View allAll Photos Tagged selective
Made for the Relationship/Valentine's Day Theme of the Month over at the North Alabama Photographers Guild.
I really wanted my shot to focus around the box of chocolates. I took the shot in color and converted it to black and white, but the candy just didn't make enough of an impression in b&w so I decided to do a little selective coloring. Now I definitely think the candy pops out at you. The wide angle lens that I used for this shot really helped create the "elongated" look that I wanted.
I took a lot of shots centered around these chocolates and as you can see I couldn't resist taking a few as I was taking the photos. Chocolate is brain fuel, right?
IR HDR. IR converted Canon Rebel XTi. AEB +/-2 total of 3 exposures processed with Photomatix. Levels adjusted in PSE.
High Dynamic Range (HDR)
High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.
HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.
The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.
Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).
In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).
Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.
In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.
An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.
Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.
Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.
Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range
Tone mapping
Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.
Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include
Adobe Photoshop
Aurora HDR
Dynamic Photo HDR
HDR Efex Pro
HDR PhotoStudio
Luminance HDR
MagicRaw
Oloneo PhotoEngine
Photomatix Pro
PTGui
Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.
HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.
History of HDR photography
The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.
Mid 20th century
Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.
Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.
With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.
Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.
Late 20th century
Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.
In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.
In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.
Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.
In 1993, another commercial medical camera producing an HDR video image, by the Technion.
Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.
On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.
The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.
21st century
In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.
On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.
HDR sensors
Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.
Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.
en.wikipedia.org/wiki/High-dynamic-range_imaging
Infrared Photography
In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)
When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.
The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.
Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.
Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.
Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.
False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.
Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.
Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.
Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.
As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.
Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.
Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.
In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.
There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.
Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.
In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.
Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.
An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.
Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.
While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.
Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.
Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.
Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".
Phase One digital camera backs can be ordered in an infrared modified form.
Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.
Additive manufacturing (AM) is defined by ASTM as the 'process of joining materials to make objects, usually layer by layer, from 3D CAD data'. Additive processes include Selective Laser Melting (SLM), Laser Metal Deposition (LMD), Stereolithography, Fused Deposition Modelling (FDM) and 3D Inkjet Printing (3DP). Each technology is often distinguished by the raw materials used (including powder, wire, photosensitive liquid resins, thermoplastic filament, printing inks) or by the method of consolidation (including laser heating and melting, photo polymerisation, conduction heating, chemical reaction).
AM is seemingly opposite to subtractive manufacturing approaches that remove material to form the shape of a work piece. The traditional metal removal processes such as milling, turning, grinding, electrical discharge machining (EDM), fall into this category.
For more information www.twi.co.uk/technologies/welding-coating-and-material-p...
If you wish to use this image each use should be accompanied by the credit line and notice, "Courtesy of TWI Ltd".
Another shot from my trip to Elliot's Junkyard in Dacono, CO with Garrett. I really liked the color of this old Dodge but the cars around it were a bit distracting so I decided to put my newly learned masking skills to work with some selective color.
This was shot with a Tokina 11-16 lens with a circular polarizer, tone-mapped in Photomatix using three images and then processed in Photoshop.
DDAY Veteran "Placid Lassie" in the skies over Peru, Illinois on a formation practice flight in preparation for the 2022 TBM Reunion.
Queen Anne’s Lace.
The Wild Carrot, Daucus carota, whose common names include wild carrot, bird's nest, bishop's lace, and Queen Anne's lace (North America), is a white, flowering plant in the family Apiaceae, native to temperate regions of Europe and southwest Asia, and naturalized to North America and Australia. Domesticated carrots are cultivars of a subspecies, Daucus carota subsp. sativus.
The plant is a herbaceous, somewhat variable biennial plant that grows between 30 and 60 cm (1 and 2 ft) tall, and is roughly hairy, with a stiff, solid stem. The leaves are tripinnate, finely divided and lacy, and overall triangular in shape. The leaves are bristly and alternate in a pinnate pattern that separates into thin segments. The flowers are small and dull white, clustered in flat, dense umbels. The main identifier is the hairy stem of the wild carrot.
