View allAll Photos Tagged programing

original abstract art

 

Art prints and image rights StacyYoungArt.com

Manipulated Photos into abstract designs in IrfanView, layered in Photoshop Elements, and assembled by a human. Some mirroring and cut and paste done in both programs.

158/365

This is really different from the work that i have been producing lately, But it seems like i have one decent conceptual piece every week and half or so . It would be cool if i could create more conceptual photos everyday but i just cant seem to find the time to set everything up.

 

And i guess the concept behind this photo is all explained in the title.

 

View Large Please!

 

I really appreciate any constructive feedback/ critiques :)

 

website|facebook|tumblr<---- Reblog On TUMBLR :)

Canon AE1 Program | Kodak Color Plus 200

 

Lyon, France | August 2018

Program:Manual

Lens:70-300mm f/4-5.6 G VR

F:10.0

Speed:1/250

ISO:100

Focal Length:70.0 mm (35 mm equivalent 105.0 mm)

Focus Mode:AF-C

AF Area:Dynamic Area (3D-tracking)

Shooting Mode:Continuous

VR:On

WB:Auto1

Picture Control:Standard

Focus Distance:28.18 m

Dof:inf (13.11 m - inf)

HyperFocal:24.46 m

 

Program:Manual

Lens:35mm f/1.8 G

F:1.8

Speed:1/60

ISO:160

Focal Length:35.0 mm (35 mm equivalent 52.0 mm)

AF Fine Tune Adj:+4

Focus Mode:AF-C

AF Area:Dynamic Area (3D-tracking)

Shooting Mode:Single-Frame, [3], Auto ISO

VR:Off

EV:-1/3

Metering Mode:Multi-segment

WB:Auto1

Picture Control:Standard

Focus Distance:5.01 m

Dof:1.52 m (4.37 - 5.88)

HyperFocal:33.65 m

I’d like to present my entry to the BrickLink Designer Program Series 1 - Bob’s Café and Johnny’s Bakery!

 

It has a chance to become a limited edition LEGO set, so if you like it, please consider voting for it! - www.bricklink.com/v3/designer-program/series-1/414/Bob's-...

 

The set idea contains two buildings: the corner building has a café on the ground floor, a LEGO fan's apartment on the first floor, and a nice, cosy roof terrace. The second building has a small bakery on the ground floor and a small apartment on the first floor; but there's also an attic where minifigures can store their old stuff they're not using.

 

These houses are modular, which means you can connect them using technic pins and you can also easily remove/add multiple floors to them, and they’re compatible with the new LEGO road system. They have a much smaller footprint than classic modular buildings, but the facades and interiors are really detailed, so I hope AFOLs and younger builders will like this set.

Program:Manual

Lens:24-70mm f/2.8 G VR

F:2.8

Speed:1/1250

ISO:64

Focal Length:70 mm

AF Fine Tune Adj:+17

Focus Mode:AF-C

AF Area:Dynamic Area (3D-tracking)

Shooting Mode:Single-Frame, Auto ISO

VR:On

Metering Mode:Multi-segment

WB:Auto1

Picture Control:Auto

Focus Distance:3.98 m

Dof:0.54 m (3.73 - 4.27)

HyperFocal:58.24 m

 

Los Propileos de la Acrópolis de Atenas (Grecia). Los Propileos son el único acceso occidental a la Acrópolis. Fueron construidos en el marco del programa monumental de Pericles entre 437 y 431 a. C. y sustituyeron a los viejos propileos de época de Pisístrato. Fueron cubiertos con un pórtico doble y gigante de mármol pentélico.

El arquitecto Mnesicles fue quien proyectó los pórticos como si fueran fachadas de templos dóricos. El pórtico exterior tiene una plataforma a cada lado con tres columnas jónicas que sostenían un techo de mármol azul con estrellas.

Los dos frentes tienen una fachada dórica, hexástila, con el intercolumnio central más ancho, dando paso a la calzada.

El muro de acceso se articula en cinco vanos adintelados dispuestos en orden decreciente. Flanqueando la escalinata de acceso, se encuentra un desarrollado basamento sobre el que se levanta el templo de Atenea Niké.

En los planes de Pericles, la construcción de los Propileos debía seguir a la del Partenón. Debían constituir una entrada monumental al complejo de templos y coronar el camino escarpado que lleva a la cima de la ciudad alta por su lado sur. Los Propileos debían reemplazar al propileo simple construido bajo Pisístrato. Comenzados en 437 a. C., no fueron nunca acabados, siendo interrumpidos los trabajos en 432 a. C., un año antes del estallido de la guerra del Peloponeso.

