View allAll Photos Tagged modulation
National Gallery of Denmark, Copenhagen: This depiction of the artist's wife, Amelie, is one of Matisse's most famous paintings and a masterpiece within 20th century portraiture. Much of its strength resides in its simple geometric structure and in the way in which the colors are combined. Spatial modulation is pared back to a minimum. Effects of light and shadow, which would have added depth to the image, have been translated into planes of color instead.
The painting was presumably painted in the autumn of 1905, when Matisse had returned to Paris after spending a summer in the fishing village of Collioure. Here, he and Andre Derain engaged in ever-wilder painterly experiments intended to release color from its descriptive function, allowing it to act as a force in its own right. With its unorthodox use of color, the painting is built on those experiments.
One of the advantages using the Microchip PIC microcontroller Pulse Width Modulation or PWM for short is; this PWM peripheral circuit is designed to control the DC motor using the full bridge mode PWM feature. The PWM peripheral works by supplying the correct signal to the H-Bridge DC motor circuit such as speed controlling and changing the DC motor direction. For more information please visit www.ermicro.com/blog/?p=706
The Tektronix Type 191 Constant Amplitude Signal Generator. It's an RF signal generator but it does not have any modulation input.
At the Cluny Museum, medieval culture showcases its ancestral knowledge. It took five centuries to discover that the thymus and the genitals are connected, as seen in this statue of the first man to experience desire, through a dream about a mythical serpent.....
Within the thymus, regulation of the cellular crosstalk directing T cell development depends on spatial interactions within specialized niches. To create a spatially defined map of tissue niches guiding human postnatal T cell development, we employed the multidimensional imaging platform co-detection by indexing (CODEX) as well as cellular indexing of transcriptomes and epitopes sequencing (CITE-seq) and assay for transposase accessible chromatin sequencing (ATAC-seq). We generated age-matched 4- to 5-month-old human postnatal thymus datasets for male and female donors, identifying significant sex differences in both T cell and thymus biology. We demonstrate a possible role for JAG ligands in directing thymic-like dendritic cell development, identify important functions of a population of extracellular matrix (ECM)− fibroblasts, and characterize the medullary niches surrounding Hassall’s corpuscles. Together, these data represent an age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, providing an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.
The thymus is the primary organ responsible for the generation and selection of mature, functional, and self-tolerant T cells.1 Effective T cell development is a critical component of our immune system’s ability to accurately and exclusively identify and kill foreign entities such as pathogens. During early postnatal T cell development—the period in life when T cell development is most active2—thymic seeding progenitors migrate to the thymus and mature into thymocytes. Thymic architecture is highly organized to provide spatially defined, stage-specific signaling cues to migrating thymocytes that guide development toward functional mature T cells.3,4,5,6
Recent single-cell sequencing resources demonstrating the diversity of human thymus tissue are incongruous with our current framework of thymus structure and organization,7,8,9,10,11,12,13,14,15,16,17,18,19 which describe a general migratory path thymocytes take through the cortex and medulla during conventional αβT cell development. Spatial transcriptomic sequencing of human thymus has demonstrated a deeper granularity of thymic niches and their evolution during fetal development to support different waves of non-conventional T cells.19,20 However, our understanding of how human postnatal thymus niches support conventional and non-conventional T cell development, T-lineage branching, and alternative lineage development remains limited.3,4,6 T cells generated at this stage of postnatal human development will become the foundation of our immune system, patrolling the body for decades.21 Thus, insights into early postnatal thymus niche biology are crucial to understand how our adaptive immune system is built and how perturbations in postnatal T cell development may emerge as immune dysfunction later in life.
To create a spatially defined map of tissue niches guiding human postnatal T and alternative lineage cell development, we employed multi-dimensional spatial proteomic imaging using co-detection by indexing (CODEX),22,23 single-cell transcriptomic-proteomic profiling using cellular indexing of transcriptomes and epitopes sequencing (CITE-seq),24 and single-cell assay for transposase accessible chromatin sequencing (ATAC-seq).25 Given the emerging recognition of sex differences in thymus gene expression and function,26,27,28,29,30,31 we collected and analyzed samples from male and female donors. Our analysis identifies significant sex differences during early postnatal development that affect T cell and thymus biology through common and cell type-specific mechanisms. Additionally, we highlight key cell types contributing to thymic involution that exhibit sex-based differences in thymic growth and early transition toward adipogenesis. These data suggest that kinetic differences in thymic involution are present between sexes and, importantly, that mechanisms driving thymic involution begin early in life. Altogether, these data represent a powerful age-matched spatial multiomic resource to investigate how sex-based differences in thymus biology and T cell development arise, and how they contribute to sex differences in diseases caused by immune dysfunction.
Results
Spatial multiomic profiling of human postnatal thymus identifies sex-based differences in T cells and thymus biology
We performed single-cell CITE-seq, ATAC-seq, and CODEX imaging on 4–33 months human postnatal thymuses, including 6 (3 female and 3 male) 4- to 5-month-old age-matched samples (Table S1). Each donor sample was processed simultaneously for CODEX imaging and sequencing (Figure 1A). We included a comprehensive 137 antibody panel (Data S1), allowing us to compare epigenomic, transcriptomic, and proteomic expression kinetics across developing thymocytes and enabling direct comparison of cells identified via phenotypic expression in CODEX with cells captured via CITE-seq. Prior to sequencing, we enriched CD45− non-hematopoietic cells and CD25+CD8− regulatory T (Treg) cells to ensure coverage of low-abundance cell types. After quality control and computational merging of individually sequenced patient datasets, we obtained a total of 74,334 cells with CITE-seq, including 19,434 non-T-lineage cells, and captured 25,717 nuclei with ATAC-seq. Importantly, cell proximity in CODEX tissue niches was used to screen predicted receptor-ligand interactions.
Figure 1 Spatial multiomic analysis identifies sex-biased characteristics of thymic niches
Show full captionFigure viewer
CITE-seq cells were clustered based on transcriptional expression and annotated based on marker gene and surface protein expression (Figure S1A; Table S2).7,8 ATAC-seq clusters were computationally labeled using CITE-seq reference cluster labels, which identified 34 ATAC-seq cluster transfer labels for dataset integration (Figures 1B and S1B). We captured 54,900 thymocytes spanning development from early thymic progenitors (ETPs) to mature single positive (SP) T cells, immature innate cells, innate-like cells, and Tregs. We identified three Treg populations expressing canonical lineage markers, namely Treg progenitors (Pro-Tregs), thymic Tregs (tTregs), and recirculating/resident Tregs (rrTregs).32 We also identified antigen-presenting cells, including B cells, mast cells, monocytes, and six populations of dendritic cells (DCs).33 In addition to the activated DCs (aDCs), plasmacytoid DCs (pDCs), DC1, and DC2/3 populations described by Park et al.,7 we found proliferating populations of pDCs and DC1. We also captured 7,093 epithelial cells, including cortical epithelial cells (cTECs), medullary epithelial cells (mTECs), activated mTECs, and mimetic TECs.
Importantly, we captured 7,721 mesenchymal cells, which contribute to negative selection and thymic involution.9,19,34,35,36 Subclustering identifies important mesenchymal cell types, including two populations of endothelial cells (ECs) defined by differential expression of Notch ligands (ECs, ECs (Notch)). Additionally, we identified lymphatic ECs (LECs), pericytes, vascular smooth muscle cells (VSMCs), and five distinct fibroblast cell types, including DPP4+ capsular fibroblasts (DPP4+ capFibs), capsule fibroblasts (capFibs), medullary fibroblasts (mFibs), KRT+ fibroblasts (KRT+ Fibs), and proliferating fibroblasts (Fibs (P)).
We imaged each tissue sample with a custom 48 antibody CODEX panel to study the architecture and function of niches guiding thymocyte development, aiming to define the niche characteristics guiding T-lineage branch points. Stage-specific thymocyte phenotyping markers (CD62L, CCR7, CD1A, CD5, CD7, CD4, CD8, CD3, CD45RO, CD45RA, FOXP3, and SATB1) identified CD3+ double positive cells (DPs) undergoing T-lineage commitment toward CD4 or CD8 T cells. Phenotyping markers for non-T-lineage hematopoietic cells (CD19, CD11c, CD11b, and CD68), epithelial cells (EPCAM and KRT5/8), mural cells (MCAM and SMA), ECs (CD31), and fibroblasts (PDGFRA) identified the remaining major cell types defining thymic niche architecture. Finally, we included functional markers to define patterns of antigen presentation (CD86), human leukocyte antigen (HLA) class I and II expression (HLA-ABC and HLA-DR,DP,DQ), adhesion ligands (ICAM and VCAM), Notch ligands (DLL1, DLL4, JAG1, and JAG2), T cell activation (PD-1), self-tolerance (PD-L1), proliferation (Ki67), and enzymatic regulation (15-PDGH). In sum, our CODEX panel enabled investigation of spatially regulated mechanisms directing human T cell development.
Using neural-network-driven cell segmentation and Leiden-based clustering,23 we identified individual cells within thymic tissue for each sample (Figure S1C). We annotated cell types based on tissue location and phenotypic expression compared with CITE-seq clusters (Figure 1C), performed proximity-based neighborhood clustering to identify niches,23 and annotated niches based on location and cell type composition (Figure 1D; Figure S1D). This analysis quantified proximity-based cell-cell interactions (Figure S1E) and served as a platform to interrogate spatially defined thymic niche biology via integrated sequencing-imaging analysis.
Because of known sex differences in thymus and T cell gene expression,31 we compared our age-matched male and female samples separately. In line with prior reports of sex-biased gene expression on autosomes,37,38,39,40 only 2% of male differentially expressed genes (DEGs) were found on the Y chromosome and 0.3% of female DEGs were found on the X chromosome (Tables S3 and S4). Gene set enrichment analysis (GSEA) on male vs. female cells for each cell type identified pathways commonly upregulated in either sex (Figure 1E; Data S1). Pathways differentially regulated across hematopoietic, epithelial, and stromal cells represent cell-intrinsic sex-based differences. Female cells have higher gene expression of transcription, energy regulation, and antigen presentation. Male cells, by contrast, have increased gene expression of proinflammatory signaling, amino acid metabolism, and G protein-coupled receptors (GPCR) signaling. The top differentially expressed energy regulation and metabolism pathways were similarly sex-biased in human kidney,41 suggesting multiple organs show consistent sex-biased enrichment of pathways linked to metabolism and energy production. Our data align with sex-biased trends identified in human induced pluripotent stem cell (iPSC) lines42 and other human organs,43 indicating these pathways often differ between male and female cells across various cell types.
By contrast, some pathways showed cell type-specific sex-biased enrichment. Female T and hematopoietic cells showed enrichment of interferon signaling, and female fibroblast and perivascular cells were enriched in extracellular matrix (ECM)-centric pathways (Figure 1E). Our dataset also identified differential sex-specific pathway enrichment between cell types. Gene expression indicated higher cytokine signaling in T cells and hematopoietic cells in females and in epithelial and mesenchymal cells in males (Figure 1E). These data show significant gene expression differences in male and female thymic cells. To demonstrate sex differences at the proteomic level, we identified genes with a log fold change greater than 1 that contributed to increased chemokine signaling in male T cells. CXCR4, an important chemokine receptor in thymocyte migration and development, had increased expression in male progenitor T (pro-T) cells, which we confirmed via flow cytometry (3 male, 3 female; p = 0.03; Figure S1F). As higher levels of cytokine and interferon signaling have been previously shown to influence thymus and T cell biology,44,45 our data suggest male and female T cells develop in different signaling environments and may respond differently to cytokine stimuli.
Next, we quantified cell type abundance within male and female tissues, demonstrating differences in cortical and medullary cell distributions between sexes. When normalized to the total number of cells per lobe, female thymus lobes contained significantly more DPs (p = 0.011) and cTECs (p = 0.0023). In males, we found significantly more SPs (p = 4.2 × 10−4), CD3+ DPs (p = 9.9 × 10−4), activated mTECs (p = 0.0014), and VSMCs (p = 2.4 × 10−6) (Figure 1F). Given that thymus lobules with more DPs and cTECs would have a greater proportion of cells undergoing positive selection and lobules with more medullary cells would have more cells undergoing negative selection, these data suggest that sex differences in cell type abundance may influence the resources directed toward specific stages of thymocyte selection. Alternatively, these results may suggest that male and female thymuses are developmentally asynchronous, with males exhibiting faster growth and involution kinetics, resulting in decreased cortical-to-medullary ratios even in early neonatal stages. We focused further analyses on sequential developmental niches, including analysis of sex differences in cell types and niches at each stage.
JAG1 skews ETP development toward thymic DCs
We first analyzed the cortico-medullary junction (CMJ) where cells home to the thymus (Figure 2A). This region recruits and supports ETPs10 and is composed of ECs, VSMCs, and pericytes expressing the Notch ligand JAG1 (Figures 2B and 2C). CITE-seq demonstrated that the cell adhesion molecule used by ETPs to enter the thymus, CD62L, is quickly downregulated upon CMJ entrance through the vasculature (Figure S2A). However, recently immigrated CD62L+ double negative cells are frequently located in the subcapsular zone (Figure S2B), suggesting that ETPs enter the thymus and rapidly migrate to a subcapsular niche where DLL4, a more potent Notch ligand, is highly expressed on fibroblasts and subcapsular epithelial cells (Figures 2D and S2C). However, the concentrated presence of JAG1 at the entry point indicates that ETPs are first exposed to this Notch ligand.
Figure 2 Thymic progenitors entering via the corticomedullary junction are exposed to a gradient of Notch ligands, which influence lineage specification
Show full captionFigure viewer
CellChat46 pathway analysis showed that JAG1-NOTCH1 interactions between endothelial and perivascular cells are enriched with ETPs (Figure 2E), while JAG1-NOTCH2 and JAG1-NOTCH3 interactions are enriched with DC1, DC1 (P), DC2/3, and aDCs (Figures 2E–2G). These data suggest that JAG1 could induce commitment toward other hematopoietic lineages, such as pDCs, conventional DCs (cDCs), or macrophages, which are known to develop within the thymus.10 As JAG ligands induce weaker Notch induction,47,48,49,50 we hypothesized that early contact with ETPs could maintain T-lineage potential while cells migrate toward DLL4 in the subcapsular niche.
We first analyzed the ability of the four thymic Notch ligands to induce T-lineage commitment or alternative lineage development from cord-blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs) in a defined, feeder-free culture system44 (Figure 2H). We included titrated concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF), which is produced by mast cells at the CMJ, to support DC development.51 We found that only DLL1 and DLL4 ligands induce T-lineage commitment, whereas JAG ligands or no ligand controls supported myeloid cell development and did not induce T-lineage commitment (Figure S2D). Specifically, JAG ligands with GM-CSF skewed CD68+ DC development toward CD14− DC1 cells, while no ligand controls skewed CD68+ DC development toward CD14+ DC2/3 cells (Figures 2I and S2E).
Next, to test our hypothesis that Notch signals via JAG1 ligands could act as a bridge toward later DLL4 interactions, we analyzed cells grown on JAG1 for 3, 5, or 7 days prior to DLL4 transfer (Figure 2J). We found that cells cultured on JAG ligands or no ligands for 3 days maintained reduced T-lineage commitment compared with DLL1 or DLL4 cells (pJAG1 = 0.033; pJAG2 = 0.017), whereas cells cultured on JAG ligands for longer than 3 days lost T-lineage potential (Figure 2K), indicating that JAG ligands could not support T-lineage potential.
We next analyzed the contribution of different Notch ligands to the development of male and female ETPs (Figures S2F and S2G). Our data suggest that JAG ligand interactions are more abundant and diverse in females, with JAG1-NOTCH1 interactions enriched in female ETPs and DLL4 interactions enriched in male ETPs.
Together, these data suggest that timely migration from the CMJ to DLL4 ligands at the subcapsular zone is critical for T-lineage commitment, and exposure to JAG ligands at the CMJ can guide alternative lineage development toward thymic-derived DCs. Our data further demonstrate previously unrecognized sex-biased regulation by Notch ligands.
Analysis of the subcapsular zone identifies sex-based differences in fibroblast regulation of DP development and thymus growth
From the CMJ, ETPs migrate to the subcapsular zone via a CCL25-CCR9 chemokine gradient established by cTECs and directed to pro-T, DP (P), and DP2 (Q), but not DP1 (Q) cells (Figure 3A; Figure S3A). The subcapsular niche consists of JAG1+ VCAM1+ DCs, cTECs, capsular fibroblasts, DPP4+ capsular fibroblasts, and proliferating fibroblasts, which secrete and maintain spatially regulated ECM ligands to support sequential thymocyte development (Figures 3B and 3C; Figure S3B and S3C).
Figure 3 Fibroblasts in the subcapsular zone contribute to regulation of thymus biology and T cell progenitor development
Show full captionFigure viewer
GSEA showed that DPP4+ capsule fibroblasts were enriched in HSP90 chaperone cycle for steroid hormone receptors (padjusted = 0.0065; 18/52 pathway genes significantly upregulated) (Data S1), suggesting an enhanced response to steroid hormones and supporting their role in sex hormone-based thymic involution.9 By contrast, capFibs were enriched for genes related to cytokine (interleukin [IL]-33, padjusted = 1.50 × 10−6; IL-34, padjusted = 3.56 × 10−7) and chemokine signaling (CCL2, padjusted = 5.10 × 10−40; CXCL3, padjusted = 0.020; CXCL12, padjusted = 1.78 × 10−8; CXCL14, padjusted = 3.63 × 10−15), functions previously attributed to TECs. Furthermore, CellChat identified cortical fibroblasts as major contributors to insulin growth factor (IGF) signaling through predicted signaling to cTECs, which are found in close proximity in the cortex (Figure S3D), via IGF2-IGF1R and IGF1-IGF1R axes, and to ETPs and β-selection cells, which were found under the capsule (Figure S2B), via an IGF2-IGF2R axis (Figures 3D–3F).
We next explored the role of proliferating fibroblasts. GSEA comparisons between capFibs and Fibs (P) showed marked differences in signal transduction pathways. CapFibs resembled traditional fibroblasts, which upregulate tyrosine kinase, angiogenesis, and ECM regulation and deposition pathways, whereas Fib (P) upregulates WNT signaling and cell sensing pathways, including genes involved in transient receptor potential (TRP) channels in the stimuli sensing channels pathway and taste receptors (TASRs) (Figure 3G; Data S1). Interestingly, CODEX images identified ECM− PDGFRa+ fibroblasts lacking extra domain A fibronectin (EDA-FN) expression, indicating that Fibs (P) are not involved in fibrotic matrix deposition unlike capFibs (Figure 3H; Figure S3B). Fibs (P) form a network of PDGFRa+ cells throughout the cortex that does not overlap with the cTEC network, yet maintain cell-cell contact in specific niches and often localize near cortical capillaries (Figure S3D).
