View allAll Photos Tagged polymorph

The Danaid Eggfly or Mimic (Hypolimnas misippus) is a widespread species of nymphalid butterfly. It is well known for polymorphism and mimicry. Males are blackish with distinctive white spots that are fringed in blue. Females are in multiple forms that include male like forms while others appear like the toxic Danaus chrysippus and Danaus plexippus butterfles. They are found across Africa, Asia and Australia.

   

From Wikipedia, the free encyclopedia

Femme Hmong Noir, marché de Sapa, nord du Vietnam

 

Avec la ligne de train et désormais l'autoroute la reliant à Hanoï, Sapa est devenue une destination touristique très fréquentée et a beaucoup perdu de son charme, même si les promenades dans les rizières alentour restent bien agréables. Le petit marché permanent sous la halle permet de croiser encore de pittoresques personnages telle cette femme dans son costume Hmong Noir

Avec les Dao Rouge, les Hmong Noir constituent l'une des ethnies les mieux représentées dans la région de Sapa.

 

Les Hmong encore appelés Méo, ou Miao , sont originaires des régions montagneuses du sud de la Chine (principalement la province du Guizhou), où ils sont encore présents ainsi qu'au nord du Viêt Nam et du Laos.

Le souci de préserver leur identité culturelle et leur indépendance les ont amenés à s'engager dans divers conflits. Au XXe siècle, en particulier, ils aidèrent les Français pendant la guerre d'Indochine puis les Américains pendant la la guerre du Vietnam. A l’avènement des régimes communistes dans ces pays un nombre important de Hmong se sont réfugiés dans des pays d'accueil, principalement les États-Unis, la France et l'Australie. Mais la majeure partie d’entre eux vit encore en Asie du Sud-Est

Les Hmongs sont animistes ou chrétiens. La langue hmong appartient à la famille des langues hmong-mien, encore appelée « miao-yao »

Les costumes traditionnels de cette ethnie sont très polymorphes mais ils ont en commun la richesse du décor brodé

Los Jameos del Agua, situados en el norte de la isla de Lanzarote, es uno de los siete Centros de Arte, Cultura y Turismo del Cabildo de Lanzarote.

 

Se trata de una intervención espacial creada a partir de una serie de jameos naturales por el artista lanzaroteño César Manrique y pretende mostrar al visitante un espacio para la contemplación de la naturaleza apenas intervenida por el hombre.

 

Los Jameos del Agua, al igual que la Cueva de los Verdes, se localizan en el interior del túnel volcánico producido por la erupción del Volcán de la Corona. Los Jameos del Agua se encuentran situados en la sección de este túnel más cercano a la costa.

 

Está formado por al menos tres jameos o aberturas en el terreno. El “Jameo Chico” por donde se realiza el acceso al interior, el “Jameo Grande” y un tercero, denominado “Jameo de la Cazuela”.

 

Los "Jameos del Agua" es el primer Centro de Arte, Cultura y Turismo creado por César Manrique, y es el reflejo de uno de sus pilares creativos: la armonía entre la naturaleza y la creación artística.

 

A principios de los años sesenta, y debido al abandono del entorno, se hace necesario acometer labores de limpieza y de acondicionamiento. Aunque las obras se dilataron en el tiempo, podemos señalar el año 1966 como fecha de la apertura de las primeras fases al público.

 

La especial morfología del tubo volcánico provocó que se realizaran numerosos cambios del proyecto inicial, explorando nuevas alternativas creativas y procurando que las soluciones adoptadas fuesen las más adecuadas.

 

Será en 1977, después de más de una década de trabajos, cuando quede conformada la estructura general de los Jameos del Agua. En estas mismas fechas se procede a la inauguración oficial del centro, incluyendo el Auditorio, y se considera conclusa la obra.

 

Aun así, y con posterioridad, se realizan nuevas instalaciones para funciones concretas como el espacio museístico de la “Casa de los Volcanes”. Este centro se dedica, desde 1987, a una labor científica y didáctica sobre la vulcanología.

 

Los “Jameos del Agua” son muy importantes desde el punto de vista ecológico, ya que existe una especie de cangrejo única y endémica, los cangrejitos ciegos (Munidopsis polymorpha) un cangrejo de apenas un centímetro de longitud, albino y ciego.

 

Estos cangrejos son muy sensibles a los cambios de la laguna (procedente de agua de mar) por lo que el ruido y la luz les afecta. Son muy sensibles al óxido, que puede llegar a matarlos, por lo que está prohibido tirar monedas al agua.

 

Más información:

www.turismolanzarote.com/centros-turisticos/jameos-del-ag...

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558271

Adult with substantial, white, dorsal line on tail continuing as a broken line towards the hump (1) over the pericardium.

North-east Scotland, February 2020. © C. Rickard.

Full SPECIES DESCRIPTION BELOW

PDF available at www.researchgate.net/publication/361247558_Coryphella_ver...

Sets of OTHER SPECIES at: www.flickr.com/photos/56388191@N08/collections/

 

Coryphella verrucosa (M. Sars, 1829).

Including forms Coryphella verrucosa verrucosa (M. Sars, 1829) and Coryphella verrucosa rufibranchialis (G. Johnston, 1832).

 

Current taxonomy: World Register of Marine Species www.marinespecies.org/aphia.php?p=taxdetails&id=139987

Synonyms: Eolidia verrucosa M. Sars, 1829; Eolis rufibranchialis G. Johnston, 1832; Coryphella rufibranchialis (G. Johnston, 1832); Coryphella rufibranchialis chocolata Balch, 1908: Coryphella pseudoverrucosa Martynov, Sanamyan & Korshunova, 2015; Flabellina verrucosa (M. Sars, 1829); Flabellina pseudoverrucosa (Martynov, Sanamyan & Korshunova, 2015).

 

GLOSSARY BELOW

 

Preface

The following description is primarily of Coryphella verrucosa rufibranchialis, the only form found in Britain except Shetland, where the Scandinavian form with radically different cerata, Coryphella verrucosa verrucosa, also occurs. The cerata of the two forms are described separately; other features are similar on both forms.

 

Description

The length, excluding appendages, may reach 25 mm, occasionally 35 mm. The body is translucent white, revealing white ovotestes when mature fig. 01 flic.kr/p/2nqKAan . The tail has an opaque white, substantial, dorsal line. On well grown adults the dorsal line may continue, often with breaks, as far the hump over the pericardium fig. 02 flic.kr/p/2nqLAnc , but often ( usually on Coryphella verrucosa verrucosa) the dorsum is obscured by cerata fig. 03 flic.kr/p/2nqLPHR . The dorsal line often does not extend the full length of the tail on young specimens fig. 04 flic.kr/p/2nqLPGt . On translucent, immature specimens, the rectum ending at the anus below the second group of cerata on the right, the pink jaw, the circum-oesophageal nerve ring bearing black internal eyes and the rhinophoral ganglia on nerve cords connected to the nerve ring may be discernible fig. 05 flic.kr/p/2nqKA2M .

The cerata on C. v, rufibranchialis are slender, almost linear, about as long as the width of the body, and held at varying angles, often across each other fig. 04 flic.kr/p/2nqLPGt . They are arranged in five to seven groups of diagonal rows on each side of the body fig. 01 flic.kr/p/2nqKAan & fig. 06 flic.kr/p/2nqEmdW , rising from a notal ridge which does not continue between ceratal groups fig. 12 flic.kr/p/2nqKGcQ . The digestive gland within the cerata can be various shades of red fig. 02 flic.kr/p/2nqLAnc or red-brown fig. 01 flic.kr/p/2nqKAan . A narrow, opaque white, subterminal pigment band encircles the translucent white tip containing cnidosacs fig. 01 flic.kr/p/2nqKAan & fig. 06 flic.kr/p/2nqEmdW , and there may be a translucent gap between the band and the digestive gland.

The cerata on C. v. verrucosa are stout and cylindrical with a slightly narrower base and an obtuse tip fig. 07 flic.kr/p/2nqN8kd . They are barely as long as half the width of the body and are held erect and packed densely together (Sars, 1829) fig. 03 flic.kr/p/2nqLPHR . They are attached along either side of the body, but it looks as if the whole back [apart from hump over pericardium] is occupied by them (Sars, 1829). They are so packed together that it is not possible to discern an arrangement of groups or lines (Sars, 1829). The digestive gland can be dark brown fig. 08 flic.kr/p/2nqEmco , rust-brown fig. 09 flic.kr/p/2nqLPCL or white fig. 03 flic.kr/p/2nqLPHR . The whole tip is covered by a substantial cap of opaque white, except for a small, translucent apex which, when viewed end on, can reveal the brown digestive gland fig. 09 flic.kr/p/2nqLPCL as the ‘brown spot’ recorded by Sars (1829).

The wrinkled translucent whitish rhinophores fig. 10 flic.kr/p/2nqKzXt are slightly yellowish fig. 04 flic.kr/p/2nqLPGt , sometimes pinkish, with an opaque white line along the distal third.

Translucent white oral tentacles arise from the upper surface of the head fig. 06 flic.kr/p/2nqEmdW . They have an opaque white line along the distal third fig. 04 flic.kr/p/2nqLPGt . The prominent outer parts of the mouth occupy most of the head ventrally fig. 11 flic.kr/p/2nqN8gL . The internal pink jaw can sometimes be discerned in the translucent head as a pink band in lateral view fig. 06 flic.kr/p/2nqEmdW and a forward pointing ‘V’ in dorsal view fig. 04 flic.kr/p/2nqLPGt .

The long, slender, translucent white foot is widest at the bilaminate anterior from whence it tapers gradually to a fine posterior point fig. 12 flic.kr/p/2nqKGcQ . It has propodial swellings which Thompson and Brown (1984) illustrate with a drawing and description of them as ‘propodial tentacles’ projecting ‘about half the width of the foot on either side’. This degree of extension has not been observed by I.F.S. and the greatest extension visible in images in this account is about 17% of body width in dorsal view fig. 04 flic.kr/p/2nqLPGt . The drawing in Alder and Hancock (1844-1854) shows propodial tentacles 30% of body width, the image in Sars (1829) shows barely any swelling and some photos show swellings that can hardly be described as tentacles fig. 11 flic.kr/p/2nqN8gL .

 

Key identification features

Of Eolis rufibranchialis Alder and Hancock (1844-1854) wrote “This beautiful species has been much misunderstood. - - we suspect that he [G. Johnston, 1832] has included more than one species under the - - name - - and the same course has been followed by other authors.” Over a century later, uncertainty remains, especially if other similar species or forms from Norway and America are included.

 

Coryphella verrucosa rufibranchialis

1) Cerata as long as the width of the body, and held at varying angles, often across each other fig. 04 flic.kr/p/2nqLPGt .

2) Cerata have a narrow, subterminal, opaque white ring fig. 01 flic.kr/p/2nqKAan & fig. 06 flic.kr/p/2nqEmdW .

3) Substantial white dorsal line on tail fig. 04 flic.kr/p/2nqLPGt , sometimes a broken, white dorsal line on dorsum fig. 02 flic.kr/p/2nqLAnc .

4) Propodial expansions sometimes form small propodial tentacles.

5) Recorded from Scandinavia, Britain, Bretagne and also Atlantic and Pacific coasts of North America, Bering Sea and Sea of Japan (Thompson and Brown 1984).

 

Coryphella verrucosa verrucosa

1) Cerata barely as long as half the width of the body, and held erect and packed densely together fig. 03 flic.kr/p/2nqLPHR & fig. 07 flic.kr/p/2nqN8kd .

2) Cerata have substantial cap of opaque white, except for a small, translucent apex fig. 09 flic.kr/p/2nqLPCL .

3) Continuous white dorsal line on tail. Dorsal body, apart from hump over pericardium, concealed by dense tubercles fig. 03 flic.kr/p/2nqLPHR & fig. 08 flic.kr/p/2nqEmco .

4) Small propodial expansions.

5) Confined to Scandinavia and Shetland.

 

Intermediate between C. v. rufibranchialis and C. v. verrucosa

Occasionally forms intermediate between C. v. verrucosa and C. v. rufibranchialis have been reported in Scandinavia where the two forms are sympatric. Some may have been individuals re-growing cerata after damage.

 

Similar species

Coryphella gracilis (Alder and Hancock, 1844)

fig. 13 flic.kr/p/2nqKzV9 & fig. 14 flic.kr/p/2nqLPwi .

1) Cerata length about same as body width. Narrowed at base so sometimes elliptical, and less slender and flexible than cerata on C. v. rufibranchialis. Arise from a pronounced notal ridge containing the digestive gland.

2) Digestive gland in cerata rather granular, colour varies red to, often, brownish orange or green. Narrow subterminal opaque white ring on cerata.

3) Opaque white dorsal line on tail is sometimes fragmentary or missing. No line on rest of body. Matures at small size, so white ovotestes are visible when 8 mm long, at which size ovotestes are usually missing in juvenile C. verrucosa.

4) Distinct tapering propodial tentacles, length nearly as great as body width.

5) Scattered records around Britain and Ireland. Few or none in southern half of east coast England and north-east Irish Sea.

 

Coryphella browni Picton, 1980. fig. 15 flic.kr/p/2nqKG8M & fig. 16 flic.kr/p/2nqEm1B .

1) Cerata length up to twice the body width.

2) Broad white band on cerata distally, but no pigment on apex.

3) Interrupted white medial line, often reduced to a few dots or none, on tail. No line on rest of body.

4) Distinct tapering propodial tentacles, length about 25% of body width.

5) Scattered records around Britain and Ireland. Few or none in southern half of east coast England and north-east Irish Sea.

 

Carronella pellucida (Alder & Hancock, 1843). fig. 17 flic.kr/p/2nqKG62 & fig. 18 flic.kr/p/2nqKG5a .

1) Cerata length greater than width of body.

2) White pigment covers entire distal end of cerata.

3) Opaque white dorsal line on tail. No line on rest of body.

4) Long tapering propodial tentacles as long as, or longer than, width of body.

5) Scandinavia and Scotland; the few English records on NBN are probably misidentifications.

 

Other similar species

A similar, uncertain species, which occurs in Scotland, Scandinavia and possibly Iceland, feeds on the scyphistoma polyp phase of Aurelia aurita (Linnaeus, 1758)

fig. 19 flic.kr/p/2nqKG4y .

In Scandinavia the following similar species, some of which are poorly known, also need consideration: Berghia norvegica Odhner, 1939; Coryphella borealis Odhner, 1922 Coryphella nobilis A. E. Verrill, 1880 and Ziminella salmonacea (Couthouy, 1838). Some are illustrated at www.seawater.no/fauna/mollusca/norvegica.html . Some of these and other species need consideration in North America.

 

Habits and ecology

C. verrucosa lives on rocky substrate at LWS and sublittorally (C. v. verrucosa to 450 metres in Scandinavia) where strong currents favour its principle prey; Tubularia indivisa. Many other hydroid species are eaten, especially by juveniles. Like other nudibranchs, it is a simultaneous hermaphrodite. The spawn of both forms is a thin line arranged as a smooth spiral on flat rock fig. 09 flic.kr/p/2nqLPCL , or looped around hydroids. C. v. rufibranchialis breeds from April to June in Britain (Thompson & Brown, 1984). Veliger larvae drift for about ten days before metamorphosing.

 

Distribution and status

C. v. rufibranchialis, or species or forms resembling it, is recorded, often as C. verrucosa, from Scandinavia, Britain, Bretagne and also Atlantic and Pacific coasts of North America fig. 20 flic.kr/p/2nqN86L , Bering Sea and Sea of Japan (Thompson and Brown 1984). It is fairly frequent sublittorally in Britain and Ireland, and sometimes at LWS. C. v. verrucosa is confined to Shetland fig. 21 flic.kr/p/2nqN84G and Scandinavia, where it is frequent and sympatric with C. v. rufibranchialis.

 

Appendix, taxonomic history

Coryphella verrucosa (as Eolidia verrucosa) was first described and illustrated fig. 07 flic.kr/p/2nqN8kd by Sars (1829) from specimens in Norway, where it is still frequently found fig. 03 flic.kr/p/2nqLPHR .

Eolis rufibranchialis was first described by Johnston (1832) from a specimen in Berwick, England. He described the cerata as long, thus differing from the short stout cerata of Eolidia verrucosa Sars, 1829.

Alder and Hancock (1844-1854) described and illustrated Eolis rufibranchialis Johnston, 1832 more fully fig. 10 flic.kr/p/2nqKzXt .

Winckworth (1932) brought the two species together as Coryphella verrucosa (M. Sars, 1829) in Norway and subspecies Coryphella verrucosa rufibranchialis (Johnston, 1832).

Odhner (1939) did as Winckworth, using the names Coryphella verrucosa verrucosa and Coryphella verrucosa rufibranchialis for the forms, both of which occur in Norway. Odhner wrote “ Since Løyning (1922) has found, in living material, transitions between C. verrucosa M. Sars and C. rufibranchialis Johnston, and since I have observed the same in Trondheimsfjord, it is evident that the two forms cannot be upheld as distinct species. - - The older name is that of Sars and has to be accepted instead of the generally used one, quite as Winckworth (1932) has done: the two extreme forms are thus given the names Coryphella verrucosa verrucosa and Coryphella verrucosa rufibranchialis, as to the short or elongate form of the papillae [cerata].”

Thompson and Brown (1976) used the form names of Odhner, but they gave an image of Coryphella verrucosa rufibranchialis the label Coryphella verrucosa var. verrucosa, unaware that the latter is absent from Britain, except Shetland

Picton (1980) described a new species, Coryphella browni, which previously would probably have been identified as Coryphella verrucosa rufibranchialis.

Thompson and Brown (1984) omitted use of the variety category and combined both forms, along with other forms from Atlantic and Pacific coasts of North America, Arctic Russia and the Sea of Japan, under the species name Coryphella verrucosa (M. Sars, 1829). Their description is of, only, Coryphella verrucosa rufibranchialis, and they stated their disagreement with Odhner’s accurate description of the cerata of Coryphella verrucosa verrucosa, presumably, because they had not seen live specimens of it with its very different cerata.

None of the images of C. verrucosa from north-east America fig. 20 flic.kr/p/2nqN86L on iNaturalist (accessed May 2022) are of the C. v. verrucosa form. Some match the morphology of European C. v. rufibranchialis.

 

Eriksson et al. (2006) wrote, “The conspecificity of two forms of Flabellina verrucosa (M. Sars, 1829), one form with short and one with long cerata, was tested by sequencing the mitochondrial COI and the nuclear 5.8S-ITS2 genes. We could not establish any genetic differences between the two forms and conclude that they belong to the same species.” But, examination of other parts of the DNA sequence might show differences which correlate with the morphological differences (B. Picton, 2022. pers. comm., 1 June).

The sighting of intermediate forms and of mating between the two forms fig. 08 flic.kr/p/2nqEmco adds weight to regarding them as a single species, but such sightings are much rarer than would be expected if interbreeding were free and unhindered. Mating of different species of nudibranch with each other is occasionally observed and, as with them, it is unknown if mating of C. v. verrucosa with C. v. rufibranchialis produces viable offspring capable of reproduction.

World Register of Marine Species (accessed 26 May 2022) accepts as valid the names Coryphella verrucosa (M. Sars, 1829) and, as a subspecies, Coryphella verrucosa rufibranchialis (G. Johnston, 1832).

As the two forms are sympatric in Scandinavia and Shetland, yet retain their distinctness, there remains some uncertainty about their exact relationship. It would be a source for future interest if they were recorded separately.

 

Acknowledgements

For use of images I gratefully thank Billy Arthur, George Brown, Jeff Goddard, Asbjørn Hansen flic.kr/s/87eY , Nathan Jeffery, Tim Nicholson, Poul Rasmussen, Chris Rickard and Erling Svensen. I thank Simon Taylor for specimens. For valuable advice and help with literature I thank Bernard Picton and Miquel Pontes.

 

References and links

Alder, J. & Hancock, A. 1845-1855. A monograph of the British nudibranchiate mollusca. London, Ray Society. Family 3, plate 14. www.biodiversitylibrary.org/item/131598#page/338/mode/1up

 

Balch, F. N. 1909. A spring collecting trip. Notes on New England nudibranchs II. The Nautilus. 23(3): 33-38., [Original description of Coryphella rufibranchialis var. chocolata Balch, 1909]

p 35-36 www.biodiversitylibrary.org/page/5314618

page(s): 35-36, 38

 

Eriksson, R., Nuygren, A. & Sundberg, P. 2006. Genetic evidence of phenotypic polymorphism in the aeolid nudibranch Flabellina verrucosa (M. Sars, 1829) (Opisthobranchia: Nudibranchia). Organisms, Diversity and Evolution 6:1, 71-76

www.sciencedirect.com/science/article/pii/S1439609205000772

 

iNaturalist, Observations of Coryphella verrucosa. (accessed 25 May 2022) www.inaturalist.org/observations?taxon_id=633193

 

Johnston, G. 1832. Illustrations in British zoology London Mag. nat. His. 5: 428-429.

www.biodiversitylibrary.org/item/19519#page/464/mode/1up

 

Korshunova, T., Martynov, A., Bakken, T., Evertsen, J., Fletcher, K., Mudianta, W.I., Saito, H., Lundin, K., Schrödl, M. and Picton B. 2017. Polyphyly of the traditional family Flabellinidae affects a major group of Nudibranchia: aeolidacean taxonomic reassessment with descriptions of several new families, genera, and species (Mollusca, Gastropoda). ZooKeys 717: 1–139. doi.org/10.3897/zookeys.717.21885

 

Løyning, P. 1922. Nudibranch faunaen i Drøbaksundet I. Fam. Aeolididae, Skrifter utgrit av det Norske Vidensk. Akad. i Oslo

 

Odhner, N.H. 1922. Norwegian opisthobranchiate mollusca in the collection of the Zoologial Museum of Kristiana. Nyt. Mag. Naturv. 60: 1-47 [Coryphella rufibranchialis p30] www.biodiversitylibrary.org/item/109307#page/38/mode/1up

 

Odhner, N.H. 1939. Opisthobranchiate Mollusca from the western and northern coasts of Norway. Det Kgl. Norske Videnskabers Selskabs Skrifter 1: 1-92.

