View allAll Photos Tagged kitbash

A pinup inspired by Barbarella and Stella Star and their inappropriately impractical space attire.

 

An original sci-fi pinup character and 1/6 scale kitbash figure, conceived, assembled and photographed by myself employing layered filters from Photoshop, Enjoyphoto, Superphoto & additional editing apps installed on my cameraphone.

Inspired by the covers for Dynamite Comics' run of Barsoom stories of the same title.

 

An original 1/6 scale kitbash figure of Dejah Thoris, conceived, assembled and photographed by myself employing layered filters from Photoshop, Enjoyphoto, Superphoto & additional editing apps installed on my cameraphone.

A kitbash version of Grunt. One of the guys on IG was trying out some LBC Grunt figures, so I spotted these parts and figured I'd give it a try too.

 

The five o' clock shadow was added on a previous custom.

An interpretation of Edgar Rice Burroughs' Martian heroine inspired largely by the art of Paul Renaud for Dynamite Comics' run of Barsoom stories centred around the Princess of Mars.

1/6 female kitbash using a Phicen body and other various other pieces .

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Douglas F3D Skyknight (later designated F-10 Skyknight) was a United States twin-engined, mid-wing jet fighter aircraft manufactured by the Douglas Aircraft Company in El Segundo, California. The F3D was designed as a carrier-based all-weather night fighter and saw service with the United States Navy and United States Marine Corps. The mission of the F3D-2 was to search out and destroy enemy aircraft at night.

 

The F3D was not intended to be a typical sleek and nimble dogfighter, but as a standoff night fighter, packing a powerful radar system and a second crew member. It originated in 1945 with a US Navy requirement for a jet-powered, radar-equipped, carrier-based night fighter. The Douglas team led by Ed Heinemann designed around the bulky air intercept radar systems of the time, with side-by-side seating for the pilot and radar operator. The result was an aircraft with a wide, deep, and roomy fuselage. Instead of ejection seats, an escape tunnel was used.

 

As a night fighter that was not expected to be as fast as smaller daylight fighters, the expectation was to have a stable platform for its radar system and the four 20 mm cannon mounted in the lower fuselage. The F3D was, however, able to outturn a MiG-15 in an inside circle. The fire control system in the F3D-1 was the Westinghouse AN/APQ-35.

The AN/APQ-35 was advanced for the time, a combination of three different radars, each performing separate functions: an AN/APS-21 search radar, an AN/APG-26 tracking radar, both located in the nose, and an AN/APS-28 tail warning radar. The complexity of this vacuum tube-based radar system, which was produced before the advent of semiconductor electronics, required intensive maintenance to keep it operating properly.

 

The F3D Skyknight was never produced in great numbers but it did achieve many firsts in its role as a night fighter over Korea. While it never achieved the fame of the North American F-86 Sabre, it did down several Soviet-built MiG-15s as a night fighter over Korea with only one air-to-air loss of its own against a Chinese MiG-15 on the night of 29 May 1953.

 

In the years after the Korean War, the F3D was gradually replaced by more powerful aircraft with better radar systems. The F3D's career was not over though; its stability and spacious fuselage made it easily adaptable to other roles. The Skyknight played an important role in the development of the radar-guided AIM-7 Sparrow missile in the 1950s which led to further guided air-to-air missile developments.

In 1954, the F3D-2M was the first U.S. Navy jet aircraft to be fitted with an operational air-to-air missile: the Sparrow I,an all weather day/night BVR missile that used beam riding guidance for the aircrew to control the flight of the missile. Only 38 aircraft (12 F3D-1Ms, and 16 F3D-2Ms) were modified to use the missiles, though.

 

One of the F3D's main flaws, which it shared with many early jet aircraft, was its lack of power and performance. Douglas tried to mend this through a radical redesign: The resulting F3D-3 was the designation assigned to a swept-winged version (36° sweep at quarter chord) of the Skyknight. It was originally to be powered by the J46 turbojet, rated at 4.080 lbf for takeoff, which was under development but suffered serious trouble.

 

This led to the cancellation of the J46, and calculated performance of the F3D-3 with the substitute J34 was deemed insufficient. As an alternative the aircraft had to be modified to carry two larger and longer J47-GE-2 engines, which also powered the USN's FJ-2 "Fury" fighter.

This engine's thrust of 6.000 pounds-force (27 kN) at 7,950 rpm appeared sufficient for the heavy, swept-wing aircraft, and in 1954 an order for 287 production F3D-3s was issued, right time to upgrade the new type with the Sparrow I.

 

While the F3D-3's outline resembled that of its straight wing predecessors, a lot of structural changes had to be made to accommodate the shifted main wing spar, and the heavy radar equipment also took its toll: the gross weight climbed by more than 3 tons, and as a result much of the gained performance through the stronger engines and the swept wings was eaten away.

 

Maximum internal fuel load was 1.350 US gallons, plus a further 300 in underwing drop tanks. Overall wing surface remained the same, but the swept wing surfaces reduced the wing span.

In the end, thrust-to-weight ratio was only marginally improved and in fact, the F3D-3 had a lower rate of climb than the F3D-2, its top speed at height was only marginally higher, and stall speed climbed by more than 30 mph, making carrier landings more complicated.

 

It's equipment was also the same - the AN/APQ-35 was still fitted, but mainly because the large radar dish offered the largest detection range of any carrier-borne type of that time, and better radars that could match this performance were still under construction. Anyway, the F3D-3 was able to carry Sparrow I from the start, and this would soon be upgraded to Sparrow III (which became the AIM-7), and it showed much better flight characteristics at medium altitude.

 

Despite the ,many shortcomings the "new" aircraft represented an overall improvement over the F3D-2 and was accepted for service. Production of the F3D-3 started in 1955, but technology advanced quickly and a serious competitor with supersonic capability appeared with the McDonnell F3H Demon and the F4D Skyray - much more potent aircraft that the USN immediately preferred to the slow F3Ds. As a consequence, the production contract was cut down to only 102 aircraft.

 

But it came even worse: production of the swept wing Skyknight already ceased after 18 months and 71 completed airframes. Ironically, the F3D-3's successor, the F3H and its J40 engine, turned out to be more capricious than expected, which delayed the Demon's service introduction and seriously hampered its performance, so that the F3D-3 kept its all weather/night fighter role until 1960, and was eventually taken out of service in 1964 when the first F-4 Phantom II fighters appeared in USN service.

 

In 1962 all F3D versions were re-designated into F-10, the swept wing F3D-3 became the F-10C. The straight wing versions were used as trainers and also served as an electronic warfare platform into the Vietnam War as a precursor to the EA-6A Intruder and EA-6B Prowler, while the swept-wing fighters were completely retired as their performance and mission equipment had been outdated. The last F-10C flew in 1965.

  

General characteristics

Crew: two

Length: 49 ft (14.96 m)

Wingspan: 42 feet 5 inches (12.95 m)

Height: 16 ft 1 in (4.90 m)

Wing area: 400 ft² (37.16 m²)

Empty weight: 19.800 lb (8.989 kg)

Loaded weight: 28,843 lb (13.095 kg)

Max. takeoff weight: 34.000 lb (15.436 kg)

 

Powerplant:

2× General Electric J47-GE-2 turbojets, each rated at 6.000 lbf (26,7 kN) each

 

Performance

Maximum speed: 630 mph (1.014 km/h) at sea level, 515 mph (829 km/h) t (6,095 m)

Cruise speed: 515 mph (829 km/h) at 40,000 feet

Stall speed: 128 mph (206 km/h)

Range: 890 mi (1.433 km) with internal fuel; 1,374 mi, 2,212 km with 2× 300 gal (1.136 l) tanks

Service ceiling: 43.000 ft (13.025 m)

Rate of climb: 2,640 ft/min (13,3 m/s)

Wing loading: 53.4 lb/ft² (383 kg/m²)

Thrust/weight: 0.353

 

Armament

4× 20 mm Hispano-Suiza M2 cannon, 200 rpg, in the lower nose

Four underwing hardpoints inboard of the wing folding points for up to 4.000 lb (1.816 kg)

ordnance, including AIM-7 Sparrow air-to-air missiles, 11.75 in (29.8cm) Tiny Tim rockets, two

150 or 300 US gal drop tanks or bombs of up to 2.000 lb (900 kg) caliber, plus four hardpoints

under each outer wing for a total of eight 5" HVARs or eight pods with six 2 3/4" FFARs each

  

The kit and its assembly:

Another project which had been on the list for some years now but finally entered the hardware stage. The F3D itself is already a more or less forgotten aircraft, and there are only a few kits available - there has been a vacu kit, the Matchbox offering and lately kits in 1:72 and 1:48 by Sword.

 

The swept wing F3D-3 remained on the drawing board, but would have been a very attractive evolution of the tubby Skyknight. In fact, the swept surfaces resemble those of the A3D/B-66 a Iot, and this was the spark that started the attempt to build this aircraft as a model through a kitbash.

 

This model is basically the Matchbox F3D coupled with wings from an Italeri B-66, even though, being much bigger, these had to be modified.

 

The whole new tail is based on B-66 material. The fin's chord was shortened, though, and a new leading edge (with its beautiful curvature) had to be sculpted from 2C putty. The vertical stabilizers also come from the B-66, its span was adjusted to the Skyknight's and a new root intersection was created from styrene and putty, so that a cross-shaped tail could be realized.

The tail radar dish was retained, even though sketches show the F3D-3 without it.

 

The wings were take 1:1 from the B-66 and match well. They just had to be shortened, I set the cut at maybe 5mm outwards of the engine pods' attachment points. They needed some re-engraving for the inner flaps, as these would touch the F3D-3's engines when lowered, but shape, depth and size are very good for the conversion.

 

On the fuselage, the wings' original "attachment bays" had to be filled, and the new wings needed a new position much further forward, directly behind the cockpit, in order to keep the CoG.

 

One big issue would be the main landing gear. On the straight wing aircraft it retracts outwards, and I kept this arrangement. No detail of the exact landing gear well position was available to me, so I used the Matchbox parts as stencils and placed the new wells as much aft as possible, cutting out new openings from the B-66 wings.

The OOB landing gear was retained, but I added some structure to the landing gear wells with plastic blister material - not to be realistic, just for the effect. A lot of lead was added in the kit's nose section, making sure it actually stands on the front wheel.

 

The Matchbox Skyknight basically offers no real problems, even though the air intake design leaves, by tendency some ugly seams and even gaps. I slightly pimped the cockpit with headrests, additional gauges and a gunsight, as well as two (half) pilot figures. I did not plan to present the opened cockpit and the bulbous windows do not allow a clear view onto the inside anyway, so this job was only basically done. In fact, the pilots don't have a lower body at all...

 

Ordnance comprises of four Sparrow III - the Sparrow I with its pointed nose could have been an option, too, but I think at the time of 1960 the early version was already phased out?

   

Painting and markings:

This was supposed to become a typical USN service aircraft of the 60ies, so a grey/white livery was predetermined. I had built an EF-10B many years ago from the Matchbox kit, and the grey/white guise suits the Whale well - and here it would look even better, with the new, elegant wings.

 

For easy painting I used semi matt white from the rattle can on the lower sides (painting the landing gear at the same time!), and then added FS 36440 (Light Gull Grey, Humbrol 129) with a brush to the upper sides. The radar nose became semi matt black (with some weathering), while the RHAWS dish was kept in tan (Humbrol 71).

 

In order to emphasize the landing gear and the respective wells I added a red rim to the covers.

The cockpit interior was painted in dark grey - another factor which made adding too many details there futile, too...

 

The aircraft's individual marking were to be authentic, and not flamboyant. In the mid 50ies the USN machines were not as colorful as in the Vietnam War era, that just started towards the 60ies.

 

The markings I used come primarily from an Emhar F3H Demon, which features no less than four(!) markings, all with different colors. I settled for a machine of VF-61 "Jolly Rogers", which operated from the USS Saratoga primarily in the Mediterranean from 1958 on - and shortly thereafter the unit was disbanded.

 

I took some of the Demon markings and modified them with very similar but somewhat more discrete markings from VMF-323, which flew FJ-4 at the time - both squadrons marked their aircraft with yellow diamonds on black background, and I had some leftover decals from a respective Xtradecal sheet in the stash.

  

IMHO a good result with the B-66 donation parts, even though I am not totally happy with the fin - it could have been more slender at the top, and with a longer, more elegant spine fillet, but for that the B-66 fin was just too thick. Anyway, I am not certain if anyone has ever built this aircraft? I would not call the F3D-3 elegant or beautiful, but the swept wings underline the fuselage's almost perfect teardrop shape, and the thing reminds a lot of the later Grumman A-6 Intruder?

I dremelled a re-ment and stuck it on a coomodels body. Now I have a crazy Tv headed guy named CRT.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

In the late 1970s the Mikoyan OKB began development of a hypersonic high-altitude reconnaissance aircraft. Designated "Izdeliye 301" (also known as 3.01), the machine had an unusual design, combining a tailless layout with variable geometry wings. The two engines fueled by kerosene were located side by side above the rear fuselage, with the single vertical fin raising above them, not unlike the Tu-22 “Blinder” bomber of that time, but also reminiscent of the US-American SR-71 Mach 3 reconnaissance aircraft.

 

Only few and rather corny information leaked into the West, and the 301 was believed not only to act as a reconnaissance plane , it was also believed to have (nuclear) bombing capabilities. Despite wind tunnel testing with models, no hardware of the 301 was ever produced - aven though the aircraft could have become a basis for a long-range interceptor that would replace by time the PVO's Tupolew Tu-28P (ASCC code "Fiddler"), a large aircraft armed solely with missiles.

 

Despite limitations, the Tu-28P served well in its role, but the concept of a very fast interceptor aircraft, lingered on, since the Soviet Union had large areas to defend against aerial intruders, esp. from the North and the East. High speed, coupled with long range and the ability to intercept an incoming target at long distances independently from ground guidance had high priority for the Soviet Air Defence Forces. Even though no official requirement was issued, the concept of Izdeliye 301 from the Seventies was eventually developed further into the fixed-wing "Izdeliye 701" ultra-long-range high-altitude interceptor in the 1980ies.

 

The impulse for this new approach came when Oleg S. Samoylovich joined the Mikoyan OKB after having worked at Suchoi OKB on the T-60S missile carrier project. Similar in overall design to the former 301, the 701 was primarily intended as a kind of successor for the MiG-31 Foxhound for the 21st century, which just had completed flight tests and was about to enter PVO's front line units.

 

Being based on a long range cruise missile carrier, the 701 would have been a huge plane, featuring a length of 30-31m, a wing span of 19m (featuring a highly swept double delta wing) and having a maximum TOW of 70 tons! Target performance figures included a top speed of 2.500km/h, a cruising speed of 2.100km/h at 17.000m and an effective range of 7.000km in supersonic or 11.000km in subsonic mode. Eventually, the 701 program was mothballed, too, being too ambitious and expensive for a specialized development that could also have been a fighter version of the Tu-22 bomber!

 

Anyway, while the MiG-31 was successfully introduced in 1979 and had evolved in into a capable long-range interceptor with a top speed of more than Mach 3 (limited to Mach 2.8 in order to protect the aircraft's structural integrity), MiG OKB decided in 1984 to take further action and to develop a next-generation technology demonstrator, knowing that even the formidable "Foxhound" was only an interim solution on the way to a true "Four plus" of even a 6th generation fighter. Other new threats like low-flying cruise missiles, the USAF's "Project Pluto" or the assumed SR-71 Mach 5 successor “Aurora” kept Soviet military officials on the edge of their seats, too.

 

Main objective was to expand the Foxhound's state-of the-art performance, and coiple it with modern features like aerodynamic instability, supercruise, stealth features and further development potential.

 

The aircraft's core mission objectives comprised:

- Provide strategic air defense and surveillance in areas not covered by ground-based air defense systems (incl. guidance of other aircraft with less sophisticated avionics)

- Top speed of Mach 3.2 or more in a dash and cruise at Mach 3.0 for prolonged periods

- Long range/high speed interception of airspace intruders of any kind, including low flying cruise missiles, UAVs and helicopters

- Intercept cruise missiles and their launch aircraft from sea level up to 30.000m altitude by reaching missile launch range in the lowest possible time after departing the loiter area

 

Because funding was scarce and no official GOR had been issued, the project was taken on as a private venture. The new project was internally known as "Izdeliye 710" or "71.0". It was based on both 301 and 701 layout ideas and the wind tunnel experiences with their unusual layouts, as well as Oleg Samoylovich's experience with the Suchoi T-4 Mach 3 bomber project and the T-60S.

 

"Izdeliye 710" was from the start intended only as a proof-of-concept prototype, yet fully functional. It would also incorporate new technologies like heat-resistant ceramics against kinetic heating at prolonged high speeds (the airframe had to resist temperatures of 300°C/570°F and more for considerable periods), but with potential for future development into a full-fledged interceptor, penetrator and reconnaissance aircraft.

 

Overall, “Izdeliye 710" looked like a shrinked version of a mix of both former MiG OKB 301 and 701 designs, limited to the MiG-31's weight class of about 40 tons TOW. Compared with the former designs, the airframe received an aerodynamically more refined, partly blended, slender fuselage that also incorporated mild stealth features like a “clean” underside, softened contours and partly shielded air intakes. Structurally, the airframe's speed limit was set at Mach 3.8.

 

From the earlier 301 design,the plane retained the variable geometry wing. Despite the system's complexity and weight, this solution was deemed to be the best approach for a combination of a high continuous top speed, extended loiter time in the mission’s patrol areas and good performance on improvised airfields. Minimum sweep was a mere 10°, while, fully swept at 68°, the wings blended into the LERXes. Additional lift was created through the fuselage shape itself, so that aerodynamic surfaces and therefore drag could be reduced.

 

Pilot and radar operator sat in tandem under a common canopy with rather limited sight. The cockpit was equipped with a modern glass cockpit with LCD screens. The aircraft’s two engines were, again, placed in a large, mutual nacelle on the upper rear fuselage, fed by large air intakes with two-dimensional vertical ramps and a carefully modulated airflow over the aircraft’s dorsal area.

 

Initially, the 71.0 was to be powered by a pair of Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each, and with 152 kN (34,172 lbf) with full afterburner. These were the same engines that powered the MiG-31, but there were high hopes for the Kolesov NK-101 engine: a variable bypass engine with a maximum thrust in the 200kN range, at the time of the 71.0's design undergoing bench tests and originally developed for the advanced Suchoj T-4MS strike aircraft.

With the D-30F6, the 71.0 was expected to reach Mach 3.2 (making the aircraft capable of effectively intercepting the SR-71), but the NK-101 would offer in pure jet mode a top speed in excess of Mach 3.5 and also improve range and especially loiter time when running as a subsonic turbofan engine.

 

A single fin with an all-moving top and an additional deep rudder at its base was placed on top of the engine nacelle. Additional maneuverability at lower speed was achieved by retractable, all-moving foreplanes, stowed in narrow slits under the cockpit. Longitudinal stability at high speed was improved through deflectable stabilizers: these were kept horizontal for take-off and added to the overall lift, but they could be folded down by up to 60° in flight, acting additionally as stabilizer strakes.

 

Due to the aircraft’s slender shape and unique proportions, the 71.0 quickly received the unofficial nickname "жура́вль" (‘Zhurávl' = Crane). The aircaft’s stalky impression was emphasized even more through its unusual landing gear arrangement: Due to the limited internal space for the main landing gear wells between the weapons bay, the wing folding mechanisms and the engine nacelle, MiG OKB decided to incorporate a bicycle landing gear, normally a trademark of Yakovlew OKB designs, but a conventional landing gear could simply not be mounted, or its construction would have become much too heavy and complex.

 

In order to facilitate operations from improvised airfields and on snow the landing gear featured twin front wheels on a conventional strut and a single four wheel bogie as main wheels. Smaller, single stabilizer wheels were mounted on outriggers that retracted into slender fairings at the wings’ fixed section trailing edge, reminiscent of early Tupolev designs.

 

All standard air-to-air weaponry, as well as fuel, was to be carried internally. Main armament would be the K-100 missile (in service eventually designated R-100), stored in a large weapons bay behind the cockpit on a rotary mount. The K-100 had been under development at that time at NPO Novator, internally coded ‘Izdeliye 172’. The K-100 missile was an impressive weapon, and specifically designed to attack vital and heavily defended aerial targets like NATO’s AWACS aircraft at BVR distance.

 

Being 15’ (4.57 m) long and weighing 1.370 lb (620 kg), this huge ultra-long-range weapon had a maximum range of 250 mi (400 km) in a cruise/glide profile and attained a speed of Mach 6 with its solid rocket engine. This range could be boosted even further with a pair of jettisonable ramjets in tubular pods on the missile’s flanks for another 60 mi (100 km). The missile could attack targets ranging in altitude between 15 – 25,000 meters.

 

The weapon would initially be allocated to a specified target through the launch aircraft’s on-board radar and sent via inertial guidance into the target’s direction. Closing in, the K-100’s Agat 9B-1388 active seeker would identify the target, lock on, and independently attack it, also in coordination with other K-100’s shot at the same target, so that the attack would be coordinated in time and approach directions in order to overload defense and ensure a hit.

 

The 71.0’s internal mount could hold four of these large missiles, or, alternatively, the same number of the MiG-31’s R-33 AAMs. The mount also had a slot for the storage of additional mid- and short-range missiles for self-defense, e .g. three R-60 or two R-73 AAMs. An internal gun was not considered to be necessary, since the 71.0 or potential derivatives would fight their targets at very long distances and rather rely on a "hit-and-run" tactic, sacrificing dogfight capabilities for long loitering time in stand-by mode, high approach speed and outstanding acceleration and altitude performance.

 

Anyway, provisions were made to carry a Gsh-301-250 gun pod on a retractable hardpoint in the weapons bay instead of a K-100. Alternatively, such pods could be carried externally on four optional wing root pylons, which were primarily intended for PTB-1500 or PTB-3000 drop tanks, or further missiles - theoretically, a maximum of ten K-100 missiles could be carried, plus a pair of short-range AAMs.

 

Additionally, a "buddy-to-buffy" IFR set with a retractable drogue (probably the same system as used on the Su-24) was tested (71.2 was outfitted with a retractable refuelling probe in front of the cockpit), as well as the carriage of simple iron bombs or nuclear stores, to be delivered from very high altitudes. Several pallets with cameras and sensors (e .g. a high resolution SLAR) were also envisioned, which could easily replace the missile mounts and the folding weapon bay covers for recce missions.

 

Since there had been little official support for the project, work on the 710 up to the hardware stage made only little progress, since the MiG-31 already filled the long-range interceptor role in a sufficient fashion and offered further development potential.

A wooden mockup of the cockpit section was presented to PVO and VVS officials in 1989, and airframe work (including tests with composite materials on structural parts, including ceramic tiles for leading edges) were undertaken throughout 1990 and 1991, including test rigs for the engine nacelle and the swing wing mechanism.

 

Eventually, the collapse of the Soviet Union in 1991 suddenly stopped most of the project work, after two prototype airframes had been completed. Their internal designations were Izdeliye 71.1 and 71.2, respectively. It took a while until the political situation as well as the ex-Soviet Air Force’s status were settled, and work on Izdeliye 710 resumed at a slow pace.

 

After taking two years to be completed, 71.1 eventually made its roll-out and maiden flight in summer 1994, just when MiG-31 production had ended. MiG OKB still had high hopes in this aircraft, since the MiG-31 would have to be replaced in the next couple of years and "Izdeliye 710" was just in time for the potential procurement process. The first prototype wore a striking all-white livery, with dark grey ceramic tiles on the wings’ leading edges standing out prominently – in this guise and with its futuristic lines the slender aircraft reminded a lot of the American Space Shuttle.

 

71.1 was primarily intended for engine and flight tests (esp. for the eagerly awaited NK-101 engines), as well as for the development of the envisioned ramjet propulsion system for full-scale production and further development of Izdeliye 710 into a Mach 3+ interceptor. No mission avionics were initially fitted to this plane, but it carried a comprehensive test equipment suite and ballast.

 

Its sister ship 71.2 flew for the first time in late 1994, wearing a more unpretentious grey/bare metal livery. This plane was earmarked for avionics development and weapons integration, especially as a test bed for the K-100 missile, which shared Izdeliye 710’s fate of being a leftover Soviet project with an uncertain future and an even more corny funding outlook.

 

Anyway, aircraft 71.2 was from the start equipped with a complete RP-31 ('Zaslon-M') weapon control system, which had been under development at that time as an upgrade for the Russian MiG-31 fleet being part of the radar’s development program secured financial support from the government and allowed the flight tests to continue. The RP-31 possessed a maximum detection range of 400 km (250 mi) against airliner-sized targets at high altitude or 200 km against fighter-sized targets; the typical width of detection along the front was given as 225 km. The system could track 24 airborne targets at one time at a range of 120 km, 6 of which could be simultaneously attacked with missiles.

 

With these capabilities the RP-31 suite could, coupled with an appropriate carrier airframe, fulfil the originally intended airspace control function and would render a dedicated and highly vulnerable airspace control aircraft (like the Beriev A-50 derivative of the Il-76 transport) more or less obsolete. A group of four aircraft equipped with the 'Zaslon-M' suite would be able to permanently control an area of airspace across a total length of 800–900 km, while having ultra-long range weapons at hand to counter any intrusion into airspace with a quicker reaction time than any ground-based fighter on QRA duty. The 71.0, outfitted with the RP-31/K-100 system, would have posed a serious threat to any aggressor.

 

In March 1995 both prototypes were eventually transferred to the Kerchenskaya Guards Air Base at Savasleyka in the Oblast Vladimir, 300 km east of Mocsow, where they received tactical codes of '11 Blue' and '12 Blue'. Besides the basic test program and the RP-31/K-100 system tests, both machines were directly evaluated against the MiG-31 and Su-27 fighters by the Air Force's 4th TsBPi PLS, based at the same site.

 

Both aircraft exceeded expectations, but also fell short in certain aspects. The 71.0’s calculated top speed of Mach 3.2 was achieved during the tests with a top speed of 3,394 km/h (2.108 mph) at 21,000 m (69.000 ft). Top speed at sea level was confirmed at 1.200 km/h (745 mph) indicated airspeed.

Combat radius with full weapon load and internal fuel only was limited to 1,450 km (900 mi) at Mach 0.8 and at an altitude of 10,000 m (33,000 ft), though, and it sank to a mere 720 km (450 mi) at Mach 2.35 and at an altitude of 18,000 m (59,000 ft). Combat range with 4x K-100 internally and 2 drop tanks was settled at 3,000 km (1,860 mi), rising to 5,400 km (3,360 mi) with one in-flight refueling, tested with the 71.2. Endurance at altitude was only slightly above 3 hours, though. Service ceiling was 22,800 m (74,680 ft), 2.000 m higher than the MiG-31.

 

While these figures were impressive, Soviet officials were not truly convinced: they did not show a significant improvement over the simpler MiG-31. MiG OKB tried to persuade the government into more flight tests and begged for access to the NK-101, but the Soviet Union's collapse halted this project, too, so that both Izdeliye 710 had to keep the Soloviev D-30F6.

 

Little is known about the Izdeliye 710 project’s progress or further developments. The initial tests lasted until at least 1997, and obviously the updated MiG-31M received official favor instead of a completely new aircraft. The K-100 was also dropped, since the R-33 missile and later its R-37 derivative sufficiently performed in the long-range aerial strike role.

 

Development on the aircraft as such seemed to have stopped with the advent of modernized Su-27 derivatives and the PAK FA project, resulting in the Suchoi T-50 prototype. Unconfirmed reports suggest that one of the prototypes (probably 71.1) was used in the development of the N014 Pulse-Doppler radar with a passive electronically scanned array antenna in the wake of the MFI program. The N014 was designed with a range of 420 km, detection target of 250km to 1m and able to track 40 targets while able to shoot against 20.

 

Most interestingly, Izdeliye 710 was never officially presented to the public, but NATO became aware of its development through satellite pictures in the early Nineties and the aircraft consequently received the ASCC reporting codename "Fastback".

 

Until today, only the two prototypes have been known to exist, and it is assumed – had the type entered service – that the long-range fighter had received the official designation "MiG-41".

  

General characteristics:

Crew: 2 (Pilot, weapon system officer)

Length (incl. pitot): 93 ft 10 in (28.66 m)

Wingspan:

- minimum 10° sweep: 69 ft 4 in (21.16 m)

- maximum 68° sweep: 48 ft 9 in (14,88 m)

Height: 23 ft 1 1/2 in (7,06 m )

Wing area: 1008.9 ft² (90.8 m²)

Weight: 88.151 lbs (39.986 kg)

 

Performance:

Maximum speed:

- Mach 3.2 (2.050 mph (3.300 km/h) at height

- 995 mph (1.600 km/h) supercruise speed at 36,000 ft (11,000 m)

- 915 mph (1.470 km/h) at sea level

Range: 3.705 miles (5.955 km) with internal fuel

Service ceiling: 75.000 ft (22.500 m)

Rate of climb: 31.000 ft/min (155 m/s)

 

Engine:

2x Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each

and with 152 kN (34,172 lbf) with full afterburner.

 

Armament:

Internal weapons bay, main armament comprises a flexible missile load; basic ordnance of 4x K-100 ultra long range AAMs plus 2x R-73 short-range AAMs: other types like the R-27, R-33, R-60 and R-77 have been carried and tested, too, as well as podded guns on internal and external mounts. Alternatively, the weapon bay can hold various sensor pallets.

Four hardpoints under the wing roots, the outer pair “wet” for drop tanks of up to 3.000 l capacity, ECM pods or a buddy-buddy refueling drogue system. Maximum payload mass is 9000 kg.

  

The kit and its assembly

The second entry for the 2017 “Soviet” Group Build at whatifmodelers.com – a true Frankenstein creation, based on the scarce information about the real (but never realized) MiG 301 and 701 projects, the Suchoj T-60S, as well as some vague design sketches you can find online and in literature.

This one had been on my project list for years and I already had donor kits stashed away – but the sheer size (where will I leave it once done…?) and potential complexity kept me from tackling it.

 

The whole thing was an ambitious project and just the unique layout with a massive engine nacelle on top of the slender fuselage instead of an all-in-one design makes these aircraft an interesting topic to build. The GB was a good motivator.

 

“My” fictional interpretation of the MiG concepts is mainly based on a Dragon B-1B in 1:144 scale (fuselage, wings), a PM Model Su-15 two seater (donating the nose section and the cockpit, as well as wing parts for the fin) and a Kangnam MiG-31 (for the engine pod and some small parts). Another major ingredient is a pair of horizontal stabilizers from a 1:72 Hasegawa A-5 Vigilante.

 

Fitting the cockpit section took some major surgery and even more putty to blend the parts smoothly together. Another major surgical area was the tail; the "engine box" came to be rather straightforward, using the complete rear fuselage section from the MiG-31 and adding the intakes form the same kit, but mounted horizontally with a vertical splitter.

 

Blending the thing to the cut-away tail section of the B-1 was quite a task, though, since I not only wanted to add the element to the fuselage, but rather make it look a bit 'organic'. More than putty was necessary, I also had to made some cuts and transplantations. And after six PSR rounds I stopped counting…

 

The landing gear was built from scratch – the front wheel comes mostly from the MiG-31 kit. The central bogie and its massive leg come from a VEB Plasticart 1:100 Tu-20/95 bomber, plus some additional struts. The outriggers are leftover landing gear struts from a Hobby Boss Fw 190, mated with wheels which I believe come from a 1:200 VEB Plasticart kit, an An-24. Not certain, though. The fairings are slender MiG-21 drop tanks blended into the wing training edge. For the whole landing gear, the covers were improvised with styrene sheet, parts from a plastic straw(!) or leftover bits from the B-1B.

 

The main landing gear well was well as the weapons’ bay themselves were cut into the B-1B underside and an interior scratched from sheet and various leftover materials – I tried to maximize their space while still leaving enough room for the B-1B kit’s internal VG mechanism.

The large missiles (two were visible fitted and the rotary launcher just visibly hinted at) are, in fact, AGM-78 ‘Standard’ ARMs in a fantasy guise. They look pretty Soviet, though, like big brothers of the already not small R-33 missiles from the MiG-31.

 

While not in the focus of attention, the cockpit interior is completely new, too – OOB, the Su-15 cockpit only has a floor and rather stubby seats, under a massive single piece canopy. On top of the front wheel well (from a Hasegawa F-4) I added a new floor and added side consoles, scratched from styrene sheet. F-4 dashboards improve the decoration, and I added a pair of Soviet election seats from the scrap box – IIRC left over from two KP MiG-19 kits.

The canopy was taken OOB, I just cut it into five parts for open display. The material’s thickness does not look too bad on this aircraft – after all, it would need a rather sturdy construction when flying at Mach 3+ and withstanding the respective pressures and temperatures.

  

Painting

As a pure whif, I was free to use a weirdo design - but I rejected this idea quickly. I did not want a garish splinter scheme or a bright “Greenbottle Fly” Su-27 finish.

