View allAll Photos Tagged polymorph
Metrosideros es un género de aproximadamente 50 árboles, arbustos, y enredaderas nativos de las islas del océano Pacífico, de las Filipinas a Nueva Zelanda e incluyendo las Islas Bonín, Polinesia, y Melanesia, con una anómala remota en Sudáfrica. La mayor parte de formas de los árboles son pequeñas, pero algunas son excepcionalmente grandes, las especies de Nueva Zelanda en particular. El nombre deriva del griego metra o "duramen" y sideron o "hierro". Quizás las especies mejor conocidas son Metrosideros excelsa (Pohutukawa), Metrosideros robusta (árbol rata del norte) y Metrosideros umbellata (árbol rata del sur) de Nueva Zelanda y Metrosideros polymorpha (Lehua) de Hawái. A los especímenes originarios de Nueva Zelanda se les llama árboles rata, el término rata se deriva del vocablo de la lengua maorí rātā que sirve para designar a varios árboles del género Metrosideros y nada tiene que ver su nombre con los roedores.
Los Metrosideros son frecuentemente cultivados por sus flores vistosas, como árboles de calle o en jardines de casa. Las flores son generalmente rojas, pero algunos cultivares tienen flores naranjas, amarillas o blancas. Algunos nombres se encuentran listados en catálogos horticulturales y otros tipos de publicaciones, tales son los casos de M. villosa y M. vitiensis, que en realidad son los nombres de variedades o cultivares (usualmente de M. collina) en vez de sus nombres científicos válidos. Algunas especies de Nueva Zelanda pueden ser plantadas en climas templados, dando a los paisajes donde se cultivan un aspecto tropical. Metrosideros excelsa (Pohutukawa) de Nueva Zelanda tiene varios cultivares plantados en Australia y Hawai y es muy popular en California y ha sido exitosamente plantado al norte de España,[2] pero la especie es considerada como una peste invasora en partes de Sudáfrica. Metrosideros kermadecensis se ha naturalizado recientemente en Hawai, y tiene el potencial de convertirse en una peste. A su vez, varios cultivares de M. collina y M. polymorpha son ampliamente plantados en Nueva Zelanda bajo varios nombres. Metrosideros umbellata puede ser encontrado en Nueva Zelanda, tan al sur como la Isla Stewart y aún en las Islas Auckland a 50º latitud sur, florece en verano y es el miembro más resistente al frío del género, y por eso pocos ejemplares se encuentran creciendo en Escocia.
En la ciudad de A Coruña (España), existe un ejemplar de más de 200 años, situado en el patio de un emblemático edificio público municipal. Dicho edificio está en la calla TUI (alusiva a la especie es.wikipedia.org/wiki/Prosthemadera_novaeseelandiae que vive en dicho arbol centenario. Hace varios años se sacaron esquejes del mismo y se plantó a ambos lados de una avenida de nueva construcción a la que se llama desde entonces Avenida del Metrosidero.
Wikipedia.
Jeune-fille Hmong Rouge en bord de route entre Dien Bien Phu et Lai Chau, Nord du Vietnam
Les Hmong encore appelés Méo, ou Miao , sont originaires des régions montagneuses du sud de la Chine (principalement la province du Guizhou), où ils sont encore présents ainsi qu'au nord du Viêt Nam et du Laos.
Le souci de préserver leur identité culturelle et leur indépendance les ont amenés à s'engager dans divers conflits. Au XXe siècle, en particulier, ils aidèrent les Français pendant la guerre d'Indochine puis les Américains pendant la la guerre du Vietnam. A l’avènement des régimes communistes dans ces pays un nombre important de Hmong se sont réfugiés dans des pays d'accueil, principalement les États-Unis, la France et l'Australie. Mais la majeure partie d’entre eux vit encore en Asie du Sud-Est
Les Hmongs sont animistes ou chrétiens. La langue hmong appartient à la famille des langues hmong-mien, encore appelée « miao-yao »
Les costumes traditionnels de cette ethnie sont très polymorphes mais ils ont en commun la richesse du décor brodé.
On distingue plusieurs groupes dans cette ethnie dont les plus connus sont les Hmongs Fleurs ou Hmong Bariolés dans la région de Bac Ha, mais aussi les Hmongs Noirs dans la région de Sapa et les Hmongs Rouge dans la région de Lai Chau. .
LES SOURCES OCCULTES 014/999
L'Oracle
Réalisation : Laurent Courau
Scénario : Thierry Ehrmann
Prises de vue : Laurent Courau et Sydney Ehrmann
Lumières : Marquis
A film by Laurent Courau, based on a scenario by Thierry Ehrmann.
Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...
Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...
Les Sources Occultes offre aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.
Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>
In chaos theory, the butterfly effect is the sensitive dependence on initial conditions; where a small change at one place in a nonlinear system can result in large differences to a later state. For example, the presence or absence of a butterfly flapping its wings could lead to creation or absence of a hurricane.
Although the butterfly effect may appear to be an esoteric and unusual behavior, it is exhibited by very simple systems: for example, a ball placed at the crest of a hill might roll into any of several valleys depending on slight differences in initial position.
The term "butterfly effect" itself is related to the meteorological work of Edward Lorenz, who popularized the term.
The butterfly effect is a common trope in fiction when presenting scenarios involving time travel and with "what if" cases where one storyline diverges at the moment of a seemingly minor event resulting in two significantly different outcomes.
A butterfly is a mainly day-flying insect of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, the butterfly's life cycle consists of four parts, egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.
Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies (e.g., Harvesters) eat harmful insects. Culturally, butterflies are a popular motif in the visual and literary arts.
The Suizhou meteorite shower occurred on April 15, 1986 in Dayanpo, Suizhou Prefecture, Hubei Province at 6:50pm, a witnessed fall. Suizhou is most widely known for containing a mineral never before seen in nature. Found in the thin veins of shock melt which run through Suizhou— the result of a cataclysmic collision in outer space— is Tuite, a new polymorph of the mineral Whitlockite. Its creamy matrix vividly contrasts with broad surfaces of black fusion crust - the result of its fiery plunge through Earth's atmosphere.
Classification: L6 – An ordinary chondrite from the L (Low Iron) group that is petrologic type 6 (Designates chondrites that have been metamorphosed under conditions sufficient to homogenize all mineral compositions, convert all low-Ca pyroxene to orthopyroxene, coarsen secondary phases such as feldspar to sizes ≥50 µm, and obliterate many chondrule outlines).
It measures 4 x 3.5 x 1.75 inches (98 x 87 x 43 mm) and weighs 0.75 pounds (353.57 grams).
Gentiana acaulis (Stemless gentian) is a small gentian native to central and southern Europe from Spain east to the Balkans, growing especially in mountainous regions, such as the Alps, Cevennes and the Pyrenees, at heights of 800 to 3,000 m.
An illustration of G. acaulisIt is a perennial plant, growing on acidic soils. Its height is 2 cm and spread is 10 cm or more. The leaves are evergreen, 2-3.5 cm long, in a basal rosette, forming clumps. The trumpet-shaped terminal flowers have a blue colour with olive-green spotted longitudinal throats. They grow on a very short peduncle, 3-6 cm long. The flower stem is often without leaves, or has 1 or 2 pairs of leaves.It likes full sun, is fully hardy and flowers in late spring and summer.
La Genzianella o Genziana di Koch (Gentiana acaulis L., 1753) è una pianta appartenente al genere Gentiana della famiglia delle Gentianaceae.
Piantina con radice a forma di fuso, quasi priva di caule. Non supera i 20 centimetri d'altezza. Le foglie, verdi ma anche gialle, raccolte alla base in una rosetta, sono oblunghe e lanceolate, con un margine dentellato e lunghe dai 2 ai 5 centimetri. Il fiore è apicale, su un corto peduncolo e ha forma di corolla tubolare pentalobata, di colore azzurro. Il frutto è una capsula bivalve con numerosi semi. Fiorisce nella tarda primavera e in estate. È specie protetta non sempre.
È nativa dell'Europa centrale e meridionale, dalla Spagna orientale ai Balcani. Cresce nelle regioni montuose, quali le Alpi, le Cévennes e i Pirenei, ad altitudini comprese tra 800 e 3.000 m.
Cresce su terreni acidi e predilige le esposizioni in pieno sole.
Gentiana is a genus of flowering plants belonging to the Gentian family (Gentianaceae), tribe Gentianeae and monophyletic subtribe Gentianinae. This a large genus, with about 400 species.
This is a cosmopolitan genus, occurring in alpine habitats of temperate regions of Asia, Europe and the Americas. Some species also occur in northwest Africa, eastern Australia and New Zealand. They consist of annual, biennial and perennial plants. Some are evergreen, others are not.
Gentians have opposite leaves that are sometimes arranged in a basal rosette, and trumpet-shaped flowers that are usually deep blue or azure, but may vary from white, creamy and yellow to red. Many species also show considerable polymorphism with respect to flower color. Typically, blue-flowered species predominate in the Northern Hemisphere, with red-flowered species dominant in the Andes (where bird pollination is probably more heavily favored by natural selection). White-flowered species are scattered throughout the range of the genus but dominate in New Zealand. All gentian species have terminal tubular flowers and most are pentamerous, i.e. with 5 corolla lobes (petals), and 5 sepals, but 4-7 in some species. The style is rather short or absent. The corolla shows folds (= plicae) between the lobes. The ovary is mostly sessile and has nectary glands.
Gentians are fully hardy and like full sun or partial shade, and neutral to acid soil that is rich in humus and well drained. They are popular in rock gardens.
According to Pliny the Elder, Gentian is an eponym of Gentius (180-168 BC), the King of Illyria, said to have discovered its healing properties. Some species are of medicinal use and their roots were harvested for the manufacture of tonic liquor, for instance in France "Suze" or similar liquors. Gentian is also used as a flavouring, for example in bitters, and the soft drink "Moxie" which contains "Gentian Root Extractives"
La Genziana (Gentiana) è un genere di piante della famiglia delle Gentianaceae, che comprende circa 400 specie.
Questo genere si trova un po' ovunque nell'habitat alpino delle regioni temperate dell'Asia, dell'Europa e del continente americano. Alcune specie si trovano anche nell'Africa nord-occidentale, nell'Australia orientale ed in Nuova Zelanda. Si tratta di piante annuali, biennali e perenni. Alcune sono sempreverdi, altre no. Sul versante italiano delle Alpi sono presenti diverse specie, che fioriscono durante l'estate. Sono quasi tutte "specie protette". Alcune specie si trovano anche sugli Appennini.
I fiori sono a forma di imbuto; il colore è più comunemente azzurro o blu scuro, ma può variare dal bianco, avorio e giallo al rosso. Le specie col fiore di colore blu predominano nell'emisfero settentrionale, quelle col fiore rosso sulle Ande; le specie a fiore bianco sono più rare, ma più frequenti in Nuova Zelanda.
Le genziane crescono su terreni acidi o neutri, ricchi di humus e ben drenati; si possono trovare in luoghi pienamente o parzialmente soleggiati.
Fonte : Vikipedia
Cuculus canorus
[order] Cuculiformes | [family] Cuculidae | [latin] Cuculus canorus | [UK] Cuckoo | [FR] Coucou gris | [DE] Kuckuck | [ES] Cuco Europeo | [IT] Cuculo eurasiatico | [NL] Koekoek | [IRL] Cuach
Status: Widespread summer visitor to Ireland from April to August.
Conservation Concern: Green-listed in Ireland. The European population is currently evaluated as secure.
Identification: Despite its obvious song, relatively infrequently seen. In flight, can be mistaken for a bird of prey such as Sparrowhawk, but has rapid wingbeats below the horizontal plane - ie. the wings are not raised above the body. Adult male Cuckoos are a uniform grey on the head, neck, back, wings and tail. The underparts are white with black barring. Adult females can appear in one of two forms. The so-called grey-morph resembles the adult male plumage, but has throat and breast barred black and white with yellowish wash. The rufous-morph has the grey replaced by rufous, with strong black barring on the wings, back and tail. Juvenile Cuckoos resemble the female rufous-morph, but are darker brown above.
Similar Species: Sparrowhawk
Call: The song is probably one of the most recognisable and well-known of all Irish bird species. The male gives a distinctive “wuck-oo”, which is occasionally doubled “wuck-uck-ooo”. The female has a distinctive bubbling “pupupupu”. The song period is late April to late June.
Diet: Mainly caterpillars and other insects.
Breeding: Widespread in Ireland, favouring open areas which hold their main Irish host species – Meadow Pipit. Has a remarkable breeding biology unlike any other Irish breeding species.
Wintering: Cuckoos winter in central and southern Africa.
To minimise the chance of being recognised and thus attacked by the birds they are trying to parasitize, female cuckoos have evolved different guises.
The common cuckoo (Cuculus canorus) lays its eggs in the nests of other birds. On hatching, the young cuckoo ejects the host's eggs and chicks from the nest, so the hosts end up raising a cuckoo chick rather than a brood of their own. To fight back, reed warblers (a common host across Europe) have a first line of defence: they attack, or ‘mob’, the female cuckoo, which reduces the chance that their nest is parasitized.
To deter the warbler from attacking, the colouring of the grey cuckoo mimics sparrow hawks, a common predator of reed warblers. However, other females are bright rufous (brownish-red). The presence of alternate colour morphs in the same species is rare in birds, but frequent among the females of parasitic cuckoo species. The new research shows that this is another cuckoo trick: cuckoos combat reed warbler mobbing by coming in different guises.
In the study, the researchers manipulated local frequencies of the more common grey colour cuckoo and the less common (in the United Kingdom) rufous colour cuckoo by placing models of the birds at neighbouring nests. They then recorded how the experience of watching their neighbours mob changed reed warbler responses to both cuckoos and a sparrow hawk at their own nest.
They found that reed warblers increased their mobbing, but only to the cuckoo morph that their neighbours had mobbed. Therefore, as one cuckoo morph increases in frequency, local host populations will become alerted specifically to that morph. This means the alternate morph will be more likely to slip past host defences and lay undetected. This is the first time that ‘social learning’ has been documented in the evolution of mimicry as well as the evolution of different observable characteristics - such as colour - in the same species (called polymorphism).
From the University of Cambridge “When mimicry becomes less effective, evolving to look completely different can be a successful trick. Our research shows that individuals assess disguises not only from personal experience, but also by observing others. However, because their learning is so specific, this social learning then selects for alternative cuckoo disguises and the arms race continues.”.
“It’s well known that cuckoos have evolved various egg types which mimic those of their hosts in order to combat rejection. This research shows that cuckoos have also evolved alternate female morphs to sneak through the hosts' defences. This explains why many species which use mimicry, such as the cuckoo, evolve different guises.”
Femme de l'ethnie Hmong Fleuri dans la campagne de Ban Pho, près de Bac Ha, province de Lao Cai, nord du Vietnam
Cette femme déjà âgée, bien qu'ayant revêtu sa plus belle tenue traditionnelle, était en train de travailler à l'entretien d'un talus, pioche à la main, quand nous l'avons croisée.
Les Hmong encore appelés Méo, ou Miao , sont originaires des régions montagneuses du sud de la Chine (principalement la province du Guizhou), où ils sont encore présents ainsi qu'au nord du Viêt Nam et du Laos.