We found sex-specific differences in vascular endothelial growth factor A (VEGFA) signaling within ECM− fibroblasts (Fib (P)) and other mesenchymal cells. Although all thymic fibroblasts produce the angiogenesis growth factor VEGFA, male fibroblasts express more than female cells (Fibs (P): padjusted = 0.0306; DPP4+ capFibs: padjusted = 0.0318; mFibs: padjusted = 1.85 × 10−6) (Figure 3I). Given that postnatal male thymuses are larger than female thymuses in humans and primates26 (Figure S3E), male fibroblasts may provide increased VEGFA to support angiogenesis and rapid thymic growth observed during postnatal development.52 Additionally, male mFibs have higher expression of FGF7 (padjusted = 0.0154), which regulates thymus size.53 CellChat predicts that male Fibs (P) are enriched in FGF10 compared with females, which supports cTEC proliferation and vascular growth,53,54 and only male VSMCs express FGF18 (Figures S3F–S3H). These sex biases in fibroblast growth factor (FGF) gene expression may contribute to the larger size of early postnatal male thymuses by stimulating epithelial and EC growth and proliferation.
Comparison of DEGs between male and female mesenchymal cells found increased expression of adipogenesis, cytokine, and GPCR signaling pathways in DPP4+ capFibs (Figure 3J). We also found increased expression of APOD, a gene associated with androgen, estrogen, progesterone, and glucocorticoid signaling,55,56 across male fibroblast populations (Fibs (P): padjusted = 2.18 × 10−26, mFibs: padjusted = 8.45 × 10−32) (Figure S3I). Given the association of hormone signaling with thymic involution,29,52,57 these findings suggest early initiation of thymic involution in postnatal males.
In sum, we identified three roles for fibroblasts within the subcapsular niche: maintaining tissue structure and organization via ECM and chemokine signaling, directly regulating cTEC maintenance and expansion, and potentially coordinating T cell development directly through growth factors and cell-cell interactions.
Human postnatal thymocytes may self-select in the cortex to support positive selection of conventional αβT cells
Upon exiting the subcapsular zone, DPs migrate into the inner cortex toward the medulla, where they receive positive selection signals that guide T-lineage branching toward CD4 or CD8 SP cells (Figure 4A). For DPs to transition toward the CD4 lineage, cells must receive T cell receptor (TCR) stimulation through HLA class II interactions, yet previous mouse studies have shown transcriptional downregulation of HLA class I and II in DPs.58,59 Low transcriptional expression is hypothesized to prevent thymocyte-thymocyte self-selection during positive selection, necessitating DP interactions with cTECs to receive positive selection signals.
Figure 4 HLA class I and II interactions may support thymocyte positive selection in the inner cortical zone
Show full captionFigure viewer
Analogous to mouse literature, quiescent human DPs do not express HLA class II transcripts and have closed CIITA promoters (Figures 4B and 4C). Despite the lack of class II mRNA, thymocytes express low levels of HLA class II protein throughout development (Figure 4B). Additionally, in contrast to mouse data, we observe constitutive class I mRNA expression, which increased as cells transitioned toward SPs (Figure 4D). This is consistent with ATAC-seq data demonstrating that the B2M promoter is open throughout thymocyte development (Figure 4E). We confirmed HLA expression via flow cytometry and found that approximately 25% of DPs express both class I and II, and over 65% of DPs are class I+ (Figure S4A). Thus, thymocyte self-selection within the cortex could support positive selection. In support of this notion, CODEX enabled us to identify locations within the cortex devoid of epithelial, fibroblast, endothelial, or DCs but packed with DPs expressing class II+ molecules concentrated at cell junctions (Figure 4F). We confirmed the absence of spindle-like cTEC projections in this niche via confocal imaging (Figure 4G). Additionally, we quantified cell-cell interactions and identified a niche (positive selection niche 1) consisting of class II+ DPs and CD3+ DPs and a niche (self-selection niche) containing mainly class II+ DPs (Figure 1D). Finally, we sorted thymocytes to isolate immature DPs (CD4+CD8+CD3−TCR−) and mature DPs (CD4+CD8+CD3+TCR+) from three donors and cultured them for 7 days in a feeder-free assay. In the absence of epithelial cells, both immature and mature DPs upregulate HLA class II proteins (Figure 4H), and immature DPs continue to mature along their developmental pathway, as indicated by increased percentage of CD27+ DPs in culture after 7 days (Figure 4I).
Next, we identified a niche that directs T-lineage commitment toward CD4 or CD8SPs. We performed differential gene expression analysis on clusters representing this lineage branch point to identify markers for our CODEX panel (Figure S4B). We found SATB1 expression increased as DPs transitioned toward SPs (Figure S4C), and compared with CD8SP transition cells, CD4SP transition cells had higher expression of this master transcription factor60 (Figures S4D and S4E). Imaging analysis confirmed increased SATB1 expression coincides with CD3 upregulation, consistent with a role in late DP development and lineage branching (Figure 4J).7 Neighborhood analysis identified a niche enriched for mature CD3+ DPs in the inner cortex, suggesting that there either exists a niche specifically for late DP development and CD4 lineage transition or that cells are pre-disposed to CD4 lineage development through their TCR and migrate as clonal populations after proliferation at the outer cortex.
We compared cortical niche organization between sexes and found differences in niche organization supporting conventional T cell development, self-selection, and cross presentation. Females showed increased neighborhood interactions between the cortical DC niche containing JAG1+ VCAM+ DCs and the mature DP niche containing CD3+ DPs, the positive selection niche 1 containing class II+ DP cells and CD3+ DP cells, and the positive selection niche 3 containing DCs and DPs (Figure S4F) as well as increased cell-cell interactions between cTECs and class II+ DPs (Figures S4G and S4H). Conversely, males had increased cell-cell interactions between cTECs and CD3+ DPs (Figures S4G and S4H). These data suggest that the proportionally larger female cortex could increase cross presentation from DCs and cTECs to class II+ DPs, possibly facilitating greater use of self-selection as an alternative mechanism for positive selection.
Taken together, spatial multiomic analysis of the inner cortex identified cortical niches supporting specific stages of DP development, including three positive selection niches, a specialized niche for self-selection, and a mature DP niche thymocytes migrate through prior to entering the medulla.
Spatial multiomics identifies key mechanisms regulating negative selection niches in the medulla
Mature DPs enter the medulla, an environment specialized for negative selection, and transition toward CD4 or CD8 lineages (Figure 5A). Within the medulla, cells specialized for negative selection localize around keratinized structures called Hassall’s corpuscles (HCs).61 HCs appear during late prenatal development and are abundant in human postnatal thymuses but rare in mice.62 Here, we demonstrate that HCs can be divided into three major components: an external epithelial border of highly keratinized cells, an inner border of cells expressing prostaglandin-degrading enzyme 15-PGDH (HPGD), and a central PDGFRa+ mass (Figure 5B). HCs produce thymic stromal lymphopoietin (TSLP),61 an analog of IL-7, which activates DCs to increase expression of class II and co-stimulatory molecules CD80 and CD86. Importantly, subclustering stromal populations identified a population of KRT+ fibroblasts resembling cells undergoing epithelial-to-mesenchymal transition (EMT)63 (Figures S5A and S5B). CITE-seq identified TSLP and 15-PGDH mRNA expression in KRT+ Fibs, mFibs, mTECs, activated mTECs, and aDCs (Figure 5C), implicating these cell types as potential contributors to the function of HCs. Finally, given the inner layer of 15-PGDH+ cells, we explored the role of prostaglandin signaling regulation within the medulla. We found that DC1 cells express high levels of PGE2, whereas DC2/3 cells and monocytes express the PTGER2 and PTGER4 receptors, and aDCs express the PTGER3 receptor (Figure 5C), suggesting prostaglandin signaling is a major regulator of DC activity near HCs.
Figure 5 HCs represent scalable organizing centers for negative selection in the neonatal thymic medulla
Show full captionFigure viewer
CODEX imaging suggests HCs act as sub-medullary organizational centers to segregate the inner medulla into specialized niches for negative selection. CD86+ APCs, a subset of which express the co-stimulatory ligand CD40, localize near HCs and in direct contact with CD45RA+ mature SPs (Figure 5D; Figure S5C). In addition, approximately 30% of medullary area is composed of CD19+ B cells,64 which cluster into niches surrounding HCs (Figure S5D). These B cells are found in close contact with—and are often enveloped within—mTECs, potentially facilitating cross presentation with epithelial cells (Figure 5E). These results suggest thymic B cells may comprise an important source of antigen presentation for negative selection.64,65 We quantified medullary neighborhoods and identified six niches, including an mTEC maturation niche, a cross-presentation niche, and four niches specialized for negative selection, which vary in relative location to HCs or the CMJ, as well as their composition of APCs, epithelial, and T cells (Figure 1D; Figure S1D).
Negative selection niches surrounding HCs play a key role in conventional T cell and tTreg development.61 We enriched CD25+ cells for sequencing and found a population of CD25hi pro-Tregs expressing canonical Treg markers CTLA-4, TNFRSF1B (TNFR2), and TNFRSF4 (OX40); positive/negative selection markers (ITM2A, RANBP1, NCL, NME1, MIF, and ATP5G1); Treg developmental long non-coding RNA (MIR155HG)66,67,68,69; and other markers described in mice (Figure S5E). Whereas pro-Tregs expressed high levels of pro-apoptotic gene BCL2L11, mature tTreg subsets expressed the anti-apoptotic gene BCL2. Gene network reconstruction via SCENIC70 identified transcription factor networks activated during pro-Treg to tTreg transition (Figure 5F).
The thymus also contains mature, highly activated Tregs, labeled as rrTregs, believed to have recirculated from the periphery.71,72 rrTregs lack expression of CCR7 or thymic egress markers (KLF2 and S1PR1) but express IL1R2 (Figure S5F), which sequesters the inflammatory cytokine IL-1β to reduce local concentrations.73 CODEX imaging identified tTregs and rrTregs dispersed throughout the medulla, with rrTregs primarily adjacent to CD68+ DCs (Figure 5G). CellChat supported the potential of rrTregs to sequester inflammatory cytokines through interactions with DC2/3 via an IL-1β-IL-1R2 axis (Figure S5G). rrTregs also exhibited a tissue resident Treg phenotype (BATFhigh CCR8+) associated with wound healing and tissue regeneration function,74 and expressed remodeling and tissue repair-related genes such as matrix metalloproteinase enzymes (MMP25 and ADAM19) (Figure S5H). Overall, these findings illustrate Treg diversity in the thymus with their developmental trajectories and functions yet to be elucidated.
Comparisons of male and female rrTregs showed that male rrTregs had higher expression of IL-4 and IL-13, heat shock factor protein 1 (HSF1), and IL-1 signaling pathways (Figure 5H), suggesting rrTreg-mediated regulation of IL-1R2-mediated anti-inflammatory feedback checkpoints is a more prominent mechanism in male tTreg development in early postnatal thymus. Notably, male-activated mTECs have higher expression of CD40 and tumor necrosis factor (TNF) inflammatory pathways than females, possibly resulting in higher rrTreg activity (Figure S5I).
Finally, as Tregs have been shown in mouse to contribute to thymic involution through JAG1,75 we explored sex-based differences in tTreg gene expression. GSEA showed male rrTregs and tTregs have higher expression of adipogenesis pathways (Figures 5H and 5I). Given the presence of cells undergoing EMT, our data underlie the aggressive timeline of thymic involution and suggest that sex-based differences in thymus functional decline begin early in life.
Our detailed examination of the medulla identifies several niches specialized for negative selection, cross presentation, and mTEC maturation around HCs and demonstrates sex biases in inflammatory pathways and thymic involution kinetics within these niches.
Discussion
We performed spatial multiomics to construct a tissue atlas of niches guiding T cell development in early human postnatal thymus. These datasets characterize how key developmental niches drive lineage branch decisions, identify a possible mechanism for conventional αβT cell development through self-selection, and suggest additional functions for mesenchymal cell types governing thymus biology. Furthermore, we discovered several sex-specific differences in thymus cell and niche biology. As T cell development is a dynamic migratory process, knowledge of cell position in combination with proteomic, transcriptomic, and epigenomic sequencing data provides an invaluable resource to predict niche-specific signaling cues directing T cell development, and mechanisms responsible for maintaining tissue structure and directing thymic involution.
We describe an approach to sequencing analysis using multidimensional imaging to establish benchmarks for the location, ligand expression, and composition of key niches in T cell development. This enables us to analyze cell-cell interactions guided by niche composition, identifying physiologically relevant ligand-receptor interactions based on cell proximity within the tissue. Ultimately, this approach maps epigenomic, transcriptomic, and proteomic data to distinct tissue niches at single-cell resolution. Furthermore, we included equal numbers of male and female age-matched thymus samples, enabling comparison between sexes across platform modalities. Our analysis of sex-matched human early postnatal thymus demonstrates the highly plastic nature of thymus lobule organization and resource dedication. Each niche responds to sex-biased developmental kinetics, supporting robust T cell development to ultimately produce functional immune systems in different manners (Figure 6). The findings herein describe only a subset of the data, and we encourage the community to capitalize on this resource to provide further insight into sex differences and targeted niche-specific inquiries.
Figure 6 The human early postnatal thymus lobule is spatially organized into sex-biased niches to support stage-specific T cell development
Show full captionFigure viewer
In our analysis of Notch ligands, we complemented our in silico approach with in vitro analysis. Our analysis suggests that JAG1 at the CMJ cannot support T-lineage commitment as cells migrate toward the subcapsular zone but instead skew alternative lineage development toward a CD14− DC1 subset (Figure 6). CD14 expression on DCs is linked with increased inflammatory cytokine production,76 suggesting that JAG ligands promote non-inflammatory DC phenotypes. These results highlight the importance of precise Notch signaling strength and timing in the thymus and emphasize the need for strict spatial control of different Notch ligands within thymic niches. Our observation of high JAG1 expression in the medulla and decreased DLL4 expression on cTECs outside the subcapsular zone aligns with previous studies on human postnatal thymus.77
In the subcapsular zone, we characterize the important roles of specialized fibroblasts. DPP4+ capFibs, described in mouse as cells with progenitor and anti-fibrotic potential,78,79,80,81,82 are observed as a fibroblast subset responsive to changes in systemic hormone levels. Since thymic function and involution are regulated by sex hormone levels,57,83,84,85 DPP4+ capFibs likely control these processes and are potential targets for addressing age-related thymic involution.86 Previously, only medullary fibroblasts were linked to thymocyte development and selection in the medulla.82 We demonstrate that capFibs may directly support thymocyte development in the cortex by producing growth factors like IGF2 (Figure 6). Blocking IGF2 signaling arrests thymocytes at the double negative stage,87 and our data identify capFibs as the IGF2 source, suggesting capFibs as an additional cell source of cytokines and growth factors for in vitro developmental systems. Finally, we demonstrate that ECM profiles of thymic fibroblasts are tightly regulated based on spatial localization. Future work should characterize how tissue stiffness changes as thymocytes migrate through developmental thymic niches to improve biomaterial strategies for in vitro T cell development.88
Furthermore, we identify a population of ECM− cortical fibroblasts that are enriched in cell sensing pathways, such as TASRs and TRP channels. Interestingly, TASRs regulate cell responses to local soluble substances, such as glucose, modulating release of hormones and other signaling molecules.89 Similarly, TRP channels play roles in cell sensing, such as pheromone signaling, nociception, temperature sensation, and osmoregulation.90 Given the proximity of these cells to vasculature in the cortex, Fibs (P) may play a critical role as regulatory cells by sensing environmental changes and modulating thymus size (Figure 6). Their lack of ECM production and network-like structure resemble fibroblast reticular cells (FRCs) in the lymph node, which rapidly proliferate and remodel the cortex during infection.91 Our data are generated from early postnatal thymus samples, an age with active T cell development, suggesting these fibroblasts expand the thymic cortex similarly to FRCs during infection, signaling through FGF and IGF to stromal and epithelial cells to orchestrate remodeling.
While the dogma in thymocyte positive selection suggests that DPs downregulate class II RNA to prevent self-selection and force interactions with cTECs,58,59 several studies suggest that T-lineage cells can select off each other to support CD4 T cell development.20,92,93,94 Here, we describe an inner cortical niche where class II+ DPs reside that may support positive selection via DP-DP self-selection (Figure 6). We show that immature DPs cultured without epithelial cells upregulate HLA class II and continue to mature and receive positive selection signals. Additionally, upregulated SATB1 expression identifies mature DPs in an inner cortical niche and the CD4 branch of their progeny, suggesting it may determine early lineage specificity. Future work should investigate critical features of this niche and SATB1’s role in thymocyte development.
Within the medulla, we identified a niche adjacent to HCs specialized for negative selection and highlighted the role of rrTregs in modulating the medullary inflammatory environment (Figure 6). The abundance of HCs in human but not mouse, and their proximity to negative selection niches, suggests these structures evolved to provide niche-level organization within the larger human medulla or to regulate negative selection more stringently in longer-lived species.
Comparing male and female tissue showed sex differences in both T cell and thymus biology. Studies on post-pubertal males and females show that sex hormones differentially regulate thymic involution between sexes,26,27,28,29,30,52,57,84,86 and that androgen blockers increase FOXN1 expression, thymic involution, and increased rejuvenation.29,30,52,84,86 Additionally, older males produce fewer recent thymic emigrants and have smaller thymuses compared with females.26,28 Some studies describe decreased numbers of AIRE+ mTECs with age and in females,95 potentially predisposing females who maintain greater thymic function later in life to autoimmune disease.29 These studies also observe less interlobular fat in young female thymus,26 suggesting differences in thymic involution kinetics begin pre-puberty. However, current literature has not addressed transcript-level sex differences underlying functional differences in thymic and immune function. Our analysis uncovers that female thymic cells upregulate energy regulation, transcription, and antigen-presentation pathways, whereas male cells increase proinflammatory signaling, amino acid metabolism, and GPCR signaling. These cell metabolic differences align with transcript-level sex differences in other organs41,42,43 and highlight the need for sex-based cell culture optimization in in vitro T cell culture systems.
In addition to changes common to other organs,40,41 we identify thymus-specific differences affecting key processes in thymocyte development and training. Females have a larger proportion of cortical cells per lobule, aligning with lower thymic involution rates and a larger cortex/medulla ratio.26,27,52 ETPs have enriched interactions with JAG1 as they migrate away from the CMJ, suggesting increased JAG1 interactions could skew ETP lineage commitment toward less inflammatory DC phenotypes (Figure 6). In the female cortex, we observe increased cTEC and class II+ DP interactions and increased interactions between cortical DC and positive selection niches, suggesting thymocyte self-selection may play a larger role during positive selection (Figure 6). Conversely, the female medulla shows decreased inflammatory pathway activation and fewer medullary cells. These data suggest females prioritize generating a larger repertoire of DPs over deleting autoreactive cells through negative selection, potentially contributing to sex differences in autoimmune disease prevalence in females.96
In males, we observe enriched DLL4 interactions with ETPs, which aligns with previous data demonstrating that androgen levels positively correlate with DLL4 on cTECs.29 The male cortex shows increased interactions with mature CD3+ DPs and cTECs, suggesting male thymocytes may have lower proliferation rates post β-selection, allowing sufficient space for positive selection. In the medulla, male-activated mTECs exhibit increased inflammatory pathway markers, and male Tregs exhibit higher inflammatory modulation and activate thymic involution pathways.75 Upregulation of inflammatory modulation by male rrTregs may regulate the higher proinflammatory signaling in male cells (Figure 6). Interestingly, post-pubertal males have more Tregs and fewer CD4 T cells than females, possibly due to a more inflammatory medullary environment skewing CD4 development toward the Treg lineage.31
We further explore sex differences in thymus size control mechanisms. Among fibroblast populations, we find significant differences in expression of growth and angiogenesis factors, such as VEGFA and FGFs, potentially contributing to the size difference in male and female thymuses at this age (Figure 6). These data align with and extend known sex differences in growth factor expression, including sex-biased expression of growth hormone and IGF-1 in regulating size of different tissues.97,98 Importantly, these results indicate sex-specific differences in early thymus structure maintenance and growth, which could skew T cell development. We also establish an early transition toward an adipogenic environment in males. These observations align with findings in model organisms, where young male rats exhibit higher rates of thymic involution52 and early postnatal male primates have a larger interlobular fat area.26 Together, these factors define two possible mechanisms contributing to a male-female difference in thymus size and involution kinetics.