With the strange layout of the aircraft, the prototype idea was soon settled – and Soviet prototypes tend to look very utilitarian and lusterless, might even be left in grey. Consequently, I adapted a kind of bare look for this one, inspired by the rather shaggy Soviet Tu-22 “Blinder” bombers which carried a mix of bare metal and white and grey panels. With additional black leading edges on the aerodynamic surfaces, this would create a special/provisional but still purposeful look.

 

For the painting, I used a mix of several metallizer tones from ModelMaster and Humbrol (including Steel, Magnesium, Titanium, as well as matt and polished aluminum, and some Gun Metal and Exhaust around the engine nozzles, partly mixed with a bit of blue) and opaque tones (Humbrol 147 and 127). The “scheme” evolved panel-wise and step by step. The black leading edges were an interim addition, coming as things evolved, and they were painted first with black acrylic paint as a rough foundation and later trimmed with generic black decal stripes (from TL Modellbau). A very convenient and clean solution!

 

The radomes on nose and tail and other di-electric panels became dark grey (Humbrol 125). The cockpit tub was painted with Soviet Cockpit Teal (from ModelMaster), while the cockpit opening and canopy frames were kept in a more modest medium grey (Revell 57). On the outside of the cabin windows, a fat, deep yellow sealant frame (Humbrol 93, actually “Sand”) was added.

 

The weapon bay was painted in a yellow-ish primer tone (seen on pics of Tu-160 bombers) while the landing gear wells received a mix of gold and sand; the struts were painted in a mixed color, too, made of Humbrol 56 (Aluminum) and 34 (Flat White). The green wheel discs (Humbrol 131), a typical Soviet detail, stand out well from the rather subdued but not boring aircraft, and they make a nice contrast to the red Stars and the blue tactical code – the only major markings, besides a pair of MiG OKB logos under the cockpit.

 

Decals were puzzled together from various sheets, and I also added a lot of stencils for a more technical look. In order to enhance the prototype look further I added some photo calibration markings on the nose and the tail, made from scratch.

  

A massive kitbashing project that I had pushed away for years - but I am happy that I finally tackled it, and the result looks spectacular. The "Firefox" similarity was not intended, but this beast really looks like a movie prop - and who knwos if the Firefox was not inspired by the same projects (the MiG 301 and 701) as my kitbash model?

The background info is a bit lengthy, but there's some good background info concerning the aforementioned projects, and this aircraft - as a weapon system - would have played a very special and complex role, so a lot of explanations are worthwhile - also in order to emphasize that I di not simply try to glue some model parts together, but rather try to spin real world ideas further.

 

Mighty bird!

got a proper vest (not a spray painted tan one..) and the under armor style combat shirt for Chris here, he's pretty close to how he looks in Resident Evil 6 now, I also repainted his hair since in game it's more of a dark brown not black, also put him on a sideshow muscle body, which I hate because it really limits the pose ability, rifle aiming poses look kinda wonky now

1/6 female kitbash using a Phicen body and other various other pieces .

Inspired by the covers for Dynamite Comics' run of Barsoom stories that centred on the exploits of Dejah Thoris before she encountered a certain Earthman.

 

An original 1/6 scale kitbash figure of Dejah Thoris, conceived, assembled and photographed by myself employing layered filters from Photoshop, Enjoyphoto, Superphoto & additional editing apps installed on my cameraphone.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Société Nationale des Chemins de Fer Luxembourgeois (Luxembourg National Railway Company, abbreviated CFL) is the national railway company of Luxembourg. The Luxembourg rail system comprises (only) 275 route-kilometres (170 miles), of which 140 kilometres (87 mi) is double track and 135 kilometres (84 mi) single track. Of the total track length of 617 kilometres (383 mi), 576 kilometres (358 mi) are electrified at 25 kV, 50 Hz AC.

 

Luxembourg borders Belgium, France and Germany. Correspondingly, there are cross-border services into these countries. Some are wholly run by CFL, whereas others are run by SNCF, NMBS/SNCB and DB. CFL passenger trains cover most of the network and are operated by EMUs and electric locomotives, typically with push-pull stock. Despite a high degree of electrification, the CFL also had a fleet of diesel locomotives for hauling freight trains and for general shunting purposes. CFL.

The CFLs first electric locomotive, introduced in 1958, was the Class 3600, the so-called “fer à repasser” (= “electric iron”), a group of twenty electric locomotives that were built to the design of the French BB 12000 class. These were primarily intended for freight trains but also capable of pulling light passenger trains with up to 120 km/h (75 mph). The Class 3600 was originally designed to be capable of pulling 750 ton trains along a grade of 10 ‰, but in service it proved more than capable, frequently pulling 1100 tons and then even 1400 ton trains without problems.

 

However, for fast and heavier passenger trains, especially those that crossed the borders to Northern France with the same 25 kV, 50 Hz alternating current system as Luxembourg as well as to Germany with its 15 kV, 16.7 Hz electrification, the CFL ordered twelve additional dual system locomotive. They were more powerful and faster than the Class 3600 and became the new Class 3800 – roughly comparable with the German E 310/BR 181 dual system locomotives that were operated in the same region. The Class 3800 machines were designed and built between 1959 and 1961 in the Netherlands by Werkspoor in Utrecht, with technical support from the German Siemens-Schuckert-Werke (SSW) for the electric systems. They were heavily influenced by the contemporary Co′Co′ multipurpose Series 1200 electric locomotives for the Netherlands Spoorwegen (NS), originally designed by Baldwin and sporting typical American styling with a brawny silhouette, stepped “Cab unit” style nose sections and doors at the locomotives’ front ends to allow direct access to a coupled wagon from the driver cabins.

Even though they were based on the NS Series 1200, the CFL Class 3800 units used a shortened main frame and newly developed bogies with a Bo′Bo’ arrangement. All in all, the Class 3800 was more than 20 tons lighter than its Dutch six-axle sibling and only shared a superficial similarity – under the hood, the locomotive was technically totally different from the NS’ Series 1200 (which was designed for the Dutch 1.5 kV DC system).

 

The locomotives drew their energy from the 15 kV / 16 2/3 Hz or 25 kV / 50 Hz catenary via two diamond pantographs with contact strips of different lengths for the different areas of application. The 3-core transformers were oil-cooled, to which the control unit with its 28 running steps was connected. The acceleration was designed to function in delayed mode, where the engineer chose the running step, and the control unit would initiate the chosen setting independently. For emergency operation manual control by hand crank was possible, too. The voltage reached the main transformer via an air-operated main switch. On the secondary side, the traction motors were controlled via thyristors using stepless phase angle control, a modern technology at the time, as were the comparatively light mixed current motors. Mechanical switching mechanisms were therefore no longer required, and the vehicle control technology also worked with modern electronics. To ensure a good frictional connection between rail and wheel, the power converters always regulated a slightly lower tractive force on the preceding wheel sets of each bogie. If, however, one or more wheelsets slipped, the drive control reduced the tractive effort for a short time.

 

The CFL Class 3800’s four traction motors collective output was 3,700 kW (5,000 hp). This gave the Class 3800 a tractive effort of 275 kN (62,000 lbf) and a theoretical top speed of 150 km/h (93 mph), even though this was in practice limited to 140 km/h (87 mph). A time-division multiplex push-pull and double-traction control system was installed, too, so that two of these locomotives could together handle heavier freight trains and exploit the locomotives’ good traction. All locomotives featured an indirect air brake, with automatically stronger braking action at high speeds; for shunting/switching service an additional direct brake was present, too. All units featured a separately excited rheostatic/regenerative brake, which was coupled to the air brake. The heat generated by the electric brakes was dissipated via roof exhausts, supported by a pair of cooling fans.

 

The safety equipment in the driver's cab featured a mechanical or electronic deadman's device, punctiform automatic train controls, and train radio equipment with GSM-R communication. For operations in Germany the units received a third front light and separate red taillights, as well as an “Indusi” inductive system for data transfer between the track and locomotive by magnets mounted beside the rails and on the locomotive. Later in their career, automatic door locking at 0 km/h was retrofitted, which had become a compulsory requirement for all locomotives in passenger service.

 

After a thorough test phase of the pre-production locomotives 3801 and 3802 in 1960, the first Class 3800 serial units went into service in 1961 and were, due to the characteristic design of their driver’s cabins and their bulky shape, quickly nicknamed “Bouledogue” (Bulldog). The initial two locomotives were delivered in a pale blue-grey livery, but they were soon repainted in the CFL’s standard burgundy/yellow corporate paint scheme, and all following Class 3800 locomotives from 3803 on were directly delivered in this guise.

 

Initially, the service spectrum of the Bouledogues comprised primarily fast passenger trains on the CFL’s domestic main routes to the North and to the East, with additional border-crossing express trains, including prestigious TEE connections, to Germany (e. g. to Trier and Cologne) and France (Paris via Reims). The 3800s supplemented the CFL’s fast Series 1600 diesel locomotives on these important international destinations once they had been fully electrified. Occasionally, they were also used for freight trains in the industrial Esch-sur-Alzette region and for fast freight trains on the electrified main routes, as well as for regional passenger traffic on push-pull trains. Heavier freight trains remained the working field of the CFL Class 3600, even though occasional ore trains were handled by Class 3800 locomotives in double traction, too.

 

Even though Werkspoor hoped for more CFL orders for this dual-system type, the twelve Series 3800 locomotives remained the sole specimen. Potential buyers like Belgium or the Netherlands also did not show much interest – even though the SNCB ordered several multi-system locomotives, including eight indigenous Class 16 locomotives, equipped to run in France, Netherlands and Germany, or the six Class 18 four-system machines derived from the French SNCF CC 40100 express passenger locomotives.

 

During the Nineties the CFL started to use more and more EMUs on the domestic passenger routes, so that the Class 3800s gradually took over more and more freight train duties, relieving the older Series 3600s and replacing diesel-powered locomotives (esp. the Class 1800) on electrified routes. Border-crossing passenger train services were furthermore limited to trains to Germany since long-distance passenger train services in France switched to the TGV train system with its separate high-speed lines. Freight trains to France were still frequent Class 3800 duties, though, and occasionally coal trains were pulled directly to the industrial Ruhr Area region in Western Germany.

 

After the Millennium the Class 3800s gradually lost their duties to the new CFL Class 4000 multi-system locomotives, a variant of the Bombardier TRAXX locos found working across Europe. On 31 December 2006 the last Class 3800 (3809) was retired. Their versatility, robustness and performance have, however, allowed some of these locomotives to exceed 45 years of service. Bouledogue “3803” reached more than 9,2 million kilometers (5.7 million miles), a remarkable performance.

Only two 3800s had to be written off during the type’s career: 3804 suffered a major transformer damage and was destroyed by the ensuing fire near Troisvierges in Northern Luxembourg and 3810 was involved in a freight train derailment south of Differdange, where it was damaged beyond repair and had to be broken up on site. A single Class 3800 locomotive (3811) survived the retirement and has been kept as a static exhibition piece at the CFL Dépot at Luxembourg, the rest was scrapped.

  

General characteristics:

Gauge: 1,435 mm (4 ft 8½ in) standard gauge

UIC axle arrangement: Bo´Bo´

Overall length: 16.49 m (54 ft 1 in)

Pivot distance: 7,9 m (25 ft 10 in)

Bogie distance: 3,4 m (11 ft 1½ in)

Wheel diameter (when new): 1.250 mm (4 ft 1½ in)

Service weight: 83 t

 

Engine:

Four traction motors with a collective output of 3,700 kW (5,000 hp)

 

Performance:

Maximum speed: 150 km/h (93 mph), limited to 140 km/h (87 mph) in service

Torque: 275 kN starting tractive effort

164 kN continuous traction effort

  

The model and its assembly:

My second attempt to create a functional H0 scale what-if locomotive – and after I “only” did a color variant with some cosmetic changes on the basis of a Märklin V160/BR 216 diesel locomotive, I wanted something more special and challenging. However, kitbashing model locomotives with a metal chassis that includes a functional motor, respective drivetrain/gearing and electronics is not as easy as gluing some plastic parts together. And finding “matching” donor parts for such a stunt is also not as easy as it may seem. But what would life be without attempts to widen its boundaries?

 

This time I wanted an electric locomotive. Inspiration (and occasion) somewhat struck when I stumbled upon a running/functional chassis of a Märklin E 10/BR 110 (#3039), just without light and naturally missing the whole upper hull. Due to its incompleteness, I got it for a reasonable price, though. With this basis I started to watch out for eventual (and affordable) donor parts for a new superstructure, and remembered the collectible, non-powered all-plastic locomotive models from Atlas/IXO.

 

The good thing about the Märklin 3039 chassis was that it was just a solid and flat piece of metal without integrated outer hull elements, headstock or side skirts, so that a new hull could (theoretically) be simply tailored to fit over this motorized platform. Finding something with the exact length would be impossible, so I settled upon an Atlas H0 scale Nederlands Spoorwegen Series 1200 locomotive model, which is markedly longer than the German BR 110, due to its six axles vs. the E 10/BR 110’s four. Another selling point: the NS 1200’s body is virtually blank in its middle section, ideal for shortening it to match the different chassis. Detail of the Atlas plastic models is also quite good, so there was the potential for something quite convincing.

 

Work started with the disassembly of the static Atlas NS Class 1200 model. It's all-styrene, just with a metal plate as a chassis. Against my expectations the model's hull was only held on the chassis by two tiny screws under the "noses", so that I did not have to use force to separate it. The body's walls were also relatively thin, good for the upcoming modifications. The model also featured two nice driver's stations, which could be removed easily, too. Unfortunately; they had to go to make enough room for the electronics of the Märklin 3039 all-metal chassis.

 

Dry-fitting the chassis under the Class 1200 hull revealed that the stunt would basically work - the chassis turned out to be only marginally too wide. I just had to grind a little of the chassis' front edges away to reduce pressure on the styrene body, and I had to bend the end sections of the chassis’ stabilizing side walls.

To make the Class 1200 hull fit over the shorter BR 110 chassis a section of about 3 cm had to be taken out of the body’s middle section. The Class 1200 lent itself to this measure because the body is rather bare and uniform along its mid-section, so that re-combining two shortened halves should not pose too many problems.

 

To make the hull sit properly on the chassis I added styrene profiles inside of it - easy to glue them into place, thanks to the material. At this time, the original fixed pantographs and some wiring on the roof had gone, brake hoses on the nose were removed to make space for the BR 110 couplers, and the clear windows were removed after a little fight (they were glued into their places, but thankfully each side has three separate parts instead of just one that would easily break). PSR on the seam between the hull halves followed, plus some grey primer to check the surface quality.

 

Even though the new body now had a proper position on the metal chassis, a solution had to be found to securely hold it in place. My solution: an adapter for a screw in the chassis’ underside, scratched. I found a small area next to the central direction switch where I could place a screw and a respective receiver that could attached to the body’s roof. A 3 mm hole was drilled into the chassis’ floor and a long Spax screw with a small diameter was mated with a hollow square styrene profile, roughly trimmed down in length to almost reach the roof internally. Then a big lump of 2C putty was put into the hull, and the styrene adapter pressed into it, so that it would held well in place. Fiddly, but it worked!

 

Unfortunately, the pantographs of the Atlas/IXO model were static and not flexible at all. One was displayed raised while the other one was retracted. Due to the raised pantograph’s stiffness the model might lose contact to or even damage the model railroad catenary, even when not pulling power through it – not a satisfactory condition. Since the chassis could be powered either from below or through the pantographs (the Märklin 3039 chassis offers an analogue switch underneath to change between power sources) I decided to pimp my build further and improve looks and functionality. I organized a pair of aftermarket diamond pantographs, made from metal, fully functional and held in place on the model’s roof with (very short and) small screws from the inside.

I was not certain if the screws were conductive, and I had to somehow connect them with the switch in the chassis. I eventually soldered thin wire to the pantographs’ bases, led them through additional small holes in the roof inside and soldered them to the switch input, with an insulating screw joint in-between to allow a later detachment/disassembly without damage to the body. There might have been more elegant solutions, but my limited resources and skills did not allow more. It works, though, and I am happy with it, since the cables won’t be visible from the outside. This layout allows to draw power through them, I just had to create a flexible and detachable connection internally. Some plugs, wire and soldering created a solution – rough (electronics is not my strength!), but it worked! Another investment of money, time and effort into this project, but I think that the new pantographs significantly improve the overall look and the functionality of this model.

 

Internally, the missing light bulbs were retrofitted with OEM parts. A late external addition were PE brass ladders for the shunting platforms and under the doors for the driver’s cabins. They were rather delicate, but the model would not see much handling or railroading action, anyway, and the improve the overall impression IMHO a lot. On the roof, some details like cooling fans and tailored conduits (from the Atlas Series 1200) were added, they partly obscure the seam all around the body.

 

Unfortunately, due to the necessary space for the chassis, its motor and the electronics, the driver stations’ interiors could not be re-mounted – but this is not too obvious, despite the clear windows.

  

Painting and markings:

Finding a suitable operator took some time – I wanted a European company, and the livery had to be rather simple and easy to create with my limited means at hand, so that a presentable finish could be achieved. Belgium was one candidate, but I eventually settled on the small country of Luxembourg after I saw the CFL’s Class 3600s in their all-over wine-red livery with discreet yellow cheatlines.

 

The overall basic red was, after a coat with grey primer, applied with a rattle can, and I guesstimated the tone with RAL 3005 (Weinrot), based on various pictures of CFL locomotives in different states of maintenance and weathering. Apparently, the fresh paint was pretty bright, while old paint gained a rather brownish/maroon hue. For some contrast, the roof was painted in dark grey (Humbrol 67; RAL 7024), based on the CFL’s Class 3600 design, and the pantographs’ bases were painted and dry-brushed with this tone, too, for a coherent look. The chassis with its bogies and wheels remained basically black, but it was turned matt, and the originally bare metal wheel discs were painted, too. The visible lower areas were thoroughly treated with dry-brushed red-brown and dark grey, simulating rust and dust while emphasizing many delicate details on the bogies at the same time.

The hull was slightly treated with dry-brushed/cloudy wine red, so that the red would look a bit weathered and not so uniform. The grey roof was treated similarly.

 

The yellow cheatlines were created with yellow (RAL 1003) decal stripes from TL Modellbau in 5 and 2mm width. Generic H0 scale sheets from the same company provided the yellow CFL logos and the serial numbers on the flanks, so that the colors matched well. Stencils and some other small markings were procured from Andreas Nothaft (Modellbahndecals.de).

 

After securing the decals with some acrylic varnish the model was weathered with watercolors and some dry-brushing, simulating brownish-grey dust and dirt from the overhead contact line that frequently collects on the roof and is then washed down by rain. Finally, the whole body was sealed with matt acrylic varnish from the rattle can – even though it turned out to be rather glossy. But it does not look wrong, so I stuck with this flaw.

 

Among the last steps was the re-mounting of the clear windows (which had OOB thin silver trim, which was retained) and head- and taillights were created with ClearFix and white and red clear window color.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Lockheed Martin (originally developed by General Dynamics) F-16 Fighting Falcon is originally a single-engine multirole fighter aircraft, developed for the United States Air Force (USAF). Designed as an air superiority day fighter, it evolved into a successful all-weather multirole aircraft. Over 4,500 aircraft have been built since production was approved in 1976. Although no longer being purchased by the U.S. Air Force, improved versions are still being built for export customers.

 

One of these recent developments is the AF-16 “Strike Falcon”, a thorough update of the original fighter design as a 4.5 generation aircraft and optimized for the attack role. The prototype was presented to the public at the 2012 Singapore Air Show, and the type is intended for the export market as a simpler and less costly alternative to the F-35 multi role SVTOL aircraft.

 

Compared to the original F-16 fighter the new attack aircraft underwent considerable modifications – the most obvious is a new wing with more area (effectively, almost doubling it) and a much thicker profile, a V-tail layout and a fixed Divertless Supersonic Intake (DSI).

 

The AF-16’s new delta wing was designed around a large single piece of carbon fiber composite material. The wing has a span of 11 meters, with a 55-degree leading edge sweep and can hold up to 20,000 pounds of fuel – extending range and loitering time considerable. The purpose of the high sweep angle was to allow for a thick wing section to be used while still providing limited transonic aerodynamic drag, and to provide a good angle for wing-installed conformal antenna equipment.

 

Another side effect of the new wing’s shape is a highly reduced radar signature, which was further improved by the angular, canted twin tail fins and the DSI’s design that absorbs much of incoming frontal radar beams and totally blocks the moving parts of the jet engine.

 

A simple afterburner nozzle for the F110-GE-100 afterburning turbofan was retained, even though a 2D and even 3D vectoring thrust nozzle could be mounted.

The AF-16 features the same AN/APG-68 of the F-16C/D Block 25, but it has been optimized for the ground attack role, even though air combat capabilities are retained. This includes improved ground-mapping, Doppler beam-sharpening, ground moving target indication, sea target, and track while scan (TWS) for up to 10 targets.

 

The system provides all-weather autonomous detection and targeting for Global Positioning System (GPS)-aided precision weapons, SAR mapping and terrain-following radar (TF) modes, as well as interleaving of all modes. The system is also fully compatibility with Lockheed Martin Low-Altitude Navigation and Targeting Infra-Red for Night (LANTIRN) system, which was integrated into the forward fuselage (instead of pods on the F-16).

 

The AF-16 quickly attained interest, and one of the first countries to order the Strike Falcon is Jordan. Jordan gained independence in 1946, but its first air bases had been set up in 1931 by the Royal Air Force. By 1950, Jordan began to develop a small air arm, which came to be known as the Arab Legion Air Force (ALAF).

 

In July of 1994, King Hussein of Jordan signed a peace treaty with Israel, ending over 40 years of hostility between these two nations. Shortly thereafter, the government of Jordan began to lobby within the American government to purchase as many as 42 F-16A/B Fighting Falcons.

 

In recent years, U.S. military assistance has been primarily directed toward upgrading Jordan’s air force, as recent purchases include upgrades to U.S.-made F-16 fighters, air-to-air missiles, and radar systems.

 

Following the 1994 Israel–Jordan peace treaty and the lending of Jordanian support to the United States during the Persian Gulf War, the U.S. recommenced full military relations with Jordan starting with the donation of 16 General Dynamics F-16 Fighting Falcon (12 F-16A and 4 F-16B) in storage at the Aerospace Maintenance and Regeneration Center (AMARC) at Davis Monthan AFB. Deliveries commenced in 1997 and were completed the following year, replacing the Mirage F1CJs in the air-defense role.

 

Other types, especially the ageing F-5E/F fleet, needed replacement, too. The RJAF’s F-5E/F, as well as the remaining Mirage F.1s in the ground support role, took several years after the F-16’s arrival until the AF-16A could finally fill this gap in the RJAF’s arsenal. Fourteen machines had been ordered in 2012 (twelve AF-16A single seaters plus two AF-16B two seaters for conversion training) and were delivered in early 2015, allocated to No. 1 Squadron at Azraq. For twelve more an option had been agreed upon, while the RJAF F-16As will focus on the interceptor and air superiority role.

  

General characteristics:

Crew: 1

Length (incl. pitot): 52 ft 1 1/2 in (15.91 m)

Wingspan: 36 ft (10.97 m)

Height: 12 ft 4 1/2 in (3,78 m)

Wing area: 590 ft² (54.8 m²)

Empty weight: 18,900 lb (8,570 kg)

Loaded weight: 26,500 lb (12,000 kg)

Max. takeoff weight: 42,300 lb (19,200 kg)

 

Powerplant:

1× F110-GE-100 turbofan with 17,155 lbf (76.3 kN) dry thrust and

28,600 lbf (127 kN) with afterburner

 

Performance:

Maximum speed: Mach 1.2 (915 mph, 1,470 km/h) at sea level,

Mach 1.6 (1,200 mph, 1,931 km/h) at altitude

Range: 1,324 nmi; 1,521 mi (2,450 km) with internal fuel

Ferry range: 2,485 nmi (2,857 mi, 4,600 km) with drop tanks

Service ceiling: 42,000 ft (13,000 m)

Rate of climb: 50,000 ft/min (254 m/s)

Wing loading: 44.9 lb/sq ft (219 kg/m2)

Thrust/weight: 1.095

 

Armament:

1× 20 mm (0.787 in) M61A2 Vulcan 6-barrel Gatling cannon with 511 rounds

A total of nine hardpoints for Air-to-air missile launch rails and a wide range of guided and unguided

air-to-ground ordnance with a capacity of up to 17,000 lb (7.700 kg) of stores

  

The kit and its assembly:

This whif kitbashing was inspired by real design studies from General Dynamics that show evolutionary developments of the F-16 in a no-tail configuration, but with an enlarged diamond-shaped wing shape (much like the F-22's), obviously based on the F-16XL. Additionally you find several similar fantasy CG designs in the WWW – the basic idea seems to have potential. And when I stumbled across the remains of a Revell X-32 in my stash and an Intech F-16A kit, I wondered if these could not be reasonably combined...?

 

What sounds easy eventually ended up in a massive bodywork orgy. The Intech kit (marketed under the Polish Master Craft Label) is horrible, the worst F-16 kit I have ever seen or tried to build - it's cheap and you get what you pay for. Maybe the PM Model F-16 is worse (hard to believe, but sprue pics I saw suggest it), but the Intech kits are …challenging. This thing is like a blurred picture of an F-16: you recognize the outlines, but nothing is sharp and no part matches any other! Stay away.

 

Well, actually only the fuselage, the cockpit and parts of the Intech kit's landing gear survived. The X-32 kit is, on the other side, a sound offering. It was not complete anymore, since I donated parts like the cockpit and the landing gear to my SAAB OAS 41 'Vيًarr' stealth aircraft from Sweden some time ago, but there were many good parts left to work with.

 

Especially the aerodynamic surfaces (wings and V-tail) attained my interest: these parts match well with the F-16 fuselage in size and shape if you look from above, and the leading edges even blend well with the F-16 LERXs. But: the X-32's wings are much, much thicker than the F-16's, so that the original blended wing/fuselage intersection does not match at all.

 

Additionally, the X-32's bulged landing gear wells in the wings had to go, so these had to be filled as an initial step. The wing roots were roughly cut into the F-16 kit's shape and glued onto the fuselage. After drying, the whole blended wing/fuselage intersection had to be sculpted from scratch - several layers of putty and even more wet sanding sessions were necessary. I stopped counting after turn five, a tedious job. But it eventually paid out…

 

Furthermore decided to change the F-16's chin air intake and implant parts from the X-32 divertless supersonic "sugar scoop" intake. Such an arrangement has actually been tested on an F-16, so it's not too far-fetched, and its stealthy properties make a welcome update. The respective section from the X-32's lower front fuselage was cut away and had to be modified, too, because it would originally not fit at all under the F-16's front. The intake was carefully heated at the edges and the side walls bent inwards - I was lucky that no melting damage occurred! Inside of the new intake, the upper, bulged part was implanted, too, so that in real life the jet engine parts would be protected from direct frontal radar detection.

 

The front wheel position was retained. As a consequence of the new, much more voluminous and square air intake, the rather round section from the main landing gear onwards had to be sculpted for a decent new fuselage shape, too. But compared to the massive wing/fuselage body work, this was only a minor task.

 

The F-16A's fuselage was not extended, but for a different look I decided to eliminate the single fin and rather implant the X-32's outward-canted twin fins - the original extensions that hold the F-16's air brakes and now blend into the new wings' trailing edge were a perfect place, and as a side benefit they'd partly cover the jet nozzle. The latter was replaced by a respective spare part from an Italeri F-16 – the Intech nozzle is just a plain, conical tube!

 

The landing gear was mostly taken over from the Intech F-16, even though it is rather rough, as well as the pylons. The ordnance was puzzled together: the Sidewinders and the cropped drop tanks come from the Intech kit (the latter have a horribly oval diameter shape and the triangulare fins are a massive 1mm thick!), the Paveway bombs come from a Hasegawa air-to-ground weapons set.

  

Painting and markings:

The livery is somewhat inspired by a CG illustration of a fictional Big-Wing-F-16IN in Jordan colors. I also found a desert camouflage rather interesting for this aircraft – F-16s are typically grey-in-grey, with rare exceptions. Anyway, the paint scheme I applied is pure fiction fictional. I wanted a multi-color scheme with rather sober and subdued colors, partly inspired by contemporary Iranian MiG-29s.

 

I ended up with three upper and a single lower tone. The scheme is roughly based on the pattern that is applied to Venezuelan F-16s, but with desert colors: these are a pale, yellow-ish sand (Humbrol 103, Cream), a medium sand brown (Humbrol 187, Dark Stone) and a dull medium grey (Revell 75, RAL 7030). The undersides were painted in a pale blue (Humbrol 23, RAF Duck Egg Blue).

 

Since a lot of the (already rather vague) surface details of the Intech kit was lost through sanding, I simulated panels through dry painting, later some panel lines were manually added with a pencil, too. A light weathering was done with a thin black in wash. The cockpit was painted in Neutral Grey (FS 36173), and the canopy was tinted with a thinned mix of clear brown and yellow – and it turned out nicely! Even though the rear part had to be painted over, because the clear part’s fit with the rest of the fuselage was poor and putty had to be used to fill gaps and sculpt a decent rear end.

 

Most of the decals come from a Mirage F.1 decal sheet from FFSMC Productions, a French manufacturer. Together with the pale desert colors and the subdued RJAF markings, the AF-16A looks better and more coherent than expected, esp. after a uniform coat of matt acrylic varnish had been applied (from a rattle can).

  

A bold idea, with many doubts on the way, esp. because of the massive body sculpting. But once the kitbashed model was painted and sealed under matt varnish, things suddenly looked pretty cool – a positive surprise. Even though I will certainly never ever touch an Intech F-16 again…

 

Kitbash customs encounter a Hong Kong plastic dinosaur as part of my "Lost World" setting.

 

I really enjoy the look of the old toy dinosaurs, despite the lack of realism.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

After the Ukrainian independence in 1991, the Ukrainian Air Force (Повітряні Сили України, Povitryani Syly Ukrayiny) was established on March 17, 1992, in accordance with a Directive of the General Staff Chief of the Armed Forces. When the Soviet Union dissolved in 1991, many aircraft were left on Ukrainian territory, including a wide range of fighters and attack aircraft, helicopters and even strategic bombers, and these became the initial equipment. Ever since, the Ukrainian air force has been downsizing and upgrading its forces, but for many years the main inventory still consisted of Soviet-made aircraft.

 

Following the 2014 Ukrainian Revolution and subsequent March 2014 Russian annexation of the Crimea peninsula and the following violence and insurgency in east Ukraine, the Ukrainian government tried to increase its defense spending and capabilities. Returning equipment (of Russian origin, though) to service was a key part of the spending drive, but in parallel attempts were made to procure flying material from Western sources in order to become moer and more independent from the obtrusive neighbor. In April 2014 two MiG-29 aircraft were restored to flight on short notice and in August a decommissioned An-26 transport aircraft was restored to active service by a volunteer group. On 5 January 2015 the air force received another 4 restored airplanes, two MiG-29s and two Su-27s, as well as two Mi-8 and Mi-2 helicopters. However, since these aircraft had already accumulated a considerable number of flying hours, this could only have been an interim solution and the Ukraine turned directly to NATO for material support.

 

This politically highly delicate help was eventually granted in the form of eight General Dynamics F-16 C (six) and D (two) multi-role fighters of early Block 40 standard, leased from the U.S.A. and diverted from active aircraft which were about to become surplus stock and mothballed, anyway.

The F-16 Fighting Falcon itself was a single-engine supersonic multirole fighter aircraft originally developed by General Dynamics for the United States Air Force (USAF). Designed as a light air superiority day fighter as a complement to the heavier F-15 Eagle interceptor, it evolved into a successful all-weather multirole aircraft. Over 4,600 aircraft were built since production was approved in 1976. In 1993, General Dynamics sold its aircraft manufacturing business to the Lockheed Corporation, which in turn became part of Lockheed Martin after a 1995 merger with Martin Marietta.

Although no longer being purchased by the launch customer, the U.S. Air Force, improved versions are still being built for export customers – the F-16 has been procured to serve in the air forces of 25 other nations all around the world, making it one of the world's most numerous fixed-wing aircraft in military service.

 

The Fighting Falcon's key features include a frameless bubble canopy for better visibility, side-mounted control stick to ease control while maneuvering, an ejection seat reclined 30 degrees from vertical to reduce the effect of g-forces on the pilot, and the first use of a relaxed static stability/fly-by-wire flight control system which helps to make it an agile aircraft. The F-16 has an internal M61 Vulcan cannon and the advanced C/D version features a total of 11 locations for mounting weapons and other mission equipment.

 

The eight machines for the Ukraine arrived in June 2016 via direct transfer flights over the Atlantic and Western Europe. The former USAF machines were delivered “as is”, even though they had some state-of-the-art avionics replaced by less sensitive alternatives from older F-16 production blocks. Together with the fighters, an undisclosed number of AIM-9M Sidewinder and AIM-120 AMRAAM air-to-air missiles were delivered, but the leasing agreement did not include LANTIRN pods that would provide the F-16C/D with improved all-day/all-weather strike capability. Other equipment like ECM pods was also not included. Service, maintenance and logistics for the new type in Ukrainian service was, due to the small operational number, secured with the help of the Polish air force, which had been operating 48 F-16C/D+ Block 52 fighters since 2006 and had the required experience and facilities at its 31st Tactical Air Base in Poznań-Krzesiny.

