View allAll Photos Tagged efficient.
The morning sunrise in Condobolin in far western NSW starts to warm up the town as VL362, VL353 and GL109 shunt 8890 back onto the mainline, having stabled the previous night in the yard after traveling from Broken Hill. The train consisted of CQMY wagons being transferred from Bowmans in South Australia to Bathurst and was operated by Sydney Rail Services.
The engines would travel light engine to Goulburn as D890 after dropping the wagons off the following day.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 & 2.5-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engin:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
Evolution models:
2.5-16 Evolution II
With the debut of the BMW M3 Sport Evolution, Mercedes' direct competitor, it became obvious that the 2.5-16 needed a boost for the circuit. In March 1989, the 190 E 2.5-16 Evolution debuted at the Geneva Auto Show. The Evo I, as it came to be called, had a new spoiler and wider wheel arches. Many changes were made to under-the-skin components such as brakes and suspension. There was a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. All were intended to allow the Evolution cars to be even more effective round a track.
The Evo I's output is similar to the 202 bhp (151 kW) of the "regular" 2.5-16. However this car had a redesigned engine of similar capacity but, most importantly, a shorter stroke and bigger bore which would allow for a higher rev limit and improved top-end power capabilities. Additional changes stretch to "rotating masses lightened, lubrication improved and cam timing altered". Cosworth also list a project code "WAC" for the development of the short-stroke Evolution engine.
Only 502 units of the Evolution model were produced for homologation in compliance with DTM rules. For those customers desiring even more performance, a PowerPack option engineered by AMG was available for DM 18,000. The PowerPack option included hotter camshafts, a larger diameter throttle body, more aggressive ignition and fuel management as well as optimization of the intake and exhaust systems. The net result was an additional 30 bhp (22 kW).
In March 1990, at the Geneva Auto Show, the 190 E 2.5-16 Evolution II was shown. With the success of the first Evolution model, this model's 502-unit production was already sold before it was unveiled.
The "Evo II" included the AMG PowerPack fitted to the same short-stroke 2.5 engine as the Evolution, as well as a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. An obvious modification to the Evolution II is a radical body kit (designed by Prof. Richard Eppler from the University of Stuttgart) with a large adjustable rear wing, rear window spoiler, and Evolution II 17-inch wheels. The kit served an aerodynamic purpose — it was wind tunnel tested to reduce drag to 0.29, while at the same time increasing downforce. Period anecdotes tell of a BMW executive who was quoted as saying "if that rear wing works, we'll have to redesign our wind tunnel." The anecdote claims that BMW did.
As mentioned 500 were made in "blauschwarz" blue/black metallic. But the last two, numbers 501 and 502 were made in astral silver.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.5-16 Evolution II sedan has been created for Flickr LUGNuts' 84th Build Challenge, our 7th birthday, - "LUGNuts Turns 7…or 49 in Dog Years", - where all the previous challenges are available to build to. In this case Challenge 57, - "From Mild to Wild", for vehicles that have been turned into something special out of the ordinary. And also challenge 33, - "Size Matters", - as a buddy challenge with Sirmanperson, who has produced the same 190E 2.5-16 Evolution II in 1:17 scale.
Baselland Transport [BLT] Route 10 combination Class Be 4/8 245 and Class Be 4/6 224 were recorded at Münchenstein Dorf. The branding on the leading tram unit is for IWB, a leading provider of renwable energy and energy efficiency.
All images on this site are exclusive property and may not be copied, downloaded, reproduced, transmitted, manipulated or used in any way without expressed written permission of the photographer. All rights reserved – Copyright Don Gatehouse
'Efficient', an Andrew Barclay 0-4-0 saddle tank (W/No.1598 built in 1918) shunting loaded bogie flat wagons at Shelton Steelworks during a photographic charter on 8th April 2000.
© Gordon Edgar - All rights reserved. Please do not use my images without my explicit permission
The loco is now at the Ribble Steam Railway, Preston and their website shows the following information:
'Efficient' was built at the Caledonia works of Andrew Barclay & Sons in Kilmarnock. It is a standard Barclay saddle tank with 14" x 22" cylinders and 3' 5" driving wheels. Painted in the Kilmarnock firms usual green lined livery and lettering, it spent it's entire working life at McKechnie Brothers' copper smelting works at Widnes. It shared the duties here with a smaller Barclay engine named 'Economic', which failed to live up to it's name and was scrapped in 1955. There were also two 100h.p. Sentinels as well.
When no longer required at the copper works 'Efficient' was purchased by the Liverpool Locomotive Preservation Group and moved to Seacombe in July 1969. From here, it worked the two Docker railtours in 1971 and 1972, double-headed with 'Lucy'. 'Efficient' moved to Southport in July 1973, where she had the distinction of being the first steam locomotive to enter the newly formed museum. She was fitted with a new inner firebox in 1981, and was a regular performer at Southport until the late 1990s when the site closed, eventually arriving at Preston on 27th July 1999. Efficient's last public steaming was in April 2000 as she took part in the closing celebrations at Shelton Steelworks in Stoke. A firm favourite amongst the crews at the museum, investigation was carried out during the summer of 2005 to bring the loco back into service.
Unfortunately, due to the extent of the work required on the boiler, she will have to wait her turn. She is on view in the museum in a 'as in industrial use' condition.
Some background:
Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.
The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.
In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.
Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.
The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.
At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.
General characteristics:
Accommodation: pilot only, in standard cockpit in main body
Overall Height: 18.2 meters
Overall Length: 7.6 meters
Overall Width: 12.6 meters
Max Weight: 39.8 metric tons
Powerplant & propulsion:
1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,
driving 2x main booster Thrusters and 12x vernier thrusters
Performance:
unknown
Armament:
None
Special Equipment and Features:
Standard all-frequency radar antenna
Standard laser long-range sensor
Ectromelia infrared, visible light and ultraviolet frequency sensor cluster
ECM/ECCM suite
The kit and its assembly:
I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.