Future studies should test how sex differences at the transcript, niche, and organ level impact differential T cell production and quality as well as explore how sex differences in other organs contribute to known differences in immune responses. Defined in vitro and organoid culture systems replicating the thymic microenvironment present powerful platforms to test if the cell type-specific and sex-specific differences identified here lead to increased autoimmune disease incidence among females and increased infection susceptibility in males. Furthermore, given the surprising sex-based differences at this early postnatal stage, future work should examine aged thymus to investigate how cellular level differences in thymic involution kinetics may translate to larger impacts on our immune system later in life.
Limitations of the study
Our analysis of intra-sex variation is limited by access to patient samples as well as the inability to conduct mechanistic experiments in the context of a whole organism. There is an opportunity for future work to further validate and expand on predicted ligand-receptor interactions.
The thymic epithelium is responsible for the secretion of thymic peptides, which intervene in some steps of intra- and extrathymic T cell differentiation. Recent data suggest that thymic hormone secretion is modulated by the neuroendocrine network, comprising thyroid, adrenals, and gonads. However, the role of the pituitary gland in this regulation is still poorly understood. In the present paper we studied the in vivo and in vitro influences of PRL on the secretion of thymulin, one of the chemically defined thymic hormones, by thymic epithelial cells (TEC). When injected daily (20-100 micrograms/20 g) in young or old C57BL/6 mice, PRL induced a specific increase in thymulin synthesis and secretion, respectively, measured by the number of thymulin-producing cells in the thymus and the peripheral levels of the hormone. This stimulation was dose dependent and reversible after the end of treatment. Similar findings have been made in animals with pituitary dwarfism, known to have low levels of circulating thymulin. This stimulatory effect was also observed in primary cultures of human and mouse TEC when PRL (10(-7) to 10(-8) M) was applied to culture supernatants, thus suggesting that PRL could act directly on TEC. In addition, we induced in vivo experimental hypoprolactinemia, treating mice with bromocriptine, a dopamine receptor agonist that inhibits pituitary PRL secretion. Bromocriptine treatment (100-200 micrograms/20 g) yielded a significant decrease in thymulin secretion that could be reversed by coincident treatment with PRL. In the light of previous observations that bovine GH can also increase thymulin production in aged dogs, we performed a series of experiments in vitro to evaluate whether GH has a direct effect on TEC. We observed that only human GH preparations that are known to have a PRL-like effect were efficient in stimulating thymulin biosynthesis and release into the culture supernatants. The effects of PRL on TEC were not restricted to thymic hormone production. We observed that TEC proliferation, as well as the numbers of a TEC subset defined by the expression of cytokeratins 3 and 10, could also be increased by PRL treatment. All these findings show that the pituitary gland directly affects TEC in terms of cytoskeletal and secretory protein expression as well as cell cycle.. This paper reviews the mechanism of sex hormone actions on the thymus, presenting mainly our data obtained at the cellular and molecular levels. First, data supporting the "genomic" action via the nuclear sex hormone receptor complexes are as follows: 1) sex hormone receptors and the thymic factor (thymulin) are co-localized in thymic epithelial cells, but not in T cells; 2) production/expression of thymic factors (thymulin, thymosin alpha 1) are remarkably inhibited by sex hormone treatment; 3) sex hormones cause changes in T cell subpopulations in the thymus; and 4) sex hormones strongly influence the development of thymus tumors in spontaneous thymoma BUF/Mna rats through their receptor within the tumor cells. Secondly, data indicating the "non-genomic" action of sex hormones via a membrane signal-generating mechanism are as follows: 1) the proliferation/maturation of thymic epithelial cells is mediated through protein kinase C activity introduced by sex hormones; 2) sex hormones directly influence DNA synthesis and cdc2 kinase (cell cycle-promoting factor) activity..
pubmed.ncbi.nlm.nih.gov/2737149/
www.cell.com/developmental-cell/fulltext/S1534-5807(24)00539-2
Filaments of the Cyanobacterium Anabaena, from a Vernal Pool in the Warm Springs area of the Don Edwards San Francisco Bay National Wildlife Refuge. Salinity was about 7-PPT.
This photomicrograph was taken with a Nikon Coolpix P5100 using Hoffman Modulation Contrast optics with oil immersion at 1,000x magnification.
Anabaena was the dominant organism in the floating microbial mat in the pond, exceeding other microorganisms by a factor of about 300-fold.
Anabaena is a nitrogen fixer. The large cells in the filament are the Heterocysts, which isolate the nitrogen-fixing process from oxygen [oxygen inhibits the nitrogenase enzymes].
The smaller, square-shaped cells carry out photosynthesis, fixing carbon and producing oxygen. This was readily evident by the masses of small bubbles in the floating mat.
Notice the fine "hairs" on the Heterocyst cells. These are some of the other bacilli that inhabit the mat and cluster around the Heterocyst cells, probably for nitrate.
Specification
Coach Model MAN 18.350 HOCL/R
Chassis Length 11,850 mm
Chassis Width 2,526 mm
GVW 18,200 kg
Engine Type
Vertical, Water Cooled 6-cylinder 4-stroke Diesel Engine
With Common Rail Injection,
Exhaust Turbocharger and Intercooler
ECR, Replaceable Cylinders Liners
Engine Model MAN D2066 LUH13 Euro 4
Displacement 10,518 c.c
Maximum Output 257 kW (350 hp) @ 1,700 rpm
Maximum Torque 1,750 Nm @ 1,000-1,400 rpm
Bore 120 mm
Stroke 155 mm
Fuel Capacity 300 dm³
Transmission ZF 6S 1900 BO 6-speed Synchromesh Manual Transmission
ZF 6 HP 504C 6-speed Automatic Transmission
Voith D864.5 4-speed Automatic Transmission
Drive Axle MAN HY-1336-B
Suspension Capacity 13,000 kg
Front Axle MAN V9-82 SL
Suspension Capacity 8,200 kg
Brake
Dual Circuit Air Brake System to ADR Directives by Wabco
Front and Rear Axle Disc Brakes
Electronic brake system EBS (ABS, TCS)
Auxiliary Brake Manual Transmission: Engine Brake Valve (EBV)
Automatic Transmission: Integrated Retarder and
Water Cooled with Electric Pressure Modulation
Suspension
Air suspension with 6 identical rolling seals
With Integrated Elastic Stroke Limiter
Electronically Controlled Constant Entrance Height
Suspension Characteristics Under All Load Conditions
Front Suspension 2 x Air Bellows
2 x Shock Absorbers
1 x Level Control Values
1 x Stabilizers
Rear Suspension 4 x Air Bellows
4 x Shock Absorbers
2 x Level Control Values
1 x Stabilizers
Networked Fabrication for Urban Provocations.
Shifting Paradigms from Mass Production to Mass Customization
Computational architecture and design course
Conventional construction methods all depart from the basic premises of mass production: standardization, modulation and a production line. What these systems developed during the last two centuries fail to take into account are the evolutionary leaps and bounds the manufacturing industry has taken over the last decades. With the introduction of CNC technologies and rapid prototyping machines have altered the paradigms of fabrication forever. It is due to these new tools that it is now possible to create (n) amount of completely unique and different pieces with the same amount of energy and material that is required to create (n) identical pieces. The possibilities for implementation of new forms, textures, materials and languages are infinite due to the versatility that these new tools offer a growing network of architects, designers, fabricators that are integrating them into their professional practices to generate unique and precise objects that respond to countless data and real-life conditions.
Instructors:
Monika Wittig [ LaN, IaaC ]
Shane Salisbury [ LaN, IaaC ]
Filippo Moroni [ SOLIDO, Politecnico di Milano ]
MS Josh Updyke [ Advanced Manufacturing Institute, KSU, Protei ]
Aaron Gutiérrez Cortes [ Amorphica ]
Specification
Coach Model MAN 18.350 HOCL/R
Chassis Length 11,850 mm
Chassis Width 2,526 mm
GVW 18,200 kg
Engine Type
Vertical, Water Cooled 6-cylinder 4-stroke Diesel Engine
With Common Rail Injection,
Exhaust Turbocharger and Intercooler
ECR, Replaceable Cylinders Liners
Engine Model MAN D2066 LUH13 Euro 4
Displacement 10,518 c.c
Maximum Output 257 kW (350 hp) @ 1,700 rpm
Maximum Torque 1,750 Nm @ 1,000-1,400 rpm
Bore 120 mm
Stroke 155 mm
Fuel Capacity 300 dm³
Transmission ZF 6S 1900 BO 6-speed Synchromesh Manual Transmission
ZF 6 HP 504C 6-speed Automatic Transmission
Voith D864.5 4-speed Automatic Transmission
Drive Axle MAN HY-1336-B
Suspension Capacity 13,000 kg
Front Axle MAN V9-82 SL
Suspension Capacity 8,200 kg
Brake
Dual Circuit Air Brake System to ADR Directives by Wabco
Front and Rear Axle Disc Brakes
Electronic brake system EBS (ABS, TCS)
Auxiliary Brake Manual Transmission: Engine Brake Valve (EBV)
Automatic Transmission: Integrated Retarder and
Water Cooled with Electric Pressure Modulation
Suspension
Air suspension with 6 identical rolling seals
With Integrated Elastic Stroke Limiter
Electronically Controlled Constant Entrance Height
Suspension Characteristics Under All Load Conditions
Front Suspension 2 x Air Bellows
2 x Shock Absorbers
1 x Level Control Values
1 x Stabilizers
Rear Suspension 4 x Air Bellows
4 x Shock Absorbers
2 x Level Control Values
1 x Stabilizers
Drone Ranger : 4 Oscillators, 2 white noise sources, 2 ring mod, 2 Fuzz, 2 resonant low pass filters with LFO modulation.
The amplifier with elegance. Gracefully refined and dignified.
# Features: A solid state amplifier pre-tuned to sound similar to our ultra high-end Musee acoustic amplifier series.
# Individual input level control with allows each channel to be independently controlled for multi-channel system, or 5.1 channel system.
# Pulse width modulation power supply built with toroidal core transformer for great response to high frequency and current capacity. Power supply keeps steady voltage and provides wider dynamic range.
# Powerful output final stage driven by Pc=100W 1c=10A bipolar power transistor in a single push-pull. This provides a simple and uniformed output sound.
# Blue glass epoxy circuit board for durability, reliability and endurance. 70um thick copper foil is also used for all wiring.
# High density aluminum chassis with real wood ornaments provides the elegant look and the luxury satisfaction as well as the functionality as a heat sink.
# Cooper plate backing.
# Specification: Rated Power: 70W x 4ch (4Ω) (210W x 2ch(4ΩBridged))
# Maximum Output Power: 140W x 4 (4Ω)
# Load Impedance: 2Ω - 8Ω/4Ω - 8Ω(Bridged)
# Input Sensitivity: 0.2-5V (Each channel can be individually controlled)
# Total Harmonic Distortion: 0.01% (1KHz/4Ω)
# Frequency Response: 5Hz - 100kHz (+0,-1.5dB)
# Signal-to-Noise Ratio: 100dB (1KHz/IHF-A)
# Standby Time: Short Circuit/Over Voltage/Over Load/Thermal
# Input Voltage: DC12-16V
# Current Consumption: 1.2A (Idle) /40A (Rated Power)
# Dimensions: 431(W ) x210(D) x 55(H)mm
# Weight: 5.0Kg
Preview 01 here
Preview 02 here
Preview 04 here
The Arabic featured here has a fluid beauty to it resonant and respectful to the centuries of character development and handwriting systems developed through the many lifetimes of Master Khattats (calligraphers) around the world.
I am currently in the process of developing a matching Latin with the help of Swiss typographer, Bruno Maag, and his associates at the infamous type house, Dalton Maag, in London.
More will be revealed very soon :)
Networked Fabrication for Urban Provocations.
Shifting Paradigms from Mass Production to Mass Customization
Computational architecture and design course
Conventional construction methods all depart from the basic premises of mass production: standardization, modulation and a production line. What these systems developed during the last two centuries fail to take into account are the evolutionary leaps and bounds the manufacturing industry has taken over the last decades. With the introduction of CNC technologies and rapid prototyping machines have altered the paradigms of fabrication forever. It is due to these new tools that it is now possible to create (n) amount of completely unique and different pieces with the same amount of energy and material that is required to create (n) identical pieces. The possibilities for implementation of new forms, textures, materials and languages are infinite due to the versatility that these new tools offer a growing network of architects, designers, fabricators that are integrating them into their professional practices to generate unique and precise objects that respond to countless data and real-life conditions.
Instructors:
Monika Wittig [ LaN, IaaC ]
Shane Salisbury [ LaN, IaaC ]
Filippo Moroni [ SOLIDO, Politecnico di Milano ]
MS Josh Updyke [ Advanced Manufacturing Institute, KSU, Protei ]
Aaron Gutiérrez Cortes [ Amorphica ]
Networked Fabrication for Urban Provocations.
Shifting Paradigms from Mass Production to Mass Customization
Computational architecture and design course
Conventional construction methods all depart from the basic premises of mass production: standardization, modulation and a production line. What these systems developed during the last two centuries fail to take into account are the evolutionary leaps and bounds the manufacturing industry has taken over the last decades. With the introduction of CNC technologies and rapid prototyping machines have altered the paradigms of fabrication forever. It is due to these new tools that it is now possible to create (n) amount of completely unique and different pieces with the same amount of energy and material that is required to create (n) identical pieces. The possibilities for implementation of new forms, textures, materials and languages are infinite due to the versatility that these new tools offer a growing network of architects, designers, fabricators that are integrating them into their professional practices to generate unique and precise objects that respond to countless data and real-life conditions.
Instructors:
Monika Wittig [ LaN, IaaC ]
Shane Salisbury [ LaN, IaaC ]
Filippo Moroni [ SOLIDO, Politecnico di Milano ]
MS Josh Updyke [ Advanced Manufacturing Institute, KSU, Protei ]
Aaron Gutiérrez Cortes [ Amorphica ]
Prague Castle (Pražský hrad)
For more than a thousand years, has the Prague Castle been an important symbol of the Czech state. Founded in the 9th century, it became the permanent seat of the Czech rulers and, most recently, also of the Presidents. One of the largest castle complexes in the world consists of palaces, offices, churches and fortification buildings, gardens and picturesque corners. The castle covers an area of 45 hectares. The unique view to the Prague Castle is one of the most amazing panorama views in the world.
Prague Castle is the most important folk-cultural and historical monument, and is the symbol of the more than one thousand years of development of the Czech and all-Czech states. It is a monumental symbol of the palace, church, fortification, official and residential buildings which represent very valuable monuments, included in all style epochs. It covers an area of 45 hectares, was the seat of the Bohemian princes, kings and emperors, and since the Republic was founded in 1918, it was also the residence of the presidents. Since 1962, the Prague Castle has been known for its archaeological discoveries.
History
The initial phases of the Prague Castle are connected with the first historically documented Přemyslid Bořivoj (Bořivoj I (Czech pronunciation: [ˈbɔr̝ɪvɔj], Latin: Borzivogius, c. 852 – c. 889) was the first historically documented Duke of Bohemia from about 870 and progenitor of the Přemyslid dynasty.] The Duchy of Bohemia was at those times subordinated to Great Moravia.). This one transferred in the 80s of the 9th century his original seat from Levý Hradec to the place where on the raised spot above the river Vltava/Moldau already existed a Slavic castle and was very well situated.
The first princely palace apparently only consisted of wood. The first stone building and the oldest Christian sanctuary was the Virgin Mary Church. Its remains have been found between the Second Courtyard and the Bastion garden (original name of the garden: Na Baště). This Bořivoj church was soon reconstructed by the prince Spytihněv I, who was buried here in 915. The second church in the castle was the St. George Basilica founded by Prince Vratislaus I. The next Přemyslide, Prince Wenceslas (Saint), the third sanctuary - the St Veit Rotunda - in the twenties of the 10th century nearby had built which in the 11th century by Prince Spytihnev II was transformed into a huge basilica.
In 973, when the bishopric was established in Prague, the castle was not only the seat of the head of state, but also the seat of the Prague bishop, the highest representative of the church. At the same time arose the first monastery in Bohemia at St. George's basilica.
In the 10th century the castle occupied an area of about 6 ha. In the Romanesque epoch the former fortress, especially after the year 1135 thanks to Soběslaus I, as the stony princely palace and the new masonry fortified with some towers were erected, was turned into a fortified medieval castle. Of the towers is the eastern blacktower best preserved.
Very significantly the Gothic period in the appearance of Prague Castle intervened, most of all Charles IV (1346 - 1378), who, with his father, John of Luxemburg (1310 - 1346), obtained from the pope the promotion of the Prague bishopric to the archbishopric and laid the foundations for the construction of St. Vitus Cathedral. Under Charles IV, the castle for the first time was turned into the imperial residence. Charles IV the defense of the Prague Castle had consolidated, the Royal Palace with the Chapel of All Saints he rebuilt generously. The roofs he had covered with gilded plates, which were the foundation for the binding of words "Golden Prague". Since 1382, Bohemian rulers ceased to occupy the Prague Castle for more than 100 years. The royal court was moved to the place of today's Community hall and back to the Prague castle it came only in 1483 under Wladislaus from the Jagiellonian dynasty.
Although the ruler already in 1490 moved to Ofen (Buda), he had the Prague castle renovated in the late Gothic style under the supervision of Benedikt Ried. He was the master builder of the magnificent Vladislav Hall, the largest secular vaulted room of the then Europe, with which the first Renaissance signs came to Prague. He carried out major construction works, including the construction of a new masonry, the defensive towers and the expansion of the Royal Palace. At his time, the Gothic died away and a new architectural style, the Renaissance, gradually prevailed.
The direct influence of the Italian art on the new style was most frequently observed in Prague under the reign of Ferdinand I (von Habsburg) and after his departure from Prague under the influence of the governor Ferdinand of Tyrol. At that time, the medieval castle was converted into a comfortable Renaissance castle with gardens. The typical Italian architecture of the Royal Pleasure palace arose in the northern King's garden.
For a large building activity in 1541 contributed a fire devastating the castle objects as well as the surrounding area quite a lot. Within the framework of the restoration, both the housing estates and the church buildings were rebuilt. Under the reign of the first Habsburgs, nobility palaces were added to the castle grounds (for example, the Pernstein Palace - later Lobkowicz Palace, Rosenberg Palace and others). Horse stable buildings were built in the north-west.