Es de apreciar la habilidad del arquitecto, Mnesicles al erigir sus propileos en difíciles condiciones topográficas. Esta construcción, dado que debía alzarse en el borde de la explanada superior del recinto de la Acrópolis, tenía que situarse sobre una fractura que señalaba el límite entre la pendiente de la vía ascendente y el plano horizontal.

Su fachada superior se situó en un nivel más bajo que su fachada oriental (interior). Prisionero de los derechos del templo de Atenea Niké, limitado al sur por los terrenos sagrados de Artemisa, obligado a proseguir la porción antigua de los propileos del siglo VI a. C. y de adaptarse a los movimientos de la vía sagrada de Atenas que seguía la procesión con sus carros y sus animales de sacrificio, Mnesicles erigió un edificio que respondía a esas múltiples dificultades. Respetó el ritmo fundamental de los propileos arcaicos con las cinco puertas de acceso a la planicie sagrada,​ abiertas en el muro transversal que cortaba el corredor que bordeaba los dos muros laterales. Pero una ligera diferencia de orientación ponía el eje del edificio en relación con el final de la Vía sagrada y con el eje este-oeste de la explanada, separando el Partenón y el conjunto del Erecteón.

Los Propileos tenían, por tanto, la difícil misión de «suprimir» visualmente la diferencia de nivel existente entre el lado exterior y el interior. Vistos desde abajo, presentaban una fachada hexástila dórica, con ángulos salientes formados por columnas más delgadas.

Para respetar y subrayar el movimiento ascendente de la procesión de las Panateneas, el cuerpo central de los nuevos propileos con sus cinco puertas se situó donde la ruptura de la pendiente era más acentuada, sobre un basamento de cinco escalones que compensaban el desnivel. La continuidad del movimiento se subrayaba con la importancia de la puerta central (4,13 m de anchura y 7,38 m de altura), ante la cual se interrumpían los escalones para dejar paso al carro de la diosa Atenea y para la ampliación del entrepaño correspondiente en el pórtico occidental (5,43 m en vez de 3,62 m en los entrepaños laterales).

Para recibir la procesión se erigió en el exterior una fachada de seis columnas dóricas sobre un basamento de cuatro escalones que se doblaban en ángulo recto para sostener las columnatas de las fachadas laterales encuadrando la explanada de llegada.

Para situar la vía de acceso en el interior del vestíbulo, la anchura de éste era de 18,12 m, análoga a la de la cella principal del Partenón. La profundidad del vestíbulo era de 12,96 m. Además, el orden jónico que sostenía el techo de esa sala fue adoptado por Mnesicles para la ordenación del vestíbulo.

Bordeando el espacio central que coincidía con la gran puerta central, Mnesicles situó dos filas de tres columnas jónicas.

Las naves estaban cubiertas por techos artesonados de mármol,​ cuyas vigas marmóreas sobrepasaban los seis metros.

Mnesicles tuvo que recurrir aquí a una técnica inusitada para reforzar los arquitrabes que sostenían esos techos «armándolos» con una barra metálica.

Los Propileos comprendían un edificio central, amplio vestíbulo de forma rectangular, y dos alas laterales. Entre las cinco puertas de la parte central, la de en medio daba acceso a la Vía sagrada que recorrían las procesiones de las Panateneas.

El ala norte, la pinacoteca, fue la primera galería de pintura del mundo. Se encontraban allí tablas de pintura realizadas por grandes artistas de la época, entre los cuales estaba Polignoto (siglo V a. C.), autor de composiciones mitológicas. El ala sur, más pequeña, se componía de una sala, que conducía al oeste, al templo de Atenea Niké.

Atravesados los Propileos, el visitante antiguo encontraba a su izquierda varios edificios administrativos u oficiales, entre los que estaba la casa de las Arréforas. Enfrente, se alzaba majestuosa la estatua de más de 9 m de Atenea Promacos. A su derecha, el visitante, descubría el pequeño santuario de Artemisa Brauronia y el de Atenea Obrera, y por fin el majestuoso Partenón.

Los Propileos fueron construidos en mármol del Pentélico a partir del basamento. Sin embargo, el arquitecto también utilizó mármol azul de Eleusis. El conjunto costó una colosal fortuna.