The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).
I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!
But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.
Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.
However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.
Painting and markings:
Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.
Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.
The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.
The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?
Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.
A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D
Ligne N80 bus pelliculé pour l'occasion
Le premier jour de sa réédition pour cette saison 2022.
Ligne déjà présente en 2021.
Ligne N80 entre Vaulx-en-Velin la Soie et Grand Parc Miribel Jonage/Le Morlet en Direct.
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
Measurements 50 inches wide x 28 inches deep x 29 inches tall. Fully loaded we are at 65 inches long.
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
Heading down the A82 on the 926 to Glasgow is West Coast Motors 12310, one of the recent batch of Irizar i6s efficient integrals.
This coach wasn't tracking at all.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 & 2.5-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engin:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
Evolution models:
2.5-16 Evolution II
With the debut of the BMW M3 Sport Evolution, Mercedes' direct competitor, it became obvious that the 2.5-16 needed a boost for the circuit. In March 1989, the 190 E 2.5-16 Evolution debuted at the Geneva Auto Show. The Evo I, as it came to be called, had a new spoiler and wider wheel arches. Many changes were made to under-the-skin components such as brakes and suspension. There was a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. All were intended to allow the Evolution cars to be even more effective round a track.
The Evo I's output is similar to the 202 bhp (151 kW) of the "regular" 2.5-16. However this car had a redesigned engine of similar capacity but, most importantly, a shorter stroke and bigger bore which would allow for a higher rev limit and improved top-end power capabilities. Additional changes stretch to "rotating masses lightened, lubrication improved and cam timing altered". Cosworth also list a project code "WAC" for the development of the short-stroke Evolution engine.
Only 502 units of the Evolution model were produced for homologation in compliance with DTM rules. For those customers desiring even more performance, a PowerPack option engineered by AMG was available for DM 18,000. The PowerPack option included hotter camshafts, a larger diameter throttle body, more aggressive ignition and fuel management as well as optimization of the intake and exhaust systems. The net result was an additional 30 bhp (22 kW).
In March 1990, at the Geneva Auto Show, the 190 E 2.5-16 Evolution II was shown. With the success of the first Evolution model, this model's 502-unit production was already sold before it was unveiled.
The "Evo II" included the AMG PowerPack fitted to the same short-stroke 2.5 engine as the Evolution, as well as a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. An obvious modification to the Evolution II is a radical body kit (designed by Prof. Richard Eppler from the University of Stuttgart) with a large adjustable rear wing, rear window spoiler, and Evolution II 17-inch wheels. The kit served an aerodynamic purpose — it was wind tunnel tested to reduce drag to 0.29, while at the same time increasing downforce. Period anecdotes tell of a BMW executive who was quoted as saying "if that rear wing works, we'll have to redesign our wind tunnel." The anecdote claims that BMW did.
As mentioned 500 were made in "blauschwarz" blue/black metallic. But the last two, numbers 501 and 502 were made in astral silver.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.5-16 Evolution II sedan has been created for Flickr LUGNuts' 84th Build Challenge, our 7th birthday, - "LUGNuts Turns 7…or 49 in Dog Years", - where all the previous challenges are available to build to. In this case Challenge 57, - "From Mild to Wild", for vehicles that have been turned into something special out of the ordinary. And also challenge 33, - "Size Matters", - as a buddy challenge with Sirmanperson, who has produced the same 190E 2.5-16 Evolution II in 1:17 scale.
Just flowering
oh, oh
on my Smartphone the colors weren't so rich!
If we weren't so efficient at catching them, because they grow their entire life.
-----
Mittelenglisch nennt man die Form der englischen Sprache, die etwa zwischen dem 12. und der Mitte des 15. Jahrhunderts gesprochen wurde.
-
Sie teilen dieselbe bio-georaphische Klimaregion: Atlanisch.
Biogeographic Region: Atlantic
-
Das Altenglische entstand, als die Angeln, Jüten, Friesen und Sachsen sich ab ca. 450 in Britannien ansiedelten.
Altenglisch wurde ursprünglich mit Runen geschrieben, übernahm nach der Bekehrung zum Christentum jedoch das lateinische Alphabet, dem man einige Zeichen hinzufügte. So etwa wurde der Buchstabe Yogh aus dem Irischen übernommen, der Buchstabe ð (eth) war eine Abwandlung des lateinischen d, und die Buchstaben þ (thorn) und ƿ (wynn) stammen aus dem Fuþorc (der anglo-friesischen Variante der gemeingermanischen Runenreihe, dem älteren Fuþark).
Für Sprecher des modernen Englisch ist diese Sprachstufe ohne gezieltes Erlernen nicht mehr verständlich. Sie ist eine eng mit dem Friesischen und Niederdeutschen verwandte westgermanische Sprache und gehört der Gruppe der germanischen Sprachen an, einem Hauptzweig der indoeuropäischen Sprachfamilie.
Die angelsächsische Sprache spaltete sich ab dem 5. Jahrhundert vom kontinentalen Westgermanisch ab, als die Angeln, Sachsen, Friesen und Jüten sich in Britannien ansiedelten (Schlacht von Mons Badonicus). Vom 8. Jahrhundert an ist sie schriftlich belegt und erreicht um 1000 ein hohes Maß an Standardisierung (Spätwestsächsisch der „Schule von Winchester“).
Aus den vorher auf der Insel gesprochenen keltischen Sprachen übernahm das Angelsächsische nur sehr wenige Lehnwörter.