Scientific name: Daucus carota subsp. L.
Taxonomy -
Class: Equisetopsida Subclass: Magnoliidae Superorder: Asteranae
Order: Apiales Family:Apiaceae Genus: Daucus
Common name( s): wild carrot, carrot, Queen Anne’s lace, bird’s nest, devil’s plague
Synonym (s): Carota sylvestr is (Mill.) Rupr., Caucalis carnosa Roth more here
Conservation status: Widespread and not considered to be threatened.
Habitat: Rough grassland, coastal cliffs and dunes.
Key uses: Food and drink.
Known hazards: Wild carrot has some medical properties and is similar in appearance to poisonous species such as poison hemlock (Conium maculatum), water hemlock (Cicuta maculata) and fool's parsley (Aethusa cynapium).
Taxonomy Class: Equisetopsida
Subclass: Magnoliidae Super or der : Asteranae
Order : Apiales Family: Apiaceae
Genus: Daucus (source for the above - Royal Botanical Gardens, Kew, London UK - more information - www.kew.org/plants-fungi/Daucus-carota.htm) picture - Deutschlands Flora in Abbildungen, Jacob Sturm und Johann Georg Sturm (1796) Original Description Echte Möhre, Daucus carota.
The Wild Carrot (Daucus Carota) (a.k.a.Queen Anne's Lace) is thought to have originated on the Iranian Plateau (an area which now includes Afghanistan, Pakistan and Iran). It is abundant in temperate regions across the globe, particularly Western Asia and Europe, and is widely distributed across much of the United States whereCarrot Now and then - wild and domestic it is often found along roadsides, abandoned fields, and pastures.
Cultivated plant species and their sexually-compatible wild relatives often overlap in terms of geographic proximity and phenology. This overlap provides the opportunity for gene flow between crops and their wild relatives. Farmers and breeders are often concerned with the potential for wild allelic contamination into agricultural fields, which can hinder production efficiency.
In many carrot producing regions throughout the world, wild carrot populations can be found growing in close proximity to cultivated carrot fields.
Wild carrot is the progenitor of the cultivated carrot, D. carota subsp. sativus, and the two subspecies are sexually compatible. The cultivated carrot was likely domesticated in Central Asia roughly 1,100 yr ago and is grown worldwide from both open pollinated and hybrid seed.
Wild Carrot mainly occurs in free-draining and slightly acidic soils on rough grassland, coastal cliffs and dunes. It frequently naturalises in fields and gardens.
It is one of many umbelliferous plants to be found growing around the world. Wild carrot appears in many temperate regions of the world, far beyond its Mediterranean and Asian centres of origin where this plant displays great diversity. It is quite possible that ancient cultures in those regions used wild carrot as a herb, and it is also quite likely that the seeds were used medicinally in the Mediterranean region since antiquity (Banga 1958).
Almost certainly the wild and early forms of the domesticated carrot were first used as a medicine before they were used as a root vegetable in the conventional sense of that term today. There is good genetic evidence that wild carrot is the direct progenitor of the cultivated carrot (Simon 2000). Selection for a swollen rooted type suitable for domestic consumption undoubtedly took many centuries.
Both the wild and the cultivated carrots belong to the species Daucus carota. Wild carrot is distinguished by the name Daucus carota, Carota, whereas domesticated carrot belongs to Daucus carota, sativus. As a member of the carrot family it has a long taproot and lacy leaves. Dig up and crush a Wild Carrot root and you will find that it smells just like a carrot.