Más abajo del camino que llevaba a los Propileos se alzaba la Puerta Beulé cuyo nombre se debe a Charles Ernest Beulé, arqueólogo francés que la descubrió en 1853 bajo un bastión turco. Fue construida por los romanos en el siglo III. No se sabe si el acceso a la acrópolis se efectuaba por una rampa escalonada o por un camino en zigzag.

Los Propileos, como los otros monumentos atenienses tuvieron una historia agitada. Han sido sucesivamente palacio episcopal, residencia de los duques francos de Atenas, palacio florentino y depósito de armas turco.

La estructura fue destruida en gran parte en el siglo XVII como consecuencia de la explosión de un depósito de pólvora.

Atenas (Grecia) 31/7/2018

   

Prompted on World Parrot Day, and with the extraordinary co-operative effort of the photographer, here we have a rare find.

 

This kākāpō chick was in the able care of hands from the Kākāpō Recovery Program . The photographer was the enthralled witness to this scene.

 

Please don't ask for more details as refusal may offend…or I might have to cook my own dinner.

 

Pronunciation tip: it sounds like car-car-paw

  

This Saturday 10 volunteers organized a workshop to learn programming with the Scratch visual programming software and robotics with the Lego Wedo and Mindstorms kits to kids.

There have been a lot of other sessions for 3 years since we've started to promote this type of workshop.

Thanks to all these people and the organizations that provides knowledge, computers, resources kits and snacks (ADN Ouest, La ruche numérique, La cantine numérique, Devoxx4Kids, Coder Dojo, Coding Gouter, ...., as well as a large number of companies that are sponsors for these events)

HUB is the control vessel of the "Program" faction. Basically it's an advanced rouge AI that can control any advanced enough device by overwriting their main code. One of these ships can control more than hundred different devices at once making it as a top priority target in any conflict. It's especially dangerous because all of the modern military vehicles use electronic assistance and that's why "HUB" can hijack tanks, planes, guided missiles etc.

 

The shape was inspired by the D-5 Mantis form Star Wars

  

financial district - downtown san francisco, california

Program:Manual

Lens:24-70mm f/2.8 G VR

F:2.8

Speed:1/250

ISO:125

Focal Length:70 mm

AF Fine Tune Adj:+16

Focus Mode:AF-C

AF Area:Dynamic Area (3D-tracking)

Shooting Mode:Single-Frame, Auto ISO, [9]

VR:On

EV:-1/3

Metering Mode:Multi-segment

WB:Auto0

Picture Control:Neutral

Focus Distance:5.96 m

Dof:1.22 m (5.41 - 6.63)

HyperFocal:58.24 m

 

Program:Manual

Lens:70-300mm f/4-5.6 G VR

F:8.0

Speed:1/320

ISO:280

Focal Length:300 mm

AF Fine Tune Adj:-1

Focus Mode:AF-C

AF Area:Dynamic Area (3D-tracking)

Shooting Mode:Single-Frame, [3], Auto ISO, [9]

VR:On

Metering Mode:Multi-segment

WB:Auto0

Picture Control:Flat

Focus Distance:14.13 m

Dof:1.04 m (13.62 - 14.67)

HyperFocal:374.42 m

 

In the pews at the Xime show. An exercise in onstage presentation, without actually providing entertainment - good experience for these music students, I guess.

 

Some days you're the bug, sometimes you're the windshield.

 

Dans les bancs du salon Xime. Un exercice de présentation sur scène, sans réellement offrir de divertissement - une bonne expérience pour ces étudiants en musique, je suppose.

 

Certains jours, vous êtes l'insecte, parfois vous êtes le pare-brise.

 

Please, read my profile, or visit my website!

SVP, lire mon profil, ou visiter mon page sur Web!

Purchased a Holiday Meal Bag for the FoodBank to distribute.

 

Jimmy Sumas Holiday Meal Bags Program 2020

www.youtube.com/watch?v=efzJuEKFvZE

 

The Sumas Family Story

www.myvillagesupermarket.com/our-story/

 

it has to start somewhere

it has to start sometime

what better place than here

what better time than now ...

pentax super program

Given this by a Widow who was a member of Brentwood Photographic Club -- her Husband died 1993 in his darkroom -- she is still sorting out gear from the garage ! This was covered in DUST and 50mm lens had the start of 'Fungus Flecks' in front and rear surfaces which I cleaned off just in time due to many years in damp garage. She owns NIKON FE cameras so I have serviced them as much as I can for her. The OLYMPUS Spot Program is supposed to ' Eat Batteries' so I am taking them out when not being used.