Under the reign of the Emperor Rudolph II (1576 - 1611), the Renaissance and Mannerism transformation of the castle, which for the second time became the center of the empire, and especially the center of European culture and science, reached its peak. On the second courtyard, new rooms were built for the collections of Rudolph - the new (now Spanish) hall and the Rudolph gallery. Also arose the connection tract between the northwestern and the southwestern part of the castle. Just here the famous Kunstkammer (Art chamber) and other rooms for Rudolph's collective activities were located. Additionally further horse stable properties were built for his rare Spanish horses. During the Rudolph times also the foundation stone of the famous Golden Alley was laid. Laboratories of the Rudolph-Alchymists were supposed to have been in the Powder tower above the Hirschgraben (Deer's ditch). The castle suffered again considerable damages when it was occupied by the Saxon army in 1631 and by the Swedes in 1648 not only was occupied but also plundered. After the Thirty Years' War, the Habsburgs did not care too much about the Prague royal seat.
Only Maria Theresia carried out an extensive reconstruction of the Prague Castle from 1755 - 1775 into a representative castle complex. The reason for the massive construction action were war damages, caused by the intense bombing of the castle during war conflicts at the beginning of her reign. The reconstruction was designed by the Viennese architect Nicolo Pacassi, who also planned the first courtyard with the monumental entrance gate. From the time of the Theresian reconstruction stems also the chapel of the Holy Cross on the 2nd castle forecourt and other buildings, especially the noblewomen institute. The south wing he imprinted the uniform monumental late Baroque facade of a representative seat. His plans influenced by Viennese Rococo and French Classicism the builders Anselmo Lurago, Anton Kunz and Anton Haffenecker brought into life.
In the 19th century, the castle fell into ruin, in several objects after the Josephine reforms the army settled. In connection with the stay of Ferdinand I the Good in the castle after his abdication in 1848 and further in connection with the preparation for the coronation of Franz Joseph I in the sixties it came to building modifications of several objects. After 1859, when the community for the completion of St Veit cathedral emerged, began first the repair, and then, under the influence of the architect Joseph Mocker, the work on the actual completion of St Veit's cathedral was started, completed in 1929.
In the years 1920 - 35, carried out extensive regulations of the Prague Castle as the seat of the Czechoslovak President the great Slovenian architect Josip Plečnik, who masterfully combined the valuable historical space with modern civilization claims. His modifications mainly concerned the 1st and 3rd court, the southern gardens of the castle, the fourth forecourt with the Bastion garden as well as numerous interiors. He created e.g. the pillared hall, private rooms of the presidential residence, including the Masaryk workroom. His pupil, Otto Rothmayer, brought to an end the incomplete solutions of some castle interior spaces after the Second World War in comparable quality.
In 1936, Pavel Janák and after him, in 1959, Jaroslav Fragner became castle architect.
After the year of change of 1989, the Prague Castle was opened to the public in many places. During the term of President Havel, at the castle it came to modulations of the interiors and to the expansion of two new entrances into the second courtyard after the project of the creator and designer Bořek Šípek. The puncture through the rampart of the Powder bridge in Hirschgraben was rewarded with a significant prize (Arch. Josef Pleskot). Also interesting is the modern greenhouse of the world-famous architect Eva Jiřičná. The Georgian Square (Jiřské náměstí) was re-paved and modulated. The Mosaic of the Last Judgment was renovated in collaboration with the specialists from the Getti Institute. In 1990, the Prague Castle was solemnly illuminated and this situation lasts from dusk to midnight until today. In the main tourist season, the lighting time even lasts an hour longer until 1 o'clock. The tradition of electric lighting, but on a much smaller scale, began in 1928, when the lamps were installed for the 10th anniversary of the elevation to a Republic. A little bit the present daylight resembles of those from the end of the sixties, but today it is much more detailed and in communist times it was only switched on at solemn occasions. At that time, illuminative days were state holidays or significant day of republic, which, however, did not lack recognition from the communist point of view.
In recent years the reconstruction and renovation work has been developed in many buildings of the castle and a considerable attention has been devoted to the archaeological investigation, which has been going on since 1925 and has brought many insights into the history of the castle. The investigation as well as the renovation of the individual rooms and objects is motivated by the idea of invigorating them as much as possible by making them accessible to the public.
Prager Burg (Pražský hrad)
Die Prager Burg ist seit über tausend Jahren ein bedeutendes Symbol des tschechischen Staates. Gegründet im 9. Jahrhundert wurde sie zum ständigen Sitz der tschechischen Herrscher und zuletzt auch der Präsidenten. Einer der größten Burgkomplexe weltweit setzt sich aus Palästen, Amts-, Kirchen- und Fortifikationsgebäuden, aus Gärten und malerischen Ecken zusammen. Die Burg erstreckt sich auf einer Fläche von 45 Hektar. Der alleinige Blick auf die Prager Burg stellt einen der überwältigendsten Panoramablicke der Welt dar.
Die Prager Burg ist das bedeutendste Volkskultur- und Historiedenkmal, sie ist das Symbol der mehr als eintausendjährigen Entwicklung des böhmischen sowie gesamttschechischen Staats. Es ist ein monumentales Symbol der Palast-, Kirchen-, Fortifikations-, Amts- und Wohngebäude, die sehr wertvolle Denkmäler darstellen, einbezogen auf alle Stilepochen. Sie erstreckt sich auf einer Fläche von 45 ha, war der Sitz der böhmischen Fürsten, Könige und Kaiser und seit der Republikentstehung im Jahre 1918 war sie auch die Residenz der Präsidenten. Seit 1962 steht die Prager Burg mit ihren archäologischen Funden als bekanntester.
Geschichte
Die Anfangszeiten der Prager Burg sind mit dem ersten historisch belegten Přemysliden Bořivoj verbunden. Dieser übertrug in den 80er Jahren des 9. Jahrhunderts seinen ursprünglichen Sitz von Levý Hradec an den Ort, wo auf der erhabenen Stelle über der Moldau eine slawische Burgstätte bereits bestand und sehr gut gelegen war.
Der erste Fürstenpalast bestand offenbar aus Holz. Der erste Steinbau und das älteste christliche Heiligtum war die Jungfrau Maria Kirche. Ihre Reste wurden zwischen dem II. Vorhof und dem Basteigarten (Originalname des Gartens: Na Baště) gefunden. Diese Bořivoj-Kirche wurde durch den hier im Jahre 915 beigesetzten Fürsten Spytihněv I. bald umgebaut. Die zweite Kirche im Burgraum war die vom Fürsten Vratislaus I. gegründete St. Georg Basilika. Der nächste Přemyslide, der Fürst Wenzel (der Heilige), ließ in der Nähe in den 20er Jahren des 10. Jahrhunderts das dritte Heiligtum - die St. Veit Rotunde - bauen, die im 11. Jahrhundert vom Fürsten Spytihněv II. zu einer gewaltigen Basilika umgebaut wurde.
Im Jahre 973, als in Prag das Bistum gegründet wurde, war die Burg nicht nur der Sitz des Staatsoberhaupts, sondern auch der Sitz des Prager Bischofs, des höchsten Repräsentanten der Kirche. Zu demselben Zeitpunkt entstand an der St. Georg Basilika das erste Kloster in Böhmen.
Im 10. Jahrhundert nahm die Burg eine Fläche von ca. 6 ha in Anspruch. In der romanischen Epoche wurde die einstige Burgstätte, insbesondere nach dem Jahr 1135 dank Soběslaus I., als der steinige Fürstenpalast und das neue mit einigen Türmen verstärkte Mauerwerk aufgebaut wurden, zu einer festen mittelalterlichen Burg umgebaut. Von den Türmen ist der östliche Schwarzturm am besten erhalten.
Sehr bedeutend griff ins Aussehen der Prager Burg die Gotikzeit ein, insbesondere Karl IV. (1346 - 1378), der mit seinem Vater Johann von Luxemburg (1310 - 1346) vom Papst die Beförderung des Prager Bistums zum Erzbistum erwirkte und den Grundstein für den Bau der St. Veit Kathedrale legte. Unter Karl IV. wurde die Burg zum ersten Mal zur Kaiserlichen Residenz. Karl IV. ließ die Verschanzung der Prager Burg festigen, den Königspalast mit der Kapelle Aller Heiligen baute er großzügig um. Die Dächer ließ er mit vergoldeten Blechen decken, die das Fundament für die Wörterbindung „Goldenes Prag“ darstellten. Seit 1382 hörten böhmische Herrscher auf, die Prager Burg für mehr als 100 Jahre zu bewohnen. Der Königshof wurde an den Ort des heutigen Gemeindehauses umgezogen und zurück auf die Prager Burg kehrte er erst im Jahre 1483 unter Wladislaus aus der Jagiellonen-Dynastie.
Obwohl der Herrscher bereits 1490 nach Ofen (Buda) umsiedelte, ließ er die Prager Burg im spätgotischen Stil unter der Bauleitung von Benedikt Ried umbauen. Er war der Baumeister des großartigen Wladislaus-Saals, des größten weltlichen gewölbten Raums des damaligen Europas, mit dem die ersten Renaissancezeichen nach Prag kamen. Er führte großartige Bauregelungen einschließlich des Ausbaus eines neuen Mauerwerks, der Wehrtürme und der Erweiterung des Königspalastes durch. Zu seiner Zeit klang die Gotik aus und es setzte sich allmählich ein neuer Baustil durch, die Renaissance.
Der direkte Einfluss der italienischen Kunst des neuen Stils wurde in Prag unter der Regierung von Ferdinand I. (von Habsburg) und nach seinem Weggang von Prag unter der Wirkung des Statthalters Ferdinand von Tirol am meisten beobachtet. Damals wurde die mittelalterliche Burg in ein bequemes Renaissanceschloss mit Gärten umgewandelt. Im nördlichen Königsgarten entstand die typisch italienische Architektur des Königlichen Lustschlosses.
Zu einer großen Bauaktivität trug im Jahre 1541 ein Brand bei, der die Burgobjekte sowie die Umgebung ziemlich viel kaputt machte. Im Rahmen der Wiederherstellung wurden sowohl die Wohnräume als auch die Kirchenobjekte umgebaut. Unter der Regierung der ersten Habsburger kamen ins Burggelände auch Adelspaläste dazu (zum Beispiel der Pernstein-Palast - später Lobkowicz-Palast, Rosenberg-Palast und weitere). Im Nordwesten wurden Pferdestallgebäude erbaut.
Unter der Regierung des Kaisers Rudolph II. (1576 - 1611) erreichte der Renaissance- und Manierismusumbau der Burg, die zum zweiten Mal zum Zentrum des Reiches und insbesondere zum Zentrum der europäischen Kultur und Wissenschaft wurde, seinen Gipfel. Auf dem II. Vorhof wurden neue Räume für die Sammlungen Rudolphs erbaut - der Neue (heute Spanische) Saal und die Rudolph-Galerie. Es entstand auch der Verbindungstrakt zwischen dem Nordwest- und dem Südwestteil der Burg. Eben hier befanden sich die berühmte Kunstkammer und weitere Räume für die Sammeltätigkeit Rudolphs. Es wurden auch weitere Pferdestallobjekte für seine seltenen spanischen Pferde aufgebaut. Während der Rudolph-Zeiten wurde auch der Grundstein der berühmten Goldenen Gasse gelegt. Laboratorien der Rudolph-Alchymisten sollen im Pulverturm über dem Hirschgraben gewesen sein. Die Burg erlitt erneut erhebliche Schäden, als sie 1631 vom sächsischen Heer und 1648 von den Schweden besetzt und ausgeplündert wurde. Nach dem Dreißigjährigen Krieg kümmerten sich die Habsburger um den Prager königlichen Sitz nicht allzu sehr.
Erst Maria Theresia führte in den Jahren 1755 - 1775 einen umfangreichen Umbau der Prager Burg zu einem repräsentativen Schlosskomplex durch. Der Grund für die massive Bauaktion waren Kriegsschäden, verursacht durch die intensive Bombardierung der Burg bei Kriegskonflikten zu Beginn ihrer Regierung. Den Umbau entwarf der Wiener Architekt Nicolo Pacassi, der auch den I. Vorhof mit dem monumentalen Eingangstor projektierte. Aus der Zeit des theresianischen Umbaus stammt auch die Kapelle des Heiligen Kreuzes auf dem II. Burgvorhof und weitere Gebäude, insbesondere die Edeldamenanstalt. Dem Südflügel prägte er die einheitliche monumentale Spätbarockfassade eines Repräsentationssitzes ein. Seine durch das Wiener Rokoko und den französischen Klassizismus beeinflussten Pläne brachten die Baumeister Anselmo Lurago, Anton Kunz und Anton Haffenecker zustande.
Im 19. Jahrhundert verfiel die Burg, in mehreren Objekten ließ sich nach den josephinischen Reformen das Heer nieder. Zu Bauregelungen einiger Objekte kam es im Zusammenhang mit dem Aufenthalt von Ferdinand I. dem Guten auf der Burg nach seiner Abdikation im Jahre 1848 und weiter im Zusammenhang mit der Vorbereitung auf die vorgesehene Krönung von Franz Joseph I. in den 60er Jahren. Nach 1859, als die Gemeinde für die Fertigstellung der St. Veit Kathedrale entstand, begann zuerst die Reparatur und anschließend unter der Wirkung des Architekten Joseph Mocker wurde die Arbeit an der eigentlichen Fertigstellung der St. Veit Kathedrale aufgenommen, abgeschlossen im Jahre 1929.
In den Jahren 1920 - 35 führte ausgedehnte Regelungen der Prager Burg als des Sitzes des tschechoslowakischen Präsidenten der bedeutende slowenische Architekt Josip Plečnik durch, der den wertvollen historischen Raum mit modernen Zivilisationsansprüchen meisterlich zusammenfügte. Seine Regelungen betrafen vor allem den 1. und 3. Vorhof, die Südgärten der Burg, den 4. Vorhof mit dem Basteigarten sowie zahlreiche Innenräume. Er schuf z.B. die Säulenhalle, Privaträume der Präsidentenwohnung einschließlich des Arbeitszimmers Masaryks. Sein Schüler Otto Rothmayer brachte die unvollendeten Lösungen einiger Burginnenräume nach dem 2. Weltkrieg in vergleichbarer Qualität zu Ende.
Im Jahre 1936 ist Pavel Janák und nach ihm seit 1959 Jaroslav Fragner Burgarchitekt geworden.
Nach dem Wendejahr 1989 wurde die Prager Burg an vielen Stellen für die Öffentlichkeit geöffnet. Während der Amtszeit des Präsidenten Havel kam es auf der Burg zu Regelungen der Innenräume und zum Ausbau zweier neuer Eingänge in den 2. Vorhof nach dem Projekt des Bildners und Designers Bořek Šípek. Mit einem bedeutenden Preis wurde der Durchstich durch den Wall der Pulverbrücke im Hirschgraben belohnt (Arch. Josef Pleskot). Interessant ist auch das moderne Gewächshaus der weltberühmten Architektin Eva Jiřičná. Der Georg-Platz (Jiřské náměstí) wurde neu bepflastert und geregelt. In Zusammenarbeit mit den Fachleuten aus dem Getti-Institut wurde die Mosaik „des Letzten Gerichts“ renoviert. Im Jahre 1990 wurde die Prager Burg feierlich beleuchtet und dieser Zustand dauert von der Dämmerung bis zur Mitternacht bis heute. In der touristischen Hauptsaison dauert die Beleuchtungszeit sogar eine Stunde länger, bis 1 Uhr. Die Tradition der elektrischen Beleuchtung, jedoch im viel kleineren Umfang, begann im Jahre 1928, als die Lampen zum 10. Jubiläum der Republikentstehung installiert wurden. Ein wenig ähnelte die heutige feierliche Beleuchtung jener aus dem Ende der 60er Jahren, heute ist sie allerdings viel detaillierter und in den Kommunistenzeiten wurde sie nur bei feierlichen Gelegenheiten angemacht. Beleuchtungswürdige Tage waren damals Staatsfeiertage oder bedeutende Republiktage, denen allerdings aus der kommunistischen Sicht die Anerkennung nicht fehlte.
In den letzten Jahren entwickelte sich die Umbau- bzw. Renovierungstätigkeit in vielen Objekten der Burg und eine erhebliche Aufmerksamkeit wurde der archäologischen Untersuchung gewidmet, die bereits seit 1925 läuft und viele Erkenntnisse über die Burggeschichte brachte. Die Untersuchung sowie die Renovierung der einzelnen Räume und Objekte ist von der Idee motiviert, sie dadurch, dass sie der Öffentlichkeit zugänglich gemacht werden, möglichst viel zu beleben.
Radium 49 Key M-Audio polyphonic Keyboard.
Features
USB connection with power - power it off your laptop.
Pitch and Modulation wheels
999 programmable options
Multi-octave presets
8 little sliders and 8 little dials
plugs for sustain switch, midi out to keyboard and USB, runs off battery, usb or power adapter.
Works great with GarageBand.
Drone Ranger : 4 Oscillators, 2 white noise sources, 2 ring mod, 2 Fuzz, 2 resonant low pass filters with LFO modulation.
Minus Mixers and the Combinator.. this is pretty much all the instruments and effects that come with Reason...
Thor is an amazing Synth.. everyone likes working with Rex files.. and blah blah blah.
I feel like Reasons needs a little more.. I really think they ought to work out some sort of effects plug in system.. or a rewire system that allows you to feed audio in and out of Reason.. because.. well the power of Reason is it's simplicity.. but a lot of times you'd like to have more power.. you'd like to work with convolution reverb, lets say, or a better distortion unit.. or other types of modulation effects..
Milton's Modal Compass is a complex map of the regularities within the field of musical modes.
A sketch of the diagram appeared on Milton Mermikides' blog Miltonline.com on the 5th of March 2015. Milton has generously approved of my attempts to visually compile his ideas.
For the sake of indexing there are different types of markers:
A: The outer ring, contraction-expansion.
B: The seven rings of modal interval sequences. Intervallic sequence inversions.
C: Modulations
D: Rotations (next/preceeding degree)
Blue colour indicates contraction.
Orange colour indicates expansion.
Minor and diminished intervals tend to dissolve inwardly, i.e. to smaller, more consonant intervals.
Major and augmented intervals tend to dissolve outwardly, i.e. to larger, more consonant intervals.
The blue-orange continuum reflects the level of contraction (minor) versus expansion (major) for each mode.
Locrian mode consist of a maximum of minor and diminished steps (m2, m3, P4, dim5, m6, m7).
Lydian mode consist of a maximum of Major and Augmented steps (M2, M3, A4, P5, M6, M7).
From Dorian mode which takes the balancing position with two minor, two major and two perfect functions the directions indicate:
Down left: Contraction
Down right: Expansion
Each modal scale is illustrated with its composition of major (orange) and minor (blue) steps in a circular form.
12 o'clock is the starting point - the prime/root - and the direction is clockwise.
Nomenclature: The names apply to the modern use of modes. The modes of the ancient Greek music were named differently.
Inversions:
The modes reflect each other in pairs: Across the vertical axis the interval sequences of the following pairs are each other's inversions:
Aeolian-Mixolydian
Phrygian-Ionian
Locrian-Lydian
The interval sequence of Dorian mode is symmetrical, so it is its own inversion.