 

Upon arrival, the aircraft were immediately re-painted in a striking digital camouflage and received non-consecutive tactical codes, apparently based on the airframe’s former U.S. serial numbers, using the last two digits. They were all allocated to the 40th Tactical Aviation Brigade, based at Vasylkiv air base, south of Kiev, where they replaced a number of outdated and partly grounded MiG-29 fighters. They were exclusively tasked with aerial defense of the Ukrainian capital city – also as a political sign that the machines were not intended for attack missions.

 

Since their introduction, the Ukrainian F-16s have been fulfilling QRA duties and airspace patrol, and the corresponding maintenance infrastructure has been gradually built up, so that F-16 operations became independent from Poland in 2019. With the worsening relationship to Russia, more military hardware of Western origin is expected to enter Ukrainian service. If the tight Ukrainian defense budget allows it, twenty more 2nd hand F-16s are to be delivered in 2021 to replace more Soviet fighter types (primarily the rest of the Ukrainian MiG-29 “Fulcrum” single and two seater fleet), and the procurement of LANTIRN pods to expand the type’s capabilities is under consideration and negotiations, too.

  

General characteristics:

Length: 49 ft 5 in (15.06 m)

Wingspan: 32 ft 8 in (9.96 m)

Height: 16 ft (4.9 m)

Wing area: 300 sq ft (28 m²)

Airfoil: NACA 64A204

Empty weight: 18,900 lb (8,573 kg)

Gross weight: 26,500 lb (12,020 kg)

Max. takeoff weight: 42,300 lb (19,187 kg)

Internal fuel capacity: 7,000 pounds (3,200 kg)

 

Powerplant:

1× General Electric F110-GE-100 afterburning turbofan

with 17,155 lbf (76.31 kN) dry and 28,600 lbf (127 kN) thrust with afterburner

 

Performance:

Maximum speed: Mach 2.05 at altitude in clean configuration

Mach 1.2, 800 kn (921 mph; 1,482 km/h) at sea level

Combat range: 295 nmi (339 mi, 546 km) on a hi-lo-hi mission with 4x 1,000 lb (454 kg) bombs

Ferry range: 2,277 nmi (2,620 mi, 4,217 km) with drop tanks

Service ceiling: 50,000 ft (15,000 m) plus

g limits: +9.0 (limited by flight control system)

Rate of climb: +50,000 ft/min (250 m/s)

Wing loading: 88.3 lb/sq ft (431 kg/m²)

Thrust/weight: 1.095 (1.24 with loaded weight & 50% internal fuel)

 

Armament:

1× 20 mm (0.787 in) M61A1 Vulcan 6-barrel rotary cannon with 511 rounds

2× wing-tip air-to-air missile launch rails plus 6× under-wing

and 3× under-fuselage pylon (2 of these for sensors) stations

with a capacity of up to 17,000 lb (7,700 kg) of a wide range of stores

  

The kit and its assembly:

I am not a big F-16 fan, but in some cases it’s an unavoidable canvas – just like in this case here. This fictional aircraft model (or better: this model of a [yet] fictional F-16 operator) was spawned by two ideas. One was the simple question: what if the Ukraine had after the USSR’s dissolution chosen a stronger attachment to (old) Western forces after the dissolution of the USSSR? And/or: what if the Ukraine had started to procure non-Russian equipment, esp. aircraft? So, what would an Ukrainian F-16 might have looked like, in general but esp. after the Crimea annexation in 2014 when such a scenario had become even more possible?

The other source of inspiration was a picture of an Ukrainian Su-24 with grey digital camouflage, a scheme that was/is also worn by some Su-25s. When I stumbled upon an Authentic Decals sheet for this unique paint scheme that allows to apply the complex and delicate pattern through water-slide transfers, I thought that the relatively “flat” F-16 surface would be an ideal basis to try this stunt?

 

What sounded like a very simple livery whif on an OOB model turned into a construction nightmare. Originally, this project provided me with a purpose for a dubious Trumpeter F-16 kit that I had bought some years ago – dead cheap, but righteously so. This kit is cruel, the model even has no concrete variant specification and is apparently the re-boxing of a kit from an obscure Chinese company called “Income”. Effectively, the Trumpeter F-16 is a rip-off of Italeri’s quite nice F-16C/D kit – but the Income/Trumpeter clone comes with MUCH deeper engravings esp. on the fuselage that remind a lot of the dreaded Matchbox “trenches”. Everything is rather “soft” and toylike, the clear parts are poor and the (few) decals look like toy stickers (!!!). I’d call it crude, even the instructions are apparently poor scans or photocopies from the Italeri kit, including hints for detail painting with no corresponding reference what colors should be used at all… All that could have been overlooked, but after starting with the kit I could not commit myself to use it any further. It’s rare that I give up because of a kit’s basis!

 

Next idea to “save” the project’s idea of an Ukrainian F-16 was to dig out a surplus Intech F-16 from the pile, also bought long ago because it was cheap, as conversion fodder. This kit has also been re-released in infinite variations under the Mister-/Mastercraft label. Upon closer inspection this kit turned out to have massive flaws, too, but in different areas from the Trumpeter thing. For instance, the Intech kit’s wings are utterly thick, certainly 1mm thicker than the Trumpeter model’s parts. This does not sound much, but on the really thin F-16 wings and stabilizers this looks really awful! Furthermore, the clear parts had not been fully molded, so I’d have needed a replacement canopy, anyway. Again, I gave up on building…

 

…until I decided to make the best of this mess and combine the “best” parts from both gimp models, trying to mend the worst flaws to an acceptable level. This led to the glorious kitbashing that this model eventually became! From the Intech kit I took the acceptable fuselage, including cockpit interior, air intake and landing gear, as well as the fin and the weapon pylons. The Trumpeter kit donated its thinner wings and the stabilizers, as well as the much better open exhaust nozzle (there’s an optional closed one, too; the Intech kit only offers an open nozzle, without ANY surface detail at all, it’s just a blank pipe!).

Beyond these basic ingredients, some more donors became necessary: All clear parts from both Intech and Trumpeter kit turned out to be rubbish for various reasons. The decision to build an F-16D two-seater was dictated by the fact that I had a leftover canopy from an Italeri F-16 kit in the donor bank – luckily it fitted well to the Intech kit’s body. Two crewmen from the spares box populate the cockpit and hide the rather basic interior, which was not improved at all. Furthermore, the ordnance came from external sources, too. The characteristic drop tanks with their cut-off tails were also leftover parts from the Italeri F-16, all AAMs come from a Hasegawa weapon set.

 

Some PSR was necessary to blend the parts from different kits together – thankfully, almost all F-16 kits are constructed in a similar fashion, even though there are small detail differences. In this case, the wings had to be slightly modified to fit onto the Intech fuselage. However, even those parts from the original kit(s) that are supposed to fit, e.g. the fin or the alternative cockpit opening frames for the optional single- and two-seater canopies, do hardly match at all. Horrible.

 

I rather focused on the model’s exterior, and a personal addition to improve the overall look of the otherwise rather basic/poor model, I added some small blade antennae that were totally missing on either model. Another extra detail are the small static dischargers on the trailing edges, created with thin, heated sprue material. Only small details, but they improve IMHO the model’s look considerably.

  

Painting and markings:

Until today, I never dared to apply decal camouflage to a model, but I expected that the flat/smooth F-16 surface would make this stunt relatively easy. This application method would also make painting the model easy, since only a single, uniform color had to be laid down from above and below.

To my surprise, the painting instructions of the Authentic Decals sheet for a number of Ukrainian Su-25 (which all carry the same standardized pixel camouflage) indicated RAL tones – a little surprising, but: why not? Since no other authentic color references were available, I cross-checked the paint suggestions with real life pictures of Su-24s and -25s in this striking paint scheme, and the indicated tones appear very plausible.

 

The problem: not every RAL tone is available as a model paint, so I had to make guesstimates. This eventually led to Modelmaster 2133 (Fulcrum Grey) as a light grey overall basis (suggested: RAL 7030 Achatgrau/Agate Grey, a tone with a brownish hue) from above and Humbrol 47 (Sea Blue Gloss) for a pale blue underside. The recommendation for the belly is RAL 7001 (Silbergrau/Silver Grey, very close to FS 36375), and this appears plausible, too, even though real-life pictures suggest a more bluish tone. But for a more dramatic look and some color contrast to the upper side’s all-grey I deliberately settled upon the Humbrol color, and this looks IMHO good.

The other suggested grey tones that make up the pixel patterns are RAL 7040 (Fenstergrau/Window Grey), RAL 7037 (Staubgrau/Dust Grey) and RAL 7043 (Verkehrsgrau B/Traffic Grey).

 

The cockpit interior was painted in medium grey (FS 36231, Humbrol 140), the air intake and the landing gear in white (Humbrol 22). The exhaust nozzle was painted externally with individual Metallizer mixes (with blue and gold added), while the inside was painted with Burnt Steel Metallizer towards the afterburner section while the ceramic nozzle petals were painted in a pale, almost white grey with darker lines, applied wet-in-wet. This looks pretty good – but does not withstand a closer inspection, just like the rest of this Franken-bashed F-16 thing.

 

Applying the digital camouflage pattern went better than expected. The decals turned out to be very thin and delicate, though, with almost no excessive clear film outside of the printed areas, so that application had to be executed swiftly and with lots of water to slide them into place. Nothing for modelers who are faint at heart! Because the single pixel clouds partly follow the Su-25 outlines, the decals had partly to be tailored to the rather different F-16 shape, and due to the different proportions I also had to improvise with the material at hand – fortunately the Su-25 sheet offered enough material to cover the F-16! Some small areas lacked decal material and had to be filled through painting, though, with replacement model paints for the aforementioned darker RAL greys, namely Humbrol 246 (RLM 75) and a 2:1 mix of Humbrol 125 and 67. The lightest grey on the prints turned out to be very close to the Fulcrum Grey, so there’s unfortunately very little contrast, and this only became clear after the decals had already dried. However, I left it that way, because lightening the Fulcrum Grey up further would have been a quite messy affair, ending in a rather dirty look that I wanted to avoid, and it had called for an almost white tone.

 

Another challenge became the weathering process, since I normally apply a black ink wash and some post-panel shading to the finished and painted model before I add the decals to a model. Fearing that the ink might creep under the decals’ clear sections, I left that step out completely. The delicate static dischargers were another complicating factor. So, I decided to finish the upper camouflage with the light grey base and the decals cammo first. This made trimming down excess decal material easier. After that had been roughly finished, the dischargers were added and the underside was painted blue. On top of that came the “normal” decals with national markings, codes and stencils. The latter were mostly taken from a vintage Microscale F-16 sheet, the tactical code came from a Begemot Ka-27 sheet. Since the bort number on the air intake was not well visible frame every angle, I added a white 77 to the fin, too. Thereafter I added some panel lines with the help of thinned black ink and a soft pencil. This way the model appears pretty clean, and I think that’s fine since many recent Ukrainian aircraft I know from pictures look well-tended. Finally, the model was sealed with matt acrylic varnish overall.

  

A simple F-16 in alternative markings – that’s what this model was supposed to be. I did not expect that the building phase would become such a challenge, and I’d sincerely recommend to any modeler who wants to build a “serious” F-16 in 1:72 to stay away from the Trumpeter and the Intech/Mister-/Mastercraft kits. They might be cheap, but that does not outweigh their flaws and building troubles.

Beyond these technical issues, I like the look of this “Ukrainized” Viper, the digital camouflage looks very special and works well on the aircraft. The light grey base could have been lighter, though. In fact, the F-16 now looks like an exaggerated U.S. Aggressor on first sight, but with the Ukrainian markings the whole thing looks pretty different and conclusive - a “what if” in the best sense. 😉

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

In the late 1970s the Mikoyan OKB began development of a hypersonic high-altitude reconnaissance aircraft. Designated "Izdeliye 301" (also known as 3.01), the machine had an unusual design, combining a tailless layout with variable geometry wings. The two engines fueled by kerosene were located side by side above the rear fuselage, with the single vertical fin raising above them, not unlike the Tu-22 “Blinder” bomber of that time, but also reminiscent of the US-American SR-71 Mach 3 reconnaissance aircraft.

 

Only few and rather corny information leaked into the West, and the 301 was believed not only to act as a reconnaissance plane , it was also believed to have (nuclear) bombing capabilities. Despite wind tunnel testing with models, no hardware of the 301 was ever produced - aven though the aircraft could have become a basis for a long-range interceptor that would replace by time the PVO's Tupolew Tu-28P (ASCC code "Fiddler"), a large aircraft armed solely with missiles.

 

Despite limitations, the Tu-28P served well in its role, but the concept of a very fast interceptor aircraft, lingered on, since the Soviet Union had large areas to defend against aerial intruders, esp. from the North and the East. High speed, coupled with long range and the ability to intercept an incoming target at long distances independently from ground guidance had high priority for the Soviet Air Defence Forces. Even though no official requirement was issued, the concept of Izdeliye 301 from the Seventies was eventually developed further into the fixed-wing "Izdeliye 701" ultra-long-range high-altitude interceptor in the 1980ies.

 

The impulse for this new approach came when Oleg S. Samoylovich joined the Mikoyan OKB after having worked at Suchoi OKB on the T-60S missile carrier project. Similar in overall design to the former 301, the 701 was primarily intended as a kind of successor for the MiG-31 Foxhound for the 21st century, which just had completed flight tests and was about to enter PVO's front line units.

 

Being based on a long range cruise missile carrier, the 701 would have been a huge plane, featuring a length of 30-31m, a wing span of 19m (featuring a highly swept double delta wing) and having a maximum TOW of 70 tons! Target performance figures included a top speed of 2.500km/h, a cruising speed of 2.100km/h at 17.000m and an effective range of 7.000km in supersonic or 11.000km in subsonic mode. Eventually, the 701 program was mothballed, too, being too ambitious and expensive for a specialized development that could also have been a fighter version of the Tu-22 bomber!

 

Anyway, while the MiG-31 was successfully introduced in 1979 and had evolved in into a capable long-range interceptor with a top speed of more than Mach 3 (limited to Mach 2.8 in order to protect the aircraft's structural integrity), MiG OKB decided in 1984 to take further action and to develop a next-generation technology demonstrator, knowing that even the formidable "Foxhound" was only an interim solution on the way to a true "Four plus" of even a 6th generation fighter. Other new threats like low-flying cruise missiles, the USAF's "Project Pluto" or the assumed SR-71 Mach 5 successor “Aurora” kept Soviet military officials on the edge of their seats, too.

 

Main objective was to expand the Foxhound's state-of the-art performance, and coiple it with modern features like aerodynamic instability, supercruise, stealth features and further development potential.

 

The aircraft's core mission objectives comprised:

- Provide strategic air defense and surveillance in areas not covered by ground-based air defense systems (incl. guidance of other aircraft with less sophisticated avionics)

- Top speed of Mach 3.2 or more in a dash and cruise at Mach 3.0 for prolonged periods

- Long range/high speed interception of airspace intruders of any kind, including low flying cruise missiles, UAVs and helicopters

- Intercept cruise missiles and their launch aircraft from sea level up to 30.000m altitude by reaching missile launch range in the lowest possible time after departing the loiter area

 

Because funding was scarce and no official GOR had been issued, the project was taken on as a private venture. The new project was internally known as "Izdeliye 710" or "71.0". It was based on both 301 and 701 layout ideas and the wind tunnel experiences with their unusual layouts, as well as Oleg Samoylovich's experience with the Suchoi T-4 Mach 3 bomber project and the T-60S.

 

"Izdeliye 710" was from the start intended only as a proof-of-concept prototype, yet fully functional. It would also incorporate new technologies like heat-resistant ceramics against kinetic heating at prolonged high speeds (the airframe had to resist temperatures of 300°C/570°F and more for considerable periods), but with potential for future development into a full-fledged interceptor, penetrator and reconnaissance aircraft.

 

Overall, “Izdeliye 710" looked like a shrinked version of a mix of both former MiG OKB 301 and 701 designs, limited to the MiG-31's weight class of about 40 tons TOW. Compared with the former designs, the airframe received an aerodynamically more refined, partly blended, slender fuselage that also incorporated mild stealth features like a “clean” underside, softened contours and partly shielded air intakes. Structurally, the airframe's speed limit was set at Mach 3.8.

 

From the earlier 301 design,the plane retained the variable geometry wing. Despite the system's complexity and weight, this solution was deemed to be the best approach for a combination of a high continuous top speed, extended loiter time in the mission’s patrol areas and good performance on improvised airfields. Minimum sweep was a mere 10°, while, fully swept at 68°, the wings blended into the LERXes. Additional lift was created through the fuselage shape itself, so that aerodynamic surfaces and therefore drag could be reduced.

 

Pilot and radar operator sat in tandem under a common canopy with rather limited sight. The cockpit was equipped with a modern glass cockpit with LCD screens. The aircraft’s two engines were, again, placed in a large, mutual nacelle on the upper rear fuselage, fed by large air intakes with two-dimensional vertical ramps and a carefully modulated airflow over the aircraft’s dorsal area.

 

Initially, the 71.0 was to be powered by a pair of Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each, and with 152 kN (34,172 lbf) with full afterburner. These were the same engines that powered the MiG-31, but there were high hopes for the Kolesov NK-101 engine: a variable bypass engine with a maximum thrust in the 200kN range, at the time of the 71.0's design undergoing bench tests and originally developed for the advanced Suchoj T-4MS strike aircraft.

With the D-30F6, the 71.0 was expected to reach Mach 3.2 (making the aircraft capable of effectively intercepting the SR-71), but the NK-101 would offer in pure jet mode a top speed in excess of Mach 3.5 and also improve range and especially loiter time when running as a subsonic turbofan engine.

 

A single fin with an all-moving top and an additional deep rudder at its base was placed on top of the engine nacelle. Additional maneuverability at lower speed was achieved by retractable, all-moving foreplanes, stowed in narrow slits under the cockpit. Longitudinal stability at high speed was improved through deflectable stabilizers: these were kept horizontal for take-off and added to the overall lift, but they could be folded down by up to 60° in flight, acting additionally as stabilizer strakes.

 

Due to the aircraft’s slender shape and unique proportions, the 71.0 quickly received the unofficial nickname "жура́вль" (‘Zhurávl' = Crane). The aircaft’s stalky impression was emphasized even more through its unusual landing gear arrangement: Due to the limited internal space for the main landing gear wells between the weapons bay, the wing folding mechanisms and the engine nacelle, MiG OKB decided to incorporate a bicycle landing gear, normally a trademark of Yakovlew OKB designs, but a conventional landing gear could simply not be mounted, or its construction would have become much too heavy and complex.

 

In order to facilitate operations from improvised airfields and on snow the landing gear featured twin front wheels on a conventional strut and a single four wheel bogie as main wheels. Smaller, single stabilizer wheels were mounted on outriggers that retracted into slender fairings at the wings’ fixed section trailing edge, reminiscent of early Tupolev designs.

 

All standard air-to-air weaponry, as well as fuel, was to be carried internally. Main armament would be the K-100 missile (in service eventually designated R-100), stored in a large weapons bay behind the cockpit on a rotary mount. The K-100 had been under development at that time at NPO Novator, internally coded ‘Izdeliye 172’. The K-100 missile was an impressive weapon, and specifically designed to attack vital and heavily defended aerial targets like NATO’s AWACS aircraft at BVR distance.

 

Being 15’ (4.57 m) long and weighing 1.370 lb (620 kg), this huge ultra-long-range weapon had a maximum range of 250 mi (400 km) in a cruise/glide profile and attained a speed of Mach 6 with its solid rocket engine. This range could be boosted even further with a pair of jettisonable ramjets in tubular pods on the missile’s flanks for another 60 mi (100 km). The missile could attack targets ranging in altitude between 15 – 25,000 meters.

 

The weapon would initially be allocated to a specified target through the launch aircraft’s on-board radar and sent via inertial guidance into the target’s direction. Closing in, the K-100’s Agat 9B-1388 active seeker would identify the target, lock on, and independently attack it, also in coordination with other K-100’s shot at the same target, so that the attack would be coordinated in time and approach directions in order to overload defense and ensure a hit.

 

The 71.0’s internal mount could hold four of these large missiles, or, alternatively, the same number of the MiG-31’s R-33 AAMs. The mount also had a slot for the storage of additional mid- and short-range missiles for self-defense, e .g. three R-60 or two R-73 AAMs. An internal gun was not considered to be necessary, since the 71.0 or potential derivatives would fight their targets at very long distances and rather rely on a "hit-and-run" tactic, sacrificing dogfight capabilities for long loitering time in stand-by mode, high approach speed and outstanding acceleration and altitude performance.

 

Anyway, provisions were made to carry a Gsh-301-250 gun pod on a retractable hardpoint in the weapons bay instead of a K-100. Alternatively, such pods could be carried externally on four optional wing root pylons, which were primarily intended for PTB-1500 or PTB-3000 drop tanks, or further missiles - theoretically, a maximum of ten K-100 missiles could be carried, plus a pair of short-range AAMs.

 

Additionally, a "buddy-to-buffy" IFR set with a retractable drogue (probably the same system as used on the Su-24) was tested (71.2 was outfitted with a retractable refuelling probe in front of the cockpit), as well as the carriage of simple iron bombs or nuclear stores, to be delivered from very high altitudes. Several pallets with cameras and sensors (e .g. a high resolution SLAR) were also envisioned, which could easily replace the missile mounts and the folding weapon bay covers for recce missions.

 

Since there had been little official support for the project, work on the 710 up to the hardware stage made only little progress, since the MiG-31 already filled the long-range interceptor role in a sufficient fashion and offered further development potential.

A wooden mockup of the cockpit section was presented to PVO and VVS officials in 1989, and airframe work (including tests with composite materials on structural parts, including ceramic tiles for leading edges) were undertaken throughout 1990 and 1991, including test rigs for the engine nacelle and the swing wing mechanism.

 

Eventually, the collapse of the Soviet Union in 1991 suddenly stopped most of the project work, after two prototype airframes had been completed. Their internal designations were Izdeliye 71.1 and 71.2, respectively. It took a while until the political situation as well as the ex-Soviet Air Force’s status were settled, and work on Izdeliye 710 resumed at a slow pace.

 

After taking two years to be completed, 71.1 eventually made its roll-out and maiden flight in summer 1994, just when MiG-31 production had ended. MiG OKB still had high hopes in this aircraft, since the MiG-31 would have to be replaced in the next couple of years and "Izdeliye 710" was just in time for the potential procurement process. The first prototype wore a striking all-white livery, with dark grey ceramic tiles on the wings’ leading edges standing out prominently – in this guise and with its futuristic lines the slender aircraft reminded a lot of the American Space Shuttle.

 

71.1 was primarily intended for engine and flight tests (esp. for the eagerly awaited NK-101 engines), as well as for the development of the envisioned ramjet propulsion system for full-scale production and further development of Izdeliye 710 into a Mach 3+ interceptor. No mission avionics were initially fitted to this plane, but it carried a comprehensive test equipment suite and ballast.

 

Its sister ship 71.2 flew for the first time in late 1994, wearing a more unpretentious grey/bare metal livery. This plane was earmarked for avionics development and weapons integration, especially as a test bed for the K-100 missile, which shared Izdeliye 710’s fate of being a leftover Soviet project with an uncertain future and an even more corny funding outlook.

 

Anyway, aircraft 71.2 was from the start equipped with a complete RP-31 ('Zaslon-M') weapon control system, which had been under development at that time as an upgrade for the Russian MiG-31 fleet being part of the radar’s development program secured financial support from the government and allowed the flight tests to continue. The RP-31 possessed a maximum detection range of 400 km (250 mi) against airliner-sized targets at high altitude or 200 km against fighter-sized targets; the typical width of detection along the front was given as 225 km. The system could track 24 airborne targets at one time at a range of 120 km, 6 of which could be simultaneously attacked with missiles.

 

With these capabilities the RP-31 suite could, coupled with an appropriate carrier airframe, fulfil the originally intended airspace control function and would render a dedicated and highly vulnerable airspace control aircraft (like the Beriev A-50 derivative of the Il-76 transport) more or less obsolete. A group of four aircraft equipped with the 'Zaslon-M' suite would be able to permanently control an area of airspace across a total length of 800–900 km, while having ultra-long range weapons at hand to counter any intrusion into airspace with a quicker reaction time than any ground-based fighter on QRA duty. The 71.0, outfitted with the RP-31/K-100 system, would have posed a serious threat to any aggressor.

 

In March 1995 both prototypes were eventually transferred to the Kerchenskaya Guards Air Base at Savasleyka in the Oblast Vladimir, 300 km east of Mocsow, where they received tactical codes of '11 Blue' and '12 Blue'. Besides the basic test program and the RP-31/K-100 system tests, both machines were directly evaluated against the MiG-31 and Su-27 fighters by the Air Force's 4th TsBPi PLS, based at the same site.

 

Both aircraft exceeded expectations, but also fell short in certain aspects. The 71.0’s calculated top speed of Mach 3.2 was achieved during the tests with a top speed of 3,394 km/h (2.108 mph) at 21,000 m (69.000 ft). Top speed at sea level was confirmed at 1.200 km/h (745 mph) indicated airspeed.

Combat radius with full weapon load and internal fuel only was limited to 1,450 km (900 mi) at Mach 0.8 and at an altitude of 10,000 m (33,000 ft), though, and it sank to a mere 720 km (450 mi) at Mach 2.35 and at an altitude of 18,000 m (59,000 ft). Combat range with 4x K-100 internally and 2 drop tanks was settled at 3,000 km (1,860 mi), rising to 5,400 km (3,360 mi) with one in-flight refueling, tested with the 71.2. Endurance at altitude was only slightly above 3 hours, though. Service ceiling was 22,800 m (74,680 ft), 2.000 m higher than the MiG-31.

 

While these figures were impressive, Soviet officials were not truly convinced: they did not show a significant improvement over the simpler MiG-31. MiG OKB tried to persuade the government into more flight tests and begged for access to the NK-101, but the Soviet Union's collapse halted this project, too, so that both Izdeliye 710 had to keep the Soloviev D-30F6.

 

Little is known about the Izdeliye 710 project’s progress or further developments. The initial tests lasted until at least 1997, and obviously the updated MiG-31M received official favor instead of a completely new aircraft. The K-100 was also dropped, since the R-33 missile and later its R-37 derivative sufficiently performed in the long-range aerial strike role.

 

Development on the aircraft as such seemed to have stopped with the advent of modernized Su-27 derivatives and the PAK FA project, resulting in the Suchoi T-50 prototype. Unconfirmed reports suggest that one of the prototypes (probably 71.1) was used in the development of the N014 Pulse-Doppler radar with a passive electronically scanned array antenna in the wake of the MFI program. The N014 was designed with a range of 420 km, detection target of 250km to 1m and able to track 40 targets while able to shoot against 20.

 

Most interestingly, Izdeliye 710 was never officially presented to the public, but NATO became aware of its development through satellite pictures in the early Nineties and the aircraft consequently received the ASCC reporting codename "Fastback".

 

Until today, only the two prototypes have been known to exist, and it is assumed – had the type entered service – that the long-range fighter had received the official designation "MiG-41".

  

General characteristics:

Crew: 2 (Pilot, weapon system officer)

Length (incl. pitot): 93 ft 10 in (28.66 m)

Wingspan:

- minimum 10° sweep: 69 ft 4 in (21.16 m)

- maximum 68° sweep: 48 ft 9 in (14,88 m)

Height: 23 ft 1 1/2 in (7,06 m )

Wing area: 1008.9 ft² (90.8 m²)

Weight: 88.151 lbs (39.986 kg)

 

Performance:

Maximum speed:

- Mach 3.2 (2.050 mph (3.300 km/h) at height

- 995 mph (1.600 km/h) supercruise speed at 36,000 ft (11,000 m)

- 915 mph (1.470 km/h) at sea level

Range: 3.705 miles (5.955 km) with internal fuel

Service ceiling: 75.000 ft (22.500 m)

Rate of climb: 31.000 ft/min (155 m/s)

 

Engine:

2x Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each

and with 152 kN (34,172 lbf) with full afterburner.

 

Armament:

Internal weapons bay, main armament comprises a flexible missile load; basic ordnance of 4x K-100 ultra long range AAMs plus 2x R-73 short-range AAMs: other types like the R-27, R-33, R-60 and R-77 have been carried and tested, too, as well as podded guns on internal and external mounts. Alternatively, the weapon bay can hold various sensor pallets.

Four hardpoints under the wing roots, the outer pair “wet” for drop tanks of up to 3.000 l capacity, ECM pods or a buddy-buddy refueling drogue system. Maximum payload mass is 9000 kg.

  

The kit and its assembly

The second entry for the 2017 “Soviet” Group Build at whatifmodelers.com – a true Frankenstein creation, based on the scarce information about the real (but never realized) MiG 301 and 701 projects, the Suchoj T-60S, as well as some vague design sketches you can find online and in literature.

This one had been on my project list for years and I already had donor kits stashed away – but the sheer size (where will I leave it once done…?) and potential complexity kept me from tackling it.

 

The whole thing was an ambitious project and just the unique layout with a massive engine nacelle on top of the slender fuselage instead of an all-in-one design makes these aircraft an interesting topic to build. The GB was a good motivator.

 

“My” fictional interpretation of the MiG concepts is mainly based on a Dragon B-1B in 1:144 scale (fuselage, wings), a PM Model Su-15 two seater (donating the nose section and the cockpit, as well as wing parts for the fin) and a Kangnam MiG-31 (for the engine pod and some small parts). Another major ingredient is a pair of horizontal stabilizers from a 1:72 Hasegawa A-5 Vigilante.

 

Fitting the cockpit section took some major surgery and even more putty to blend the parts smoothly together. Another major surgical area was the tail; the "engine box" came to be rather straightforward, using the complete rear fuselage section from the MiG-31 and adding the intakes form the same kit, but mounted horizontally with a vertical splitter.

 

Blending the thing to the cut-away tail section of the B-1 was quite a task, though, since I not only wanted to add the element to the fuselage, but rather make it look a bit 'organic'. More than putty was necessary, I also had to made some cuts and transplantations. And after six PSR rounds I stopped counting…

 

The landing gear was built from scratch – the front wheel comes mostly from the MiG-31 kit. The central bogie and its massive leg come from a VEB Plasticart 1:100 Tu-20/95 bomber, plus some additional struts. The outriggers are leftover landing gear struts from a Hobby Boss Fw 190, mated with wheels which I believe come from a 1:200 VEB Plasticart kit, an An-24. Not certain, though. The fairings are slender MiG-21 drop tanks blended into the wing training edge. For the whole landing gear, the covers were improvised with styrene sheet, parts from a plastic straw(!) or leftover bits from the B-1B.

 

The main landing gear well was well as the weapons’ bay themselves were cut into the B-1B underside and an interior scratched from sheet and various leftover materials – I tried to maximize their space while still leaving enough room for the B-1B kit’s internal VG mechanism.

The large missiles (two were visible fitted and the rotary launcher just visibly hinted at) are, in fact, AGM-78 ‘Standard’ ARMs in a fantasy guise. They look pretty Soviet, though, like big brothers of the already not small R-33 missiles from the MiG-31.

 

While not in the focus of attention, the cockpit interior is completely new, too – OOB, the Su-15 cockpit only has a floor and rather stubby seats, under a massive single piece canopy. On top of the front wheel well (from a Hasegawa F-4) I added a new floor and added side consoles, scratched from styrene sheet. F-4 dashboards improve the decoration, and I added a pair of Soviet election seats from the scrap box – IIRC left over from two KP MiG-19 kits.

The canopy was taken OOB, I just cut it into five parts for open display. The material’s thickness does not look too bad on this aircraft – after all, it would need a rather sturdy construction when flying at Mach 3+ and withstanding the respective pressures and temperatures.

  

Painting

As a pure whif, I was free to use a weirdo design - but I rejected this idea quickly. I did not want a garish splinter scheme or a bright “Greenbottle Fly” Su-27 finish.

With the strange layout of the aircraft, the prototype idea was soon settled – and Soviet prototypes tend to look very utilitarian and lusterless, might even be left in grey. Consequently, I adapted a kind of bare look for this one, inspired by the rather shaggy Soviet Tu-22 “Blinder” bombers which carried a mix of bare metal and white and grey panels. With additional black leading edges on the aerodynamic surfaces, this would create a special/provisional but still purposeful look.

 

For the painting, I used a mix of several metallizer tones from ModelMaster and Humbrol (including Steel, Magnesium, Titanium, as well as matt and polished aluminum, and some Gun Metal and Exhaust around the engine nozzles, partly mixed with a bit of blue) and opaque tones (Humbrol 147 and 127). The “scheme” evolved panel-wise and step by step. The black leading edges were an interim addition, coming as things evolved, and they were painted first with black acrylic paint as a rough foundation and later trimmed with generic black decal stripes (from TL Modellbau). A very convenient and clean solution!