Le souci de préserver leur identité culturelle et leur indépendance les ont amenés à s'engager dans divers conflits. Au XXe siècle, en particulier, ils aidèrent les Français pendant la guerre d'Indochine puis les Américains pendant la la guerre du Vietnam. A l’avènement des régimes communistes dans ces pays un nombre important de Hmong se sont réfugiés dans des pays d'accueil, principalement les États-Unis, la France et l'Australie. Mais la majeure partie d’entre eux vit encore en Asie du Sud-Est
Les Hmongs sont animistes ou chrétiens. La langue hmong appartient à la famille des langues hmong-mien, encore appelée « miao-yao »
Les costumes traditionnels de cette ethnie sont très polymorphes mais ils ont en commun la richesse du décor brodé. Ceux des Hmong Fleuri (ou Hmong Bariolé) sont particulièrement colorés.
♥♥ NEW REBIRTH Genesis Eden Head : William Shape + Style card ♥♥
Come and test the new REBIRTH Genesis head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins fit whatever the brand)
maps.secondlife.com/secondlife/Endless%20Love/15/64/22
(more style cards in-world and bots exposition all age and style)
Link to the FROG&CO style card :
marketplace.secondlife.com/p/William-Shape-Style-card-REB...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/187471721@N05/
Crax rubra - Grand Hocco (♀) - Great curassow
Plus grand Cracidae, Crax rubra présente un dimorphisme sexuel très marqué.
Le mâle a un plumage noir sur le dessus, blanc sur le dessous, un bec jaune, court et crochu, aplati transversalement, surmonté d'une excroissance bulbeuse jaune sur le dessus. Il a une huppe de plumes bouclées sur la tête. Les pattes sont grises.
La femelle est polymorphique. Il en existe trois types :
Rayures blanches sur la tête, le cou, le dos et les ailes.
Tête noire avec un plumage brun rougeâtre. (PHOTO)
Tête noire avec un plumage brun foncé.
My BJD family at the end of 2015! I wanted to make a video to round up the year but I have tonsillitis and have lost my voice xD
Left to Right:
Ig (Alieen Dolls Polymorph Rot) Great and Powerful Dragon, somehow in Human Form, awoken from a 1000 years sleep to help Indigo in his bar and with his quest.
Indigo (Luts Minifee Shiwoo) Elf, alchemist and bartender. On a quest to free his sister from an Elven Prison.
Tristan (Iplehouse JID Kyle) Human and Model, in love with Eden, thanks to a Drink at Indigo's. An unaware tool in Indigo's
Quest
Eden (Fairyland Minifee Sarang) She's forgotten after years in the modern world but she's a Nymph Unknowingly being groomed magically by Indigo to help with his quest.
Bram (Mystic Kids 45cm Francis) Human and Restoration expert. Bram maintains 18 Halcyon, manages his restoration business and loves Marnie.
Marnie (Kid Delf Pine) Human, ex circus girl come landlady come potter. Loves Bram.
Ever (Kid Delf Romance Ani) Human Freelance clothing designer, clothes shop minion, party girl. Ever is Bram's cousin.
Unpictured because she is just a head
Red (Minifee Shushu)
Extremely powerful Elf, trapped in a mystical Elven Prison, Sister to Indigo
On the way
Levi Valentine (Iplehouse JID Vito) Human, with Elven powers. Circus ring master, Red's Ex.
♥♥ NEW REBIRTH Genesis Eden Head : Luna Shape + Style card ♥♥
Come and test the new REBIRTH Genesis head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins fit whatever the brand)
maps.secondlife.com/secondlife/Endless%20Love/15/64/22
(more style cards in-world and bots exposition all age and style)
Link to the FROG&CO style card :
marketplace.secondlife.com/p/Luna-teen-girl-Shape-Style-c...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/187471721@N05/
Cuculus canorus
[order] Cuculiformes | [family] Cuculidae | [latin] Cuculus canorus | [UK] Cuckoo | [FR] Coucou gris | [DE] Kuckuck | [ES] Cuco Europeo | [IT] Cuculo eurasiatico | [NL] Koekoek | [IRL] Cuach
Measurements
spanwidth min.: 54 cm
spanwidth max.: 60 cm
size min.: 32 cm
size max.: 36 cm
Breeding
incubation min.: 11 days
incubation max.: 12 days
fledging min.: 17 days
fledging max.: 17 days
broods 15
eggs min.: 1
eggs max.: 25
Status: Widespread summer visitor to Ireland from April to August.
Conservation Concern: Green-listed in Ireland. The European population is currently evaluated as secure.
Identification: Despite its obvious song, relatively infrequently seen. In flight, can be mistaken for a bird of prey such as Sparrowhawk, but has rapid wingbeats below the horizontal plane - ie. the wings are not raised above the body. Adult male Cuckoos are a uniform grey on the head, neck, back, wings and tail. The underparts are white with black barring. Adult females can appear in one of two forms. The so-called grey-morph resembles the adult male plumage, but has throat and breast barred black and white with yellowish wash. The rufous-morph has the grey replaced by rufous, with strong black barring on the wings, back and tail. Juvenile Cuckoos resemble the female rufous-morph, but are darker brown above.
Similar Species: Sparrowhawk
Call: The song is probably one of the most recognisable and well-known of all Irish bird species. The male gives a distinctive “wuck-oo”, which is occasionally doubled “wuck-uck-ooo”. The female has a distinctive bubbling “pupupupu”. The song period is late April to late June.
Diet: Mainly caterpillars and other insects.
Breeding: Widespread in Ireland, favouring open areas which hold their main Irish host species – Meadow Pipit. Has a remarkable breeding biology unlike any other Irish breeding species.
Wintering: Cuckoos winter in central and southern Africa.
To minimise the chance of being recognised and thus attacked by the birds they are trying to parasitize, female cuckoos have evolved different guises.
The common cuckoo (Cuculus canorus) lays its eggs in the nests of other birds. On hatching, the young cuckoo ejects the host's eggs and chicks from the nest, so the hosts end up raising a cuckoo chick rather than a brood of their own. To fight back, reed warblers (a common host across Europe) have a first line of defence: they attack, or ‘mob’, the female cuckoo, which reduces the chance that their nest is parasitized.
To deter the warbler from attacking, the colouring of the grey cuckoo mimics sparrow hawks, a common predator of reed warblers. However, other females are bright rufous (brownish-red). The presence of alternate colour morphs in the same species is rare in birds, but frequent among the females of parasitic cuckoo species. The new research shows that this is another cuckoo trick: cuckoos combat reed warbler mobbing by coming in different guises.
In the study, the researchers manipulated local frequencies of the more common grey colour cuckoo and the less common (in the United Kingdom) rufous colour cuckoo by placing models of the birds at neighbouring nests. They then recorded how the experience of watching their neighbours mob changed reed warbler responses to both cuckoos and a sparrow hawk at their own nest.
They found that reed warblers increased their mobbing, but only to the cuckoo morph that their neighbours had mobbed. Therefore, as one cuckoo morph increases in frequency, local host populations will become alerted specifically to that morph. This means the alternate morph will be more likely to slip past host defences and lay undetected. This is the first time that ‘social learning’ has been documented in the evolution of mimicry as well as the evolution of different observable characteristics - such as colour - in the same species (called polymorphism).
From the University of Cambridge “When mimicry becomes less effective, evolving to look completely different can be a successful trick. Our research shows that individuals assess disguises not only from personal experience, but also by observing others. However, because their learning is so specific, this social learning then selects for alternative cuckoo disguises and the arms race continues.”.
“It’s well known that cuckoos have evolved various egg types which mimic those of their hosts in order to combat rejection. This research shows that cuckoos have also evolved alternate female morphs to sneak through the hosts' defences. This explains why many species which use mimicry, such as the cuckoo, evolve different guises.”
Physical characteristics
Forests and woodlands, both coniferous and deciduous, second growth, open wooded areas, wooded steppe, scrub, heathland, also meadows, reedbeds. Lowlands and moorlands and hill country to 2 km.
Habitat
Forests and woodlands, both coniferous and deciduous, second growth, open wooded areas, wooded steppe, scrub, heathland, also meadows, reedbeds. Lowlands and moorlands and hill country to 2 km. Food and Feeding
Other details
Cuculus canorus is a widespread summer visitor to Europe, which accounts for less than half of its global breeding range. Its European breeding population is very large (>4,200,000 pairs), and was stable between 1970-1990. Although there were declines in many western populations-most notably France-during 1990-2000, most populations in the east, including key ones in Russia and Romania, were stable, and the species underwent only a slight decline overall
Feeding
Diet based on insects, mainly caterpillars, also dragonflies, mayflies, damselflies, crickets, and cicadas. Sometimes, spiders, snails, rarely fruit. Preys on eggs and nestling of small birds.
Conservation
This species has a large range, with an estimated global Extent of Occurrence of 10,000,000 km². It has a large global population, including an estimated 8,400,000-17,000,000 individuals in Europe (BirdLife International in prep.). Global population trends have not been quantified, but populations appear to be stable so the species is not believed to approach the thresholds for the population decline criterion of the IUCN Red List (i.e. declining more than 30% in ten years or three generations). For these reasons, the species is evaluated as Least Concern.
Breeding
May-Jun in NW Europe, Apr-May in Algeria, Apr-Jul in India and Myanmar. Brood-parasitic, hosts include many insectivorous songbird species, like: flycatchers, chats, warblers, pipits, wagtails and buntigs. Often mobbed by real or potential hosts near their nests. Eggs polymorphic in color and pattern, closely match those of host in color and pattern. Nestling period 17-18 days, evicts host's eggs and chicks.
Migration
Migratory in N of range, arriving in SW Britain mainly Apr - May, when occasionally recorded in small parties, and even in one flock of 50+ birds; also seasonal in hill country from Assam and Chin Hills to Shan States, where present Mar - Aug. Resident in tropical lowland areas of S Asia. Winter resident in sub-Saharan Africa and in Sri Lanka. W Palearctic populations migrate to Africa, where a Dutch-ringed juvenile found in Togo in Oct and a British-ringed juvenile found in Cameroon in Jan; migrants appear in N Senegal as early as late Jul through Oct; in W Africa nearly all records are in autumn ( Sept - Dec), birds apparently continuing on to C & S Africa. Race bangsi occurs on passage in W Africa, and winters S of equator from W Africa to L Tanganyika. Asian populations of nominate canorus and bakeri winter in India, SE Asia and Philippines, also in Africa, but the extent of migration of Asian birds to Africa is unknown; some subtelephonus migrate through Middle East and occur in winter from Uganda and E Zaire to Zimbabwe, Mozambique and Natal. Mainly a passage migrant in Middle East, though some breed in region. Migrants also appear on islands in W Indian Ocean ( Seychelles, Aldabra). Nominate canorus accidental in Iceland, Faeroes, Azores, Madeira, Canary Is and Cape Verde Is, rarely also Alaska and eastern N America; one record of canorus in Indonesia, off W Java in winter. Autumn migration starts in August and continues until October. The main passage through Egypt is in September and the first half of October, with a peak in the third week of September (Goodman & Meininger 1989). Southward movement through Africa lasts from September to December and is linked to the occurrence of rainfall and the growth of cover.
♥♥ NEW REBIRTH GAIA Head : Oriana Shape + Style card ♥♥
Come and test the new REBIRTH GAIA head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins - System, Lelutka, Genus, Catwa)
maps.secondlife.com/secondlife/REBIRTH%20Forever/47/79/21
(more style cards in-world and bots exposition all age and style)
Link to the style card :
marketplace.secondlife.com/p/Oriana-girl-Shape-Style-card...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/rebirth_sl
Carolina and Andreu before and after the headmold change! This is the last "repetition" photo I take, they are so difficult to reproduce!
The Goeldi's marmoset or Goeldi's monkey (Callimico goeldii) is a small, South American New World monkey that lives in the upper Amazon basin region of Bolivia, Brazil, Colombia, Ecuador, and Peru. It is the only species classified in the genus Callimico, and the monkeys are sometimes referred to as "callimicos".
Goeldi's marmosets are blackish or blackish-brown in color and the hair on their head and tail sometimes has red, white, or silvery-brown highlights. Their bodies are about 20-23 cm long, and their tails are about 25-30 cm long.
Goeldi's marmoset was first described in 1904, making Callimico one of the more recent monkey genera to be described. In older classification schemes it was sometimes placed in its own family Callimiconidae and sometimes, along with the marmosets and tamarins, in the sub-family Callitrichinae in the family Cebidae. More recently, Callitrichinae has been (re-)elevated to family status as Callitrichidae.
Females reach sexual maturity at 8.5 months, males at 16.5 months. The gestation period lasts from 140 to 180 days. Unlike other New World monkeys, they have the capacity to give birth twice a year. The mother carries a single baby monkey per pregnancy, whereas most other species in the family Callitrichidae usually give birth to twins. For the first 2-3 weeks the mother acts as the primary care-giver until the father takes over most of the responsibilities except for nursing. The infant is weaned after about 65 days. Females outnumber males by 2:1. The life expectancy in captivity is about 10 years. The monkeys are able to jump as far as from one end of a tennis court to another.
They prefer to forage in dense scrubby undergrowth; perhaps because of this, they are rare, with groups living in separate patches of suitable habitat, separated by miles of unsuitable flora. In the wet season, their diet includes fruit, insects, spiders, lizards, frogs, and snakes. In the dry season, they feed on fungi, the only tropical primates known to depend on this source of food. They live in small social groups (approximately six individuals) that stay within a few feet of one another most of the time, staying in contact via high-pitched calls. They are also known to form polyspecific groups with tamarins, perhaps because Goeldi's marmosets are not known to have the X-linked polymorphism which enables some individuals of other New World monkey species to see in full tri-chromatic vision.
The species takes its name from its discoverer, the Swiss naturalist Emil August Goeldi.
This specimen was seen Marwell Wildlife near Winchester, Hants.
♥♥ NEW REBIRTH Genesis Eden Head : Kookie Shape + Style card ♥♥
Come and test the new REBIRTH Genesis head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins fit whatever the brand)
maps.secondlife.com/secondlife/Endless%20Love/15/64/22
(more style cards in-world and bots exposition all age and style)
Link to the FROG&CO style card :
marketplace.secondlife.com/p/Kookie-Kawai-teen-girl-Shape...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/187471721@N05/
A butterfly is a mainly day-flying insect of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, the butterfly's life cycle consists of four parts: egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.
Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies (e.g., Harvesters) eat harmful insects. Culturally, butterflies are a popular motif in the visual and literary arts.
Southern pike
Esox cisalpinus.jpg
Scientific classification edit
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Esociformes
Family: Esocidae
Genus: Esox
Species: E. cisalpinus
Binomial name
Esox cisalpinus
Bianco & Delmastro, 2011
Synonyms
Esox flaviae Lucentini et al. 2011
Esox cisalpinus (southern pike) is a freshwater fish restricted to freshwater habitats in central and northern Italy (Southern Europe). As with the widespread northern pike also known as Esox lucius, the southern pike is an important species for recreational and commercial fisheries, and for its role as top predator in freshwater ecosystems.
Esox cisalpinus was distinguished from Esox lucius and described scientifically as a new species in 2011 independently by two research groups. The description by Bianco & Delmastro was printed earlier, and the name Esox cisalpinus is therefore accepted, whereas the alternative name published somewhat later by Lucentini et al., Esox flaviae, is considered a junior synonym.