...
Durch die dänische und norwegische Einwanderung ab dem 8. Jahrhundert hat die englische Sprache gegenüber der altsächsischen Sprache auch zahlreiche nordgermanische Elemente integriert, die allerdings erst in den mittelenglischen Texten in größerer Zahl auftauchen, darunter neben einigen hundert anderen Wörtern so zentrale Begriffe wie sky, leg und das moderne Pronomen they.
Stärker noch als in der niedersächsischen Sprache wurden auch Elemente der lateinischen Sprache aufgenommen, insbesondere im Bereich des religiösen Wortschatzes.
Die Dialektsprecher auf dem Festland und der Insel konnten sich miteinander verständigen.
Einschnitt:
Mit der Eroberung Englands durch die französischen Normannen 1066
wurde die Sprache durch den französischen Einfluss aus der Normandie so sehr verändert, dass man sie ab diesem Zeitpunkt als mittelenglische Sprache bezeichnet.
...
Thema - you - they.
Um mehr zu sagen, ist die etymologische Seite dieses "Problems" sehr erhellend: Früher im Altenglischen war das ursprüngliche Wort für "Du" - "thou" - man findet es noch in alten sakralen Texten und Liedern. Und Ihr hieß ye- ye bezog sich also auf mehr als einen Anzuredenden.
Dann nach der normannischen Eroberung fand ein Einzug französischer Sprachelemente ins Englische statt, dies nennt sich Mittelenglische Zeit. "Thou" wurde langsam ersetzt durch "ye" da die französisch-höfische Sitte den Plural vorschrieb, um eine höherstehende Person anzusprechen, dies übertrug sich später auf gleichgestellte Personen.
Jedoch verblieb "thou" noch lange Zeit im Sprachgebrauch. Die Unterscheidung zwischen formaler und nicht-formaler Anrede kam von der üblich Anrede von Königen und anderen höfischen Adelspersonen im Plural. Das wurde schließlich weiter ausgedehnt, um jedwede höhergestellte Person oder Unbekannte mit dem Pluralwort "ye" anzureden. Denn dies wurde als höf-licher ! empfunden.
Das französische "tu" wurde als ein sehr intimes oder herablassendes Anredewort empfunden, einem Fremden gegenüber insbesondere als beleidigend. Im 18. Jahrhundert schrieb Samuel Johnson (ein sehr einflußreicher Gelehrter seiner Zeit, Autor, Essayist, Kritiker, Verfasser des ersten maßgeblichen Lexikons der Englischen Sprache) in seinem Werk: A Grammar of the English Tongue: "im zeremoniellen Sprachgebrauch..wird die zweite Person Plural für die zweite Person Singular verwendet..". Vergleichsweise schreibt The Merriam Webster Dictionary of English Usage, dass um 1650 herum bei den meisten Sprechern des südbritannischen Englisch "thou" unüblich geworden war, sogar im informalen Sprachgebrauch unter Freunden nicht mehr verwendet wurde.
Also wir erkennen: Das Wörtchen "thou" war veraltet, und das "ye" hat sich einfach als das gebräuchlichere Wort für "du", also die 2. Person Singular, eingeschlichen gehabt, weil man wohl zum einen sich dem Adel dadurch näher fühlte, also sich sozial aufgewertet sah, und die Gefahr, unhöflich zu sein, verringert wurde. Interessantes
Nebendetail:
auch heute gibt es in England noch einen Ort , wo das "thou" noch lebt im Sprachgebrauch:Lichfield, Staffordshire, wo Dr. Samuel Johnson geboren wurde. Und natürlich richtet sich das Verb nach dem Mehrzahlpronomen "ye", das "ye" das zum heutigen "you" verschmolzen ist!
de.wikipedia.org/wiki/Altenglisch
-
(Swedish name: Designradhuset) Energy efficient building with super insulation, primarily heated by radiated solar energy, heat produced by humans, household machinery, domestic electronic equipment and light fittings.
Built: 2017. Architect: Kjellgren Kaminsky Architecture.
www.kaminsky.se (website in Swedish)
en.wikipedia.org/wiki/Passive_solar_building_design
Valla neighbourhood in Linköping city. "Vallastaden 2017" was an urban living expo held in September 2017. Architecture, interior design, sustainability and lifestyle were all integral parts.
I’m going to put it out there – the LM is the most beautiful of Ferrari’s celestial 250 family of cars. In adding a sleek and aerodynamically efficient roof to the comparatively frumpy 250 P open prototype, Pininfarina created one of the most well-resolved automotive designs of the 20th Century.
Sure, the 250 GTO is the car every man and his dog covet the most, no doubt catalysed by its value. But where that car, a voluminous Gran Turismo, is as suited to continental cruising as it is the racetrack, the LM, with its highly-strung V12 mounted amidship, screams poise and purpose.
It’s a diminutive car, the LM. The ultra-short nose droops low and is perfectly countered by the voluptuous rear haunches, which swoop dramatically up and over the rear wheels before rising again into that delicate flick atop the Kamm tail. When Ferrari presented the LM (denoting Le Mans, its intended destination) at the Paris Motor Show in 1963, it had a shorter roof that stopped abruptly aft of the cabin, lending the car a rather unusual profile. The aerofoil that was subsequently added – and looks near identical to that found on the 250 GTO ’64, we might add – is both infinitely prettier and much more aerodynamic.
Even its spartan cockpit is worlds away from the quilted-leather-clad interior of the GTO. Seemingly wherever you look, there’s exposed aluminium, while the comically offset pedal box – itself a thing of beauty – ensures ingress and egress are nothing short of theatrical. The near-obsessive weight-saving measures are also clear to see – take the now-classic gearbox gate, for example, whose surround has been drilled to save a few extra grams. The details are glorious.