 

Sars, M. 1829. Bidrag til söedyrenes naturhistorie. 1: 9-12 & Plate 2 figs. 1-4 Bergen.

gdz.sub.uni-goettingen.de/id/PPN612886522?tify=

  

Thompson, T.E. & Brown, G.H. 1976. British opisthobranch molluscs. London, Academic Press.

 

Thompson, T.E. & Brown, G.H. 1984. Biology of opisthobranch molluscs 2. London, Ray Society.

 

Winckworth, R. 1932. The British marine mollusca. J. Conch. Lond. 19: 211-252.

 

Picton, B. E. (1980). A new species of Coryphella (Gastropoda: Opisthobranchia) from the British Isles. Irish Naturalists' Journal. 20: 15-19.

 

Thompson, T.E. & Brown, G.H. 1984. Biology of opisthobranch molluscs 2. London, Ray Society.

 

Glossary

cerata = (sing. ceras) lobes on dorsum of aeolids and some other seaslugs.

circum-oesophageal nerve ring = ganglia-bearing nerve cord which encircles the oesophagus.

 

cnidocytes = explosive stinging cells of Cnidaria. en.wikipedia.org/wiki/Cnidocyte

cnidosac = storage capsule at tips of cerata of Aeolidiidae, but not Dotidae, for ingested unexploded cnidocytes.

 

digestive gland = large organ in gastropods which acts like the liver and pancreas in mammals to absorb food.

 

distal = away from centre of body or from point of attachment.

ganglia = (sing. ganglion) knots on a nerve cord containing sensory cell bodies that conduct impulses to innervate organs of the body.

 

lamellae = small plates on rhinophores.

LWS = low water spring tide, and level it falls to; two periods of a few days each month when tide falls lowest.

 

notal = (adj.) of the back.

notal ridge = ridge on dorsal surface.

notum = (of seaslugs) the dorsal surface.

ovotestis = (pl. ovotestes) hermaphrodite organ serving as both ovary and testis.

pericardium = sac containing heart, sometimes visible as a raised mound behind rhinophores in aeolid sea slugs.

 

propodial tentacles = tentacular, lateral extensions on anterior of the foot.

propodium = anterior portion of gastropod foot. (adj. propodial).

rhinophores = chemo-receptor tentacles on top of head of nudibranch.

veliger = shelled larva of marine gastropod or bivalve mollusc which moves by action of cilia on a velum (bilobed flap). Stage may be passed in plankton or within liquid-filled egg-capsule.

  

A butterfly is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby.

 

Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage.

 

Culturally, butterflies are a popular motif in the visual and literary arts.

Narcissus is a genus of predominantly spring flowering perennial plants of the amaryllis family, Amaryllidaceae. Various common names including daffodil, narcissus, and jonquil are used to describe all or some members of the genus. Narcissus has conspicuous flowers with six petal-like tepals surmounted by a cup- or trumpet-shaped corona. The flowers are generally white and yellow (also orange or pink in garden varieties), with either uniform or contrasting coloured tepals and corona.

 

Narcissus were well known in ancient civilisation, both medicinally and botanically, but formally described by Linnaeus in his Species Plantarum (1753). The genus is generally considered to have about ten sections with approximately 50 species. The number of species has varied, depending on how they are classified, due to similarity between species and hybridisation. The genus arose some time in the Late Oligocene to Early Miocene epochs, in the Iberian peninsula and adjacent areas of southwest Europe. The exact origin of the name Narcissus is unknown, but it is often linked to a Greek word (ancient Greek ναρκῶ narkō, "to make numb") and the myth of the youth of that name who fell in love with his own reflection. The English word "daffodil" appears to be derived from "asphodel", with which it was commonly compared.

 

The species are native to meadows and woods in southern Europe and North Africa with a centre of diversity in the Western Mediterranean, particularly the Iberian peninsula. Both wild and cultivated plants have naturalised widely, and were introduced into the Far East prior to the tenth century. Narcissi tend to be long-lived bulbs, which propagate by division, but are also insect-pollinated. Known pests, diseases and disorders include viruses, fungi, the larvae of flies, mites and nematodes. Some Narcissus species have become extinct, while others are threatened by increasing urbanisation and tourism.

 

Historical accounts suggest narcissi have been cultivated from the earliest times, but became increasingly popular in Europe after the 16th century and by the late 19th century were an important commercial crop centred primarily in the Netherlands. Today narcissi are popular as cut flowers and as ornamental plants in private and public gardens. The long history of breeding has resulted in thousands of different cultivars. For horticultural purposes, narcissi are classified into divisions, covering a wide range of shapes and colours. Like other members of their family, narcissi produce a number of different alkaloids, which provide some protection for the plant, but may be poisonous if accidentally ingested. This property has been exploited for medicinal use in traditional healing and has resulted in the production of galantamine for the treatment of Alzheimer's dementia. Long celebrated in art and literature, narcissi are associated with a number of themes in different cultures, ranging from death to good fortune, and as symbols of spring.

 

The daffodil is the national flower of Wales and the symbol of cancer charities in many countries. The appearance of the wild flowers in spring is associated with festivals in many places.

 

Narcissus is a genus of perennial herbaceous bulbiferous geophytes, which die back after flowering to an underground storage bulb. They regrow in the following year from brown-skinned ovoid bulbs with pronounced necks, and reach heights of 5–80 centimetres (2.0–31.5 in) depending on the species. Dwarf species such as N. asturiensis have a maximum height of 5–8 centimetres (2.0–3.1 in), while Narcissus tazetta may grow as tall as 80 centimetres (31 in).

 

The plants are scapose, having a single central leafless hollow flower stem (scape). Several green or blue-green, narrow, strap-shaped leaves arise from the bulb. The plant stem usually bears a solitary flower, but occasionally a cluster of flowers (umbel). The flowers, which are usually conspicuous and white or yellow, sometimes both or rarely green, consist of a perianth of three parts. Closest to the stem (proximal) is a floral tube above the ovary, then an outer ring composed of six tepals (undifferentiated sepals and petals), and a central disc to conical shaped corona. The flowers may hang down (pendant), or be erect. There are six pollen bearing stamens surrounding a central style. The ovary is inferior (below the floral parts) consisting of three chambers (trilocular). The fruit consists of a dry capsule that splits (dehisces) releasing numerous black seeds.

 

The bulb lies dormant after the leaves and flower stem die back and has contractile roots that pull it down further into the soil. The flower stem and leaves form in the bulb, to emerge the following season. Most species are dormant from summer to late winter, flowering in the spring, though a few species are autumn flowering.

 

The pale brown-skinned ovoid tunicate bulbs have a membranous tunic and a corky stem (base or basal) plate from which arise the adventitious root hairs in a ring around the edge, which grow up to 40 mm in length. Above the stem plate is the storage organ consisting of bulb scales, surrounding the previous flower stalk and the terminal bud. The scales are of two types, true storage organs and the bases of the foliage leaves. These have a thicker tip and a scar from where the leaf lamina became detached. The innermost leaf scale is semicircular only partly enveloping the flower stalk (semisheathed).(see Hanks Fig 1.3). The bulb may contain a number of branched bulb units, each with two to three true scales and two to three leaf bases. Each bulb unit has a life of about four years.

 

Once the leaves die back in summer, the roots also wither. After some years, the roots shorten pulling the bulbs deeper into the ground (contractile roots). The bulbs develop from the inside, pushing the older layers outwards which become brown and dry, forming an outer shell, the tunic or skin. Up to 60 layers have been counted in some wild species. While the plant appears dormant above the ground the flower stalk which will start to grow in the following spring, develops within the bulb surrounded by two to three deciduous leaves and their sheaths. The flower stem lies in the axil of the second true leaf.

 

The single leafless Plant stem stem or scape, appearing from early to late spring depending on the species, bears from 1 to 20 blooms. Stem shape depends on the species, some are highly compressed with a visible seam, while others are rounded. The stems are upright and located at the centre of the leaves. In a few species such as N. hedraeanthus the stem is oblique. The stem is hollow in the upper portion but towards the bulb is more solid and filled with a spongy material.

 

Narcissus plants have one to several basal leaf leaves which are linear, ligulate or strap-shaped (long and narrow), sometimes channelled adaxially to semiterete, and may (pedicellate) or may not (sessile) have a petiole stalk. The leaves are flat and broad to cylindrical at the base and arise from the bulb. The emerging plant generally has two leaves, but the mature plant usually three, rarely four, and they are covered with a cutin containing cuticle, giving them a waxy appearance. Leaf colour is light green to blue-green. In the mature plant, the leaves extend higher than the flower stem, but in some species, the leaves are low-hanging. The leaf base is encased in a colorless sheath. After flowering, the leaves turn yellow and die back once the seed pod (fruit) is ripe.

 

Jonquils usually have dark green, round, rush-like leaves.

 

The inflorescence is scapose, the single stem or scape bearing either a solitary flower or forming an umbel with up to 20 blooms. Species bearing a solitary flower include section Bulbocodium and most of section Pseudonarcissus. Umbellate species have a fleshy racemose inflorescence (unbranched, with short floral stalks) with 2 to 15 or 20 flowers, such as N. papyraceus (see illustration, left) and N. tazetta (see Table I). The flower arrangement on the inflorescence may be either with (pedicellate) or without (sessile) floral stalks.

 

Prior to opening, the flower buds are enveloped and protected in a thin dry papery or membranous (scarious) spathe. The spathe consists of a singular bract that is ribbed, and which remains wrapped around the base of the open flower. As the bud grows, the spathe splits longitudinally. Bracteoles are small or absent.

 

The flowers of Narcissus are hermaphroditic (bisexual), have three parts (tripartite), and are sometimes fragrant (see Fragrances). The flower symmetry is actinomorphic (radial) to slightly zygomorphic (bilateral) due to declinate-ascending stamens (curving downwards, then bent up at the tip). Narcissus flowers are characterised by their, usually conspicuous, corona (trumpet).

 

The three major floral parts (in all species except N. cavanillesii in which the corona is virtually absent - Table I: Section Tapeinanthus) are;

 

(i) the proximal floral tube (hypanthium),

(ii) the surrounding free tepals, and

(iii) the more distal corona (paraperigon, paraperigonium).

All three parts may be considered to be components of the perianth (perigon, perigonium). The perianth arises above the apex of the inferior ovary, its base forming the hypanthial floral tube.

 

The floral tube is formed by fusion of the basal segments of the tepals (proximally connate). Its shape is from an inverted cone (obconic) to funnel-shaped (funneliform) or cylindrical, and is surmounted by the more distal corona. Floral tubes can range from long and narrow sections Apodanthi and Jonquilla to rudimentary (N. cavanillesii).

 

Surrounding the floral tube and corona and reflexed (bent back) from the rest of the perianth are the six spreading tepals or floral leaves, in two whorls which may be distally ascending, reflexed (folded back), or lanceolate. Like many monocotyledons, the perianth is homochlamydeous, which is undifferentiated into separate calyx (sepals) and corolla (petals), but rather has six tepals. The three outer tepal segments may be considered sepals, and the three inner segments petals. The transition point between the floral tube and the corona is marked by the insertion of the free tepals on the fused perianth.

 

The corona, or paracorolla, is variously described as bell-shaped (funneliform, trumpet), bowl-shaped (cupular, crateriform, cup-shaped) or disc-shaped with margins that are often frilled, and is free from the stamens. Rarely is the corona a simple callose (hardened, thickened) ring. The corona is formed during floral development as a tubular outgrowth from stamens which fuse into a tubular structure, the anthers becoming reduced. At its base, the fragrances which attract pollinators are formed. All species produce nectar at the top of the ovary. Coronal morphology varies from the tiny pigmented disk of N. serotinus (see Table I) or the rudimentary structure in N. cavanillesii to the elongated trumpets of section Pseudonarcissus (trumpet daffodils, Table I).

 

While the perianth may point forwards, in some species such as N. cyclamineus it is folded back (reflexed, see illustration, left), while in some other species such as N. bulbocodium (Table I), it is reduced to a few barely visible pointed segments with a prominent corona.

 

The colour of the perianth is white, yellow or bicoloured, with the exception of the night flowering N. viridiflorus which is green. In addition the corona of N. poeticus has a red crenulate margin (see Table I). Flower diameter varies from 12 mm (N. bulbocodium) to over 125 mm (N. nobilis=N. pseudonarcissus subsp. nobilis).

 

Flower orientation varies from pendent or deflexed (hanging down) as in N. triandrus (see illustration, left), through declinate-ascendant as in N. alpestris = N. pseudonarcissus subsp. moschatus, horizontal (patent, spreading) such as N. gaditanus or N. poeticus, erect as in N. cavanillesii, N. serotinus and N. rupicola (Table I), or intermediate between these positions (erecto-patent).

 

The flowers of Narcissus demonstrate exceptional floral diversity and sexual polymorphism, primarily by corona size and floral tube length, associated with pollinator groups (see for instance Figs. 1 and 2 in Graham and Barrett). Barrett and Harder (2005) describe three separate floral patterns;

 

"Daffodil" form

"Paperwhite" form

"Triandrus" form.

The predominant patterns are the 'daffodil' and 'paperwhite' forms, while the "triandrus" form is less common. Each corresponds to a different group of pollinators (See Pollination).

 

The "daffodil" form, which includes sections Pseudonarcissus and Bulbocodium, has a relatively short, broad or highly funnelform tube (funnel-like), which grades into an elongated corona, which is large and funnelform, forming a broad, cylindrical or trumpet-shaped perianth. Section Pseudonarcissus consists of relatively large flowers with a corolla length of around 50 mm, generally solitary but rarely in inflorescences of 2–4 flowers. They have wide greenish floral tubes with funnel-shaped bright yellow coronas. The six tepals sometimes differ in colour from the corona and may be cream coloured to pale yellow.

 

The "paperwhite" form, including sections Jonquilla, Apodanthi and Narcissus, has a relatively long, narrow tube and a short, shallow, flaring corona. The flower is horizontal and fragrant.

 

The "triandrus" form is seen in only two species, N. albimarginatus (a Moroccan endemic) and N. triandrus. It combines features of both the "daffodil" and "paperwhite" forms, with a well-developed, long, narrow tube and an extended bell-shaped corona of almost equal length. The flowers are pendent.

 

Androecium

There are six stamens in one to two rows (whorls), with the filaments separate from the corona, attached at the throat or base of the tube (epipetalous), often of two separate lengths, straight or declinate-ascending (curving downwards, then upwards). The anthers are basifixed (attached at their base).

 

Gynoecium

The ovary is inferior (below the floral parts) and trilocular (three chambered) and there is a pistil with a minutely three lobed stigma and filiform (thread like) style, which is often exserted (extending beyond the tube).

 

Fruit

The fruit consists of dehiscent loculicidal capsules (splitting between the locules) that are ellipsoid to subglobose (almost spherical) in shape and are papery to leathery in texture.

 

Seeds

The fruit contains numerous subglobose seeds which are round and swollen with a hard coat, sometimes with an attached elaiosome. The testa is black and the pericarp dry.

 

Most species have 12 ovules and 36 seeds, although some species such as N. bulbocodium have more, up to a maximum of 60. Seeds take five to six weeks to mature. The seeds of sections Jonquilla and Bulbocodium are wedge-shaped and matte black, while those of other sections are ovate and glossy black. A gust of wind or contact with a passing animal is sufficient to disperse the mature seeds.

 

Chromosomes

Chromosome numbers include 2n=14, 22, 26, with numerous aneuploid and polyploid derivatives. The basic chromosome number is 7, with the exception of N. tazetta, N. elegans and N. broussonetii in which it is 10 or 11; this subgenus (Hermione) was in fact characterised by this characteristic. Polyploid species include N. papyraceus (4x=22) and N. dubius (6x=50).

 

Phytochemistry

Alkaloids

As with all Amarylidaceae genera, Narcissus contains unique isoquinoline alkaloids. The first alkaloid to be identified was lycorine, from N. pseudonarcissus in 1877. These are considered a protective adaptation and are utilised in the classification of species. Nearly 100 alkaloids have been identified in the genus, about a third of all known Amaryllidaceae alkaloids, although not all species have been tested. Of the nine alkaloid ring types identified in the family, Narcissus species most commonly demonstrate the presence of alkaloids from within the Lycorine (lycorine, galanthine, pluviine) and Homolycorine (homolycorine, lycorenine) groups. Hemanthamine, tazettine, narciclasine, montanine and galantamine alkaloids are also represented. The alkaloid profile of any plant varies with time, location, and developmental stage. Narcissus also contain fructans and low molecular weight glucomannan in the leaves and plant stems.

 

Fragrances

Fragrances are predominantly monoterpene isoprenoids, with a small amount of benzenoids, although N. jonquilla has both equally represented. Another exception is N. cuatrecasasii which produces mainly fatty acid derivatives. The basic monoterpene precursor is geranyl pyrophosphate, and the commonest monoterpenes are limonene, myrcene, and trans-β-ocimene. Most benzenoids are non-methoxylated, while a few species contain methoxylated forms (ethers), e.g. N. bujei. Other ingredient include indole, isopentenoids and very small amounts of sesquiterpenes. Fragrance patterns can be correlated with pollinators, and fall into three main groups (see Pollination).

 

The taxonomy of Narcissus is complex, and still not fully resolved. Known to the ancients, the genus name appears in Graeco-Roman literature, although their interest was as much medicinal as botanical. It is unclear which species the ancients were familiar with. Although frequently mentioned in Mediaeval and Renaissance texts it was not formally described till the work of Linnaeus in 1753. By 1789 it had been grouped into a family (Narcissi) but shortly thereafter this was renamed Amaryllideae, from which comes the modern placement within Amaryllidaceae, although for a while it was considered part of Liliaceae.

 

Many of the species now considered to be Narcissus were in separate genera during the nineteenth century, and the situation was further confused by the inclusion of many cultivated varieties. By 1875 the current circumscription was relatively settled. By 2004 phylogenetic studies had allowed the place of Narcissus within its fairly large family to be established, nested within a series of subfamilies (Amaryllidoideae) and tribes (Narcisseae). It shares its position in the latter tribe with Sternbergia.

 

The infrageneric classification has been even more complex and many schemes of subgenera, sections, subsections and series have been proposed, although all had certain similarities. Most authorities now consider there to be 10 – 11 sections based on phylogenetic evidence. The problems have largely arisen from the diversity of the wild species, frequent natural hybridisation and extensive cultivation with escape and subsequent naturalisation. The number of species has varied anywhere from 16 to nearly 160, but is probably around 50 – 60.

 

The genus appeared some time in the Late Oligocene to Early Miocene eras, around 24 million years ago, in the Iberian peninsula. While the exact origin of the word Narcissus is unknown it is frequently linked to its fragrance which was thought to be narcotic, and to the legend of the youth of that name who fell in love with his reflection. In the English language the common name Daffodil appears to be derived from the Asphodel with which it was commonly compared.

 

Early

Narcissus was first described by Theophrastus (Θεόφραστος, c 371 - c 287 BC) in his Historia Plantarum (Greek: Περὶ φυτῶν ἱστορία) as νάρκισσος, referring to N. poeticus, but comparing it to Asphodelus (ασφοδελωδες). Theophrastus' description was frequently referred to at length by later authors writing in Latin such as Pliny the Elder (Gaius Plinius Secundus, 23 AD – 79 AD) from whom came the Latin form narcissus (see also Culture). Pliny's account is from his Natural History (Latin: Naturalis Historia). Like his contemporaries, his interests were as much therapeutic as botanical. Another much-cited Greek authority was Dioscorides (Διοσκουρίδης, 40 AD – 90 AD) in his De Materia Medica (Greek: Περὶ ὕλης ἰατρικῆς). Both authors were to remain influential until at least the Renaissance, given that their descriptions went beyond the merely botanical, to the therapeutic (see also Antiquity).

 

An early European reference is found in the work of Albert Magnus (c. 1200 – 1280), who noted in his De vegetabilibus et plantis the similarity to the leek. William Turner in his A New Herball (1551) cites all three extensively in his description of the plant and its properties.It was to remain to Linnaeus in 1753 to formally describe and name Narcissus as a genus in his Species Plantarum, at which time there were six known species (N. poeticus, N. pseudonarcissus, N. bulbocodium, N. serotinus, N. jonquilla and N. tazetta).[1] At that time, Linnaeus loosely grouped it together with 50 other genera into his Hexandria monogynia.