 

The radomes on nose and tail and other di-electric panels became dark grey (Humbrol 125). The cockpit tub was painted with Soviet Cockpit Teal (from ModelMaster), while the cockpit opening and canopy frames were kept in a more modest medium grey (Revell 57). On the outside of the cabin windows, a fat, deep yellow sealant frame (Humbrol 93, actually “Sand”) was added.

 

The weapon bay was painted in a yellow-ish primer tone (seen on pics of Tu-160 bombers) while the landing gear wells received a mix of gold and sand; the struts were painted in a mixed color, too, made of Humbrol 56 (Aluminum) and 34 (Flat White). The green wheel discs (Humbrol 131), a typical Soviet detail, stand out well from the rather subdued but not boring aircraft, and they make a nice contrast to the red Stars and the blue tactical code – the only major markings, besides a pair of MiG OKB logos under the cockpit.

 

Decals were puzzled together from various sheets, and I also added a lot of stencils for a more technical look. In order to enhance the prototype look further I added some photo calibration markings on the nose and the tail, made from scratch.

  

A massive kitbashing project that I had pushed away for years - but I am happy that I finally tackled it, and the result looks spectacular. The "Firefox" similarity was not intended, but this beast really looks like a movie prop - and who knwos if the Firefox was not inspired by the same projects (the MiG 301 and 701) as my kitbash model?

The background info is a bit lengthy, but there's some good background info concerning the aforementioned projects, and this aircraft - as a weapon system - would have played a very special and complex role, so a lot of explanations are worthwhile - also in order to emphasize that I di not simply try to glue some model parts together, but rather try to spin real world ideas further.

 

Mighty bird!

We changed her body out again, got rid of the anatomically exaggerated phicen one and replaced it with one that could actually hold a rifle, also updated her headsculpt with an offbrand version of the hot toys winter soldier black widow

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

The A-14 program originally started in 2005 as a private venture, initiated by Northrop-Grumman together with the Elbit Group as a joint venture through Elbit’s Texas-based aircraft division M7 Aerosystems, an approved supplier to major aerospace clients. The aircraft was intended to replace the USAF’s A-10 attack aircraft as well as early F-16s in the strike role from 2010 onwards. The time slot for the project turned out to be advantageous, because at that time the USAF was contemplating to replace the simple and sturdy A-10 with the much more complex F-35, eventually even with its VTOL variant, and the highly specialized F-117 was retired, too.

The A-14 revived conceptual elements of Grumman’s stillborn A-12 stealth program for the US Navy, which had also been part of the USAF’s plans to replace the supersonic F-111 tactical bomber, but on a less ambitious and expensive level concerning technology, aiming for a more effective compromise between complexity, survivability and costs. The basic idea was an updated LTV A-7D (the A-10’s predecessor from the Vietnam War era), which had far more sophisticated sensor and navigation equipment than the rather simple but sturdy A-10, but with pragmatic stealth features and a high level of survivability in a modern frontline theatre or operations.

 

M7 Aerosystems started on a blank sheet, even though Northrop-Grumman’s A-12 influence was clearly visible, and to a certain degree the aircraft shared the basic layout with the F-117A. The A-14 was tailored from the start to the ground attack role, and therefore a subsonic design. Measures to reduce radar cross-section included airframe shaping such as alignment of edges, fixed-geometry serpentine inlets that prevented line-of-sight of the engine faces from any exterior view, use of radar-absorbent material (RAM), and attention to detail such as hinges and maintenance covers that could provide a radar return. The A-14 was furthermore designed to have decreased radio emissions, infrared signature and acoustic signature as well as reduced visibility to the naked eye.

 

The resulting airframe was surprisingly large for an attack aircraft – in fact, it rather reminded of a tactical bomber in the F-111/Su-24 class than an alternative to the A-10. The A-14 consisted of a rhomboid-shaped BWB (blended-wing-and-body) with extended wing tips and only a moderate (35°) wing sweep, cambered leading edges, a jagged trailing edge and a protruding cockpit section which extended forward of the main body.

The majority of the A-14’s structure and surface were made out of a carbon-graphite composite material that is stronger than steel, lighter than aluminum, and absorbs a significant amount of radar energy. The central fuselage bulge ended in a short tail stinger with a pair of swept, canted fins as a butterfly tail, which also shrouded the engine’s hot efflux. The fins could have been omitted, thanks to the aerodynamically unstable aircraft’s fly-by-wire steering system, and they effectively increased the A-14’s radar signature as well as its visual profile, but the gain in safety in case of FBW failure or physical damage was regarded as a worthwhile trade-off. Due to its distinctive shape and profile, the A-14 quickly received the unofficial nickname “Squatina”, after the angel shark family.

 

The spacious and armored cockpit offered room for the crew of two (pilot and WSO or observer for FAC duties), seated side-by-side under a generous glazing, with a very good field of view forward and to the sides. The fuselage structure was constructed around a powerful cannon, the five-barrel GAU-12/U 25 mm ‘Equalizer’ gun, which was, compared with the A-10’s large GAU-8/A, overall much lighter and more compact, but with only little less firepower. It fired a new NATO series of 25 mm ammunition at up to 4.200 RPM. The gun itself was located under the cockpit tub, slightly set off to port side, and the front wheel well was offset to starboard to compensate, similar in arrangement to the A-10 or Su-25. The gun’s ammunition drum and a closed feeding belt system were located behind the cockpit in the aircraft’s center of gravity. An in-flight refueling receptor (for the USAF’s boom system) was located in the aircraft’s spine behind the cockpit, normally hidden under a flush cover.

 

Due to the gun installation in the fuselage, however, no single large weapon bay to minimize radar cross section and drag through external ordnance was incorporated, since this feature would have increased airframe size and overall weight. Instead, the A-14 received four, fully enclosed compartments between the wide main landing gear wells and legs. The bays could hold single iron bombs of up to 2.000 lb caliber each, up to four 500 lb bombs or CBUs, single laser-guided GBU-14 glide bombs, AGM-154 JSOW or GBU-31/38 JDAM glide bombs, AGM-65 Maverick guided missiles or B61 Mod 11 tactical nuclear weapons, as well as the B61 Mod 12 standoff variant, under development at that time). Retractable launch racks for defensive AIM-9 Sidewinder air-to-air missiles were available, too, and additional external pylons could be added, e.g. for oversize ordnance like AGM-158C Long Range Anti-Ship Missile (LRASM) or AGM-158 Joint Air to Surface Standoff Missile (JASSM), or drop tanks for ferry flights. The total in- and external ordnance load was 15,000 lb (6,800 kg).

 

The A-14 was designed with superior maneuverability at low speeds and altitude in mind and therefore featured a large wing area, with high wing aspect ratio on the outer wing sections, and large ailerons areas. The ailerons were placed at the far ends of the wings for greater rolling moment and were split, making them decelerons, so that they could also be used as air brakes in flight and upon landing.

This wing configuration promoted short takeoffs and landings, permitting operations from primitive forward airfields near front lines. The sturdy landing gear with low-pressure tires supported these tactics, and a retractable arrester hook, hidden by a flush cover under the tail sting, made it possible to use mobile arrested-recovery systems.

The leading edge of the wing had a honeycomb structure panel construction, providing strength with minimal weight; similar panels covered the flap shrouds, elevators, rudders and sections of the fins. The skin panels were integral with the stringers and were fabricated using computer-controlled machining, reducing production time and cost, and this construction made the panels more resistant to damage. The skin was not load-bearing, so damaged skin sections could be easily replaced in the field, with makeshift materials if necessary.

 

Power came from a pair of F412-GE-114 non-afterburning turbofans, engines that were originally developed for the A-12, but de-navalized and lightened for the A-14. These new engines had an output of 12,000 lbf (53 kN) each and were buried in blended fairings above the wing roots, with jagged intakes and hidden ducts. Flat exhausts on the wings’ upper surface minimized both radar and IR signatures.

 

Thanks to the generous internal fuel capacity in the wings and the fuselage, the A-14 was able to loiter and operate under 1,000 ft (300 m) ceilings for extended periods. It typically flew at a relatively low speed of 300 knots (350 mph; 560 km/h), which made it a better platform for the ground-attack role than fast fighter-bombers, which often have difficulty targeting small, slow-moving targets or executing more than just a single attack run on a selected target.

 

A mock-up was presented and tested in the wind tunnel and for radar cross-section in late 2008. The A-14’s exact radar cross-section (RCS) remained classified, but in 2009 M7 Aerosystems released information indicating it had an RCS (from certain angles) of −40 dBsm, equivalent to the radar reflection of a "steel marble". With this positive outcome and the effective design, M7 Aerosystems eventually received federal funding for the production of prototypes for an official DT&E (Demonstration Testing and Evaluation) program.

 

Three prototypes/pre-production aircraft were built in the course of 2010 and 2011, and the first YA-14 made its maiden flight on 10 May 2011. The DT&E started immediately, and the machines (a total of three flying prototypes were completed, plus two additional airframes for static tests) were gradually outfitted with mission avionics and other equipment. This included GPS positioning, an inertial navigation system, passive sensors to detect radar usage, a small, gyroscopically stabilized turret, mounted under the nose of the aircraft, containing a FLIR boresighted with a laser spot-tracker/designator, and an experimental 3-D laser scanning LIDAR in the nose as a radiation-less alternative to a navigation and tracking radar.

 

Soon after the DT&E program gained momentum in 2012, the situation changed for M7 Aerosystems when the US Air Force considered the F-35B STOVL variant as its favored replacement CAS aircraft, but concluded that the aircraft could not generate a sufficient number of sorties. However, the F-35 was established as the A-14’s primary rival and remained on the USAF’s agenda. For instance, at that time the USAF proposed disbanding five A-10 squadrons in its budget request to cut its fleet of 348 A-10s by 102 to lessen cuts to multi-mission aircraft in service that could replace the specialized attack aircraft.

In August 2013, Congress and the Air Force examined various proposals for an A-10 replacement, including the A-14, F-35 and the MQ-9 Reaper unmanned aerial vehicle, and, despite the A-14’s better qualities in the ground attack role, the F-35 came out as the overall winner, since it was the USAF’s favorite. Despite its complexity, the F-35 was – intended as a multi-role tri-service aircraft and also with the perspective of bigger international sales than the more specialized A-14 – regarded as the more versatile and, in the long run, more cost-efficient procurement option. This sealed the A-14’s fate and the F-35A entered service with U.S. Air Force F-35A in August 2016 (after the F-35B was introduced to the U.S. Marine Corps in July 2015). At that time, the U.S. planned to buy 2,456 F-35s through 2044, which would represent the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps for several decades.

 

Since the A-14’s technology was considered to be too critical to be marketed to export customers (Israel showed early interest in the aircraft, as well as South Korea), the program was cancelled in 2016.

  

General characteristics:

Crew: 2 (pilot, WSO)

Length: 54 ft 11 1/2 in (16.78 m)

Wingspan: 62 ft 11 1/2 in (19.22 m)

Height: 11 ft 3 3/4 in (3.45 m)

Wing area: 374.9 ft² (117.5 m²)

Empty weight: 24,959 lb (11,321 kg)

Loaded weight: 30,384 lb (13,782 kg)

Max. takeoff weight: 50,000 lb (22,700 kg)

Internal fuel capacity: 11,000 lb (4,990 kg)

 

Powerplant:

2× General Electric Whitney F412-GE-114 non-afterburning turbofans

with 12,000 lbf (53 kN) thrust each

 

Performance:

Maximum speed: 630 mph (1,010 km/h, 550 kn) at 40,000 ft altitude /

Mach 0.95 at sea level

Cruise speed: 560 mph (900 km/h, 487 kn) at 40,000 ft altitude

Range: 1,089 nmi (1,253 mi, 2,017 km)

Ferry range: 1,800 nmi (2,100 mi, 3,300 km)

Service ceiling: 50,000 ft (15,200 m)

Rate of climb: 50,000 ft/min (250 m/s)

Wing loading: 133 lb/ft² (193 kg/m²)

Thrust/weight: 0.48 (full internal fuel, no stores)

Take-off run: 1,200 m (3,930 ft) at 42,000 lb (19,000 kg) over a 15 m (30 ft) obstacle

 

Armament:

1× General Dynamics GAU-12/U Equalizer 25 mm (0.984 in) 5-barreled rotary cannon

with 1,200 rounds (max. capacity 1,350 rounds)

4x internal weapon bays plus 4x external optional hardpoints with a total capacity of

15,000 lb (6,800 kg) and provisions to carry/deploy a wide range of ordnance

  

The kit and its assembly:

A major kitbashing project which I had on my idea list for a long time and its main ingredients/body donors already stashed away – but, as with many rather intimidating builds, it takes some external motivation to finally tackle the idea and bring it into hardware form. This came in August 2020 with the “Prototypes” group build at whatifmodellers.com, even though is still took some time to find the courage and mojo to start.

 

The original inspiration was the idea of a stealthy successor for the A-10, or a kind of more modern A-7 as an alternative to the omnipresent (and rather boring, IMHO) F-35. An early “ingredient” became the fuselage of a Zvezda Ka-58 stealth helicopter kit – I liked the edgy shape, the crocodile-like silhouette and the spacious side-by-side cockpit. Adding wings, however, was more challenging, and I remembered a 1:200 B-2A which I had turned into a light Swedish 1:72 attack stealth aircraft. Why not use another B-2 for the wings and the engines, but this time a bigger 1:144 model that would better match the quite bulbous Ka-58 fuselage? This donor became an Italeri kit.

 

Work started with the fuselage: the Ka-58’s engine and gearbox hump had to go first and a generous, new dorsal section had to be scratched with 1mm styrene sheet and some PSR. The cockpit and its glazing could be retained and were taken OOB. Under the nose, the Ka-58’s gun turret was omitted and a scratched front landing gear well was implanted instead.

 

The wings consist of the B-2 model; the lower “fuselage half” had its front end cut away, then the upper fuselage half of the Ka-58 was used as benchmark to cut the B-2’s upper wing/body part in two outer wing panels. Once these elements had been glued together, the Ka-58’s lower nose and tail section were tailored to match the B-2 parts. The B-2 engine bays were taken OOB and mounted next, so that the A-14’s basic hull was complete and the first major PSR session could start. Blending the parts into each other turned out to be a tedious process, since some 2-3 mm wide gaps had to be filled.

 

Once the basic BWP pack had been finished, I added the fins. These were taken from an 1:72 F-117 kit (IIRC from Italeri), which I had bought in a lot many moons ago. The fins were just adapted at their base to match the tail sting slope, and they were mounted in a 45° angle. This looks very F-117ish but was IMHO the most plausible solution.

 

Now that the overall length of the aircraft was defined, I could work on the final major assembly part: the wing tips. The 1:144 B-2 came with separate wing tip sections, but they proved to be much too long for the Squatina. After some trials I reduced their length by more than half, so that the B-2’s jagged wing trailing edge was kept. The result looks quite natural, even though blending the cut wing tips to the BWB turned out to be a PSR nightmare because their thickness reduces gently towards the tip – since I took out a good part of the inner section, the resulting step had to be sanded away and hidden with more PSR.

 

Detail work started next, including the cockpit glazing, the bomb bay (the B-2 kit comes with one of its bays open, and I kept this detail and modified the interior) and the landing gear, the latter was taken from the F-117 donor bank and fitted surprisingly well.

Some sensors were added, too, including a flat glass panel on the nose tip and a triangular IRST fairing under the nose, next to the landing gear well.

  

Painting and markings:

For a stealth aircraft and a prototype I wanted something subdued or murky, but not an all-black or -grey livery. I eventually settled for the rather dark paint scheme that the USAF applied to its late B-52Gs and the B-1Bs, which consists of two tones from above, FS 36081 (Dark Grey, a.k.a. Dark Gunship Grey) and 34086 (Green Drab), and underneath (FS 36081 and 36118 (Gunship Grey). The irregular pattern was adapted (in a rather liberal fashion) from the USAF’s early B-1Bs, using Humbrol 32, 108 and 125 as basic colors. The 108 turned out to be too bright, so I toned it down with an additional coat of thinned Humbrol 66. While this considerably reduced the contrast between the green and the grey, the combination looks much better and B-1B-esque.

 

The wings’ leading edges were painted for more contrast with a greyish black (Tar Black, Revell 09), while the landing gear, the interior of the air intakes and the open bomb bay became glossy white. The cockpit was painted in medium grey (Humbrol 140) and the clear parts received a thinned inner coating with a mix of transparent yellow and brown, simulating an anti-radar coating – even though the effect turned out to be minimal, now it looks as of the plastic parts had just yellowed from age…

 

After the initial livery had been finished the model received a black ink washing and some post-panel shading with slightly brightened variations of the basic tones (using Humbrol 79, 144 and 224). Decals were added next, an individual mix from various sources. The “Stars-and-Bars” come from a PrintScale A-7 sheet, most stencils come from an F-16 sheet.

After some more detail painting and a treatment with graphite on the metal areas (exhausts, gun port), the model was sealed with matt acrylic varnish (Italeri).

  

Batman’s next Batwing? Maybe, there’s certainly something fictional about this creation. But the “Squatina” turned out much more conclusive (and even pretty!) than I expected, even though it became a bigger aircraft than intended. And I am positively surprised how good the bodywork became – after all, lots of putty had to be used to fill all the gaps between parts that no one ever expected to be grafted together.

Custom (kitbash-in-progress) Mezco One:12 Collective Spider-Man Noir

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background

The Hütter Hü 324 was the final development stage of BMW's 'Schnellbomber II' project, which had been designed around two mighty BMW 109-028 turboprops.

 

These innovative engines had been developed since February 1941, but did not receive fullest attention due to the more promising jet engines. Anyway, it soon became clear that no jet engine with the potential to drive a bomber-sized aircraft - considering both performance and fuel consumption - would be available on short notice. Consequently, the BMW 028 received more attention from the RLM from 1943 on.

 

Biggest pressure came from the fact that several obsolete types like the He 111 or Do 217 had to be replaced, and the ill-fated and complicated He 177 was another candidate with little future potential, since four-engined variants had been rejected. Additionally, the promising and ambitious Ju 288 had been stillborn, and a wide gap for a tactical medium bomber opned in the Luftwaffe arsenal.

 

In may 1943, new requirements for a medium bomber were concretised. Main objective was to design a fast, twin-engined bomber, primarily intended for horizontal bombing, which would be able to carry a 3.000 kilograms (6.600 lbs) payload at 800 kilometres per hour in a 1.500km (900 ml) radius. The plane had to be fast and to operate at great heights, limiting the threat of interception.

 

Since many major design bureaus’ resources were bound, Ulrich W. Hütter, an Austro-German engineer and university professor got involved in the RLM project and BMW's design team which had been working on appropriate designs. In July 1943, Hütter moved to the Research Institute of the Graf Zeppelin works (FGZ) convened in Ruit near Stuttgart, and as head of the engineering department he was also involved in the development of manned missiles, underwater towing systems and the Hü 211 high altitude interceptor/reconnaissance plane.

 

Under Ulrich W. Hütter and his brother, Wolfgang Hütter, BMW's original and highly innovative (if not over-ambitious) Schnellbomber designs gave way to a more conservative layout: the so-called BMW-Hütter Hü 324.

 

The plane was conventional in layout, with high, unswept laminar profile wings and a high twin tail. The engines were carried in nacelles slung directly under the wings. The nose wheel retracted rearwards, while the main wheels retracted forwards into the engine nacelles, rotating 90°, and laying flat under the engines. The crew of four (pilot, co-pilot/bombardier, navigator/radar operator and gunner/radio operator) were accommodated in a compact, pressurised "glass house" cockpit section – a popular design and morale element in Luftwaffe bomber and reconnaissance aircraft of that era.

 

Construction of the first prototype started in February 1945, and while the aircraft cell made good progress towards the hardware stage, the development suffered a serious setback in March when BMW admitted that the 109-028 turboprop engine would not be ready in time. It took until August to arrive, and the prototype did not fly until 6 November 1945.

Initial flight test of the four A-0 pre-production samples of the Hü 324 went surprisingly well. Stability and vibration problems with the aircraft were noted, though. One major problem was that the front glas elements were prone to crack at high speeds, and it took a while to trace the troubole source back to the engines and sort these problems out. Among others, contraprops were fitted to counter the vibration problems, the engines' power output had to be reduced by more than 500 WPS and the tail fins had to be re-designed.

 

Another innovative feature of this bomber was the “Elbegast” ground-looking navigation radar system, which allowed identification of targets on the ground for night and all-weather bombing. It was placed in a shallow radome behind the front wheel. Performance-wise, the system was comparable to the USAAF’s H2X radar, and similarly compact. Overall, the Hü 324 showed much promise and a convincing performance, was easy to build and maintain, and it was immediately taken to service.

 

Despite the relatively high speed and agility for a plane of its size, the Hü 324 bore massive defensive armament: the original equipment of the A-1 variant comprised two remotely operated FDL 131Z turrets in dorsal (just behind the cockpit) and ventral (behind the bomb bay) position with 2× 13 mm MG 131 machine guns each, plus an additional, unmanned tail barbette with a single 20mm canon. All these guns were aimed by the gunner through a sighting station at the rear of the cockpit, effectively covering the rear hemisphere of the bomber.

 

After first operational experience, this defence was beefed up with another remotely-controlled barbette with 2× 13 mm MG 131 machine guns under the cockpit, firing forwards. The reason was similar to the introduction of the chin-mounted gun turret in the B-17G: the plane was rather vulnerable to frontal attacks. In a secondary use, the chin guns could be used for strafing ground targets. This update was at first called /R1, but was later incorporated into series production, under the designation A-2.

 

Effectively, almost 4.500kg ordnance could be carried in- and externally, normally limited to 3.000kg in the bomb bay in order to keep the wings clean and reduce drag, for a high cruising speed. While simple iron bombs and aerial mines were the Hü 324's main payload, provisions were made to carry guided weapons like against small/heavily fortified targets. Several Rüstsätze (accessory packs) were developed, and the aircraft in service received an "/Rx" suffix to their designation, e. g. the R2 Rüstsatz for Fritz X bomb guidance or the R3 set for rocket-propelled Hs 293 bombs.

 

Trials were even carried out with a semi-recessed Fieseler Fi 103 missile, better known as the V1 flying bomb, hung under the bomber's belly and in an enlarged bomb bay, under deletion of the ventral barbette.

 

The Hü 324 bomber proved to be an elusive target for the RAF day and night fighters, especially at height. After initial attacks at low level, where fast fighters like the Hawker Tempest or DH Mosquito night fighters were the biggest threat, tactics were quickly changed. Approaching at great height and speed, bombing was conducted from medium altitudes of 10,000 to 15,000 feet (3,000 to 4,600 m).

 

The Hü 324 proved to be very successful, striking against a variety of targets, including bridges and radar sites along the British coast line, as well as ships on the North Sea.

From medium altitude, the Hü 324 A-2 proved to be a highly accurate bomber – thanks to its "Elbegast" radar system which also allowed the planes to act as pathfinders for older types or fast bombers with less accurate equipment like the Ar 232, Ju 388 or Me 410. Loss rates were far lower than in the early, low-level days, with the Hü 324 stated by the RLM as having the lowest loss rate in the European Theatre of Operations at less than 0.8 %.

  

BMW-Hütter Ha 324A-2, general characteristics:

Crew: 4

Length: 18.58 m (60 ft 10 in)

Wingspan: 21.45 m (70 ft 4½ in )

Height: 4.82 m (15 ft 9½ in)

Wing area: 60.80 m² (654.5 ft.²)

Empty weight: 12,890 kg (28,417 lb)

Loaded weight: 18,400 kg (40,565 lb)

Max. take-off weight: 21,200 kg (46,738 lb)

 

Performance:

Maximum speed: 810 km/h (503 mph) at optimum height

Cruising speed: 750 km/h (460 mph) at 10,000 m (32,800 ft)

Range: 3.500 km (2.180 ml)

Service ceiling: 11.400 m (37.500 ft)

Rate of climb: 34.7 m/s (6,820 ft/min)

 

Powerplant:

Two BMW 109-028 ‘Mimir’ turboprop engines, limited to 5.500 WPS (4.044 WkW) each plus an additional residual thrust of 650kg (1.433 lb), driving four-bladed contraprops.

 

Armament:

6× 13mm MG 131 in three FDL 131Z turrets

1× 20mm MG 151/20 in unmanned/remote-controlled tail barbette

Up to 4.500 kg (9.800 lbs) in a large enclosed bomb-bay in the fuselage and/or four underwing hardpoints.

Typically, bomb load was limited to 3.000 kg (6.500 lbs) internally.

  

The kit and its assembly

This project/model belongs in the Luft '46 category, but it has no strict real world paradigm - even though Luftwaffe projects like the Ju 288, the BMW Schnellbomber designs or Arado's E560/2 and E560/7 had a clear influence. Actually, “my” Hü 324 design looks pretty much like a He 219 on steroids! Anyway, this project was rather inspired by a ‘click’ when two ideas/elements came together and started forming something new and convincing. This is classic kitbashing, and the major ingredients are:

 

● Fuselage, wings, landing gear and engine nacelles from a Trumpeter Ilyushin Il-28 bomber

● Nose section from an Italeri Ju 188 (donated from a friend, leftover from his Ju 488 project)

● Stabilisers from an Italeri B-25, replacing the Il-28’s swept tail

● Contraprops and fuselage barbettes from a vintage 1:100 scale Tu-20(-95) kit from VEB Plasticart (yes, vintage GDR stuff!)

 

Most interestingly, someone from the Netherlands had a similar idea for a kitbashing some years ago: www.airwar1946.nl/whif/L46-ju588.htm. I found this after I got my idea for the Hü 324 together, though - but its funny to see how some ideas manifest independently?

 

Building the thing went pretty straightforward, even though Trumpeter's Il-28 kit has a rather poor fit. Biggest problem turned out to be the integration of the Ju 188 cockpit section: it lacks 4-5mm in width! That does not sound dramatic, but it took a LOT of putty and internal stabilisation to graft the parts onto the Il-28's fuselage.

 

The cockpit was completely re-equipped with stuff from the scrap box, and the main landing gear received twin wheels.

 

The chin turret was mounted after the fuselage was complete, the frontal defence had been an issue I had been pondering about for a long while. Originally, some fixed guns (just as the Il-28 or Tu-16) had been considered. But when I found an old Matchbox B-17G turret in my scrap box, I was convinced that this piece could do literally the same job in my model, and it was quickly integrated. As a side effect, this arrangement justifies the bulged cockpit bottom well, and it just looks "more dangerous".

 

Another task was the lack of a well for the front wheel, after the Il-28 fuselage had been cut and lacked the original interior. This was also added after the new fuselage had been fitted together, and the new well walls were built with thin polystyrene plates. Not 100% exact and clean, but the arrangement fits the bill and takes the twin front wheel.

 

The bomb bay was left open, since the Trumpeter kit offers a complete interior. I also added four underwing hardpoints for external loads (one pair in- and outboard of the engine nacelles), taken from A-7 Corsair II kits, but left them empty. Visually-guided weapons like the 'Fritz X' bomb or Hs 293 missiles would IMHO hardly make sense during night sorties? I also did not want to overload the kit with more and more distracting details.

  

Painting

Even though it is a whif I wanted to incorporate some serious/authentic late WWII Luftwaffe looks. Since the Hü 324 would have been an all-weather bomber, I went for a night bomber livery which was actually used on a He 177 from 2./KG 100, based in France: Black (RLM 22, I simply used Humbrol 33) undersides, and upper surfaces in RLM 76 (Base is Humbrol 128, FS36320, plus some added areas with Testors 2086, the authentic tone which is a tad lighter, but very close) with mottles in RLM 75 (Grauviolett, Testors 2085, plus some splotches of Humbrol 27, Medium Sea Grey), and some weathering through black ink, some enhanced panel lines (with a mix of matte varnish and Panzergrau), as well as some dry painting all over the fuselage.

 

All interior surfaces were painted in RLM 66 (Schwarzgrau/Black Grey, Testors 2079), typical for German late WWII aircraft. Propeller spinners were painted RLM 70 (Schwarzgrün) on the front half, the rear half was painted half black and half white.

 

Pretty simple scheme, but it looks VERY cool, esp. on this sleek aircraft. I am very happy with this decision, and I think that this rather simple livery is less distracting from the fantasy plane itself, making the whif less obvious. In the end, the whole thing looks a bit grey-in-grey, but that spooky touch just adds to the menacing look of this beefy aircraft. I think it would not look as good if it had been kept in daytime RLM 74/75/76 or even RLM 82/83/76?

 

Markings and squadron code were puzzled together from an Authentic Decal aftermarket sheet for a late He 111 and individual letters from TL Modellbau. The "F3" code for the fictional Kampfgruppe (KG) 210 is a random choice, "EV" marks the individual plane, the red "E" and the control letter "V" at the end designate a plane from the eleventh squadron of KG 210. My idea is that the Hü 324 would replace these machines and literally taking their place in the frontline aviaton units. So I tried to keep in line with the German aircraft code, but after all, it's just a whif...

  

So, after some more surgical work than expected, the Hü 324 medium bomber is ready to soar!

 

Reading T-1 #2102 is behind a red Reading caboose to push a coal train up a steep hill in the coal regions of Pennsylvania, as seen here on my garden railroad.

 

It was made out of two Pacific locos, kitbashed together into a bigger loco.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

After last year's impromptu kitbash, this year we decided to step it up with Benny's Spaceship! Spaceship! Spaceship! Late Friday we built well into Saturday morning....

 

NeonBricks donated an AMAZING trophy made out of ALL classic space bricks, with a black classic space fig.

 

The chosen theme was "Benny's Race Ship" ....

 

Nick won, but guess which one was his.,,,

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The AMD Mystère S represents one of the many evolutionary steps in French 2nd generation jet fighter aircraft design, which began with the straight-wing Dassault Ouragan and progressed through the Mystère II/III and Mystère IV to the supersonic Super Mystère SM2B. Internally designated AMD 461 and originally called the Mystère X (Roman numeral “10”, not the letter “X”), the new aircraft was the attempt to improve the successful Mystère IV from 1953 in many respects, following Marcel Dassaults strategy to take small, evolutionary steps instead of radical quantum leaps. While the overall outlines were similar and followed the proven layout of the former Dassault jet fighters, the AMD 461 was a completely new design, though.

 

First of all, the machine was from the start designed around the indigenous axial-flow Atar 101 jet engine, since it had become obvious that the former radial-flow engines used in Dassault’s fighters, like the Rolls-Royce Tay and its French-built version, the Hispano-Suiza Verdon 350, did not offer the potential for sustained supersonic performance in level flight. As a result, the fuselage became thinner and the aircraft had a less tubby look. Furthermore, in order to achieve the ambitious performance goals, a new wing was devised, and it incorporated leading edges made from novel composite materials. The wing shape was more complex than previous AMD designs: unlike the simple trapezoid Mystère II and IV wing designs, the AMD 461’s wings had kinked wing leading edges at about half span, so that the wing root sections were extended forward and had a slightly stronger sweep than the outer wing sections (47° vs. 45°), resulting in a crescent planform with rounded tips. Dogteeth at the kinks’ position increased the wings’ critical Mach number, augmented by small boundary layer fences. A novelty were power-operated ailerons. The tail surfaces were swept, too, and featured a variable-incidence tail plane.

 

The Mystère IV’s circular nose air intake arrangement was retained, but the intake received a sharper lip for better aerodynamic efficiency at high speed. The intake ducts were split deeper down inside of the fuselage, flanking the cockpit and the weapon bay behind it (see below) on both sides. The small ranging radar, originally developed for the upgraded Mystère IVB (which never made it into series production due to a fatal prototype crash and the progress of AMD’s other supersonic projects), was relocated and now mounted on top of the intake section, reminiscent of the F-86’s arrangement. A gun camera was placed outside of the intake in a small fairing on the starboard side. Two pitots under the air intake (one main and a secondary sensor) replaced the Mystère IV’s single wing-mounted sensor boom.

 

Being a classic “gunfighter”, the AMD 461’s main armament comprised a pair of 30mm DEFA cannon in the lower front fuselage, taken over from the Mystère IV, and a retractable Type 103 pannier for 45 unguided MATRA missiles against air or ground targets behind the front wheel well. Four underwing hardpoints could carry a total payload of 1.500 kg (3.300 lb), including a pair of supersonic 625 l drop tanks on the inner pair of pylons. A typical fighter weapon were lightweight Matra Type 116M launchers, each with 19 unguided SNEB-68 air-to-air rockets. Up to four could be carried under the wings. In a secondary attack/fighter bomber role, bombs of various caliber (up to 500 kg/1.100 lb on the inner and 250 kg/550 lb on the outer hardpoints) and other unguided missiles/pods were possible, too.