It is yellowish or ivory in colour, spindle-shaped, slender, firm and woody; a pernicious weed in some areas. It is edible when young but the root (especially the centre) soon gets tough and woody due to the high content of xylem tissue. The domestic carrot is a relative that lacks most of this tissue. The wild carrot has finely divided leaves like that of the domesticated carrot. The leaves, petioles and flower stems may be densely hairy or have no hair. The leaves on the stem are arranged alternately. Flowering wild carrot may grow four feet tall. At the end of the stem is a primary umbel (seed head) made up of numerous individual white flowers and possibly a purple flower in the center together with drooping, narrow bracts on the underside . Plants also may have many secondary umbels produced at any node on the stem below the primary umbel.
Each flower on the umbel produces two seeds. After seed set, the umbel closes upward. Once the seeds have turned brown, they are mature. The roots of wild carrot are typically white. The characteristic odour of carrot is present when any part of the plant is crushed. Spent umbels curl inwards forming a depressed cup. The fruits are covered in hooked spines, which aid dispersal by clinging to the fur of passing animals. Flowering period (in England) is from June to August and the native biennial can reach a height of 90 centimetres.
Wild Carrot is also known as Queen Anne's Lace, Birds Nest Weed, Bees Nest, Devils Plague, garden carrot, Bird's Nest Root, Fools Parsley, Lace Flower, Rantipole, Herbe a dinde and Yarkuki. Herbe a dinde derives from its use as a feed for young turkeys-dinde.
"Daucus" comes from daukos, name given by the Greeks to some members of the Umbelliferae family and it seems to derive from "daîo" : I overheat . Carota means carrot in Latin.
Can you eat carrot flowers? - Yes at your won risk! - Your best bet is to read up on survival or self sufficiency foods, a good source from people who have tried and lived to tell the tale!
As I recall from reading such a survival book, wild carrot flowers (and many others ) are edible. The big caveat is, and I cannot emphasise this too much - be absolutely sure it is Wild Carrot as it is very similar to poison hemlock (which killed Socrates!).
Deep fried carrot flower is supposed to be a delicacy - www.altnature.com/gallery/Wild_Carrot.htm
So on that basis domestic carrot flowers should be edible too.
My friend from What's Cooking America has a useful guide for you - whatscookingamerica.net/EdibleFlowers/EdibleFlowersMain.htm
And another guide for you - www.herbsarespecial.com.au/self-sufficiency/edible-flower...
The Mystery of the Purple Floret
Queen Anne’s Lace is common in North America, Europe and Asia. In the summer it produces beautiful compound flowers that form a carpet of hundreds of tiny white florets. Strangely, quite often you will find a single darkly coloured floret just off center, standing tall above the rest. No one knows why.
Botanists have debated the mystery of the coloured floret in Daucas carota (also known as “Queen Anne’s Lace,” “Wild Carrot,” “Bishop’s Lace,” and “Bird’s Nest”) for at least the last 150 years. Back then some of the most learned botanists believed that the floret was a genetic oddity that provided no service to the plant. Many modern botanists disagree. Some suspect that the coloured floret tricks flying insects into thinking that a bug is already sitting on the flower.
Perhaps this attracts predatory wasps to land hoping to snatch a quick meal. Perhaps the presence of one insect is a signal to others that there is something on this flower worth having. If so, then the floret might entice flying insects to land and thereby help pollinate the plant.
The research that’s been done so far on this question has produced contradictory results. Some naturalists argue that they have found evidence that favours the idea that the dark floret is an insect mimic. Others have presented data that suggests that the floret does nothing to help the plant increase the number of viable seeds it produces, and therefore does nothing to help it propagate its species.
By solving the great debate of its function, new knowledge about the central dark spot and its possible role as an insect attractant could lead to future developments in cultivation as well as in methods for improving agricultural processes in cultivated carrots.
The wild carrot is an aromatic herb that acts as a diuretic, soothes the digestive tract and stimulates the uterus. A wonderfully cleansing medicine, it supports the liver, stimulates the flow of urine and the removal of waste by the kidneys. An infusion is used in the treatment of various complaints including digestive disorders, kidney and bladder diseases and in the treatment of dropsy.