In spite of being a notoriously stubborn man, Enzo Ferrari, who’d once joked that ‘the horse pulls the cart’, simply could not sit by the wayside anymore. And so, in 1960, he unleashed the mid-engined 156 ‘Sharknose’ monoposto and the following year, dominated the Formula 1 championship with it. Encouraged by both the success and the concept, a sports car – the 250 P – followed in 1963 and proceeded to win the fabled 24 Hours of Le Mans, the first mid-engined car to do so.
The Le Mans Berlinetta was conceived as a ‘production’ car in a bid to generate sales. Ferrari’s plan was to homologate the car in the Grand Touring category, just as he had miraculously managed to do with the GTO – the FIA stipulated that a minimum of 100 cars were required to be built to satisfy the regulations, but everyone knew the actual GTO production numbers didn’t come close to half of that.
He wasn’t going to pull the wool over the officials’ eyes a second time, though. They vetoed his request and the LM was thus classed as a prototype. In retaliation (and probably fearing defeat), a livid Ferrari refused to campaign the car, which left privateers such as Luigi Chinetti’s North American Racing Team and Colonel Ronnie Hoare’s Maranello Concessionaires to pick up the mantle and put the LM on the map.
Incidentally, that brings us onto this particular 250 LM, chassis #5907. Colonel Ronnie Hoare took delivery of the car in July of 1964 and promptly put it to work in the prestigious 12 Hours of Reims, resplendent in his trademark red and Cambridge Blue colours. Driven by the stellar line up of Graham Hill and Jo Bonnier, #5907 took the overall victory. It won its next race, the Scott Brown Memorial at Snetterton, too, in the hands of Roy Salvadori. Later in the year, David Piper completed the car’s hat-trick of wins in 1964, dominating the Rang 9 Hours at Kyalami.
This 250 LM’s period success is indicative of the model’s competence as a long-distance racing car. Despite often competing against much quicker prototypes, the LM racked up some 33 victories, including at Spa, Zolder, Silverstone, and, most famously, Le Mans. We imagine Jochen Rindt and Masten Gregory’s 1965 Le Mans win felt like manna from heaven for the disgruntled Enzo Ferrari. It was his marque’s sixth straight victory in the greatest endurance race and his ninth overall. Sadly, no other Ferrari has won it since.
Given the Ferrari 250 LM’s heady cocktail of competition success, rarity (just 32 were built, making it rarer than the 250 GTO), and sheer beauty, it’s hardly surprising that values have skyrocketed in recent years. In Monterey in 2015, RM Sotheby’s sold the famous ex-Ron Fry car for 17.6m US dollars and several experts we consulted reckoned a good and straight example is worth well over 20m dollars today. What we find amazing is that a 250 GTO allegedly recently traded for over three times that, at 70m dollars.
Sure, the GTO has become something of an enigma, spoken about in hushed whispers and shrouded in mystery. And yes, it was dominant in the period and clinched Ferrari the GT titles in 1962, ’63, and ’64. But circumstances meant the LM was never allowed to compete as a GT car, which only prolonged the GTO's lifespan. We also accept that it’s a genuinely useable road car – something that can’t really be said of the LM. But, as we keep hearing, today’s market does its homework with ruthless dedication and characteristics such as provenance, rarity, competition history, and condition, are defining factors when it comes to the values of the ‘best of the best’. On paper, the LM is surely equal (or at least as near as makes no difference) to the GTO – regardless, the LM is a hell of a lot cheaper than a GTO. We’ll take two, please!
Four new, more energy-efficient cooling towers replaced five old ones atop Grand Central Terminal. In phase one, which occurred March 22-23, 2014, the rigging operation took 18 hours. Full installation was completed over the weekend of March 18, 2014.
Energy-efficient Towers Installed to Cool Grand Central
Photo: Metropolitan Transportation Authority / Patrick Cashin
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
"Black bears are efficient berry-eaters, consuming up to 30,000 berries a day in a good year. They gather berries quickly, using their sensitive, mobile lips and swallowing them whole. The berries enter a two-part stomach, which grinds the pulp off the seeds. The seeds pass through the digestive tract unbroken and able to germinate, making black bears important seed dispersers. Each summer, they spread the seeds of their favorite berries all over their home ranges."
www.bear.org/website/bear-pages/black-bear/foraging-a-foo...
"Black bears are omnivorous animals, but mostly eat vegetation and fruits. Despite their tough appearance and long teeth and claws, 85% of a black bear's diet comes from plants. They also like to eat honey and can rip open a whole tree to get into a beehive. Black bears' thick coats protect them from stinging bees, meaning they can eat the honeycombs as fast or as slowly as they like. At night, black bears in the Pacific Northwest fish for salmon in rivers. A few enterprising bears also venture into human-populated areas to steal from trashcans or campsites. In the fall, when they are preparing for hibernation, black bears eat lots of bugs like ants and bees for their protein. Black bears also sometimes catch baby deer, cows and moose, but they are more likely to try to steal carcasses from more active predators like wolves, coyotes and cougars. The extra proteins help them gain fat for their long, annual hibernation." From www.whatdobearseat
Yesterday, 5 September 2019, friend Pam and I had a great day out in Kananaskis. It had been just over two months since I drove myself out there, but Pam had been only two days ago. There were a few different places that she wanted to stop yesterday, and she was hoping to see a bear - preferably a Grizzly, but we were out of luck for that. However, we were lucky enough to see two Black Bears, which was such a treat.
Our day started off really well, leaving the city at 7:00 am. Driving along a backroad SW of the city, a small, rather cute, old barn was our first find. It was set back from the road and easily missed, so I'm glad I spotted it.