 

Modern

It was de Jussieu in 1789 who first formally created a 'family' (Narcissi), as the seventh 'Ordo' (Order) of the third class (Stamina epigyna) of Monocots in which Narcissus and 15 other genera were placed. The use of the term Ordo at that time was closer to what we now understand as Family, rather than Order. The family has undergone much reorganisation since then, but in 1805 it was renamed after a different genus in the family, Amaryllis, as 'Amaryllideae' by Jaume St.-Hilaire and has retained that association since. Jaume St.-Hilaire divided the family into two unnamed sections and recognised five species of Narcissus, omitting N. serotinus.

 

De Candolle brought together Linnaeus' genera and Jussieau's families into a systematic taxonomy for the first time, but included Narcissus (together with Amaryllis) in the Liliaceae in his Flore française (1805-1815) rather than Amaryllidaceae, a family he had not yet recognised. Shortly thereafter he separated the 'Amaryllidées' from 'Liliacées' (1813), though attributing the term to Brown's 'Amaryllideae' in the latter's Prodromus (1810) rather than St.-Hilaire's 'Amaryllidées'. He also provided the text to the first four volumes of Redouté illustrations in the latter's Les liliacées between 1805 and 1808 (see illustration here of N. candidissimus).

 

Historically both wide and narrow interpretations of the genus have been proposed. In the nineteenth century genus splitting was common, favouring the narrow view. Haworth (1831) using a narrow view treated many species as separate genera, as did Salisbury (1866). These authors listed various species in related genera such as Queltia (hybrids), Ajax (=Pseudonarcissus) and Hermione (=Tazettae), sixteen in all in Haworth's classification. In contrast, Herbert (1837) took a very wide view reducing Harworth's sixteen genera to six. Herbert, treating the Amaryllidacea as an 'order' as was common then, considered the narcissi to be a suborder, the Narcisseae, the six genera being Corbularia, Ajax, Ganymedes, Queltia, Narcissus and Hermione and his relatively narrow circumscription of Narcissus having only three species. Later Spach (1846) took an even wider view bringing most of Harworth's genera into the genus Narcissus, but as separate subgenera. By the time that Baker (1875) wrote his monograph all of the genera with one exception were included as Narcissus. The exception was the monotypic group Tapeinanthus which various subsequent authors have chosen to either exclude (e.g. Cullen 1986) or include (e.g. Webb 1978, 1980). Today it is nearly always included.

 

The eventual position of Narcissus within the Amaryllidaceae family only became settled in the twenty-first century with the advent of phylogenetic analysis and the Angiosperm Phylogeny Group system. The genus Narcissus belongs to the Narcisseae tribe, one of 13 within the Amaryllidoideae subfamily of the Amaryllidaceae. It is one of two sister clades corresponding to genera in the Narcisseae, being distinguished from Sternbergia by the presence of a paraperigonium, and is monophyletic

 

The infrageneric phylogeny of Narcissus still remains relatively unsettled. The taxonomy has proved very complex and difficult to resolve, particularly for the Pseudonarcissus group. This is due to a number of factors, including the diversity of the wild species, the ease with which natural hybridisation occurs, and extensive cultivation and breeding accompanied by escape and naturalisation.

 

De Candolle, in the first systematic taxonomy of Narcissus, arranged the species into named groups, and those names (Faux-Narcisse or Pseudonarcissus, Poétiques, Tazettes, Bulbocodiens, Jonquilles) have largely endured for the various subdivisions since and bear his name. The evolution of classification was confused by including many unknown or garden varieties, until Baker (1875) made the important distinction of excluding all specimens except the wild species from his system. He then grouped all of the earlier related genera as sections under one genus, Narcissus, the exception being the monotypic Tapeinanthus. Consequently, the number of accepted species has varied widely.

 

A common modern classification system has been that of Fernandes (1951, 1968, 1975) based on cytology, as modified by Blanchard (1990) and Mathew (2002), although in some countries such as Germany, the system of Meyer (1966) was preferred. Fernandes described two subgenera based on basal chromosome number, Hermione, n = 5 (11) and Narcissus, n = 7 (13). He further subdivided these into ten sections (Apodanthi, Aurelia, Bulbocodii, Ganymedes, Jonquillae, Narcissus, Pseudonarcissi, Serotini, Tapeinanthus, Tazettae), as did Blanchard later.

 

In contrast to Fernandes, Webb's treatment of the genus for the Flora Europaea (1978, 1980) prioritised morphology over genetics, and abandoned the subgenera ranks. He also restored De Candolle's original nomenclature, and made a number of changes to section Jonquilla, merging the existing subsections, reducing Apodanthi to a subsection of Jonquilla, and moving N. viridiflorus from Jonquilla to a new monotypic section of its own (Chloranthi). Finally, he divided Pseudonarcissus into two subsections. Blanchard (1990), whose Narcissus: a guide to wild daffodils has been very influential, adopted a simple approach, restoring Apodanthae, and based largely on ten sections alone.

 

The Royal Horticultural Society (RHS) currently lists ten sections, based on Fernandes (1968), three of which are monotypic (contain only one species), while two others only containing two species. Most species are placed in Pseudonarcissus While infrageneric groupings within Narcissus have been relatively constant, their status (genera, subgenera, sections, subsections, series, species) has not. Some authors treat some sections as being further subdivided into subsections, e.g. Tazettae (3 subsections). These subdivisions correspond roughly to the popular names for narcissi types, e.g. Trumpet Daffodils, Tazettas, Pheasant's Eyes, Hoop Petticoats, Jonquils.

 

While Webb had simply divided the genus into sections, Mathew found this unsatisfactory, implying every section had equal status. He adapted both Fernandes and Webb to devise a more hierarchical scheme he believed better reflected the interrelationships within the genus. Mathew's scheme consists of three subgenera (Narcissus, Hermione and Corbularia). The first two subgenera were then divided into five and two sections respectively. He then further subdivided two of the sections (subgenus Narcissus section Jonquillae, and subgenus Hermione section Hermione) into three subsections each. Finally, he divided section Hermione subsection Hermione further into two series, Hermione and Albiflorae. While lacking a phylogenetic basis, the system is still in use in horticulture. For instance the Pacific Bulb Society uses his numbering system for classifying species.

 

The phylogenetic analysis of Graham and Barrett (2004) supported the infrageneric division of Narcissus into two clades corresponding to the subgenera Hermione and Narcissus, but does not support monophyly of all sections, with only Apodanthi demonstrating clear monophyly, corresponding to Clade III of Graham and Barrett, although some other clades corresponded approximately to known sections. These authors examined 36 taxa of the 65 listed then, and a later extended analysis by Rønsted et al. (2008) with five additional taxa confirmed this pattern.

 

A very large (375 accessions) molecular analysis by Zonneveld (2008) utilising nuclear DNA content sought to reduce some of the paraphyly identified by Graham and Barrett. This led to a revision of the sectional structure, shifting some species between sections, eliminating one section and creating two new ones. In subgenus Hermione, Aurelia was merged with Tazettae. In subgenus Narcissus section Jonquillae subsection Juncifolii was elevated to sectional rank, thus resolving the paraphyly in this section observed by Graham and Barrett in Clade II due to this anomalous subsection, the remaining species being in subsection Jonquillae, which was monophyletic. The relatively large section Pseudonarcissi was divided by splitting off a new section, Nevadensis (species from southern Spain) leaving species from France, northern Spain and Portugal in the parent section. At the same time Fernández-Casas (2008) proposed a new monotypic section Angustini to accommodate Narcissus deficiens, placing it within subgenus Hermione.

 

While Graham and Barrett (2004) had determined that subgenus Hermione was monophyletic, using a much larger accession Santos-Gally et al. (2011) did not. However the former had excluded species of hybrid origins, while the latter included both N. dubius and N. tortifolius. If these two species are excluded (forming a clade with subgenus Narcissus) then Hermione can be considered monophyletic, although as a section of Hermione, Tazettae is not monophyletic. They also confirmed the monophyly of Apodanthi.

 

Some so-called nothosections have been proposed, predominantly by Fernández-Casas, to accommodate natural ('ancient') hybrids (nothospecies).

 

Subgenera and sections

Showing revisions by Zonnefeld (2008)

 

subgenus Hermione (Haw.) Spach.

(Aurelia (Gay) Baker (monotypic) - merged with Tazettae (2008)

Serotini Parlatore (2 species)

Tazettae de Candolle (16 species) syn. Hermione (Salisbury) Sprengel, in Fernandes' scheme. Incorporating Aurelia (2008)

subgenus Narcissus L.

Apodanthi A. Fernandes (6 species)

Bulbocodium de Candolle (11 species)

Ganymedes (Haworth) Schultes f. (monotypic)

Jonquillae de Candolle (8 species)

Juncifolii (A. Fern.) Zonn. sect. nov. (2008)

Narcissus L. (2 species)

Nevadensis Zonn. sect. nov. (2008)

Pseudonarcissus de Candolle (36 species) Trumpet daffodils

Tapeinanthus (Herbert) Traub (monotypic)

 

Species

Estimates of the number of species in Narcissus have varied widely, from anywhere between 16 and nearly 160, even in the modern era. Linnaeus originally included six species in 1753. By the time of the 14th edition of the Systema Naturae in 1784, there were fourteen. The 1819 Encyclopaedia Londinensis lists sixteen (see illustration here of three species) and by 1831 Adrian Haworth had described 150 species.

 

Much of the variation lies in the definition of species, and whether closely related taxa are considered separate species or subspecies. Thus, a very wide view of each species, such as Webb's results in few species, while a very narrow view such as that of Fernandes results in a larger number. Another factor is the status of hybrids, given natural hybridisation, with a distinction between 'ancient hybrids' and 'recent hybrids'. The term 'ancient hybrid' refers to hybrids found growing over a large area, and therefore now considered as separate species, while 'recent hybrid' refers to solitary plants found amongst their parents, with a more restricted range.

 

In the twentieth century Fernandes (1951) accepted 22 species, on which were based the 27 species listed by Webb in the 1980 Flora Europaea. By 1968, Fernandes had accepted 63 species, and by 1990 Blanchard listed 65 species, and Erhardt 66 in 1993. In 2006 the Royal Horticultural Society's (RHS) International Daffodil Register and Classified List listed 87 species, while Zonneveld's genetic study (2008) resulted in only 36. As of September 2014, the World Checklist of Selected Plant Families accepts 52 species, along with at least 60 hybrids, while the RHS has 81 accepted names in its October 2014 list.

 

Evolution

Within the Narcisseae, Narcissus (western Mediterranean) diverged from Sternbergia (Eurasia) some time in the Late Oligocene to Early Miocene eras, around 29.3–18.1 Ma, with a best estimate of 23.6 Ma. Later the genus divided into the two subgenera (Hermione and Narcissus) between 27.4 and 16.1 Ma (21.4 Ma). The divisions between the sections of Hermione then took place during the Miocene period 19.9–7.8 Ma.

 

Narcissus appears to have arisen in the area of the Iberian peninsula, southern France and northwestern Italy, and within this area most sections of the genus appeared, with only a few taxa being dispersed to North Africa at a time when the African and West European platforms were closer together. Subgenus Hermione in turn arose in the southwestern mediterranean and north west Africa. However, these are reconstructions, the Amaryllidaceae lacking a fossil record.

 

Names and etymology

The derivation of the Latin narcissus (Greek: νάρκισσος) is unknown. It may be a loanword from another language; for instance, it is said to be related to the Sanskrit word nark, meaning 'hell'. It is frequently linked to the Greek myth of Narcissus described by Ovid in his Metamorphoses, who became so obsessed with his own reflection that as he knelt and gazed into a pool of water, he fell into the water and drowned. In some variations, he died of starvation and thirst. In both versions, the narcissus plant sprang from where he died. Although Ovid appeared to describe the plant we now know as Narcissus there is no evidence for this popular derivation, and the person's name may have come from the flower's name. The Poet's Narcissus (N. poeticus), which grows in Greece, has a fragrance that has been described as intoxicating. This explanation is largely discredited due to lack of proof. Pliny wrote that the plant 'narce narcissum dictum, non a fabuloso puero' ('named narcissus from narce, not from the legendary youth'), i.e. that it was named for its narcotic properties (ναρκάω narkao, 'I grow numb' in Greek), not from the legend. Furthermore, there were accounts of narcissi growing, such as in the legend of Persephone, long before the story of Narcissus appeared (see Greek culture). It has also been suggested that daffodils bending over streams evoked the image of the youth admiring his own reflection in the water.

 

Linnaeus used the Latin name for the plant in formally describing the genus, although Matthias de l'Obel had previously used the name in describing various species of Narcissi in his Icones stirpium of 1591, and other publications, as had Clusius in Rariorum stirpium (1576).

 

The plural form of the common name narcissus has caused some confusion. British English sources such as the Shorter Oxford English Dictionary give two alternate forms, narcissi and narcissuses. In contrast, in American English the Merriam-Webster Dictionary provides for a third form, narcissus, used for both singular and plural. The Oxford dictionaries only list this third form under American English, although the Cambridge Dictionary allows of all three in the same order. However, Garner's Modern American Usage states that narcissi is the commonest form, narcissuses being excessively sibilant. For similar reasons, Fowler prefers narcissi in British English usage. Neither support narcissus as a plural form. Common names such as narcissus do not capitalise the first letter in contrast to the person of that name and the Latin genus name.

 

The name Narcissus (feminine Narcissa) was not uncommon in Roman times, such as Tiberius Claudius Narcissus, a Roman official in Claudius' time, an early New Testament Christian in Rome and later bishops and saints.

 

Daffodil

The word daffodil was unknown in the English language before the sixteenth century. The name is derived from an earlier affodell, a variant of asphodel. In classical Greek literature the narcissus is frequently referred to as the asphodel, such as the meadows of the Elysian fields in Homer (see Antiquity). Asphodel in turn appears to be a loanword coming from French via Mediaeval Latin affodilus from Classical Latin asphodilus and ultimately the Greek asphodelos (Greek: ἀσφόδελος). The reason for the introduction of the initial d is not known, although a probable source is an etymological merging from the Dutch article de, as in de affodil, or English the, as th'affodil or t'affodil, hence daffodil, and in French de and affodil to form fleur d'aphrodille and daphrodille.

 

From at least the 16th century, daffadown dilly and daffydowndilly have appeared as playful synonyms of the name. In common parlance and in historical documents, the term daffodil may refer specifically to populations or specimens of the wild daffodil, N. pseudonarcissus. H. N. Ellacombe suggests this may be from Saffon Lilly, citing Prior in support, though admittedly conjectural.

 

Lady Wilkinson (1858), who provides an extensive discussion of the etymology of the various names for this plant, suggests a very different origin, namely the Old English word affodyle (that which cometh early), citing a 14th-century (but likely originally much earlier) manuscript in support of this theory, and which appears to describe a plant resembling the daffodil. Ellacombe provides further support for this from a fifteenth century English translation of Palladius that also refers to it.

 

Jonquil

The name jonquil is said to be a corruption via French from the Latin juncifolius meaning 'rush-leaf' (Juncaceae) and its use is generally restricted to those species and cultivars which have rush like leaves, e.g. N. juncifolius.

 

Other

A profusion of names have attached themselves in the English language, either to the genus as a whole or to individual species or groups of species such as sections. These include narcissus, jonquil, Lent lily, Lenten lily, lide lily, yellow lily, wort or wyrt, Julians, glens, Lent cocks, corn flower, bell rose, asphodel, Solomon's lily, gracy day, haverdrils, giggary, cowslip, and crow foot.

En Biodiversidad virtual

 

Y también en Twiter

 

No solo a lo largo de su vida, sino también, casi en un instante, Euglena polymorpha puede cambiar completamente de apariencia y de cuerpo de delfín. En un giro de segundos puede volverse esfera, igual que un minúsculo planeta intensamente verde, como si hubiese concentrado en su cuerpo el color teñido y turbio del agua que hoy la rodea y donde se descubre en ella por primera vez, sumándose así a las casi 40 nuevas citas de euglenófitas que desde este proyecto se han señalado para el Lago de Sanabria.

 

Euglena polymorpha es la alfarera de su cuerpo, moldea su masa verde, dejando un rastro pálido en su larga cola, y mientras se retuerce y se amasa avanzando, vigila atenta con su ojo el cambio de los fondos del Lago de Sanabria que como en ella todo es cambiante y verde.

 

Descrita en 1902 por Dangeard, es fácil confundir a esta Euglena con otras hermanas a las que se asemeja mucho, como Euglena proxima, Euglena variabilis o incluso Euglena caudata. Pero hay algo en ella que permite distinguirla con relativa facilidad y es que, aparte de su tamaño, ligeramente superior a ellas, y que puede llegar a alcanzar hasta las 90 micras de longitud y las 26 de anchura, la forma cónica de su cuerpo hace que sus contornos se vayan estrechando de forma muy progresiva hasta su extremo posterior que remata en un apéndice cónico y transparente.

 

Otra de las características de esta Euglena cambiante es que puede perder el flagelo con relativa facilidad y cuando esto sucede como hoy, sus movimientos reptantes y sus contorsiones suelen ser muy marcados y poco suaves.

 

La película que envuelve el flexible cuerpo de Euglena polymorpha es muy plástica, se puede deformar de forma intensa y puede aparecer marcada por gruesos surcos cuando se retuerce. Los numerosos cloroplastos que se encuentran en su interior y que le confieren ese aspecto tan granuloso pueden presentar un contorno relativamente regular en forma de disco o mostrar los bordes desflecados en anchos lóbulos.

 

En cualquier caso, como muchas otras euglenas Euglena polymorpha parece vigilante y observa todo con su intenso ojo de rubí. Euglena es alga, pero también es diminuto gusano verde. Flagelado, planta y animal a la vez con esencia de quimera. Su cuerpo, mágicamente se transforma en juego de pececillo verde a odre de plastilina.

 

Dentro del amplísimo grupo de las euglenas, de las que se han descrito cerca de 552, Euglena polymorpha es una de las 133 taxonómicamente aceptadas y no es de las más comunes.

 

Euglena polymorpha es de distribución cosmoplita, y suele habitar en diferentes masas de agua dulce, grandes y pequeñas, y hoy desde el fondo de este Lago, camuflada de verde entre estas aguas que fueron limpias como el aire.

 

La fotografía que mostramos, realizada a 400 aumentos empleando la técnica de contraste de interferencia, se ha tomado sobre una muestra de fondo, a cinco metros de profundidad, recogida en las inmediaciones de la Isla de Moras por Juan Carlos Feijó, Pablo, Lucas Patrick y Alberto Martínez el día 17 de junio de 2017 en el Lago de Sanabria (Zamora), desde el catamarán Helios Sanabria el primer catamarán construido en el Planeta propulsado por energía eólica y solar.

 

LIBRO: Lago de Sanabria 2015, presente y futuro de un ecosistema en desequilibrio

 

Presentación ponencia congreso internacional de Limnología de la AIL

 

El Lago en Europa

 

Informes de contaminación en el Lago de Sanabria

 

informe de evolución de la contaminación en el Lago de Sanabria

 

vídeo

 

El Lago en TVE

 

Cuculus canorus

[order] Cuculiformes | [family] Cuculidae | [latin] Cuculus canorus | [UK] Cuckoo | [FR] Coucou gris | [DE] Kuckuck | [ES] Cuco Europeo | [IT] Cuculo eurasiatico | [NL] Koekoek | [IRL] Cuach

 

Status: Widespread summer visitor to Ireland from April to August.

 

Conservation Concern: Green-listed in Ireland. The European population is currently evaluated as secure.

 

Identification: Despite its obvious song, relatively infrequently seen. In flight, can be mistaken for a bird of prey such as Sparrowhawk, but has rapid wingbeats below the horizontal plane - ie. the wings are not raised above the body. Adult male Cuckoos are a uniform grey on the head, neck, back, wings and tail. The underparts are white with black barring. Adult females can appear in one of two forms. The so-called grey-morph resembles the adult male plumage, but has throat and breast barred black and white with yellowish wash. The rufous-morph has the grey replaced by rufous, with strong black barring on the wings, back and tail. Juvenile Cuckoos resemble the female rufous-morph, but are darker brown above.

 

Similar Species: Sparrowhawk

 

Call: The song is probably one of the most recognisable and well-known of all Irish bird species. The male gives a distinctive “wuck-oo”, which is occasionally doubled “wuck-uck-ooo”. The female has a distinctive bubbling “pupupupu”. The song period is late April to late June.

 

Diet: Mainly caterpillars and other insects.

 

Breeding: Widespread in Ireland, favouring open areas which hold their main Irish host species – Meadow Pipit. Has a remarkable breeding biology unlike any other Irish breeding species.

 

Wintering: Cuckoos winter in central and southern Africa.

 

To minimise the chance of being recognised and thus attacked by the birds they are trying to parasitize, female cuckoos have evolved different guises.

 

The common cuckoo (Cuculus canorus) lays its eggs in the nests of other birds. On hatching, the young cuckoo ejects the host's eggs and chicks from the nest, so the hosts end up raising a cuckoo chick rather than a brood of their own. To fight back, reed warblers (a common host across Europe) have a first line of defence: they attack, or ‘mob’, the female cuckoo, which reduces the chance that their nest is parasitized.

 

To deter the warbler from attacking, the colouring of the grey cuckoo mimics sparrow hawks, a common predator of reed warblers. However, other females are bright rufous (brownish-red). The presence of alternate colour morphs in the same species is rare in birds, but frequent among the females of parasitic cuckoo species. The new research shows that this is another cuckoo trick: cuckoos combat reed warbler mobbing by coming in different guises.