An infusion of the leaves has been used to counter cystitis and kidney stone formation, and to diminish stones that have already formed. Carrot leaves contain significant amounts of porphyrins, which stimulate the pituitary gland and lead to the release of increased levels of sex hormones.
The plant is harvested in July and dried for later use. A warm water infusion of the flowers has been used in the treatment of diabetes. The grated raw root, especially of the cultivated forms, is used as a remedy for threadworms. The root is also used to encourage delayed menstruation.
The root of the wild plant can induce uterine contractions and so should not be used by pregnant women. A tea made from the roots is diuretic and has been used in the treatment of urinary stones.
An infusion is used in the treatment of oedema, flatulent indigestion and menstrual problems. The seed is a traditional 'morning after' contraceptive and there is some evidence to uphold this belief. It requires further investigation. Carrot seeds can be abortifacient and so should not be used by pregnant women.
Ancient folk lore said that to cure epileptic seizures you should eat the dark coloured middle flower of Queen Annes Lace. The flower is also used in ancient rituals an spells, for women to increase fertility and for men to increase potency and sexual desire!
A warm water infusion of the flowers has been used in the treatment of diabetes. The grated raw root, especially of the cultivated forms, is used as a remedy for threadworms.
The root is also used to encourage delayed menstruation. The root of the wild plant can induce uterine contractions and so should not be used by pregnant women.
A tea made from the roots is diuretic and has been used in the treatment of urinary stones. The seeds are diuretic, carminative, emmenagogue and anthelmintic.
An infusion is used in the treatment of oedema, flatulent indigestion and menstrual problems. The seed is a traditional ‘morning after’ contraceptive and there is some evidence to uphold this belief. It requires further investigation. Carrot seeds can be abortifacient and so should not be used by pregnant women.
Queen Annes Lace is the wild progenitor of the domesticated carrot. Although native to the Old World, these white lacy umbels are a familiar sight in the United States and Canada. The medicinal properties of Queen Annes Lace are many. More detail is given below. Its seeds may be collected, dried and used for tea. It is interesting to note that this plant is the closest living relative (on the basis of family and medicinal activity) to Silphion, which was picked and used by the Romans as a culinary spice and contraceptive until it became extinct in the first century AD. Apparently it was extremely effective. Supposedly Nero was given the last remaining root.
In the late 1980s scientists began studying Queen Annes Lace and found that (in mice at least) it blocked the production of progesterone and inhibited fetal and ovarian growth. Check out thecontraception page of the Museum.
Queen Anne's Lace is quite an aggressive plant. It is a biennial, so lives only 2 years, thus never forms a big root mass like daisies or other perennial wildflowers. However, it is such a prolific seeder, it does spread rapidly, and is almost impossible to eradicate. It is an alien, but one of the ones that's been in the US since colonial times. It came across the ocean in sacks of grain, probably with the Pilgrims. It's now established in every State. It's beautiful in the wildflower meadow I am not so sure in the garden.
If you want to plant it, easiest way is to gather a handful of the seeds from a plant dying down in the fall. They seem to be everywhere. But there is also another option. Try an annual named Ammi majus. It's the flower common in the cut flower trade as "Queen Anne's Lace", and is also sometimes called "Bishop's Flower." The two look very similar, but the latter doesn't last in your soil forever as Daucus does.
Today, in some parts of rural United States, this herb is used as a sort of morning-after contraceptive by women who drink a teaspoonful of the seeds with a glass of water immediately after sex. The seeds are also used for the prevention and washing out of gravel and urinary stones. As they are high in volatile oil, some find them soothing to the digestive system, useful for colic and flatulence. Be very, very sure that if you do decide to harvest any part of Queen Annes Lace for consumption that you have the correct plant. It is similar to Hemlock (Conium maculatum), a herb which was used medicinally but is now seldom used because of its high toxicity.