Thank you for tuning into tonight's irregular scheduled program.

Inspired by the Architectural wonders of Andreas, KingBrick and Stijn Oom.

 

I wanted to primarily test destruction in this build, but one thing led to another and I ended up making something with much more life and flavour than I had originally intended to create.

An Air Force Lockheed Martin F-22 "Raptor" assigned to the 3rd Wing flies over Joint Base Elmendorf-Richardson, Alaska, Feb. 27, 2018. The Lockheed Martin F-22 "Raptor" is the U.S. Air Force’s premium fifth-generation fighter asset.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-22 "Raptor" is a fifth-generation, single-seat, twin-engine, all-weather stealth tactical fighter aircraft developed for the United States Air Force (USAF). The result of the USAF's Advanced Tactical Fighter (ATF) program, the aircraft was designed primarily as an air superiority fighter, but also has ground attack, electronic warfare, and signal intelligence capabilities. The prime contractor, Lockheed Martin, built most of the F-22's airframe and weapons systems and conducted final assembly, while Boeing provided the wings, aft fuselage, avionics integration, and training systems.

 

The aircraft was variously designated F-22 and F/A-22 before it formally entered service in December 2005 as the F-22A. Despite its protracted development and various operational issues, USAF officials consider the F-22 a critical component of the service's tactical air power. Its combination of stealth, aerodynamic performance, and situational awareness enable unprecedented air combat capabilities.

 

Service officials had originally planned to buy a total of 750 ATFs. In 2009, the program was cut to 187 operational production aircraft due to high costs, a lack of clear air-to-air missions due to delays in Russian and Chinese fighter programs, a ban on exports, and development of the more versatile F-35. The last F-22 was delivered in 2012.

  

Development

 

Origins

 

In 1981, the U.S. Air Force identified a requirement for an Advanced Tactical Fighter (ATF) to replace the F-15 "Eagle" and F-16 "Fighting Falcon". Code named "Senior Sky", this air-superiority fighter program was influenced by emerging worldwide threats, including new developments in Soviet air defense systems and the proliferation of the Su-27 "Flanker"- and MiG-29 "Fulcrum"-class of fighter aircraft. It would take advantage of the new technologies in fighter design on the horizon, including composite materials, lightweight alloys, advanced flight control systems, more powerful propulsion systems, and most importantly, stealth technology. In 1983, the ATF concept development team became the System Program Office (SPO) and managed the program at Wright-Patterson Air Force Base. The demonstration and validation (Dem/Val) request for proposals (RFP) was issued in September 1985, with requirements placing strong emphasis on stealth and supercruise. Of the seven bidding companies, Lockheed and Northrop were selected on 31 October 1986. Lockheed teamed with Boeing and General Dynamics while Northrop teamed with McDonnell Douglas, and the two contractor teams undertook a 50-month Dem/Val phase, culminating in the flight test of two technology demonstrator prototypes, the YF-22 and the YF-23, respectively.

 

Dem/Val was focused on risk reduction and technology development plans over specific aircraft designs. Contractors made extensive use of analytical and empirical methods, including computational fluid dynamics, wind-tunnel testing, and radar cross-section calculations and pole testing; the Lockheed team would conduct nearly 18,000 hours of wind-tunnel testing. Avionics development was marked by extensive testing and prototyping and supported by ground and flying laboratories. During Dem/Val, the SPO used the results of performance and cost trade studies conducted by contractor teams to adjust ATF requirements and delete ones that were significant weight and cost drivers while having marginal value. The short takeoff and landing (STOL) requirement was relaxed in order to delete thrust-reversers, saving substantial weight. As avionics was a major cost driver, side-looking radars were deleted, and the dedicated infra-red search and track (IRST) system was downgraded from multi-color to single color and then deleted as well. However, space and cooling provisions were retained to allow for future addition of these components. The ejection seat requirement was downgraded from a fresh design to the existing McDonnell Douglas ACES II. Despite efforts by the contractor teams to rein in weight, the takeoff gross weight estimate was increased from 50,000 lb (22,700 kg) to 60,000 lb (27,200 kg), resulting in engine thrust requirement increasing from 30,000 lbf (133 kN) to 35,000 lbf (156 kN) class.