Lucentini et al. explicitly tested the hypothesis that the different phenotypes of the pike, geographically isolated in Europe, represent two different evolutionary entities. They analysed phenotypic and genetic differences, e.g. in the skin colour pattern and in meristic characters such as the number of scales in the lateral line, which distinguish the two species. They applied a coalescent-based approach to mtDNA phylogeny and evaluated the degree of historical admixture, testing overall genetic differences from amplified fragment length polymorphism (AFLP). The Italian southern pike turned out distinct from the northern pike, whose range extends from central and northern Europe across Asia to North America.
The authors recommend stopping the stocking of pike in southern Europe using northern pike from other European countries, as this could greatly impact the survival of this newly discovered species in its native range.
---------------------------
s494 Fa19 6852 Fa Životinje Štuka
-----------------------------
s287 Fa11 2279 Fa Fauna Europe Štuka
-----------------------------------------------------
www.inaturalist.org/observations/18821894
---------------------------------------------------
www.projectnoah.org/spottings/293266863
-----------------------------------------
I think this was a pregant female as she had a rather large belly. Photographed sunbathing on a stile along the coastal path at Saeford Haven, East Sussex.
The viviparous lizard or common lizard, Zootoca vivipara (formerly Lacerta vivipara), is a Eurasian lizard. It lives farther north than any other reptile species, and most populations are viviparous (giving birth to live young), rather than laying eggs as most other lizards do. It is the only species in the monotypic genus Zootoca.
Zootoca vivipara can be seen in a variety of different colors. Female Zootoca vivipara undergo color polymorphism (biology) more commonly than males. A female lizard's display differs in ventral coloration, ranging from pale yellow to bright orange and a mixed coloration. There have been many hypothesis for the genetic cause of this polymorphic coloration. These hypothesis test for coloration due to thermoregulation, predator avoidance, and social cues, specifically sexual reproduction. Through an experiment conducted by Vercken et al., color polymorphism in viviparous lizard is caused by social cues, rather than the other hypotheses. More specifically, the ventral coloration that is seen in female lizards is associated with patterns of sexual reproduction and sex allocation.
The length of the body is less than 12 cm (5 in) (excluding the tail). The tail is up to twice as long as the body, although it is often partially or wholly lost. The limbs are short, and the head is rather round. Males have more slender bodies than females. The neck and the tail are thick. The collar and other scales seem jagged.
The colour and patterning of this species is variable. The main colour is typically medium brown, but it can be also grey, olive brown or black. Females may have dark stripes on their flanks and down the middle of their backs. Sometimes females also have light-coloured stripes, or dark and light spots along the sides of their backs. Most males and some females have dark spots in their undersides. Males have brightly coloured undersides – typically yellow or orange, but more rarely red. Females have paler, whitish underparts. The throat is white, sometimes blue.
♥♥ NEW REBIRTH GAIA Head : Ken male kid Shape + Style card ♥♥
Come and test the new REBIRTH GAIA head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins - System, Lelutka, Genus, Catwa)
Family store : maps.secondlife.com/secondlife/REBIRTH%20Forever/48/150/21
(more style cards in-world and bots exposition all age and style)
Link to the style card :
marketplace.secondlife.com/p/Ken-kid-Shape-Style-card-REB...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/rebirth_sl
Femme de l’ethnie Dao Noir dans un village de la région de Lai Chau, nord du Vietnam
Rappelez-vous le portrait de la petite fille dans son beau costume que j’ai posté il y a quelques jours. Voici sa maman, qui porte dans toutes ses activités quotidiennes l’étonnant costume Dao Noir et cette surprenante coiffe métallique qui surmonte un postiche de cheveux tressés
L’ethnie Dao (ou Dzao) est très polymorphe : Dao Rouge, Dao à Tunique, Dao Noir, Dao à pantalon blanc… .J'en posterai prochainement plusieurs exemples.
Emigrée de Chine du sud depuis le XIIIème siècle, l’ethnie Dao habite au Nord du Vietnam dans les provinces de la moyenne et haute région. Elle occupe des terres à toute altitude et vit en bons voisins avec d’autres ethnies comme les Hmong, Tay, Thaï, … Ses ressources principales proviennent de l’agriculture, (riz et mais)
Souvent chez les femmes, les cheveux sont relevés en chignon sur la nuque ou rasés sur le pourtour à l’exception d’une touffe au sommet de la tête
Pratiquant le culte des ancêtres, les Dao adhèrent également au Taoïsme.
The common murre or common guillemot (Uria aalge) is a large auk. It is also known as the thin-billed murre in North America. It has a circumpolar distribution, occurring in low-Arctic and boreal waters in the North Atlantic and North Pacific. It spends most of its time at sea, only coming to land to breed on rocky cliff shores or islands.
Common murres have fast direct flight but are not very agile. They are more manoeuvrable underwater, typically diving to depths of 30–60 m (98–197 ft). Depths of up to 180 m (590 ft) have been recorded.
Common murres breed in colonies at high densities. Nesting pairs may be in bodily contact with their neighbours. They make no nest; their single egg is incubated on a bare rock ledge on a cliff face. Eggs hatch after ~30 days incubation. The chick is born downy and can regulate its body temperature after 10 days. Some 20 days after hatching the chick leaves its nesting ledge and heads for the sea, unable to fly, but gliding for some distance with fluttering wings, accompanied by its male parent. Chicks are capable of diving as soon as they hit the water. The female stays at the nest site for some 14 days after the chick has left.
Both male and female common murres moult after breeding and become flightless for 1–2 months. In southern populations they occasionally return to the nest site throughout the winter. Northern populations spend the winter farther from their colonies.
Some individuals in the North Atlantic, known as "bridled guillemots", have a white ring around the eye extending back as a white line. This is not a distinct subspecies, but a polymorphism that becomes more common the farther north the birds breed—perhaps character displacement with the northerly thick-billed murre, which has a white bill-stripe but no bridled morph. The white is highly contrasting especially in the latter species and would provide an easy means for an individual bird to recognize conspecifics in densely packed breeding colonies.
The chicks are downy with blackish feathers on top and white below. By 12 days old, contour feathers are well developed in areas except for the head. At 15 days, facial feathers show the dark eyestripe against the white throat and cheek.
The common murre flies with fast wing beats and has a flight speed of 80 km/h (50 mph). Groups of birds are often seen flying together in a line just above the sea surface. However, a high wing loading of 2 g/cm2 means that this species is not very agile and take-off is difficult. Common murres become flightless for 45–60 days while moulting their primary feathers.
The common murre is a pursuit-diver that forages for food by swimming underwater using its wings for propulsion. Dives usually last less than one minute, but the bird swims underwater for distances of over 30 m (98 ft) on a regular basis. Diving depths up to 180 m (590 ft) have been recorded and birds can remain underwater for a couple of minutes.
For more information, please visit en.wikipedia.org/wiki/Common_murre
Different types of hexagonal quartz crystals - Transparent rock crystals in the upper area - Amethyst Quartz in the lower left area and Smoky quartz in the lower right area of the frame.
Sample: Provided by Mr. Claudio Canut de Bon and Mr Carlos Aracena personal collections
Location: La Serena - IV Region - Chile
Quartz is the second most abundant mineral in the Earth's continental crust, after feldspar. It is made up of a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall formula SiO2.
There are many different varieties of quartz, several of which are semi-precious gemstones. Especially in Europe and the Middle East, varieties of quartz have been since antiquity the most commonly used minerals in the making of jewelry and hardstone carvings.
Varieties (according to color)
Figurine of a child carved in rock crystal, hittite, between 1500 and 1200 BC
Pure quartz, traditionally called rock crystal (sometimes called clear quartz), is colorless and transparent (clear) or translucent, and has often been used for hardstone carvings, such as the Lothair Crystal. Common colored varieties include citrine, rose quartz, amethyst, smoky quartz, milky quartz, and others. Quartz goes by an array of different names. The most important distinction between types of quartz is that of macrocrystalline (individual crystals visible to the unaided eye) and the microcrystalline or cryptocrystalline varieties (aggregates of crystals visible only under high magnification). The cryptocrystalline varieties are either translucent or mostly opaque, while the transparent varieties tend to be macrocrystalline. Chalcedony is a cryptocrystalline form of silica consisting of fine intergrowths of both quartz, and its monoclinic polymorph moganite.Other opaque gemstone varieties of quartz, or mixed rocks including quartz, often including contrasting bands or patterns of color, are agate, sard, onyx, carnelian, heliotrope, and jasper.
Citrine
Citrine is a variety of quartz whose color ranges from a pale yellow to brown due to ferric impurities. Natural citrines are rare; most commercial citrines are heat-treated amethysts or smoky quartzes. However, a heat-treated amethyst will have small lines in the crystal, as opposed to a natural citrine's cloudy or smokey appearance. It is nearly impossible to tell cut citrine from yellow topaz visually, but they differ in hardness.Brazil is the leading producer of citrine, with much of its production coming from the state of Rio Grande do Sul. The name is derived from Latin citrina which means "yellow" and is also the origin of the word "citron." Sometimes citrine and amethyst can be found together in the same crystal, which is then referred to as ametrine.
Rose quartz
An elephant carved in rose quartz, 10 cm (4 inches) long
Rose quartz is a type of quartz which exhibits a pale pink to rose red hue. The color is usually considered as due to trace amounts of titanium, iron, or manganese, in the massive material. Some rose quartz contains microscopic rutile needles which produces an asterism in transmitted light. Recent X-ray diffraction studies suggest that the color is due to thin microscopic fibers of possibly dumortierite within the massive quartz.
Additionally, there is a rare type of pink quartz (also frequently called crystalline rose quartz) with color that is thought to be caused by trace amounts of phosphate or aluminium. The color in crystals is apparently photosensitive and subject to fading. The first crystals were found in a pegmatite found near Rumford, Maine, USA, but most crystals on the market come from Minas Gerais, Brazil.
Rose quartz is not popular as a gem – it is generally too clouded by impurities to be suitable for that purpose.[citation needed] Rose quartz is more often carved into figures such as people or hearts.[citation needed] Hearts are commonly found because rose quartz is pink and an affordable mineral.[citation needed]
Amethyst
Amethyst is a popular form of quartz that ranges from a bright to dark or dull purple color. The world's largest deposits of amethysts can be found in Brazil, Mexico, Uruguay, Russia, France, Namibia and Morocco. Sometimes amethyst and citrine are found growing in the same crystal. It is then referred to as ametrine. An amethyst is formed when there is iron in the area where it was formed.
Smoky quartz
Smoky quartz is a gray, translucent version of quartz. It ranges in clarity from almost complete transparency to a brownish-gray crystal that is almost opaque. Some can also be black.
Milky quartz
Ancient Roman cameo onyx engraved gem of Augustus
Milk quartz or milky quartz may be the most common variety of crystalline quartz and can be found almost anywhere. The white color may be caused by minute fluid inclusions of gas, liquid, or both, trapped during the crystal formation. The cloudiness caused by the inclusions effectively bars its use in most optical and quality gemstone applications.
A text In English:
The Swallow-tailed Hummingbird, so called from its forked tail, is one of the largest hummingbirds in cities and gardens, but it also occurs in gallery forests, bushy pastures and edges of woods or coppices. It is green, except for the blue head and upper breast, turning to iridescent purple according to the direction of light; it has dark wings and a heavy black bill. The tail is dark blue with the external feathers longer than central ones. It is very aggressive and attacks other hummingbirds that dare to visit flowers in certain trees. Where the flowers are available for many months, the individual is fiercely territorial, but generally needs to search soon for other flowering plants. It flies to catch small insets on or under leaves in the gallery forests or woodlands. The female builds a small cup-shaped nest saddled on a branch, not far from the main trunk in the shade of leaves. Perched on favorite branches, the male can utter long but low chirps. Once in a while, it interrupts these singing sessions to feed, and flies back for more song or to clean the plumage. They occur from the Guianas and Amazon River to Paraguay and southeastern Peru. They can get along with partially deforested zones, but may disappear with intensive agriculture and with the development of treeless cities.
Um texto em Português:
Beija-flor Tesoura (Eupetomena macroura), fotografado em Brasília-DF, Brasil.
Eupetomena macroura (Gmelin, 1788): tesoura; swallow-tailed hummingbird c.
Destaca-se das espécies estudadas pelo maior porte e pela cauda comprida e bifurcada, o que lhe valeu o nome popular. Como é comum entre os beija-flores, é uma espécie agressiva que disputa com outras o seu território e fontes de alimento.
Nidificação: o ninho, em forma de tigela, é assentado numa forquilha de arbusto ou árvores, a cerca de 2 a 3 m do solo. O material utilizado na construção é composto por fibras vegetais incluindo painas, musgos e liquens, aderidos externamente com teias de aranhas.
Hábitat: capoeiras, cerrados, borda de matas e jardins.
Tamanho: 17,0 cm
A SEGUIR UM TEXTO ENCONTRADO E REPRODUZIDO DO ENDEREÇO nationalgeographic.abril.uol.com.br/ng/edicoes/83/reporta... DA NATIONAL GEOGRAFIC:
Prodígios da micro-engenharia, os beija-flores são os campeões dos pesos-leves entre as aves
Uma faísca safira, um frêmito de asas, e o minúsculo pássaro - ou seria um inseto? - some como miragem fugaz. Reaparece instantes depois, agora num ângulo melhor. É pássaro mesmo, um dervixe do tamanho do meu polegar com asas que batem 80 vertiginosas vezes por segundo, produzindo um zumbido quase inaudível. As penas da cauda, à guisa de leme, delicadamente direcionam o vôo em três direções. Ele fita a trombeta de uma vistosa flor alaranjada e do bico fino como agulha projeta uma língua delgada feito linha. Um raio de Sol ricocheteia de suas penas iridescentes. A cor refletida deslumbra como uma pedra preciosa contra uma janela ensolarada. Não admira que os beija-flores sejam tão queridos e que tanta gente já tenha tropeçado ao tentar descrevê-los. Nem mesmo circunspectos cientistas resistem a termos como "belo", "magnífico", "exótico".
Surpresa maior é o fato de o aparentemente frágil beija-flor ser uma das mais resistentes criaturas do reino animal. Cerca de 330 espécies prosperam em ambientes diversos, muitos deles brutais: do Alasca à Argentina, do deserto do Arizona à costa de Nova Scotia, da Amazônia à linha nevada acima dos 4,5 mil metros nos Andes (misteriosamente, essas aves só são encontradas no Novo Mundo).
"Eles vivem no limite do que é possível aos vertebrados, e com maestria", diz Karl Schuchmann, ornitólogo do Instituto Zoológico Alexander Koenig e do Fundo Brehm, na Alemanha. Schuchmann ouviu falar de um beija-flor que viveu 17 anos em cativeiro. "Imagine a resistência de um organismo de 5 ou 6 gramas para viver tanto tempo!", diz ele espantado. Em média, o minúsculo coração de um beija-flor bate cerca de 500 vezes por minuto (em repouso!). Assim, o desse pequeno cativo teria batido meio bilhão de vezes, quase o dobro do total de uma pessoa de 70 anos.