Prague Castle (Pražský hrad)
For more than a thousand years, has the Prague Castle been an important symbol of the Czech state. Founded in the 9th century, it became the permanent seat of the Czech rulers and, most recently, also of the Presidents. One of the largest castle complexes in the world consists of palaces, offices, churches and fortification buildings, gardens and picturesque corners. The castle covers an area of 45 hectares. The unique view to the Prague Castle is one of the most amazing panorama views in the world.
Prague Castle is the most important folk-cultural and historical monument, and is the symbol of the more than one thousand years of development of the Czech and all-Czech states. It is a monumental symbol of the palace, church, fortification, official and residential buildings which represent very valuable monuments, included in all style epochs. It covers an area of 45 hectares, was the seat of the Bohemian princes, kings and emperors, and since the Republic was founded in 1918, it was also the residence of the presidents. Since 1962, the Prague Castle has been known for its archaeological discoveries.
History
The initial phases of the Prague Castle are connected with the first historically documented Přemyslid Bořivoj (Bořivoj I (Czech pronunciation: [ˈbɔr̝ɪvɔj], Latin: Borzivogius, c. 852 – c. 889) was the first historically documented Duke of Bohemia from about 870 and progenitor of the Přemyslid dynasty.] The Duchy of Bohemia was at those times subordinated to Great Moravia.). This one transferred in the 80s of the 9th century his original seat from Levý Hradec to the place where on the raised spot above the river Vltava/Moldau already existed a Slavic castle and was very well situated.
The first princely palace apparently only consisted of wood. The first stone building and the oldest Christian sanctuary was the Virgin Mary Church. Its remains have been found between the Second Courtyard and the Bastion garden (original name of the garden: Na Baště). This Bořivoj church was soon reconstructed by the prince Spytihněv I, who was buried here in 915. The second church in the castle was the St. George Basilica founded by Prince Vratislaus I. The next Přemyslide, Prince Wenceslas (Saint), the third sanctuary - the St Veit Rotunda - in the twenties of the 10th century nearby had built which in the 11th century by Prince Spytihnev II was transformed into a huge basilica.
In 973, when the bishopric was established in Prague, the castle was not only the seat of the head of state, but also the seat of the Prague bishop, the highest representative of the church. At the same time arose the first monastery in Bohemia at St. George's basilica.
In the 10th century the castle occupied an area of about 6 ha. In the Romanesque epoch the former fortress, especially after the year 1135 thanks to Soběslaus I, as the stony princely palace and the new masonry fortified with some towers were erected, was turned into a fortified medieval castle. Of the towers is the eastern blacktower best preserved.
Very significantly the Gothic period in the appearance of Prague Castle intervened, most of all Charles IV (1346 - 1378), who, with his father, John of Luxemburg (1310 - 1346), obtained from the pope the promotion of the Prague bishopric to the archbishopric and laid the foundations for the construction of St. Vitus Cathedral. Under Charles IV, the castle for the first time was turned into the imperial residence. Charles IV the defense of the Prague Castle had consolidated, the Royal Palace with the Chapel of All Saints he rebuilt generously. The roofs he had covered with gilded plates, which were the foundation for the binding of words "Golden Prague". Since 1382, Bohemian rulers ceased to occupy the Prague Castle for more than 100 years. The royal court was moved to the place of today's Community hall and back to the Prague castle it came only in 1483 under Wladislaus from the Jagiellonian dynasty.
Although the ruler already in 1490 moved to Ofen (Buda), he had the Prague castle renovated in the late Gothic style under the supervision of Benedikt Ried. He was the master builder of the magnificent Vladislav Hall, the largest secular vaulted room of the then Europe, with which the first Renaissance signs came to Prague. He carried out major construction works, including the construction of a new masonry, the defensive towers and the expansion of the Royal Palace. At his time, the Gothic died away and a new architectural style, the Renaissance, gradually prevailed.
The direct influence of the Italian art on the new style was most frequently observed in Prague under the reign of Ferdinand I (von Habsburg) and after his departure from Prague under the influence of the governor Ferdinand of Tyrol. At that time, the medieval castle was converted into a comfortable Renaissance castle with gardens. The typical Italian architecture of the Royal Pleasure palace arose in the northern King's garden.
For a large building activity in 1541 contributed a fire devastating the castle objects as well as the surrounding area quite a lot. Within the framework of the restoration, both the housing estates and the church buildings were rebuilt. Under the reign of the first Habsburgs, nobility palaces were added to the castle grounds (for example, the Pernstein Palace - later Lobkowicz Palace, Rosenberg Palace and others). Horse stable buildings were built in the north-west.
Under the reign of the Emperor Rudolph II (1576 - 1611), the Renaissance and Mannerism transformation of the castle, which for the second time became the center of the empire, and especially the center of European culture and science, reached its peak. On the second courtyard, new rooms were built for the collections of Rudolph - the new (now Spanish) hall and the Rudolph gallery. Also arose the connection tract between the northwestern and the southwestern part of the castle. Just here the famous Kunstkammer (Art chamber) and other rooms for Rudolph's collective activities were located. Additionally further horse stable properties were built for his rare Spanish horses. During the Rudolph times also the foundation stone of the famous Golden Alley was laid. Laboratories of the Rudolph-Alchymists were supposed to have been in the Powder tower above the Hirschgraben (Deer's ditch). The castle suffered again considerable damages when it was occupied by the Saxon army in 1631 and by the Swedes in 1648 not only was occupied but also plundered. After the Thirty Years' War, the Habsburgs did not care too much about the Prague royal seat.
Only Maria Theresia carried out an extensive reconstruction of the Prague Castle from 1755 - 1775 into a representative castle complex. The reason for the massive construction action were war damages, caused by the intense bombing of the castle during war conflicts at the beginning of her reign. The reconstruction was designed by the Viennese architect Nicolo Pacassi, who also planned the first courtyard with the monumental entrance gate. From the time of the Theresian reconstruction stems also the chapel of the Holy Cross on the 2nd castle forecourt and other buildings, especially the noblewomen institute. The south wing he imprinted the uniform monumental late Baroque facade of a representative seat. His plans influenced by Viennese Rococo and French Classicism the builders Anselmo Lurago, Anton Kunz and Anton Haffenecker brought into life.
In the 19th century, the castle fell into ruin, in several objects after the Josephine reforms the army settled. In connection with the stay of Ferdinand I the Good in the castle after his abdication in 1848 and further in connection with the preparation for the coronation of Franz Joseph I in the sixties it came to building modifications of several objects. After 1859, when the community for the completion of St Veit cathedral emerged, began first the repair, and then, under the influence of the architect Joseph Mocker, the work on the actual completion of St Veit's cathedral was started, completed in 1929.
In the years 1920 - 35, carried out extensive regulations of the Prague Castle as the seat of the Czechoslovak President the great Slovenian architect Josip Plečnik, who masterfully combined the valuable historical space with modern civilization claims. His modifications mainly concerned the 1st and 3rd court, the southern gardens of the castle, the fourth forecourt with the Bastion garden as well as numerous interiors. He created e.g. the pillared hall, private rooms of the presidential residence, including the Masaryk workroom. His pupil, Otto Rothmayer, brought to an end the incomplete solutions of some castle interior spaces after the Second World War in comparable quality.
In 1936, Pavel Janák and after him, in 1959, Jaroslav Fragner became castle architect.
After the year of change of 1989, the Prague Castle was opened to the public in many places. During the term of President Havel, at the castle it came to modulations of the interiors and to the expansion of two new entrances into the second courtyard after the project of the creator and designer Bořek Šípek. The puncture through the rampart of the Powder bridge in Hirschgraben was rewarded with a significant prize (Arch. Josef Pleskot). Also interesting is the modern greenhouse of the world-famous architect Eva Jiřičná. The Georgian Square (Jiřské náměstí) was re-paved and modulated. The Mosaic of the Last Judgment was renovated in collaboration with the specialists from the Getti Institute. In 1990, the Prague Castle was solemnly illuminated and this situation lasts from dusk to midnight until today. In the main tourist season, the lighting time even lasts an hour longer until 1 o'clock. The tradition of electric lighting, but on a much smaller scale, began in 1928, when the lamps were installed for the 10th anniversary of the elevation to a Republic. A little bit the present daylight resembles of those from the end of the sixties, but today it is much more detailed and in communist times it was only switched on at solemn occasions. At that time, illuminative days were state holidays or significant day of republic, which, however, did not lack recognition from the communist point of view.
In recent years the reconstruction and renovation work has been developed in many buildings of the castle and a considerable attention has been devoted to the archaeological investigation, which has been going on since 1925 and has brought many insights into the history of the castle. The investigation as well as the renovation of the individual rooms and objects is motivated by the idea of invigorating them as much as possible by making them accessible to the public.
Prager Burg (Pražský hrad)
Die Prager Burg ist seit über tausend Jahren ein bedeutendes Symbol des tschechischen Staates. Gegründet im 9. Jahrhundert wurde sie zum ständigen Sitz der tschechischen Herrscher und zuletzt auch der Präsidenten. Einer der größten Burgkomplexe weltweit setzt sich aus Palästen, Amts-, Kirchen- und Fortifikationsgebäuden, aus Gärten und malerischen Ecken zusammen. Die Burg erstreckt sich auf einer Fläche von 45 Hektar. Der alleinige Blick auf die Prager Burg stellt einen der überwältigendsten Panoramablicke der Welt dar.
Die Prager Burg ist das bedeutendste Volkskultur- und Historiedenkmal, sie ist das Symbol der mehr als eintausendjährigen Entwicklung des böhmischen sowie gesamttschechischen Staats. Es ist ein monumentales Symbol der Palast-, Kirchen-, Fortifikations-, Amts- und Wohngebäude, die sehr wertvolle Denkmäler darstellen, einbezogen auf alle Stilepochen. Sie erstreckt sich auf einer Fläche von 45 ha, war der Sitz der böhmischen Fürsten, Könige und Kaiser und seit der Republikentstehung im Jahre 1918 war sie auch die Residenz der Präsidenten. Seit 1962 steht die Prager Burg mit ihren archäologischen Funden als bekanntester.
Geschichte
Die Anfangszeiten der Prager Burg sind mit dem ersten historisch belegten Přemysliden Bořivoj verbunden. Dieser übertrug in den 80er Jahren des 9. Jahrhunderts seinen ursprünglichen Sitz von Levý Hradec an den Ort, wo auf der erhabenen Stelle über der Moldau eine slawische Burgstätte bereits bestand und sehr gut gelegen war.
Der erste Fürstenpalast bestand offenbar aus Holz. Der erste Steinbau und das älteste christliche Heiligtum war die Jungfrau Maria Kirche. Ihre Reste wurden zwischen dem II. Vorhof und dem Basteigarten (Originalname des Gartens: Na Baště) gefunden. Diese Bořivoj-Kirche wurde durch den hier im Jahre 915 beigesetzten Fürsten Spytihněv I. bald umgebaut. Die zweite Kirche im Burgraum war die vom Fürsten Vratislaus I. gegründete St. Georg Basilika. Der nächste Přemyslide, der Fürst Wenzel (der Heilige), ließ in der Nähe in den 20er Jahren des 10. Jahrhunderts das dritte Heiligtum - die St. Veit Rotunde - bauen, die im 11. Jahrhundert vom Fürsten Spytihněv II. zu einer gewaltigen Basilika umgebaut wurde.
Im Jahre 973, als in Prag das Bistum gegründet wurde, war die Burg nicht nur der Sitz des Staatsoberhaupts, sondern auch der Sitz des Prager Bischofs, des höchsten Repräsentanten der Kirche. Zu demselben Zeitpunkt entstand an der St. Georg Basilika das erste Kloster in Böhmen.
Im 10. Jahrhundert nahm die Burg eine Fläche von ca. 6 ha in Anspruch. In der romanischen Epoche wurde die einstige Burgstätte, insbesondere nach dem Jahr 1135 dank Soběslaus I., als der steinige Fürstenpalast und das neue mit einigen Türmen verstärkte Mauerwerk aufgebaut wurden, zu einer festen mittelalterlichen Burg umgebaut. Von den Türmen ist der östliche Schwarzturm am besten erhalten.
Sehr bedeutend griff ins Aussehen der Prager Burg die Gotikzeit ein, insbesondere Karl IV. (1346 - 1378), der mit seinem Vater Johann von Luxemburg (1310 - 1346) vom Papst die Beförderung des Prager Bistums zum Erzbistum erwirkte und den Grundstein für den Bau der St. Veit Kathedrale legte. Unter Karl IV. wurde die Burg zum ersten Mal zur Kaiserlichen Residenz. Karl IV. ließ die Verschanzung der Prager Burg festigen, den Königspalast mit der Kapelle Aller Heiligen baute er großzügig um. Die Dächer ließ er mit vergoldeten Blechen decken, die das Fundament für die Wörterbindung „Goldenes Prag“ darstellten. Seit 1382 hörten böhmische Herrscher auf, die Prager Burg für mehr als 100 Jahre zu bewohnen. Der Königshof wurde an den Ort des heutigen Gemeindehauses umgezogen und zurück auf die Prager Burg kehrte er erst im Jahre 1483 unter Wladislaus aus der Jagiellonen-Dynastie.
Obwohl der Herrscher bereits 1490 nach Ofen (Buda) umsiedelte, ließ er die Prager Burg im spätgotischen Stil unter der Bauleitung von Benedikt Ried umbauen. Er war der Baumeister des großartigen Wladislaus-Saals, des größten weltlichen gewölbten Raums des damaligen Europas, mit dem die ersten Renaissancezeichen nach Prag kamen. Er führte großartige Bauregelungen einschließlich des Ausbaus eines neuen Mauerwerks, der Wehrtürme und der Erweiterung des Königspalastes durch. Zu seiner Zeit klang die Gotik aus und es setzte sich allmählich ein neuer Baustil durch, die Renaissance.
Der direkte Einfluss der italienischen Kunst des neuen Stils wurde in Prag unter der Regierung von Ferdinand I. (von Habsburg) und nach seinem Weggang von Prag unter der Wirkung des Statthalters Ferdinand von Tirol am meisten beobachtet. Damals wurde die mittelalterliche Burg in ein bequemes Renaissanceschloss mit Gärten umgewandelt. Im nördlichen Königsgarten entstand die typisch italienische Architektur des Königlichen Lustschlosses.
Zu einer großen Bauaktivität trug im Jahre 1541 ein Brand bei, der die Burgobjekte sowie die Umgebung ziemlich viel kaputt machte. Im Rahmen der Wiederherstellung wurden sowohl die Wohnräume als auch die Kirchenobjekte umgebaut. Unter der Regierung der ersten Habsburger kamen ins Burggelände auch Adelspaläste dazu (zum Beispiel der Pernstein-Palast - später Lobkowicz-Palast, Rosenberg-Palast und weitere). Im Nordwesten wurden Pferdestallgebäude erbaut.
Unter der Regierung des Kaisers Rudolph II. (1576 - 1611) erreichte der Renaissance- und Manierismusumbau der Burg, die zum zweiten Mal zum Zentrum des Reiches und insbesondere zum Zentrum der europäischen Kultur und Wissenschaft wurde, seinen Gipfel. Auf dem II. Vorhof wurden neue Räume für die Sammlungen Rudolphs erbaut - der Neue (heute Spanische) Saal und die Rudolph-Galerie. Es entstand auch der Verbindungstrakt zwischen dem Nordwest- und dem Südwestteil der Burg. Eben hier befanden sich die berühmte Kunstkammer und weitere Räume für die Sammeltätigkeit Rudolphs. Es wurden auch weitere Pferdestallobjekte für seine seltenen spanischen Pferde aufgebaut. Während der Rudolph-Zeiten wurde auch der Grundstein der berühmten Goldenen Gasse gelegt. Laboratorien der Rudolph-Alchymisten sollen im Pulverturm über dem Hirschgraben gewesen sein. Die Burg erlitt erneut erhebliche Schäden, als sie 1631 vom sächsischen Heer und 1648 von den Schweden besetzt und ausgeplündert wurde. Nach dem Dreißigjährigen Krieg kümmerten sich die Habsburger um den Prager königlichen Sitz nicht allzu sehr.
Erst Maria Theresia führte in den Jahren 1755 - 1775 einen umfangreichen Umbau der Prager Burg zu einem repräsentativen Schlosskomplex durch. Der Grund für die massive Bauaktion waren Kriegsschäden, verursacht durch die intensive Bombardierung der Burg bei Kriegskonflikten zu Beginn ihrer Regierung. Den Umbau entwarf der Wiener Architekt Nicolo Pacassi, der auch den I. Vorhof mit dem monumentalen Eingangstor projektierte. Aus der Zeit des theresianischen Umbaus stammt auch die Kapelle des Heiligen Kreuzes auf dem II. Burgvorhof und weitere Gebäude, insbesondere die Edeldamenanstalt. Dem Südflügel prägte er die einheitliche monumentale Spätbarockfassade eines Repräsentationssitzes ein. Seine durch das Wiener Rokoko und den französischen Klassizismus beeinflussten Pläne brachten die Baumeister Anselmo Lurago, Anton Kunz und Anton Haffenecker zustande.
Im 19. Jahrhundert verfiel die Burg, in mehreren Objekten ließ sich nach den josephinischen Reformen das Heer nieder. Zu Bauregelungen einiger Objekte kam es im Zusammenhang mit dem Aufenthalt von Ferdinand I. dem Guten auf der Burg nach seiner Abdikation im Jahre 1848 und weiter im Zusammenhang mit der Vorbereitung auf die vorgesehene Krönung von Franz Joseph I. in den 60er Jahren. Nach 1859, als die Gemeinde für die Fertigstellung der St. Veit Kathedrale entstand, begann zuerst die Reparatur und anschließend unter der Wirkung des Architekten Joseph Mocker wurde die Arbeit an der eigentlichen Fertigstellung der St. Veit Kathedrale aufgenommen, abgeschlossen im Jahre 1929.
In den Jahren 1920 - 35 führte ausgedehnte Regelungen der Prager Burg als des Sitzes des tschechoslowakischen Präsidenten der bedeutende slowenische Architekt Josip Plečnik durch, der den wertvollen historischen Raum mit modernen Zivilisationsansprüchen meisterlich zusammenfügte. Seine Regelungen betrafen vor allem den 1. und 3. Vorhof, die Südgärten der Burg, den 4. Vorhof mit dem Basteigarten sowie zahlreiche Innenräume. Er schuf z.B. die Säulenhalle, Privaträume der Präsidentenwohnung einschließlich des Arbeitszimmers Masaryks. Sein Schüler Otto Rothmayer brachte die unvollendeten Lösungen einiger Burginnenräume nach dem 2. Weltkrieg in vergleichbarer Qualität zu Ende.
Im Jahre 1936 ist Pavel Janák und nach ihm seit 1959 Jaroslav Fragner Burgarchitekt geworden.