 

Each team produced two prototype air vehicles for Dem/Val, one for each of the two engine options. The YF-22 had its maiden flight on 29 September 1990 and in flight tests achieved up to Mach 1.58 in supercruise. After the Dem/Val flight test of the prototypes, on 23 April 1991, Secretary of the USAF Donald Rice announced the Lockheed team as the winner of the ATF competition. The YF-23 design was considered stealthier and faster, while the YF-22, with its thrust vectoring nozzles, was more maneuverable as well as less expensive and risky. The aviation press speculated that the Lockheed team's design was also more adaptable to the U.S. Navy's Navalized Advanced Tactical Fighter (NATF), but by 1992, the Navy had abandoned NATF.

  

Production and procurement

 

As the program moved to full-scale development, or the Engineering & Manufacturing Development (EMD) stage, the production version had notable differences from the YF-22, despite having a broadly similar shape. The swept-back angle of the leading edge was decreased from 48° to 42°, while the vertical stabilizers were shifted rearward and decreased in area by 20%. To improve pilot visibility, the canopy was moved forward 7 inches (18 cm), and the engine intakes moved rearward 14 inches (36 cm). The shapes of the wing and stabilator trailing edges were refined to improve aerodynamics, strength, and stealth characteristics. Increasing weight during development caused slight reductions in range and maneuver performance.

 

Prime contractor Lockheed Martin Aeronautics manufactured the majority of the airframe and performed final assembly at Dobbins Air Reserve Base in Marietta, Georgia; program partner Boeing Defense, Space & Security provided additional airframe components as well as avionics integration and training systems. The first F-22, an EMD aircraft with tail number 4001, was unveiled at Marietta, Georgia, on 9 April 1997, and first flew on 7 September 1997. Production, with the first lot awarded in September 2000, supported over 1,000 subcontractors and suppliers from 46 states and up to 95,000 jobs, and spanned 15 years at a peak rate of roughly two airplanes per month. In 2006, the F-22 development team won the Collier Trophy, American aviation's most prestigious award. Due to the aircraft's advanced nature, contractors have been targeted by cyberattacks and technology theft.

 

The USAF originally envisioned ordering 750 ATFs at a total program cost of $44.3 billion and procurement cost of $26.2 billion in fiscal year (FY) 1985 dollars, with production beginning in 1994. The 1990 Major Aircraft Review led by Secretary of Defense Dick Cheney reduced this to 648 aircraft beginning in 1996. By 1997, funding instability had further cut the total to 339, which was again reduced to 277 by 2003. In 2004, the Department of Defense (DoD) further reduced this to 183 operational aircraft, despite the USAF's preference for 381. A multi-year procurement plan was implemented in 2006 to save $15 billion, with total program cost projected to be $62 billion for 183 F-22s distributed to seven combat squadrons. In 2008, Congress passed a defense spending bill that raised the total orders for production aircraft to 187.

 

The first two F-22s built were EMD aircraft in the Block 1.0 configuration for initial flight testing, while the third was a Block 2.0 aircraft built to represent the internal structure of production airframes and enabled it to test full flight loads. Six more EMD aircraft were built in the Block 10 configuration for development and upgrade testing, with the last two considered essentially production quality jets. Production for operational squadrons consisted of 37 Block 20 training aircraft and 149 Block 30/35 combat aircraft; one of the Block 35 aircraft is dedicated to flight sciences at Edwards Air Force Base.

 

The numerous new technologies in the F-22 resulted in substantial cost overruns and delays. Many capabilities were deferred to post-service upgrades, reducing the initial cost but increasing total program cost. As production wound down in 2011, the total program cost is estimated to be about $67.3 billion, with $32.4 billion spent on Research, Development, Test and Evaluation (RDT&E) and $34.9 billion on procurement and military construction (MILCON) in then year dollars. The incremental cost for an additional F-22 was estimated at about $138 million in 2009.

 

Ban on exports

 

The F-22 cannot be exported under US federal law to protect its stealth technology and other high-tech features. Customers for U.S. fighters are acquiring earlier designs such as the F-15 "Eagle" and F-16 "Fighting Falcon" or the newer F-35 "Lightning II", which contains technology from the F-22 but was designed to be cheaper, more flexible, and available for export. In September 2006, Congress upheld the ban on foreign F-22 sales. Despite the ban, the 2010 defense authorization bill included provisions requiring the DoD to prepare a report on the costs and feasibility for an F-22 export variant, and another report on the effect of F-22 export sales on U.S. aerospace industry.