 

In the study, the researchers manipulated local frequencies of the more common grey colour cuckoo and the less common (in the United Kingdom) rufous colour cuckoo by placing models of the birds at neighbouring nests. They then recorded how the experience of watching their neighbours mob changed reed warbler responses to both cuckoos and a sparrow hawk at their own nest.

 

They found that reed warblers increased their mobbing, but only to the cuckoo morph that their neighbours had mobbed. Therefore, as one cuckoo morph increases in frequency, local host populations will become alerted specifically to that morph. This means the alternate morph will be more likely to slip past host defences and lay undetected. This is the first time that ‘social learning’ has been documented in the evolution of mimicry as well as the evolution of different observable characteristics - such as colour - in the same species (called polymorphism).

 

From the University of Cambridge “When mimicry becomes less effective, evolving to look completely different can be a successful trick. Our research shows that individuals assess disguises not only from personal experience, but also by observing others. However, because their learning is so specific, this social learning then selects for alternative cuckoo disguises and the arms race continues.”.

“It’s well known that cuckoos have evolved various egg types which mimic those of their hosts in order to combat rejection. This research shows that cuckoos have also evolved alternate female morphs to sneak through the hosts' defenses. This explains why many species which use mimicry, such as the cuckoo, evolve different guises.”

Beija-flor Tesoura (Eupetomena macroura) - Swallow-tailed-Hummingbird

A text In English:

The Swallow-tailed Hummingbird, so called from its forked tail, is one of the largest hummingbirds in cities and gardens, but it also occurs in gallery forests, bushy pastures and edges of woods or coppices. It is green, except for the blue head and upper breast, turning to iridescent purple according to the direction of light; it has dark wings and a heavy black bill. The tail is dark blue with the external feathers longer than central ones. It is very aggressive and attacks other hummingbirds that dare to visit flowers in certain trees. Where the flowers are available for many months, the individual is fiercely territorial, but generally needs to search soon for other flowering plants. It flies to catch small insets on or under leaves in the gallery forests or woodlands. The female builds a small cup-shaped nest saddled on a branch, not far from the main trunk in the shade of leaves. Perched on favorite branches, the male can utter long but low chirps. Once in a while, it interrupts these singing sessions to feed, and flies back for more song or to clean the plumage. They occur from the Guianas and Amazon River to Paraguay and southeastern Peru. They can get along with partially deforested zones, but may disappear with intensive agriculture and with the development of treeless cities.

 

Um texto em Português:

Beija-flor Tesoura (Eupetomena macroura), fotografado em Brasília-DF, Brasil.

Eupetomena macroura (Gmelin, 1788): tesoura; swallow-tailed hummingbird c.

Destaca-se das espécies estudadas pelo maior porte e pela cauda comprida e bifurcada, o que lhe valeu o nome popular. Como é comum entre os beija-flores, é uma espécie agressiva que disputa com outras o seu território e fontes de alimento.

Nidificação: o ninho, em forma de tigela, é assentado numa forquilha de arbusto ou árvores, a cerca de 2 a 3 m do solo. O material utilizado na construção é composto por fibras vegetais incluindo painas, musgos e liquens, aderidos externamente com teias de aranhas.

Hábitat: capoeiras, cerrados, borda de matas e jardins.

Tamanho: 17,0 cm

A SEGUIR UM TEXTO ENCONTRADO E REPRODUZIDO DO ENDEREÇO nationalgeographic.abril.uol.com.br/ng/edicoes/83/reporta... DA NATIONAL GEOGRAFIC:

 

Prodígios da micro-engenharia, os beija-flores são os campeões dos pesos-leves entre as aves

Uma faísca safira, um frêmito de asas, e o minúsculo pássaro - ou seria um inseto? - some como miragem fugaz. Reaparece instantes depois, agora num ângulo melhor. É pássaro mesmo, um dervixe do tamanho do meu polegar com asas que batem 80 vertiginosas vezes por segundo, produzindo um zumbido quase inaudível. As penas da cauda, à guisa de leme, delicadamente direcionam o vôo em três direções. Ele fita a trombeta de uma vistosa flor alaranjada e do bico fino como agulha projeta uma língua delgada feito linha. Um raio de Sol ricocheteia de suas penas iridescentes. A cor refletida deslumbra como uma pedra preciosa contra uma janela ensolarada. Não admira que os beija-flores sejam tão queridos e que tanta gente já tenha tropeçado ao tentar descrevê-los. Nem mesmo circunspectos cientistas resistem a termos como "belo", "magnífico", "exótico".

Surpresa maior é o fato de o aparentemente frágil beija-flor ser uma das mais resistentes criaturas do reino animal. Cerca de 330 espécies prosperam em ambientes diversos, muitos deles brutais: do Alasca à Argentina, do deserto do Arizona à costa de Nova Scotia, da Amazônia à linha nevada acima dos 4,5 mil metros nos Andes (misteriosamente, essas aves só são encontradas no Novo Mundo).

"Eles vivem no limite do que é possível aos vertebrados, e com maestria", diz Karl Schuchmann, ornitólogo do Instituto Zoológico Alexander Koenig e do Fundo Brehm, na Alemanha. Schuchmann ouviu falar de um beija-flor que viveu 17 anos em cativeiro. "Imagine a resistência de um organismo de 5 ou 6 gramas para viver tanto tempo!", diz ele espantado. Em média, o minúsculo coração de um beija-flor bate cerca de 500 vezes por minuto (em repouso!). Assim, o desse pequeno cativo teria batido meio bilhão de vezes, quase o dobro do total de uma pessoa de 70 anos.

Mas esses passarinhos são duráveis apenas em vida. Quando morrem, seus ossos delicados e ocos quase nunca se fossilizam. Daí o assombro causado pela recente descoberta de um amontoado de fósseis de aves que talvez inclua um beija-flor ancestral de 30 milhões de anos. Como os beija-flores modernos, os espécimes fósseis tinham o bico longo e fino e os ossos superiores das asas mais curtos, terminando em uma saliência arredondada que talvez lhes permitisse fazer a rotação na articulação do ombro e parar no ar.

A outra surpresa foi o local do achado: no sul da Alemanha, longe do território dos beija-flores atuais. Para alguns cientistas, essa descoberta mostra que já existiram beija-flores fora das Américas, mas se extinguiram. Ou quem sabe os fósseis não fossem de beija-flor. Os céticos, entre eles Schuchmann, afirmam que muitas vezes, ao longo da evolução, outros grupos de aves adquiriram características semelhantes às do beija-flor. Os verdadeiros beija-flores, diz Schuchmann, evoluíram nas florestas do leste do Brasil, onde competiam com insetos pelo néctar das flores.

"O Brasil foi o laboratório do protótipo", diz o ornitólogo. "E o modelo funcionou." O beija-flor tornou-se a obra-prima da microengenharia da natureza. Aperfeiçoou sua habilidade de parar no ar há dezenas de milhões de anos para competir por parte das flores do Novo Mundo.

"Eles são uma ponte entre o mundo das aves e o dos insetos", diz Doug Altshuler, da Universidade da Califórnia em Riverside. Altshuler, que estuda o vôo dos beija-flores, examinou os movimentos das asas do pássaro. Observou que, nele, os impulsos elétricos propulsores dos músculos das asas lembram mais os dos insetos que os das aves. Talvez por isso o beija-flor produza tanta energia por batida de asas: mais, por unidade de massa, que qualquer outro vertebrado. Altshuler também analisou os trajetos neurais do beija-flor, que funcionam com a mesma vertiginosa velocidade encontrada nas aves mais ágeis, como seu primo mais próximo, o andorinhão. "São incríveis; uns pequenos Frankesteins", compara.

Certamente eles sabem intimidar: grama por grama, talvez sejam os maiores confrontadores da natureza. "O vocabulário do beija-flor deve ser 100% composto de palavrões", graceja Sheri Williamson, naturalista do Southeastern Arizona Bird Observatory. A agressão do beija-flor nasce de ferozes instintos territoriais moldados à necessidade de sugar néctar a cada poucos minutos. Os beija-flores competem desafiando e ameaçando uns aos outros. Postam-se face a face no ar, rodopiam, mergulham na direção da grama e voam de ré, em danças de dominância que terminam tão subitamente quanto começam.

O melhor lugar para vermos tais batalhas é nas montanhas, especialmente no Equador, em que ricos ecossistemas se apresentam em suas várias altitudes. Sheri supõe que o sentido norte-sul das cordilheiras americanas também crie rotas favoráveis à migração para onde haja constante suprimento de flores. O que contrasta, diz ela, com as barreiras naturais que se estendem de leste a oeste na África, como o Saara e o Mediterrâneo.

Algumas espécies de beija-flor, porém, adaptaram-se a atravessar vastidões planas, onde o alimento é escasso. Antes de sua intrépida migração da primavera para os Estados Unidos e o Canadá, os beija-flores-de-garganta-vermelha reúnem-se no México e empanturram-se de insetos e néctar. Armazenam gordura e duplicam de peso em uma semana. Em seguida, atravessam o golfo do México, voando 800 quilômetros sem escalas por 20 horas, até a costa distante.

A região próxima à linha do equador é um reino de beija-flores. Quem sai do aeroporto de Quito, no Equador, pode ser logo saudado por um cintilante beija-flor-violeta, com pintura de guerra de manchas púrpura iridescentes nos lados da face. A leste da cidade, nas cabeceiras da bacia Amazônica, o beija-flor-bico-de-espada esvoaça na mata portando o bico mais longo de todas as aves em proporção a seu tamanho: mais de metade do comprimento total do animal. Nas encostas do Cotopaxi, um vulcão ao sul de Quito, o beija-flor-do-chimborazo foi avistado acima dos 4,5 mil metros. Ali ele passa a noite entorpecido em cavernas, pois desacelera seu ritmo metabólico o suficiente para não morrer de fome antes de amanhecer. Mais tarde, aquecido pelo Sol, ele recomeça a se alimentar.

"Quem estuda beija-flores fica irremediavelmente enfeitiçado", diz Sheri Williamson. "São criaturinhas sedutoras. Tentei resistir, mas agora tenho sangue de beija-flor correndo nas veias."

Canon EOS Digital D50

  

Text, in english, from Wikipedia, the free encyclopedia

"Trumpet tree" redirects here. This term is occasionally used for the Shield-leaved Pumpwood (Cecropia peltata).

Tabebuia

Flowering Araguaney or ipê-amarelo (Tabebuia chrysantha) in central Brazil

Scientific classification

Kingdom: Plantae

(unranked): Angiosperms

(unranked): Eudicots

(unranked): Asterids

Order: Lamiales

Family: Bignoniaceae

Tribe: Tecomeae

Genus: Tabebuia

Gomez

Species

Nearly 100.

Tabebuia is a neotropical genus of about 100 species in the tribe Tecomeae of the family Bignoniaceae. The species range from northern Mexico and the Antilles south to northern Argentina and central Venezuela, including the Caribbean islands of Hispaniola (Dominican Republic and Haiti) and Cuba. Well-known common names include Ipê, Poui, trumpet trees and pau d'arco.

They are large shrubs and trees growing to 5 to 50 m (16 to 160 ft.) tall depending on the species; many species are dry-season deciduous but some are evergreen. The leaves are opposite pairs, complex or palmately compound with 3–7 leaflets.

Tabebuia is a notable flowering tree. The flowers are 3 to 11 cm (1 to 4 in.) wide and are produced in dense clusters. They present a cupular calyx campanulate to tubular, truncate, bilabiate or 5-lobed. Corolla colors vary between species ranging from white, light pink, yellow, lavender, magenta, or red. The outside texture of the flower tube is either glabrous or pubescentThe fruit is a dehiscent pod, 10 to 50 cm (4 to 20 in.) long, containing numerous—in some species winged—seeds. These pods often remain on the tree through dry season until the beginning of the rainy.

Species in this genus are important as timber trees. The wood is used for furniture, decking, and other outdoor uses. It is increasingly popular as a decking material due to its insect resistance and durability. By 2007, FSC-certified ipê wood had become readily available on the market, although certificates are occasionally forged.

Tabebuia is widely used as ornamental tree in the tropics in landscaping gardens, public squares, and boulevards due to its impressive and colorful flowering. Many flowers appear on still leafless stems at the end of the dry season, making the floral display more conspicuous. They are useful as honey plants for bees, and are popular with certain hummingbirds. Naturalist Madhaviah Krishnan on the other hand once famously took offense at ipé grown in India, where it is not native.

Lapacho teaThe bark of several species has medical properties. The bark is dried, shredded, and then boiled making a bitter or sour-tasting brownish-colored tea. Tea from the inner bark of Pink Ipê (T. impetiginosa) is known as Lapacho or Taheebo. Its main active principles are lapachol, quercetin, and other flavonoids. It is also available in pill form. The herbal remedy is typically used during flu and cold season and for easing smoker's cough. It apparently works as expectorant, by promoting the lungs to cough up and free deeply embedded mucus and contaminants. However, lapachol is rather toxic and therefore a more topical use e.g. as antibiotic or pesticide may be advisable. Other species with significant folk medical use are T. alba and Yellow Lapacho (T. serratifolia)

Tabebuia heteropoda, T. incana, and other species are occasionally used as an additive to the entheogenic drink Ayahuasca.

Mycosphaerella tabebuiae, a plant pathogenic sac fungus, was first discovered on an ipê tree.

Tabebuia alba

Tabebuia anafensis

Tabebuia arimaoensis

Tabebuia aurea – Caribbean Trumpet Tree

Tabebuia bilbergii

Tabebuia bibracteolata

Tabebuia cassinoides

Tabebuia chrysantha – Araguaney, Yellow Ipê, tajibo (Bolivia), ipê-amarelo (Brazil), cañaguate (N Colombia)

Tabebuia chrysotricha – Golden Trumpet Tree

Tabebuia donnell-smithii Rose – Gold Tree, "Prima Vera", Cortez blanco (El Salvador), San Juan (Honduras), palo blanco (Guatemala),duranga (Mexico)

A native of Mexico and Central Americas, considered one of the most colorful of all Central American trees. The leaves are deciduous. Masses of golden-yellow flowers cover the crown after the leaves are shed.

Tabebuia dubia

Tabebuia ecuadorensis

Tabebuia elongata

Tabebuia furfuracea

Tabebuia geminiflora Rizz. & Mattos

Tabebuia guayacan (Seem.) Hemsl.

Tabebuia haemantha

Tabebuia heptaphylla (Vell.) Toledo – tajy

Tabebuia heterophylla – roble prieto

Tabebuia heteropoda

Tabebuia hypoleuca

Tabebuia impetiginosa – Pink Ipê, Pink Lapacho, ipê-cavatã, ipê-comum, ipê-reto, ipê-rosa, ipê-roxo-damata, pau d'arco-roxo, peúva, piúva (Brazil), lapacho negro (Spanish); not "brazilwood"

Tabebuia incana

Tabebuia jackiana

Tabebuia lapacho – lapacho amarillo

Tabebuia orinocensis A.H. Gentry[verification needed]

Tabebuia ochracea

Tabebuia oligolepis

Tabebuia pallida – Cuban Pink Trumpet Tree

Tabebuia platyantha

Tabebuia polymorpha

Tabebuia rosea (Bertol.) DC.[verification needed] (= T. pentaphylla (L.) Hemsley) – Pink Poui, Pink Tecoma, apama, apamate, matilisguate

A popular street tree in tropical cities because of its multi-annular masses of light pink to purple flowers and modest size. The roots are not especially destructive for roads and sidewalks. It is the national tree of El Salvador and the state tree of Cojedes, Venezuela

Tabebuia roseo-alba – White Ipê, ipê-branco (Brazil), lapacho blanco

Tabebuia serratifolia – Yellow Lapacho, Yellow Poui, ipê-roxo (Brazil)

Tabebuia shaferi

Tabebuia striata

Tabebuia subtilis Sprague & Sandwith

Tabebuia umbellata

Tabebuia vellosoi Toledo

 

Ipê-do-cerrado

Texto, em português, da Wikipédia, a enciclopédia livre.

Ipê-do-cerrado

Classificação científica

Reino: Plantae

Divisão: Magnoliophyta

Classe: Magnoliopsida

Subclasse: Asteridae

Ordem: Lamiales

Família: Bignoniaceae

Género: Tabebuia

Espécie: T. ochracea

Nome binomial

Tabebuia ochracea

(Cham.) Standl. 1832

Sinónimos

Bignonia tomentosa Pav. ex DC.

Handroanthus ochraceus (Cham.) Mattos

Tabebuia chrysantha (Jacq.) G. Nicholson

Tabebuia hypodictyon A. DC.) Standl.

Tabebuia neochrysantha A.H. Gentry

Tabebuia ochracea subsp. heteropoda (A. DC.) A.H. Gentry

Tabebuia ochracea subsp. neochrysantha (A.H. Gentry) A.H. Gentry

Tecoma campinae Kraenzl.

ecoma grandiceps Kraenzl.

Tecoma hassleri Sprague

Tecoma hemmendorffiana Kraenzl.

Tecoma heteropoda A. DC.

Tecoma hypodictyon A. DC.

Tecoma ochracea Cham.

Ipê-do-cerrado é um dos nomes populares da Tabebuia ochracea (Cham.) Standl. 1832, nativa do cerrado brasileiro, no estados de Amazonas, Pará, Maranhão, Piauí, Ceará, Pernambuco, Bahia, Espírito Santo, Goiás, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Rio de Janeiro, São Paulo e Paraná.

Está na lista de espécies ameaçadas do estado de São Paulo, onde é encontrda também no domínio da Mata Atlântica[1].

Ocorre também na Argentina, Paraguai, Bolívia, Equador, Peru, Venezuela, Guiana, El Salvador, Guatemala e Panamá[2].

Há uma espécie homônima descrita por A.H. Gentry em 1992.

Outros nomes populares: ipê-amarelo, ipê-cascudo, ipê-do-campo, ipê-pardo, pau-d'arco-do-campo, piúva, tarumã.

Características

Altura de 6 a 14 m. Tronco tortuso com até 50 cm de diâmetro. Folhas pilosas em ambas as faces, mais na inferior, que é mais clara.

Planta decídua, heliófita, xerófita, nativa do cerrado em solos bem drenados.

Floresce de julho a setembro. Os frutos amadurecem de setembro a outubro.

FloresProduz grande quantidade de sementes leves, aladas com pequenas reservas, e que perdem a viabilidade em menos de 90 dias após coleta. A sua conservação vem sendo estudada em termos de determinação da condição ideal de armazenamento, e tem demonstrado a importância de se conhecer o comportamento da espécie quando armazenada com diferentes teores de umidade inicial, e a umidade de equilíbrio crítica para a espécie (KANO; MÁRQUEZ & KAGEYAMA, 1978). As levíssimas sementes aladas da espécie não necessitam de quebra de dormência. Podem apenas ser expostas ao sol por cerca de 6 horas e semeadas diretamente nos saquinhos. A germinação ocorre após 30 dias e de 80%. As sementes são ortodoxas e há aproximadamente 72 000 sementes em cada quilo.

O desenvolvimento da planta é rápido.

Como outros ipês, a madeira é usada em tacos, assoalhos, e em dormentes e postes. Presta-se também para peças torneadas e instrumento musicais.

 

Tabebuia alba (Ipê-Amarelo)

Texto, em português, produzido pela Acadêmica Giovana Beatriz Theodoro Marto

Supervisão e orientação do Prof. Luiz Ernesto George Barrichelo e do Eng. Paulo Henrique Müller

Atualizado em 10/07/2006

 

O ipê amarelo é a árvore brasileira mais conhecida, a mais cultivada e, sem dúvida nenhuma, a mais bela. É na verdade um complexo de nove ou dez espécies com características mais ou menos semelhantes, com flores brancas, amarelas ou roxas. Não há região do país onde não exista pelo menos uma espécie dele, porém a existência do ipê em habitat natural nos dias atuais é rara entre a maioria das espécies (LORENZI,2000).

A espécie Tabebuia alba, nativa do Brasil, é uma das espécies do gênero Tabebuia que possui “Ipê Amarelo” como nome popular. O nome alba provém de albus (branco em latim) e é devido ao tomento branco dos ramos e folhas novas.

As árvores desta espécie proporcionam um belo espetáculo com sua bela floração na arborização de ruas em algumas cidades brasileiras. São lindas árvores que embelezam e promovem um colorido no final do inverno. Existe uma crença popular de que quando o ipê-amarelo floresce não vão ocorrer mais geadas. Infelizmente, a espécie é considerada vulnerável quanto à ameaça de extinção.

A Tabebuia alba, natural do semi-árido alagoano está adaptada a todas as regiões fisiográficas, levando o governo, por meio do Decreto nº 6239, a transformar a espécie como a árvore símbolo do estado, estando, pois sob a sua tutela, não mais podendo ser suprimida de seus habitats naturais.

Taxonomia

Família: Bignoniaceae

Espécie: Tabebuia Alba (Chamiso) Sandwith

Sinonímia botânica: Handroanthus albus (Chamiso) Mattos; Tecoma alba Chamisso

Outros nomes vulgares: ipê-amarelo, ipê, aipê, ipê-branco, ipê-mamono, ipê-mandioca, ipê-ouro, ipê-pardo, ipê-vacariano, ipê-tabaco, ipê-do-cerrado, ipê-dourado, ipê-da-serra, ipezeiro, pau-d’arco-amarelo, taipoca.