 

The first Mystère X prototype was powered by the Atar 101D with 29,420 N (6,610 lbf) of thrust, and it flew successfully in June 1953. However, due to the lack of an afterburner at this stage, the machine could only become supersonic in a dive, just like the former Mystère fighters, and it offered in this guise only minimal performance improvements – even though the handling near Mach 1 was already noticeably better. The initial flight test program was successful, though, and the Armée de l’Air immediately placed an order for 100 Mystère X aircraft, intended to improve the Armée de l’Air’s interception capabilities as soon as possible. Serial production started instantaneously, even while the flight tests were still ongoing, and the production machines were powered by the newly developed Atar 101F, which had just been cleared for production and operation on the Mystère X prototype. The Atar 101F was basically a D model with an afterburner added to it, to produce a temporary thrust of 37,300 N (8,400 lbf) and ensure the desired top speed in level flight of more than Mach 1. As a result, the Mystère X’s tail section had to be modified to accommodate the new engine’s longer tailpipe, which did not feature an adjustable nozzle yet – it was simply extended beyond the fin’s trailing edge, and even then the longer jet pipe protruded from the hull. However, this modification was successful and incorporated into the serial aircraft. With the Atar 101F, the serial production Mystère X’s performance was appreciably improved: beyond supersonic top speed, initial rate of climb was almost doubled in comparison with the Mystère IV, but the thirsty afterburner engine almost nullified any gain in range from the new type’s higher internal fuel capacity. Drop tanks had to be carried almost all the time.

 

The quick (if not hastened) order for the Mystère X also served as an insurance policy in the event of the AMD effort failing to produce an even more capable supersonic aircraft with the Mystère XX, a project that had been under development as a private venture in parallel, but with a time lag of about two years and benefitting from the research that had been done for the AMD 461. However, both designs turned out to be successful and both were adopted for service. They became known to the public as the Mystère S (for ‘supersonique’) and the Super Mystère, respectively. The first Super Mystère prototype, powered by a Rolls-Royce Avon RA.7R, took to the air on 2 March 1955, and the promising aircraft already broke the sound barrier in level flight the following day. The Super Mystère turned out to be the more capable and modern aircraft thanks to its new, more powerful Atar 109G-2 engine.

 

The more capable Super Mystère was immediately favored and, as a consequence, the running Mystère S order was cancelled in May 1955 and its initial production run limited to a mere 54 airframes - the number that had been completed until that point. The Super Mystère became the Armée de l’Air’s standard fighter for the late Fifties and production was quickly switched to the new type, 180 specimen were eventually built. Since a mix of types in the operational fighter squadrons was not economical, the Armée de l’Air decided to separate them and find a different role for the young but relatively small Mystère S fleet. Since the aircraft had a rugged airframe and had shown very good handling characteristics at medium to low altitude, and because the Armée de l’Air was lacking a fast, tactical and indigenous reconnaissance aircraft at that time (the standard type was the RF-84F), the Armée de l’Air decided in 1956 to convert the Mystère S fighters accordingly.

 

This modification was a relatively easy task: The retractable missile pannier (which was hardly ever used) was removed and its well behind the cockpit offered sufficient internal space for optical reconnaissance equipment in a conditioned compartment. This comprised four OMERA cameras (less than the RF-84F’s six cameras), covered by a ventral canoe fairing. One camera was facing forward, two were set on mounts that allowed vertical photography or camera orientation to either port or starboard, and the fourth camera had a panoramic field of view. After these modifications, the machines were re-designated Mystère SR to reflect their new role and capabilities.

 

Initially, the converted machines retained the twin DEFA cannon armament and full external stores capability. Typical load in the new photo-recce role was the standard pair of drop tanks, plus optional flares for night photography. In this guise the Mystère SR fleet was distributed among two reconnaissance units, ER 2/33 “Savoie” and ER 3/33 “Moselle” in Eastern France, close to the German border, starting service in April 1957.

Later in their career, the Mystère SR’s guns and also the ranging radar equipment (even though the empty small radome was retained) were often removed. This was initially a weight-saving measure for better performance, but due to their short legs many Mystère SRs had extra fuel tanks added to the former gun and ammunition bays. In some cases the space was used to house additional mission equipment, the aircrafts’ designation did not change, though. The integration of the new Matra R.550 Magic AAM was considered briefly in 1970, but not deemed relevant for the Mystère SR’s mission profile. However, eight late-production Mystère SRs received a new, bigger panoramic OMERA camera, which necessitated a larger ventral fairing and some other internal changes. These machines were re-designated Mystère SRP (‘panoramique’). Another early Mystère SR was used for the development of indigenous infra-red linescan and side looking airborne radar systems, which were both later incorporated in an under-fuselage pod for the Mirage IIIR.

 

Having become quickly obsolete through the introduction of 3rd generation jet fighters in the early Sixties – namely the Mirage III – the Mystère SR’s active career only lasted a mere 10 years, and the Mirage III’s fighter variants quickly replaced the Super Mystère, too. Due to its many limitations, the Mystère SR was soon replaced by the Mirage IIIR reconnaissance version, by 1974 all aircraft had been retired. Another reason for this early operational end were durability problems with the composite elements on the aircraft’s wings – there had been no long-term experience with the new material, but the elements tended to become brittle and collapse under stress or upon bird strikes. AMD conceived a plan to replace the affected panels with light metal sheets, but this update, which would have prolonged service life for 10 more years, was not carried out. After spending 5 years in mothballed storage, all surviving Mystère SR airframes were scrapped between 1980 and 1981.

  

General characteristics:

Crew: 1

Length: 42 ft 3 in (12.88 m) overall

42 ft 3 in (12.88 m) w/o pitots

Wingspan: 32 ft 4 in (9.86 m)

Height: 3.75 m (12 ft 4 in)

Wing area: 345.5 sq ft (32.2 m²)

Empty weight: 13,435 lb (6,094 kg)

Gross weight: 21,673 lb (9,831 kg)

Fuel capacity: 3,540 l (778 imp gal; 934 US gal) internally

plus 2x 625 l (72 imp gal; 165 US gal) drop tanks

 

Powerplant:

1× Atar 101F turbojet, rated at 29.42 kN (6,610 lbf) dry thrust

and with 37.3 kN (8,400 lbf) with afterburner

 

Performance:

Maximum speed: 1,110 km/h (600 kn, 690 mph) at sea level

1,180 km/h (637 kn 732 mph,) at 11,000 m (36,089 ft)

Combat range: 915 km (494  nmi, 570 mi) with internal fuel only

Maximum range: 1,175 km (730 mi, 634 nmi)

Service ceiling: 45,800 ft (14,000 m)

Rate of climb: 14,660 ft/min (74.5 m/s)

Time to altitude: 40,000 ft (12,000 m) in 4 minutes 41 seconds

 

Armament:

2x 30mm (1.18 in) DEFA 552 cannon with 150 rounds per gun (later frequently deleted)

Four underwing hardpoints for 1.500 kg (3.300 lb) of ordnance,

including a pair of 625 liter drop tanks, flares and various unguided missiles and iron bombs

  

The kit and its assembly:

A project I had on my idea list for a long time – there were so many AMD jet fighter designs (both that entered service but also many paper projects and prototypes) during the Fifties and Sixties that I wondered if I could smuggle a what-if type somewhere into the lineage. A potential basis appeared when I recognized that the British Supermarine Swift had a fuselage shape quite similar to the contemporary French fighters, and from this impression the idea was born to “Frenchize” a Swift.

 

This called for a kitbash, and I used a Matchbox Mystère IV (Revell re-boxing) for the French donor elements that would be grafted onto an Xtrakit FR.5 model, which looks good in the box but has serious fit issues, e.g. between the rear fuselage halves or when the wings have to be mated with the completed fuselage.

The transplantations from the rather primitive/blunt Matchbox Mystère included the whole cockpit section except for the interior, which was taken from the in this respect much better Swift, the glazing, the spine and the whole tail with fin and stabilizers. The Swift provided most of the fuselage, the wings and the landing gear, even though I used the Mystère’s main wheels because of their characteristic hub caps/brake arrangement.

Mating the fuselage sections from the two models became a major stunt, though, because the diameters and shapes were rather different. Three-dimensional gaps and steps behihd the cockpit had to be bridged, initially with 2C putty for the rough overall shape and then with NC putty for a smooth finish. A gap in the spine in front of the fin had to be improvised/filled, too, and the Mystère’s fin had to be tailored to the different Swift rear fuselage shape, too.

The result looks a little odd, though, the Swift’s original air intake ducts now look from certain angles like hamster cheeks – but after all, the ducts have to pass the central cockpit section on both sides somehow, so that the arrangement makes nonetheless sense. And the small dorsal spine taken over from the Mystère changes the Swift’s profile considerably, as well as the shorter Dassault-style canopy.

 

The small ranging radar radome is just a piece of sprue from the Mystère kit, blended into the rest of the fuselage with putty. The interior of the air intake was heavily modified – the original splitter, positioned directly inside of the intake, was deleted and the walls trimmed down for a much thinner/sharper lip. Inside of the intake a bulkhead was added as a sight blocker, and a new splitter was mounted to the new bulkhead in a much deeper position. The gun camera fairing is a piece of styrene profile, the new twin pitots (reminiscent of the SM2B’s arrangement) were made from heated sprue material.

The camera fairing is the lower half from a P-47 drop tank, left over from a Hobby Boss kit, IIRC, and in order to fit the Swift’s cockpit tub into the Mystère’s fuselage the rear bulkhead had to be re-created with the help of paper tissue drenched with white glue.

The drop tanks come from a KP MiG-19, which had the benefit of integral, thin pylons at a suitable position for the Mystère SR. For a different look I just canted their fins downwards.

  

Painting and markings:

For a subtle impression I settled for an authentic livery: the French rendition of the USAF SEA scheme for the F-100 with local CELOMER tones, which was not only applied to the Armée de l’Air’s F-100s (these were originally delivered in NMF and camouflaged later in the Sixties), but also to the Super Mystères - the SM2Bs actually carried a quite faithful adaptation of the USAF’s F-100 pattern! However, the indigenous CELOMER paints differed from the original U.S. Federal Standard tones (FS 30219, 34102, 34079 and 36622, respectively), esp. the reddish light tan was more of an earth tone, and the dark green had a more bluish hue.

 

This offered some freedom – even more so because real life pictures of French reference aircraft show a wide range of shades of these basic tones and frequent serious weathering. Instead of the U.S. tan I went for RAF Dark Earth (Humbrol 29), the dark Forest Green was replaced with Humbrol 75 (Bronze Green). The light green became a 2:1 mix of Humbrol 117 (the original FS 34102) with Humbrol 78 (RAF Cockpit Green), for more contrast and less yellow in the tone. The undersides were painted with Humbrol 166 (RAF Light Aircraft Grey).

After a black ink wash I gave the model a thorough panel post-shading and recreated some lost panel lines with the help of silver paint, too. I also added some paint patches and touch-ups, for a rather worn look of the aircraft.

The black areas around the gun muzzles were created with the help of decal material, generic black decal sheet material was also used to create the camera windows. Grey (Revell 75) dielectric panels were added to the fin tip and behind the cockpit. The cockpit interior became very dark grey (Revell 09, Anthracite, with some dry-painted medium grey on top), while the landing gear and the respective wells were left in aluminum (Humbrol 56).

 

The decals are a mix from various sources. The ER 2/33 markings came from a Heller Mirage III sheet, which offers an optional IIIR from 1984. I also settled for relatively small roundels (from a Mirage F.1C) – a trend which started in the Armée de l’Air in the early Seventies and also comprised the deletion of the fin flash. Contemporary real world SM2Bs with the French SEA cammo frequently carried a similar type of subdued markings instead of earlier, bigger roundels found on the machines in NMF finish or on the aircraft from EC 1/12 "Cambresis" with their unique and different camouflage in two shades of green and a rather sandy tan, almost like a desert paint scheme. The white tactical code “33-PS” was improvised with single 4mm letters from TL Modellbau. The stencils were puzzled together from various Mirage III/V/F.1C sheets and also from an IAI Kfir.

 

The kit received some additional dry-painting with silver to simulate more wear, and was finally sealed with a coat of matt acrylic varnish.

  

Another “missing link” build, but I think that my Mystère S fits stylistically well into the (non-existent, though) gap between the Mystère IV and the Super Mystère, sporting vintage details like the round air intake but coupled with highly swept wings and the Swift’s elegant lines. The “traditional” French paint scheme adds to the realism - and, when put in the right background/landscape context, turns out to be very effective. Not a spectacular model, despite serious body work around the cockpit, but a convincing result.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

After World War I, the German aircraft industry had several problems. German airlines were forbidden to operate multi engine aircraft and during a period all manufacturing of aircraft in Germany was banned. By 1921, some of the restrictions was lifted, civilian aircraft could be made after approval of an international control commission if they fulfilled certain requirements. To bypass these rules and to be able to make whatever aircraft they wanted several aircraft manufacturers moved abroad. In 1921, Carl Bücker handled the purchase of a reconnaissance aircraft from Caspar-Werke in Travemünde. Because they expected problems due to the rules in the peace treaty regarding the export of German fighter aircraft, Bücker explored the possibility to smuggle the parts out of Germany and assemble the aircraft in Sweden.

 

To make the purchase easier, Ernst Heinkel and Bücker started Svenska Aero in Lidingö in 1921. The contract on the aircraft was transferred from Caspar to Svenska Aero. Heinkel and some German assembly workers temporarily moved to Lidingö to assemble the aircraft. During 1922 to 1923, the company moved into a former shipyard in Skärsätra on Lidingö since the company had received additional orders from the navy's air force. The parts for those aircraft were made in Sweden by Svenska Aero but assembled by TDS. In 1928, the navy ordered four J 4 (Heinkel HD 19) as a fighter with pontoons. That delivery came to be the last licens- built aircraft by Svenska Aero. In the mid-1920s, Svenska Aero created their own design department to be able to make their own aircraft models. Sven Blomberg, earlier employed by Heinkel Flugzeugwerke, was hired as head of design. In 1930, he was joined by Anders Johan Andersson from Messerschmitt. Despite that, Svenska Aero designed and made several different models on their own.

 

One of them was the model SA-16, a direct response to the Swedish Air Force and Navy’s interest in the new dive bomber tactics, which had become popular in Germany since the mid-Thirties and had spawned several specialized aircraft, the Junkers Ju 87 being the best-known type. The Flygvapnet (Swedish Air Force) had already conducted dive bombing trials with Hawker Hart (B 4) biplanes, but only with mixed results. Diving towards the target simplified the bomb's trajectory and allowed the pilot to keep visual contact throughout the bomb run. This allowed attacks on point targets and ships, which were difficult to attack with conventional level bombers, even en masse. While accuracy was increased through bombing runs at almost vertical dive, the aircraft were not suited for this kind of operations – structurally, and through the way the bombs were dropped.

 

Therefore, Svenska Aero was tasked to develop an indigenous dedicated dive bomber, primarily intended to attack ships, and with a secondary role as reconnaissance aircraft – a mission profile quite similar to American ship-based “SB” aircraft of the time. Having learnt from the tests with the Hawker Harts, the SA-16 was a very robust monoplane, resulting in an almost archaic look. It was a single-engine all-metal cantilever monoplane with a fixed undercarriage and carried a two-person crew. The main construction material was duralumin, and the external coverings were made of duralumin sheeting, bolts and parts that were required to take heavy stress were made of steel. The wings were of so-called “double-wing” construction, which gave the SA-16 considerable advantage on take-off; even at a shallow angle, large lift forces were created through the airfoil, reducing take-off and landing runs. Retractable perforated air brakes were mounted under the wings’ leading edges. The fully closed “greenhouse cabin” offered space for a crew of two in tandem, with the pilot in front and a navigator/radio operator/observer/gunner behind. To provide the rear-facing machine gun with an increased field of fire, the stabilizers were of limited span but deeper to compensate for the loss of surface, what resulted in unusual proportions. As a side benefit, the short stabilizers had, compared with a wider standard layout, increased structural integrity. Power came from an air-cooled Bristol Mercury XII nine-cylinder radial engine with 880 hp (660 kW), built by Nohab in Sweden.

 

Internal armament consisted of two fixed forward-firing 8 mm (0.315 in) Flygplanskulspruta Ksp m/22F (M1919 Browning AN/M2) machine guns in the wings outside of the propeller disc. A third machine gun of the same type was available in the rear cockpit on a flexible mount as defensive weapon. A total of 700 kg (1,500 lb) of bombs could be carried externally. On the fuselage centerline, a swing arm could hold bombs of up to 500 kg (1.100 lb) caliber and deploy them outside of the propeller arc when released in a, additional racks under the outer wings could hold bombs of up to 250 kg (550 lb) caliber each or clusters of smaller bombs, e. g. four 50 (110 lb) or six 12 kg (26 ½ lb) bombs.

 

Flight testing of the first SA-16 prototype began on 14 August 1936. The aircraft could take off in 250 m (820 ft) and climb to 1,875 m (6,152 ft) in eight minutes with a 250 kg (550 lb) bomb load, and its cruising speed was 250 km/h (160 mph). This was less than expected, and pilots also complained that navigation and powerplant instruments were cluttered and not easy to read, especially in combat. To withstand strong forces during a dive, heavy plating, along with brackets riveted to the frame and longeron, was added to the fuselage. Despite this, pilots praised the aircraft's handling qualities and strong airframe. These problems were quickly resolved, but subsequent testing and progress still fell short of the designers’ hopes. With some refinements the machine's speed was increased to 274 km/h (170 mph) at ground level and 319 km/h 319 km/h (198 mph, 172 kn) at 3,650 m (11,980 ft), while maintaining its good handling ability.

 

Since the Swedish Air Force was in dire need for a dive bomber, the SA-16 was accepted into service as the B 9 – even though it was clear that it was only a stopgap solution on the way to a more capable light bomber with dive attack capabilities. This eventually became the Saab 17, which was initiated in 1938 as a request from the Flygvapnet to replace its fleet of dive bombers of American origin, the B 5 (Northrop A-17), the B 6 (Seversky A8V1) and the obsolete Fokker S 6 (C.Ve) sesquiplane, after the deal with Fokker to procure the two-engine twin-boom G.I as a standardized type failed due to the German invasion of the Netherlands. The B 9 dive bomber would subsequently be replaced by the more modern and capable B 17 in the long run, too, which made its first flight on 18 May 1940 and was introduced to frontline units in March 1942. Until then, 93 SA-16s had been produced between 1937 and 1939. When the B 17 became available, the slow B 9 was quickly retired from the attack role. Plans to upgrade the aircraft with a stronger 14 cylinder engine (a Piaggio P.XIbis R.C.40D with 790 kW/1,060 hp) were not carried out, as it was felt that the design lacked further development potential in an offensive role.

Because the airframes were still young and had a lot of service life ahead of them, most SA-16s were from 1941 on relegated to patrol and reconnaissance missions along the Swedish coastlines, observing ship and aircraft traffic in the Baltic Sea and undertaking rescue missions with droppable life rafts. For long-range missions, the forked ventral swing arm was replaced with a fixed plumbed pylon for an external 682 liters (150 Imp. gal.) auxiliary tank that more than doubled the aircraft’s internal fuel capacity of 582 liters, giving it an endurance of around 8 hours. In many cases, the machine guns on these aircraft were removed to save weight. In this configuration the SA-16 was re-designated S 9 (“S” for Spaning) and the machines served in their naval observation and SAR role well into the Fifties, when the last SA-16s were retired.

  

General characteristics:

Crew: two, pilot and observer

Length: 9,58 m (31 ft 11 in)

Wingspan: 10,67 m (34 ft 11 in)

Height: 3,82 m (12 ft 6 in)

Wing area: 30.2 m² (325 sq ft)

Empty weight: 2,905 kg (6,404 lb)

Gross weight: 4,245 kg (9,359 lb)

Max takeoff weight: 4,853 kg (10,700 lb)

 

Powerplant:

1× Bristol Mercury XII nine-cylinder radial engine with 880 hp (660 kW),

driving a three-bladed variable pitch metal propeller

 

u>Performance:

Maximum speed: 319 km/h (198 mph, 172 kn) at 3,650 m (11,980 ft)

274 km/h (170 mph; 148 kn) at sea level

299 km/h (186 mph; 161 kn) at 2,000 m (6,600 ft)

308 km/h (191 mph; 166 kn) at 5,000 m (16,000 ft)

Stall speed: 110 km/h (68 mph, 59 kn)

Range: 1,260 km (780 mi, 680 nmi)

Service ceiling: 7,300 m (24,000 ft)

Time to altitude: 2,000 m (6,600 ft) in 4 minutes 45 seconds

4,000 m (13,000 ft) in 15 minutes 10 seconds

 

Armament:

2× fixed 8 mm (0.315 in) Flygplanskulspruta Ksp m/22F (M1919 Browning AN/M2) machine guns

in the wings outside of the propeller disc (with 600 RPG), plus

1× 8 mm (0.315 in) Ksp m/22F machine gun on a flexible mount in the rear cockpit with 800 rounds

Ventral and underwing hardpoints for a total external bomb load of 700 kg (1,500 lb)

  

The kit and its assembly:

This purely fictional Swedish dive bomber was inspired by reading about Flygvapnet‘s pre-WWII trials with dive bombing tactics and the unsuited aircraft fleet for this task. When I found a Hasegawa SOC Seagull floatplane in The Stash™ and looks at the aircraft’s profile, I thought that it could be converted into a two-seat monoplane – what would require massive changes, though.

 

However, I liked the SOC’s boxy and rustic look, esp. the fuselage, and from this starting point other ingredients/donors were integrated. Work started with the tail. Originally, I wanted to retain the SOCs fin and stabilizer, but eventually found them oversized for a land-based airplane. In the scrap box I found a leftover fin from an Academy P-47, and it turned out to be a very good, smaller alternative, with the benefit that it visually lengthened the rear fuselage. The stabilizers were replaced with leftover parts from a NOVO Supermarine Attacker – an unlikely choice, but their size was good, they blended well into the overall lines of the aircraft, and they helped to stabilize the fin donor. Blending these new parts into to SOC’s hull required massive PSR, though.

 

The wings were also not an easy choice, and initially I planned the aircraft with a retractable landing gear. I eventually settled on the outer wings (just outside of the gullwing kink) from an MPM Ju 87 B, because of their shape and the archaic “double wings” that would complement the SOC’s rustic fuselage. However, at this point I refrained from the retractable landing gear and instead went for a fixed spatted alternative, left over from an Airfix Hs 123, which would round up the aircraft’s somewhat vintage look. Because the wheels were missing, I inserted two Matchbox MiG-21 wheels (which were left over in the spares bin from two different kits, though). The tail wheel came from an Academy Fw 190.

 

Cowling and engine inside (thankfully a 9-cylinder radial that could pose as a Mercury) were taken OOB, just the original two-blade propeller was replaced with a more appropriate three-blade alternative, IIRC from a Hobby Boss Grumman F4F. The cockpit was taken OOB, and I also used the two pilot figures from the kit. The rear crew member just had the head re-positioned to look sideways, and had to have the legs chopped off because there’s hardly and space under the desk with the radio set he’s sitting at.

 

The ventral 500 kg bomb came from a Matchbox Ju 87, the bomb arms are Fw 189 landing gear parts. Additional underwing pylons came from an Intech P-51, outfitted with 50 kg bombs of uncertain origin (they look as if coming from an old Hasegawa kit). The protruding machine gun barrel fairings on the wings were scratched from styrene rod material, with small holes drilled into them.

 

A real Frankenstein creation, but it does not look bad or implausible!

  

Painting and markings:

I gave the B 9 a camouflage that was carried by some Flygvapnet aircraft in the late Thirties, primarily by fighters imported from the United States but also some bombers like the B 3 (Ju 86). The IMHO quite attractive scheme consists on the upper surfaces of greenish-yellow zinc chromate primer (Humbrol 81, FS 33481), on top of which a dense net of fine dark green wriggles (supposed to be FS 34079, but I rather used Humbrol 163, RAF Dark Green, because it is more subdued) was manually applied with a thin brush, so that the primer would still shine through, resulting in a mottled camouflage.

 

On the real aircraft, this was sealed with a protective clear lacquer to which 5% of the dark green had been added, and I copied this procedure on the model, too, using semi-gloss acrylic varnish with a bit of Revell 46 added. The camouflage was wrapped around the wings’ leading edges and the spatted landing gear was painted with the upper camouflage, too.

 

The undersides were painted with Humbrol 87 (Steel Grey), to come close to the original blue-grey tone, which is supposed to be FS 35190 on this type of camouflage. The tone is quite dark, almost like RAF PRU Blue.

The interior was painted – using a Saab J 21 cockpit as benchmark – in a dark greenish grey (RAL 7009).

The model received the usual light black ink washing and some post-panel shading on the lower surfaces, because this effect would hardly be recognizable on the highly fragmented upper surface.

 

The markings are reflecting Flygvapnet’s m/37 regulations, from the direct pre-WWII era when the roundels had turned from black on white to yellow on blue but still lacked the yellow edge around the roundel for more contrast. F6 Västgöta flygflottilj was chosen because it was a dive bomber unit in the late Thirties, and the individual aircraft code (consisting of large white two-digit numbers) was added with the fin and the front of the fuselage. “27” would indicate an aircraft of the unit’s 2nd division, which normally had blue as a standardized color code, incorporated through the blue bands on the spats and the small "2nd div." tag on the rudder (from a contemporary F8 Swedish Gladiator).

 

Roundels and codes came from an SBS Models sheet, even though they belong to various aircraft types. Everything was finally sealed with matt acrylic varnish.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.

 

The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.

 

In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.

 

In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).

It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.

 

HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.

 

The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.

Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.

 

At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.

 

By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.

 

The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.

A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.

 

Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.

Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.

 

The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.

However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.

 

By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.

In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.

  

General characteristics:

Crew: 1

Length: 11.38 m (37 ft 4 in)

Wingspan: 9.39 m (30 ft 10 in)

Height: 4.30 m (14 ft 1 in)

Wing area: 17.66 m2 (190.1 sq ft)

Empty weight: 9,394 lb (4,261 kg)

Gross weight: 12,750 lb (5,783 kg)

Max takeoff weight: 9,101 kg (20,064 lb)

Fuel capacity: 1,360 kg (3,000 lb) internal

3,210 kg (7,080 lb) with 3 drop tanks

Powerplant:

1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust

 

Performance:

Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level

Maximum speed: Mach 1.2 (never exceed at altitude)

Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)

Carrier launch speed: 121 kn (139 mph; 224 km/h)

Approach speed: 125 kn (144 mph; 232 km/h)

Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit

Stall speed: 197 km/h (122 mph, 106 kn) flaps down

Range: 892 km (554 mi, 482 nmi) internal fuel only

Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)

Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks

Service ceiling: 15,250 m (50,030 ft)

G-limits: +8/-3

Rate of climb: 58.466 m/s (11,509.1 ft/min)

Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)

Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)

Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)

 

Armament:

2× 30 mm (1.181 in) Aden cannon with 150 rounds each

7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)

for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons

  

The kit and its assembly:

A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…

 

The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.

 

The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…

In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.

For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.

Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.

 

A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.

 

The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.

  

Painting and markings:

The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.

 

The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.

 

The kit was sealed with matt acrylic varnish from Italeri.

 

The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.

Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some Background:

During the 1950s, Hindustan Aircraft Limited (HAL) had developed and produced several types of trainer aircraft, such as the HAL HT-2. However, elements within the firm were eager to expand into the then-new realm of supersonic fighter aircraft. Around the same time, the Indian government was in the process of formulating a new Air Staff Requirement for a Mach 2-capable combat aircraft to equip the Indian Air Force (IAF). However, as HAL lacked the necessary experience in both developing and manufacturing frontline combat fighters, it was clear that external guidance would be invaluable; this assistance was embodied by Kurt Tank.

 

In 1956, HAL formally began design work on the supersonic fighter project. The Indian government, led by Jawaharlal Nehru, authorized the development of the aircraft, stating that it would aid in the development of a modern aircraft industry in India. The first phase of the project sought to develop an airframe suitable for travelling at supersonic speeds, and able to effectively perform combat missions as a fighter aircraft, while the second phase sought to domestically design and produce an engine capable of propelling the aircraft. Early on, there was an explicit adherence to satisfying the IAF's requirements for a capable fighter bomber; attributes such as a twin-engine configuration and a speed of Mach 1.4 to 1.5 were quickly emphasized, and this led to the HF-24 Marut.

 

On 24 June 1961, the first prototype Marut conducted its maiden flight. It was powered by the same Bristol Siddeley Orpheus 703 turbojets that had powered the Folland Gnat, also being manufactured by HAL at that time. On 1 April 1967, the first production Marut was delivered to the IAF. While originally intended only as an interim measure during testing, HAL decided to power production Maruts with a pair of unreheated Orpheus 703s, meaning the aircraft could not attain supersonic speed. Although originally conceived to operate around Mach 2 the Marut in fact was barely capable of reaching Mach 1 due to the lack of suitably powerful engines.

 

The IAF were reluctant to procure a fighter aircraft only marginally superior to its existing fleet of British-built Hawker Hunters. However, in 1961, the Indian Government decided to procure the Marut, nevertheless, but only 147 aircraft, including 18 two-seat trainers, were completed out of a planned 214. Just after the decision to build the lukewarm Marut, the development of a more advanced aircraft with the desired supersonic performance was initiated.

 

This enterprise started star-crossed, though: after the Indian Government conducted its first nuclear tests at Pokhran, international pressure prevented the import of better engines of Western origin, or at times, even spares for the Orpheus engines, so that the Marut never realized its full potential due to insufficient power, and it was relatively obsolescent by the time it reached production.

Due to these restrictions India looked for other sources for supersonic aircraft and eventually settled upon the MiG-21 F-13 from the Soviet Union, which entered service in 1964. While fast and agile, the Fishbed was only a short-range daylight interceptor. It lacked proper range for escort missions and air space patrols, and it had no radar that enabled it to conduct all-weather interceptions. To fill this operational gap, the new indigenous HF-26 project was launched around the same time.

 

For the nascent Indian aircraft industry, HF-26 had a demanding requirements specification: the aircraft was to achieve Mach 2 top speed at high altitude and carry a radar with a guided missile armament that allowed interceptions in any weather, day and night. The powerplant question was left open, but it was clear from the start that a Soviet engine would be needed, since an indigenous development of a suitable powerplant would take much too long and block vital resources, and western alternatives were out of reach. The mission profile and the performance requirements quickly defined the planned aircraft’s layout: To fit a radar, the air intakes with movable ramps to feed the engines were placed on the fuselage flanks. To make sure the aircraft would fulfill its high-performance demands, it was right from the outset powered by two engines, and it was decided to give it delta wings, a popular design among high-speed aircraft of the time – exemplified by the highly successful Dassault Mirage III (which was to be delivered to Pakistan in 1967). With two engines, the HF-26 would be a heavier aircraft than the Mirage III, though, and it was planned to operate the aircraft from semi-prepared airfields, so that it would receive a robust landing gear with low-pressure tires and a brake parachute.

 

In 1962 India was able to negotiate the delivery of Tumansky RD-9 turbojet engines from the Soviet Union, even though no afterburner was part of the deal – this had to be indigenously developed by Hindustan Aeronautics Limited (HAL). However, this meant that the afterburner could be tailored to the HF-26, and this task would provide HAL with valuable engineering experience, too.

Now knowing the powerplant, HAL created a single-seater airframe around it, a rather robust design that superficially reminded of the French Mirage III, but there were fundamental differences. The HF-26 had boxy air intakes with movable ramps to control the airflow to the two engines and a relatively wide fuselage to hold them and most of the fuel in tanks between the air ducts behind the cockpit. The aircraft had a single swept fin and a rather small mid-positioned delta-wing with a 60° sweep. The pilot sat under a tight canopy that offered - similar to the Mirage III - only limited all-round vision.

The HF-26's conical nose radome covered an antenna for a ‘Garud’ interception radar – which was in fact a downgraded Soviet ‘Oryol' (Eagle; NATO reporting name 'Skip Spin') system that guided the HF-26’s main armament, a pair of semi-active radar homing (SARH) ‚Saanp’ missiles.

 

The Saanp missile was developed specifically for the HF-26 in India but used many components of Soviet origin, too, so that they were compatible with the radar. In performance, the Saanp was comparable with the French Matra R.530 air-to-air missile, even though the aerodynamic layout was reversed, with steering fins at the front end, right behind the SARH seaker head - overall the missile reminded of an enlarged AIM-4 Falcon. The missile weighed 180 kg and had a length of 3.5 m. Power came from a two-stage solid rocket that offered a maximum thrust of 80 kN for 2.7 s during the launch phase plus 6.5 s cruise. Maximum speed was Mach 2.7 and operational range was 1.5 to 20 km (0.9 to 12.5 miles). Two of these missiles could be carried on the main wing hardpoints in front of the landing gear wells. Alternatively, infrared-guided R-3 (AA-2 ‘Atoll’) short-range AAMs could be carried by the HF-26, too, and typically two of these were carried on the outer underwing hardpoints, which were plumbed to accept drop tanks (typically supersonic PTB-490s that were carried by the IAF's MiG-21s, too) . Initially, no internal gun was envisioned, as the HF-26 was supposed to be a pure high-speed/high-altitude interceptor that would not engage in dogfights. Two more hardpoints under the fuselage were plumbed, too, for a total of six external stations.