Further on, we came across a White-tailed Deer feeding in a field, and it looked so beautiful in the early morning sun. Normally, I don't get out this early and I know I miss that special light.
Going to have to finish description, etc. later ....
***UPDATE*** Matt is revamping an additional bedroom into a home office. The desk makes the room, an good Risom to get productive. Ha. Thanks guys.
Ok. I was dropping dimes today at the warehouse, bombing some stellar gritty natural light shots of various things. Flippin' Jens Risom is gonna be 99 years old this May, but his legacy will live forever. He designed this sweet desk with sensibility for the scale of this iconic Playboy chair. Put the two together and I go to a happy place. Thunder.
New Man Lion's City 12 CNG Efficient Hybride du réseau Lignes d'Azur de Nice sur la ligne 22
Entrée Cadam Centre Administratif et Carros Pagnol
Le 110804
Photo prise proche du Cadam.
Peu après son départ vers Carros.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The T-34, a Soviet medium tank, had a profound and lasting effect on the field of tank design. At its introduction in 1940, the T-34 possessed an unprecedented combination of firepower, mobility, protection and ruggedness. Its 76.2 mm high-velocity tank gun provided a substantial increase in firepower over any of its contemporaries while its well-sloped armour was difficult to penetrate by most contemporary anti-tank weapons. Although its armour and armament were surpassed later in the war, it has often been credited as the most effective, efficient and influential tank design of the Second World War.
The T-34 was the mainstay of Soviet armoured forces throughout the Second World War. Its design allowed it to be continuously refined to meet the constantly evolving needs of the Eastern Front: as the war went on it became more capable, but also quicker and cheaper to produce. Soviet industry would eventually produce over 80,000 T-34s of all variants, allowing steadily greater numbers to be fielded as the war progressed despite the loss of tens of thousands in combat against the German Wehrmacht. Replacing many light and medium tanks in Red Army service, it was the most-produced tank of the war, as well as the second most produced tank of all time (after its successor, the T-54/55 series). T-34 variants were widely exported after World War II, and even as recently as 2010, the tank has seen limited front-line service with several developing countries
One of the unusual and rather unknown operators of the T-34 was Austria. 25 tanks (some sources claim 27 or even 37) of the late T-34/85 variant came as a gift from (well, they were actually left behind by) the Soviet Union in 1955 when the Red Army left the country, meaning that the Austrian Bundesheer was re-established. These vehicles became the young army's initial backbone, until more modern equipment (e. g. M41 and M47 tanks procured from the USA and AMX-13/75 tanks from France) replaced them in frontline service. Due to their ruggedness and simplicity, they were kept in service, though - primarily for training, and some vehicles were in the 1970s integrated into hidden bunkers, defending strategically vital "security space zones".
A revival of the Austrian T-34/85 fleet came in the late Sixties, though, when the Austrian Army recognized a lack in long range attack capabilities (at 1.000 m range and more) against hardened targets like enemy tanks, paired with high mobility and low costs, similar to the German Jagdpanzer profile from WWII. At that time, Austria operated roundabout 50 Charioteer tanks with 83.4 mm guns in this role, but these British vehicles were outdated and needed a timely replacement.
Another limiting factor were severe budget restrictions. The eventual solution came from the Austrian company Saurer: a relatively simple conversion of the indigenous Saurer APC, armed with a version of the French AMX-13's FL-12 oscillating turret, armed with a powerful 105mm cannon, which had just become available in an export version. However, in order to bridge the new tank hunter's development time and quickly fill the defense gap, the Austrian T-34/85s were checked whether it was possible to modernize them with the new turret, too.
The first conversion was carried out by Saurer in 1963 and proved to be successful. Since the light FL-12 turret had a smaller bearing diameter than the old T-34/85 turret, the integration into the hull went straightforward with the help of a simple adapter ring. What made the conversion even simpler was the fact that the FL-12, with its integrated cannon and an automated loading system, was a complete, self-sufficient unit.
The French turret was only lightly armoured, since the tank was not supposed to engage heavily-armed enemies at close range. The turret's front armour protected the crew from 20mm armour-piercing rounds over its frontal arc, while all-round protection was against small arms bullets only. The commander was seated on the left of the turret and the gunner on the right. The commander was provided with seven periscopes and a periscopic sight. The commander's infrared night sight had a magnification of x6. The gunner had two observation periscopes, a telescopic sight and a one-piece lifting and swiveling hatch cover. Due to the design of the oscillating turret, all sights were always linked to the main and secondary armament (a standard NATO machine gun). For engaging targets at night, an infrared periscopic sight was provided for the commander. In order to simplify and lighten the tank, the T-34’s bow machine gun in the hull was deleted and its opening faired over and the crew was reduced to three.
The 105 mm gun could penetrate 360 mm of armour, and the internal magazines of 2x 6 shots allowed a very high rate of fire (up to 12 shots per minute), even though a crew member had to leave the tank in order to fill the magazines up again from the outside. Once the gun had been fired the empty cartridge cases were ejected out of the rear of the turret through a trapdoor hinged on the left. Beyond the 12 rounds in the turret, a further 42 rounds were stored in the tank's hull, primarily in a stowage rack for 30 shots where the former second crew member in the front hull had been placed, and a further twelve rounds in magazines at the turret’s base.
The T-34/85’s engine and transmission were not changed, since an update was beyond the conversion budget limit, but lighter “skeleton” wheels from Czech T-34 post-war production were introduced, so that the modified tank weighed roundabout 30 tons, 2 less than the standard T-35/85.