Aspectos Ecológicos

O ipê-amarelo é uma espécie heliófita (Planta adaptada ao crescimento em ambiente aberto ou exposto à luz direta) e decídua (que perde as folhas em determinada época do ano). Pertence ao grupo das espécies secundárias iniciais (DURIGAN & NOGUEIRA, 1990).

Abrange a Floresta Pluvial da Mata Atlântica e da Floresta Latifoliada Semidecídua, ocorrendo principalmente no interior da Floresta Primária Densa. É característica de sub-bosques dos pinhais, onde há regeneração regular.

Informações Botânicas

Morfologia

As árvores de Tabebuia alba possuem cerca de 30 metros de altura. O tronco é reto ou levemente tortuoso, com fuste de 5 a 8 m de altura. A casca externa é grisáceo-grossa, possuindo fissuras longitudinais esparas e profundas. A coloração desta é cinza-rosa intenso, com camadas fibrosas, muito resistentes e finas, porém bem distintas.

Com ramos grossos, tortuosos e compridos, o ipê-amarelo possui copa alongada e alargada na base. As raízes de sustentação e absorção são vigorosas e profundas.

As folhas, deciduais, são opostas, digitadas e compostas. A face superior destas folhas é verde-escura, e, a face inferior, acinzentada, sendo ambas as faces tomentosas. Os pecíolos das folhas medem de 2,5 a 10 cm de comprimento. Os folíolos, geralmente, apresentam-se em número de 5 a 7, possuindo de 7 a 18 cm de comprimento por 2 a 6 cm de largura. Quando jovem estes folíolos são densamente pilosos em ambas as faces. O ápice destes é pontiagudo, com base arredondada e margem serreada.

As flores, grandes e lanceoladas, são de coloração amarelo-ouro. Possuem em média 8X15 cm.

Quanto aos frutos, estes possuem forma de cápsula bivalvar e são secos e deiscentes. Do tipo síliqua, lembram uma vagem. Medem de 15 a 30 cm de comprimento por 1,5 a 2,5 cm de largura. As valvas são finamente tomentosas com pêlos ramificados. Possuem grande quantidade de sementes.

As sementes são membranáceas brilhantes e esbranquiçadas, de coloração marrom. Possuem de 2 a 3 cm de comprimento por 7 a 9 mm de largura e são aladas.

Reprodução

A espécie é caducifólia e a queda das folhas coincide com o período de floração. A floração inicia-se no final de agosto, podendo ocorrer alguma variação devido a fenômenos climáticos. Como a espécie floresce no final do inverno é influenciada pela intensidade do mesmo. Quanto mais frio e seco for o inverno, maior será a intensidade da florada do ipê amarelo.

As flores por sua exuberância, atraem abelhas e pássaros, principalmente beija-flores que são importantes agentes polinizadores. Segundo CARVALHO (2003), a espécie possui como vetor de polinização a abelha mamangava (Bombus morio).

As sementes são dispersas pelo vento.

A planta é hermafrodita, e frutifica nos meses de setembro, outubro, novembro, dezembro, janeiro e fevereiro, dependendo da sua localização. Em cultivo, a espécie inicia o processo reprodutivo após o terceiro ano.

Ocorrência Natural

Ocorre naturalmente na Floresta Estaciobal Semidecicual, Floresta de Araucária e no Cerrado.

Segundo o IBGE, a Tabebuia alba (Cham.) Sandw. é uma árvore do Cerrado, Cerradão e Mata Seca. Apresentando-se nos campos secos (savana gramíneo-lenhosa), próximo às escarpas.

Clima

Segundo a classificação de Köppen, o ipê-amarelo abrange locais de clima tropical (Aw), subtropical úmido (Cfa), sutropical de altitude (Cwa e Cwb) e temperado.

A T.alba pode tolerar até 81 geadas em um ano. Ocorre em locais onde a temperatura média anual varia de 14,4ºC como mínimo e 22,4ºC como máximo.

Solo

A espécie prefere solos úmidos, com drenagem lenta e geralmente não muito ondulados (LONGHI, 1995).

Aparece em terras de boa à média fertilidade, em solos profundos ou rasos, nas matas e raramente cerradões (NOGUEIRA, 1977).

Pragas e Doenças

De acordo com CARVALHO (2003), possui como praga a espécie de coleópteros Cydianerus bohemani da família Curculionoideae e um outro coleóptero da família Chrysomellidae. Apesar da constatação de elevados índices populacionais do primeiro, os danos ocasionados até o momento são leves. Nas praças e ruas de Curitiba - PR, 31% das árvores foram atacadas pela Cochonilha Ceroplastes grandis.

ZIDKO (2002), ao estudar no município de Piracicaba a associação de coleópteros em espécies arbóreas, verificou a presença de insetos adultos da espécie Sitophilus linearis da família de coleópteros, Curculionidae, em estruturas reprodutivas. Os insetos adultos da espécie emergiram das vagens do ipê, danificando as sementes desta espécie nativa.

ANDRADE (1928) assinalou diversas espécies de Cerambycidae atacando essências florestais vivas, como ingazeiro, cinamomo, cangerana, cedro, caixeta, jacarandá, araribá, jatobá, entre outras como o ipê amarelo.

A Madeira

A Tabebuia alba produz madeira de grande durabilidade e resistência ao apodrecimento (LONGHI,1995).

MANIERI (1970) caracteriza o cerne desta espécie como de cor pardo-havana-claro, pardo-havan-escuro, ou pardo-acastanhado, com reflexos esverdeados. A superfície da madeira é irregularmente lustrosa, lisa ao tato, possuindo textura media e grã-direita.

Com densidade entre 0,90 e 1,15 grama por centímetro cúbico, a madeira é muito dura (LORENZI, 1992), apresentando grande dificuldade ao serrar.

A madeira possui cheiro e gosto distintos. Segundo LORENZI (1992), o cheiro característico é devido à presença da substância lapachol, ou ipeína.

Usos da Madeira

Sendo pesada, com cerne escuro, adquire grande valor comercial na marcenaria e carpintaria. Também é utilizada para fabricação de dormentes, moirões, pontes, postes, eixos de roda, varais de carroça, moendas de cana, etc.

Produtos Não-Madeireiros

A entrecasca do ipê-amarelo possui propriedades terapêuticas como adstringente, usada no tratamento de garganta e estomatites. É também usada como diurético.

O ipê-amarelo possui flores melíferas e que maduras podem ser utilizadas na alimentação humana.

Outros Usos

É comumente utilizada em paisagismo de parques e jardins pela beleza e porte. Além disso, é muito utilizada na arborização urbana.

Segundo MOREIRA & SOUZA (1987), o ipê-amarelo costuma povoar as beiras dos rios sendo, portanto, indicado para recomposição de matas ciliares. MARTINS (1986), também cita a espécie para recomposição de matas ciliares da Floresta Estacional Semidecidual, abrangendo alguns municípios das regiões Norte, Noroeste e parte do Oeste do Estado do Paraná.

Aspectos Silviculturais

Possui a tendência a crescer reto e sem bifurcações quando plantado em reflorestamento misto, pois é espécie monopodial. A desrrama se faz muito bem e a cicatrização é boa. Sendo assim, dificilmente encopa quando nova, a não ser que seja plantado em parques e jardins.

Ao ser utilizada em arborização urbana, o ipê amarelo requer podas de condução com freqüência mediana.

Espécie heliófila apresenta a pleno sol ramificação cimosa, registrando-se assim dicotomia para gema apical. Deve ser preconizada, para seu melhor aproveitamento madeireiro, podas de formação usuais (INQUE et al., 1983).

Produção de Mudas

A propagação deve realizada através de enxertia.

Os frutos devem ser coletados antes da dispersão, para evitar a perda de sementes. Após a coleta as sementes são postas em ambiente ventilado e a extração é feita manualmente. As sementes do ipê amarelo são ortodoxas, mantendo a viabilidade natural por até 3 meses em sala e por até 9 meses em vidro fechado, em câmara fria.

A condução das mudas deve ser feita a pleno sol. A muda atinge cerca de 30 cm em 9 meses, apresentando tolerância ao sol 3 semanas após a germinação.

Sementes

Os ipês, espécies do gênero Tabebuia, produzem uma grande quantidade de sementes leves, aladas com pequenas reservas, e que perdem a viabilidade em poucos dias após a sua coleta. A sua conservação vem sendo estudada em termos de determinação da condição ideal de armazenamento, e tem demonstrado a importância de se conhecer o comportamento da espécie quando armazenada com diferentes teores de umidade inicial, e a umidade de equilíbrio crítica para a espécie (KANO; MÁRQUEZ & KAGEYAMA, 1978).

As levíssimas sementes aladas da espécie não necessitam de quebra de dormência. Podem apenas ser expostas ao sol por cerca de 6 horas e semeadas diretamente nos saquinhos. A quebra natural leva cerca de 3 meses e a quebra na câmara leva 9 meses. A germinação ocorre após 30 dias e de 80%.

As sementes são ortodoxas e há aproximadamente 87000 sementes em cada quilo.

Preço da Madeira no Mercado

O preço médio do metro cúbico de pranchas de ipê no Estado do Pará cotado em Julho e Agosto de 2005 foi de R$1.200,00 o preço mínimo, R$ 1509,35 o médio e R$ 2.000,00 o preço máximo (CEPEA,2005).

Cuculus canorus

[order] Cuculiformes | [family] Cuculidae | [latin] Cuculus canorus | [UK] Cuckoo | [FR] Coucou gris | [DE] Kuckuck | [ES] Cuco Europeo | [IT] Cuculo eurasiatico | [NL] Koekoek | [IRL] Cuach

 

Status: Widespread summer visitor to Ireland from April to August.

 

Conservation Concern: Green-listed in Ireland. The European population is currently evaluated as secure.

 

Identification: Despite its obvious song, relatively infrequently seen. In flight, can be mistaken for a bird of prey such as Sparrowhawk, but has rapid wingbeats below the horizontal plane - ie. the wings are not raised above the body. Adult male Cuckoos are a uniform grey on the head, neck, back, wings and tail. The underparts are white with black barring. Adult females can appear in one of two forms. The so-called grey-morph resembles the adult male plumage, but has throat and breast barred black and white with yellowish wash. The rufous-morph has the grey replaced by rufous, with strong black barring on the wings, back and tail. Juvenile Cuckoos resemble the female rufous-morph, but are darker brown above.

 

Similar Species: Sparrowhawk

 

Call: The song is probably one of the most recognisable and well-known of all Irish bird species. The male gives a distinctive “wuck-oo”, which is occasionally doubled “wuck-uck-ooo”. The female has a distinctive bubbling “pupupupu”. The song period is late April to late June.

 

Diet: Mainly caterpillars and other insects.

 

Breeding: Widespread in Ireland, favouring open areas which hold their main Irish host species – Meadow Pipit. Has a remarkable breeding biology unlike any other Irish breeding species.

 

Wintering: Cuckoos winter in central and southern Africa.

 

To minimise the chance of being recognised and thus attacked by the birds they are trying to parasitize, female cuckoos have evolved different guises.

 

The common cuckoo (Cuculus canorus) lays its eggs in the nests of other birds. On hatching, the young cuckoo ejects the host's eggs and chicks from the nest, so the hosts end up raising a cuckoo chick rather than a brood of their own. To fight back, reed warblers (a common host across Europe) have a first line of defence: they attack, or ‘mob’, the female cuckoo, which reduces the chance that their nest is parasitized.

 

To deter the warbler from attacking, the colouring of the grey cuckoo mimics sparrow hawks, a common predator of reed warblers. However, other females are bright rufous (brownish-red). The presence of alternate colour morphs in the same species is rare in birds, but frequent among the females of parasitic cuckoo species. The new research shows that this is another cuckoo trick: cuckoos combat reed warbler mobbing by coming in different guises.

 

In the study, the researchers manipulated local frequencies of the more common grey colour cuckoo and the less common (in the United Kingdom) rufous colour cuckoo by placing models of the birds at neighbouring nests. They then recorded how the experience of watching their neighbours mob changed reed warbler responses to both cuckoos and a sparrow hawk at their own nest.

 

They found that reed warblers increased their mobbing, but only to the cuckoo morph that their neighbours had mobbed. Therefore, as one cuckoo morph increases in frequency, local host populations will become alerted specifically to that morph. This means the alternate morph will be more likely to slip past host defences and lay undetected. This is the first time that ‘social learning’ has been documented in the evolution of mimicry as well as the evolution of different observable characteristics - such as colour - in the same species (called polymorphism).

 

From the University of Cambridge “When mimicry becomes less effective, evolving to look completely different can be a successful trick. Our research shows that individuals assess disguises not only from personal experience, but also by observing others. However, because their learning is so specific, this social learning then selects for alternative cuckoo disguises and the arms race continues.”.

“It’s well known that cuckoos have evolved various egg types which mimic those of their hosts in order to combat rejection. This research shows that cuckoos have also evolved alternate female morphs to sneak through the hosts' defences. This explains why many species which use mimicry, such as the cuckoo, evolve different guises.”

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558173

Siri-Stroustrup Software Engineer-cat sez:

 

"Eurekat! I has just invented a new programming language called CAT++

It has classes and objects and also has Inheritance Polymorphism that allows it to create default objects such as Meeces, Fishes and Birdies - Yum Yum!

Wait a minute though - does that mean that I could actually belong to a parent class called Mousie that forces me to inherit the same member functions as a mousie has? HIIIIILPPPPPPP............!

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558351

Papilio dardanus (the African Swallowtail, Mocker Swallowtail or Flying Handkerchief), is a species of butterfly in the family Papilionidae (the Swallowtails). The species is broadly distributed throughout sub-Saharan Africa. The British entomologist E. B. Poulton described it as "the most interesting butterfly in the world".

The species shows polymorphism in wing appearance, though this is limited to females, which are often given as an example of (Batesian) mimicry in insects. This female-limited mimicry was first described in 1869 by Roland Trimen. Males have a more or less uniform appearance throughout the species' range, but females come in at least 14 varieties or morphs. Some female morphs share a very similar pattern of colouration with various species of distasteful butterfly (e.g. from the family Danaidae), while others have been found that mimic male appearance (andromorphs). The persistence of these various morphs or different types of females may be explained by frequency dependent selection. Cook et al. suggest that Batesian mimics gain a fitness advantage by avoiding predators, but suffer harrassment from males (see sexual conflict), whereas andromorphs (male mimics) are vulnerable to predation but are not harrassed by male mating attempts.

 

Such female-limited Batesian mimicry is not unique to this species, even in the genus Papilio. For instance Papilio memnon shows a similar case of polymorphism in females. Similarly, male mimicry has been observed in another insect, a damselfly (Ischnura ramburi) which also appears to have evolved camouflage to avoid sexual coercion by males.

The viviparous lizard or common lizard, Zootoca vivipara (formerly Lacerta vivipara), is a Eurasian lizard. It lives farther north than any other reptile species, and most populations are viviparous (giving birth to live young), rather than laying eggs as most other lizards do. It is the only species in the monotypic genus Zootoca.

 

Zootoca vivipara can be seen in a variety of different colors. Female Zootoca vivipara undergo color polymorphism (biology) more commonly than males. A female lizard's display differs in ventral coloration, ranging from pale yellow to bright orange and a mixed coloration. There have been many hypothesis for the genetic cause of this polymorphic coloration. These hypothesis test for coloration due to thermoregulation, predator avoidance, and social cues, specifically sexual reproduction. Through an experiment conducted by Vercken et al., color polymorphism in viviparous lizard is caused by social cues, rather than the other hypotheses. More specifically, the ventral coloration that is seen in female lizards is associated with patterns of sexual reproduction and sex allocation.

 

The length of the body is less than 12 cm (5 in) (excluding the tail). The tail is up to twice as long as the body, although it is often partially or wholly lost. The limbs are short, and the head is rather round. Males have more slender bodies than females. The neck and the tail are thick. The collar and other scales seem jagged.

 

The colour and patterning of this species is variable. The main colour is typically medium brown, but it can be also grey, olive brown or black. Females may have dark stripes on their flanks and down the middle of their backs. Sometimes females also have light-coloured stripes, or dark and light spots along the sides of their backs. Most males and some females have dark spots in their undersides. Males have brightly coloured undersides – typically yellow or orange, but more rarely red. Females have paler, whitish underparts. The throat is white, sometimes blue.

(Wikipedia)

  

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558041

Illustration for a comparative ecophylogenetic analysis of local myrmecofaunas, based on r/K selection theory and intra / interspecific parabiosis / lestobiosis, particularly focused on allochthonous and invasive species.

 

[Camponotus Mayr 1861: 1,083+†29 (IT: 19+†0) spp (41.2-0.0 mya)]

 

Parabiotic of Crematogaster scutellaris, Lasius emarginatus, Lasius lasioides, Pheidole pallidula, Solenopsis fugax, Tapinoma magnum.

 

Camponotus is an extremely large and complex, globally distributed genus. At present, nearly 500 sspp belonging to 45 sgg have been described and it could well be the largest ant genus of all. The enormous species richness, high levels of intraspecific and geographic variation and polymorphism render the taxonomy of Camponotus one of the most complex and difficult. Revisionary studies are generally confined to species groups and/or small geographical regions. These ants live in a variety of habitats and microhabitats and the sheer size of the genus makes any characterisation of their biology challenging. Nests are built in the ground, in rotten branches or twigs, or rarely into living wood and most spp possess a highly generalistic diet.

 

REFERENCES

 

P. Klimeš & al. 2022: Camponotini phylogeny.

Ducks swim along the icy bank of the river. Wild ducks in winter.

Zonotrichia albicollis has two genetically-determined but behaviorally distinct color-morphs: tan-striped and white-striped. These white-striped individuals, who are typically more aggressive and prone to polyamory, typically mate with more restrained, monogamous tan-stripes, producing both types of offspring and thus maintaining a balanced polymorphism in a regional population. Keene, NH (April 29, 2017)

The butterflies of North America

Philadelphia :American Entomological Society,1868-1872.

