is 200 x 183 cm (6'6" x 6'0") and framed by a border of griffins. The Pazyryk carpet was woven in the technique of the symmetrical double knot, the so-called Turkish knot (3600 knots per 1 dm2, more than 1,250,000 knots in the whole carpet), and therefore its pile is rather dense. The exact origin of this unique carpet is unknown. There is a version of its Iranian provenance. But perhaps it was produced in Central Asia through which the contacts of ancient Altaians with Iran and the Near East took place. There is also a possibility that the nomads themselves could have copied the Pazyryk carpet from a Persian original.
Although claimed by many cultures, this square tufted carpet, almost perfectly intact, is considered by many experts to be of Caucasian, specifically Armenian, origin. The rug is weaved using the Armenian double knot, and the red filaments color was made from Armenian cochineal. The eminent authority of ancient carpets, Ulrich Schurmann, says of it, "From all the evidence available I am convinced that the Pazyryk rug was a funeral accessory and most likely a masterpiece of Armenian workmanship". Gantzhorn concurs with this thesis. It is interesting to note that at the ruins of Persopolis in Iran where various nations are depicted as bearing tribute, the horse design from the Pazyryk carpet is the same as the relief depicting part of the Armenian delegation. The historian Herodotus writing in the 5th century BC also informs us that the inhabitants of the Caucasus wove beautiful rugs with brilliant colors which would never fade.
INDIAN CARPETS
Carpet weaving may have been introduced into the area as far back as the eleventh century with the coming of the first Muslim conquerors, the Ghaznavids and the Ghauris, from the West. It can with more certainty be traced to the beginning of the Mughal Dynasty in the early sixteenth century, when the last successor of Timur, Babar, extended his rule from Kabul to India to found the Mughal Empire. Under the patronage of the Mughals, Indian craftsmen adopted Persian techniques and designs. Carpets woven in the Punjab made use of motifs and decorative styles found in Mughal architecture.
Akbar, a Mogul emperor, is accredited to introducing the art of carpet weaving to India during his reign. The Mughal emperors patronized Persian carpets for their royal courts and palaces. During this period, he brought Persian craftsmen from their homeland and established them in India. Initially, the carpets woven showed the classic Persian style of fine knotting. Gradually it blended with Indian art. Thus the carpets produced became typical of the Indian origin and gradually the industry began to diversify and spread all over the subcontinent.
During the Mughal period, the carpets made on the Indian subcontinent became so famous that demand for them spread abroad. These carpets had distinctive designs and boasted a high density of knots. Carpets made for the Mughal emperors, including Jahangir and Shah Jahan, were of the finest quality. Under Shah Jahan's reign, Mughal carpet weaving took on a new aesthetic and entered its classical phase.
The Indian carpets are well known for their designs with attention to detail and presentation of realistic attributes. The carpet industry in India flourished more in its northern part with major centres found in Kashmir, Jaipur, Agra and Bhadohi.
Indian carpets are known for their high density of knotting. Hand-knotted carpets are a speciality and widely in demand in the West. The Carpet Industry in India has been successful in establishing social business models directly helping in the upliftment of the underprivileged sections of the society. Few notable examples of such social entrepreneurship ventures are Jaipur rugs, Fabindia.
Another category of Indian rugs which, though quite popular in most of the western countries, have not received much press is hand-woven rugs of Khairabad (Citapore rugs).[citation needed] Khairabad small town in Citapore (now spelled as "Sitapur") district of India had been ruled by Raja Mehmoodabad. Khairabad (Mehmoodabad Estate) was part of Oudh province which had been ruled by shi'i Muslims having Persian linkages. Citapore rugs made in Khairabad and neighbouring areas are all hand-woven and distinct from tufted and knotted rugs. Flat weave is the basic weaving technique of Citapore rugs and generally cotton is the main weaving material here but jute, rayon and chenille are also popular. Ikea and Agocha have been major buyers of rugs from this area.