After highly successful field tests with the prototype in the course of 1963 and 1964, a further conversion program for 16 tanks was approved and carried out until early 1965. The modified tanks received the official designation T-34/105Ö and allocated to two tank battalions. Most of the time these tanks were only used for training purposes, though, in preparation of the arrival of the "real" tank hunter, the SK-105 "Kürassier" (Cuirassier) with almost identical weapon systems. The SK-105’s first prototype was eventually ready in 1967 and delivery of pre-production vehicles commenced in 1971, but teething troubles and many detail problems delayed the type's quick and widespread introduction. Lighter and much more agile than the vintage T-34s, it became a big success and was produced in more than 700 specimen, almost 300 of them for the Austrian Army and the rest for export (Argentina, Bolivia, Botswana, Brazil, Morocco and Tunisia). In consequence, the small T-34/105Ö fleet was soon retired and by 1976, when the Kürassier was in service and other, heavy tanks had become available, none of the converted tanks was still active anymore. Nevertheless, a few Austrian T-34s that had become part of the hidden bunker installations soldiered secretly on, the last ones were dug out of their positions and scrapped in 2007(!).
Specifications:
Crew: Three (commander, gunner, driver)
Weight: 29.7 t combat load
Length: 8.21 m (26 ft 10 ½ in) with turret forward
6.10 m (19 ft 11 ¾ in) hull only
Width: 3.00 m (9 ft 10 in)
Height: 2,74 m (8 ft 11 ½ in)
Suspension: Christie
Ground clearance: 0.4 m (16 in)
Fuel capacity: eight internal tanks, total capacity of 545 l (145 U.S. gal; 118 imp gal),
plus up to four external fuel drums à 90 l each (24 U.S. gal; 19.5 imp gal)
Engine:
Model V-2-34M 38.8 l V12 Diesel engine with 520 hp (370 kW) at 1.800 rpm
Transmission:
5 forward and 1 reverse gears
Armor:
16 - 45 mm steel (plus composite armour in the turret)
Performance:
Speed:
- Maximum, road: 58 km/h (36 mph)
- Cross country: up to 40 km/h (28 mph)
Operational range: 250 km (155) on streets with internal fuel only,
up to 330 km (250 mi) with four additional fuel drums
Power/weight: 17.5 hp/t
Armament:
1× 105 mm CN 105-57 rifled gun with a total 54 rounds, 12 of them ready in the turret's magazines
1× 7.62mm (0.3") co-axial NATO machine gun with 2.000 rounds
2× 2 smoke grenade dischargers
The kit and its assembly:
This weird, fictional combo was originally spawned by an Israeli idea: some vintage M4 Sherman tanks had been outfitted with the AMX-13's swiveling turrets and armed with French CN-75-50 75mm a cannon, creating the so-called "Isherman". I kept this concept in the back of my mind for a long time, with the plan to build one some day.
Then I came a couple of weeks ago across a picture on FlickR that showed a T-34/85 with Austrian markings. At first I thought that it had been a fictional museum piece in fake markings, but upon some legwork I found out that Austria had actually operated the T-34!
So, why not combine both ideas into a new and fictional one...? The rest was straightforward kitbashing: the FL-12 turret with a 105 mm cannon came from a Heller AMX-13 (a shaggy thing with dubious fit, but it was cheap) and for the chassis I tried the relatively new Zvezda T-35/85. The latter is actually a very crisp snap-fit kit, just some light flash here and there. Detail and proportions are very good, though, as well as fit. I was only surprised by the construction of the tracks, because it is a different approach from both of the traditional vinyl tracks or IP track segments. Instead, you get complete, rather thin and delicate IP tracks, and Zvezda expects the builder to bend them around the wheels and stick them between the wheels' halves during the construction process. You actually have to mount the “inner” half of the wheels first, then the track is attached to a locator pin on one of the main wheels, bent into shape, and finally the wheels' “outer” halves are added. Sounds complicated, and it actually is, and it also makes painting the whole running gear quite difficult, but it works – even though the result is IMHO not better than the traditional solutions.
The AMX-13 turret’s integration was easier than expected. Building the turret was a little complicated, because all side walls are separate and there are no locator pins or other aides for orientation. Some PSR became necessary to fill some minor gaps, but nothing dramatic. Mounting the AMX-13 turret to the T-34 hull was made easy through a very convenient design detail of the Zvezda kit: the T-34 comes with a separate turret ring that could be used as an adapter for the Heller turret. Three ejection/sprue residues inside of the ring could be used as a foundation for the AMX-13 turret, and the turret’s lower half/ring was, after some sanding to reduce the gap between the turret and the hull, was also glued onto the adapter. Worked like a charm, and the resulting combo looks very natural!
In order to improve the turret’s look I added a cloth seal between the lower and the upper, oscillating turret section, simulated with paper tissue drenched in thinned white glue (OOB the turret cannot be moved vertically at all). A similar seal was added at the barrel’s base.
Other changes were only minimal: the machine gun port in the front hull was sanded away and faired over, and I omitted the spare track links attached to the front hull. For a modernized look I gave the tank an additional pair of front lights as well as stoplights at the rear, scratched from styrene bits.
Painting and markings:
Basically a very simple affair, because there is ONLY one possible livery and color that suits an Austrian Bundesheer vehicle or item from the Seventies: RAL 7013 (Braungrau). This is a very ugly tone, though, "greenish, fresh mud" describes it well: a dull, brownish olive drab, but definitively not a green (like the omnipresent NATO tone Gelboliv RAL 6014, which was used by the German Bundeswehr until the standardized NATO three-tone camouflage was introduced around 1984). I organized a rattle can of this special color, since the tank model would receive a simple, uniform livery.