biodiversitylibrary.org/page/56524547

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558417

A very very variable in color (polymorphic) species in the stinkbug family from South America. I have a couple of other examples, but there seems to be no limit to the color variations this species has. How lovely and mysterious. Not sure what the research is on this thing, but it must be an interesting story. This is what you find when you dig around in the National Collection at the Smithsonian. Sadly all the specimens are old as there is little collecting going on these days.

~~~~~~~~~~{{{{{{0}}}}}}~~~~~~~~~~

 

All photographs are public domain, feel free to download and use as you wish.

 

Photography Information: Canon Mark II 5D, Zerene Stacker, Stackshot Sled, 65mm Canon MP-E 1-5X macro lens, Twin Macro Flash in Styrofoam Cooler, F5.0, ISO 100, Shutter Speed 200

 

Beauty is truth, truth beauty - that is all

Ye know on earth and all ye need to know

" Ode on a Grecian Urn"

John Keats

 

You can also follow us on Instagram account USGSBIML Want some Useful Links to the Techniques We Use? Well now here you go Citizen:

 

Art Photo Book: Bees: An Up-Close Look at Pollinators Around the World

www.qbookshop.com/products/216627/9780760347386/Bees.html...

 

Basic USGSBIML set up:

www.youtube.com/watch?v=S-_yvIsucOY

 

USGSBIML Photoshopping Technique: Note that we now have added using the burn tool at 50% opacity set to shadows to clean up the halos that bleed into the black background from "hot" color sections of the picture.

www.youtube.com/watch?v=Bdmx_8zqvN4

 

PDF of Basic USGSBIML Photography Set Up:

ftp://ftpext.usgs.gov/pub/er/md/laurel/Droege/How%20to%20Take%20MacroPhotographs%20of%20Insects%20BIML%20Lab2.pdf

 

Google Hangout Demonstration of Techniques:

plus.google.com/events/c5569losvskrv2nu606ltof8odo

or

www.youtube.com/watch?v=4c15neFttoU

 

Excellent Technical Form on Stacking:

www.photomacrography.net/

 

Contact information:

Sam Droege

sdroege@usgs.gov

301 497 5840

 

The butterflies of North America

Philadelphia :American Entomological Society,1868-1872.

biodiversitylibrary.org/page/56524531

The nursery web spider Pisaura mirabilis is a spider species of the family Pisauridae.

 

Striking characteristics of Pisaura mirabilis are its long legs (the fourth pair being the longest) and its slender abdomen (opisthosoma). The male is between 10 and 13 mm, while the female is 12 to 15 mm. After final ecdysis, the male spiders weigh on average 54 mg and females 68 mg.

 

The prosoma (cephalothorax) is variable in color, ranging from light to reddish brown and from gray to black. A lighter stripe is visible down the middle of the prosoma. The opisthosoma (abdomen) is long and narrow and tapered towards the rear end.

 

The female spiders has a dark patch (epigyne) on the underside of her abdomen that includes the copulatory organs. Male genital openings can be found at the same location, but remain inconspicuous.

 

Patterning and coloration varies due to polymorphism. These patterns, which can be caused by hair and pigments, change with the growth of the spider (ontogenesis).

 

Male spiders exhibit a stronger contrast than females and appear black, especially when compared to the white nuptial gifts. Females tend to get paler towards the end of summer. The stripe along the back of the body can be found in all spiders and can be seen as crypsis, a protective measure against predators.

 

The pedipalps in nymphs and females look similar to legs. In males, this structure gets thicker towards the end and is used to store sperm until reproduction (bulbus). The outer chelicerae segment consists of three teeth. They catch their prey during the day and at night and are also active on warm winter days.

 

Pisaura mirabilis has a palearctic distribution, and can be found all over Europe. These spiders inhabit the Canary Islands and Madeira, the Asian part of Russia, China and North Africa.

 

P. mirabilis lives in all habitats, but prefers wet environments, such as wet meadows, lowland moors, salt marshes, dunes, the edge of forests, and wet hedges. It inhabits all strata, from the ground to the top of trees, but are not found under rocks or in caves. These spiders can be found at altitudes up to 1100 m.

 

The spider develops from a fertilised egg inside a cocoon into an embryo. After inversion, the embryo enters the prelarval stage. A few hours later, the prelarva moults into a larva. At this stage, the spiders are colorless but mobile, and can detect sensory signals from its surrounding. They do not have any eyes yet and their chelicerae are short and sharp. A few fine hairs can be found on their feet.

 

Depending on the temperature, the larvae moult after 4.5 – 7.5 days into the first nymphal stage. Once leaving the cocoon through an opening, they live in a protective web made by the mother, where they feed on the leftover yolk from their eggs and drink from water droplets. After about a week, the nymphs start suspending themselves from their own spider silk and start preying on fruit flies. This usually happens in the sixth or seventh nymphal stage. Cannibalism does not occur in the first few days, but occurs in later stages. The whole nymphal stage is divided into 12 stages at most. Male spiders become sexually mature in the 9th to 11th stages, females in the 10th to 12th stages. Temperature can influence the development and number of stages, with colder temperatures slowing down the process. Under good conditions, spiders can complete their nymphal development in fewer than 12 stages.[11] The duration from prelarval stage to final moult (maturity) typically lasts 257 days for males (stage 10) and 289 days for females (stage 11). Adulthood is the period after final moult till death. Females live longer than males, the record being 247 days for females and 186.5 days for males.

 

Depending on habitat, nursery web spiders hibernate once or twice during the nymphal stage. The period of hibernation (diapause) is spent in ground vegetation under leaves, moss, and stones. They can be found in garages and houses, as well. Some individuals in the south of France have been found under loose bark of the plane tree. The nymphs in stages 6 to 8 start hibernating in November and continue with their development towards the end of February to the beginning of March.

 

Pisaura mirabilis in Western and Central Europe reach sexual maturity in May, when sperm uptake, the search for females, offering of nuptial gifts, and courtship and mating takes place. In Northern and Eastern Europe, spiders reach sexual maturity only in June, while in Southern Europe, they become sexually mature in April.

 

Nursery web spiders have a one-year annual cycle in southern Europe. They grow in summer, hibernate in winter, reach adulthood in spring, and reproduce and then die in autumn. Their offspring are sexually mature in the following spring. Spiders from the north have a two-year cycle, having to go through two hibernations before reaching sexual maturity. Spiders in Western and Central Europe have a mix of both one- and two-year cycles. Males have a two-month period to reproduce; females three and a half.

 

Males of this species offer a nuptial gift to potential female mates. Some Pisaura mirabilis specimens have also been observed to use thanatosis during courtship. After presenting the nuptial gift to the female, she bites on to the gift and the male moves to her epigyne to deposit sperm with his pedipalps. Throughout copulation, the male keeps a leg on the gift so as to be ready if she tries to escape with it or attack him. At this time, the male may feign death – his limbs become straight and he is dragged along with the female while holding on to the gift. When the female stops, the male slowly "resurrects" and continues attempting to mate. Thanatosis in P. mirabilis has been observed to significantly increase the male's odds of successfully copulating from less than 30% to 89%.

 

Predators of Pisaura mirabilis includes spider wasps, tree frogs, lizards, and song birds during the day, and toads, shrew mice, and bats at night. Other spider species, as well as from the same species (cannibalism), consider P. mirabilis as prey.

 

Nursery web spiders are often parasitised by nematodes, parasitic wasps, and Acari. These parasites infect the spider and its eggs and cocoons, which can lead to destruction of a whole clutch of eggs.

 

Baculoviridae and Rickettsia species infect nursery web spiders, as well. They most likely enter the gastrointestinal tract via the spiders' prey. Not only can nymphs and adults be infected, but different stages in the cocoon are infected, as well.

A very very variable in color (polymorphic) species in the stinkbug family from South America. I have a couple of other examples, but there seems to be no limit to the color variations this species has. How lovely and mysterious. Not sure what the research is on this thing, but it must be an interesting story. This is what you find when you dig around in the National Collection at the Smithsonian. Sadly all the specimens are old as there is little collecting going on these days.

~~~~~~~~~~{{{{{{0}}}}}}~~~~~~~~~~

 

All photographs are public domain, feel free to download and use as you wish.

 

Photography Information: Canon Mark II 5D, Zerene Stacker, Stackshot Sled, 65mm Canon MP-E 1-5X macro lens, Twin Macro Flash in Styrofoam Cooler, F5.0, ISO 100, Shutter Speed 200

 

Beauty is truth, truth beauty - that is all

Ye know on earth and all ye need to know

" Ode on a Grecian Urn"

John Keats

 

You can also follow us on Instagram account USGSBIML Want some Useful Links to the Techniques We Use? Well now here you go Citizen:

 

Art Photo Book: Bees: An Up-Close Look at Pollinators Around the World

www.qbookshop.com/products/216627/9780760347386/Bees.html...

 

Basic USGSBIML set up:

www.youtube.com/watch?v=S-_yvIsucOY

 

USGSBIML Photoshopping Technique: Note that we now have added using the burn tool at 50% opacity set to shadows to clean up the halos that bleed into the black background from "hot" color sections of the picture.

www.youtube.com/watch?v=Bdmx_8zqvN4

 

PDF of Basic USGSBIML Photography Set Up:

ftp://ftpext.usgs.gov/pub/er/md/laurel/Droege/How%20to%20Take%20MacroPhotographs%20of%20Insects%20BIML%20Lab2.pdf

 

Google Hangout Demonstration of Techniques:

plus.google.com/events/c5569losvskrv2nu606ltof8odo

or

www.youtube.com/watch?v=4c15neFttoU

 

Excellent Technical Form on Stacking:

www.photomacrography.net/

 

Contact information:

Sam Droege

sdroege@usgs.gov

301 497 5840

 

Blijdorp, Rotterdam, Zoo

  

Butterflies are part of the class of Insects in the order Lepidoptera. Moths are also included in this order. Adults butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. The group comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). Other families within Lepidoptera are referred to as moths. Butterfly fossils date to the mid Eocene epoch, 40–50 million years ago.[1]

 

Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have and parasitic relationships with organisms including protozoans, flies, ants, other invertebrates, and vertebrates. [2] [3] Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies (e.g., Harvesters) eat harmful insects. Culturally, butterflies are a popular motif in the visual and literary arts.

  

en.wikipedia.org/wiki/Butterfly

Femme de l'ethnie Dao Longue Tunique sur le marché de Quyet Tien dans la région de Hagiang, nord du Vietnam

 

Les Dao (ou Dzao) sont, comme les Hmongs, très nombreux et l'ethnie est très polymorphe : Dao Rouge, Dao à Tunique, Dao Noir, Dao à pantalon blanc… .J'en ai déjà posté plusieurs exemples.

Emigrée de Chine du sud depuis le XIIIème siècle, l’ethnie Dao habite au Nord du Vietnam dans les provinces de la moyenne et haute région. Elle occupe des terres à toute altitude et vit en bons voisins avec d’autres ethnies comme les Hmong, Tay, Thaï, … Ses ressources principales proviennent de l’agriculture, (riz et mais)

Souvent chez les femmes, les cheveux sont relevés en chignon sur la nuque ou rasés sur le pourtour à l’exception d’une touffe au sommet de la tête

Pratiquant le culte des ancêtres, les Dao adhèrent également au Taoïsme.

Les femmes Dao Tunique (ou Longues Tunique) portent donc une longue tunique noire rehaussée à la ceinture et à la base de parement rouge vif. Elles portent une coiffe colorée. On les rencontre surtout dans la région de Hagiang.

Vesta is the largest and brightest asteroid in the asteroid belt and the second largest body overall (after the dwarf planet Ceres), with an average diameter of about 525 km (326 miles). That is pretty close to the size of the State of Colorado.

 

A couple of billion years ago two massive impacts ejected part of Vesta’s mass and some of that material landed here on Earth as HED (howardite, eucrite, and diogenite) meteorites. It’s astonishing to consider that when you look at photographs of Vesta, or eve through a powerful telescope, the actual craters from which the HED meteorites were blasted out can easily be seen, such as Rheasilvia which is over 300 miles wide.

 

Diogenites: “Vast underground chambers of magma churned and roiled, eventually cooling to the point at which orthopyroxene crystals froze out of the liquid rock. Insulated by kilometers of overlying rock and magma, they cooled slowly, growing into enormous sizes before settling downwards into vast piles of large crystals at the base of the underground caverns.” (Meteorite, p.102)

 

From the Meteorite Bulletin for NWA 7831:

 

History: Found buried in the ground near Chouichiyat in the Western Sahara on March 3, 2013, and excavated by a team of local people.

 

Physical characteristics: composed of translucent yellow-green crystals of orthopyroxene with pale orange weathering products along numerous fractures. Much of the material disintegrated into fragments upon excavation. The specimen is composed almost entirely of translucent,

yellow-green orthopyroxene with very sparse, tiny included grains of Ni-free metal, troilite, chromite, anorthite, silica polymorph and clinopyroxene. (see comments below for 2024 discovery related to the anorthite).

 

Stone meteorite - Diogenite, Achondrite: 5.5” by 4” by 2”, 1,301g, spent the past 17 years in the Michael Farmer "meteorite hunter" collection

The butterflies of North America

Philadelphia :American Entomological Society,1868-1872.

biodiversitylibrary.org/page/56524407

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558323

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558103

This is the first record of Fedia graciliflora Fish. and C.A. May in Crete. It is an example of fruits and seeds polymorphism which has three astonishingly different kinds of fruits that show adaptations to dispersal by wind and water, ants, and larger animals, respectively. It has dipsersed from Africa to S,\. Spain, S.France Italy and Malta.

Cathy and Lucy have finally their wigs! Check out more photos on my blog: sakuradragonhearth.blogspot.co.uk/2016/01/monochrome-ai-p...

Many forms yet the same!

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558229

Desde que a mediados de 2008 se detectase la presencia de mejillones cebra (Dreissena polymorpha) en el pantano de Ullibarri-Gamboa, la cosa solo ha podido ir a peor. Y tal y como están las cosas no habrá quien pare su expansión por toda la cuenca cantábrica.

Cuculus canorus

[order] Cuculiformes | [family] Cuculidae | [latin] Cuculus canorus | [UK] Cuckoo | [FR] Coucou gris | [DE] Kuckuck | [ES] Cuco Europeo | [IT] Cuculo eurasiatico | [NL] Koekoek | [IRL] Cuach

 

Status: Widespread summer visitor to Ireland from April to August.

 

Conservation Concern: Green-listed in Ireland. The European population is currently evaluated as secure.

 

Identification: Despite its obvious song, relatively infrequently seen. In flight, can be mistaken for a bird of prey such as Sparrowhawk, but has rapid wingbeats below the horizontal plane - ie. the wings are not raised above the body. Adult male Cuckoos are a uniform grey on the head, neck, back, wings and tail. The underparts are white with black barring. Adult females can appear in one of two forms. The so-called grey-morph resembles the adult male plumage, but has throat and breast barred black and white with yellowish wash. The rufous-morph has the grey replaced by rufous, with strong black barring on the wings, back and tail. Juvenile Cuckoos resemble the female rufous-morph, but are darker brown above.

 

Similar Species: Sparrowhawk

 

Call: The song is probably one of the most recognisable and well-known of all Irish bird species. The male gives a distinctive “wuck-oo”, which is occasionally doubled “wuck-uck-ooo”. The female has a distinctive bubbling “pupupupu”. The song period is late April to late June.

 

Diet: Mainly caterpillars and other insects.

 

Breeding: Widespread in Ireland, favouring open areas which hold their main Irish host species – Meadow Pipit. Has a remarkable breeding biology unlike any other Irish breeding species.

 

Wintering: Cuckoos winter in central and southern Africa.

 

To minimise the chance of being recognised and thus attacked by the birds they are trying to parasitize, female cuckoos have evolved different guises.

 

The common cuckoo (Cuculus canorus) lays its eggs in the nests of other birds. On hatching, the young cuckoo ejects the host's eggs and chicks from the nest, so the hosts end up raising a cuckoo chick rather than a brood of their own. To fight back, reed warblers (a common host across Europe) have a first line of defence: they attack, or ‘mob’, the female cuckoo, which reduces the chance that their nest is parasitized.

 

To deter the warbler from attacking, the colouring of the grey cuckoo mimics sparrow hawks, a common predator of reed warblers. However, other females are bright rufous (brownish-red). The presence of alternate colour morphs in the same species is rare in birds, but frequent among the females of parasitic cuckoo species. The new research shows that this is another cuckoo trick: cuckoos combat reed warbler mobbing by coming in different guises.

 

In the study, the researchers manipulated local frequencies of the more common grey colour cuckoo and the less common (in the United Kingdom) rufous colour cuckoo by placing models of the birds at neighbouring nests. They then recorded how the experience of watching their neighbours mob changed reed warbler responses to both cuckoos and a sparrow hawk at their own nest.

 

They found that reed warblers increased their mobbing, but only to the cuckoo morph that their neighbours had mobbed. Therefore, as one cuckoo morph increases in frequency, local host populations will become alerted specifically to that morph. This means the alternate morph will be more likely to slip past host defences and lay undetected. This is the first time that ‘social learning’ has been documented in the evolution of mimicry as well as the evolution of different observable characteristics - such as colour - in the same species (called polymorphism).

 

From the University of Cambridge “When mimicry becomes less effective, evolving to look completely different can be a successful trick. Our research shows that individuals assess disguises not only from personal experience, but also by observing others. However, because their learning is so specific, this social learning then selects for alternative cuckoo disguises and the arms race continues.”.

“It’s well known that cuckoos have evolved various egg types which mimic those of their hosts in order to combat rejection. This research shows that cuckoos have also evolved alternate female morphs to sneak through the hosts' defenses. This explains why many species which use mimicry, such as the cuckoo, evolve different guises.”

Femme Hmong Noir dans une rue de Sapa, nord du Vietnam

 

Avec la ligne de train et désormais l'autoroute la reliant à Hanoï, Sapa est devenue une destination touristique très fréquentée et a beaucoup perdu de son charme, même si les promenades dans les rizières alentour restent bien agréables. On y croise cependant de pittoresques personnages telle cette femme souriante dans son costume Hmong Noir

Avec les Dao Rouge, les Hmong Noir constituent l'une des ethnies les mieux représentées dans la région de Sapa.

 

Les Hmong encore appelés Méo, ou Miao , sont originaires des régions montagneuses du sud de la Chine (principalement la province du Guizhou), où ils sont encore présents ainsi qu'au nord du Viêt Nam et du Laos.

Le souci de préserver leur identité culturelle et leur indépendance les ont amenés à s'engager dans divers conflits. Au XXe siècle, en particulier, ils aidèrent les Français pendant la guerre d'Indochine puis les Américains pendant la la guerre du Vietnam. A l’avènement des régimes communistes dans ces pays un nombre important de Hmong se sont réfugiés dans des pays d'accueil, principalement les États-Unis, la France et l'Australie. Mais la majeure partie d’entre eux vit encore en Asie du Sud-Est

Les Hmongs sont animistes ou chrétiens. La langue hmong appartient à la famille des langues hmong-mien, encore appelée « miao-yao »

Les costumes traditionnels de cette ethnie sont très polymorphes mais ils ont en commun la richesse du décor brodé bien que celui de cette femmes Hmong Noir soit très sobre.

 

The butterflies of North America

Philadelphia :American Entomological Society,1868-1872.

biodiversitylibrary.org/page/56524519

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558065

s0254 4422 Brock14A2B Bäder I. Brockhaus' Konversations-Lexikon Vierzehnte vollständig neubearbeitete Auflage. Baths I.

 

1. Frigidarium der Thermen des Caracalla zu Rom; Rekonstruktion von Viollet-Le-Duc.

2. Tepidarium der 1824 ausgegrabenen Thermen zu Pompeji. 3. Türkisches Bad (Bruckbad) zu Ofen.

4. Badezimmer der Fugger zu Augsburg.

5. Marmorbad in der Aue bei Cassel.

 

Bad (Balneum), im engern Sinne die Eintauchung des Körpers oder einzelner Teile desselben in eine tropfbare Flüssigkeit; im weitern Sinne auch das Eintauchen in Dämpfe sowie in festere Stoffe (Moor, Sand u. s. w.); auch bezeichnet man die Anwendung strömender oder fallender Flüssigkeiten auf den Körper als B. (Douche). Ebenso heißen danach Ort und Anstalten mit den zum Baden nötigen Stoffen und Vorrichtungen kurz B.

 

In kulturgeschichtlicher Beziehung betrachtet, bat das Baden jederzeit auf das allgemeine gesellschaftliche Dasein einen besondern Einfluß geübt. Bei den Völkern des Orients war es eng mit dem Kultus verknüpft, indem man durch die körperliche Reinigung auch eine sittliche Reinheit andeuten wollte. Die alten Juden waren durch religiöse Vorschriften verpflichtet zu baden, und sie betrachteten die Reinigungsbäder nach gewissen körperlichen Funktionen, Berührungen und Krankheiten als wichtige rituelle Handlungen. Bei den Griechen werden schon zur Zeit Homers den ankommenden Freunden und Gästen warme B. bereitet. Der Grieche lagerte sich nicht zum Mahl, bevor er sich nicht gebadet, und sein Hausbad befand sich im Innern des Hauses. Auch mit religiösen Handlungen stand bei den Griechen das B. in Verbindung, so mit den Vorbereitungen zum Opfern, zum Empfange der Orakelsprüche, zur Hochzeit u. s. w. Auch benutzten schon die Griechen die beißen Quellen oder Thermen als Heilbäder. Die Männer badeten in Griechenland gemeinschaftlich; daß es auch für die Frauen öffentliche B. gab, ist wahrscheinlich.

 

Bei den Römern kamen die warmen B. (thermae) erst später in Aufnahme, wurden aber dann außerordentlich beliebt, obschon zuletzt der allgemeine Luxus den eigentlichen Zweck des B. mehr und mehr in den Hintergrund drängte, so daß die öffentlichen B. wesentlich als allgemeine Vergnügungsorte betrachtet wurden. Die meisten derselben wurden zur Zeit vor und unter den Kaisern Nero, Vespasian, Titus, Trajan, Caracalla, Diocletian u. s. w. erbaut. In Rom allein gab es deren über 800. Ihrer Einrichtung (s. unten) nach ähnelten sie dem heutigen türk. und russ. Bade. Durch eine leichte Bewegung zum B. vorbereitet, ging man zuerst in das Auskleidezimmer, dann in das Wärmzimmer, wo man sich mit Öl salbte, und dies ward auch während des B. wiederholt. Demnächst wurde der Körper mit Striegeln (strigilis) behandelt, worauf man sich in das Wärmzimmer begab, um entweder nur zu schwitzen, oder auch das heiße Wasserbad zu gebrauchen. War dieses vorüber, so ließ man sich mit kaltem Wasser übergießen und ging dann sogleich in das kalte B., um durch dieses die erschlaffte Haut wieder zu stärken, worauf der Körper nochmals mit Öl gesalbt wurde. Die öffentlichen B. für Frauen waren von gleicher Einrichtung und wurden fleißig auch von den vornehmsten Frauen besucht. Übrigens badeten diese wie die Männer gemeinschaftlich. Der Unsitte, daß Männer und Frauen zusammen badeten, wird auch von den alten Schriftstellern gedacht, wie denn überhaupt in späterer Zeit die B. Orte der Schwelgerei jeder Art wurden.

 

Vgl. Wichelhausen, über die B. des Altertums (Mannh. u. Heidelb. 1851); Confeld, Das altröm. B. und seine Bedeutung für die Heilkunde (Darmst. 1863); Guhl und Koner, Das Leben der Griechen und Römer (5. Aufl., Berl. 1882).

 

Die Völker des Islams haben das B. vollständig in ihre Sitten und Gebräuche aufgenommen. Der Islam schreibt seinen Bekennern sorgfältige Beobachtung der körperlichen Reinlichkeit und zu diesem Zwecke wiederholte tägliche Waschungen vor. Gewisse Umstände und Zeiten veranlassen noch außerdem vorschriftsmäßig sowohl Männer wie Frauen zum Gebrauch des B. Die Araber brachten die Vorliebe für reich ausgestattete B. mit nach Spanien. Die christl. Spanier verurteilten aber diese ihnen fremde Sitte und zerstörten nach Vertreibung der Araber die maurischen B. Die Einrichtung der B. ist bei den Völkern des Orients, bei den Persern, Türken, in Syrien, Ägypten u. s. w. fast eine gleiche. Der Badende entkleidet sich, wickelt sich in wollene Decken, zieht, um sich gegen die Hitze des Fußbodens zu schützen, hölzerne Pantoffeln an und begiebt sich in das Badezimmer. Hier dringt bald ein allgemeiner Schweiß durch die Haut, der mit kaltem Wasser abgewaschen wird. Hierauf wird der Körper mit wollenen Tüchern gerieben und mit einer der Haut zuträglichen Seife oder Salbe bestrichen. Gewöhnlich wird damit noch die Operation des Knetens (Massierens) verbunden, die der Badewärter an dem Badenden vollzieht. Darauf reibt er mit einem Tuche von grober Wolle den ganzen Körper, reibt mit Bimsstein die harte Haut auf den Füßen ab, salbt den Badenden mit Seife und Wohlgerüchen, und endigt damit, daß er ihm den Bart und die Haare abschert. Nach dem B., welches etwa dreiviertel Stunde dauert, ruht man in einem kühlern Zimmer auf einem Lager aus. - Freunde von B. jeder Art, von Dampf-, See- und warmen B. sind die Japaner, bei denen beide Geschlechter jeden Alters in öffentlichen Badeanstalten zusammen baden.