Mas esses passarinhos são duráveis apenas em vida. Quando morrem, seus ossos delicados e ocos quase nunca se fossilizam. Daí o assombro causado pela recente descoberta de um amontoado de fósseis de aves que talvez inclua um beija-flor ancestral de 30 milhões de anos. Como os beija-flores modernos, os espécimes fósseis tinham o bico longo e fino e os ossos superiores das asas mais curtos, terminando em uma saliência arredondada que talvez lhes permitisse fazer a rotação na articulação do ombro e parar no ar.
A outra surpresa foi o local do achado: no sul da Alemanha, longe do território dos beija-flores atuais. Para alguns cientistas, essa descoberta mostra que já existiram beija-flores fora das Américas, mas se extinguiram. Ou quem sabe os fósseis não fossem de beija-flor. Os céticos, entre eles Schuchmann, afirmam que muitas vezes, ao longo da evolução, outros grupos de aves adquiriram características semelhantes às do beija-flor. Os verdadeiros beija-flores, diz Schuchmann, evoluíram nas florestas do leste do Brasil, onde competiam com insetos pelo néctar das flores.
"O Brasil foi o laboratório do protótipo", diz o ornitólogo. "E o modelo funcionou." O beija-flor tornou-se a obra-prima da microengenharia da natureza. Aperfeiçoou sua habilidade de parar no ar há dezenas de milhões de anos para competir por parte das flores do Novo Mundo.
"Eles são uma ponte entre o mundo das aves e o dos insetos", diz Doug Altshuler, da Universidade da Califórnia em Riverside. Altshuler, que estuda o vôo dos beija-flores, examinou os movimentos das asas do pássaro. Observou que, nele, os impulsos elétricos propulsores dos músculos das asas lembram mais os dos insetos que os das aves. Talvez por isso o beija-flor produza tanta energia por batida de asas: mais, por unidade de massa, que qualquer outro vertebrado. Altshuler também analisou os trajetos neurais do beija-flor, que funcionam com a mesma vertiginosa velocidade encontrada nas aves mais ágeis, como seu primo mais próximo, o andorinhão. "São incríveis; uns pequenos Frankesteins", compara.
Certamente eles sabem intimidar: grama por grama, talvez sejam os maiores confrontadores da natureza. "O vocabulário do beija-flor deve ser 100% composto de palavrões", graceja Sheri Williamson, naturalista do Southeastern Arizona Bird Observatory. A agressão do beija-flor nasce de ferozes instintos territoriais moldados à necessidade de sugar néctar a cada poucos minutos. Os beija-flores competem desafiando e ameaçando uns aos outros. Postam-se face a face no ar, rodopiam, mergulham na direção da grama e voam de ré, em danças de dominância que terminam tão subitamente quanto começam.
O melhor lugar para vermos tais batalhas é nas montanhas, especialmente no Equador, em que ricos ecossistemas se apresentam em suas várias altitudes. Sheri supõe que o sentido norte-sul das cordilheiras americanas também crie rotas favoráveis à migração para onde haja constante suprimento de flores. O que contrasta, diz ela, com as barreiras naturais que se estendem de leste a oeste na África, como o Saara e o Mediterrâneo.
Algumas espécies de beija-flor, porém, adaptaram-se a atravessar vastidões planas, onde o alimento é escasso. Antes de sua intrépida migração da primavera para os Estados Unidos e o Canadá, os beija-flores-de-garganta-vermelha reúnem-se no México e empanturram-se de insetos e néctar. Armazenam gordura e duplicam de peso em uma semana. Em seguida, atravessam o golfo do México, voando 800 quilômetros sem escalas por 20 horas, até a costa distante.
A região próxima à linha do equador é um reino de beija-flores. Quem sai do aeroporto de Quito, no Equador, pode ser logo saudado por um cintilante beija-flor-violeta, com pintura de guerra de manchas púrpura iridescentes nos lados da face. A leste da cidade, nas cabeceiras da bacia Amazônica, o beija-flor-bico-de-espada esvoaça na mata portando o bico mais longo de todas as aves em proporção a seu tamanho: mais de metade do comprimento total do animal. Nas encostas do Cotopaxi, um vulcão ao sul de Quito, o beija-flor-do-chimborazo foi avistado acima dos 4,5 mil metros. Ali ele passa a noite entorpecido em cavernas, pois desacelera seu ritmo metabólico o suficiente para não morrer de fome antes de amanhecer. Mais tarde, aquecido pelo Sol, ele recomeça a se alimentar.
"Quem estuda beija-flores fica irremediavelmente enfeitiçado", diz Sheri Williamson. "São criaturinhas sedutoras. Tentei resistir, mas agora tenho sangue de beija-flor correndo nas veias."
Canon EOS 50D
www.flickr.com/map/?&fLat=-15.827534&fLon=-47.928...
Ipê Amarelo, Tabebuia [chrysotricha or ochracea].
Text, in english, from Wikipedia, the free encyclopedia
"Trumpet tree" redirects here. This term is occasionally used for the Shield-leaved Pumpwood (Cecropia peltata).
Tabebuia
Flowering Araguaney or ipê-amarelo (Tabebuia chrysantha) in central Brazil
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Asterids
Order: Lamiales
Family: Bignoniaceae
Tribe: Tecomeae
Genus: Tabebuia
Gomez
Species
Nearly 100.
Tabebuia is a neotropical genus of about 100 species in the tribe Tecomeae of the family Bignoniaceae. The species range from northern Mexico and the Antilles south to northern Argentina and central Venezuela, including the Caribbean islands of Hispaniola (Dominican Republic and Haiti) and Cuba. Well-known common names include Ipê, Poui, trumpet trees and pau d'arco.
They are large shrubs and trees growing to 5 to 50 m (16 to 160 ft.) tall depending on the species; many species are dry-season deciduous but some are evergreen. The leaves are opposite pairs, complex or palmately compound with 3–7 leaflets.
Tabebuia is a notable flowering tree. The flowers are 3 to 11 cm (1 to 4 in.) wide and are produced in dense clusters. They present a cupular calyx campanulate to tubular, truncate, bilabiate or 5-lobed. Corolla colors vary between species ranging from white, light pink, yellow, lavender, magenta, or red. The outside texture of the flower tube is either glabrous or pubescentThe fruit is a dehiscent pod, 10 to 50 cm (4 to 20 in.) long, containing numerous—in some species winged—seeds. These pods often remain on the tree through dry season until the beginning of the rainy.
Species in this genus are important as timber trees. The wood is used for furniture, decking, and other outdoor uses. It is increasingly popular as a decking material due to its insect resistance and durability. By 2007, FSC-certified ipê wood had become readily available on the market, although certificates are occasionally forged.
Tabebuia is widely used as ornamental tree in the tropics in landscaping gardens, public squares, and boulevards due to its impressive and colorful flowering. Many flowers appear on still leafless stems at the end of the dry season, making the floral display more conspicuous. They are useful as honey plants for bees, and are popular with certain hummingbirds. Naturalist Madhaviah Krishnan on the other hand once famously took offense at ipé grown in India, where it is not native.
Lapacho teaThe bark of several species has medical properties. The bark is dried, shredded, and then boiled making a bitter or sour-tasting brownish-colored tea. Tea from the inner bark of Pink Ipê (T. impetiginosa) is known as Lapacho or Taheebo. Its main active principles are lapachol, quercetin, and other flavonoids. It is also available in pill form. The herbal remedy is typically used during flu and cold season and for easing smoker's cough. It apparently works as expectorant, by promoting the lungs to cough up and free deeply embedded mucus and contaminants. However, lapachol is rather toxic and therefore a more topical use e.g. as antibiotic or pesticide may be advisable. Other species with significant folk medical use are T. alba and Yellow Lapacho (T. serratifolia)
Tabebuia heteropoda, T. incana, and other species are occasionally used as an additive to the entheogenic drink Ayahuasca.
Mycosphaerella tabebuiae, a plant pathogenic sac fungus, was first discovered on an ipê tree.
Tabebuia alba
Tabebuia anafensis
Tabebuia arimaoensis
Tabebuia aurea – Caribbean Trumpet Tree
Tabebuia bilbergii
Tabebuia bibracteolata
Tabebuia cassinoides
Tabebuia chrysantha – Araguaney, Yellow Ipê, tajibo (Bolivia), ipê-amarelo (Brazil), cañaguate (N Colombia)
Tabebuia chrysotricha – Golden Trumpet Tree
Tabebuia donnell-smithii Rose – Gold Tree, "Prima Vera", Cortez blanco (El Salvador), San Juan (Honduras), palo blanco (Guatemala),duranga (Mexico)
A native of Mexico and Central Americas, considered one of the most colorful of all Central American trees. The leaves are deciduous. Masses of golden-yellow flowers cover the crown after the leaves are shed.
Tabebuia dubia
Tabebuia ecuadorensis
Tabebuia elongata
Tabebuia furfuracea
Tabebuia geminiflora Rizz. & Mattos
Tabebuia guayacan (Seem.) Hemsl.
Tabebuia haemantha
Tabebuia heptaphylla (Vell.) Toledo – tajy
Tabebuia heterophylla – roble prieto
Tabebuia heteropoda
Tabebuia hypoleuca
Tabebuia impetiginosa – Pink Ipê, Pink Lapacho, ipê-cavatã, ipê-comum, ipê-reto, ipê-rosa, ipê-roxo-damata, pau d'arco-roxo, peúva, piúva (Brazil), lapacho negro (Spanish); not "brazilwood"
Tabebuia incana
Tabebuia jackiana
Tabebuia lapacho – lapacho amarillo
Tabebuia orinocensis A.H. Gentry[verification needed]
Tabebuia ochracea
Tabebuia oligolepis
Tabebuia pallida – Cuban Pink Trumpet Tree
Tabebuia platyantha
Tabebuia polymorpha
Tabebuia rosea (Bertol.) DC.[verification needed] (= T. pentaphylla (L.) Hemsley) – Pink Poui, Pink Tecoma, apama, apamate, matilisguate
A popular street tree in tropical cities because of its multi-annular masses of light pink to purple flowers and modest size. The roots are not especially destructive for roads and sidewalks. It is the national tree of El Salvador and the state tree of Cojedes, Venezuela
Tabebuia roseo-alba – White Ipê, ipê-branco (Brazil), lapacho blanco
Tabebuia serratifolia – Yellow Lapacho, Yellow Poui, ipê-roxo (Brazil)
Tabebuia shaferi
Tabebuia striata
Tabebuia subtilis Sprague & Sandwith
Tabebuia umbellata
Tabebuia vellosoi Toledo
Ipê-do-cerrado
Texto, em português, da Wikipédia, a enciclopédia livre.
Ipê-do-cerrado
Classificação científica
Reino: Plantae
Divisão: Magnoliophyta
Classe: Magnoliopsida
Subclasse: Asteridae
Ordem: Lamiales
Família: Bignoniaceae
Género: Tabebuia
Espécie: T. ochracea
Nome binomial
Tabebuia ochracea
(Cham.) Standl. 1832
Sinónimos
Bignonia tomentosa Pav. ex DC.
Handroanthus ochraceus (Cham.) Mattos
Tabebuia chrysantha (Jacq.) G. Nicholson
Tabebuia hypodictyon A. DC.) Standl.
Tabebuia neochrysantha A.H. Gentry
Tabebuia ochracea subsp. heteropoda (A. DC.) A.H. Gentry
Tabebuia ochracea subsp. neochrysantha (A.H. Gentry) A.H. Gentry
Tecoma campinae Kraenzl.
ecoma grandiceps Kraenzl.
Tecoma hassleri Sprague
Tecoma hemmendorffiana Kraenzl.
Tecoma heteropoda A. DC.
Tecoma hypodictyon A. DC.
Tecoma ochracea Cham.
Ipê-do-cerrado é um dos nomes populares da Tabebuia ochracea (Cham.) Standl. 1832, nativa do cerrado brasileiro, no estados de Amazonas, Pará, Maranhão, Piauí, Ceará, Pernambuco, Bahia, Espírito Santo, Goiás, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Rio de Janeiro, São Paulo e Paraná.
Está na lista de espécies ameaçadas do estado de São Paulo, onde é encontrda também no domínio da Mata Atlântica[1].
Ocorre também na Argentina, Paraguai, Bolívia, Equador, Peru, Venezuela, Guiana, El Salvador, Guatemala e Panamá[2].
Há uma espécie homônima descrita por A.H. Gentry em 1992.
Outros nomes populares: ipê-amarelo, ipê-cascudo, ipê-do-campo, ipê-pardo, pau-d'arco-do-campo, piúva, tarumã.
Características
Altura de 6 a 14 m. Tronco tortuso com até 50 cm de diâmetro. Folhas pilosas em ambas as faces, mais na inferior, que é mais clara.
Planta decídua, heliófita, xerófita, nativa do cerrado em solos bem drenados.
Floresce de julho a setembro. Os frutos amadurecem de setembro a outubro.
FloresProduz grande quantidade de sementes leves, aladas com pequenas reservas, e que perdem a viabilidade em menos de 90 dias após coleta. A sua conservação vem sendo estudada em termos de determinação da condição ideal de armazenamento, e tem demonstrado a importância de se conhecer o comportamento da espécie quando armazenada com diferentes teores de umidade inicial, e a umidade de equilíbrio crítica para a espécie (KANO; MÁRQUEZ & KAGEYAMA, 1978). As levíssimas sementes aladas da espécie não necessitam de quebra de dormência. Podem apenas ser expostas ao sol por cerca de 6 horas e semeadas diretamente nos saquinhos. A germinação ocorre após 30 dias e de 80%. As sementes são ortodoxas e há aproximadamente 72 000 sementes em cada quilo.
O desenvolvimento da planta é rápido.
Como outros ipês, a madeira é usada em tacos, assoalhos, e em dormentes e postes. Presta-se também para peças torneadas e instrumento musicais.
Tabebuia alba (Ipê-Amarelo)
Texto, em português, produzido pela Acadêmica Giovana Beatriz Theodoro Marto
Supervisão e orientação do Prof. Luiz Ernesto George Barrichelo e do Eng. Paulo Henrique Müller
Atualizado em 10/07/2006
O ipê amarelo é a árvore brasileira mais conhecida, a mais cultivada e, sem dúvida nenhuma, a mais bela. É na verdade um complexo de nove ou dez espécies com características mais ou menos semelhantes, com flores brancas, amarelas ou roxas. Não há região do país onde não exista pelo menos uma espécie dele, porém a existência do ipê em habitat natural nos dias atuais é rara entre a maioria das espécies (LORENZI,2000).
A espécie Tabebuia alba, nativa do Brasil, é uma das espécies do gênero Tabebuia que possui “Ipê Amarelo” como nome popular. O nome alba provém de albus (branco em latim) e é devido ao tomento branco dos ramos e folhas novas.
As árvores desta espécie proporcionam um belo espetáculo com sua bela floração na arborização de ruas em algumas cidades brasileiras. São lindas árvores que embelezam e promovem um colorido no final do inverno. Existe uma crença popular de que quando o ipê-amarelo floresce não vão ocorrer mais geadas. Infelizmente, a espécie é considerada vulnerável quanto à ameaça de extinção.
A Tabebuia alba, natural do semi-árido alagoano está adaptada a todas as regiões fisiográficas, levando o governo, por meio do Decreto nº 6239, a transformar a espécie como a árvore símbolo do estado, estando, pois sob a sua tutela, não mais podendo ser suprimida de seus habitats naturais.