 

Due to its wing planform, the HF-26 was soon aptly called “Teer” (= Arrow), and with Soviet help the first prototype was rolled out in early 1964 and presented to the public. The first flight, however, would take place almost a year later in January 1965, due to many technical problems, and these were soon complemented by aerodynamic problems. The original delta-winged HF-26 had poor take-off and landing characteristics, and directional stability was weak, too. While a second prototype was under construction in April 1965 the first aircraft was lost after it had entered a spin from which the pilot could not escape – the aircraft crashed and its pilot was killed during the attempt to eject.

 

After this loss HAL investigated an enlarged fin and a modified wing design with deeper wingtips with lower sweep, which increased wing area and improved low speed handling, too. Furthermore, the fuselage shape had to be modified, too, to reduce supersonic drag, and a more pronounced area ruling was introduced. The indigenous afterburner for the RD-9 engines was unstable and troublesome, too.

It took until 1968 and three more flying prototypes (plus two static airframes) to refine the Teer for serial production service introduction. In this highly modified form, the aircraft was re-designated HF-26M and the first machines were delivered to IAF No. 3 Squadron in late 1969. However, it would take several months until a fully operational status could be achieved. By that time, it was already clear that the Teer, much like the HF-24 Marut before, could not live up to its expectations and was at the brink of becoming obsolete as it entered service. The RD-9 was not a modern engine anymore, and despite its indigenous afterburner – which turned out not only to be chronically unreliable but also to be very thirsty when engaged – the Teer had a disappointing performance: The fighter only achieved a top speed of Mach 1.6 at full power, and with full external load it hardly broke the wall of sound in level flight. Its main armament, the Saanp AAM, also turned out to be unreliable even under ideal conditions.

 

However, the HF-26M came just in time to take part in the Indo-Pakistani War of 1971 and was, despite its weaknesses, extensively used – even though not necessarily in its intended role. High-flying slow bombers were not fielded during the conflict, and the Teer remained, despite its on-board radar, heavily dependent on ground control interception (GCI) to vector its pilot onto targets coming in at medium and even low altitude. The HF-26M had no capability against low-flying aircraft either, so that pilots had to engage incoming, low-flying enemy aircraft after visual identification – a task the IAF’s nimble MiG-21s were much better suited for. Escorts and air cover missions for fighter-bombers were flown, too, but the HF-26M’s limited range only made it a suitable companion for the equally short-legged Su-7s. The IAF Canberras were frequently deployed on longer range missions, but the HF-26Ms simply could not follow them all the time; for a sufficient range the Teer had to carry four drop tanks, what increased drag and only left the outer pair of underwing hardpoints (which were not plumbed) free for a pair of AA-2 missiles. With the imminent danger of aerial close range combat, though, During the conflict with Pakistan, most HF-26M's were retrofitted with rear-view mirrors in their canopies to improve the pilot's field of view, and a passive IR sensor was added in a small fairing under the nose to improve the aircraft's all-weather capabilities and avoid active radar emissions that would warn potential prey too early.

 

The lack of an internal gun turned out to be another great weakness of the Teer, and this was only lightly mended through the use of external gun pods. Two of these cigar-shaped pods that resembled the Soviet UPK-23 pod could be carried on the two ventral pylons, and each contained a 23 mm Gryazev-Shipunov GSh-23L autocannon of Soviet origin with 200 rounds. Technically these pods were very similar to the conformal GP-9 pods carried by the IAF MiG-21FLs. While the gun pods considerably improved the HF-26M’s firepower and versatility, the pods were draggy, blocked valuable hardpoints (from extra fuel) and their recoil tended to damage the pylons as well as the underlying aircraft structure, so that they were only commissioned to be used in an emergency.

 

However, beyond air-to-air weapons, the HF-26M could also carry ordnance of up to 1.000 kg (2.207 lb) on the ventral and inner wing hardpoints and up to 500 kg (1.100 lb) on the other pair of wing hardpoints, including iron bombs and/or unguided missile pods. However, the limited field of view from the cockpit over the radome as well as the relatively high wing loading did not recommend the aircraft for ground attack missions – even though these frequently happened during the conflict with Pakistan. For these tactical missions, many HF-26Ms lost their original overall natural metal finish and instead received camouflage paint schemes on squadron level, resulting in individual and sometimes even spectacular liveries. Most notable examples were the Teer fighters of No. 1 Squadron (The Tigers), which sported various camouflage adaptations of the unit’s eponym.

 

Despite its many deficiencies, the HF-26M became heavily involved in the Indo-Pakistan conflict. As the Indian Army tightened its grip in East Pakistan, the Indian Air Force continued with its attacks against Pakistan as the campaign developed into a series of daylight anti-airfield, anti-radar, and close-support attacks by fighter jets, with night attacks against airfields and strategic targets by Canberras and An-12s, while Pakistan responded with similar night attacks with its B-57s and C-130s.

The PAF deployed its F-6s mainly on defensive combat air patrol missions over their own bases, leaving the PAF unable to conduct effective offensive operations.  Sporadic raids by the IAF continued against PAF forward air bases in Pakistan until the end of the war, and interdiction and close-support operations were maintained. One of the most successful air raids by India into West Pakistan happened on 8 December 1971, when Indian Hunter aircraft from the Pathankot-based 20 Squadron, attacked the Pakistani base in Murid and destroyed 5 F-86 aircraft on the ground.

The PAF played a more limited role in the operations, even though they were reinforced by Mirages from an unidentified Middle Eastern ally (whose identity remains unknown). The IAF was able to conduct a wide range of missions – troop support; air combat; deep penetration strikes; para-dropping behind enemy lines; feints to draw enemy fighters away from the actual target; bombing and reconnaissance. India flew 1,978 sorties in the East and about 4,000 in Pakistan, while the PAF flew about 30 and 2,840 at the respective fronts.  More than 80 percent of IAF sorties were close-support and interdiction and about 45 IAF aircraft were lost, including three HF-26Ms. Pakistan lost 60 to 75 aircraft, not including any F-86s, Mirage IIIs, or the six Jordanian F-104s which failed to return to their donors. The imbalance in air losses was explained by the IAF's considerably higher sortie rate and its emphasis on ground-attack missions. The PAF, which was solely focused on air combat, was reluctant to oppose these massive attacks and rather took refuge at Iranian air bases or in concrete bunkers, refusing to offer fights and respective losses.

 

After the war, the HF-26M was officially regarded as outdated, and as license production of the improved MiG-21FL (designated HAL Type 77 and nicknamed “Trishul” = Trident) and later of the MiG-21M (HAL Type 88) was organized in India, the aircraft were quickly retired from frontline units. They kept on serving into the Eighties, though, but now restricted to their original interceptor role. Beyond the upgrades from the Indo-Pakistani War, only a few upgrades were made. For instance, the new R-60 AAM was introduced to the HF-26M and around 1978 small (but fixed) canards were retrofitted to the air intakes behind the cockpit that improved the Teer’s poor slow speed control and high landing speed as well as the aircraft’s overall maneuverability.

A radar upgrade, together with the introduction of better air-to-ai missiles with a higher range and look down/shoot down capability was considered but never carried out. Furthermore, the idea of a true HF-26 2nd generation variant, powered by a pair of Tumansky R-11F-300 afterburner jet engines (from the license-built MiG-21FLs), was dropped, too – even though this powerplant eventually promised to fulfill the Teer’s design promise of Mach 2 top speed. A total of only 82 HF-26s (including thirteen two-seat trainers with a lengthened fuselage and reduced fuel capacity, plus eight prototypes) were built. The last aircraft were retired from IAF service in 1988 and replaced with Mirage 2000 fighters procured from France that were armed with the Matra Super 530 AAM.

  

General characteristics:

Crew: 1

Length: 14.97 m (49 ft ½ in)

Wingspan: 9.43 m (30 ft 11 in)

Height: 4.03 m (13 ft 2½ in)

Wing area: 30.6 m² (285 sq ft)

Empty weight: 7,000 kg (15,432 lb)

Gross weight: 10,954 kg (24,149 lb) with full internal fuel

Max takeoff weight: 15,700 kg (34,613 lb) with external stores

 

Powerplant:

2× Tumansky RD-9 afterburning turbojet engines; 29 kN (6,600 lbf) dry thrust each

and 36.78 kN (8,270 lbf) with afterburner

 

Performance:

Maximum speed: 1,700 km/h (1,056 mph; 917 kn; Mach 1.6) at 11,000 m (36,000 ft)

1,350 km/h (840 mph, 730 kn; Mach 1.1) at sea level

Combat range: 725 km (450 mi, 391 nmi) with internal fuel only

Ferry range: 1,700 km (1,100 mi, 920 nmi) with four drop tanks

Service ceiling: 18,100 m (59,400 ft)

g limits: +6.5

Time to altitude: 9,145 m (30,003 ft) in 1 minute 30 seconds

Wing loading: 555 kg/m² (114 lb/sq ft)

 

Armament

6× hardpoints (four underwing and two under the fuselage) for a total of 2.500 kg (5.500 lb);

Typical interceptor payload:

- two IR-guided R-3 or R-60 air-to-air-missiles or

two PTB-490 drop tanks on the outer underwing stations

- two semi-active radar-guided ‚Saanp’ air-to-air missiles or two more R-3 or R-60 AAMs

on inner underwing stations

- two 500 l drop tanks or two gun pods with a 23 mm GSh-23L autocannon and 200 RPG

each under the fuselage

  

The kit and its assembly:

This whiffy delta-wing fighter was inspired when I recently sliced up a PM Model Su-15 kit for my side-by-side-engine BAC Lightning build. At an early stage of the conversion, I held the Su-15 fuselage with its molded delta wings in my hand and wondered if a shortened tail section (as well as a shorter overall fuselage to keep proportions balanced) could make a delta-wing jet fighter from the Flagon base? Only a hardware experiment could yield an answer, and since the Su-15’s overall outlines look a bit retro I settled at an early stage on India as potential designer and operator, as “the thing the HF-24 Marut never was”.

 

True to the initial idea, work started on the tail, and I chopped off the fuselage behind the wings’ trailing edge. Some PSR was necessary to blend the separate exhaust section into the fuselage, which had to be reduced in depth through wedges that I cut out under the wings trailing edge, plus some good amount of glue and sheer force the bend the section a bit upwards. The PM Model's jet exhausts were drilled open, and I added afterburner dummies inside - anything would look better than the bleak vertical walls inside after only 2-3 mm! The original fin was omitted, because it was a bit too large for the new, smaller aircraft and its shape reminded a lot of the Suchoj heavy fighter family. It was replaced with a Mirage III/V fin, left over from a (crappy!) Pioneer 2 IAI Nesher kit.

 

Once the rear section was complete, I had to adjust the front end - and here the kitbashing started. First, I chopped off the cockpit section in front of the molded air intake - the Su-15’s long radome and the cockpit on top of the fuselage did not work anymore. As a remedy I remembered another Su-15 conversion I did a (long) while ago: I created a model of a planned ground attack derivative, the T-58Sh, and, as a part of the extensive body work, I transplanted the slanted nose from an academy MiG-27 between the air intakes – a stunt that was relatively easy and which appreciably lowered the cockpit position. For the HF-26M I did something similar, I just transplanted a cockpit from a Hasegawa/Academy MiG-23 with its ogival radome that size-wise better matched with the rest of the leftover Su-15 airframe.

 

The MiG-23 cockpit matched perfectly with the Su-15's front end, just the spinal area behind the cockpit had to be raised/re-sculpted to blend the parts smoothly together. For a different look from the Su-15 ancestry I also transplanted the front sections of the MiG-23 air intakes with their shorter ramps. Some mods had to be made to the Su-15 intake stubs, but the MiG-23 intakes were an almost perfect fit in size and shape and easy to integrate into the modified front hill. The result looks very natural!

However, when the fuselage was complete, I found that the nose appeared to be a bit too long, leaving the whole new hull with the wings somewhat off balance. As a remedy I decided at a rather late stage to shorten the nose and took out a 6 mm section in front of the cockpit - a stunt I had not planned, but sometimes you can judge things only after certain work stages. Some serious PSR was necessary to re-adjust the conical nose shape, which now looked more Mirage III-ish than planned!

 

The cockpit was taken mostly OOB, I just replaced the ejection seat and gave it a trigger handle made from thin wire. With the basic airframe complete it was time for details. The PM Model Su-15s massive and rather crude main landing gear was replaced with something more delicate from the scrap box, even though I retained the main wheels. The front landing gear was taken wholesale from the MiG-23, but had to be shortened for a proper stance.

A display holder adapter was integrated into the belly for the flight scenes, hidden well between the ventral ordnance.

 

The hardpoints, including missile launch rails, came from the MiG-23; the pylons had to be adjusted to match the Su-15's wing profile shape, the Anab missiles lost their tail sections to create the fictional Indian 'Saanp' AAMs. The R-3s on the outer stations were left over from a MP MiG-21. The ventral pylons belong to Academy MiG-23/27s, one came from the donor kit, the other was found in the spares box. The PTB-490 drop tanks also came from a KP MiG-21 (or one of its many reincarnations, not certain).

  

Painting and markings:

The paint scheme for this fictional aircraft was largely inspired by a picture of a whiffy and very attractive Saab 37 Viggen (an 1:72 Airfix kit) in IAF colors, apparently a model from a contest. BTW, India actually considered buying the Viggen for its Air Force!

IAF aircraft were and are known for their exotic and sometimes gawdy paint schemes, and with IAF MiG-21 “C 992” there’s even a very popular (yet obscure) aircraft that sported literal tiger stripes. The IAF Viggen model was surely inspired by this real aircraft, and I adopted something similar for my HF-26M.

 

IAF 1 Squadron was therefore settled, and for the paint scheme I opted for a "stripish" scheme, but not as "tigeresque" as "C 992". I found a suitable benchmark in a recent Libyian MiG-21, which carried a very disruptive two-tone grey scheme. I adapted this pattern to the HA-26M airframe and replaced its colors, similar to the IAF Viggen model, which became a greenish sand tone (a mix of Humbrol 121 with some 159; I later found out that I could have used Humbrol 83 from the beginning, though...) and a very dark olive drab (Humbrol 66, which looks like a dull dark brown in contrast with the sand tone), with bluish grey (Humbrol 247) undersides. With the large delta wings, this turned out to look very good and even effective!

 

For that special "Indian touch" I gave the aircraft a high-contrast fin in a design that I had seen on a real camouflaged IAF MiG-21bis: an overall dark green base with a broad, red vertical stripe which was also the shield for the fin flash and the aircraft's tactical code (on the original bare metal). The fin was first painted in green (Humbrol 2), the red stripe was created with orange-red decal sheet material. Similar material was also used to create the bare metal field for the tactical code, the yellow bars on the splitter plates and for the thin white canopy sealing.

 

After basic painting was done the model received an overall black ink washing, post-panel shading and extensive dry-brushing with aluminum and iron for a rather worn look.

The missiles became classic white, while the drop tanks, as a contrast to the camouflaged belly, were left in bare metal.

 

Decals/markings came primarily from a Begemot MiG-25 kit, the tactical codes on the fin and under the wings originally belong to an RAF post-WWII Spitfire, just the first serial letter was omitted. Stencils are few and they came from various sources. A compromise is the unit badge on the fin: I needed a tiger motif, and the only suitable option I found was the tiger head emblem on a white disc from RAF No. 74 Squadron, from the Matchbox BAC Lightning F.6&F.2A kit. It fits stylistically well, though. ;-)

 

Finally, the model was sealed with matt acrylic varnish (except for the black radome, which became a bit glossy) and finally assembled.

  

A spontaneous build, and the last one that I completed in 2022. However, despite a vague design plan the model evolved as it grew. Bashing the primitive PM Model Su-15 with the Academy MiG-23 parts was easier than expected, though, and the resulting fictional aircraft looks sturdy but quite believable - even though it appears to me like the unexpected child of a Mirage III/F-4 Phantom II intercourse, or like a juvenile CF-105 Arrow, just with mid-wings? Nevertheless, the disruptive paint scheme suits the delta wing fighter well, and the green/red fin is a striking contrast - it's a colorful model, but not garish.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Development studies at Grumman for jet-powered fighter aircraft began near the end of World War II as the first jet engines emerged. In a competition for a jet-powered night fighter for the United States Navy, on 3 April 1946 the Douglas F3D Skyknight was selected over Grumman's G-75, a two-seater powered by four Westinghouse J30s. The Navy's Bureau of Aeronautics (BuAer) also issued a contract to Grumman for two G-75 prototype aircraft on 11 April 1946, in case the Skyknight ran into problems.

However, Grumman soon realized that the G-75 was a dead end. But the company had been working on a completely different day fighter, the G-79, which offered a higher potential. In order to keep Grumman in the US Navy’s procurement loop, BuAer, in a bureaucratic maneuver, did not cancel the G-75 contract, but changed the wording to include prototypes of the entirely different G-79, too.

 

The G-79 project comprised a total of four different layouts and engine arrangements for a single seat fighter aircraft. G-79A and B were traditional tail sitters, but both featured mixed propulsion for an enhanced performance: G-79A was powered by an R-2800 radial engine and a Rolls Royce Derwent VI jet booster in the tail, fed by a pair of dorsal air intakes behind the cockpit. The G-79B was a similar aircraft, but its primary engine was a General Electric TG-100 turboprop in a more slender nose section. Even though both designs were big aircraft, initial calculations indicated a performance that would be superior to the Grumman F8F Bearcat, which had been designed as a thoroughbred interceptor.

 

The other two designs were pure jet fighters, both with a tricycle landing gear. G-79C had a layout reminiscent of the Gloster Meteor and was powered by two Derwent VI engines in bulky wing nacelles, and G-79D was finally an overall smaller and lighter aircraft, similar in its outlines to the early Vought F6U Pirate, and powered by a single Nene in the rear fuselage, fed by air intakes in the wing roots.

 

Since the operation of jet-powered aircraft from carriers was terra incognita for the US Navy, and early turbojets thirsty and slow to react to throttle input, BuAer decided to develop two of Grumman's G-79 designs into prototypes for real life evaluation: one of the conservative designs, as a kind of safe route, and one of the more modern jets.

From the mixed propulsion designs, the turboprop-powered G-79B was chosen (becoming the XF9F-1 'JetCat'), since it was expected to offer a higher performance and development potential than the radial-powered 'A'. From the pure jet designs the G-79D was chosen, because of its simplicity and compact size, and designated XF9F-2 'Panther'.

 

The first JetCat prototype made its maiden flight on 26 October 1947, but it was only a short airfield circuit since the TG-100 turpoprop failed to deliver full power and the jet booster had not been installed yet. The prototype Panther, piloted by test pilot Corky Meyer, first flew on 21 November 1947 without major problems.

 

In the wake of the two aircrafts' test program, several modifications and improvements were made. This included an equal armament of four 20mm guns (mounted in the outer, foldable wings on the JetCat and, respectively, in the Panther’s nose). Furthermore, both aircraft were soon armed with underwing HVAR air-to-ground rockets and bombs, and the JetCat even received an underfuselage pylon for the potential carriage of an airborne torpedo. Since there was insufficient space within the foldable wings and the fuselage in both aircraft for the thirsty jet’s fuel, permanently mounted wingtip fuel tanks were added on both aircraft, which incidentally improved the fighters' rate of roll. Both F9F types were cleared for flight from aircraft carriers in September 1949.

 

The F9F-1 was soon re-engined with an Allison T38 turboprop, which was much more reliable than the TF-100 (in the meantime re-designated XT31) and delivered a slightly higher power output. Another change was made for the booster: the bulky Derwent VI engine from the prototype stage was replaced by a much more compact Westinghouse J34 turbojet, which not only delivered slightly more thrust, it also used up much less internal space which was used for radio and navigation equipment, a life raft and a relocated oil tank. Due to a resulting CG shift towards the nose, the fuselage fuel cell layout had to be revised. As a consequence, the cockpit was moved 3’ backwards, slightly impairing the pilot’s field of view, but it was still superior to the contemporary Vought F4U.

 

Despite the engine improvements, though, the F9F-1 attained markedly less top speed than the F9F-2. On the other side, it had a better rate of climb and slow speed handling characteristics, could carry more ordnance and offered a considerably bigger range and extended loiter time. The F9F-2 was more agile, though, and more of the nimble dogfighter the US Navy was originally looking for. Its simplicity with just a single engine was appealing, too.

 

The Panther was eventually favored as the USN's first operational jet day fighter and put into production, but the F9F-1 showed much potential as a fast fighter bomber. Through pressure from the USMC, who was looking for a replacement for its F7F heavy Tigercat fighters, a production order for 50 JetCats was eventually placed, later augmented to 82 aircraft because the US Navy also recognized the type’s potential as a fast, ship-borne multi-role fighter. Further interest came in 1949 from Australia, when the country’s government was looking for a - possibly locally-built in license - replacement for the outdated Mustang Mk 23 and De Havilland Vampire then operated by the Royal Australian Air Force (RAAF). Both Grumman designs were potential contenders, rivalling with the domestic CAC CA-23 fighter development.

 

The Grumman Panther became the most widely used U.S. Navy jet fighter of the Korean War, flying 78,000 sorties and scoring the first air-to-air kill by the U.S. Navy in the war, the downing of a North Korean Yakovlev Yak-9 fighter. Being rugged aircraft, F9F-2s, -3s and -5s were able to sustain operations, even in the face of intense anti-aircraft fire. The pilots also appreciated the Panther’s air conditioned cockpit, which was a welcome change from the humid environment of piston-powered aircraft.

 

The F9F-1 did fare less glamorous. Compared with the prototypes, the T38 turboprop's power output could be enhanced on service aircraft, but not on a significant level. The aircraft's original, rather sluggish response to throttle input and its low-speed handling were improved through an eight-blade contraprop, which, as a side benefit, countered torque problems during starts and landings on carriers.

The JetCat’s mixed powerplant installation remained capricious, though, and the second engine and its fuel meant a permanent weight penalty. The aircraft's complexity turned out to be a real weak point during the type's deployment to front line airfields in the Korean War, overall readiness was – compared with conservative types like the F4U and also the F9F-2, low. Despite the turboprop improvements, the jet booster remained necessary for carrier starts and vital in order to take on the MiG-15 or post-war piston engine types of Soviet origin like the Lavochkin La-9 and -11 or the Yakowlev Yak-9.

 

Frequent encounters with these opponents over Korea confirmed that the F9F-1 was not a “naturally born” dogfighter, but rather fell into the escort fighter or attack aircraft class. In order to broaden the type's duty spectrum, a small number of USMC and USN F9F-1s was modified in field workshops with an APS-6 type radar equipment from F4U-4N night fighters. Similar to the Corsair, the radar dish was carried in a streamlined pod under the outer starboard wing. The guns received flame dampers, and these converted machines, re-designated F9F-1N, were used with mild success as night and all-weather fighters.

 

However, the JetCat remained unpopular among its flight and ground crews and, after its less-than-satisfactory performance against MiGs, quickly retired. After the end of the Korean War in July 1953, all machines were grounded and by 1954 all had been scrapped. However, the turboprop-powered fighter bomber lived on with the USMC, which ordered the Vought A3U SeaScorpion as successor.

  

General characteristics:

Crew: 1

Length: 40 ft 5 in (12,31 m)

Wingspan: 43 ft 5 in (13,25 m)

Height: 15 ft 6 3/4 in (4,75 m)

Wing area: 250 ft² (23 m²)

Empty weight: 12,979 lb (5,887 kg)

Gross weight: 24,650 lb (11,181 kg)

Powerplant:

1× Allison T38E turboprop, rated at 2,500 shp (1,863 kW) plus 600 lbf (2.7 kN) residual thrust

1× Westinghouse J34-WE-13 turbojet booster with 3,000 lbf (13.35 kN)

 

Performance:

Maximum speed: 507 mph (441 kn; 816 km/h) at 30,000 ft (9,100 m)

497 mph (432 kn, 800 km/h) at sea level

Cruise speed: 275 mph (443 km/h; 239 kn) at 30,000 ft (9,100 m)

Stall speed: 74 mph (119 km/h; 64 kn) with flaps

Range: 2,500 mi (2,172 nmi; 4,023 km)

Service ceiling: 47,000 ft (14,000 m)

Rate of climb: 5,300 ft/min (27 m/s)

Wing loading: 71 lb/ft² (350 kg/m²)

Thrust/weight: 0.42

Armament:

4× 20 mm (0.79 in) AN/M3 cannon in the outer, foldable wings with 220 RPG

Underwing hardpoints and provisions to carry combinations of up to 6× 5 " (127 mm) HVAR

missiles and/or bombs on underwing hardpoints, for a total ordnance of 3,000 lb (1,362 kg)

  

The kit and its assembly:

This is another submission to the Cold War GB at whatifmodelers in early 2018, and rather a spontaneous idea. It was actually spawned after I finished my fictional Gudkov Gu-1 mixed propulsion fighter - while building (using the engine front from an F6F Hellcat) I had the impression that it could also have ended up as a post-war USN fighter design.

 

A couple of days later, while browsing literature for inspiration, I came across Grumman's G-79 series of designs that eventually led to the F9F Panther - and I was amazed that the 'A' design almost looked like my kitbashed Soviet fighter!

 

So I considered a repeated build of a P-47D/Supermarine Attacker kitbash, just in American colors. But with the F9F relationship, I planned the integration of Panther parts, so that the new creation would look different from the Gu-1, but also show some (more) similarity to the Panther.

 

The plan appeared feasible. Again, the aircraft's core is an Academy P-47D, with its outer wings cut off. Cockpit and landing gear were retained. However, instead of Supermarine Attacker wings from a Novo kit, I attached F9F-2 wings from a Hasegawa kit. Shape-wise this worked fine, but the Panther wings are much thinner than the Thunderbolt’s, so that I had to integrate spacers inside of the intersections which deepen the Hasegawa parts. Not perfect, but since the type would feature folding wings, the difference and improvisation is not too obvious.

 

On the fuselage, the Thunderbolt’s air outlets on its flanks were faired over and most of the tail section cut away. In the lower part of the tail, a jet pipe (from a Heller F-84G) was added and blended with PSR into the Thunderbolt fuselage, similar to the Gu-1. A completely new fin was scratched from an outer wing section from a Heinkel He 189, in an attempt to copy the G-79B's shape according to the drawing I used as benchmark for the build. I also used the F9F's stabilizers. With clipped tips they match well in size and shape, and add to the intended Grumman family look. The original tail wheel well was retained, but the tail wheel was placed as far back as possible and replaced by the twin wheel from a Hasegawa F5U. The Panther’s OOB tail hook was integrated under the jet pipe, too.

 

The front section is completely different and new, and my choice fell on the turboprop-powered G-79B because I did not want to copy the Gu-1 with its radial engine. However, the new turboprop nose was not less complicated to build. Its basis is a 1:100 engine and contraprop from a VEB Plasticart Tu-20/95 bomber, a frequent ingredient in my builds because it works so well in 1:72 scale. This slender core was attached to the Thunderbolt's fuselage, and around this basis a new cowling was built up with 2C putty, once more in an attempt to mimic the original G-79B design as good as possible.

 

In order to blend the new engine with the fuselage and come close to the G-79B’s vaguely triangular fuselage diameter, the P-47's deep belly was cut away, faired over with styrene sheet, and everything blended into each other with more PSR work. As a final step, two exhaust pipes were mounted to the lower fuselage in front of the wings’ leading edge.

 

The air intakes for the jet booster are actually segments from a Sopwith Triplane fuselage (Revell) – an unlikely source, but the shape of the parts was just perfect. More PSR was necessary to blend them into the aircraft’s flanks, though.

  

Painting and markings:

As per usual, I'd rather go with conservative markings on a fictional aircraft. Matching the Korean War era, the aircraft became all-over FS 35042 (Modelmaster). A black ink wash emphasized the partly re-engraved panel lines, and some post shading highlighted panels.

 

The wings’ leading edges and the turboprop’s intake were painted with aluminum, similar edges on fin and stabilizers were created with silver decal material. The interior of cockpit and landing gear was painted with green chromate primer.

 

The markings were puzzled together. “Stars and Bars” and VF-53 markings were taken from a Hobby Boss F4U-4 kit. The blue fin tip is the marking for the 3rd squadron, so that the “307” tactical code is plausible, too (the latter comes from a Hobby Boss F9F-2). In order to keep things subtle and more business-like (after all, the aircraft is supposed to be operated during the ongoing Korean War), I did not carry the bright squadron color to any other position like the spinner or the wing tips.

 

After some final detail work and gun and exhaust soot stains, the kit was sealed with semi-gloss acrylic varnish (Italeri). Matt acrylic varnish was used for weathering effects, so that the aircraft would not look too clean and shiny.

  

While it is not a prefect recreation of the Grumman G-79B, I am quite happy with the result. The differences between the model and the original design sketch can be explained through serial production adaptations, and overall the whole thing looks pretty conclusive. In fact, the model appears from certain angles like a naval P-51 on steroids, even though the G-79B was a much bigger aircraft than the Mustang.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

After World War I, the German aircraft industry had several problems. German airlines were forbidden to operate multi engine aircraft and during a period all manufacturing of aircraft in Germany was banned. By 1921, some of the restrictions was lifted, civilian aircraft could be made after approval of an international control commission if they fulfilled certain requirements. To bypass these rules and to be able to make whatever aircraft they wanted several aircraft manufacturers moved abroad. In 1921, Carl Bücker handled the purchase of a reconnaissance aircraft from Caspar-Werke in Travemünde. Because they expected problems due to the rules in the peace treaty regarding the export of German fighter aircraft, Bücker explored the possibility to smuggle the parts out of Germany and assemble the aircraft in Sweden.

 

To make the purchase easier, Ernst Heinkel and Bücker started Svenska Aero in Lidingö in 1921. The contract on the aircraft was transferred from Caspar to Svenska Aero. Heinkel and some German assembly workers temporarily moved to Lidingö to assemble the aircraft. During 1922 to 1923, the company moved into a former shipyard in Skärsätra on Lidingö since the company had received additional orders from the navy's air force. The parts for those aircraft were made in Sweden by Svenska Aero but assembled by TDS. In 1928, the navy ordered four J 4 (Heinkel HD 19) as a fighter with pontoons. That delivery came to be the last licens- built aircraft by Svenska Aero. In the mid-1920s, Svenska Aero created their own design department to be able to make their own aircraft models. Sven Blomberg, earlier employed by Heinkel Flugzeugwerke, was hired as head of design. In 1930, he was joined by Anders Johan Andersson from Messerschmitt. Despite that, Svenska Aero designed and made several different models on their own.

 

One of them was the model SA-16, a direct response to the Swedish Air Force and Navy’s interest in the new dive bomber tactics, which had become popular in Germany since the mid-Thirties and had spawned several specialized aircraft, the Junkers Ju 87 being the best-known type. The Flygvapnet (Swedish Air Force) had already conducted dive bombing trials with Hawker Hart (B 4) biplanes, but only with mixed results. Diving towards the target simplified the bomb's trajectory and allowed the pilot to keep visual contact throughout the bomb run. This allowed attacks on point targets and ships, which were difficult to attack with conventional level bombers, even en masse. While accuracy was increased through bombing runs at almost vertical dive, the aircraft were not suited for this kind of operations – structurally, and through the way the bombs were dropped.

 

Therefore, Svenska Aero was tasked to develop an indigenous dedicated dive bomber, primarily intended to attack ships, and with a secondary role as reconnaissance aircraft – a mission profile quite similar to American ship-based “SB” aircraft of the time. Having learnt from the tests with the Hawker Harts, the SA-16 was a very robust monoplane, resulting in an almost archaic look. It was a single-engine all-metal cantilever monoplane with a fixed undercarriage and carried a two-person crew. The main construction material was duralumin, and the external coverings were made of duralumin sheeting, bolts and parts that were required to take heavy stress were made of steel. The wings were of so-called “double-wing” construction, which gave the SA-16 considerable advantage on take-off; even at a shallow angle, large lift forces were created through the airfoil, reducing take-off and landing runs. Retractable perforated air brakes were mounted under the wings’ leading edges. The fully closed “greenhouse cabin” offered space for a crew of two in tandem, with the pilot in front and a navigator/radio operator/observer/gunner behind. To provide the rear-facing machine gun with an increased field of fire, the stabilizers were of limited span but deeper to compensate for the loss of surface, what resulted in unusual proportions. As a side benefit, the short stabilizers had, compared with a wider standard layout, increased structural integrity. Power came from an air-cooled Bristol Mercury XII nine-cylinder radial engine with 880 hp (660 kW), built by Nohab in Sweden.