Nach dem Wendejahr 1989 wurde die Prager Burg an vielen Stellen für die Öffentlichkeit geöffnet. Während der Amtszeit des Präsidenten Havel kam es auf der Burg zu Regelungen der Innenräume und zum Ausbau zweier neuer Eingänge in den 2. Vorhof nach dem Projekt des Bildners und Designers Bořek Šípek. Mit einem bedeutenden Preis wurde der Durchstich durch den Wall der Pulverbrücke im Hirschgraben belohnt (Arch. Josef Pleskot). Interessant ist auch das moderne Gewächshaus der weltberühmten Architektin Eva Jiřičná. Der Georg-Platz (Jiřské náměstí) wurde neu bepflastert und geregelt. In Zusammenarbeit mit den Fachleuten aus dem Getti-Institut wurde die Mosaik „des Letzten Gerichts“ renoviert. Im Jahre 1990 wurde die Prager Burg feierlich beleuchtet und dieser Zustand dauert von der Dämmerung bis zur Mitternacht bis heute. In der touristischen Hauptsaison dauert die Beleuchtungszeit sogar eine Stunde länger, bis 1 Uhr. Die Tradition der elektrischen Beleuchtung, jedoch im viel kleineren Umfang, begann im Jahre 1928, als die Lampen zum 10. Jubiläum der Republikentstehung installiert wurden. Ein wenig ähnelte die heutige feierliche Beleuchtung jener aus dem Ende der 60er Jahren, heute ist sie allerdings viel detaillierter und in den Kommunistenzeiten wurde sie nur bei feierlichen Gelegenheiten angemacht. Beleuchtungswürdige Tage waren damals Staatsfeiertage oder bedeutende Republiktage, denen allerdings aus der kommunistischen Sicht die Anerkennung nicht fehlte.
In den letzten Jahren entwickelte sich die Umbau- bzw. Renovierungstätigkeit in vielen Objekten der Burg und eine erhebliche Aufmerksamkeit wurde der archäologischen Untersuchung gewidmet, die bereits seit 1925 läuft und viele Erkenntnisse über die Burggeschichte brachte. Die Untersuchung sowie die Renovierung der einzelnen Räume und Objekte ist von der Idee motiviert, sie dadurch, dass sie der Öffentlichkeit zugänglich gemacht werden, möglichst viel zu beleben.
Pituitary gland in the brain. Computer artwork of a person's head showing the left hemisphere of the brain inside. The highlighted area (centre) shows the pituitary gland. The pituitary gland is a small endocrine gland about the size of a pea protruding off the bottom of the hypothalamus at the base of the brain. It secretes hormones regulating homoeostasis, including trophic hormones that stimulate other endocrine glands. It is functionally connected to and influenced by the hypothalamus.
25th (or rather early hours of 26th January 2014 at the Piping Centre, Glasgow.
The Effects Box is a table top unit which modifies the sound of a musical instrument such as an Electric Guitar by means of changes like distortion, modulation, and feedback. Unlike Pedalboards on the ground which are operated with the feet, musicians need to take their hands of their instrument to operate the effects.
Lang’s effects include a Boss FV-50 Volume Pedal and a Boss SD-1 Super Overdrive, and a Pro Harmonic Mixer.
A fallback single transmit Tx coil option was left on the high acuity headset to offer a simple wireless power transfer where the coil is optimally placed directly in front of the eye. A Direct-Digital-Synthesizer running at 50MHz allows full control of Magnitude, Frequency and Phase with the added advantage of providing hard wired high speed modulation control. The DDS allows precision resonance tracking at resolutions below 1Hz allowing mutual inductance and eye movement compensation between the external and implant inductive coils similar to a DPLL. the output frequency is set to track the resonance of the series-parallel tank circuits notionally set at 6.8MHz. Small changes in mutual inductance resulting from eye movements can be easily tracked using VI phase shifts.
Krishna And His Leela Director Got Suddenly Married: Ravikanth Perepu, the happening director in lockdown times with his film Krishna And His Leela has got hitched.
He was shot to fame with Adivi Sesh's Kshanam in 2016 and freshly he is in buzz for his talent in making Krishna and his Leela.
He married his girl girlfriend cum colleague. He took this news on to his Facebook wall and posted the details surrounding his decision.
He wrote "Ending the Krishna and his Leela posts with the most important person of my life . During the making of this film,Veena Ghantasala and I decided to take our relationship a step forward and we got married. I was two timing with her and the film.
The film got stalled and I wasn’t in the best of my energies. It isn’t easy to live with someone when they touch their rock bottom. I can only imagine what my girl has gone through. She was expecting a beautiful kick start to her new life and Boom,she got me! But She’s a fighter too.
There were a lot of hiccups through the way but she never gave up. 5 years of togetherness and I found a great friend in her. She’s become my go to person no matter how screwed up the situation is. It’s crazy to have that one person to share your moments with.
She taught me when to be a boy and when to be a man! And as an individual, oh boy what a talent! I worked with her for #Kshanam and she’s a terrific voice actress. Veena and I come up with some never heard before modulations working together. www.ismarttalkies.com/krishna-and-his-leela-director-got-...
Prague Castle (Pražský hrad)
For more than a thousand years, has the Prague Castle been an important symbol of the Czech state. Founded in the 9th century, it became the permanent seat of the Czech rulers and, most recently, also of the Presidents. One of the largest castle complexes in the world consists of palaces, offices, churches and fortification buildings, gardens and picturesque corners. The castle covers an area of 45 hectares. The unique view to the Prague Castle is one of the most amazing panorama views in the world.
Prague Castle is the most important folk-cultural and historical monument, and is the symbol of the more than one thousand years of development of the Czech and all-Czech states. It is a monumental symbol of the palace, church, fortification, official and residential buildings which represent very valuable monuments, included in all style epochs. It covers an area of 45 hectares, was the seat of the Bohemian princes, kings and emperors, and since the Republic was founded in 1918, it was also the residence of the presidents. Since 1962, the Prague Castle has been known for its archaeological discoveries.
History
The initial phases of the Prague Castle are connected with the first historically documented Přemyslid Bořivoj (Bořivoj I (Czech pronunciation: [ˈbɔr̝ɪvɔj], Latin: Borzivogius, c. 852 – c. 889) was the first historically documented Duke of Bohemia from about 870 and progenitor of the Přemyslid dynasty.] The Duchy of Bohemia was at those times subordinated to Great Moravia.). This one transferred in the 80s of the 9th century his original seat from Levý Hradec to the place where on the raised spot above the river Vltava/Moldau already existed a Slavic castle and was very well situated.
The first princely palace apparently only consisted of wood. The first stone building and the oldest Christian sanctuary was the Virgin Mary Church. Its remains have been found between the Second Courtyard and the Bastion garden (original name of the garden: Na Baště). This Bořivoj church was soon reconstructed by the prince Spytihněv I, who was buried here in 915. The second church in the castle was the St. George Basilica founded by Prince Vratislaus I. The next Přemyslide, Prince Wenceslas (Saint), the third sanctuary - the St Veit Rotunda - in the twenties of the 10th century nearby had built which in the 11th century by Prince Spytihnev II was transformed into a huge basilica.
In 973, when the bishopric was established in Prague, the castle was not only the seat of the head of state, but also the seat of the Prague bishop, the highest representative of the church. At the same time arose the first monastery in Bohemia at St. George's basilica.
In the 10th century the castle occupied an area of about 6 ha. In the Romanesque epoch the former fortress, especially after the year 1135 thanks to Soběslaus I, as the stony princely palace and the new masonry fortified with some towers were erected, was turned into a fortified medieval castle. Of the towers is the eastern blacktower best preserved.
Very significantly the Gothic period in the appearance of Prague Castle intervened, most of all Charles IV (1346 - 1378), who, with his father, John of Luxemburg (1310 - 1346), obtained from the pope the promotion of the Prague bishopric to the archbishopric and laid the foundations for the construction of St. Vitus Cathedral. Under Charles IV, the castle for the first time was turned into the imperial residence. Charles IV the defense of the Prague Castle had consolidated, the Royal Palace with the Chapel of All Saints he rebuilt generously. The roofs he had covered with gilded plates, which were the foundation for the binding of words "Golden Prague". Since 1382, Bohemian rulers ceased to occupy the Prague Castle for more than 100 years. The royal court was moved to the place of today's Community hall and back to the Prague castle it came only in 1483 under Wladislaus from the Jagiellonian dynasty.
Although the ruler already in 1490 moved to Ofen (Buda), he had the Prague castle renovated in the late Gothic style under the supervision of Benedikt Ried. He was the master builder of the magnificent Vladislav Hall, the largest secular vaulted room of the then Europe, with which the first Renaissance signs came to Prague. He carried out major construction works, including the construction of a new masonry, the defensive towers and the expansion of the Royal Palace. At his time, the Gothic died away and a new architectural style, the Renaissance, gradually prevailed.
The direct influence of the Italian art on the new style was most frequently observed in Prague under the reign of Ferdinand I (von Habsburg) and after his departure from Prague under the influence of the governor Ferdinand of Tyrol. At that time, the medieval castle was converted into a comfortable Renaissance castle with gardens. The typical Italian architecture of the Royal Pleasure palace arose in the northern King's garden.
For a large building activity in 1541 contributed a fire devastating the castle objects as well as the surrounding area quite a lot. Within the framework of the restoration, both the housing estates and the church buildings were rebuilt. Under the reign of the first Habsburgs, nobility palaces were added to the castle grounds (for example, the Pernstein Palace - later Lobkowicz Palace, Rosenberg Palace and others). Horse stable buildings were built in the north-west.
Under the reign of the Emperor Rudolph II (1576 - 1611), the Renaissance and Mannerism transformation of the castle, which for the second time became the center of the empire, and especially the center of European culture and science, reached its peak. On the second courtyard, new rooms were built for the collections of Rudolph - the new (now Spanish) hall and the Rudolph gallery. Also arose the connection tract between the northwestern and the southwestern part of the castle. Just here the famous Kunstkammer (Art chamber) and other rooms for Rudolph's collective activities were located. Additionally further horse stable properties were built for his rare Spanish horses. During the Rudolph times also the foundation stone of the famous Golden Alley was laid. Laboratories of the Rudolph-Alchymists were supposed to have been in the Powder tower above the Hirschgraben (Deer's ditch). The castle suffered again considerable damages when it was occupied by the Saxon army in 1631 and by the Swedes in 1648 not only was occupied but also plundered. After the Thirty Years' War, the Habsburgs did not care too much about the Prague royal seat.
Only Maria Theresia carried out an extensive reconstruction of the Prague Castle from 1755 - 1775 into a representative castle complex. The reason for the massive construction action were war damages, caused by the intense bombing of the castle during war conflicts at the beginning of her reign. The reconstruction was designed by the Viennese architect Nicolo Pacassi, who also planned the first courtyard with the monumental entrance gate. From the time of the Theresian reconstruction stems also the chapel of the Holy Cross on the 2nd castle forecourt and other buildings, especially the noblewomen institute. The south wing he imprinted the uniform monumental late Baroque facade of a representative seat. His plans influenced by Viennese Rococo and French Classicism the builders Anselmo Lurago, Anton Kunz and Anton Haffenecker brought into life.
In the 19th century, the castle fell into ruin, in several objects after the Josephine reforms the army settled. In connection with the stay of Ferdinand I the Good in the castle after his abdication in 1848 and further in connection with the preparation for the coronation of Franz Joseph I in the sixties it came to building modifications of several objects. After 1859, when the community for the completion of St Veit cathedral emerged, began first the repair, and then, under the influence of the architect Joseph Mocker, the work on the actual completion of St Veit's cathedral was started, completed in 1929.
In the years 1920 - 35, carried out extensive regulations of the Prague Castle as the seat of the Czechoslovak President the great Slovenian architect Josip Plečnik, who masterfully combined the valuable historical space with modern civilization claims. His modifications mainly concerned the 1st and 3rd court, the southern gardens of the castle, the fourth forecourt with the Bastion garden as well as numerous interiors. He created e.g. the pillared hall, private rooms of the presidential residence, including the Masaryk workroom. His pupil, Otto Rothmayer, brought to an end the incomplete solutions of some castle interior spaces after the Second World War in comparable quality.
In 1936, Pavel Janák and after him, in 1959, Jaroslav Fragner became castle architect.
After the year of change of 1989, the Prague Castle was opened to the public in many places. During the term of President Havel, at the castle it came to modulations of the interiors and to the expansion of two new entrances into the second courtyard after the project of the creator and designer Bořek Šípek. The puncture through the rampart of the Powder bridge in Hirschgraben was rewarded with a significant prize (Arch. Josef Pleskot). Also interesting is the modern greenhouse of the world-famous architect Eva Jiřičná. The Georgian Square (Jiřské náměstí) was re-paved and modulated. The Mosaic of the Last Judgment was renovated in collaboration with the specialists from the Getti Institute. In 1990, the Prague Castle was solemnly illuminated and this situation lasts from dusk to midnight until today. In the main tourist season, the lighting time even lasts an hour longer until 1 o'clock. The tradition of electric lighting, but on a much smaller scale, began in 1928, when the lamps were installed for the 10th anniversary of the elevation to a Republic. A little bit the present daylight resembles of those from the end of the sixties, but today it is much more detailed and in communist times it was only switched on at solemn occasions. At that time, illuminative days were state holidays or significant day of republic, which, however, did not lack recognition from the communist point of view.
In recent years the reconstruction and renovation work has been developed in many buildings of the castle and a considerable attention has been devoted to the archaeological investigation, which has been going on since 1925 and has brought many insights into the history of the castle. The investigation as well as the renovation of the individual rooms and objects is motivated by the idea of invigorating them as much as possible by making them accessible to the public.
Prager Burg (Pražský hrad)
Die Prager Burg ist seit über tausend Jahren ein bedeutendes Symbol des tschechischen Staates. Gegründet im 9. Jahrhundert wurde sie zum ständigen Sitz der tschechischen Herrscher und zuletzt auch der Präsidenten. Einer der größten Burgkomplexe weltweit setzt sich aus Palästen, Amts-, Kirchen- und Fortifikationsgebäuden, aus Gärten und malerischen Ecken zusammen. Die Burg erstreckt sich auf einer Fläche von 45 Hektar. Der alleinige Blick auf die Prager Burg stellt einen der überwältigendsten Panoramablicke der Welt dar.
Die Prager Burg ist das bedeutendste Volkskultur- und Historiedenkmal, sie ist das Symbol der mehr als eintausendjährigen Entwicklung des böhmischen sowie gesamttschechischen Staats. Es ist ein monumentales Symbol der Palast-, Kirchen-, Fortifikations-, Amts- und Wohngebäude, die sehr wertvolle Denkmäler darstellen, einbezogen auf alle Stilepochen. Sie erstreckt sich auf einer Fläche von 45 ha, war der Sitz der böhmischen Fürsten, Könige und Kaiser und seit der Republikentstehung im Jahre 1918 war sie auch die Residenz der Präsidenten. Seit 1962 steht die Prager Burg mit ihren archäologischen Funden als bekanntester.
Geschichte
Die Anfangszeiten der Prager Burg sind mit dem ersten historisch belegten Přemysliden Bořivoj verbunden. Dieser übertrug in den 80er Jahren des 9. Jahrhunderts seinen ursprünglichen Sitz von Levý Hradec an den Ort, wo auf der erhabenen Stelle über der Moldau eine slawische Burgstätte bereits bestand und sehr gut gelegen war.
Der erste Fürstenpalast bestand offenbar aus Holz. Der erste Steinbau und das älteste christliche Heiligtum war die Jungfrau Maria Kirche. Ihre Reste wurden zwischen dem II. Vorhof und dem Basteigarten (Originalname des Gartens: Na Baště) gefunden. Diese Bořivoj-Kirche wurde durch den hier im Jahre 915 beigesetzten Fürsten Spytihněv I. bald umgebaut. Die zweite Kirche im Burgraum war die vom Fürsten Vratislaus I. gegründete St. Georg Basilika. Der nächste Přemyslide, der Fürst Wenzel (der Heilige), ließ in der Nähe in den 20er Jahren des 10. Jahrhunderts das dritte Heiligtum - die St. Veit Rotunde - bauen, die im 11. Jahrhundert vom Fürsten Spytihněv II. zu einer gewaltigen Basilika umgebaut wurde.
Im Jahre 973, als in Prag das Bistum gegründet wurde, war die Burg nicht nur der Sitz des Staatsoberhaupts, sondern auch der Sitz des Prager Bischofs, des höchsten Repräsentanten der Kirche. Zu demselben Zeitpunkt entstand an der St. Georg Basilika das erste Kloster in Böhmen.
Im 10. Jahrhundert nahm die Burg eine Fläche von ca. 6 ha in Anspruch. In der romanischen Epoche wurde die einstige Burgstätte, insbesondere nach dem Jahr 1135 dank Soběslaus I., als der steinige Fürstenpalast und das neue mit einigen Türmen verstärkte Mauerwerk aufgebaut wurden, zu einer festen mittelalterlichen Burg umgebaut. Von den Türmen ist der östliche Schwarzturm am besten erhalten.
Sehr bedeutend griff ins Aussehen der Prager Burg die Gotikzeit ein, insbesondere Karl IV. (1346 - 1378), der mit seinem Vater Johann von Luxemburg (1310 - 1346) vom Papst die Beförderung des Prager Bistums zum Erzbistum erwirkte und den Grundstein für den Bau der St. Veit Kathedrale legte. Unter Karl IV. wurde die Burg zum ersten Mal zur Kaiserlichen Residenz. Karl IV. ließ die Verschanzung der Prager Burg festigen, den Königspalast mit der Kapelle Aller Heiligen baute er großzügig um. Die Dächer ließ er mit vergoldeten Blechen decken, die das Fundament für die Wörterbindung „Goldenes Prag“ darstellten. Seit 1382 hörten böhmische Herrscher auf, die Prager Burg für mehr als 100 Jahre zu bewohnen. Der Königshof wurde an den Ort des heutigen Gemeindehauses umgezogen und zurück auf die Prager Burg kehrte er erst im Jahre 1483 unter Wladislaus aus der Jagiellonen-Dynastie.
Obwohl der Herrscher bereits 1490 nach Ofen (Buda) umsiedelte, ließ er die Prager Burg im spätgotischen Stil unter der Bauleitung von Benedikt Ried umbauen. Er war der Baumeister des großartigen Wladislaus-Saals, des größten weltlichen gewölbten Raums des damaligen Europas, mit dem die ersten Renaissancezeichen nach Prag kamen. Er führte großartige Bauregelungen einschließlich des Ausbaus eines neuen Mauerwerks, der Wehrtürme und der Erweiterung des Königspalastes durch. Zu seiner Zeit klang die Gotik aus und es setzte sich allmählich ein neuer Baustil durch, die Renaissance.
Der direkte Einfluss der italienischen Kunst des neuen Stils wurde in Prag unter der Regierung von Ferdinand I. (von Habsburg) und nach seinem Weggang von Prag unter der Wirkung des Statthalters Ferdinand von Tirol am meisten beobachtet. Damals wurde die mittelalterliche Burg in ein bequemes Renaissanceschloss mit Gärten umgewandelt. Im nördlichen Königsgarten entstand die typisch italienische Architektur des Königlichen Lustschlosses.
Zu einer großen Bauaktivität trug im Jahre 1541 ein Brand bei, der die Burgobjekte sowie die Umgebung ziemlich viel kaputt machte. Im Rahmen der Wiederherstellung wurden sowohl die Wohnräume als auch die Kirchenobjekte umgebaut. Unter der Regierung der ersten Habsburger kamen ins Burggelände auch Adelspaläste dazu (zum Beispiel der Pernstein-Palast - später Lobkowicz-Palast, Rosenberg-Palast und weitere). Im Nordwesten wurden Pferdestallgebäude erbaut.