 

In Deutschland, Frankreich und England waren öffentliche Badeanstalten lange Zeit unbekannt. Erst als während der Kreuzzüge die Abendländer mit den Sitten der Morgenländer bekannt wurden, entstanden in Deutschland öffentliche Badestuben. Diese wurden bald beliebt, so daß es herkömmlich wurde, am Vorabend hoher Kirchenfeste, vor der Hochzeit, dem Ritterschlage und andern Feierlichkeiten ein B. zu nehmen; Handwerksgesellen wurden jeden Sonnabend von einem Badejungenchor durch Beckenmusik zum B. eingeladen. Die Fürsten machten die Badestuben zu einträglichen Regalien und verliehen den Städten das Recht, städtische Badestuben einzurichten, die verpachtet oder in Erblehn gegeben wurden. In ihnen fand man Schwitzbäder, in denen der Körper des Badenden durch Badediener kunstgemäß mit Badequasten, Seife u. s. w. gereinigt wurde. Nach und nach bildete sich die Zunft und das Gewerbe der Bader (s. d.) und Barbiere (s. d.) aus. Der deutsche Bürger und selbst die Bauern legten sich auch in ihren eigenen Häusern ein «Badestüblein» an, das gewissermaßen den Salon des Hauses bildete; hier badete und trank man mit guten Freunden. Im 12. Jahrh, kamen in Deutschland auch Dampfbäder auf. Noch mehr aber hob sich der allgemeine Badegebrauch im Mittelalter bei dem Umsichgreifen des Aussatzes. Mildthätige Personen stifteten zu jener Zeit für Arme Freibäder, sog. Seelenbäder. Allein die größere Ausbreitung des Aussatzes und der Syphilis mit der vermehrten Gefahr der Ansteckung, der mehr und mehr ins Volk übergehende Gebrauch der leinenen Leibwäsche und Veränderungen in den bitten und Gewohnheiten, besonders auch die vielfach mit ihnen verknüpfte Liederlichkeit verursachten, daß sich der Besuch der öffentlichen Badestuben allmählich verminderte. Ärzte, Geistliche und Regierungen traten schon im Anfang des 17. Jahrh, gegen dieselben auf, und das Volk entwöhnte sich der Sitte des häufigen Badens. Dagegen kam dann der Besuch der Wildbäder und der Mineralwässer als Vergnügungsorte, die sog. Badefahrten, in Deutschland in Aufnahme. In Frankreich fand das Baden in öffentlichen Anstalten sowie in Heilquellen oder Thermen schon mit der Herrschaft der Römer Eingang, und blieb daselbst mehr oder weniger heimisch. Karl d. Gr. brachte seinerzeit besonders die warmen B. in Aachen in Aufnahme. Später war Baden im Aargau einer der berühmtesten Badeorte. Im Mittelalter wurden Dampfbäder (étuves, lat. stufa) von der Zunft der Bader (estuveurs) gehalten. Der Humanist Johann Franz Poggio Bracciolini aus Florenz (1380-1459) stellt in einem Briefe die geselligen Freuden Badens weit über jene der antiken B. von Puteoli. Das Leben in den B. war im Mittelalter und in den nächsten Zeiten darauf ein freies, unbefangenes und zum Teil lockeres. Beide Geschlechter besuchten einander in den B., man trank, sang und musizierte darin und tanzte nachher. Nachdem in Deutschland, und zum großen Teil auch anderwärts, das Baden als Volksgebrauch fast ganz aufgehört, kamen zu Anfang des 18. Jahrh. von England aus kalte und Seebäder wiederum in Aufnahme. Reisende Ärzte machten auf die dortigen Badeanstalten aufmerksam, und so erstanden namentlich infolge der Ermahnung der Ärzte Halm, Marcard, Ferro, Hufeland u. s. w. in den civilisierten Ländern Europas wiederum zahlreiche Badeanstalten. Doch erst im 19. Jahrh. begann das Badewesen durch Einführung öffentlicher Badeanstalten wieder einen wirklichen Aufschwung zu nehmen. Ebenso war es erst dem 19. Jahrh. vorbehalten, Wert und Bedeutung der Mineralbäder für die Heilkunde in wissenschaftlichem Sinne zu bearbeiten (s. Mineralwässer und Balneographie).

 

Vgl. Zappert, Über das mittelalterliche Badewesen (im «Archiv für Kunde österr. Geschichtsquellen», Bd. 21, Wien 1859).

 

In hygieinischer Beziehung sind die B. von der größten Bedeutung. Man hat sie hinsichtlich ihres Zwecks in Reinigungs- und Heilbäder eingeteilt. Sie zerfallen in allgemeine oder ganze B. (Vollbäder), bei denen der ganze Körper in die Flüssigkeit eintaucht, und in partielle oder örtliche B. (Sitz-, Fuß-, Arm-, Handbäder u. dgl.). Ihre Wirkungen auf den menschlichen Körper hängen ab von den Bestandteilen des B. und deren Menge, der Dauer und Gebrauchsweise, vorzugsweise aber von dem Grade der Wärme oder Kälte. Die Wasserbäder reinigen die Haut von Schmutz und Hauttalg, fördern durch Aufweichen die Abstoßung der obersten Hautschichten und hierdurch die Verjüngung der Haut selbst. Ferner kommt der Effekt der verminderten Ausdünstung und der Verschiedenheit des Drucks von außen zur Geltung, da das Wasser 700-mal dichter ist als das Medium der Luft. Die Frage, ob im Wasserbade eine Aufsaugung und Aufnahme des Wassers sowie der im Wasser gelösten Bestandteile in den Körper stattfindet, ist noch immer als eine offene zu betrachten; die Absorption kann gewiß nur eine geringe sein, da man beobachtet hat, daß nach dem B. nicht eine Vermehrung, sondern eine Verminderung des Körpergewichts eintritt, sei es durch Abgabe von Stoffen durch die Haut, sei es durch Vermehrung der Lungenthätigkeit. Man unterscheidet hinsichtlich der Temperatur das kalte B. bis 15° R., das kühle B. 16 bis 22° R., das lauwarme B. 23 bis 27° R., das warme B. 27 bis 30° R. und das heiße B. von 30° R. und darüber.

 

Das kalte B. vermindert je nach der Heftigkeit und Plötzlichkeit der Abkühlung die Blutwärme, vermehrt die Kohlensäureausscheidung, verlangsamt den Puls- und Herzschlag sowie die Atmung, während die Reizbarkeit der Haut zwar anfangs erhöht, dann aber vermindert und nach beendetem B. wiederum gehoben wird; die Haut verliert ihren Blutreichtum, indem sich die kleinen Blutgefäße zusammenziehen, die innern Organe mehr mit Blut füllen. Bald nach den: kalten B. tritt wieder erhöhte Körpertemperatur, verstärkter Blutstrom nach der Haut, im Nerven- und Muskelsystem das Gefühl der Erfrischung, der Elasticität und der Kraft ein; mit der erhöhten Wärmeproduktion ist eine allgemeine Reaktion und eine nicht geringe Anregung des Stoffwechsels verbunden. Bei öfterer Wiederholung ist das kalte B. das vorzüglichste Mittel, durch welches die Haut geübt werden kann, Temperaturwechsel zu ertragen. Deshalb wird es vorzugsweise solchen Personen angeraten, welche an einer Neigung zu Erkältungskrankheiten, zu Rheumatismen und Katarrhen leiden. Da sich nach jedem kalten B. der Umsatz der Stoffe neu belebt, so benutzt man das wiederholte kalte B. auch dazu, die Ernährung des Körpers zu verbessern, fehlerhafte Blutmischungen und sogar krankhafte Veränderungen einzelner Organe zu beseitigen. Nachteilig wirkt das kalte B. bei großer Blutarmut, hochgradiger Nervosität, Herzkrankheiten und Schwächezuständen der verschiedensten Art. Am häufigsten benutzt man die kalten B. in Form der Flußbäder und der B. im Schwimmbassin, die stets von kurzer Dauer, d. h. höchstens 5, 10 bis 15 Minuten, und mit Schwimmbewegungen verbunden sein sollen; vorher lasse man den Körper abtrocknen und abkühlen, nach dem B. reibe man den Körper trocken, kleide sich rasch an und mache sich alsbald Bewegung; die beste Zeit für Flußbäder ist etwas vor dem Frühstück oder vor Sonnenuntergang. Kurze Zeit nach dem Essen, insbesondere nach einer reichlichen Mahlzeit, zu baden vermeide man, bade aber auch nicht des Morgens, ohne etwas gegessen zu haben. Die Seebäder (s. d.) wirken ebenfalls als kalte B., doch kommt bei ihnen auch Wellenschlag und Salzgehalt des Wassers zur Wirkung. Zur Herabsetzung der übermäßig erhöhten Körpertemperatur wendet man kalte und kühle B. bei schweren fieberhaften Krankheiten mit außerordentlich günstigem Erfolg an; durch die energische Anwendung kalter B. ist namentlich die Mortalitätsziffer der typhösen Fieber beträchtlich herabgesetzt worden. (S. Kaltwasserkur.)

 

Bei den lauwarmen B. ist jene Reizung der Empfindungsnerven der Haut nicht wahrzunehmen, die Reinigung der Haut geht durch sie unter schnellerer Beseitigung der Oberhauttrümmer, welche die Hautfunktion hemmen, besser von statten; der gelindere Reiz erweckt in den Muskeln eine angenehme Empfindung, und nach ihrem Gebrauche schwindet das Gefühl der Ermüdung. Man wendet die lauwarmen B. an zur Beruhigung und Beseitigung schmerzhafter Nervenleiden; sie bekommen schwächlichen, zarten und in hohem Grade zu Erkältungen geneigten Personen am besten. Warme Wasserbäder haben vorzüglich die Erweichung der Haut zur Beförderung der Ausdünstung und Abschälung zum Zwecke und finden deshalb ihre Anwendung bei Krankheiten, wo durch diese Wirkung eine Heilung erzielt werden soll, besonders bei Hautkrankheiten. Sie steigern aber auch die organischen Funktionen und den Stoffwechsel, ohne daß ein heftiger Reiz eine starke Reaktion verlangt; und indem sie den Wärmeverlust vermindern, stimmen sie die normale ausgleichende Reaktion herab, sie wirken somit beruhigend, weshalb man sich ihrer bei krampfhaften Affektionen und bei erhöhter Nervenreizbarkeit mit Vorteil bedient; doch beschleunigen sie auch schließlich den Blutkreislauf in der Haut und in den der Wärme zugänglichen Teilen und fördern durch Erweiterung der Gefäße die Aufsaugung krankhafter Stoffe im Körper. Hierauf beruht ihre wohlthätige Wirkung bei Rheumatismus und Gicht. Die warmen B. dürfen jedoch nicht zu oft angewendet werden, weil die Haut sonst zu sehr erschlafft und für äußere Einwirkungen zu empfänglich gemacht wird, weshalb auch unmittelbar nach dem jedesmaligen Gebrauche die Haut vorsichtig vor Kälte zu schützen ist, wenn man nicht vorzieht, die Haut durch eine kalte Übergießung am Schlüsse des B. zu kräftigen.

 

Ähnliche Wirkungen wie die warmen B., nur in erhöhtem Grade, besitzt das allgemeine Wasserdampfbad, von welchem nicht nur die ganze äußere Oberfläche des Körpers, sondern auch die innere Auskleidung der Respirationsorgane berührt wird. Dasselbe fördert die Abschälung der Haut und die Abschleimung der Schleimhäute sowie die Schweißabsonderung sehr bedeutend und ist eins der wichtigsten Zerteilungs- und Heilungsmittel bei gichtischen und rheumatischen Übeln, Nervenschmerzen, alten Katarrhen u. s. w. (S. Dampfbad.) Man hat nicht bloß Dampfbäder in eigens dazu hergerichteten Badestuben, sondern man erfand auch tragbare Apparate (unter anderm: Ricklis «Bettdampfbad», Triest 1861), bei welchen man aus einer mit Wasser gefüllten kupfernen Blase, die durch Weingeist erhitzt wird, den Dampf erzeugt. Die einfachsten Vorrichtungen derart sind die sogenannten engl. Spiritusdampfbäder, bei welchen die mit einer wollenen Decke umhüllte Person auf einem Stuhle über einer Spirituslampe sitzt. Ferner hat man Dampf nicht bloß von Wasser, sondern auch von verschiedenen Stoffen, z. B. von Schwefel, Terpentin, Fichten- und Kiefernadelextrakt, angewendet. (S. hierüber unten die Rauchbäder.) Ähnlich wirkt das B. in heißer trockn er Luft, bei dem der reichlich ausgeschiedene Schweiß die obern Hautschichten aufweicht, der Körper eine große Menge von Flüssigkeit durch die Haut ausscheidet, dem Blute viel Wasser entzogen und manche krankhafte Ablagerung im Körper durch Aufsaugung beseitigt wird. Daher wird auch das heiße Luftbad zur Kur bei Gicht, Rheumatismus und allgemeinen Blutkrankheiten empfohlen. Hierzu benutzt man vor allem das Irisch-Römische Bad (s. d.), doch auch die natürlichen Höhlen mit heißer Luft, z. B. die Grotte von Monsummano (s. d.). In neuerer Zeit hat man begonnen, komprimierte Luft zu Heilzwecken anzuwenden. Der Kranke weilt hierbei längere Zeit in einem sog. pneumatischen Kabinett, in einem Raume, in welchem die Luft durch Maschinen einem langsam steigenden, später (bei 300 mm) gleichbleibenden Druck ausgesetzt wird. Für diese sog. pneumatischen B. hat man besondere transportable Apparate konstruiert (s. Komprimierte Luft). Schließlich werden von manchen die sog. elektrischen B. gegen Neurasthenie und andere Nervenleiden empfohlen. (S. Elektrotherapie.)

 

Hinsichtlich der örtlichen oder Teilbäder gilt im allgemeinen die Regel, daß heißes Wasser das Blut nach dem von ihm umgebenen Teile zieht, kaltes hingegen es von dem bezüglichen Teile verdrängt. Daher wendet man heiße Fuß- und Handbäder an, um den Blutandrang vom Gehirn und von den Lungen nach den Extremitäten hinzuleiten. Kalte Sturz-, Tropf-, Regen- und Staubbäder werden angewendet, um das Blut aus gewissen Teilen (besonders aus dem Kopfe, z. B. bei manchen Geisteskrankheiten) zu vertreiben und die erweiterten Gefäßchen wieder zusammenzuziehen, sind daher Zerteilungsmittel bei Entzündungen. Doch bewirkt auch das Eintauchen in kaltes Wasser in der Nachwirkung stärkern Blutzudrang nach den eingetauchten Teilen. Sehr energisch wirken die Douchebäder. Ein mehr oder weniger starker Wasserstrahl wird hierbei auf einen Punkt des Körpers geleitet, wo er Belebung, Zerteilung, aber auch bei Übermaß Entzündung und Geschwulst hervorbringen kann. Man benutzt diese B. besonders bei Affektionen des Nervensystems und krankhaften Ablagerungen, als aufsteigende Douche bei Hämorrhoiden, Gebärmutterkrankheiten, Störungen der Menstruation, Leukorrhöe, Stuhlverstopfung, und als schottische Douche (abwechselnd heiß und kalt) gegen Lähmungen. (S. Douche.)

 

Die Dauer aller dieser B. ist gewöhnlich keine lange; sie werden meist nur 10 Minuten bis eine halbe Stunde, höchstens eine ganze Stunde lang angewendet, während man ehedem viel länger in den B. zu verweilen gewohnt war. In neuerer Zeit hat man indes vielfach mit Vorteil permanente Warmwasserbäder angewendet, bei welchen der Kranke tage-, ja wochenlang im Wannenbade zubringen muß zur Linderung der Schmerzen, Verminderung des Fiebers und Förderung des Heilungsprozesses. Dieselben sind insbesondere bei ausgebreiteten Verbrennungen und manchen hartnäckigen Hautkrankheiten nützlich. Auch örtlich, d.h. nur für einzelne Körperteile, wendet man solche permanente B. insbesondere bei eingewachsenen Nägeln, Fußgeschwüren, nach Operationen u. s. w. an.

 

Die medizinischen B., denen man mineralische oder vegetabilische Stoffe beigemischt hat, standen früher bei den Ärzten in größerm Ansehen als jetzt, wo die physiol. Schule ihre Kraft und Wirkungsweise genauer geprüft und auf ein richtigeres Maß zurückgeführt hat. Die Haut ist für das Eindringen fremder Körper allerdings nur in sehr beschränktem Grade zugänglich. Zwar noch bis vor kurzem hielt man dieses Organ für dasjenige, durch welches man Arzneimittel in größerer Menge dem Körper bequem einzuverleiben im stände sei, indem es zur Aufnahme dieser Stoffe eine verhältnismäßig große Oberfläche darbietet. Allein die jüngsten Untersuchungen haben gelehrt, daß eine Absorption salziger, im B. aufgelöster Stoffe, wenn sie stattfindet, nur gering sein kann; viele Ärzte sind jetzt sogar der Meinung, daß die Wirkung salzhaltiger B. sich besser auf mechan. als auf chem. Weise erklären lasse; sie behaupten, daß der Reiz des Salzwassers auf die Haut ein mächtigerer Faktor dieser Wirkung sei als die chemische, durch die aufgenommenen Salzbestandteile bedingte Umwandlung des Blutes. Dies betrifft die Würdigung der B. hinsichtlich ihres Gehalts an Eisen, Kalk, Glauber-, Bittersalz, Natron, Jod, Brom, Arsenik und Kochsalz. Dagegen steht die Aufsaugung der im B. befindlichen Gase unzweifelhaft fest, indem beispielsweise Schwefelwasserstoffgas, Kohlensäure, überhaupt flüchtige Stoffe durch die Haut in das Blut übergehen, somit auch in demselben eine chem. Wirkung entfalten können. Von den arzneilichen B. werden am häufigsten benutzt: alkalische B. oder Laugenbäder (150-500 g rohe Pottasche oder 250-1000 g Soda zum Vollbade), Ameisenbäder (1-2 kg zerquetschte Ameisen in einem leinenen Beutel gebrüht und dem B. zugesetzt), aromatische B. (150-500 g aromatische Kräuter auf das Vollbad), Baldrianbäder (Aufguß von 250-500 g Baldrianwurzel auf das Vollbad), Chlorkalkbäder (250-500 g Chlorkalk zu einem Vollbad), Eisenbäder (30-60 g reines Eisenvitriol und 120 g gereinigte Pottasche, oder 30 g reines Eisenvitriol, 60 g Kochsalz und 90 g doppeltkohlensaures Natron auf das Vollbad), Fichtennadelbäder (Aufguß von 2-5 kg Fichten- oder Kiefernadeln oder Zusatz von 150 bis 500 g Fichtennadelextrakt zu einem Vollbad), Jodbäder (in Holzwannen, 10-15 g Jod mit 20-30 g Jodkalium in 1 kg Wasser gelöst und dem Vollbad zugesetzt; die Wanne ist während des Badens zu bedecken, um das Einatmen der Joddämpfe zu verhüten), Kleienbäder (1-3 kg Weizenkleie werden in einem leinenen Beutel eine halbe Stunde lang mit 4-8 l Wasser gekocht und dann dem Vollbad zugesetzt), Leimbäder (½-1 kg Tierleim oder Gelatine in Wasser gelöst als Zusatz zu einem Vollbad), Malzbäder (Abkochung von 1-3 kg Gerstenmalz in 4-6 l Wasser auf das Vollbad), Mineralsäurebäder (in Holzwannen, 50-120 g Scheidewasser oder je 30-60 g Salz- und Salpetersäure auf das Vollbad), moussierende B. oder Kohlensäurebäder (200 g doppeltkohlensaures Natron und nach dessen vollständiger Lösung beim Besteigen der Wanne 200 g rohe Salzsäure unter Umrühren dem Vollbad zugesetzt), Schwefelbäder (in Holzwannen, 50-150 g Schwefelkalium auf das Vollbad), Seifenbäder (100-250 g geschabte weiße Kaliseife oder 60-100 g Seifenspiritus auf das Vollbad), Senfbäder (2 g Senföl in 25 g Spiritus gelöst auf das Vollbad), Solbäder (6-8 kg Koch- oder Seesalz, oder 2-5 kg Koch- oder Seesalz mit 2 kg Mutterlaugensalz auf das Vollbad), Sublimat- oder Quecksilberchloridbäder (in Holzwannen, 3-10 g Quecksilberchlorid in 50-200 g Wasser gelöst auf das Vollbad), Tanninbäder (10-50 g Tannin in 200 g Wasser gelöst auf das Vollbad), Walnußblätterbäder (Abkochung von ½-1 kg frischer Walnußblätter auf das Vollbad). Kochsalzhaltige B. wirken außerordentlich belebend und kräftigend auf die Haut und namentlich auf das Drüsensystem und bilden deshalb ein souveränes Heilmittel gegen alle skrofulösen Haut- und Drüsenkrankheiten. (S. Solbäder.) Auch dem Wasser, welches man als Dampf auf den Körper einwirken läßt, hat man mit gutem Erfolg Arzneistoffe zugesetzt, die natürlich flüchtiger Natur sein müssen. Hieran schließen sich die sog. Rauchbäder oder medikamentösen Räucherungen, in denen der ganze Körper oder einzelne Teile desselben, mit Ausschluß des Kopfes, mit Dämpfen in Berührung gebracht werden, die man durch vollständige oder teilweise Verflüchtigung trockner Arzneistoffe erzeugt. Angewendet werden hierzu harzige aromatische Substanzen, Weihrauch, Myrrhe, Benzoe, Bernstein, auch Schwefel, Zinnober und Quecksilber. Die größte Vorsicht ist bei den Rauchbädern von Schwefel und Quecksilber nötig, weil sie leicht gefährliche Zufälle herbeiführen. Die Anwendung muß in einem sog. Räucherungskasten geschehen, in welchem nur der bestimmte Körperteil mit den Dämpfen eingeschlossen wird, damit die Respirationsorgane nicht belästigt werden. Am beliebtesten sind jetzt die Fichten- oder Kiefernadeldampfbäder (bei Rheumatismen u. s. w.). Seit früher Zeit benutzt man übrigens zu ähnlichem Zwecke die in manchen Gegenden aus vulkanischem Boden aufsteigenden heißen Dämpfe, z. B. in der Nähe von Pozzuoli bei Neapel.

