View allAll Photos Tagged materialsscience

The phosphor glows when activated by UV light. (L-R): Zhenbin Wang and Jungmin Ha.

 

Press release: jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2476

 

Photos by David Baillot/UC San Diego Jacobs School of Engineering

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

Gladius De Re Metallica; Montana Technological University.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

Attendees gather for conversation and breakfast at the DMMM4 Fresh Coffee, Fresh Ideas: Diversity and Inclusion Breakfast as a kick off to the DMMM4 programming and networking.

Suveen N. Mathaudhu, Colorado School of Mines, gives his presentation "Materials Calisthenics: Harnessing your Interests to Inspire Diverse Audiences" at the STEM Outreach Case Studies and Best Practices session.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

Members of the Missouri University of Science and Technology team pose with their entry to the 2022 Bladesmithing Competition.

Attendees gather for the STEM Outreach Case Studies and Best Practices session.

2021 TMS President, Ellen Cerreta (left), presents recipients with their awards at the TMS-AIME Awards Ceremony.

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

Under normal light, the phosphor appears pale green.

 

Press release: jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2476

 

Photos by David Baillot/UC San Diego Jacobs School of Engineering

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

A panel of five experts representing industry, academia, and government provided an overview of their own experiences and career journeys followed by questions from graduate and undergraduate students.

2021 TMS President, Ellen Cerreta (left), presents recipients with their awards at the TMS-AIME Awards Ceremony.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

A special citation for the Creative Use of Materials was awarded to the team from Arizona State University.

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

2021 TMS President, Ellen Cerreta (left), presents recipients with their awards at the TMS-AIME Awards Ceremony.

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

TMS2022 attendees enjoy refreshments in-between sessions.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

a) Scanning electron microscope images of the cross section of the scales showing their laminated structure in the internal layers. The white lines represent cracks due to drying of the scale. b) Higher magnification showing the orientation of the collagen fibril. c) Top view showing two adjacent layers and the angle between them.

Undergraduate and graduate posters were honored for excellence in the 2022 Technical Division Student Poster Competition.

Cobalt ferrite microspheres

 

Courtesy of Dr. Sarah Briceño , Yachay Tech

 

Image Details

Instrument used: Quanta SEM

Magnification: 35000

Voltage: 30

 

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

This is a stage built for proton irradiations, used to simulate the effects of neutron irradiation in metals and alloys. Radiation damage in metals and alloys is an important consideration in light water reactors and advanced (Generation IV) nuclear reactors.

 

This stage contains 10 specimens, each has an irradiated face 2 mm x 20 mm and are 1.5 mm thick. The specimens are ferritic-martensitic steels T91, HT9, and HCM12A, and austenitic steel D9. Four thermocouples, covered in ceramic beads, are spot welded to one specimen of each alloy.

 

Irradiations are performed on a tandem accelerator at the Michigan Ion Beam Laboratory at the University of Michigan - Ann Arbor.

2021 TMS President, Ellen Cerreta (left), presents recipients with their awards at the TMS-AIME Awards Ceremony.

In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.

 

We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.

 

This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.

 

If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?

 

This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.

 

Learn more at activemattersummit.com

 

All photos ©L. Barry Hetherington

lbarryhetherington.com/

Please ask before use

Attendees gather for the STEM Outreach Case Studies and Best Practices session.

2021 TMS President, Ellen Cerreta (left), presents recipients with their awards at the TMS-AIME Awards Ceremony.

2021 TMS President, Ellen Cerreta (left), presents recipients with their awards at the TMS-AIME Awards Ceremony.

TMS award recipients are honored at the TMS-AIME Awards Ceremony.

Metal-Organic Framework crystals dispersed on carbon tape. SEM image (FEI Helios). HFOV: 150 um.

1 2 ••• 17 18 20 22 23 ••• 71 72