Unter der Regierung des Kaisers Rudolph II. (1576 - 1611) erreichte der Renaissance- und Manierismusumbau der Burg, die zum zweiten Mal zum Zentrum des Reiches und insbesondere zum Zentrum der europäischen Kultur und Wissenschaft wurde, seinen Gipfel. Auf dem II. Vorhof wurden neue Räume für die Sammlungen Rudolphs erbaut - der Neue (heute Spanische) Saal und die Rudolph-Galerie. Es entstand auch der Verbindungstrakt zwischen dem Nordwest- und dem Südwestteil der Burg. Eben hier befanden sich die berühmte Kunstkammer und weitere Räume für die Sammeltätigkeit Rudolphs. Es wurden auch weitere Pferdestallobjekte für seine seltenen spanischen Pferde aufgebaut. Während der Rudolph-Zeiten wurde auch der Grundstein der berühmten Goldenen Gasse gelegt. Laboratorien der Rudolph-Alchymisten sollen im Pulverturm über dem Hirschgraben gewesen sein. Die Burg erlitt erneut erhebliche Schäden, als sie 1631 vom sächsischen Heer und 1648 von den Schweden besetzt und ausgeplündert wurde. Nach dem Dreißigjährigen Krieg kümmerten sich die Habsburger um den Prager königlichen Sitz nicht allzu sehr.
Erst Maria Theresia führte in den Jahren 1755 - 1775 einen umfangreichen Umbau der Prager Burg zu einem repräsentativen Schlosskomplex durch. Der Grund für die massive Bauaktion waren Kriegsschäden, verursacht durch die intensive Bombardierung der Burg bei Kriegskonflikten zu Beginn ihrer Regierung. Den Umbau entwarf der Wiener Architekt Nicolo Pacassi, der auch den I. Vorhof mit dem monumentalen Eingangstor projektierte. Aus der Zeit des theresianischen Umbaus stammt auch die Kapelle des Heiligen Kreuzes auf dem II. Burgvorhof und weitere Gebäude, insbesondere die Edeldamenanstalt. Dem Südflügel prägte er die einheitliche monumentale Spätbarockfassade eines Repräsentationssitzes ein. Seine durch das Wiener Rokoko und den französischen Klassizismus beeinflussten Pläne brachten die Baumeister Anselmo Lurago, Anton Kunz und Anton Haffenecker zustande.
Im 19. Jahrhundert verfiel die Burg, in mehreren Objekten ließ sich nach den josephinischen Reformen das Heer nieder. Zu Bauregelungen einiger Objekte kam es im Zusammenhang mit dem Aufenthalt von Ferdinand I. dem Guten auf der Burg nach seiner Abdikation im Jahre 1848 und weiter im Zusammenhang mit der Vorbereitung auf die vorgesehene Krönung von Franz Joseph I. in den 60er Jahren. Nach 1859, als die Gemeinde für die Fertigstellung der St. Veit Kathedrale entstand, begann zuerst die Reparatur und anschließend unter der Wirkung des Architekten Joseph Mocker wurde die Arbeit an der eigentlichen Fertigstellung der St. Veit Kathedrale aufgenommen, abgeschlossen im Jahre 1929.
In den Jahren 1920 - 35 führte ausgedehnte Regelungen der Prager Burg als des Sitzes des tschechoslowakischen Präsidenten der bedeutende slowenische Architekt Josip Plečnik durch, der den wertvollen historischen Raum mit modernen Zivilisationsansprüchen meisterlich zusammenfügte. Seine Regelungen betrafen vor allem den 1. und 3. Vorhof, die Südgärten der Burg, den 4. Vorhof mit dem Basteigarten sowie zahlreiche Innenräume. Er schuf z.B. die Säulenhalle, Privaträume der Präsidentenwohnung einschließlich des Arbeitszimmers Masaryks. Sein Schüler Otto Rothmayer brachte die unvollendeten Lösungen einiger Burginnenräume nach dem 2. Weltkrieg in vergleichbarer Qualität zu Ende.
Im Jahre 1936 ist Pavel Janák und nach ihm seit 1959 Jaroslav Fragner Burgarchitekt geworden.
Nach dem Wendejahr 1989 wurde die Prager Burg an vielen Stellen für die Öffentlichkeit geöffnet. Während der Amtszeit des Präsidenten Havel kam es auf der Burg zu Regelungen der Innenräume und zum Ausbau zweier neuer Eingänge in den 2. Vorhof nach dem Projekt des Bildners und Designers Bořek Šípek. Mit einem bedeutenden Preis wurde der Durchstich durch den Wall der Pulverbrücke im Hirschgraben belohnt (Arch. Josef Pleskot). Interessant ist auch das moderne Gewächshaus der weltberühmten Architektin Eva Jiřičná. Der Georg-Platz (Jiřské náměstí) wurde neu bepflastert und geregelt. In Zusammenarbeit mit den Fachleuten aus dem Getti-Institut wurde die Mosaik „des Letzten Gerichts“ renoviert. Im Jahre 1990 wurde die Prager Burg feierlich beleuchtet und dieser Zustand dauert von der Dämmerung bis zur Mitternacht bis heute. In der touristischen Hauptsaison dauert die Beleuchtungszeit sogar eine Stunde länger, bis 1 Uhr. Die Tradition der elektrischen Beleuchtung, jedoch im viel kleineren Umfang, begann im Jahre 1928, als die Lampen zum 10. Jubiläum der Republikentstehung installiert wurden. Ein wenig ähnelte die heutige feierliche Beleuchtung jener aus dem Ende der 60er Jahren, heute ist sie allerdings viel detaillierter und in den Kommunistenzeiten wurde sie nur bei feierlichen Gelegenheiten angemacht. Beleuchtungswürdige Tage waren damals Staatsfeiertage oder bedeutende Republiktage, denen allerdings aus der kommunistischen Sicht die Anerkennung nicht fehlte.
In den letzten Jahren entwickelte sich die Umbau- bzw. Renovierungstätigkeit in vielen Objekten der Burg und eine erhebliche Aufmerksamkeit wurde der archäologischen Untersuchung gewidmet, die bereits seit 1925 läuft und viele Erkenntnisse über die Burggeschichte brachte. Die Untersuchung sowie die Renovierung der einzelnen Räume und Objekte ist von der Idee motiviert, sie dadurch, dass sie der Öffentlichkeit zugänglich gemacht werden, möglichst viel zu beleben.
The thing that united scientists with rock n roll.
Designed by Robert Moog in 1970, the Minimoog Model D synthesizer is still regarded as the Rolls Royce equivalent for analog keyboard-based synthesizers. Specifically designed for touring musicians, the minimoog exported electronic music experiments from university labs out to the masses - and her deep farting bass-sounds (think of Kraftwerk's Autobahn), lead and space bleeps and sweeps have become HUGELY popular over the last 38 years.
There were originally 13,000 minimoogs produced between 1970 and 1981. After a brief hiatus during the digital-synth craze in the 1980s, the minimoog enjoyed a resurgence of interest among musicians since the 1990s...and yes, it's becoming harder to get a hold on one.
I obtained this Mini from a studio garage sale back in 1989 for US$ 150 (in prime condition - save the crackling external input knob). After lying dormant for 7 years now, it's time to bring life back into this 1973 model D mini. Tropical humidity heavily damaged the furnishing. It needs re-tuning of the oscillators, cleaning of the electronic board, new switches for filter modulation, and thinking about a new base panel.
By virtue of its design the X-Wing has many flat planes, and although these are detailed with fine panel lines, it is important to make the miniature visually appealing from any distance. A key way to add dynamism and realism to a model is by modulating or highlighting specific details which will add interesting visual texture to the object; this is a technique frequently misused by modellers and can render a piece to appear almost cel-shaded, or cartoonish. Restraint is key in this regard, modulation ought to be indiscernible to the untrained eye and yet bring the model to life in a very refined manner
Various outputs from a C++/OpenGL custom software i'm working on.
Demo here: vimeo.com/user18035206/sound-sculptures
A Voltage-Controlled Amplifier (VCA) made from three BC549 NPN transistors and three BC214 PNP transistors. It's a Gm Cell with variable current followed by a simple op-amp.
The four traces shown on the Tek 5440 are the input (1kHz), the two intermediate signals and the output. The control or modulation voltage was a sinewave in this case.
Microchip's latest 2.4 GHz 256-QAM RF high-power amplifier—the SST12CP21—offers ultra low EVM and current consumption for 256-QAM and IEEE 802.11n systems. The SST12CP21 delivers high linear output power of up to 23 dBm at 1.75% dynamic EVM, with MCS9 HT40 MHz bandwidth modulation at 5V and 320 mA current consumption. Additionally, the SST12CP21 delivers 25 dBm linear power at 3% EVM with only 350 mA current consumption for 802.11g/n applications. This performance significantly extends the range of 802.11b/g/n WLAN and MIMO systems, while consuming extremely low current at the maximum 256-QAM data rate. The SST12CP21 is also spectrum mask compliant up to 28 dBm for 802.11b/g communication. Board space is reduced by the small 3x3x0.55 mm, 16-pin QFN package that matches a popular pin-out. For more info, visit: www.microchip.com/get/L3PX
During WW2 Tibenham Airfield was the home to the 445th Bombardment Group. The Hollywood actor James Stewart was stationed here. Today the place seems to be the epitome of tranquillity. (Inside the pub there is memorabilia about the airfield and they regularly hold WW2 re-enactment days.)
The runways are now used by the Norfolk Gliding Club and sitting outside the pub (with a glass of Adnam's Ghost Ship in your hand) you can watch the white gliders being pulled up into the air. Close you eyes and you can almost imagine the quiet modulation of the tow planes change into the thundering roar of a Liberator bomber.
Messier 3 (also known as M3 or NGC 5272) is a globular cluster of stars in the northern constellation of Canes Venatici. It was discovered by Charles Messier on May 3, 1764,[7] and resolved into stars by William Herschel around 1784. Since then, it has become one of the best-studied globular clusters. Identification of the cluster's unusually large variable star population was begun in 1913 by American astronomer Solon Irving Bailey and new variable members continue to be identified up through 2004.
Many amateur astronomers consider it one of the finest northern globular clusters, following only Messier 13.[1] M3 has an apparent magnitude of 6.2,[4] making it a difficult naked eye target even with dark conditions. With a moderate-sized telescope, the cluster is fully defined. It can be a challenge to locate through the technique of star hopping, but can be found by looking almost exactly halfway along an imaginary line connecting the bright star Arcturus to Cor Caroli. Using a telescope with a 25 cm (9.8 in) aperture, the cluster has a bright core with a diameter of about 6 arcminutes and spans a total of 12 arcminutes.[1]
This cluster is one of the largest and brightest, and is made up of around 500,000 stars. It is estimated to be 8 billion years old. It is located at a distance of about 33,900 light-years away from Earth.[citation needed]
Messier 3 is located 31.6 kly (9.7 kpc) above the Galactic plane and roughly 38.8 kly (11.9 kpc) from the center of the Milky Way. It contains 274 known variable stars; by far the highest number found in any globular cluster. These include 133 RR Lyrae variables, of which about a third display the Blazhko effect of long-period modulation. The overall abundance of elements other than hydrogen and helium, what astronomers term the metallicity, is in the range of –1.34 to –1.50 dex. This value gives the logarithm of the abundance relative to the Sun; the actual proportion is 3.2–4.6% of the solar abundance. Messier 3 is the prototype for the Oosterhoff type I cluster, which is considered "metal-rich". That is, for a globular cluster, Messier 3 has a relatively high abundance of heavier elements.
Oscillatoria drying slide with bubbles, 1000x Hoffman Modulation Contrast optics. From Heron's Head Salt Marsh.
Prague Castle (Pražský hrad)
For more than a thousand years, has the Prague Castle been an important symbol of the Czech state. Founded in the 9th century, it became the permanent seat of the Czech rulers and, most recently, also of the Presidents. One of the largest castle complexes in the world consists of palaces, offices, churches and fortification buildings, gardens and picturesque corners. The castle covers an area of 45 hectares. The unique view to the Prague Castle is one of the most amazing panorama views in the world.
Prague Castle is the most important folk-cultural and historical monument, and is the symbol of the more than one thousand years of development of the Czech and all-Czech states. It is a monumental symbol of the palace, church, fortification, official and residential buildings which represent very valuable monuments, included in all style epochs. It covers an area of 45 hectares, was the seat of the Bohemian princes, kings and emperors, and since the Republic was founded in 1918, it was also the residence of the presidents. Since 1962, the Prague Castle has been known for its archaeological discoveries.
History
The initial phases of the Prague Castle are connected with the first historically documented Přemyslid Bořivoj (Bořivoj I (Czech pronunciation: [ˈbɔr̝ɪvɔj], Latin: Borzivogius, c. 852 – c. 889) was the first historically documented Duke of Bohemia from about 870 and progenitor of the Přemyslid dynasty.] The Duchy of Bohemia was at those times subordinated to Great Moravia.). This one transferred in the 80s of the 9th century his original seat from Levý Hradec to the place where on the raised spot above the river Vltava/Moldau already existed a Slavic castle and was very well situated.
The first princely palace apparently only consisted of wood. The first stone building and the oldest Christian sanctuary was the Virgin Mary Church. Its remains have been found between the Second Courtyard and the Bastion garden (original name of the garden: Na Baště). This Bořivoj church was soon reconstructed by the prince Spytihněv I, who was buried here in 915. The second church in the castle was the St. George Basilica founded by Prince Vratislaus I. The next Přemyslide, Prince Wenceslas (Saint), the third sanctuary - the St Veit Rotunda - in the twenties of the 10th century nearby had built which in the 11th century by Prince Spytihnev II was transformed into a huge basilica.
In 973, when the bishopric was established in Prague, the castle was not only the seat of the head of state, but also the seat of the Prague bishop, the highest representative of the church. At the same time arose the first monastery in Bohemia at St. George's basilica.
In the 10th century the castle occupied an area of about 6 ha. In the Romanesque epoch the former fortress, especially after the year 1135 thanks to Soběslaus I, as the stony princely palace and the new masonry fortified with some towers were erected, was turned into a fortified medieval castle. Of the towers is the eastern blacktower best preserved.
Very significantly the Gothic period in the appearance of Prague Castle intervened, most of all Charles IV (1346 - 1378), who, with his father, John of Luxemburg (1310 - 1346), obtained from the pope the promotion of the Prague bishopric to the archbishopric and laid the foundations for the construction of St. Vitus Cathedral. Under Charles IV, the castle for the first time was turned into the imperial residence. Charles IV the defense of the Prague Castle had consolidated, the Royal Palace with the Chapel of All Saints he rebuilt generously. The roofs he had covered with gilded plates, which were the foundation for the binding of words "Golden Prague". Since 1382, Bohemian rulers ceased to occupy the Prague Castle for more than 100 years. The royal court was moved to the place of today's Community hall and back to the Prague castle it came only in 1483 under Wladislaus from the Jagiellonian dynasty.
Although the ruler already in 1490 moved to Ofen (Buda), he had the Prague castle renovated in the late Gothic style under the supervision of Benedikt Ried. He was the master builder of the magnificent Vladislav Hall, the largest secular vaulted room of the then Europe, with which the first Renaissance signs came to Prague. He carried out major construction works, including the construction of a new masonry, the defensive towers and the expansion of the Royal Palace. At his time, the Gothic died away and a new architectural style, the Renaissance, gradually prevailed.
The direct influence of the Italian art on the new style was most frequently observed in Prague under the reign of Ferdinand I (von Habsburg) and after his departure from Prague under the influence of the governor Ferdinand of Tyrol. At that time, the medieval castle was converted into a comfortable Renaissance castle with gardens. The typical Italian architecture of the Royal Pleasure palace arose in the northern King's garden.
For a large building activity in 1541 contributed a fire devastating the castle objects as well as the surrounding area quite a lot. Within the framework of the restoration, both the housing estates and the church buildings were rebuilt. Under the reign of the first Habsburgs, nobility palaces were added to the castle grounds (for example, the Pernstein Palace - later Lobkowicz Palace, Rosenberg Palace and others). Horse stable buildings were built in the north-west.
Under the reign of the Emperor Rudolph II (1576 - 1611), the Renaissance and Mannerism transformation of the castle, which for the second time became the center of the empire, and especially the center of European culture and science, reached its peak. On the second courtyard, new rooms were built for the collections of Rudolph - the new (now Spanish) hall and the Rudolph gallery. Also arose the connection tract between the northwestern and the southwestern part of the castle. Just here the famous Kunstkammer (Art chamber) and other rooms for Rudolph's collective activities were located. Additionally further horse stable properties were built for his rare Spanish horses. During the Rudolph times also the foundation stone of the famous Golden Alley was laid. Laboratories of the Rudolph-Alchymists were supposed to have been in the Powder tower above the Hirschgraben (Deer's ditch). The castle suffered again considerable damages when it was occupied by the Saxon army in 1631 and by the Swedes in 1648 not only was occupied but also plundered. After the Thirty Years' War, the Habsburgs did not care too much about the Prague royal seat.
Only Maria Theresia carried out an extensive reconstruction of the Prague Castle from 1755 - 1775 into a representative castle complex. The reason for the massive construction action were war damages, caused by the intense bombing of the castle during war conflicts at the beginning of her reign. The reconstruction was designed by the Viennese architect Nicolo Pacassi, who also planned the first courtyard with the monumental entrance gate. From the time of the Theresian reconstruction stems also the chapel of the Holy Cross on the 2nd castle forecourt and other buildings, especially the noblewomen institute. The south wing he imprinted the uniform monumental late Baroque facade of a representative seat. His plans influenced by Viennese Rococo and French Classicism the builders Anselmo Lurago, Anton Kunz and Anton Haffenecker brought into life.
In the 19th century, the castle fell into ruin, in several objects after the Josephine reforms the army settled. In connection with the stay of Ferdinand I the Good in the castle after his abdication in 1848 and further in connection with the preparation for the coronation of Franz Joseph I in the sixties it came to building modifications of several objects. After 1859, when the community for the completion of St Veit cathedral emerged, began first the repair, and then, under the influence of the architect Joseph Mocker, the work on the actual completion of St Veit's cathedral was started, completed in 1929.
In the years 1920 - 35, carried out extensive regulations of the Prague Castle as the seat of the Czechoslovak President the great Slovenian architect Josip Plečnik, who masterfully combined the valuable historical space with modern civilization claims. His modifications mainly concerned the 1st and 3rd court, the southern gardens of the castle, the fourth forecourt with the Bastion garden as well as numerous interiors. He created e.g. the pillared hall, private rooms of the presidential residence, including the Masaryk workroom. His pupil, Otto Rothmayer, brought to an end the incomplete solutions of some castle interior spaces after the Second World War in comparable quality.
In 1936, Pavel Janák and after him, in 1959, Jaroslav Fragner became castle architect.
After the year of change of 1989, the Prague Castle was opened to the public in many places. During the term of President Havel, at the castle it came to modulations of the interiors and to the expansion of two new entrances into the second courtyard after the project of the creator and designer Bořek Šípek. The puncture through the rampart of the Powder bridge in Hirschgraben was rewarded with a significant prize (Arch. Josef Pleskot). Also interesting is the modern greenhouse of the world-famous architect Eva Jiřičná. The Georgian Square (Jiřské náměstí) was re-paved and modulated. The Mosaic of the Last Judgment was renovated in collaboration with the specialists from the Getti Institute. In 1990, the Prague Castle was solemnly illuminated and this situation lasts from dusk to midnight until today. In the main tourist season, the lighting time even lasts an hour longer until 1 o'clock. The tradition of electric lighting, but on a much smaller scale, began in 1928, when the lamps were installed for the 10th anniversary of the elevation to a Republic. A little bit the present daylight resembles of those from the end of the sixties, but today it is much more detailed and in communist times it was only switched on at solemn occasions. At that time, illuminative days were state holidays or significant day of republic, which, however, did not lack recognition from the communist point of view.