Taxonomia
Família: Bignoniaceae
Espécie: Tabebuia Alba (Chamiso) Sandwith
Sinonímia botânica: Handroanthus albus (Chamiso) Mattos; Tecoma alba Chamisso
Outros nomes vulgares: ipê-amarelo, ipê, aipê, ipê-branco, ipê-mamono, ipê-mandioca, ipê-ouro, ipê-pardo, ipê-vacariano, ipê-tabaco, ipê-do-cerrado, ipê-dourado, ipê-da-serra, ipezeiro, pau-d’arco-amarelo, taipoca.
Aspectos Ecológicos
O ipê-amarelo é uma espécie heliófita (Planta adaptada ao crescimento em ambiente aberto ou exposto à luz direta) e decídua (que perde as folhas em determinada época do ano). Pertence ao grupo das espécies secundárias iniciais (DURIGAN & NOGUEIRA, 1990).
Abrange a Floresta Pluvial da Mata Atlântica e da Floresta Latifoliada Semidecídua, ocorrendo principalmente no interior da Floresta Primária Densa. É característica de sub-bosques dos pinhais, onde há regeneração regular.
Informações Botânicas
Morfologia
As árvores de Tabebuia alba possuem cerca de 30 metros de altura. O tronco é reto ou levemente tortuoso, com fuste de 5 a 8 m de altura. A casca externa é grisáceo-grossa, possuindo fissuras longitudinais esparas e profundas. A coloração desta é cinza-rosa intenso, com camadas fibrosas, muito resistentes e finas, porém bem distintas.
Com ramos grossos, tortuosos e compridos, o ipê-amarelo possui copa alongada e alargada na base. As raízes de sustentação e absorção são vigorosas e profundas.
As folhas, deciduais, são opostas, digitadas e compostas. A face superior destas folhas é verde-escura, e, a face inferior, acinzentada, sendo ambas as faces tomentosas. Os pecíolos das folhas medem de 2,5 a 10 cm de comprimento. Os folíolos, geralmente, apresentam-se em número de 5 a 7, possuindo de 7 a 18 cm de comprimento por 2 a 6 cm de largura. Quando jovem estes folíolos são densamente pilosos em ambas as faces. O ápice destes é pontiagudo, com base arredondada e margem serreada.
As flores, grandes e lanceoladas, são de coloração amarelo-ouro. Possuem em média 8X15 cm.
Quanto aos frutos, estes possuem forma de cápsula bivalvar e são secos e deiscentes. Do tipo síliqua, lembram uma vagem. Medem de 15 a 30 cm de comprimento por 1,5 a 2,5 cm de largura. As valvas são finamente tomentosas com pêlos ramificados. Possuem grande quantidade de sementes.
As sementes são membranáceas brilhantes e esbranquiçadas, de coloração marrom. Possuem de 2 a 3 cm de comprimento por 7 a 9 mm de largura e são aladas.
Reprodução
A espécie é caducifólia e a queda das folhas coincide com o período de floração. A floração inicia-se no final de agosto, podendo ocorrer alguma variação devido a fenômenos climáticos. Como a espécie floresce no final do inverno é influenciada pela intensidade do mesmo. Quanto mais frio e seco for o inverno, maior será a intensidade da florada do ipê amarelo.
As flores por sua exuberância, atraem abelhas e pássaros, principalmente beija-flores que são importantes agentes polinizadores. Segundo CARVALHO (2003), a espécie possui como vetor de polinização a abelha mamangava (Bombus morio).
As sementes são dispersas pelo vento.
A planta é hermafrodita, e frutifica nos meses de setembro, outubro, novembro, dezembro, janeiro e fevereiro, dependendo da sua localização. Em cultivo, a espécie inicia o processo reprodutivo após o terceiro ano.
Ocorrência Natural
Ocorre naturalmente na Floresta Estaciobal Semidecicual, Floresta de Araucária e no Cerrado.
Segundo o IBGE, a Tabebuia alba (Cham.) Sandw. é uma árvore do Cerrado, Cerradão e Mata Seca. Apresentando-se nos campos secos (savana gramíneo-lenhosa), próximo às escarpas.
Clima
Segundo a classificação de Köppen, o ipê-amarelo abrange locais de clima tropical (Aw), subtropical úmido (Cfa), sutropical de altitude (Cwa e Cwb) e temperado.
A T.alba pode tolerar até 81 geadas em um ano. Ocorre em locais onde a temperatura média anual varia de 14,4ºC como mínimo e 22,4ºC como máximo.
Solo
A espécie prefere solos úmidos, com drenagem lenta e geralmente não muito ondulados (LONGHI, 1995).
Aparece em terras de boa à média fertilidade, em solos profundos ou rasos, nas matas e raramente cerradões (NOGUEIRA, 1977).
Pragas e Doenças
De acordo com CARVALHO (2003), possui como praga a espécie de coleópteros Cydianerus bohemani da família Curculionoideae e um outro coleóptero da família Chrysomellidae. Apesar da constatação de elevados índices populacionais do primeiro, os danos ocasionados até o momento são leves. Nas praças e ruas de Curitiba - PR, 31% das árvores foram atacadas pela Cochonilha Ceroplastes grandis.
ZIDKO (2002), ao estudar no município de Piracicaba a associação de coleópteros em espécies arbóreas, verificou a presença de insetos adultos da espécie Sitophilus linearis da família de coleópteros, Curculionidae, em estruturas reprodutivas. Os insetos adultos da espécie emergiram das vagens do ipê, danificando as sementes desta espécie nativa.
ANDRADE (1928) assinalou diversas espécies de Cerambycidae atacando essências florestais vivas, como ingazeiro, cinamomo, cangerana, cedro, caixeta, jacarandá, araribá, jatobá, entre outras como o ipê amarelo.
A Madeira
A Tabebuia alba produz madeira de grande durabilidade e resistência ao apodrecimento (LONGHI,1995).
MANIERI (1970) caracteriza o cerne desta espécie como de cor pardo-havana-claro, pardo-havan-escuro, ou pardo-acastanhado, com reflexos esverdeados. A superfície da madeira é irregularmente lustrosa, lisa ao tato, possuindo textura media e grã-direita.
Com densidade entre 0,90 e 1,15 grama por centímetro cúbico, a madeira é muito dura (LORENZI, 1992), apresentando grande dificuldade ao serrar.
A madeira possui cheiro e gosto distintos. Segundo LORENZI (1992), o cheiro característico é devido à presença da substância lapachol, ou ipeína.
Usos da Madeira
Sendo pesada, com cerne escuro, adquire grande valor comercial na marcenaria e carpintaria. Também é utilizada para fabricação de dormentes, moirões, pontes, postes, eixos de roda, varais de carroça, moendas de cana, etc.
Produtos Não-Madeireiros
A entrecasca do ipê-amarelo possui propriedades terapêuticas como adstringente, usada no tratamento de garganta e estomatites. É também usada como diurético.
O ipê-amarelo possui flores melíferas e que maduras podem ser utilizadas na alimentação humana.
Outros Usos
É comumente utilizada em paisagismo de parques e jardins pela beleza e porte. Além disso, é muito utilizada na arborização urbana.
Segundo MOREIRA & SOUZA (1987), o ipê-amarelo costuma povoar as beiras dos rios sendo, portanto, indicado para recomposição de matas ciliares. MARTINS (1986), também cita a espécie para recomposição de matas ciliares da Floresta Estacional Semidecidual, abrangendo alguns municípios das regiões Norte, Noroeste e parte do Oeste do Estado do Paraná.
Aspectos Silviculturais
Possui a tendência a crescer reto e sem bifurcações quando plantado em reflorestamento misto, pois é espécie monopodial. A desrrama se faz muito bem e a cicatrização é boa. Sendo assim, dificilmente encopa quando nova, a não ser que seja plantado em parques e jardins.
Ao ser utilizada em arborização urbana, o ipê amarelo requer podas de condução com freqüência mediana.
Espécie heliófila apresenta a pleno sol ramificação cimosa, registrando-se assim dicotomia para gema apical. Deve ser preconizada, para seu melhor aproveitamento madeireiro, podas de formação usuais (INQUE et al., 1983).
Produção de Mudas
A propagação deve realizada através de enxertia.
Os frutos devem ser coletados antes da dispersão, para evitar a perda de sementes. Após a coleta as sementes são postas em ambiente ventilado e a extração é feita manualmente. As sementes do ipê amarelo são ortodoxas, mantendo a viabilidade natural por até 3 meses em sala e por até 9 meses em vidro fechado, em câmara fria.
A condução das mudas deve ser feita a pleno sol. A muda atinge cerca de 30 cm em 9 meses, apresentando tolerância ao sol 3 semanas após a germinação.
Sementes
Os ipês, espécies do gênero Tabebuia, produzem uma grande quantidade de sementes leves, aladas com pequenas reservas, e que perdem a viabilidade em poucos dias após a sua coleta. A sua conservação vem sendo estudada em termos de determinação da condição ideal de armazenamento, e tem demonstrado a importância de se conhecer o comportamento da espécie quando armazenada com diferentes teores de umidade inicial, e a umidade de equilíbrio crítica para a espécie (KANO; MÁRQUEZ & KAGEYAMA, 1978).
As levíssimas sementes aladas da espécie não necessitam de quebra de dormência. Podem apenas ser expostas ao sol por cerca de 6 horas e semeadas diretamente nos saquinhos. A quebra natural leva cerca de 3 meses e a quebra na câmara leva 9 meses. A germinação ocorre após 30 dias e de 80%.
As sementes são ortodoxas e há aproximadamente 87000 sementes em cada quilo.
Preço da Madeira no Mercado
O preço médio do metro cúbico de pranchas de ipê no Estado do Pará cotado em Julho e Agosto de 2005 foi de R$1.200,00 o preço mínimo, R$ 1509,35 o médio e R$ 2.000,00 o preço máximo (CEPEA,2005).
Femme Hmong Rouge en bord de route entre Dien Bien Phu et Lai Chau, Nord du Vietnam
Les Hmong encore appelés Méo, ou Miao , sont originaires des régions montagneuses du sud de la Chine (principalement la province du Guizhou), où ils sont encore présents ainsi qu'au nord du Viêt Nam et du Laos.
Le souci de préserver leur identité culturelle et leur indépendance les ont amenés à s'engager dans divers conflits. Au XXe siècle, en particulier, ils aidèrent les Français pendant la guerre d'Indochine puis les Américains pendant la la guerre du Vietnam. A l’avènement des régimes communistes dans ces pays un nombre important de Hmong se sont réfugiés dans des pays d'accueil, principalement les États-Unis, la France et l'Australie. Mais la majeure partie d’entre eux vit encore en Asie du Sud-Est
Les Hmongs sont animistes ou chrétiens. La langue hmong appartient à la famille des langues hmong-mien, encore appelée « miao-yao »
Les costumes traditionnels de cette ethnie sont très polymorphes mais ils ont en commun la richesse du décor brodé.
On distingue plusieurs groupes dans cette ethnie dont les plus connus sont les Hmongs Fleurs ou Hmong Bariolés dans la région de Bac Ha, mais aussi les Hmongs Noirs dans la région de Sapa et les Hmongs Rouge dans la région de Lai Chau. J'ai déjà eu l'occasion de présenter précédemment plusieurs d'entre eux.
A new store is not rightfully opened without a party, so I would like to invite you all to join us. Save the date, May 14th from 12 to 4pm SLT, join us and spend some time listening to the tunes of DJs Zarabella Ming and Forever Mysterious, and take the chance of winning furniture and toys by Polymorph.
Put on your best victorian attire, goth or whatever your feel like wearing that night, and spend some time with us!
At the Luna Park giggle palace in St. Kilda, Melbourne, Victoria. This was taken during an Australian Costumers Guld picnic by the seaside late last century.... or was it the century BEFORE that? :) Historical period bathing costumes were the order of the day, naturally this was my take on the concept.
That's me in my deep sea diver costume, the full story of which you'll find elsewhere in this photoset.
Recently I found myself revisting these pictures for an article for a magazine and I found this colour version of the black and white picture stashed away. I liked the painted horses so much I decided to post it as well.
Original picture by Gail Adams.
Femme de l'ethnie Dao (ou Dzao) Rouge
Marché de Sapa, nord du Vietnam
Avec la ligne de train et désormais l'autoroute la reliant à Hanoï, Sapa est devenue une destination touristique très fréquentée et la ville a beaucoup perdu de son charme, même si les promenades dans les rizières alentour restent bien agréables. Le petit marché permanent sous la halle permet de croiser encore de pittoresques personnages
Avec les Hmong Noir, les Dao Rouge constituent l'une des ethnies les mieux représentées dans la région de Sapa.
L’ethnie Dao (ou Dzao) est très polymorphe : Dao Rouge, Dao à Tunique, Dao Noir, Dao à pantalon blanc… .J'en ai déjà posté et j'en posterai encore plusieurs exemples.
Emigrée de Chine du sud depuis le XIIIème siècle, l’ethnie Dao habite au Nord du Vietnam dans les provinces de la moyenne et haute région. Elle occupe des terres à toute altitude et vit en bons voisins avec d’autres ethnies comme les Hmong, Tay, Thaï, … Ses ressources principales proviennent de l’agriculture, (riz et mais)
Souvent chez les femmes, les cheveux sont relevés en chignon sur la nuque ou rasés sur le pourtour à l’exception d’une touffe au sommet de la tête
Pratiquant le culte des ancêtres, les Dao adhèrent également au Taoïsme.
♥♥ NEW REBIRTH GAIA Head : Viper Shape + Style card ♥♥
Come and test the new REBIRTH GAIA head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins - System, Lelutka, Genus, Catwa)
maps.secondlife.com/secondlife/REBIRTH%20Forever/47/79/21
(more style cards in-world and bots exposition all age and style)
Link to the style card :
marketplace.secondlife.com/p/Viper-girl-Shape-Style-card-...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/rebirth_sl
CANON T1i + tub extension 4X + Canon 24-105mm f/4 L
A butterfly is a mainly day-flying insect of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, the butterfly's life cycle consists of four parts, egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.
Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies (e.g., Harvesters) eat harmful insects. Culturally, butterflies are a popular motif in the visual and literary arts.
♥♥ NEW REBIRTH Genesis Eden Head : Clara Shape + Style card ♥♥
Come and test the new REBIRTH Genesis head, also compatible with other female bodies
(Reminder : Polymorph head = 80% of BOM skins - System, Lelutka, Genus, Catwa)
maps.secondlife.com/secondlife/Endless%20Love/15/64/22
(more style cards in-world and bots exposition all age and style)
Link to the FROG&CO style card :
marketplace.secondlife.com/p/Clara-girl-Shape-Style-card-...
... Follow us ...
Marketplace REBIRTH : marketplace.secondlife.com/stores/229597
FlickR : www.flickr.com/photos/187471721@N05/
Just having fun with my little egg heads I am making. Aluminium, Opaque Apple Green (also known as the Polymorph) and Clear. Still imperfections but a great thing to play with and practice with. They are going to be a robot, a green regular gal, and prob a clear robot. My Aluminium gal already has a donor body but have to sort out the other two :)
Amanita muscaria, commonly known as the fly agaric or fly amanita, is a basidiomycete of the genus Amanita. It is a large white-gilled, white-spotted, and usually red mushroom.