Due to the kit's , err, unique running gear construction, painting became a little complicated. I had to paint the hull and the (still) separate wheel parts in advance, so that the pre-painted elements could be assembled around the tracks (see above). The tracks themselves were painted with a cloudy mix of iron metallic, black and leather brown (Revell 99, 8 and 84). The turret was painted separately.
After the kit’s major sections had been assembled they received a light wash with a mix of highly thinned black with some red brown added, and the washing was immediately dabbed off of the surfaces so that most of the pigments ended up in recesses and around details, while the rest received an blurry, light dirt filter.
Once dry, I applied the decals. The tiny Austrian roundels come from a generic TL Modellbau sheet (never expected to find any use for them!), the tactical code comes from another tank kit sheet. In order to add some more highlights I also added some small, white markings on the fenders.
Then I gave the model an overall dry-brushing treatment with olive drab, medium grey and finally some ochre, just emphasizing details and edges.
Since the uniform livery appeared a bit dull to me, I decided to add a few camouflage nets to the hull, which also hide some weak points of the Zvezda kit, e.g. the missing rails along the hull. The nets were created from gauze bandages: small pieces (~1”x1”) of the material were dipped into a mix of white glue and olive drab acrylic paint and then carefully placed on hull, turret and barrel. Once dry, they were also dry-brushed.
As final steps, the kit was sealed with matt acrylic varnish (rattle can again) and I dusted the lower areas with a greyish-brown pigment mix, simulating dust and some mud crusts.
What started as a weird idea turned into a very conclusive what-if project – in fact, the T-34 with the French FL-12/44 turret does not look bad at all, and the Austrian colors and markings make this piece of fiction IMHO very convincing. Adding the camouflage nets was also a good move. They hide some of the details (e.g. the omitted bow machine gun station), but they liven up the rather clean and bleak exterior of the tank. I am positively surprised how good the T-34/105Ö looks!
Italian postcard by Bromostampa, Milano, no. 78.
Square-jawed, craggy-looking Jack Hawkins (1910-1973) was an English actor who worked on stage and in film from the 1930s until the 1970s. One of the most popular British film stars of the 1950s, he often played coolly efficient military officers in such films as The Cruel Sea (1953), Bridge on the River Kwai (1957), and Lawrence of Arabia (1962).
John Edward ‘Jack’ Hawkins was born in London in 1910. He was the youngest child to Thomas George Hawkins, a master builder and Phoebe (nee Goodman). He was educated at Wood Green’s Trinity County Grammar School, where, aged eight, he joined the school choir. By the age of ten by, his singing had developed so well that he had joined the local operatic society, making his stage debut in Patience by Gilbert and Sullivan. His parents enrolled him in the Italia Conti Academy and whilst he was studying there he made his London stage debut, when aged eleven, playing the Elf King in Where the Rainbow Ends, a Christmas pantomime that also included the young Noël Coward. The following year, aged 14, he played the page in a production of Saint Joan by George Bernard Shaw. Five years later he was in a production of Beau Geste alongside Laurence Olivier. By the age of 18, he appeared on Broadway as Second Lieutenant Hibbert in R. C. Sherriff’s Journey’s End, directed by James Whale. At 21, he was back in London playing a young lover in Autumn Crocus. He married his leading lady, Jessica Tandy. In the 1930s Hawkins' focus was on the stage. He worked in the companies of Sybil Thorndike, John Gielgud and Basil Dean. His performances included Port Said by Emlyn Williams (1931), Below the Surface by HL Stoker and LS Hunt (1932), Red Triangle by Val Gielgud (1932), Service by CI Anthony, for director Basil Dean (1933), One of Us by Frank Howard, As You Like It by William Shakespeare (1933) and Iron Flowers by Cecil Lewis (1933), with his wife Jessica Tandy. He did start appearing in films, predominantly ‘quota quickies’ of the time: including an uncredited bit role in the mystery Birds of Prey (Basil Dean, 1930), his first proper role in the sound version of Alfred Hitchcock's The Lodger (Maurice Elvey, 1932), starring Ivor Novello, the comedy The Good Companions (Victor Saville, 1933), and the romance Autumn Crocus (Basil Dean, 1934). Stage roles included Iron Mistress (1934) by Arthur Macrae; then an open air Shakespeare festival - As You Like It (1934) (with Anna Neagle), Twelfth Night (1934), and Comedy of Errors (1934). In the years leading up to the Second World War, he often worked with Gielgud, most notably in the 1940 production of Oscar Wilde’s The Importance of Being Earnest, in which Hawkins excelled in the role of Algernon Moncrieff. Films in the late 1930s included the comedy Beauty and the Barge (Henry Edwards, 1937) with Gordon Harker, the crime film The Frog (Jack Raymond, 1937), the war film Who Goes Next? (Maurice Elvey, 1938), and the crime film The Flying Squad (Herbert Brenon, 1940).