 

Internal armament consisted of two fixed forward-firing 8 mm (0.315 in) Flygplanskulspruta Ksp m/22F (M1919 Browning AN/M2) machine guns in the wings outside of the propeller disc. A third machine gun of the same type was available in the rear cockpit on a flexible mount as defensive weapon. A total of 700 kg (1,500 lb) of bombs could be carried externally. On the fuselage centerline, a swing arm could hold bombs of up to 500 kg (1.100 lb) caliber and deploy them outside of the propeller arc when released in a, additional racks under the outer wings could hold bombs of up to 250 kg (550 lb) caliber each or clusters of smaller bombs, e. g. four 50 (110 lb) or six 12 kg (26 ½ lb) bombs.

 

Flight testing of the first SA-16 prototype began on 14 August 1936. The aircraft could take off in 250 m (820 ft) and climb to 1,875 m (6,152 ft) in eight minutes with a 250 kg (550 lb) bomb load, and its cruising speed was 250 km/h (160 mph). This was less than expected, and pilots also complained that navigation and powerplant instruments were cluttered and not easy to read, especially in combat. To withstand strong forces during a dive, heavy plating, along with brackets riveted to the frame and longeron, was added to the fuselage. Despite this, pilots praised the aircraft's handling qualities and strong airframe. These problems were quickly resolved, but subsequent testing and progress still fell short of the designers’ hopes. With some refinements the machine's speed was increased to 274 km/h (170 mph) at ground level and 319 km/h 319 km/h (198 mph, 172 kn) at 3,650 m (11,980 ft), while maintaining its good handling ability.

 

Since the Swedish Air Force was in dire need for a dive bomber, the SA-16 was accepted into service as the B 9 – even though it was clear that it was only a stopgap solution on the way to a more capable light bomber with dive attack capabilities. This eventually became the Saab 17, which was initiated in 1938 as a request from the Flygvapnet to replace its fleet of dive bombers of American origin, the B 5 (Northrop A-17), the B 6 (Seversky A8V1) and the obsolete Fokker S 6 (C.Ve) sesquiplane, after the deal with Fokker to procure the two-engine twin-boom G.I as a standardized type failed due to the German invasion of the Netherlands. The B 9 dive bomber would subsequently be replaced by the more modern and capable B 17 in the long run, too, which made its first flight on 18 May 1940 and was introduced to frontline units in March 1942. Until then, 93 SA-16s had been produced between 1937 and 1939. When the B 17 became available, the slow B 9 was quickly retired from the attack role. Plans to upgrade the aircraft with a stronger 14 cylinder engine (a Piaggio P.XIbis R.C.40D with 790 kW/1,060 hp) were not carried out, as it was felt that the design lacked further development potential in an offensive role.

Because the airframes were still young and had a lot of service life ahead of them, most SA-16s were from 1941 on relegated to patrol and reconnaissance missions along the Swedish coastlines, observing ship and aircraft traffic in the Baltic Sea and undertaking rescue missions with droppable life rafts. For long-range missions, the forked ventral swing arm was replaced with a fixed plumbed pylon for an external 682 liters (150 Imp. gal.) auxiliary tank that more than doubled the aircraft’s internal fuel capacity of 582 liters, giving it an endurance of around 8 hours. In many cases, the machine guns on these aircraft were removed to save weight. In this configuration the SA-16 was re-designated S 9 (“S” for Spaning) and the machines served in their naval observation and SAR role well into the Fifties, when the last SA-16s were retired.

  

General characteristics:

Crew: two, pilot and observer

Length: 9,58 m (31 ft 11 in)

Wingspan: 10,67 m (34 ft 11 in)

Height: 3,82 m (12 ft 6 in)

Wing area: 30.2 m² (325 sq ft)

Empty weight: 2,905 kg (6,404 lb)

Gross weight: 4,245 kg (9,359 lb)

Max takeoff weight: 4,853 kg (10,700 lb)

 

Powerplant:

1× Bristol Mercury XII nine-cylinder radial engine with 880 hp (660 kW),

driving a three-bladed variable pitch metal propeller

 

u>Performance:

Maximum speed: 319 km/h (198 mph, 172 kn) at 3,650 m (11,980 ft)

274 km/h (170 mph; 148 kn) at sea level

299 km/h (186 mph; 161 kn) at 2,000 m (6,600 ft)

308 km/h (191 mph; 166 kn) at 5,000 m (16,000 ft)

Stall speed: 110 km/h (68 mph, 59 kn)

Range: 1,260 km (780 mi, 680 nmi)

Service ceiling: 7,300 m (24,000 ft)

Time to altitude: 2,000 m (6,600 ft) in 4 minutes 45 seconds

4,000 m (13,000 ft) in 15 minutes 10 seconds

 

Armament:

2× fixed 8 mm (0.315 in) Flygplanskulspruta Ksp m/22F (M1919 Browning AN/M2) machine guns

in the wings outside of the propeller disc (with 600 RPG), plus

1× 8 mm (0.315 in) Ksp m/22F machine gun on a flexible mount in the rear cockpit with 800 rounds

Ventral and underwing hardpoints for a total external bomb load of 700 kg (1,500 lb)

  

The kit and its assembly:

This purely fictional Swedish dive bomber was inspired by reading about Flygvapnet‘s pre-WWII trials with dive bombing tactics and the unsuited aircraft fleet for this task. When I found a Hasegawa SOC Seagull floatplane in The Stash™ and looks at the aircraft’s profile, I thought that it could be converted into a two-seat monoplane – what would require massive changes, though.

 

However, I liked the SOC’s boxy and rustic look, esp. the fuselage, and from this starting point other ingredients/donors were integrated. Work started with the tail. Originally, I wanted to retain the SOCs fin and stabilizer, but eventually found them oversized for a land-based airplane. In the scrap box I found a leftover fin from an Academy P-47, and it turned out to be a very good, smaller alternative, with the benefit that it visually lengthened the rear fuselage. The stabilizers were replaced with leftover parts from a NOVO Supermarine Attacker – an unlikely choice, but their size was good, they blended well into the overall lines of the aircraft, and they helped to stabilize the fin donor. Blending these new parts into to SOC’s hull required massive PSR, though.

 

The wings were also not an easy choice, and initially I planned the aircraft with a retractable landing gear. I eventually settled on the outer wings (just outside of the gullwing kink) from an MPM Ju 87 B, because of their shape and the archaic “double wings” that would complement the SOC’s rustic fuselage. However, at this point I refrained from the retractable landing gear and instead went for a fixed spatted alternative, left over from an Airfix Hs 123, which would round up the aircraft’s somewhat vintage look. Because the wheels were missing, I inserted two Matchbox MiG-21 wheels (which were left over in the spares bin from two different kits, though). The tail wheel came from an Academy Fw 190.

 

Cowling and engine inside (thankfully a 9-cylinder radial that could pose as a Mercury) were taken OOB, just the original two-blade propeller was replaced with a more appropriate three-blade alternative, IIRC from a Hobby Boss Grumman F4F. The cockpit was taken OOB, and I also used the two pilot figures from the kit. The rear crew member just had the head re-positioned to look sideways, and had to have the legs chopped off because there’s hardly and space under the desk with the radio set he’s sitting at.

 

The ventral 500 kg bomb came from a Matchbox Ju 87, the bomb arms are Fw 189 landing gear parts. Additional underwing pylons came from an Intech P-51, outfitted with 50 kg bombs of uncertain origin (they look as if coming from an old Hasegawa kit). The protruding machine gun barrel fairings on the wings were scratched from styrene rod material, with small holes drilled into them.

 

A real Frankenstein creation, but it does not look bad or implausible!

  

Painting and markings:

I gave the B 9 a camouflage that was carried by some Flygvapnet aircraft in the late Thirties, primarily by fighters imported from the United States but also some bombers like the B 3 (Ju 86). The IMHO quite attractive scheme consists on the upper surfaces of greenish-yellow zinc chromate primer (Humbrol 81, FS 33481), on top of which a dense net of fine dark green wriggles (supposed to be FS 34079, but I rather used Humbrol 163, RAF Dark Green, because it is more subdued) was manually applied with a thin brush, so that the primer would still shine through, resulting in a mottled camouflage.

 

On the real aircraft, this was sealed with a protective clear lacquer to which 5% of the dark green had been added, and I copied this procedure on the model, too, using semi-gloss acrylic varnish with a bit of Revell 46 added. The camouflage was wrapped around the wings’ leading edges and the spatted landing gear was painted with the upper camouflage, too.

 

The undersides were painted with Humbrol 87 (Steel Grey), to come close to the original blue-grey tone, which is supposed to be FS 35190 on this type of camouflage. The tone is quite dark, almost like RAF PRU Blue.

The interior was painted – using a Saab J 21 cockpit as benchmark – in a dark greenish grey (RAL 7009).

The model received the usual light black ink washing and some post-panel shading on the lower surfaces, because this effect would hardly be recognizable on the highly fragmented upper surface.

 

The markings are reflecting Flygvapnet’s m/37 regulations, from the direct pre-WWII era when the roundels had turned from black on white to yellow on blue but still lacked the yellow edge around the roundel for more contrast. F6 Västgöta flygflottilj was chosen because it was a dive bomber unit in the late Thirties, and the individual aircraft code (consisting of large white two-digit numbers) was added with the fin and the front of the fuselage. “27” would indicate an aircraft of the unit’s 2nd division, which normally had blue as a standardized color code, incorporated through the blue bands on the spats and the small "2nd div." tag on the rudder (from a contemporary F8 Swedish Gladiator).

 

Roundels and codes came from an SBS Models sheet, even though they belong to various aircraft types. Everything was finally sealed with matt acrylic varnish.

An original character & 1/6 scale kitbash figure, in an ongoing Steampunk project, photographed using layered filters from both Enjoyphoto and editing apps on my cameraphone.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!

  

Some background:

The РТАК-30 attack vintoplan (also known as vintokryl) owed its existence to the Mil Mi-30 plane/helicopter project that originated in 1972. The Mil Mi-30 was conceived as a transport aircraft that could hold up to 19 passengers or two tons of cargo, and its purpose was to replace the Mi-8 and Mi-17 Helicopters in both civil and military roles. With vertical takeoff through a pair of tiltrotor engine pods on the wing tips (similar in layout to the later V-22 Osprey) and the ability to fly like a normal plane, the Mil Mi-30 had a clear advantage over the older models.

 

Since the vintoplan concept was a completely new field of research and engineering, a dedicated design bureau was installed in the mid-Seventies at the Rostov-na-Donu helicopter factory, where most helicopters from the Mil design bureau were produced, under the title Ростов Тилт Ротор Авиационная Компания (Rostov Tilt Rotor Aircraft Company), or РТАК (RTRA), for short.

 

The vintoplan project lingered for some time, with basic research being conducted concerning aerodynamics, rotor design and flight control systems. Many findings later found their way into conventional planes and helicopters. At the beginning of the 1980s, the project had progressed far enough that the vintoplan received official backing so that РТАК scientists and Mil helicopter engineers assembled and tested several layouts and components for this complicated aircraft type.

At that time the Mil Mi-30 vintoplan was expected to use a single TV3-117 Turbo Shaft Engine with a four-bladed propeller rotors on each of its two pairs of stub wings of almost equal span. The engine was still installed in the fuselage and the proprotors driven by long shafts.

 

However, while being a very clean design, this original layout revealed several problems concerning aeroelasticity, dynamics of construction, characteristics for the converter apparatuses, aerodynamics and flight dynamics. In the course of further development stages and attempts to rectify the technical issues, the vintoplan layout went through several revisions. The layout shifted consequently from having 4 smaller engines in rotating pods on two pairs of stub wings through three engines with rotating nacelles on the front wings and a fixed, horizontal rotor over the tail and finally back to only 2 engines (much like the initial concept), but this time mounted in rotating nacelles on the wing tips and a canard stabilizer layout.

 

In August 1981 the Commission of the Presidium of the USSR Council of Ministers on weapons eventually issued a decree on the development of a flyworthy Mil Mi-30 vintoplan prototype. Shortly afterwards the military approved of the vintoplan, too, but desired bigger, more powerful engines in order to improve performance and weight capacity. In the course of the ensuing project refinement, the weight capacity was raised to 3-5 tons and the passenger limit to 32. In parallel, the modified type was also foreseen for civil operations as a short range feederliner, potentially replacing Yak-40 and An-24 airliners in Aeroflot service.

In 1982, РТАК took the interest from the military and proposed a dedicated attack vintoplan, based on former research and existing components of the original transport variant. This project was accepted by MAP and received the separate designation РТАК-30. However, despite having some close technical relations to the Mi-30 transport (primarily the engine nacelles, their rotation mechanism and the flight control systems), the РТАК-30 was a completely different aircraft. The timing was good, though, and the proposal was met with much interest, since the innovative vintoplan concept was to compete against traditional helicopters: the design work on the dedicated Mi-28 and Ka-50 attack helicopters had just started at that time, too, so that РТАК received green lights for the construction of five prototypes: four flyworthy machines plus one more for static ground tests.

 

The РТАК-30 was based on one of the early Mi-30 layouts and it combined two pairs of mid-set wings with different wing spans with a tall tail fin that ensured directional stability. Each wing carried a rotating engine nacelle with a so-called proprotor on its tip, each with three high aspect ratio blades. The proprotors were handed (i.e. revolved in opposite directions) in order to minimize torque effects and improve handling, esp. in the hover. The front and back pair of engines were cross-linked among each other on a common driveshaft, eliminating engine-out asymmetric thrust problems during V/STOL operations. In the event of the failure of one engine, it would automatically disconnect through torque spring clutches and both propellers on a pair of wings would be driven by the remaining engine.

Four engines were chosen because, despite the weight and complexity penalty, this extra power was expected to be required in order to achieve a performance that was markedly superior to a conventional helicopter like the Mi-24, the primary Soviet attack helicopter of that era the РТАК-30 was supposed to replace. It was also expected that the rotating nacelles could also be used to improve agility in level flight through a mild form of vectored thrust.

 

The РТАК-30’s streamlined fuselage provided ample space for avionics, fuel, a fully retractable tricycle landing gear and a two man crew in an armored side-by-side cockpit with ejection seats. The windshield was able to withstand 12.7–14.5 mm caliber bullets, the titanium cockpit tub could take hits from 20 mm cannon. An autonomous power unit (APU) was housed in the fuselage, too, making operations of the aircraft independent from ground support.

While the РТАК-30 was not intended for use as a transport, the fuselage was spacious enough to have a small compartment between the front wings spars, capable of carrying up to three people. The purpose of this was the rescue of downed helicopter crews, as a cargo hold esp. for transfer flights and as additional space for future mission equipment or extra fuel.

In vertical flight, the РТАК-30’s tiltrotor system used controls very similar to a twin or tandem-rotor helicopter. Yaw was controlled by tilting its rotors in opposite directions. Roll was provided through differential power or thrust, supported by ailerons on the rear wings. Pitch was provided through rotor cyclic or nacelle tilt and further aerodynamic surfaces on both pairs of wings. Vertical motion was controlled with conventional rotor blade pitch and a control similar to a fixed-wing engine control called a thrust control lever (TCL). The rotor heads had elastomeric bearings and the proprotor blades were made from composite materials, which could sustain 30 mm shells.

 

The РТАК-30 featured a helmet-mounted display for the pilot, a very modern development at its time. The pilot designated targets for the navigator/weapons officer, who proceeded to fire the weapons required to fulfill that particular task. The integrated surveillance and fire control system had two optical channels providing wide and narrow fields of view, a narrow-field-of-view optical television channel, and a laser rangefinder. The system could move within 110 degrees in azimuth and from +13 to −40 degrees in elevation and was placed in a spherical dome on top of the fuselage, just behind the cockpit.

 

The aircraft carried one automatic 2A42 30 mm internal gun, mounted semi-rigidly fixed near the center of the fuselage, movable only slightly in elevation and azimuth. The arrangement was also regarded as being more practical than a classic free-turning turret mount for the aircraft’s considerably higher flight speed than a normal helicopter. As a side effect, the semi-rigid mounting improved the cannon's accuracy, giving the 30 mm a longer practical range and better hit ratio at medium ranges. Ammunition supply was 460 rounds, with separate compartments for high-fragmentation, explosive incendiary, or armor-piercing rounds. The type of ammunition could be selected by the pilot during flight.

The gunner can select one of two rates of full automatic fire, low at 200 to 300 rds/min and high at 550 to 800 rds/min. The effective range when engaging ground targets such as light armored vehicles is 1,500 m, while soft-skinned targets can be engaged out to 4,000 m. Air targets can be engaged flying at low altitudes of up to 2,000 m and up to a slant range of 2,500 m.

 

A substantial range of weapons could be carried on four hardpoints under the front wings, plus three more under the fuselage, for a total ordnance of up to 2,500 kg (with reduced internal fuel). The РТАК-30‘s main armament comprised up to 24 laser-guided Vikhr missiles with a maximum range of some 8 km. These tube-launched missiles could be used against ground and aerial targets. A search and tracking radar was housed in a thimble radome on the РТАК-30’s nose and their laser guidance system (mounted in a separate turret under the radome) was reported to be virtually jam-proof. The system furthermore featured automatic guidance to the target, enabling evasive action immediately after missile launch. Alternatively, the system was also compatible with Ataka laser-guided anti-tank missiles.

Other weapon options included laser- or TV-guided Kh-25 missiles as well as iron bombs and napalm tanks of up to 500 kg (1.100 lb) caliber and several rocket pods, including the S-13 and S-8 rockets. The "dumb" rocket pods could be upgraded to laser guidance with the proposed Ugroza system. Against helicopters and aircraft the РТАК-30 could carry up to four R-60 and/or R-73 IR-guided AAMs. Drop tanks and gun pods could be carried, too.

 

When the РТАК-30's proprotors were perpendicular to the motion in the high-speed portions of the flight regime, the aircraft demonstrated a relatively high maximum speed: over 300 knots/560 km/h top speed were achieved during state acceptance trials in 1987, as well as sustained cruise speeds of 250 knots/460 km/h, which was almost twice as fast as a conventional helicopter. Furthermore, the РТАК-30’s tiltrotors and stub wings provided the aircraft with a substantially greater cruise altitude capability than conventional helicopters: during the prototypes’ tests the machines easily reached 6,000 m / 20,000 ft or more, whereas helicopters typically do not exceed 3,000 m / 10,000 ft altitude.

 

Flight tests in general and flight control system refinement in specific lasted until late 1988, and while the vintoplan concept proved to be sound, the technical and practical problems persisted. The aircraft was complex and heavy, and pilots found the machine to be hazardous to land, due to its low ground clearance. Due to structural limits the machine could also never be brought to its expected agility limits

During that time the Soviet Union’s internal tensions rose and more and more hampered the РТАК-30’s development. During this time, two of the prototypes were lost (the 1st and 4th machine) in accidents, and in 1989 only two machines were left in flightworthy condition (the 5th airframe had been set aside for structural ground tests). Nevertheless, the РТАК-30 made its public debut at the Paris Air Show in June 1989 (the 3rd prototype, coded “33 Yellow”), together with the Mi-28A, but was only shown in static display and did not take part in any flight show. After that, the aircraft received the NATO ASCC code "Hemlock" and caused serious concern in Western military headquarters, since the РТАК-30 had the potential to dominate the European battlefield.

 

And this was just about to happen: Despite the РТАК-30’s development problems, the innovative attack vintoplan was included in the Soviet Union’s 5-year plan for 1989-1995, and the vehicle was eventually expected to enter service in 1996. However, due to the collapse of the Soviet Union and the dwindling economics, neither the РТАК-30 nor its civil Mil Mi-30 sister did soar out in the new age of technology. In 1990 the whole program was stopped and both surviving РТАК-30 prototypes were mothballed – one (the 3rd prototype) was disassembled and its components brought to the Rostov-na-Donu Mil plant, while the other, prototype No. 1, is rumored to be stored at the Central Russian Air Force Museum in Monino, to be restored to a public exhibition piece some day.

  

General characteristics:

Crew: Two (pilot, copilot/WSO) plus space for up to three passengers or cargo

Length: 45 ft 7 1/2 in (13,93 m)

Rotor diameter: 20 ft 9 in (6,33 m)

Wingspan incl. engine nacelles: 42 ft 8 1/4 in (13,03 m)

Total width with rotors: 58 ft 8 1/2 in (17,93 m)

Height: 17 ft (5,18 m) at top of tailfin

Disc area: 4x 297 ft² (27,65 m²)

Wing area: 342.2 ft² (36,72 m²)

Empty weight: 8,500 kg (18,740 lb)

Max. takeoff weight: 12,000 kg (26,500 lb)

 

Powerplant:

4× Klimov VK-2500PS-03 turboshaft turbines, 2,400 hp (1.765 kW) each

 

Performance:

Maximum speed: 275 knots (509 km/h, 316 mph) at sea level

305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)

Cruise speed: 241 kn (277 mph, 446 km/h) at sea level

Stall speed: 110 kn (126 mph, 204 km/h) in airplane mode

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 390 nmi (426 mi, 722 km)

Ferry range: 1,940 nmi (2,230 mi, 3,590 km) with auxiliary external fuel tanks

Service ceiling: 25,000 ft (7,620 m)

Rate of climb: 2,320–4,000 ft/min (11.8 m/s)

Glide ratio: 4.5:1

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament:

1× 30 mm (1.18 in) 2A42 multi-purpose autocannon with 450 rounds

7 external hardpoints for a maximum ordnance of 2.500 kg (5.500 lb)

  

The kit and its assembly:

This exotic, fictional aircraft-thing is a contribution to the “The Flying Machines of Unconventional Means” Group Build at whatifmodelers.com in early 2019. While the propulsion system itself is not that unconventional, I deemed the quadrocopter concept (which had already been on my agenda for a while) to be suitable for a worthy submission.

The Mil Mi-30 tiltrotor aircraft, mentioned in the background above, was a real project – but my alternative combat vintoplan design is purely speculative.

 

I had already stashed away some donor parts, primarily two sets of tiltrotor backpacks for 1:144 Gundam mecha from Bandai, which had been released recently. While these looked a little toy-like, these parts had the charm of coming with handed propellers and stub wings that would allow the engine nacelles to swivel.

The search for a suitable fuselage turned out to be a more complex safari than expected. My initial choice was the spoofy Italeri Mi-28 kit (I initially wanted a staggered tandem cockpit), but it turned out to be much too big for what I wanted to achieve. Then I tested a “real” Mi-28 (Dragon) and a Ka-50 (Italeri), but both failed for different reasons – the Mi-28 was too slender, while the Ka-50 had the right size – but converting it for my build would have been VERY complicated, because the engine nacelles would have to go and the fuselage shape between the cockpit and the fuselage section around the original engines and stub wings would be hard to adapt. I eventually bought an Italeri Ka-52 two-seater as fuselage donor.

 

In order to mount the four engines to the fuselage I’d need two pairs of wings of appropriate span – and I found a pair of 1:100 A-10 wings as well as the wings from an 1:72 PZL Iskra (not perfect, but the most suitable donor parts I could find in the junkyard). On the tips of these wings, the swiveling joints for the engine nacelles from the Bandai set were glued. While mounting the rear wings was not too difficult (just the Ka-52’s OOB stabilizers had to go), the front pair of wings was more complex. The reason: the Ka-52’s engines had to go and their attachment points, which are actually shallow recesses on the kit, had to be faired over first. Instead of filling everything with putty I decided to cover the areas with 0.5mm styrene sheet first, and then do cosmetic PSR work. This worked quite well and also included a cover for the Ka-52’s original rotor mast mount. Onto these new flanks the pair of front wings was attached, in a mid position – a conceptual mistake…

 

The cockpit was taken OOB and the aircraft’s nose received an additional thimble radome, reminiscent of the Mi-28’s arrangement. The radome itself was created from a German 500 kg WWII bomb.

 

At this stage, the mid-wing mistake reared its ugly head – it had two painful consequences which I had not fully thought through. Problem #1: the engine nacelles turned out to be too long. When rotated into a vertical position, they’d potentially hit the ground! Furthermore, the ground clearance was very low – and I decided to skip the Ka-52’s OOB landing gear in favor of a heavier and esp. longer alternative, a full landing gear set from an Italeri MiG-37 “Ferret E” stealth fighter, which itself resembles a MiG-23/27 landing gear. Due to the expected higher speeds of the vintoplan I gave the landing gear full covers (partly scratched, plus some donor parts from an Academy MiG-27). It took some trials to get the new landing gear into the right position and a suitable stance – but it worked. With this benchmark I was also able to modify the engine nacelles, shortening their rear ends. They were still very (too!) close to the ground, but at least the model would not sit on them!

However, the more complete the model became, the more design flaws turned up. Another mistake is that the front and rear rotors slightly overlap when in vertical position – something that would be unthinkable in real life…

 

With all major components in place, however, detail work could proceed. This included the completion of the cockpit and the sensor turrets, the Ka-52 cannon and finally the ordnance. Due to the large rotors, any armament had to be concentrated around the fuselage, outside of the propeller discs. For this reason (and in order to prevent the rear engines to ingest exhaust gases from the front engines in level flight), I gave the front wings a slightly larger span, so that four underwing pylons could be fitted, plus a pair of underfuselage hardpoints.

The ordnance was puzzled together from the Italeri Ka-52 and from an ESCI Ka-34 (the fake Ka-50) kit.

  

Painting and markings:

With such an exotic aircraft, I rather wanted a conservative livery and opted for a typical Soviet tactical four-tone scheme from the Eighties – the idea was to build a prototype aircraft from the state acceptance trials period, not a flashy demonstrator. The scheme and the (guesstimated) colors were transferred from a Soviet air force MiG-21bis of that era, and it consists of a reddish light brown (Humbrol 119, Light Earth), a light, yellowish green (Humbrol 159, Khaki Drab), a bluish dark green (Humbrol 195, Dark Satin Green, a.k.a. RAL 6020 Chromdioxidgrün) and a dark brown (Humbrol 170, Brown Bess). For the undersides’ typical bluish grey I chose Humbrol 145 (FS 35237, Gray Blue), which is slightly lighter and less greenish than the typical Soviet tones. A light black ink wash was applied and some light post-shading was done in order to create panels that are structurally not there, augmented by some pencil lines.

 

The cockpit became light blue (Humbrol 89), with medium gray dashboard and consoles. The ejection seats received bright yellow seatbelts and bright blue pads – a detail seen on a Mi-28 cockpit picture.

Some dielectric fairings like the fin tip were painted in bright medium green (Humbrol 101), while some other antenna fairings were painted in pale yellow (Humbrol 71).

The landing gear struts and the interior of the wells became Aluminum Metalic (Humbrol 56), the wheels dark green discs (Humbrol 30).

 

The decals were puzzled together from various sources, including some Begemot sheets. Most of the stencils came from the Ka-52 OOB sheet, and generic decal sheet material was used to mark the walkways or the rotor tips and leading edges.

 

Only some light weathering was done to the leading edges of the wings, and then the kit was sealed with matt acrylic varnish.

  

A complex kitbashing project, and it revealed some pitfalls in the course of making. However, the result looks menacing and still convincing, esp. in flight – even though the picture editing, with four artificially rotating proprotors, was probably more tedious than building the model itself!

A Phicen kitbash using a blonde Kimi headsculpt and wearing an outfit by Magic Cube toys .

Inspired by the classic 'Devil May Cry' videogames, this is an original character of my own devising and a 1/6 scale kitbash action figure, conceived, assembled and photographed by myself employing layered filters from Enjoyphoto, Superphoto and additional editing apps installed on my cameraphone.

Phicen kitbash using the Little Red Riding Hood headsculpt . For the life of me I still can't find a proper Phicen body that matches this particular headsculpt ,this is the pale body and it still doesn't match , so frustrating >:(

I used the dremel to shave the back of the walls to help remove the windows.

Some background:

A vanship is a type of flying machine from the animated series Last Exile. It is often referred to as a "flying boat" in that it does not fly by means of aerodynamics like planes do, but rather by floating on the air and propelling itself through the use of a substance known as "Claudia" (see below).

 

Vanships in general were couriers prior to the events of Last Exile, traveling long distances to deliver cargoes (usually messages). Some Vanships thus include tools for towing solid objects.

 

The design of several vanships throughout the series bears great resemblance to various famed 1930s racecars than any aircraft, most notably the Anatoray millitary vanships which bear great resemblance to the 1933 Napier Railton. The resemblance is found in the grill shape of the cowl vents and the shape of the tail cone, as well as the aerodynamic bulges on the car which cover the valve covers and exaust on the car, which are also found on the Anatoray vanships.

Other Vanships bear striking design elements from Junkers aircraft in the pre-WWII era, e. g. from the A 35 monoplane.

 

"Spirit of Grand Stream" is a courier-type vanship (see below) owned by Claus Valca and Lavie Head, and its design is very similar to that of Hayao Miyazaki's gunship from Nausicaa of the Valley of the Wind. The matches are really focused on the two seated open cockpit, and the navigator section which has matching interface panels of small glass cylinders.

Courier vanships, also known as racing vanships, are one of the main types of vanship featured in Last Exile. Courier vanships are small and narrow with a single, high-powered thruster. Like any vanship intended to achieve high speeds, they have stub wings, far too small themselves to provide lift. They simply act as mounts for ailerons to provide better steering, as pivoting the thruster would put undue stress on the assembly at high speeds.

 

Over the course of Last Exile, Vanships were adapted for combat. The process resembles the evolving roles that aircraft held during WW1; originally developed for scouting and surveillance, but eventually equipped with bombs and machine guns to become potent fightercraft.

 

Claudia is a fluorescent blue ore mined on the floating world of Prester. It is the foundation of Prester's technology, fueling steam engines and is a key element of the claudia units that allow vanships to fly. Claudia is also the primary currency of Prester. It is well suited for the purpose, as it is constantly generated by Prester and is not possible to counterfeit.

Claudia, when dissolved in water, serves as the primary drive fluid in a claudia unit. When Claudia fluid is heated and compressed, it generates lift. A vanship engine has a distinctive claudia circulation pipe loop, where the supercritical fluid generates both lift and thrust.

 

Dissolving Claudia in alcohol dramatically increases the energy density of the fuel. This is why steam engines are the predominant technology of Last Exile, instead of the internal combustion engine. Technology design documents from the production of the show indicate that the steam engines of Last Exile have a power to weight ratio exceeding that of a modern gasoline fueled internal combustion engine.

 

All vanships in the series were rendered as 3D images, a hallmark of Japanese animation studio Gonzo, makers of such series as Vandread and Blue Submarine No. 6.

  

The kit and its assembly:

I love the Vanships from Last Exile - even though I have never seen the series.

While these vehicles appear as retro stuff, they are very original and unique in look and feel - a modeler's dream if you are into scratchbuilding and kitbashing. There's also a 1:72 Vanship kit available (actually, in two versions) from Hasegawa, but it is IMHO overpriced. And there are so many different Vanships in the series that it is a shame that not more of them have been kitted, scratched, or at least used as a source of modelling inspiration.

 

The latter's the case here. I had a scratched Vanship on the agenda for a long time and also a basic idea with what I'd start, but it took a SF racing GB at phoxim.de (a German SF model building forum) to make a move.

 

I wanted a small and fast single seater, and this evolved through the GB into a Racer with a more prominent engine unit and a rather purposeful livery instead of bright colors. But the basic concept was retained: originally, the plan was to use a 1:72 F4U as fuselage basis, and I had the idea to integrate some parts of a 1:43 Citroen 11CV from Heller, e. g. its grill and bonnet.

 

The F4U is the SMER kit, and it has the benefit of having separate wings for a folded display. The fin was cut off and the landing gear wells covered.

The cockpit opening was slightly enlarged in order to take a 1:48 Japanese WWII resin pilot and a seat from the 1:43 11CV - pretty cramped, but it worked and looks good. Only the wind screen of the OOB F4U canopy was used, as well as the original dashboard.

 

Most work was done on the outside, though. The first problem turned up when I realized that the 11CV bonnet could hardly be mated with the F4U. As a plan B I found a cover for the brush head of a Philipps electric toothbrush in my donor bank - a bit too high and narrow, but overall a unique addition and characteristic nose for my creation!

 

The landing gear comes from an Amodel Ju-87A - together with the drooped F4U inner wings the result looked a bit stalky at first, but the Vanship still needed its engines.

 

As a racer, I went for double power, and the long pods that carry the propulsion system were scratched from several non-model-kit parts:

- Front comes from a Revell 1:32 AH-64 Apache, its engines

- The intakes come from a Matchbox Gloster Meteor NF.14

- The "ring" consists of wheel parts from the Heller 11CV

- The conic isolators are ball pen grips, cut to size and closed with tank wheels on both ends

- The fins are plastic knives, primarily the blades and parts of the handles

 

In between these engine pods, which are only held under the wings and stabilized internally through steel wire, a generator pod from a 1:72 Matchbox EA-6B fills the void. It also holds a characteristic "knife" under the front grill - again carved from the handle of the plastic knives.

 

In order to blend the changes in fuselage shape and diameter and create a kind of Cord-style grill I added three styrene strips which were wrapped around the nose, the upper line reaching back to the cockpit - a kind of 3D rally stripe that also streches the shape.

 

Some air scoops and surface details were added, made from styrene, and stiff cable was used under the front fuselage to create hoses between the bonnet with the Claudia reactor and the engines.