Despite its easily distinguishable features, A. muscaria is a fungus with several known variations, or subspecies. These subspecies are slightly different, some having yellow or white caps, but are all usually called fly agarics, most often recognizable by their notable white spots. Recent DNA fungi research, however, has shown that some mushrooms called 'fly agaric' are in fact unique species, such as A. persicina (the peach-colored fly agaric).
Native throughout the temperate and boreal regions of the Northern Hemisphere, A. muscaria has been unintentionally introduced to many countries in the Southern Hemisphere, generally as a symbiont with pine and birch plantations, and is now a true cosmopolitan species. It associates with various deciduous and coniferous trees.
Although poisonous, death due to poisoning from A. muscaria ingestion is quite rare. Parboiling twice with water draining weakens its toxicity and breaks down the mushroom's psychoactive substances; it is eaten in parts of Europe, Asia, and North America. All A. muscaria varieties, but in particular A. muscaria var. muscaria, are noted for their hallucinogenic properties, with the main psychoactive constituents being muscimol and its neurotoxic precursor ibotenic acid. A local variety of the mushroom was used as an intoxicant and entheogen by the indigenous peoples of Siberia.
Arguably the most iconic toadstool species, the fly agaric is one of the most recognizable and widely encountered in popular culture, including in video games—for example, the frequent use of a recognizable A. muscaria in the Mario franchise (e.g. its Super Mushroom power-up)—and television—for example, the houses in The Smurfs franchise. There have been cases of children admitted to hospitals after consuming this poisonous mushroom; the children may have been attracted to it because of its pop-culture associations.
Taxonomy
The name of the mushroom in many European languages is thought to derive from its use as an insecticide when sprinkled in milk. This practice has been recorded from Germanic- and Slavic-speaking parts of Europe, as well as the Vosges region and pockets elsewhere in France, and Romania. Albertus Magnus was the first to record it in his work De vegetabilibus some time before 1256, commenting vocatur fungus muscarum, eo quod in lacte pulverizatus interficit muscas, "it is called the fly mushroom because it is powdered in milk to kill flies."
The 16th-century Flemish botanist Carolus Clusius traced the practice of sprinkling it into milk to Frankfurt in Germany, while Carl Linnaeus, the "father of taxonomy", reported it from Småland in southern Sweden, where he had lived as a child. He described it in volume two of his Species Plantarum in 1753, giving it the name Agaricus muscarius, the specific epithet deriving from Latin musca meaning "fly". It gained its current name in 1783, when placed in the genus Amanita by Jean-Baptiste Lamarck, a name sanctioned in 1821 by the "father of mycology", Swedish naturalist Elias Magnus Fries. The starting date for all the mycota had been set by general agreement as January 1, 1821, the date of Fries's work, and so the full name was then Amanita muscaria (L.:Fr.) Hook. The 1987 edition of the International Code of Botanical Nomenclature changed the rules on the starting date and primary work for names of fungi, and names can now be considered valid as far back as May 1, 1753, the date of publication of Linnaeus's work. Hence, Linnaeus and Lamarck are now taken as the namers of Amanita muscaria (L.) Lam..
The English mycologist John Ramsbottom reported that Amanita muscaria was used for getting rid of bugs in England and Sweden, and bug agaric was an old alternative name for the species. French mycologist Pierre Bulliard reported having tried without success to replicate its fly-killing properties in his work Histoire des plantes vénéneuses et suspectes de la France (1784), and proposed a new binomial name Agaricus pseudo-aurantiacus because of this. One compound isolated from the fungus is 1,3-diolein (1,3-di(cis-9-octadecenoyl)glycerol), which attracts insects. It has been hypothesised that the flies intentionally seek out the fly agaric for its intoxicating properties. An alternative derivation proposes that the term fly- refers not to insects as such but rather the delirium resulting from consumption of the fungus. This is based on the medieval belief that flies could enter a person's head and cause mental illness. Several regional names appear to be linked with this connotation, meaning the "mad" or "fool's" version of the highly regarded edible mushroom Amanita caesarea. Hence there is oriol foll "mad oriol" in Catalan, mujolo folo from Toulouse, concourlo fouolo from the Aveyron department in Southern France, ovolo matto from Trentino in Italy. A local dialect name in Fribourg in Switzerland is tsapi de diablhou, which translates as "Devil's hat".
Classification
Amanita muscaria is the type species of the genus. By extension, it is also the type species of Amanita subgenus Amanita, as well as section Amanita within this subgenus. Amanita subgenus Amanita includes all Amanita with inamyloid spores. Amanita section Amanita includes the species with patchy universal veil remnants, including a volva that is reduced to a series of concentric rings, and the veil remnants on the cap to a series of patches or warts. Most species in this group also have a bulbous base. Amanita section Amanita consists of A. muscaria and its close relatives, including A. pantherina (the panther cap), A. gemmata, A. farinosa, and A. xanthocephala. Modern fungal taxonomists have classified Amanita muscaria and its allies this way based on gross morphology and spore inamyloidy. Two recent molecular phylogenetic studies have confirmed this classification as natural.
Description
A large, conspicuous mushroom, Amanita muscaria is generally common and numerous where it grows, and is often found in groups with basidiocarps in all stages of development. Fly agaric fruiting bodies emerge from the soil looking like white eggs. After emerging from the ground, the cap is covered with numerous small white to yellow pyramid-shaped warts. These are remnants of the universal veil, a membrane that encloses the entire mushroom when it is still very young. Dissecting the mushroom at this stage reveals a characteristic yellowish layer of skin under the veil, which helps identification. As the fungus grows, the red colour appears through the broken veil and the warts become less prominent; they do not change in size, but are reduced relative to the expanding skin area. The cap changes from globose to hemispherical, and finally to plate-like and flat in mature specimens. Fully grown, the bright red cap is usually around 8–20 centimetres (3–8 inches) in diameter, although larger specimens have been found. The red colour may fade after rain and in older mushrooms.
The free gills are white, as is the spore print. The oval spores measure 9–13 by 6.5–9 μm; they do not turn blue with the application of iodine. The stipe is white, 5–20 cm (2–8 in) high by 1–2 cm (1⁄2–1 in) wide, and has the slightly brittle, fibrous texture typical of many large mushrooms. At the base is a bulb that bears universal veil remnants in the form of two to four distinct rings or ruffs. Between the basal universal veil remnants and gills are remnants of the partial veil (which covers the gills during development) in the form of a white ring. It can be quite wide and flaccid with age. There is generally no associated smell other than a mild earthiness.
Although very distinctive in appearance, the fly agaric has been mistaken for other yellow to red mushroom species in the Americas, such as Armillaria cf. mellea and the edible A. basii—a Mexican species similar to A. caesarea of Europe. Poison control centres in the U.S. and Canada have become aware that amarill (Spanish for 'yellow') is a common name for the A. caesarea-like species in Mexico. A. caesarea is distinguished by its entirely orange to red cap, which lacks the numerous white warty spots of the fly agaric (though these sometimes wash away during heavy rain). Furthermore, the stem, gills and ring of A. caesarea are bright yellow, not white. The volva is a distinct white bag, not broken into scales. In Australia, the introduced fly agaric may be confused with the native vermilion grisette (Amanita xanthocephala), which grows in association with eucalypts. The latter species generally lacks the white warts of A. muscaria and bears no ring. Additionally, immature button forms resemble puffballs.
Controversy
Amanita muscaria var. formosa is now a synonym for Amanita muscaria var. guessowii.
Amanita muscaria varies considerably in its morphology, and many authorities recognize several subspecies or varieties within the species. In The Agaricales in Modern Taxonomy, German mycologist Rolf Singer listed three subspecies, though without description: A. muscaria ssp. muscaria, A. muscaria ssp. americana, and A. muscaria ssp. flavivolvata.
However, a 2006 molecular phylogenetic study of different regional populations of A. muscaria by mycologist József Geml and colleagues found three distinct clades within this species representing, roughly, Eurasian, Eurasian "subalpine", and North American populations. Specimens belonging to all three clades have been found in Alaska; this has led to the hypothesis that this was the centre of diversification for this species. The study also looked at four named varieties of the species: var. alba, var. flavivolvata, var. formosa (including var. guessowii), and var. regalis from both areas. All four varieties were found within both the Eurasian and North American clades, evidence that these morphological forms are polymorphisms rather than distinct subspecies or varieties. Further molecular study by Geml and colleagues published in 2008 show that these three genetic groups, plus a fourth associated with oak–hickory–pine forest in the southeastern United States and two more on Santa Cruz Island in California, are delineated from each other enough genetically to be considered separate species. Thus A. muscaria as it stands currently is, evidently, a species complex. The complex also includes at least three other closely related taxa that are currently regarded as species: A. breckonii is a buff-capped mushroom associated with conifers from the Pacific Northwest, and the brown-capped A. gioiosa and A. heterochroma from the Mediterranean Basin and from Sardinia respectively. Both of these last two are found with Eucalyptus and Cistus trees, and it is unclear whether they are native or introduced from Australia.
Distribution and habitat
A. muscaria is a cosmopolitan mushroom, native to conifer and deciduous woodlands throughout the temperate and boreal regions of the Northern Hemisphere, including higher elevations of warmer latitudes in regions such as Hindu Kush, the Mediterranean and also Central America. A recent molecular study proposes that it had an ancestral origin in the Siberian–Beringian region in the Tertiary period, before radiating outwards across Asia, Europe and North America. The season for fruiting varies in different climates: fruiting occurs in summer and autumn across most of North America, but later in autumn and early winter on the Pacific coast. This species is often found in similar locations to Boletus edulis, and may appear in fairy rings. Conveyed with pine seedlings, it has been widely transported into the southern hemisphere, including Australia, New Zealand, South Africa and South America, where it can be found in the Brazilian states of Paraná, São Paulo, Minas Gerais, Rio Grande do Sul.
Ectomycorrhizal, A. muscaria forms symbiotic relationships with many trees, including pine, oak, spruce, fir, birch, and cedar. Commonly seen under introduced trees, A. muscaria is the fungal equivalent of a weed in New Zealand, Tasmania and Victoria, forming new associations with southern beech (Nothofagus). The species is also invading a rainforest in Australia, where it may be displacing the native species. It appears to be spreading northwards, with recent reports placing it near Port Macquarie on the New South Wales north coast. It was recorded under silver birch (Betula pendula) in Manjimup, Western Australia in 2010. Although it has apparently not spread to eucalypts in Australia, it has been recorded associating with them in Portugal. Commonly found throughout the great Southern region of western Australia, it is regularly found growing on Pinus radiata.
Toxicity
a tall red mushroom with a few white spots on the cap
Mature. The white spots may wash off with heavy rainfall.
A. muscaria poisoning has occurred in young children and in people who ingested the mushrooms for a hallucinogenic experience, or who confused it with an edible species.
A. muscaria contains several biologically active agents, at least one of which, muscimol, is known to be psychoactive. Ibotenic acid, a neurotoxin, serves as a prodrug to muscimol, with a small amount likely converting to muscimol after ingestion. An active dose in adults is approximately 6 mg muscimol or 30 to 60 mg ibotenic acid; this is typically about the amount found in one cap of Amanita muscaria. The amount and ratio of chemical compounds per mushroom varies widely from region to region and season to season, which can further confuse the issue. Spring and summer mushrooms have been reported to contain up to 10 times more ibotenic acid and muscimol than autumn fruitings.
Deaths from A. muscaria have been reported in historical journal articles and newspaper reports, but with modern medical treatment, fatal poisoning from ingesting this mushroom is extremely rare. Many books list A. muscaria as deadly, but according to David Arora, this is an error that implies the mushroom is far more toxic than it is. Furthermore, The North American Mycological Association has stated that there were "no reliably documented cases of death from toxins in these mushrooms in the past 100 years".
The active constituents of this species are water-soluble, and boiling and then discarding the cooking water at least partly detoxifies A. muscaria. Drying may increase potency, as the process facilitates the conversion of ibotenic acid to the more potent muscimol. According to some sources, once detoxified, the mushroom becomes edible. Patrick Harding describes the Sami custom of processing the fly agaric through reindeer.
Pharmacology
Ibotenic acid, a prodrug to muscimol found in A. muscaria
Muscarine, discovered in 1869, was long thought to be the active hallucinogenic agent in A. muscaria. Muscarine binds with muscarinic acetylcholine receptors leading to the excitation of neurons bearing these receptors. The levels of muscarine in Amanita muscaria are minute when compared with other poisonous fungi such as Inosperma erubescens, the small white Clitocybe species C. dealbata and C. rivulosa. The level of muscarine in A. muscaria is too low to play a role in the symptoms of poisoning.
The major toxins involved in A. muscaria poisoning are muscimol (3-hydroxy-5-aminomethyl-1-isoxazole, an unsaturated cyclic hydroxamic acid) and the related amino acid ibotenic acid. Muscimol is the product of the decarboxylation (usually by drying) of ibotenic acid. Muscimol and ibotenic acid were discovered in the mid-20th century. Researchers in England, Japan, and Switzerland showed that the effects produced were due mainly to ibotenic acid and muscimol, not muscarine. These toxins are not distributed uniformly in the mushroom. Most are detected in the cap of the fruit, a moderate amount in the base, with the smallest amount in the stalk. Quite rapidly, between 20 and 90 minutes after ingestion, a substantial fraction of ibotenic acid is excreted unmetabolised in the urine of the consumer. Almost no muscimol is excreted when pure ibotenic acid is eaten, but muscimol is detectable in the urine after eating A. muscaria, which contains both ibotenic acid and muscimol.
Ibotenic acid and muscimol are structurally related to each other and to two major neurotransmitters of the central nervous system: glutamic acid and GABA respectively. Ibotenic acid and muscimol act like these neurotransmitters, muscimol being a potent GABAA agonist, while ibotenic acid is an agonist of NMDA glutamate receptors and certain metabotropic glutamate receptors which are involved in the control of neuronal activity. It is these interactions which are thought to cause the psychoactive effects found in intoxication.
Muscazone is another compound that has more recently been isolated from European specimens of the fly agaric. It is a product of the breakdown of ibotenic acid by ultra-violet radiation. Muscazone is of minor pharmacological activity compared with the other agents. Amanita muscaria and related species are known as effective bioaccumulators of vanadium; some species concentrate vanadium to levels of up to 400 times those typically found in plants. Vanadium is present in fruit-bodies as an organometallic compound called amavadine. The biological importance of the accumulation process is unknown.
Symptoms
Fly agarics are best known for the unpredictability of their effects. Depending on habitat and the amount ingested per body weight, effects can range from mild nausea and twitching to drowsiness, cholinergic crisis-like effects (low blood pressure, sweating and salivation), auditory and visual distortions, mood changes, euphoria, relaxation, ataxia, and loss of equilibrium (like with tetanus.)
In cases of serious poisoning the mushroom causes delirium, somewhat similar in effect to anticholinergic poisoning (such as that caused by Datura stramonium), characterised by bouts of marked agitation with confusion, hallucinations, and irritability followed by periods of central nervous system depression. Seizures and coma may also occur in severe poisonings. Symptoms typically appear after around 30 to 90 minutes and peak within three hours, but certain effects can last for several days. In the majority of cases recovery is complete within 12 to 24 hours. The effect is highly variable between individuals, with similar doses potentially causing quite different reactions. Some people suffering intoxication have exhibited headaches up to ten hours afterwards.[56] Retrograde amnesia and somnolence can result following recovery.