In recent years the reconstruction and renovation work has been developed in many buildings of the castle and a considerable attention has been devoted to the archaeological investigation, which has been going on since 1925 and has brought many insights into the history of the castle. The investigation as well as the renovation of the individual rooms and objects is motivated by the idea of invigorating them as much as possible by making them accessible to the public.
Prager Burg (Pražský hrad)
Die Prager Burg ist seit über tausend Jahren ein bedeutendes Symbol des tschechischen Staates. Gegründet im 9. Jahrhundert wurde sie zum ständigen Sitz der tschechischen Herrscher und zuletzt auch der Präsidenten. Einer der größten Burgkomplexe weltweit setzt sich aus Palästen, Amts-, Kirchen- und Fortifikationsgebäuden, aus Gärten und malerischen Ecken zusammen. Die Burg erstreckt sich auf einer Fläche von 45 Hektar. Der alleinige Blick auf die Prager Burg stellt einen der überwältigendsten Panoramablicke der Welt dar.
Die Prager Burg ist das bedeutendste Volkskultur- und Historiedenkmal, sie ist das Symbol der mehr als eintausendjährigen Entwicklung des böhmischen sowie gesamttschechischen Staats. Es ist ein monumentales Symbol der Palast-, Kirchen-, Fortifikations-, Amts- und Wohngebäude, die sehr wertvolle Denkmäler darstellen, einbezogen auf alle Stilepochen. Sie erstreckt sich auf einer Fläche von 45 ha, war der Sitz der böhmischen Fürsten, Könige und Kaiser und seit der Republikentstehung im Jahre 1918 war sie auch die Residenz der Präsidenten. Seit 1962 steht die Prager Burg mit ihren archäologischen Funden als bekanntester.
Geschichte
Die Anfangszeiten der Prager Burg sind mit dem ersten historisch belegten Přemysliden Bořivoj verbunden. Dieser übertrug in den 80er Jahren des 9. Jahrhunderts seinen ursprünglichen Sitz von Levý Hradec an den Ort, wo auf der erhabenen Stelle über der Moldau eine slawische Burgstätte bereits bestand und sehr gut gelegen war.
Der erste Fürstenpalast bestand offenbar aus Holz. Der erste Steinbau und das älteste christliche Heiligtum war die Jungfrau Maria Kirche. Ihre Reste wurden zwischen dem II. Vorhof und dem Basteigarten (Originalname des Gartens: Na Baště) gefunden. Diese Bořivoj-Kirche wurde durch den hier im Jahre 915 beigesetzten Fürsten Spytihněv I. bald umgebaut. Die zweite Kirche im Burgraum war die vom Fürsten Vratislaus I. gegründete St. Georg Basilika. Der nächste Přemyslide, der Fürst Wenzel (der Heilige), ließ in der Nähe in den 20er Jahren des 10. Jahrhunderts das dritte Heiligtum - die St. Veit Rotunde - bauen, die im 11. Jahrhundert vom Fürsten Spytihněv II. zu einer gewaltigen Basilika umgebaut wurde.
Im Jahre 973, als in Prag das Bistum gegründet wurde, war die Burg nicht nur der Sitz des Staatsoberhaupts, sondern auch der Sitz des Prager Bischofs, des höchsten Repräsentanten der Kirche. Zu demselben Zeitpunkt entstand an der St. Georg Basilika das erste Kloster in Böhmen.
Im 10. Jahrhundert nahm die Burg eine Fläche von ca. 6 ha in Anspruch. In der romanischen Epoche wurde die einstige Burgstätte, insbesondere nach dem Jahr 1135 dank Soběslaus I., als der steinige Fürstenpalast und das neue mit einigen Türmen verstärkte Mauerwerk aufgebaut wurden, zu einer festen mittelalterlichen Burg umgebaut. Von den Türmen ist der östliche Schwarzturm am besten erhalten.
Sehr bedeutend griff ins Aussehen der Prager Burg die Gotikzeit ein, insbesondere Karl IV. (1346 - 1378), der mit seinem Vater Johann von Luxemburg (1310 - 1346) vom Papst die Beförderung des Prager Bistums zum Erzbistum erwirkte und den Grundstein für den Bau der St. Veit Kathedrale legte. Unter Karl IV. wurde die Burg zum ersten Mal zur Kaiserlichen Residenz. Karl IV. ließ die Verschanzung der Prager Burg festigen, den Königspalast mit der Kapelle Aller Heiligen baute er großzügig um. Die Dächer ließ er mit vergoldeten Blechen decken, die das Fundament für die Wörterbindung „Goldenes Prag“ darstellten. Seit 1382 hörten böhmische Herrscher auf, die Prager Burg für mehr als 100 Jahre zu bewohnen. Der Königshof wurde an den Ort des heutigen Gemeindehauses umgezogen und zurück auf die Prager Burg kehrte er erst im Jahre 1483 unter Wladislaus aus der Jagiellonen-Dynastie.
Obwohl der Herrscher bereits 1490 nach Ofen (Buda) umsiedelte, ließ er die Prager Burg im spätgotischen Stil unter der Bauleitung von Benedikt Ried umbauen. Er war der Baumeister des großartigen Wladislaus-Saals, des größten weltlichen gewölbten Raums des damaligen Europas, mit dem die ersten Renaissancezeichen nach Prag kamen. Er führte großartige Bauregelungen einschließlich des Ausbaus eines neuen Mauerwerks, der Wehrtürme und der Erweiterung des Königspalastes durch. Zu seiner Zeit klang die Gotik aus und es setzte sich allmählich ein neuer Baustil durch, die Renaissance.
Der direkte Einfluss der italienischen Kunst des neuen Stils wurde in Prag unter der Regierung von Ferdinand I. (von Habsburg) und nach seinem Weggang von Prag unter der Wirkung des Statthalters Ferdinand von Tirol am meisten beobachtet. Damals wurde die mittelalterliche Burg in ein bequemes Renaissanceschloss mit Gärten umgewandelt. Im nördlichen Königsgarten entstand die typisch italienische Architektur des Königlichen Lustschlosses.
Zu einer großen Bauaktivität trug im Jahre 1541 ein Brand bei, der die Burgobjekte sowie die Umgebung ziemlich viel kaputt machte. Im Rahmen der Wiederherstellung wurden sowohl die Wohnräume als auch die Kirchenobjekte umgebaut. Unter der Regierung der ersten Habsburger kamen ins Burggelände auch Adelspaläste dazu (zum Beispiel der Pernstein-Palast - später Lobkowicz-Palast, Rosenberg-Palast und weitere). Im Nordwesten wurden Pferdestallgebäude erbaut.
Unter der Regierung des Kaisers Rudolph II. (1576 - 1611) erreichte der Renaissance- und Manierismusumbau der Burg, die zum zweiten Mal zum Zentrum des Reiches und insbesondere zum Zentrum der europäischen Kultur und Wissenschaft wurde, seinen Gipfel. Auf dem II. Vorhof wurden neue Räume für die Sammlungen Rudolphs erbaut - der Neue (heute Spanische) Saal und die Rudolph-Galerie. Es entstand auch der Verbindungstrakt zwischen dem Nordwest- und dem Südwestteil der Burg. Eben hier befanden sich die berühmte Kunstkammer und weitere Räume für die Sammeltätigkeit Rudolphs. Es wurden auch weitere Pferdestallobjekte für seine seltenen spanischen Pferde aufgebaut. Während der Rudolph-Zeiten wurde auch der Grundstein der berühmten Goldenen Gasse gelegt. Laboratorien der Rudolph-Alchymisten sollen im Pulverturm über dem Hirschgraben gewesen sein. Die Burg erlitt erneut erhebliche Schäden, als sie 1631 vom sächsischen Heer und 1648 von den Schweden besetzt und ausgeplündert wurde. Nach dem Dreißigjährigen Krieg kümmerten sich die Habsburger um den Prager königlichen Sitz nicht allzu sehr.
Erst Maria Theresia führte in den Jahren 1755 - 1775 einen umfangreichen Umbau der Prager Burg zu einem repräsentativen Schlosskomplex durch. Der Grund für die massive Bauaktion waren Kriegsschäden, verursacht durch die intensive Bombardierung der Burg bei Kriegskonflikten zu Beginn ihrer Regierung. Den Umbau entwarf der Wiener Architekt Nicolo Pacassi, der auch den I. Vorhof mit dem monumentalen Eingangstor projektierte. Aus der Zeit des theresianischen Umbaus stammt auch die Kapelle des Heiligen Kreuzes auf dem II. Burgvorhof und weitere Gebäude, insbesondere die Edeldamenanstalt. Dem Südflügel prägte er die einheitliche monumentale Spätbarockfassade eines Repräsentationssitzes ein. Seine durch das Wiener Rokoko und den französischen Klassizismus beeinflussten Pläne brachten die Baumeister Anselmo Lurago, Anton Kunz und Anton Haffenecker zustande.
Im 19. Jahrhundert verfiel die Burg, in mehreren Objekten ließ sich nach den josephinischen Reformen das Heer nieder. Zu Bauregelungen einiger Objekte kam es im Zusammenhang mit dem Aufenthalt von Ferdinand I. dem Guten auf der Burg nach seiner Abdikation im Jahre 1848 und weiter im Zusammenhang mit der Vorbereitung auf die vorgesehene Krönung von Franz Joseph I. in den 60er Jahren. Nach 1859, als die Gemeinde für die Fertigstellung der St. Veit Kathedrale entstand, begann zuerst die Reparatur und anschließend unter der Wirkung des Architekten Joseph Mocker wurde die Arbeit an der eigentlichen Fertigstellung der St. Veit Kathedrale aufgenommen, abgeschlossen im Jahre 1929.
In den Jahren 1920 - 35 führte ausgedehnte Regelungen der Prager Burg als des Sitzes des tschechoslowakischen Präsidenten der bedeutende slowenische Architekt Josip Plečnik durch, der den wertvollen historischen Raum mit modernen Zivilisationsansprüchen meisterlich zusammenfügte. Seine Regelungen betrafen vor allem den 1. und 3. Vorhof, die Südgärten der Burg, den 4. Vorhof mit dem Basteigarten sowie zahlreiche Innenräume. Er schuf z.B. die Säulenhalle, Privaträume der Präsidentenwohnung einschließlich des Arbeitszimmers Masaryks. Sein Schüler Otto Rothmayer brachte die unvollendeten Lösungen einiger Burginnenräume nach dem 2. Weltkrieg in vergleichbarer Qualität zu Ende.
Im Jahre 1936 ist Pavel Janák und nach ihm seit 1959 Jaroslav Fragner Burgarchitekt geworden.
Nach dem Wendejahr 1989 wurde die Prager Burg an vielen Stellen für die Öffentlichkeit geöffnet. Während der Amtszeit des Präsidenten Havel kam es auf der Burg zu Regelungen der Innenräume und zum Ausbau zweier neuer Eingänge in den 2. Vorhof nach dem Projekt des Bildners und Designers Bořek Šípek. Mit einem bedeutenden Preis wurde der Durchstich durch den Wall der Pulverbrücke im Hirschgraben belohnt (Arch. Josef Pleskot). Interessant ist auch das moderne Gewächshaus der weltberühmten Architektin Eva Jiřičná. Der Georg-Platz (Jiřské náměstí) wurde neu bepflastert und geregelt. In Zusammenarbeit mit den Fachleuten aus dem Getti-Institut wurde die Mosaik „des Letzten Gerichts“ renoviert. Im Jahre 1990 wurde die Prager Burg feierlich beleuchtet und dieser Zustand dauert von der Dämmerung bis zur Mitternacht bis heute. In der touristischen Hauptsaison dauert die Beleuchtungszeit sogar eine Stunde länger, bis 1 Uhr. Die Tradition der elektrischen Beleuchtung, jedoch im viel kleineren Umfang, begann im Jahre 1928, als die Lampen zum 10. Jubiläum der Republikentstehung installiert wurden. Ein wenig ähnelte die heutige feierliche Beleuchtung jener aus dem Ende der 60er Jahren, heute ist sie allerdings viel detaillierter und in den Kommunistenzeiten wurde sie nur bei feierlichen Gelegenheiten angemacht. Beleuchtungswürdige Tage waren damals Staatsfeiertage oder bedeutende Republiktage, denen allerdings aus der kommunistischen Sicht die Anerkennung nicht fehlte.
In den letzten Jahren entwickelte sich die Umbau- bzw. Renovierungstätigkeit in vielen Objekten der Burg und eine erhebliche Aufmerksamkeit wurde der archäologischen Untersuchung gewidmet, die bereits seit 1925 läuft und viele Erkenntnisse über die Burggeschichte brachte. Die Untersuchung sowie die Renovierung der einzelnen Räume und Objekte ist von der Idee motiviert, sie dadurch, dass sie der Öffentlichkeit zugänglich gemacht werden, möglichst viel zu beleben.
This is the model R/C tank I am designing on a gearbox + Tracks & wheels from Tamiya. The radio is Hitec and two receiver servo outputs feed my microcontroller-based Pulse Position Modulation output into Pulse Width Modulated power output to the two motors.
Full details at www.5volt.eu
In this video ( www.youtube.com/watch?v=B3Z8wXlJV8U ) I'm using the Matrix Mixer for feedback synthesis, a combination of FM synthesis and
distortion feedback, where you can actually cross-control various pitches, achiving polyphony and some
other interesting tone-modulation effects, ranging from wailing tones to more organic textures
For custom ACTIVE Matrix Mixers write to: noizhardware@gmail.com
The MoofTronic is a miniature synthesiser.
It uses a stylus to play 8 different notes(one octave in the key of C). It also has a small antenna that when touched, controls the modulation span of the note being played. It creates a fast modulation type sound, it starts making the crazy noises when the antenna picks up interference created by the output of the speaker.
It measures about 3cm x 1cm and is based around a 24pin ic holder. The notes are generated by software programmed onto a Picaxe 08M microcontroller which also has a small speaker mounted on it. Its powered by a 9 volt battery.
“Am I even human anymore? My heart is machine. My brain is mostly machine. Where does Lazarus the man end and Lazarus the robot begin?”
- Lazarus Lowenstark, Engineer, Pilot.
World Union Task File 897WB-7: Lazarus L. Lowenstark’s Known Bioware Mods.
Author: Kenneth Foiles, Biotech Engineer
** Combat Mods: None.
** Dermal Armor / Bone Integration: None.
** Physical Modifications, Wired Reflexies, Synth-Muscle: None
** Processing/Communications/Data Modifications:
Wet-Tek* Mark 7 Central Processing Unit with genetic wet wash brain modification. Portions of his brain are modified technologically, but portions are replaced with genetically engineered technology to synch up with that technology. Also implanted are Bioware Datajack port, and wireless information processing and remote assistance technology. Functionality: This variant of the standard Datajack / CPU technology allows Lowenstark to receive/transmit/process information from a variety of sources, including standard laser communications, the internet, and digital satellite communications. These processes and access are effectively tied with his active thought, and as such, he can manipulate remote devices, communicate, or surf the internet internally.
** Sensory Technology:
Complete Eye Replacement using Biosoft’s “Total Fix” bioware. Eyeballs are semi-organic hardware, linked directly to the CPU. Thermal Imaging and Low Light vision options are standard, as well as telescopic capabilities. Eyesight is better than perfect, offering a high definition quality to standard vision. Flash resistant, damage resistant casing is optimal for battle situations. System uses Living HUD version 3.5 for heads up data displays.
Inner Ear modifications are virtually full convert. Cochlear Implants provide a datastream of information to the CPU, and are resistant to external trauma. Noise modulation is also controllable by the CPU.
Signal Search* provided by Wet-Tek infosystems, and include heat detection, signal detection, and a wide spectrum of wave and beam detection hardware.
** Additional Vital Modification:
NuNerve* complete nervous cluster replacement: Controls nervous sensations and their impact on the brain, as well as has the capacity to modulate sensation delivered there.
The Heart, Liver, Kidneys, Lungs, and large portions of the digestive, endocrine, and respiratory system have all been replaced by bioware and cyber technology, optimizing his bodily functions, extending his lifespan, and giving him strong resistance to poisons, toxins, and trauma damage.
architecture.arqhys.com/architects/antoniobonet-biography...
ANTONIO BONET. In 1942, Bonet participates in the constitution of the Organization of the Integral House in the Argentine Republic. The idea of the formation of its work ties it with the ideas suggested by Him Corbusier throughout the process of preparation of the Plan of Buenos Aires. "the routine servitude of conception submissive the outsider does not exist any worthy of consideration argument seriously nor even in that some Argentineans live" So that the initial note of a universal modulation does not take place in our country, whose hope appears in the immediate perspective of the world: on the area in catastrophe of the cities martyred by the war, the genius of the man already begins to project the new forms of the human coexistence. On the contrary, the essential circumstance of our historical youth and the one of our adventurous peace, locate to us in the moral obligation to create new forms of life anticipating us to whatever of project and of dream it even subsists in a world of towns in flames and ruins. This thought of Bonet, is taken from the N° Notebook 1 of OVRA, titled Study of the Contemporary Problems for the organization of the integral house in the Argentine Republic. Without a doubt, the text gathers part of the optimism of the Austral Group. But while this one was directed to the architects and its problems, in the OVRA manifesto the horizon is ampler, next to certain discovered nonfree of messianism of the American, coincident with other similar initiatives in other places of the continent.
Reflections of Antonio Bonet on the architecture: "the architectonic elements that will form the new city will be formed by a series, numerous, of structures little systematized. Those structures will be able to arrive to the maximum from their aesthetic, technical perfection and economic, since besides to be placed in free lands, its study must be based on the progressive improvement of such types, so as it has become in the great architectures of the past. Within those structures, that will be the expression of the effort of the social man, to obtain the order and the harmony of its time, never will be obtained to a freedom reached after the development of the life of the man like individual, and the one of its institutions. It is well certain that we are even far from that stage, But does not fit doubt that once demonstrated that the modern buildings can be developed in simple structures, more and more seemed to each other, it will make the importance powerful of this system. Those buildings will be used and the equipped for but diverse uses, without aging with it, although they will have to work at a time whose social programs, industrial, etc., are in permanent evolution. I am going to finish with the confession of my conviction of which to group the programs for the unification of the structures, is something enormously difficult, but some is no doubt that it is the way that will take us forms to the true architectonic of our time. in that the diverse social programs will be developed freely, cultural hygienic, etc., that must form the structure of the new society.
New HDQCW base layout. I managed to cram all the electronics into a 12 x 12 base making this coil rather small. It also sports a CM300 full bridge with a CM600 bus modulator and a harmonic drive controller. This thing should be capable of 5kW output in sword like sparks and AM audio modulation. This is an untested drive method hope it works! Also this thing has no cooling fans at all. The whole system is water cooled, everything from the bridge to the modulator.