 

Ein eigentümliches Dunstbad sind die sog. Animalischen Bäder (s. d.), welche schon den Alten bekannt waren und besonders bei Lähmungen großen Ruf hatten. Von Gasbädern sind besonders die von Schwefelwasserstoffgas (Schwefelbäder) und die von kohlensaurem Gas gebräuchlich, namentlich an gewissen Heilquellen. Das Schwefelwasserstoffgas, in geringer Quantität der atmosphärischen Luft beigemischt, stimmt die Reizbarkeit der Luftwege herab und mäßigt die Beschwerden bei manchen Atmungskrankheiten. In stärkerer Quantität mit der Haut in Berührung gebracht, leistet es bei Hautkrankheiten, Rheumatismus, Syphilis, Lähmungen und chronischen Metallvergiftungen treffliche Dienste. Das kohlensaure Gas wirkt lebhaft erregend auf die Haut und das Nervensystem, fördert den Monatsfluß und wird besonders in Form von Halbbädern an manchen Kurorten, z. B. in Ems und Vichy, häufig gebraucht. B. in festweichen Substanzen sind die Moorbäder (s. d.), auch Schlammbäder genannt. Unter die B. in festen Stoffen rechnet man das Schneebad, das Erdbad, das Sandbad, das Aschenbad (s. d.) und das Laubbad. Das Schneebad wendet man an, um Erfrorene wieder ins Leben zurückzurufen; man umgiebt den ganzen Körper mit Schnee und bringt diesen durch äußere Wärme zum Schmelzen. Das Erdbad, das Eingraben oder Bedecken des ganzen Körpers, ausschließlich des Kopfes, mit frischer Erde, wird bei Scheintod nach dem Blitzschlage angewendet. Bei den nassen warmen Sandbädern (Arenationen) wird der Badende in Gruben eingegraben; man gebrauchte sie ehemals als Volksmittel bei Wiederbelebung Ertrunkener. Trockne Sandbäder, mäßig erwärmt, gebraucht man zur Schwitzkur bei Gicht, Rheumatismen, Brightscher Nierenkrankheit, Metallvergiftung u. s. w. in den Anstalten zu Dresden (Dr. Flemming), Köstritz (Dr. Sturm), Berka; hier giebt man Sandbäder von 47 bis 50° C. oder 38 bis 40° N. und von der Dauer von 25 bis 45 Minuten. Der trockne Sand wird auf heißen Eisenplatten erwärmt, und eine Sandschicht von 10 bis 12 cm auf die Extremitäten und die Beckengegend und 1 cm stark auf den Unterleib gedeckt. Allgemeine oder örtliche Laubbäder werden bereitet aus trocknen Birken-, Ellern-, Kiefern- und andern Blättern, mit denen man den kranken Teil überschüttet. Sie sind Volksmittel gegen Wassersucht und wirken kräftig schweißtreibend. Angewandt werden schließlich einfache Luft- und Sonnenbäder, wobei sich der an allgemeiner Blutarmut und Schwäche leidende Kranke entkleidet in einer Hängematte der vollen Einwirkung der atmosphärischen (Berg-) Luft und des Sonnenlichts aussetzt.

 

Litteratur. Unter den Schriften, welche sich im allgemeinen über Baden und B. (mit Ausschluß der Mineralquellen und Kaltwasserheilanstalten) verbreiten, sind hervorzuheben: Marcard, Über die Natur und Gebrauch der B. (Hannov. 1793); Speyer, Ideen über die Natur und Anwendungsart natürlicher und künstlicher B. (Jena 1805): Kausch, Über die B. (Lpz. 1806); Bischoff, Über das Bedürfnis von B. (Bonn 1843); Meißner, Abhandlung über die B. (Lpz. 1832): Bell, A treatise on baths (2. Aufl., Philad. 1859): Lersch, Geschichte der Balneologie u. s. w. (Würzb. 1863): ders., Polymorphe Balneologie: eine Abhandlung über Sand-, Moor-, Schlamm- und Kiefernadelbäder u. s. w. (Erlangen 1871); Wilson, Modern hydropathy (5. Aufl., Lond. 1871); Rahn, Bäderkunde und Bäderbeilkunde (Sangerh. 1874); Holm, Die Technik des Badens. Anleitung zum Gebrauche von B. (Wiesb. 1887); Lassar, Die Kulturaufgabe der Volksbäder (Berl. 1889). (S. auch Balneographie.)

 

Bäder oder Badeanstalten als besondere Gebäude wurden zu allen Zeiten, je nach der Art des Badens, mit größerm oder geringerm Aufwande errichtet. In der griechischen Zeit waren die B. mit Palästen und Gymnasien verbunden, wie es u. a. die aus der hellenistischen Periode erhaltene Anlage in Olympia veranschaulicht. Außer den Ankleidezimmern (Apodyteria) und den Räumen, die zur Einreibung mit Öl dienten (Elaeothesia), bestand das eigentliche B. in dem Lakonikon oder Schwitzbad, einem Gemach mit Bänken, das mittels Röhren mit dem Hypokauston, einem großen Ofen, in Verbindung stand, sowie aus dem trocknen Schwitzzimmer (Pyriateria), wo das Schwitzen bloß durch Erhitzung der Luft bewirkt wurde. Die öffentlichen B. der Römer hießen Thermen (Thermae) und waren reicher ausgestattet als die griechischen. Zu einer Therme gehörte 1) das Hypocaustum oder Heizzimmer im Kellergeschoß zur Erwärmung sowohl der Badezimmer als auch des Badewassers; 2) das Apodyterium oder Auskleidezimmer; 3) das Frigidarium, ein Zimmer mit einem Bassin zum kalten B.; 4) das Tepidarium, ein Raum mit mäßig trockner Wärme, das sowohl zum Baden im lauwarmen Wasser wie zur Vorbereitung auf die höhere Temperatur des nächsten Zimmers, wohl auch zum Einsalben des Körpers gedient haben mag; 5) das Caldarium für das warme B. Getrennt davon und nicht notwendig zum B. gehörig ist 6) das Laconicum, das trockne Schwitzbad, auch Sudatorium genannt. Dieser Raum, dessen Fußboden auf kleinen Pfeilern ruhte, die auf dem mit Ziegeln überdeckten Hypocaustum aufstanden, war so eingerichtet, daß sich in ihm die Hitze vom Hypocaustum aus nach allen Richtungen hin verbreiten konnte, denn sowohl der Fußboden als auch die Seitenwände waren hohl und ließen beiße Luft durch. In den Badezimmern befanden sich Bassins zur Aufnahme des Wassers, an den Wänden befanden sich Bänke, die im Caldarium amphitheatralisch erhöht waren, um den Badenden die Wahl zwischen der höhern Temperatur des obern Zimmerteils und der mäßigern des untern Raums zu gestatten. Letzteres Zimmer enthielt auch noch ein Becken (labrum) von mehrern Metern im Durchmesser, das mit kaltem Wasser gefüllt war. Mit diesen wesentlichen Teilen eines B. standen gewöhnlich noch in Verbindung ein Unctuarium, d. h. ein Zimmer zum Salben des Körpers, außerdem oft Gärten, bedeckte Spazierwege, Säle zum Spielen u. s. w. Dem entsprechend wachsen die B. aus dem Bedürfnis dienenden Gebäuden zu mächtigen Prachtanlagen empor. Zu Rom legte zuerst, zur Zeit des Augustus, Agrippa auf dem Marsfelde Thermen zu unentgeltlicher Benutzung an; nach ihm Nero, dessen Thermen Alexander Severus erneuerte. Dann baute Titus auf dem Esquilin seine großen Thermen, denen Trajan kleinere hinzufügte. Große und prächtige Thermen errichtete Caracalla (s. Tafel: Bäder I, Fig. 1) in dem Stadtteil Piscina publica, die wieder von denen des Diocletian auf dem östlichsten Teile des Quirinals überboten wurden. Die letzten in Rom errichteten Thermen waren die des Konstantin auf dem westlichsten Teile des Quirinals. Die erheblichsten Überreste stammen von den Thermen des Titus, Caracalla und Diocletian. Der Hauptsaal der letztern bildet jetzt nach öftern Umgestaltungen die Kirche Sta. Maria degli Angeli; der berühmte Kuppelbau des Pantheons gehörte zu den Thermen des Agrippa; die des Caracalla bildeten ein Geviert von etwa 400 m und enthielten großartige Säle, Schwimmbassins, Vorzimmer u. s. w. Für die Kenntnis der innern Einrichtung dieser Anlagen sind die drei wohlerhaltenen Thermengebäude von Pompeji, von denen das Innere eines Tepidariums Taf. I, Fig. 2 abgebildet ist, von großer Bedeutung. Auch in den Provinzen finden sich zahlreiche Reste von Thermen: so in Frankreich, England, den Rhein-, Mosel- und Neckargegenden (Badenweiler, Trier u. a.), in den Donauprovinzen (Ofen, Deutsch-Altenburg), Afrika, Kleinasien u. s. w.

 

Vgl. Palladio, Les thermes des Romains (Vicenza 1785); Blouet, Restauration des thermes d'Antonin Caracalla à Rome (Par. 1828); Overbeck, Pompeji (4. Aufl., Lpz. 1884); Marquardt und Mommsen, Handbuch der röm. Altertümer, Bd. 7: «Das Privatleben der Römer» (2. Aufl., ebd. 1886); J. Durm, Die Baukunst der Römer (im «Handbuch der Architektur», Bd. 2, Darmst. 1885); Baumeister, Denkmäler des klassischen Altertums, Bd. 3 (Münch. 1888).

 

Bei den Orientalen sind die B. (arab. Hamam) aus Stein gebaut, die Badezimmer haben Fußböden von Marmor, der von unten erhitzt wird, und Röhren in den Wänden leiten die Wärme nach allen Seiten. Zum Teil sind auch diese B. mit großer Pracht ausgestattet, namentlich in Damaskus und Kairo. Ein merkwürdiges Beispiel bietet das von Pascha Mustafa Sokoli 1570-77 errichtete, 1880 erneuerte Bruckbad in Ofen (s. Taf. I, Fig. 3) mit einer 10 m im Durchmesser weiten, das Becken überdeckenden Kuppel. Während größere, technisch und künstlerisch durchgeführte B. im Mittelalter nicht entstanden, wendete sich die Renaissance ihrem Schmucke wieder zu. Berühmt waren die Badestuben der Fugger in Augsburg (s. Taf. I, Fig. 4). Im 17. und 18. Jahrh. wurden die fürstlichen B. Gegenstand monumentaler Ausgestaltung. Die Badenburg im Park zu Nymphenburg bei München, das Marmorbad in der Aue bei Cassel (s. Taf. I, Fig. 5), mit reichem plastischem Schmuck von Pierre Francois Monnot (geb. zu Besançon 1600, gest. zu Rom 1730), das B. Lazienki bei Warschau u. a. sind hervorragende Beispiele hierfür.

 

In neuerer Zeit wurde der Baukunst die Aufgabe gestellt, dem gesteigerten Bedürfnis entsprechende Anlagen zu schaffen. In England entstand 1842 die erste öffentliche Badeanstalt in Liverpool, der bald andere in London folgten. In den fünfziger Jahren wurden zu den Wannenbädern, die bisher in diesen Anstalten allein üblich waren, die Schwimmbäder und seit 18556 (zuerst zu St. Ann's Hill, Irland) die Dampfbäder hinzugefügt. In Deutschland gingen Wien (Dianabad, erbaut 1842 von Förster und Etzel, im Winter Tanzlokal) und Hamburg mit der Errichtung großer Warmwasser-Schwimmbäder voraus. Die Privatindustrie hat sich der Anlage von Badeanstalten überall bemächtigt. Fast jede größere Stadt besitzt mehrere wohleingerichtete Badeanstalten. Frankreich steht in dieser Beziehung andern Ländern nach. Die Anstalt «Le Hammam» zu Paris ist die einzige, die als glänzend eingerichtet zu bezeichnen wäre. London besitzt neben zahlreichen öffentlichen B. vielleicht die am besten eingerichteten, in denen für ein einfaches B. freilich bis 5 M. berechnet wird. In Wien ist das Römische B. (1872-73 erbaut von Klauß und Groß, Kosten über 2½ Mill. M.) eine mustergültige Anlage. Berlin besitzt mehrere treffliche Anstalten dieser Art.

 

Als Beispiel einer solchen stellt Taf. II, Fig. 10 u. 11 das Quirinusbad zu Aachen dar, in welchem neben den Speise-, Lese- und Wartezimmern sich in einer stattlichen Halle 19 Einzelbäder und 4 Schwitzbäder finden. An diese legt sich die Schwimmhalle mit ihren Entkleidungszellen. Besondere B. für Frauen, breite Treppen, ein Fahrstuhl u. a. schließen sich den Haupträumen an. Die obern Geschosse des Vorderhauses dienen Hotelzwecken. Eine Badezelle aus dem Kaiserbad zu Aachen (s. Taf. II, Fig. 9) zeigt die reicher entwickelte Anlage, eine solche aus der Solbadeanstalt zu Donaueschingen (s. Taf. II, Fig. 3) die mittlere Ausdehnung, wie denn dieses ganze B. (s. Taf. II, Fig. 1-3) mit seinen 18 Badezellen den Typus eines kleinern Heilbades vergegenwärtigt. Endlich wurde die Arbeiterbadeanstalt zu Leinhausen bei Hannover (f. Taf. II, Fig. 6-8), ein mit beschränkten Mitteln ausgeführter Bau, dargestellt, bei welchem neben 4 Zellen mit Wannen, zwei für das Dampfbad und einer für Brause noch ein größerer Waschraum vorhanden ist.

 

In den Einrichtungen für Fluß- und Seebäder sind große Fortschritte zu verzeichnen. Erstere bestehen aus festen oder schwimmenden Badeanstalten, meist leichten Holzbauten, die ein großes Bassin umschließen und von Kabinen (zum Auskleiden bestimmten Kammern) umgeben sind. Offene B. nennt man solche, die gegen das Wasser zu den Schwimmern freie Bahn lassen. Solche sind vorzugsweise an der See geboten. Während man an den Meeren mit starker Ebbe und Flut Badekarren gebraucht (auf Räder gestellte Kabinen, die bis zur gehörigen Tiefe ins Meer hinausgefahren werden), hat man an der Ostsee und am Mittelmeere stehende Anlagen bevorzugt und zum Teil mit großem Aufwand hergerichtet (in Heringsdorf, Triest u. a. O.). Als typische Anlage ist auf Taf. II, Fig. 4 u. 5 die Badeanstalt in der Außenalster bei Hamburg dargestellt, welche in den Pavillons offene Hallen mit Sitzbänken und Kleiderbaken, in den Zwischenflügeln Ankleidezimmer und die Verwaltungsräume enthält.

 

Vgl. Ofthoff, B. und Badeanstalten der Neuzeit (Lpz. 1887); Stübben, öffentliche Badeanstalten, in der «Baukunde des Architekten», Bd. 2 (Berl. 1884); G. Charles, Appareils balnéaires (Par. 1875): R. Schultze, Bau und Betrieb von Volksbadeanstalten (Bonn 1893); Vetter, Moderne B. (Stuttg. 1894).

 

Bad, im chemischen Laboratorium eine Vorrichtung zum Übertragen gleichmäßiger Wärme an zu erwärmende Körper, die zum Digerieren, Destillieren, Verdampfen und Trocknen dient. Je nach dem die Wärme übertragenden Medium unterscheidet man Wasser-, Sand-, Öl-, Paraffin-, Metall-, Dampf-, Luftbäder (s. die einzelnen Artikel). Zur Erhaltung einer konstanten Temperatur in durch Gas geheizten B. bedient man sich der Thermostaten (s. d.).

 

Badachschan, Alpenland in Turkestan, zu Afghanistan gehörig, zwischen dem Hindukusch und der Krümmung, welche der Amu-darja mit seinem südl. Quellflusse, dem Pändsch, bildet, erstreckt sich von 36 bis 38° nördl. Br. und 69° 30' bis 72° östl. L. von Greenwich und wird vom Kutscha-darja und seinen vielen Zuflüssen durchströmt. Im O. grenzt es an die Landschaften Wachan (oberes Thal des Pändsch, afghanisch), Schignan und Roschan, im N. an Kuljab und Darwas (die letztern 4 Länder gehören zu Buchara), im S. an Kafiristan. B. ist berühmt durch gesundes Klima, liebliche Thäler und Bäche, durch Früchte, Blumen und Nachtigallen, besonders durch seine frühern Rubingruben in den niedrigern Bergen nahe am Fluß; die Rubine finden sich in einer weißen Erde drusenartig in Krystallmassen eingelagert. Das höhere Gebirge liefert Eisen, Salz, Schwefel und viel Lapis Lazuli. Letzterer bildet Adern von bedeutender Mächtigkeit in einem grauen Muttergestein. Die Einwohner des Landes sind persisch sprechende Schiiten, Tadschik, Usbeken und sunnitische Araber, gelten als ungemein gesellig und gastfrei und werden auf 100000 Seelen geschätzt. Der wichtigste Industriezweig ist Eisengießerei; der Handel wird namentlich von den Afghanen betrieben. Die Hauptstadt Faisabad am Kutscha war durch die Eroberungszüge des Chans von Kundus sehr verödet und durch Erdbeben 1832 verwüstet worden, hat sich aber wieder erholt. Die Bevölkerung treibt Eisenindustrie und Massenfabrikation, namentlich auch Handel mit geraubten Sklaven und mit Pferden. Im SO. von ihr liegt der Ort Dscherm, mit 1500 E., früher Hauptstadt. Der westlich von Faisabad gelegene Ort Rustak ist der Haupthandelsplatz des Landes und Knotenpunkt der Straßen von Kaschgar, Tschitral, Faisabad, Chulm, Balch und Kuljab.

 

Vgl. General report of the great trigonometrical survey of India (Dehra-Dun 1871); Wood, A journey to the source of the river oxus (Lond. 1872).

 

The butterflies of North America

Boston :Houghton, Mifflin,1884.

biodiversitylibrary.org/page/56558165

A butterfly is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby.

 

Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage.

 

Culturally, butterflies are a popular motif in the visual and literary arts.

There are three notably diffrent morphalogicaly or visually spacific populations developing of Thamnophis sirtalis tetrataenia or SFGS fromed over time and separated by development and microclimate. Polymorphism is natural as adaptation or genetic variation and variety of forms as a population living in a varied environment. Population #1 in the east pensula along from the historic land records of San bruno and San Francisco fresh water swamp that is currently streets and houses is beage and red the microclimate is warmer and dryer yellower vegatation then other two locations. Population #2 (in above picture), lives in the mountain forest marshes and has clean striped with orange with blue stripes and green on head. Populations #3 is found along the coast with cool and overcast skies it has the most stable green microclimate yearly It has formed or rather it has a red and blue, green colors and some brokend black stripes near head. The #2 location of the SFGS is smallest of populations with numbers less then two dozen it lives in the area. Once thought to be common in the slag ponds along the fault prior to filling them in for human development in the early 1900. This population has clean even unbroken black stripes with orange stripes instead of the red from the coast and a orange /green head. Thats my theory on their physiological color change and geographic variation in bio polymorpism.

This population of this endangered snake will sadly be first to be lost, due to the integration of Ts. infernalis from along the south of their location and human development from the north.

1 2 ••• 9 10 12 14 15 ••• 79 80