 

I was frequently tempted to add more things and details or decoration, but found that a rather clean look would better suit a dedicated racer Vanship - the Stutz Blackhawk land speed record car was a vague benchmark.

  

Painting and markings:

I wanted to keep things simple and dry. Before this turned into a racer I considered several colors like pale blue, a greyish-green, British Racing Green or Crimson, with ivory trim. Anyway, I rejected this in favir of a pure, bare metal finish. I even did not add colorful stripes - the only "color" comes from the mechanical parts (ivory and dark brown on the engine pods, the idea was to add an isolator impression) and the small sponsor decals.

 

The kit initially received a basic coat of Revell's acrylic Aluminum, and onto that panels/field with several Metallizer tones (Steel, Magnesium, Titanium, polished Aluminum) were added. On top of that, the whole thing received a rubbing with grinded graphite - intensifying the metal shine and also weathering the vehicle.

 

The pilot received a rather conservatie outfit, with a brown leather jacket - matching the overall style of the Vanship. Some engine parts (e. g. the blades and the knife under the nose) were painted with a mix of Steel Metallizer and Gold. The cockpit interior was painted in RLM 02.

 

The markings were puzzled together. The start number '24' in that nice retro type comes from an 1:72 Airfix Il-2, the black disc below is from a slot car aftermarket sheet. The many sponsor stickers come mostly from an 1:72 Su-27 demonstrator aircraft sheet from Begemot - with their cyrillic typo they blend well into the Last Exile look and feel (where Greek/Cyrillic typo pops up).

 

Finally, the kit received a coat with acrylic gloss varnish, while the anti glare panel in front of the windscreen became matt.

 

An original steampunk vampire character and 1/6 scale kitbash doll, photographed using layered filters from downloaded & default editing apps on my cameraphone.

New/more pics from an older (and dusty...) model

  

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.

The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.

Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.

Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.

Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction.

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

 

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

 

The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:

6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rearward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)

4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod

  

The model and its assembly:

This is a major kit conversion, or better a kitbashing with major scratch work involved. By the time I built this model, there were no convincing 1:100 kits of the so-called "Super / Strike Valkyries" around. These VF-1s carry rocket boosters for non-atmospherical use, so-called FAST packages ("Fuel And Sensor Trays"). However, parts for these space operation packages are included in some ARII Battroid kits.

 

This is the second of such conversions I did on the basis of a 1:100 Bandai (ex Arii) Gerwalk Valkyrie model, with additional leftover pieces from Super Valkyrie kits in Battroid mode and even from vintage Imai transformable kits.

 

The legs in retracted position were completely built through kitbashing, since the FAST packages would hardly fit under the body. The folded arms between the legs were improvised and heavily tailored to fit into the narrow space between the legs as good as possible. Real arm parts would not fit at all!

 

The "UUM-7" rocket launchers with 5 x 3 HMM-01missiles each were built from scratch. other added details include a pilot figure and better cockpit interior parts, plus some other details like antennae that the simple, original kits lack.

 

Painting and markings:

The color scheme is based on the standard VF-1A livery, even though I used a lighter tan (RAF "Hemp", B.S. 4800/10B21, e .g. used on Nimrod sea patrol aircrafts or VC-10 tankers - Humbrol 168) instead of brown. The lighter contrast areas were painted in ivory (Humbrol 41) instead of pure white, the FAST packs received a grey finish (FS 36081, Humbrol 32).

 

What's a bit special about the colored details of this semi-fictional Valkyrie is that the squadron insignia is original Japanese: The panda with the red lightning is the emblem of the 203rd hikotai, a real world JASDF fighter squadron that used to fly F-86 Sabre and F-104 Starfighters – with some fantasy, you can read the "203" in the lightning's outline! The kit's idea was to show what a machine from such a "real" squadron might look like if it was (still) existent in the Macross universe?

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Republic P-47 Thunderbolt was one of the largest and heaviest fighter aircraft in history to be powered by a single piston engine. It was heavily armed with eight .50-caliber machine guns, four per wing. When fully loaded, the P-47 weighed up to eight tons, and in the fighter-bomber ground-attack roles could carry five-inch rockets or a significant bomb load of 2,500 pounds; it could carry over half the payload of the B-17 bomber on long-range missions (although the B-17 had a far greater range).

 

The P-47, originally based on the powerful Pratt & Whitney R-2800 Double Wasp engine, was to be very effective as a short-to-medium range escort fighter in high-altitude air-to-air combat and, when unleashed as a fighter-bomber, proved especially adept at ground attack in both the World War II European and Pacific Theaters.

The P-47 was one of the main United States Army Air Forces (USAAF) fighters of World War II, and served with other Allied air forces, notably those of France, Britain, and Russia. Mexican and Brazilian squadrons fighting alongside the U.S. were equipped with the P-47.

 

In 1943, two P-47D-15-RE airframes (serials 42-23297/23298) were selected for testing with the new experimental 2300 hp Chrysler XIV-2220-1 sixteen-cylinder inverted Vee liquid-cooled engine. These aircraft were re-designated XP-47H. The liquid-cooled Chrysler engine with its large under-fuselage radiator radically changed the appearance of the Thunderbolt, and increased overall length to 39 feet 2 inches. With the increased power and improved streamlining, a maximum speed of 490 mph was anticipated.

 

The two P-47D-15-RE airframes were converted until early 1944 and test flights began on July 26, 1945. During flight trails, one of the XP-47Hs actually attained a speed of 490 mph in level flight, and the new aircraft was primarily intended as a fast interceptor for the European theater, where especially Great Britain was endangered by the fast V1 missiles, and initial reports about German jet fighters and reconnaissance aircraft that were hard to counter with current piston-engine types, stirred the need for this fast aircraft.

 

Production P-47Hs received several amendments that had already been introduced with the late D types, e. g. the lowered back and a bubble canopy that offered excellent view. The P-47H also received the new wing from the P-47N, recognizable by its characteristic square wing tips which allowed better roll manoeuvers. Not visible at first glance were the integral wing tanks, which enhanced the internal fuel load to 4.792,3 liters, resulting in a range of 3.500 km (2.175 ml), so that the P-47H was also suited for long range bomber escorts. Air brakes were added to the wing's lower surfaces, too, to allow braking after a dive onto its prey.

Furthermore, serial production machines received an uprated, more reliable Chrysler XIV-2220-2 engine, which had an output of 2.450 hp.

 

The P-47H was put into limited production with 130 built, sufficient for one group. However, the type suffered serious teething problems in the field due to the highly tuned engine. Engines were unable to reach operating temperatures and power settings and frequently failed in early flights from a variety of causes: ignition harnesses cracked at high altitudes, severing electrical connections between the magneto and distributor, and carburetor valve diaphragms also failed. Poor corrosion protection during shipments across the Atlantic also took their toll on the engines and airframes.

 

By the time the bugs were worked out, the war in Europe was nearly over. However, P-47Hs still destroyed 15 enemy jet aircraft in aerial combat in March-May 1945 when aerial encounters with the Luftwaffe were rare. The type also proved itself to be a valuable V1 missile interceptor over the Channel.

 

The entire production total of 130 P-47Hs were delivered to the 358th Fighter Group, which was part of the 9th Air Force and operated from Great Britain, France and finally on German ground. From the crews the P-47H received several nicknames like 'torpedo', 'Thunderbullet' or 'Anteater', due to its elongated nose section.

 

Twelve P-47H were lost in operational crashes with the 358th Group resulting in 11 deaths, two after VE Day, and two (44-21134 on 13 April 1945 and 44-21230 on 16 April 1945) were shot down in combat, both by ground fire.

  

General characteristics:

Crew: 1

Length: 39 ft 2 in (11.96 m)

Wingspan: 40 ft 9 in (12.42 m)

Height: 14 ft 8 in (4.47 m)

Wing area: 300 ft² (27.87 m²)

Empty weight: 10,000 lb (4,535 kg)

Loaded weight: 13,300 lb (6,032 kg)

Max. takeoff weight: 17,500 lb (7,938 kg)

 

Powerplant:

1× Chrysler XIV-2220-2 sixteen-cylinder inverted Vee liquid-cooled engine, rated at 2.450 hp.

 

Performance:

Maximum speed: 503 mph at 30,000 ft (810 km/h at 9,145 m)

Range: 920 mi combat, 2.175 ml ferry (1.480 km / 3.500 km)

Service ceiling: 43,000 ft (13,100 m)

Rate of climb: 3,120 ft/min (15.9 m/s)

Wing loading: 44.33 lb/ft² ()

Power/mass: 0.19 hp/lb (238 W/kg)

 

Armament:

8× .50 in (12.7 mm) M2 Browning machine guns (3.400 rounds)

Up to 2,500 lb (1,134 kg) of bombs, drop tanks and/or 10× 5 in (127 mm) unguided rockets

  

The kit and its assembly:

I had the (X)P-47H on the agenda for some time, and even the respective MPM kit stashed away. But it took some time to start this project - one reason actually being the, well, crudeness of the MPM offering. Anyway, I wanted to build a service aircraft, and I wondered how this would have looked like, way beyond 1944? That brought me towards the late bubble canopy versions of the P-47D - and suddenly the idea was born to convert the XP-47H into a respective service aircraft which would not only carry the Chrysler XIV-2220-1 V16 engine, but also other improvements of the type. This eventually led to the decision to make this build a kitbash, as a spine implantation would be the easiest way to incorporate the lowered back - or so I thought...

 

I chose the ancient Heller P-47(N) as donation kit. Not because it was “good”, it just had the right ingredients and was cheap and easy to procure. What sounded like a simple plan turned into a twisted route to vague success. I took the front fuselage and the lower belly from the MPM kit, as well as the horizontal stabilizers and mated it with the upper and rear fuselage of the Heller Thunderbolt. This could have been easy, if both kits would not have had different fuselage diameters - the Heller kit is about 1mm too narrow, even though the length is fine. In order to compensate, I built two new fuselage halves from the salvaged pieces, and once these were stable and more or less sanded even, put together. Inside, the cockpit was taken from the Heller kit, but the seat comes from the MPM kit, and a pilot figure was added. Another problem is the fact that the MPM kit features engraved panel lines, while the Heller kit has old school, raised details and lots of rivets.

The propeller from the MPM kit is a joke, so I built a replacement from scratch - from a drop tank front half from an ancient Revell F4U, and the individual propeller blades were taken from an Italeri F4U. Inside the fuselage, a styrene tube was implanted which holds the new propeller on a metal axis, so it can spin freely.

 

Other personal mods include lowered flaps and the large cooler intake was opened, with foamed styrene placed inside which mimics some mesh. The same method was also used inside of the intercooler outlets (primarily in order to block any light from shining through). Inside of the landing gear wells I added some structure made from styrene profiles.

 

Another bigger challenge was the wing attachment - Heller and MPM kit differ considerably in this aspect, so that swapping parts is not easy. The MPM kit has the wing roots molded onto the fuselage halves, while the Heller wings are, more or less, directly attached to the fuselage. As a consequence the Heller wings hold the complete landing gear wells, while the MPM solution has divided sections. I decided to get rid of the MPM wing roots, about 3mm of material, and onto these stubs the Heller wings were attached. The landing gear came from the Heller kit, but the main wheels come from a (new) Revell Me 262 - both MPM and Heller parts are not recommended for serious use... Finally, the many exhausts and cooler flaps were either sanded away and replaced by scratched parts, or added - e. g. the vents behind the cockpit. While the Heller kit features bomb and missile hardpoints under the wings I decided to leave them away - this is supposed to be a fast interceptor, not a train-hunting plough.

  

Painting and markings:

As this was to be a very late WWII aircraft, NMF was certain, and I wanted to place the service P-47H into the European conflict theatre, where its speed would IMHO be best used against German jet threats. I wanted a colorful aircraft, though, and settled for a machine of the 358th FG. This group actually flew Thunderbolts in the 365-367th Squadrons, and I found several profiles of these gaudy things.

Common to all of them was an orange tail and a dark blue back, while the engine cowling would be decorated with a red front and the air outlets would carry bands in red, white and blue, with lots of tiny stars sprinkled upon. Furthermore, I found specimen with white cowlings behind the red front end, or even yellow cowlings. Pretty cool.

 

I tried to mimic this look. The model was basically painted with Aluminum Metallizer (Humbrol 27002) overall. The effect is really good, even without rubbing treatment. Some panels were contrasted with Aluminium Plate and Polished Steel Metallizer (Modelmaster), as well as with Aluminum (Humbrol 56, which is rather a metallic grey). The latter was also used on the landing gear. The anti-glare panel in front of the cockpit was painted with Olive Drab (ANA 613 from Modelmaster).

 

Since there is no air intake opening on the inline engine I decided to paint the spinner in bright red (Humbrol 19), and tried to incorporate the white and blue theme with stars decoration to the rest of the nose. As a convenient coincidence, I found decals from an Italeri B-66 in the stash: it features a version with dark blue jet air intake decorations in the right size, colors and style for what I had been looking for. So, instead of painting everything by hand I decided to incorporate this decal option.

The area behind the spinner was painted white and then the B-66 decals applied to the front flanks. The radiator air intake scoop had to be cut out, but the overall size and shape were a very good match. Even the transition into the blue spine and cockpit area worked well!

The tail was painted with Humbrol 18, later some shading with Humbrol 82 was added. The blue spine was done with a mix of Humbrol 104 and 15 (Oxford Blue and Midnight Blue) - not a perfect match for the B-66 decal colors, but after some dirt and weathering these differences would blur.

 

Cockpit interior was painted in Humbrol 159 (Khaki Drab) and Zinc Chromate Green from Model Master. The landing gear wells received a chrome yellow primer (Humbrol 225 - actually RAF Mid Stone but a perfect match for the task) finish.

 

For weathering the kit received a rubbing treatment with grinded graphite, which adds a dark, metallic shine and emphasizes the kit’s raised panel lines. Some dry painting with Aluminum was added, too, simulating chipped paint on the leading edges. I also added some oil stains around the engine, and serious soot stains at the exhaust.

 

Decals were, beyond the B-66 decoration, puzzled together. The aircraft' code 'CH-F[bar]' is another exotic twist, in two ways. The bar under the letter marks a second use of that code within the squadron, and as a difference from normal code placement (normally exclusively on the fuselage) I placed the aircraft's individual code letter on the fin, a practice on some P-51s and a consequence of the relatively large letter decals.

 

The nose art is a fictional puzzle, consisting of a Czech MiG-21 pin-up from the Pardubice '89 meeting. The “Ohio Express” tag comes from a Tamiya 1:100 F-105 Thunderchief. A neat combination that even matches the overall colors well!

 

As a final step, a coat of semi matt acrylic varnish was applied, with the exception of the anti glare panel, which became purely matt.

  

A better XP-47H? Hard to tell, since this kitbashing was a messy and rather crude work, so the overall finish does not look as good as I hoped for. But the lowered spine and the fin root extension adds to a fast look of this thing, more elegant (if that's possible in this case?) than the Razorback prototypes. I can't help, but the finished article looks like an Evel Knievel stunt vehicle? The red spinner looks a bit odd, but I'll leave it this way.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Soviet Laboratory of High-Speed Automobiles (LSA ChADI, today the Chardiv National Automobile and Highway University) was founded in 1953. One of the laboratory’s founders was Vladimir Nikitin, a famous racer not only inside the Soviet Union but also around the world. The main purpose of Vladimir Nikitin’s of was to build the fastest car in the world. This idea of creating race cars became the purpose of the laboratory and has been continued by students of Nikitin throughout the years, with research and prototypes in various fields of car propulsion.

 

The first car created in LSA by students was ChADI 2 in 1961. The body of the car was made of fiberglass, the first time that this material was used for a car body in the Soviet Union. This technology was improved and later used in mass-produced cars. Another famous LSA car was ChADI 7. To create it, Nikitin and his students used airplane wing elements as car body material and used the engine from a helicopter to power it. The highest speed of ChADI 7 – 400 kilometers per hour – was recorded on an airport runway near Chardiv in 1968, and it was at that time the fastest car in the Soviet Union, setting the national land speed record.

 

After this successful vehicle, Vladimir Nikitin started a new, even more ambitious project: a speed record car with the jet engine from a high performance airplane! The name of this project was ChADI 9, and it was ambitious. This time Nikitin and his team used a Tumansky RD-9 turbojet engine with a dry thrust of 25.5 kN (5,730 lbf), the same engine that powered the supersonic Mikoyan-Gurewich MiG-19 fighter plane. He expected that this needle-shaped car would be able to break the absolute land speed record, which meant supersonic speed at level zero of almost 1.200 kilometers an hour. The car was finished in 1981, but unfortunately ChADI 9 never participated in any race and no official top speed result was ever recorded. This had initially a very practical reason: in the 1980’s there were simply no tires in the USSR that could be safely used at the expected speeds in excess of 400 km/h, and there was furthermore no track long enough for a serious test drive in the Soviet Union! In consequence, ChADI 9 had to be tested on the runway of a military airport in the proximity of Chardiv, outfitted with wheels and tires from a MiG-19, but these were not ideal for prolonged high speeds. Film footage from these tests later appeared in a 1983 movie called “IgLa”.

The Automotive Federation of the United States even invited ChADI 9 to participate in an official record race in the USA, but this did not happen either, this time for political reasons. Nevertheless, the main contribution of this car was gathering experience with powerful jet engines and their operations in a ground vehicle, as well as experience with car systems that could withstand and operate at the expected high levels of speed, and the vehicle was frequently tested until it was destroyed in high speed tests in 1988 (see below).

 

ChADI 9 was not the end of Nikitin’s strife for speed (and the prestige associated with it). The know-how that the design team had gathered in the first years of testing ChADI 9 were subsequentially integrated into the LSA’s ultimate proposal not only to break the national, but also the absolute land speed record: with a new vehicle dubbed ChADI 9-II. This car was a completely new design, and its name was deliberately chosen in order to secure project budgets – it was easier to gain support for existing (and so far successful) projects rather than found new ones and convince superior powers of their value and success potential.

 

ChADI 9-II’s conceptual phase was launched in 1982 and it was basically a scaled-up evolution of ChADI 9, but it featured some significant differences. Instead of the RD-9 turbojet, the new vehicle was powered by a much more potent Tumansky R-25-300 afterburning turbojet with a dry thrust of 40.21 kN (9,040 lbf) and 69.62 kN (15,650 lbf) with full afterburner. This new engine (used and proven in the MiG-21 Mach 2 fighter) had already been thoroughly bench-tested by the Soviet Laboratory of High-Speed Automobiles in 1978, on an unmanned, tracked sled.

However, the development of ChADI 9-II and its details took more than two years of dedicated work by LSA ChADI’s students, and in 1984 the design was finally settled. The new vehicle was much bigger than its predecessor, 44 ft 10 in long, 15 ft 6¾ in wide, and 9 ft 10¾ in high (13.67 m by 4,75 m by 3,02 m), and it weighed around 9,000 lb (4 t). Its construction was based on a steel tube frame with an integrated security cell for the driver and an aluminum skin body, with some fibre glass elements. While ChADI 9’s slender cigar-shaped body with a circular diameter and the tricycle layout were basically retained, the front end of ChADI 9-II and its internal structure were totally different: instead of ChADI 9’s pointed nose, with the cockpit in the front and ahead of the vehicle’s front wheel and a pair of conformal (but not very efficient) side air intakes, ChADI 9-II featured a large, single orifice with a central shock cone. A small raked lower lip was to prevent FOD to the engine and act at the same time as a stabilizing front spoiler. The driver sat under a tight, streamlined canopy, the bifurcated air intake ducts internally flanking the narrow cockpit. Two steerable front wheels with a very narrow track were installed in front of the driver’s compartment. They were mounted side by side on a central steering pylon, which made them look like a single wheel. Behind the cockpit, still flanked by the air ducts, came two fuel tanks and finally, after a chamber where the air ducts met again, the engine compartment. Small horizontal stabilizers under the cockpit, which could be adjusted with the help of an electric actuator, helped keeping the vehicle’s nose section on the ground. Two small air brakes were mounted on the rear fuselage; these not only helped to reduce the vehicle’s speed, they could also be deployed in order to trim the aerodynamic downforce on the rear wheels. The latter ware carried on outriggers for a wide and stable track width and were covered in tight aerodynamic fairings, again made from fibre glass. The outriggers were furthermore swept back far enough so that the engine’s nozzle was placed in front of the rear wheel axis. This, together with a marked “nose-down” stance as well as a single swept fin on the rear above the afterburner nozzle with a brake parachute compartment, was to ensure stability and proper handling at expected speeds far in excess of 600 km/h (372 mph) without the use of the engine’s afterburner, and far more at full power.

 

Construction of ChADI 9-II lasted for more than another year, and in May 1986 the vehicle was rolled out and ready for initial trials at Chardiv, this time on the Chardiv State Aircraft Manufacturing Company’s runway. These non-public tests were successful and confirmed the soundness of the vehicle’s concept and layout. In the course of thorough tests until July 1987, ChADI 9-II was carefully pushed beyond the 400 km/h barrier and showed certain potential for more. This was the point when the vehicle was presented to the public (it could not be hidden due to the noisy trials within Chardiv’s city limits), and for this occasion (and marketing purposes) ChADI 9-II received a flashy livery in silver with red trim around the air intake and long the flanks and was officially christened with the more catchy title “„скорость“” (Skorost = Velocity).

 

Meanwhile, a potential area for serious high-speed trials had been identified with Lake Baskunchak, a salt sea near the Caspian Sea with flat banks that resembled the Bonneville Salt Flats in the USA. Lake Baskunchak became the site of further tests in 1988. Initially scheduled for May-July, the tests had to be postponed by six weeks due to heavy rain in the region, so that the sea would not build suitable dry salt banks for any safe driving tests. In late June the situation improved, and „скорость“ could finally take up its high speed tests.

 

During the following weeks the vehicle was gradually taken to ever higher speeds. During a test run on 8th of September, while travelling at roundabout 640 km/h (400 mph), one of the tail wheel fairings appeared to explode and the ensuing drag differences caused heavy oscillations that ended in a crash at 180 km/h (110 mph) with the vehicle rolling over and ripping the left rear wheel suspension apart.

The driver, LSA student and hobby rally driver Victor Barchenkov, miraculously left the vehicle almost unscathed, and the damage turned out to be only superficial. What had happened was an air pressure congestion inside of the wheel fairing, and the increasing revolutions of the wheels beyond 600 km/h caused small shock waves along the wheels, which eventually blew up the fairing, together with the tire. This accident stopped the 1988 trials, but not the work on the vehicle. Another disaster struck the LSA ChADI team when ChADI 9, which was still operated, crashed in 1988, too, and had to be written off completely.

 

In mid-1989 and with only a single high speed vehicle left, LSA team appeared again with „скорость“ at the shores of Lake Baskunchak – and this time the weather was more gracious and the track could be used from late June onwards. Analyzing last year’s accident and the gathered data, the vehicle had undergone repairs and some major modifications, including a new, anti-corrosive paintjob in light grey with red and white trim.

The most obvious change, though, was a completely re-shaped nose section: the original raked lower air intake lip had been considerably extended by almost 5 feet (the vehicle now had a total length of 49 ft 1 in/14,98 m) in order to enhance the downforce on the front wheels, and strakes along the lower nose ducted the airflow around the front wheels and towards the stabilizing fins. The central shock cone had been elongated and re-contoured, too, improving the airflow at high speeds.

New tireless all-aluminum wheels had been developed and mounted, because pressurized rubber tires, as formerly used, had turned out to be too unstable and unsafe. The central front wheels had received an additional aerodynamic fairing that prevented air ingestion into the lower fuselage, so that steering at high speeds became safer. The aerodynamic rear wheel fairings had by now been completely deleted and spoilers had been added to the rear suspension in order to keep the rear wheel on the ground at high speeds.

 

This time the goal was to push „скорость“ and the national land speed record in excess of 800 km/h (500 mph), and step by step the vehicle’s top speed was gradually increased. On August 15, an officially timed record attempt was made, again with Victor Barchenkov at the steering wheel. The first of the two obligatory runs within an hour was recorded at a very promising 846.961 km/h (526.277 mph), but, at the end of the second run, „скорость“ veered off and no time was measured. Even worse, the vehicle lost its parachute brakes and went out of control, skidding away from the dry race track into Lake Baskunchak’s wet salt sludge, where it hit a ground wave at around 200 mph (320 km/h) and was catapulted through the air into a brine pond where it landed on its right side and eventually sank. Again, pilot Victor Barchenkov remained mostly unharmed and was able to leave the car before it sank – but this fatal crash meant the end of the „скорость“ vehicle and the complete KhAGI 9-II project. Furthermore, the break-up of the Soviet Union at the same time prevented and further developments of high speed vehicles. The whereabouts of the „скорость“ wreck remain unclear, too, since no official attempt had been made to save the vehicle’s remains from Lake Baskunchak’s salt swamps.

  

The kit and its assembly:

This is another contribution to the late 2018 “Racing & Competition Group Build” at whatifmodelers.com. Since I primarily build aircraft in 1:72 scale, building a land speed record (LSR) vehicle from such a basis appeared like a natural choice. A slick streamliner? A rocket-powered prototype with Mach 1 potential? Hmmm… However, I wanted something else than the typical US or British Bonneville Salt Flats contender.

Inspiration struck when I remembered the real world high speed vehicle projects of LSA ChAGI in the former USSR, and especially the ill-fated, jet-powered ChADI 9, which looked a lot like Western, rocket-powered absolute LSR designs like The Blue Flame or Wingfoot Express 2. Another inspiration was a contemporary LSR vehicle called North American Eagle – basically a wingless F-104 Starfighter, put on wheels and sporting a garish, patriotic livery.

 

With this conceptual basis, the MiG-21 was quickly identified as the potential starting basis – but I wanted more than just a Fishbed sans wings and with some bigger wheels attached to it. I nevertheless wanted to retain the basic shape of the aircraft, but change the rest as good as possible with details that I have learned from reading about historic LSR vehicles (a very good source are the books by German author and LSR enthusiast Ferdinand C. W. Käsmann, which have, AFAIK, even been translated into English).

 

At the model’s core is a contemporary KP MiG-21MF, but it’s a hideous incarnation of the venerable Kovozávody Prostějov mold. While the wheels and the dashboard of this kit were surprisingly crisp, the fuselage halves did hardly match each other and some other parts like the landing gear covers could only be described as “blurred blobs”. Therefore it was no shame to slice the kit up, and the resulting kitbash with many donor parts and scratching almost became a necessity.

 

The MiG-21 fuselage and cockpit were more or less retained, the landing gear wells covered and PSR-ed. Fin, spine and the ventral stabilizer were cut away, and the attachment points for the wings and the horizontal stabilizers blended into the rest of the fuselage. Actually, only a few parts from the KP MiG-21 were eventually used.

 

The original shock cone in the air intake was used, but it was set further back into the nose opening – as an attachment point for a new, more organic shock cone which is actually the rear end of a drop tank from an Airfix 1:72 P-61 Black Widow. This detail was inspired by a real world benchmark: Art Arfons’ home-built “Green Monster” LSR car. This vehicle also inspired the highly modified air intake shape, which was scratched from the tail cone from a Matchbox 1:72 Blackburn Buccaneer – the diameter matched well with the MiG-21’s nose! With the new nose, I was able to retain the original MiG-21 layout, yet the shape and the extension forward changed the overall look enough to make it clear that this was not simply a MiG-21 on wheels.

 

With the spine gone, I also had to integrate a different, much smaller canopy, which came from an 1:144 Tornado. The cockpit opening had to be narrowed accordingly, and behind the canopy a new spine fairing was integrated – simply a piece from a streamlined 1:72 1.000 lb bomb plus lots of PSR.

Inside of the cockpit, a simpler seat was used, but the original cockpit tub and the dashboard were retained.

The large MiG-21 fin was replaced with a smaller piece, left over from an Amodel Kh-20 missile, with a scratched brake parachute fairing (cut from sprue material) placed under its rear. The exhaust nozzle was replaced, too, because the fit of the KP MiG-21’s rear end was abysmal. So I cut away a short piece and added an afterburner nozzle from a vintage 1:72 F-100, which fits well. Inside, the part’s rear wall was drilled open and extended inwards with a styrene tube.

 

The wheels of the vehicle come from an 1:72 Hasegawa “Panther with Schmalturm” tank kit – it comes not only with two turrets, but also with a second set of simplified track wheels. These had IMHO the perfect size and shape as massive aluminum wheels for the high speed vehicle.

For the front wheels, I used the thinner outer Panther wheels, and they were put, closely together, onto a central suspension pylon. This received a new “well” in the forward fuselage, with an internal attachment point. In order to streamline the front wheel installation (and also to change the overall look of the vehicle away from the MiG-21 basis), I added a scratched an aerodynamic fairing around it. This was made from tailored styrene strips, which were later filled and blended into the hull with putty.

 

The rear suspension was also fully scratched: the outriggers were made from styrene profiles while the wheel attachments were once part of an 1:35 tank kit suspension – I needed something to hold the three struts per side together. These parts look a bit large, but the vehicle is, after all, a Soviet design, so a little sturdiness may not be wrong, and I simply did not want to stick the wheels directly onto the outriggers. The rear wheels (in this case, the wider inner Panther track wheels with a central hub cover were used) also received a stabilizing notch around the contact surface, in an attempt to make them look slimmer than they actually are.

 

Final touches included the chines under the nose as well as spoilers on the rear suspension (both made from styrene profiles), and I added a pitot made from wire to the original MiG-21 angle of attack sensor fairing.

 

As an addition outside the model itself I also created a display base for the beauty pics, since I did not have anything at hand that would resemble the vastness of a flat and dry salt sea. The base is an 18x12” MDF board, on top of which I added a thin coat of white tile grout (which I normally use as a snow placebo, instead of plaster, which tends to absorb humidity over time and to become yellow). While the stuff was still wet I sprinkled some real salt onto the surface and wetted the whole affair with water sprays – hoping to create a flat yet structured surface with some glitter reflexes. And it actually worked!

  

Painting and markings:

I am not certain how ChADI 9 was painted (I assume overall silver), but I wanted for „скорость“ a little more color. Being a child of the Soviet era, red was a settled design element, but I thought that an all-red vehicle might have looked too cheesy. Other colors I considered were orange or white with blue trim, but did not find them to be appropriate for what I was looking. Eventually, I added some Russian Utilitarianism in the form of light grey for the upper hull (Humbrol 166, RAF Light Aircraft Grey), and the red (Humbrol 19) as a dark contrast around the complete air intake as well as the shock cone (somewhat inspired by the Green Monster #15 LSR vehicle), and then extended backwards into a narrowing cheatline along the flanks, which emphasizes the vehicle’s slender hull. For some more contrast between the two basic tones I later added thin white borders between them created with 2mm white decal stripes from TL Modellbau. Around the hull some bright red (Humbrol 238 Red Arrows Red) highlights as warning signs were added.

 

The vehicle’s afterburner section was painted with Modelmaster Steel Metallizer, the Panther wheels became Aluminum (Revell 99) with a black ink wash. Some black ink was also applied to the jet nozzle, so that the details became more pronounced, and some grinded graphite was used to enhance the burnt metal effect.

 

Since this would rather be an experimental car built and operated by a high school institute, and also operated in the Soviet Union, flashy sponsor markings would not be appropriate. Therefore I created some fictional marking at home with the help of PC software and printed them by myself. These designs included a fictional logo of the ChADI institute itself (created from a car silhouette drawing) and a logo for the vehicle’s title, “„скорость““. The latter was created from the cyrillic lettering, with some additions like the vehicle’s silhouette.

Unfortunately the production process for the home-made decals did not work properly – when coating the prints with gloss acrylic varnish the printer ink started to dissolve, bleeding magenta, so that the decals would look as if there was a red halo or glow around the otherwise black motifs. Thanks to the use of red in the vehicle’s overall design this flaw is not too apparent, so I stuck with the outcome and applied the decals to the car.

Beyond these basic markings, many stencils were added, including dull red inscriptions from an Italeri MiG-37 “Ferret” kit – finally, I found an expedient use for them! The Soviet flags on the fin came from an 1:144 Tu-144 airliner Braz Decal aftermarket sheet.

Finally, some panel lines were drawn onto the hull with a soft pencil and then the model was sealed with Italeri semi-gloss acrylic varnish. Just the black anti-glare panel in front of the windscreen became matt and the metallic rear section was left in “natural” finish.

  

I am very pleased with the outcome – the „скорость“ looks purposeful and does IMHO blend well into the line of spectacular USA and UK jet/rocket car designs that broke the 800 km/h barrier. I also find that, even though the MiG-21 ancestry is certainly there, the vehicle looks different enough so that the illusion that it was designed along the jet fighter’s lines (and not converted from one, like the real world “North American Eagle” which was built from an F-104 Starfighter) works well. I also think that the vehicle’s livery works well – it looks quite retro for a vehicle from the late Eighties, but that just adds to the “Soviet style”. An interesting project, outside of my normal comfort zone. :D

1 2 3 4 6 ••• 79 80