The Wild Carrot is still very much prevalent, particularly in the US where it was introduced from Europe and is the genetic source of edible carrots. Wild Carrot is found in sandy or gravelly soils and in wets areas. It is abundant west of the Cascades in Oregon and Washington where it is classed as a Class C noxious weed. Wild Carrot causes problems in pastures, hay fields, Christmas tree farms, grass seed fields and most other open areas that are not tilled annually. It is an especially serious threat in areas where carrot seed is produced because it hybridizes with the crop and ruins the seed.
Washington state has gone so far as to quarantine the plants to prevent any further escapes into its wildlands and agricultural regions. It is illegal to transport, buy, sell or distribute seed there. The penalty is a $5,000 fine.
Wild Cwild carrot and rosettearrot is easy to grow, it prefers a sunny position and a well-drained neutral to alkaline soil. Considered an obnoxious weed by some, it can spread very quickly. Its root is small and spindle shaped, whitish, slender and hard, (tender when young), but soon gets tough, with a strong aromatic smell. Harvest entire plant in July or when flowers bloom, and dry for later herb use. Collect edible roots and shoots in spring when tender. Gather seed in autumn (the fall).
There is no record of wild carrot toxicity in the US but in Europe wild carrot has been known to be mildly toxic to horses and cattle. A high concentration of wild carrot in hay is potentially a problem because livestock eat hay less selectively than green forage. Sheep appear to graze wild carrot without any harmful effect. Find out about some of the myths as to why Queen Annes Lace is so called click here.
wild carrot plantThis plant is a biennial which grows, in its second year, from a taproot (the carrot) to a height of two to four feet. The stems are erect and branched; both stems and leaves are covered with short coarse hairs.
The leaves are very finely divided; the botanical term is tri-pinnate. When a leaf is composed of a number of lateral leaflets, it is said to be pinnate or feather-like; and when these lateral divisions are themselves pinnated, it is said to be bi-pinnate, or twice-feathered. The leaves of this plant are like that but some of the lower leaves are still more divided and become tri-pinnate. The lower leaves are considerably larger than the upper ones, and their arrangement on the main stem is alternate. All of these leaves embrace the stem with a sheathing base.
wild carrot flowerThe attractive two to four inch "flower" is actually a compound inflorescence made up of many small flowers. The umbels of the flowers are terminal and composed of many rays. The flowers themselves are very small, but from their whiteness and number, present a very conspicuous appearance. The central flower of each umbel is often purple.
During the flowering period the head is nearly flat or slightly convex, but as the seeds ripen the form becomes very cup-like; hence one of the popular names for this plant is "bird's nest." The seeds are covered with numerous little bristles arranged in five rows. For more photos click here.
Like their domestic cousins, wild carrot roots can be eaten. However, they are only edible when very young. After that, they are too tough and woody. The flowers are also edible. Flower clusters can be french fried for a carrot-flavoured, quite attractive dish.
My dear friend and Clan (family) member Irene
www.flickr.com/photos/irene2carton/
inspired me to try some selective color shots...she has done some that I think kicks all ass, so I hope this is up to speed.
.
More in my set, "Marbles:"
www.flickr.com/photos/motorpsiclist/sets/72157632432129257/
.
My photographs and videos and any derivative works are my private property and are copyright © by me, John Russell (aka "Zoom Lens") and ALL my rights, including my exclusive rights, are reserved and protected by United States Copyright Laws and International Copyright Laws. ANY use without my permission in writing is forbidden by law.
The exhaust valve assemblies are matched to specific cylinders. A Roman numeral is scratched into the head of each valve for identification (not visible until the carbon deposits are cleaned off). This valve is from cylinder number 7 - the rest of this assembly is still missing so far.
After a missed attempt to shoot the bison last Saturday (9-7-2013) at the South Bison Range at Land Between the Lakes National Recreation Area from a vantage point at the rear of their pasture (wouldn't you know they'd move road-side by the time I made the mile-long hike around? {chuckle}), I discovered a number of purple passion flowers apparently thriving near the fence-line. I've yet to identify the red clusters but they added some nice touches around Tennessee's state wildflower.