 

Some Australian politicians and defense commentators proposed that Australia should attempt to purchase F-22s instead of the planned F-35s, citing the F-22's known capabilities and F-35's delays and developmental uncertainties. However, the Royal Australian Air Force (RAAF) determined that the F-22 was unable to perform the F-35's strike and close air support roles. The Japanese government also showed interest in the F-22 for its Replacement-Fighter program. The Japan Air Self-Defense Force (JASDF) would reportedly require fewer fighters for its mission if it obtained the F-22, thus reducing engineering and staffing costs. However, in 2009 it was reported that acquiring the F-22 would require increases to the Japanese government's defense budget beyond the historical 1 percent of its GDP. With the end of F-22 production, Japan chose the F-35 in December 2011. Israel also expressed interest, but eventually chose the F-35 because of the F-22's price and unavailability.

 

Production termination

 

Throughout the 2000s, the need for F-22s was debated, due to rising costs and the lack of relevant adversaries. In 2006, Comptroller General of the United States David Walker found that "the DoD has not demonstrated the need" for more investment in the F-22, and further opposition to the program was expressed by Secretary of Defense Donald Rumsfeld, Deputy Secretary of Defense Gordon R. England, Senator John McCain, and Chairman of U.S. Senate Committee on Armed Services Senator John Warner. The F-22 program lost influential supporters in 2008 after the forced resignations of Secretary of the Air Force Michael Wynne and the Chief of Staff of the Air Force General T. Michael Moseley.

 

In November 2008, Secretary of Defense Robert Gates stated that the F-22 was not relevant in post-Cold War conflicts such as irregular warfare operations in Iraq and Afghanistan, and in April 2009, under the new Obama Administration, he called for ending production in FY2011, leaving the USAF with 187 production aircraft. In July, General James Cartwright, Vice Chairman of the Joint Chiefs of Staff, stated to the Senate Committee on Armed Services his reasons for supporting termination of F-22 production. They included shifting resources to the multirole F-35 to allow proliferation of fifth-generation fighters for three service branches and preserving the F/A-18 production line to maintain the military's electronic warfare (EW) capabilities in the Boeing EA-18G "Growler". Issues with the F-22's reliability and availability also raised concerns. After President Obama threatened to veto further production, the Senate voted in July 2009 in favor of ending production and the House subsequently agreed to abide by the 187 production aircraft cap. Gates stated that the decision was taken in light of the F-35's capabilities, and in 2010, he set the F-22 requirement to 187 aircraft by lowering the number of major regional conflict preparations from two to one.

 

In 2010, USAF initiated a study to determine the costs of retaining F-22 tooling for a future Service Life Extension Program (SLEP). A RAND Corporation paper from this study estimated that restarting production and building an additional 75 F-22s would cost $17 billion, resulting in $227 million per aircraft, or $54 million higher than the flyaway cost. Lockheed Martin stated that restarting the production line itself would cost about $200 million. Production tooling and associated documentation were subsequently stored at the Sierra Army Depot, allowing the retained tooling to support the fleet life cycle. There were reports that attempts to retrieve this tooling found empty containers, but a subsequent audit found that the tooling was stored as expected.

 

Russian and Chinese fighter developments have fueled concern, and in 2009, General John Corley, head of Air Combat Command, stated that a fleet of 187 F-22s would be inadequate, but Secretary Gates dismissed General Corley's concern. In 2011, Gates explained that Chinese fifth-generation fighter developments had been accounted for when the number of F-22s was set, and that the U.S. would have a considerable advantage in stealth aircraft in 2025, even with F-35 delays. In December 2011, the 195th and final F-22 was completed out of 8 test EMD and 187 operational aircraft produced; the aircraft was delivered to the USAF on 2 May 2012.

 

In April 2016, the House Armed Services Committee (HASC) Tactical Air and Land Forces Subcommittee proposed legislation that would direct the Air Force to conduct a cost study and assessment associated with resuming production of the F-22. Since the production halt directed in 2009 by then Defense Secretary Gates, lawmakers and the Pentagon noted that air warfare systems of Russia and China were catching up to those of the U.S. Lockheed Martin has proposed upgrading the Block 20 training aircraft into combat-coded Block 30/35 versions as a way to increase numbers available for deployment. On 9 June 2017, the Air Force submitted their report to Congress stating they had no plans to restart the F-22 production line due to economic and operational issues; it estimated it would cost approximately $50 billion to procure 194 additional F-22s at a cost of $206–$216 million per aircraft, including approximately $9.9 billion for non-recurring start-up costs and $40.4 billion for aircraft procurement costs.