Treatment
Medical attention should be sought in cases of suspected poisoning. If the delay between ingestion and treatment is less than four hours, activated charcoal is given. Gastric lavage can be considered if the patient presents within one hour of ingestion. Inducing vomiting with syrup of ipecac is no longer recommended in any poisoning situation.
There is no antidote, and supportive care is the mainstay of further treatment for intoxication. Though sometimes referred to as a deliriant and while muscarine was first isolated from A. muscaria and as such is its namesake, muscimol does not have action, either as an agonist or antagonist, at the muscarinic acetylcholine receptor site, and therefore atropine or physostigmine as an antidote is not recommended. If a patient is delirious or agitated, this can usually be treated by reassurance and, if necessary, physical restraints. A benzodiazepine such as diazepam or lorazepam can be used to control combativeness, agitation, muscular overactivity, and seizures. Only small doses should be used, as they may worsen the respiratory depressant effects of muscimol. Recurrent vomiting is rare, but if present may lead to fluid and electrolyte imbalances; intravenous rehydration or electrolyte replacement may be required. Serious cases may develop loss of consciousness or coma, and may need intubation and artificial ventilation. Hemodialysis can remove the toxins, although this intervention is generally considered unnecessary. With modern medical treatment the prognosis is typically good following supportive treatment.
Uses
The wide range of psychoactive effects have been variously described as depressant, sedative-hypnotic, psychedelic, dissociative, or deliriant; paradoxical effects such as stimulation may occur however. Perceptual phenomena such as synesthesia, macropsia, and micropsia may occur; the latter two effects may occur either simultaneously or alternatingly, as part of Alice in Wonderland syndrome, collectively known as dysmetropsia, along with related distortions pelopsia and teleopsia. Some users report lucid dreaming under the influence of its hypnotic effects. Unlike Psilocybe cubensis, A. muscaria cannot be commercially cultivated, due to its mycorrhizal relationship with the roots of pine trees. However, following the outlawing of psilocybin mushrooms in the United Kingdom in 2006, the sale of the still legal A. muscaria began increasing.
Marija Gimbutas reported to R. Gordon Wasson that in remote areas of Lithuania, A. muscaria has been consumed at wedding feasts, in which mushrooms were mixed with vodka. She also reported that the Lithuanians used to export A. muscaria to the Sami in the Far North for use in shamanic rituals. The Lithuanian festivities are the only report that Wasson received of ingestion of fly agaric for religious use in Eastern Europe.
Siberia
A. muscaria was widely used as an entheogen by many of the indigenous peoples of Siberia. Its use was known among almost all of the Uralic-speaking peoples of western Siberia and the Paleosiberian-speaking peoples of the Russian Far East. There are only isolated reports of A. muscaria use among the Tungusic and Turkic peoples of central Siberia and it is believed that on the whole entheogenic use of A. muscaria was not practised by these peoples. In western Siberia, the use of A. muscaria was restricted to shamans, who used it as an alternative method of achieving a trance state. (Normally, Siberian shamans achieve trance by prolonged drumming and dancing.) In eastern Siberia, A. muscaria was used by both shamans and laypeople alike, and was used recreationally as well as religiously. In eastern Siberia, the shaman would take the mushrooms, and others would drink his urine. This urine, still containing psychoactive elements, may be more potent than the A. muscaria mushrooms with fewer negative effects such as sweating and twitching, suggesting that the initial user may act as a screening filter for other components in the mushroom.
The Koryak of eastern Siberia have a story about the fly agaric (wapaq) which enabled Big Raven to carry a whale to its home. In the story, the deity Vahiyinin ("Existence") spat onto earth, and his spittle became the wapaq, and his saliva becomes the warts. After experiencing the power of the wapaq, Raven was so exhilarated that he told it to grow forever on earth so his children, the people, could learn from it. Among the Koryaks, one report said that the poor would consume the urine of the wealthy, who could afford to buy the mushrooms. It was reported that the local reindeer would often follow an individual intoxicated by the muscimol mushroom, and if said individual were to urinate in snow the reindeer would become similarly intoxicated and the Koryak people's would use the drunken state of the reindeer to more easily rope and hunt them.
Other reports and theories
The Finnish historian T. I. Itkonen mentions that A. muscaria was once used among the Sámi peoples. Sorcerers in Inari would consume fly agarics with seven spots. In 1979, Said Gholam Mochtar and Hartmut Geerken published an article in which they claimed to have discovered a tradition of medicinal and recreational use of this mushroom among a Parachi-speaking group in Afghanistan. There are also unconfirmed reports of religious use of A. muscaria among two Subarctic Native American tribes. Ojibwa ethnobotanist Keewaydinoquay Peschel reported its use among her people, where it was known as miskwedo (an abbreviation of the name oshtimisk wajashkwedo (= "red-top mushroom"). This information was enthusiastically received by Wasson, although evidence from other sources was lacking. There is also one account of a Euro-American who claims to have been initiated into traditional Tlicho use of Amanita muscaria. The flying reindeer of Santa Claus, who is called Joulupukki in Finland, could symbolize the use of A. muscaria by Sámi shamans. However, Sámi scholars and the Sámi peoples themselves refute any connection between Santa Claus and Sámi history or culture.
"The story of Santa emerging from a Sámi shamanic tradition has a critical number of flaws," asserts Tim Frandy, assistant professor of Nordic Studies at the University of British Columbia and a member of the Sámi descendent community in North America. "The theory has been widely criticized by Sámi people as a stereotypical and problematic romanticized misreading of actual Sámi culture."
Vikings
The notion that Vikings used A. muscaria to produce their berserker rages was first suggested by the Swedish professor Samuel Ödmann in 1784. Ödmann based his theories on reports about the use of fly agaric among Siberian shamans. The notion has become widespread since the 19th century, but no contemporary sources mention this use or anything similar in their description of berserkers. Muscimol is generally a mild relaxant, but it can create a range of different reactions within a group of people. It is possible that it could make a person angry, or cause them to be "very jolly or sad, jump about, dance, sing or give way to great fright". Comparative analysis of symptoms have, however, since shown Hyoscyamus niger to be a better fit to the state that characterises the berserker rage.
Soma
See also: Botanical identity of Soma-Haoma
In 1968, R. Gordon Wasson proposed that A. muscaria was the soma talked about in the Rigveda of India, a claim which received widespread publicity and popular support at the time. He noted that descriptions of Soma omitted any description of roots, stems or seeds, which suggested a mushroom, and used the adjective hári "dazzling" or "flaming" which the author interprets as meaning red. One line described men urinating Soma; this recalled the practice of recycling urine in Siberia. Soma is mentioned as coming "from the mountains", which Wasson interpreted as the mushroom having been brought in with the Aryan migrants from the north. Indian scholars Santosh Kumar Dash and Sachinanda Padhy pointed out that both eating of mushrooms and drinking of urine were proscribed, using as a source the Manusmṛti. In 1971, Vedic scholar John Brough from Cambridge University rejected Wasson's theory and noted that the language was too vague to determine a description of Soma. In his 1976 survey, Hallucinogens and Culture, anthropologist Peter T. Furst evaluated the evidence for and against the identification of the fly agaric mushroom as the Vedic Soma, concluding cautiously in its favour. Kevin Feeney and Trent Austin compared the references in the Vedas with the filtering mechanisms in the preparation of Amanita muscaria and published findings supporting the proposal that fly-agaric mushrooms could be a likely candidate for the sacrament. Other proposed candidates include Psilocybe cubensis, Peganum harmala, and Ephedra.
Christianity
Philologist, archaeologist, and Dead Sea Scrolls scholar John Marco Allegro postulated that early Christian theology was derived from a fertility cult revolving around the entheogenic consumption of A. muscaria in his 1970 book The Sacred Mushroom and the Cross. This theory has found little support by scholars outside the field of ethnomycology. The book was widely criticized by academics and theologians, including Sir Godfrey Driver, emeritus Professor of Semitic Philology at Oxford University and Henry Chadwick, the Dean of Christ Church, Oxford. Christian author John C. King wrote a detailed rebuttal of Allegro's theory in the 1970 book A Christian View of the Mushroom Myth; he notes that neither fly agarics nor their host trees are found in the Middle East, even though cedars and pines are found there, and highlights the tenuous nature of the links between biblical and Sumerian names coined by Allegro. He concludes that if the theory were true, the use of the mushroom must have been "the best kept secret in the world" as it was so well concealed for two thousand years.
Fly trap
Amanita muscaria is traditionally used for catching flies possibly due to its content of ibotenic acid and muscimol, which lead to its common name "fly agaric". Recently, an analysis of nine different methods for preparing A. muscaria for catching flies in Slovenia have shown that the release of ibotenic acid and muscimol did not depend on the solvent (milk or water) and that thermal and mechanical processing led to faster extraction of ibotenic acid and muscimol.
Culinary
The toxins in A. muscaria are water-soluble: parboiling A. muscaria fruit bodies can detoxify them and render them edible, although consumption of the mushroom as a food has never been widespread. The consumption of detoxified A. muscaria has been practiced in some parts of Europe (notably by Russian settlers in Siberia) since at least the 19th century, and likely earlier. The German physician and naturalist Georg Heinrich von Langsdorff wrote the earliest published account on how to detoxify this mushroom in 1823. In the late 19th century, the French physician Félix Archimède Pouchet was a populariser and advocate of A. muscaria consumption, comparing it to manioc, an important food source in tropical South America that must also be detoxified before consumption.
Use of this mushroom as a food source also seems to have existed in North America. A classic description of this use of A. muscaria by an African-American mushroom seller in Washington, D.C., in the late 19th century is described by American botanist Frederick Vernon Coville. In this case, the mushroom, after parboiling, and soaking in vinegar, is made into a mushroom sauce for steak. It is also consumed as a food in parts of Japan. The most well-known current use as an edible mushroom is in Nagano Prefecture, Japan. There, it is primarily salted and pickled.
A 2008 paper by food historian William Rubel and mycologist David Arora gives a history of consumption of A. muscaria as a food and describes detoxification methods. They advocate that Amanita muscaria be described in field guides as an edible mushroom, though accompanied by a description on how to detoxify it. The authors state that the widespread descriptions in field guides of this mushroom as poisonous is a reflection of cultural bias, as several other popular edible species, notably morels, are also toxic unless properly cooked.
In culture
The red-and-white spotted toadstool is a common image in many aspects of popular culture. Garden ornaments and children's picture books depicting gnomes and fairies, such as the Smurfs, often show fly agarics used as seats, or homes. Fly agarics have been featured in paintings since the Renaissance, albeit in a subtle manner. For instance, in Hieronymus Bosch's painting, The Garden of Earthly Delights, the mushroom can be seen on the left-hand panel of the work. In the Victorian era they became more visible, becoming the main topic of some fairy paintings. Two of the most famous uses of the mushroom are in the Mario franchise (specifically two of the Super Mushroom power-up items and the platforms in several stages which are based on a fly agaric), and the dancing mushroom sequence in the 1940 Disney film Fantasia.
An account of the journeys of Philip von Strahlenberg to Siberia and his descriptions of the use of the mukhomor there was published in English in 1736. The drinking of urine of those who had consumed the mushroom was commented on by Anglo-Irish writer Oliver Goldsmith in his widely read 1762 novel, Citizen of the World. The mushroom had been identified as the fly agaric by this time. Other authors recorded the distortions of the size of perceived objects while intoxicated by the fungus, including naturalist Mordecai Cubitt Cooke in his books The Seven Sisters of Sleep and A Plain and Easy Account of British Fungi. This observation is thought to have formed the basis of the effects of eating the mushroom in the 1865 popular story Alice's Adventures in Wonderland. A hallucinogenic "scarlet toadstool" from Lappland is featured as a plot element in Charles Kingsley's 1866 novel Hereward the Wake based on the medieval figure of the same name. Thomas Pynchon's 1973 novel Gravity's Rainbow describes the fungus as a "relative of the poisonous Destroying angel" and presents a detailed description of a character preparing a cookie bake mixture from harvested Amanita muscaria. Fly agaric shamanism is also explored in the 2003 novel Thursbitch by Alan Garner.
As borboletas são insectos da ordem Lepidoptera classificados nas super-famílias Hesperioidea e Papilionoidea, que constituem o grupo informal Rhopalocera.
As borboletas têm dois pares de asas membranosas cobertas de escamas e peças bucais adaptadas a sucção. Distinguem-se das traças (mariposas) pelas antenas rectilíneas que terminam numa bola, pelos hábitos de vida diurnos, pela metamorfose que decorre dentro de uma crisálida rígida e pelo abdómen fino e alongado. Quando em repouso, as borboletas dobram as suas asas para cima.
As borboletas são importantes polinizadores de diversas espécies de plantas.
O ciclo de vida das borboletas engloba as seguintes etapas:
1) ovo→ fase pré-larval
2) larva→ chamada também de lagarta ou taturana,
3) pupa→ que se desenvolve dentro da crisálida (ou casulo)
4) imago→ fase adulta
_______________________
A butterfly is any of several groups of mainly day-flying insects of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, butterflies' life cycle consists of four parts, egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.
Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. The caterpillars of some butterflies eat harmful insects. A few species are pests because in their larval stages they can damage domestic crops or trees. Culturally, butterflies are a popular motif in the visual and literary arts.
Cet homme qu vaut 35 milliards, c'est Lakshmi Mittal, patron du plus grand groupe sidérurgique mondial, dont l'auteur imagine l'enlèvement à Liège par une bande de pieds nickelés emmenés par un artiste en quête de consécration et un ouvrier fraîchement licencié de la sidérurgie. De ce roman polymorphe, thriller politico-social dont le véritable personnage central est la ville de Liège, le Collectif Mensuel livre une relecture percutante et rock'n roll, multipliant les formes théâtrales et installant un dialogue permanent entre le jeu des acteurs, la création vidéo et la musique live pour mieux en faire ressortir le ravageur humour, l'incroyable justesse de ton et la...terrifiante actualité.
Nicolas Ancion livre un roman polymorphe, qui fleure bon les pieds nickelés, le bassin sidérurgique et "le vieux morceau de new wave industrielle". Il joue avec les genres, les styles et les registres, l’adaptation théâtrale multipliera elle aussi les formes et sera, pour le Collectif Mensuel, l’occasion de poursuivre son exploration d’un théâtre débridé qui fait dialoguer différentes disciplines, telles que le jeu d’acteurs, la musique live ou la création vidéo…
D'après le roman de Nicolas Ancion
Conception et mise en scène : Collectif Mensuel
Avec : Sandrine Bergot, Quentin Halloy, Baptiste Isaia, Philippe Lecrenier, Renaud Riga
Collaboration artistique : Elisabeth Ancion
Scénographie et costumes : Claudine Maus
Création éclairage : Manu Deck
Régie générale : Dylan Schmit
Régie son : Matthew Higuet
Film : Christophe Lecarré
Montage et vidéo: Juliette Achard
Graphisme et Photographie : Dominique Houcmant - Goldo
Attaché de production & diffusion : Adrien De Rudder
Une création produite par le Collectif Mensuel, en coproduction avec le Théâtre de Liège et l’Ancre, PBA-Eden.