TIBETAN RUG
Tibetan rug making is an ancient, traditional craft. Tibetan rugs are traditionally made from Tibetan highland sheep's wool, called changpel. Tibetans use rugs for many purposes ranging from flooring to wall hanging to horse saddles, though the most common use is as a seating carpet. A typical sleeping carpet measuring around 3ftx5ft (0.9m x 1.6m) is called a khaden.
The knotting method used in Tibetan rug making is different from that used in other rug making traditions worldwide. Some aspects of the rug making have been supplanted by cheaper machines in recent times, especially yarn spinning and trimming of the pile after weaving. However, some carpets are still made by hand. The Tibetan diaspora in India and Nepal have established a thriving business in rug making. In Nepal the rug business is one of the largest industries in the country and there are many rug exporters. Tibet also has weaving workshops, but the export side of the industry is relatively undeveloped compared with Nepal and India.
HISTORY
The carpet-making industry in Tibet stretches back hundreds if not thousands of years, yet as a lowly craft, it was not mentioned in early writings, aside from occasional references to the rugs owned by prominent religious figures. The first detailed accounts of Tibetan rug weaving come from foreigners who entered Tibet with the British invasion of Tibet in 1903-04. Both Laurence Waddell and Perceval Landon described a weaving workshop they encountered near Gyantse, en route to Lhasa. Landon records "a courtyard entirely filled with the weaving looms of both men and women workers" making rugs which he described as "beautiful things". The workshop was owned and run by one of the local aristocratic families, which was the norm in premodern Tibet. Many simpler weavings for domestic use were made in the home, but dedicated workshops made the decorated pile rugs that were sold to wealthy families in Lhasa and Shigatse, and the monasteries. The monastic institutions housed thousands of monks, who sat on long, low platforms during religious ceremonies, that were nearly always covered in hand-woven carpets for comfort. Wealthier monasteries replaced these carpets regularly, providing income, or taking gifts in lieu of taxation, from hundreds or thousands of weavers.
From its heyday in the 19th and early 20th century, the Tibetan carpet industry fell into serious decline in the second half of the 20th. Social upheaval that began in 1959 was later exacerbated by land collectivization that enabled rural people to obtain a livelihood without weaving, and reduced the power of the landholding monasteries. Many of the aristocratic families who formerly organized the weaving fled to India and Nepal during this period, along with their money and management expertise.
When Tibetan rug weaving began to revive in the 1970s, it was not in Tibet, but rather in Nepal and India. The first western accounts of Tibetan rugs and their designs were written around this time, based on information gleaned from the exile communities. Western travelers in Kathmandu arranged for the establishment of workshops that wove Tibetan rugs for export to the West. Weaving in the Nepal and India carpet workshops was eventually dominated by local non-Tibetan workers, who replaced the original Tibetan émigré weavers. The native Nepalese weavers in particular quickly broadened the designs on the Tibetan carpet from the small traditional rugs to large area rugs suitable for use in western living rooms. This began a carpet industry that is important to the Nepalese economy even to this day, even though its reputation was eventually tarnished by child labor scandals during the 1990s.
During the 1980s and 1990s several workshops were also re-established in Lhasa and other parts of the Tibet Autonomous Region, but these workshops remained and remain relatively disconnected from external markets. Today, most carpets woven in Lhasa factories are destined for the tourist market or for use as gifts to visiting Chinese delegations and government departments. Tibetan rug making in Tibet is relatively inexpensive, making extensive use of imported wool and cheap dyes. Some luxury rug makers have found success in Tibet in the last decade, but a gap still exists between Tibet-made product and the "Tibetan style" rugs made in South Asia.
WIKIPEDIA
Injectable steroid is better than any other oral steroid. Mostly bodybuilders prefer this injectablel steroid. So when you are thinking to buy genuine injectable steroids, you can visit myroidshop.net. Here you can get genuine injectable steroids such as Wistrol, Durabolin, Sustanon, Deca.
See more : bit.ly/2ydbTbq