 

Upgrades

 

The first aircraft with combat-capable Block 3.0 software flew in 2001. Increment 2, the first upgrade program, was implemented in 2005 for Block 20 aircraft onward and enabled the employment of Joint Direct Attack Munitions (JDAM). Certification of the improved AN/APG-77(V)1 radar was completed in March 2007, and airframes from production Lot 5 onward are fitted with this radar, which incorporates air-to-ground modes. Increment 3.1 for Block 30 aircraft onward provided improved ground-attack capability through synthetic aperture radar mapping and radio emitter direction finding, electronic attack and Small Diameter Bomb (SDB) integration; testing began in 2009 and the first upgraded aircraft was delivered in 2011. To address oxygen deprivation issues, F-22s were fitted with an automatic backup oxygen system (ABOS) and modified life support system starting in 2012.

 

Increment 3.2 for Block 35 aircraft is a two-part upgrade process; 3.2A focuses on electronic warfare, communications and identification, while 3.2B includes geolocation improvements and a new stores management system to show the correct symbols for the AIM-9X and AIM-120D. To enable two-way communication with other platforms, the F-22 can use the Battlefield Airborne Communications Node (BACN) as a gateway. The planned Multifunction Advanced Data Link (MADL) integration was cut due to development delays and lack of proliferation among USAF platforms. The F-22 fleet is planned to start receiving Increment 3.2B as well as a software upgrade for cryptography capabilities and avionics stability in May 2019. A Multifunctional Information Distribution System-Joint (MIDS-J) radio that replaces the current Link-16 receive-only box is expected to be operational by 2020. Subsequent upgrades are also focusing on having an open architecture to enable faster future enhancements.

 

In 2024, funding is projected to begin for the F-22 mid-life upgrade (MLU), which is expected to include new sensors and antennas, hardware refresh, cockpit improvements, and a helmet mounted display and cuing system. Other enhancements being developed include IRST functionality for the AN/AAR-56 Missile Launch Detector (MLD) and more durable stealth coating based on the F-35's.

 

The F-22 was designed for a service life of 8,000 flight hours, with a $350 million "structures retrofit program". Investigations are being made for upgrades to extend their useful lives further. In the long term, the F-22 is expected to be superseded by a sixth-generation jet fighter to be fielded in the 2030s.

  

Design

 

Overview

 

The F-22 "Raptor" is a fifth-generation fighter that is considered fourth generation in stealth aircraft technology by the USAF. It is the first operational aircraft to combine supercruise, supermaneuverability, stealth, and sensor fusion in a single weapons platform. The F-22 has four empennage surfaces, retractable tricycle landing gear, and clipped delta wings with reverse trailing edge sweep and leading edge extensions running to the upper outboard corner of the inlets. Flight control surfaces include leading-edge flaps, flaperons, ailerons, rudders on the canted vertical stabilizers, and all-moving horizontal tails (stabilators); for speed brake function, the ailerons deflect up, flaperons down, and rudders outwards to increase drag.

 

The aircraft's dual Pratt & Whitney F119-PW-100 augmented turbofan engines are closely spaced and incorporate pitch-axis thrust vectoring nozzles with a range of ±20 degrees; each engine has maximum thrust in the 35,000 lbf (156 kN) class. The F-22's thrust-to-weight ratio at typical combat weight is nearly at unity in maximum military power and 1.25 in full afterburner. Maximum speed without external stores is approximately Mach 1.8 at military power and greater than Mach 2 with afterburners.

 

The F-22's high cruise speed and operating altitude over prior fighters improve the effectiveness of its sensors and weapon systems, and increase survivability against ground defenses such as surface-to-air missiles. The aircraft is among only a few that can supercruise, or sustain supersonic flight without using fuel-inefficient afterburners; it can intercept targets which subsonic aircraft would lack the speed to pursue and an afterburner-dependent aircraft would lack the fuel to reach. The F-22's thrust and aerodynamics enable regular combat speeds of Mach 1.5 at 50,000 feet (15,000 m). The use of internal weapons bays permits the aircraft to maintain comparatively higher performance over most other combat-configured fighters due to a lack of aerodynamic drag from external stores. The aircraft's structure contains a significant amount of high-strength materials to withstand stress and heat of sustained supersonic flight. Respectively, titanium alloys and composites comprise 39% and 24% of the structural weight.