Réalisé avec le soutien de la Fédération Wallonie-Bruxelles (service théâtre), la Ville de Liège, la Province de Liège, la Province du Hainaut.
En partenariat avec le PAC, la FGTB Liège-Huy- Waremme, les Métallos MWB-FGTB, la Cible, le CAL, Arsenic, Théâtre & Publics, Maillages et la SPACE.
L’Homme Qui Valait 35 milliards s’inscrit dans le Richard Moors Project, projet européen de coopération culturelle initié par le collectif Mensuel et mené en partenariat avec Assemblea Teatro de Turin (Italie), le Centre culturel Kulturfabrik de Esch-sur-Alzette (Luxembourg), Culture Commune-Scène nationale du Bassin minier Nord Pas-de-Calais (France) et Theater Antigone de Courtrai (Belgique).
Is it possible to have "too many" mutations? What about "too few"? While mutations are necessary for evolution, they can damage existing adaptations as well. What is a mutation?
A photograph shows approximately 100 different species of beetle arranged in an oval pattern against a black background. The beetles vary in the size of their bodies, the length of their legs, their coloration, and the shape and size of their mandibles.
The diversity of beetle species.
Genetic mutation is the basis of species diversity among beetles, or any other organism.
© 2009 Courtesy of John C. Abbot, Abbott Nature Photography. All rights reserved. View Terms of Use
Mutations are changes in the genetic sequence, and they are a main cause of diversity among organisms. These changes occur at many different levels, and they can have widely differing consequences. In biological systems that are capable of reproduction, we must first focus on whether they are heritable; specifically, some mutations affect only the individual that carries them, while others affect all of the carrier organism's offspring, and further descendants. For mutations to affect an organism's descendants, they must: 1) occur in cells that produce the next generation, and 2) affect the hereditary material. Ultimately, the interplay between inherited mutations and environmental pressures generates diversity among species.
Although various types of molecular changes exist, the word "mutation" typically refers to a change that affects the nucleic acids. In cellular organisms, these nucleic acids are the building blocks of DNA, and in viruses they are the building blocks of either DNA or RNA. One way to think of DNA and RNA is that they are substances that carry the long-term memory of the information required for an organism's reproduction. This article focuses on mutations in DNA, although we should keep in mind that RNA is subject to essentially the same mutation forces.
If mutations occur in non-germline cells, then these changes can be categorized as somatic mutations. The word somatic comes from the Greek word soma which means "body", and somatic mutations only affect the present organism's body. From an evolutionary perspective, somatic mutations are uninteresting, unless they occur systematically and change some fundamental property of an individual--such as the capacity for survival. For example, cancer is a potent somatic mutation that will affect a single organism's survival. As a different focus, evolutionary theory is mostly interested in DNA changes in the cells that produce the next generation.
Are Mutations Random?
The statement that mutations are random is both profoundly true and profoundly untrue at the same time. The true aspect of this statement stems from the fact that, to the best of our knowledge, the consequences of a mutation have no influence whatsoever on the probability that this mutation will or will not occur. In other words, mutations occur randomly with respect to whether their effects are useful. Thus, beneficial DNA changes do not happen more often simply because an organism could benefit from them. Moreover, even if an organism has acquired a beneficial mutation during its lifetime, the corresponding information will not flow back into the DNA in the organism's germline. This is a fundamental insight that Jean-Baptiste Lamarck got wrong and Charles Darwin got right.
However, the idea that mutations are random can be regarded as untrue if one considers the fact that not all types of mutations occur with equal probability. Rather, some occur more frequently than others because they are favored by low-level biochemical reactions. These reactions are also the main reason why mutations are an inescapable property of any system that is capable of reproduction in the real world. Mutation rates are usually very low, and biological systems go to extraordinary lengths to keep them as low as possible, mostly because many mutational effects are harmful. Nonetheless, mutation rates never reach zero, even despite both low-level protective mechanisms, like DNA repair or proofreading during DNA replication, and high-level mechanisms, like melanin deposition in skin cells to reduce radiation damage. Beyond a certain point, avoiding mutation simply becomes too costly to cells. Thus, mutation will always be present as a powerful force in evolution.
Types of Mutations
So, how do mutations occur? The answer to this question is closely linked to the molecular details of how both DNA and the entire genome are organized. The smallest mutations are point mutations, in which only a single base pair is changed into another base pair. Yet another type of mutation is the nonsynonymous mutation, in which an amino acid sequence is changed. Such mutations lead to either the production of a different protein or the premature termination of a protein.
As opposed to nonsynonymous mutations, synonymous mutations do not change an amino acid sequence, although they occur, by definition, only in sequences that code for amino acids. Synonymous mutations exist because many amino acids are encoded by multiple codons. Base pairs can also have diverse regulating properties if they are located in introns, intergenic regions, or even within the coding sequence of genes. For some historic reasons, all of these groups are often subsumed with synonymous mutations under the label "silent" mutations. Depending on their function, such silent mutations can be anything from truly silent to extraordinarily important, the latter implying that working sequences are kept constant by purifying selection. This is the most likely explanation for the existence of ultraconserved noncoding elements that have survived for more than 100 million years without substantial change, as found by comparing the genomes of several vertebrates (Sandelin et al., 2004).
Mutations may also take the form of insertions or deletions, which are together known as indels. Indels can have a wide variety of lengths. At the short end of the spectrum, indels of one or two base pairs within coding sequences have the greatest effect, because they will inevitably cause a frameshift (only the addition of one or more three-base-pair codons will keep a protein approximately intact). At the intermediate level, indels can affect parts of a gene or whole groups of genes. At the largest level, whole chromosomes or even whole copies of the genome can be affected by insertions or deletions, although such mutations are usually no longer subsumed under the label indel. At this high level, it is also possible to invert or translocate entire sections of a chromosome, and chromosomes can even fuse or break apart. If a large number of genes are lost as a result of one of these processes, then the consequences are usually very harmful. Of course, different genetic systems react differently to such events.
Finally, still other sources of mutations are the many different types of transposable elements, which are small entities of DNA that possess a mechanism that permits them to move around within the genome. Some of these elements copy and paste themselves into new locations, while others use a cut-and-paste method. Such movements can disrupt existing gene functions (by insertion in the middle of another gene), activate dormant gene functions (by perfect excision from a gene that was switched off by an earlier insertion), or occasionally lead to the production of new genes (by pasting material from different genes together).
Effects of Mutations
A line graph shows the probability density of mutational effects. A log scale of mutational effects is shown on the x-axis, and probability density is shown on the y-axis. The line follows the shape of a right-skewed bell curve. Probability density increases as mutational effects increase from 10-10 to 10-4, where the curve peaks. As mutational effects increase from 10 4 to 1, probability density decreases. All mutational effects equal to or less than 10-10 are shown as a spike at 10-10 on the x-axis.
View Full-Size ImageFigure 1: The overwhelming majority of mutations have very small effects.
This example of a possible distribution of deleterious mutational effects was obtained from DNA sequence polymorphism data from natural populations of two Drosophila species. The spike at 10-10 includes all smaller effects, whereas effects are not shown if they induce a structural damage that is equivalent to selection coefficients that are 'super-lethal' (see Loewe and Charlesworth 2006 for more details).
© 2008 Nature Education All rights reserved. View Terms of Use
A single mutation can have a large effect, but in many cases, evolutionary change is based on the accumulation of many mutations with small effects. Mutational effects can be beneficial, harmful, or neutral, depending on their context or location. Most non-neutral mutations are deleterious. In general, the more base pairs that are affected by a mutation, the larger the effect of the mutation, and the larger the mutation's probability of being deleterious.
To better understand the impact of mutations, researchers have started to estimate distributions of mutational effects (DMEs) that quantify how many mutations occur with what effect on a given property of a biological system. In evolutionary studies, the property of interest is fitness, but in molecular systems biology, other emerging properties might also be of interest. It is extraordinarily difficult to obtain reliable information about DMEs, because the corresponding effects span many orders of magnitude, from lethal to neutral to advantageous; in addition, many confounding factors usually complicate these analyses. To make things even more difficult, many mutations also interact with each other to alter their effects; this phenomenon is referred to as epistasis. However, despite all these uncertainties, recent work has repeatedly indicated that the overwhelming majority of mutations have very small effects (Figure 1; Eyre-Walker & Keightley, 2007). Of course, much more work is needed in order to obtain more detailed information about DMEs, which are a fundamental property that governs the evolution of every biological system.
Estimating Rates of Mutation
Many direct and indirect methods have been developed to help estimate rates of different types of mutations in various organisms. The main difficulty in estimating rates of mutation involves the fact that DNA changes are extremely rare events and can only be detected on a background of identical DNA. Because biological systems are usually influenced by many factors, direct estimates of mutation rates are desirable. Direct estimates typically involve use of a known pedigree in which all descendants inherited a well-defined DNA sequence. To measure mutation rates using this method, one first needs to sequence many base pairs within this region of DNA from many individuals in the pedigree, counting all the observed mutations. These observations are then combined with the number of generations that connect these individuals to compute the overall mutation rate (Haag-Liautard et al., 2007). Such direct estimates should not be confused with substitution rates estimated over phylogenetic time spans.
Summary
Mutation rates can vary within a genome and between genomes. Much more work is required before researchers can obtain more precise estimates of the frequencies of different mutations. The rise of high-throughput genomic sequencing methods nurtures the hope that we will be able to cultivate a more detailed and precise understanding of mutation rates. Because mutation is one of the fundamental forces of evolution, such work will continue to be of paramount importance.
References and Recommended Reading
Drake, J. W., et al. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998)
Eyre-Walker, A., & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Reviews Genetics 8, 610–618 (2007) doi:10.1038/nrg2146 (link to article)
Haag-Liautard, C., et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82–85 (2007) doi:10.1038/nature05388 (link to article)
Loewe, L., & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biology Letters 2, 426–430 (2006)
Lynch, M., et al. Perspective: Spontaneous deleterious mutation. Evolution 53, 645–663 (1999)
Orr, H. A. The genetic theory of adaptation: A brief history. Nature Review Genetics 6, 119–127 (2005) doi:10.1038/nrg1523 (link to article)
Sandelin, A., et al. Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics 5, 99 (2004)
www.nature.com/scitable/topicpage/genetic-mutation-1127
"Consider, for example, the dragon. Basic physics will almost certainly combine with biological constraints to prevent the creation of flying or fire-breathing dragons.
But is it possible dragons could ever exist beyond the pages of Celtic mythology or the celluloid of fantasy film?
Academics have suggested in a recent essay the creation of large, winged dragons using cutting-edge genome editing is not beyond the realms of possibility.
Is the seemingly far-fetched idea a flier or, like dragon's breath, just hot air? The BBC asked the authors.
'Not impossible'
The essay in The American Journal of Bioethics said spectacular animals could be brought to life using a targeted gene-editing system known as CRISPR-CAS9.
Co-authors Prof Hank T Greely, director of the Centre for Law and the Biosciences at Stanford Law School, and Prof R Alta Charo, Professor of Bioethics and Law at Wisconsin Law School, said their dragon suggestion was "somewhat tongue-in-cheek" but "not impossible".
"There are the possibilities of spectacles," they wrote. "Animals and plants not created for personal use but to be exhibited.
"But a very large reptile that looks at least somewhat like the European or Asian dragon (perhaps with flappable if not flyable wings) could be someone's target of opportunity."
And it may not be as improbable as it seems at first blush.
CRISPR and other similar techniques involve DNA being inserted, replaced, or removed from a genome using artificially engineered nucleases.
The method has been adopted by scientists around the world.
CRISPRs (clustered regularly interspaced short palindromic repeats) are sections of DNA, while CAS-9 (CRISPR-associated protein 9) is an enzyme.
They are found in bacteria, which use them to disable attacks from viruses.
linebreak
They have led to the creation of patented "GloFish" that shine under UV light, the eradication of horns from certain cattle species, manipulation of crops and attempts to produce hypo-allergenic cats.
Artist Eduardo Kac even commissioned a French geneticist to create Alba, a genetically modified "glowing" rabbit.
Debate
Debate has raged over whether CRISPR, which occurs as part of a bacterial process, could be safely and ethically used on humans since 2012.
But professors Greely and Charo argue its potential to produce "CRISPR critters" is "likely to be overlooked" by legislators and regulators "because they are unexpected".
The method is "cheaper and easier" than older forms of genetic engineering and can be done "outside the traditional laboratory setting".
Their essay looks at the possible uses of CRISPR for de-extinction of wild species - such as 700,000-year-old horses - for domestic de-extinction - such as tomato species - and for making creatures of "personal whim".
They point out that Harvard geneticist George Church is using CRISPR to edit Asian elephant cell lines to give them some woolly mammoth genes.
Woolly mammothsImage copyrightTHINKSTOCK
Image caption
Geneticist are working on cloning or engineering woolly mammoths
Asked about the likelihood of dragons, the co-authors said: "We imagine it would be low although not impossible with respect to appearance (the fire-breathing and flying aspects are undoubtedly beyond any plausible genetic engineering).
"In the US, the determining factor is usually cost as compared to return-on-investment, where cost can be substantial given the regulatory hurdles.
"Does this mean some determined and well-funded geneticist might do this as an artistic experiment, similar to the work done on the fluorescing rabbit?
"Yes. But the operative word is 'might'."
A potential process could involve modifications to an existing large reptile - for instance, a Komodo dragon.
Problems
The professors said, even if scientists knew how to make them larger, there would likely be problems with the creature's mass increasing faster than its surface area or its bone cross-sections.
The first issue could make the animals overheat; the second might mean the edited reptile's bones would be too weak to hold its weight.
"If and when we actually come to understand in detail what every specific DNA sequence does and how they all fit together, though, all bets are off - things could move more quickly," they added.
linebreak
What does a CRISPR expert think?
Thinkstock
Dr Sam Sternberg - formerly of the University of California's Doudna Lab, which pioneered work with CRISPR-CAS9 - said his boundaries were stretched when Minnesota firm Recombinetics announced it had used a gene-editing technology to dehorn certain types of cattle.
However, he is not hopeful genetic engineers could ever cross the Rubicon to create dragons.
"You're talking about, not just one or a few changes, you're talking about massive changes and it gets to the point where, how much can you cut and paste the DNA that causes some of the traits of one species to another?
"I would say it's probably bordering on impossible/never going to happen."
linebreak
Even if the difficulties connected with gene editing could be overcome, there remains the tricky task of assisted reproduction with an existing lizard species.
Giving birth to any edited dragon would involve taking stem cells from, say, a Komodo dragon before inserting an altered nucleus into an egg for in vitro fertilization (IVF) in an adult komodo.
GloFish in an aquariumImage copyrightGETTY IMAGES
Image caption
Bright GloFish were genetically modified for fluorescence in aquariums
That would be no mean feat; in December scientists carried out the first successful IVF on dogs after decades of trying.
"If you got access to Komodo dragons and could quickly resolve the regulatory, stem cell, and assisted reproduction problems, you could start tinkering.
"But it would likely take a very long time before you could hope to get something that looked much like a dragon," Prof Greely and Prof Charo said.
So, how far off might all this be?
"A while," they said.