 

The F-22's aerodynamics, relaxed stability, and powerful thrust-vectoring engines give it excellent maneuverability and energy potential across its flight envelope. The airplane has excellent high alpha (angle of attack) characteristics, capable of flying at trimmed alpha of over 60° while maintaining roll control and performing maneuvers such as the Herbst maneuver (J-turn) and Pugachev's Cobra. The flight control system and full-authority digital engine control (FADEC) make the aircraft highly departure resistant and controllable, thus giving the pilot carefree handling.

  

Stealth

 

The F-22 was designed to be highly difficult to detect and track by radar. Measures to reduce radar cross-section (RCS) include airframe shaping such as alignment of edges, fixed-geometry serpentine inlets and curved vanes that prevent line-of-sight of the engine faces and turbines from any exterior view, use of radar-absorbent material (RAM), and attention to detail such as hinges and pilot helmets that could provide a radar return. The F-22 was also designed to have decreased radio emissions, infrared signature and acoustic signature as well as reduced visibility to the naked eye. The aircraft's flat thrust-vectoring nozzles reduce infrared emissions of the exhaust plume to mitigate the threat of infrared homing ("heat seeking") surface-to-air or air-to-air missiles. Additional measures to reduce the infrared signature include special topcoat and active cooling of leading edges to manage the heat buildup from supersonic flight.

 

Compared to previous stealth designs like the F-117, the F-22 is less reliant on RAM, which are maintenance-intensive and susceptible to adverse weather conditions. Unlike the B-2, which requires climate-controlled hangars, the F-22 can undergo repairs on the flight line or in a normal hangar. The F-22 has a Signature Assessment System which delivers warnings when the radar signature is degraded and necessitates repair. While the F-22's exact RCS is classified, in 2009 Lockheed Martin released information indicating that from certain angles the aircraft has an RCS of 0.0001 m² or −40 dBsm – equivalent to the radar reflection of a "steel marble". Effectively maintaining the stealth features can decrease the F-22's mission capable rate to 62–70%.

 

The effectiveness of the stealth characteristics is difficult to gauge. The RCS value is a restrictive measurement of the aircraft's frontal or side area from the perspective of a static radar. When an aircraft maneuvers it exposes a completely different set of angles and surface area, potentially increasing radar observability. Furthermore, the F-22's stealth contouring and radar absorbent materials are chiefly effective against high-frequency radars, usually found on other aircraft. The effects of Rayleigh scattering and resonance mean that low-frequency radars such as weather radars and early-warning radars are more likely to detect the F-22 due to its physical size. However, such radars are also conspicuous, susceptible to clutter, and have low precision. Additionally, while faint or fleeting radar contacts make defenders aware that a stealth aircraft is present, reliably vectoring interception to attack the aircraft is much more challenging. According to the USAF an F-22 surprised an Iranian F-4 "Phantom II" that was attempting to intercept an American UAV, despite Iran's assertion of having military VHF radar coverage over the Persian Gulf.

·····•····· ᗤ

This pic is Hwei-lin´s batgirl and here is her wonderful site: applearmy.com/

 

She is my partner for Lingua Comica program 2008. Just twelve people of all europe and asia were selected, I just can´t believe I´m on board.

 

linguacomica2008.wordpress.com/

linguacomica2008.wordpress.com/team-7/

 

Oh yes!! I´m going to Kyoto!!!;))

  

pentax sp/velvia

OLYMPUS DIGITAL CAMERA

One of the few remaining T605s from Kenworth’s aborted wide cab engineering evaluation program from the early 2000s.

The Texas State Aquarium is a nonprofit aquarium located in Corpus Christi, Texas, United States. It is dedicated to promoting environmental conservation and rehabilitation of the wildlife of the Gulf of Mexico.

 

The goal of the Texas State Aquarium's Wildlife Rehabilitation Program is to rehabilitate and, whenever possible, return the animals to their natural environment. The Aquarium's Wildlife Rehabilitation Program is federally permitted and operates under rigorous standards established by the Association of Zoos and Aquariums (AZA).

 

The Texas State Aquarium Wildlife Rehabilitation Program is able to care for:

Shorebirds

Terns

Pelicans

Egrets

Plovers

Spoonbills

Stilts

Skimmers

Oystercatchers

Gulls

Sandpipers

 

Raptors (Birds of Prey)

Hawks

Falcons

Owls

Eagles

 

Marine Mammals

 

Reptiles

www.texasstateaquarium.org/index.php/conservation/wildlif...

45th Street, West of Broadway, New York City

"We've Got to Have Money" with Robert Ames by Edward Laska

September 17, 1923

pentax super program

M10 Monochrome film simulation

2 4 5 6 7 ••• 79 80