During World War II Jack Hawkins volunteered as an officer with the Royal Welch Fusiliers. He spent most of his military career arranging entertainment for the British forces in India. One of the actresses who came out to India was Doreen Lawrence who became his second wife after the war. During his military service he made The Next of Kin (Thorold Dickenson, 1942) for Ealing Studios. Hawkins left the army in July 1946. Two weeks later he appeared on stage in The Apple Cart at ten pounds a week. The following year he starred in Othello, to a mixed reception. Hawkins's wife became pregnant and he became concerned about his future. He decided to accept a contract with Alexander Korda for three years at £50 a week. Hawkins had been recommended to Korda by the latter's production executive, Bill Bryden, who was married to Elizabeth Allen, who had worked with Hawkins. The association began badly when Hawkins was cast in Korda's notorious flop Bonnie Prince Charlie (Anthony Kimmins, 1948) as Lord George Murray. However he followed it with a good role in the successful, highly acclaimed The Fallen Idol (1948) for Carol Reed. He played Detective Ames opposite Ralph Richardson. Also acclaimed was the war-time thriller The Small Back Room (1949), for Powell and Pressburger. Hawkins then impressed as the villain in State Secret (1950), for Sidney Gilliat with Douglas Fairbanks Jnr. He was hired by 20th Century Fox to support Tyrone Power and Orson Welles in an expensive historical epic, The Black Rose (Henry Hathaway, 1950). He made another film with Powell and Pressburger for Korda, The Elusive Pimpernel (1950), playing The Prince of Wales. Hawkins played the lead in The Adventurers (David MacDonald, 1951), shot in South Africa, then had a good role in another Hollywood-financed film shot in England, No Highway in the Sky (Henry Koster, 1951), with James Stewart. It was followed by a British thriller directed by and starring Ralph Richardson, Home at Seven (1952). In the spring of 1951 he went to Broadway and played Mercutio in a production of Romeo and Juliet with Olivia de Havilland. Hawkins became a star with the release of three successful films in which he played stern but sympathetic authority figures: Angels One Five (George More O'Ferrall, 1951), as a RAF officer during the war; The Planter's Wife (Ken Annakin, 1952), as a rubber planter combating communists in the Malayan Emergency with Claudette Colbert; and Mandy (Alexander Mackendrick, 1952), the gruffly, humane headmaster of a school for deaf children. All films ranked among the top ten most popular films at the British box office in 1952 and British exhibitors voted him the fourth most popular British star at the local box office.
Jack Hawkins consolidated his new status with The Cruel Sea (Charles Frend, 1953),. Suffering from lifelong real life sea sickness, he played the driven Captain Ericson of the Compass Rose, a naval officer during the war. Clive Saunders at BritMovie: “The film is a triumph as an unsentimental depiction of the ugly realities of war at sea, the hardships the crews go through, their highs and lows together, the sense of pride when the job is done. Hawkins is superb as the Captain of the Corvette, Saltash Castle, tasked with protecting the convoys, and gives a vivid portrayal of a man with the heavy responsibility of making life-or-death decisions that affect hundreds of his colleagues.” The Cruel Sea was the most successful film of the year and saw Hawkins voted the most popular star in Britain regardless of nationality. Malta Story (Alexander Mackendrick, 1953) was another military story, with Hawkins as an RAF officer in the Siege of Malta during the war. It too was a hit, the ninth most popular film in Britain in 1953. He had a guest role in Twice Upon a Time (1953) for Emeric Pressburger. The Seekers (Ken Annakin, 1954) was partly shot in New Zealand and cast Hawkins in a rare romantic role. It was followed by The Prisoner (Peter Glenville, 1955), an unconventional drama, playing the interrogator of a priest (Alec Guinness). None of these films were that successful but Hawkins was still voted the fifth biggest star at the British box office for 1954, and the most popular British one. Hawkins received a Hollywood offer to play a pharaoh in Land of the Pharaohs (Howard Hawks, 1955). He returned home to make an Ealing comedy, Touch and Go (Michael Truman, 1955), which was not particularly popular. He was more comfortably cast as a police officer in The Long Arm (Charles Frend, 1956) and a test pilot in The Man in the Sky (Charles Crichton, 1957). He was an insurance investigator in Sidney Gilliat's Fortune Is a Woman (1957). Hawkins's career received a major boost when given the third lead in The Bridge on the River Kwai (David Lean, 1957), supporting William Holden and Alec Guinness as Major Warden, the fervent demolition expert. This was a massive hit and highly acclaimed. Clive Saunders: “Hawkins was somewhat unlucky not to win either of the Best Supporting Actor Awards for his portrayal of the determined and indomitable explosives expert, played with the archetypal ‘stiff-upper-lip, jolly good show’ attitude of a British officer, intent on completing his mission at all costs.” Hawkins next played the lead role of Inspector George Gideon, the over-worked police detective in Gideon's Day/Gideon of Scotland Yard (John Ford, 1958). He had a good role as a double agent in a war film, The Two-Headed Spy (Andre de Toth, 1958) then was given another third lead in a Hollywood blockbuster Ben-Hur (William Wyler, 1959), playing the Roman soldier who befriends Charlton Heston. Melinda Hildebrandt sy Encyclopedia of British Film: “his most commanding turn of all, Quintus Arrius.” Ben-Hur was even more successful than Bridge on the River Kwai. In 1958, Hawkins was awarded the CBE (Commander of the Order of the British Empire) in the 1958 Queen's Birthday Honours List for his services to drama. He appeared as one of The Four Just Men (1959) in the Sapphire Films TV series for ITV, one of the most ambitious British TV series ever made. In sharp contrast to his conservative screen image, Hawkins was politically liberal, and an emotional man. One of his favourite films, the heist movie The League of Gentlemen (Basil Dearden, 1960), was considered quite groundbreaking for its time in its references to sex. The film was popular at the British box office. However, though initially sought for the role of a gay barrister in Victim (Basil Dearden, 1960), the ground-breaking film examining the persecution and blackmail of homosexuals. Reportedly, Hawkins turned it down fearing that it might conflict with his masculine image. The role was eventually played by Dirk Bogarde.
Sources: Clive Saunders (BritMovie), Melinda Hildebrandt (Encyclopedia of British Film), Hal Erickson (AllMovie), Dale O'Connor (IMDb), Wikipedia, and IMDb.
Joanne manages with a 20 sq ft kitchen just fine. She's got awesome tips on how
www.makingthishome.com/2009/01/06/joannes-small-kitchen-t...
London, England, Covent Garden, Christmas 2008, LED tubes decorate the Apple Market galleria in an interactive dispaly activated by shoppers' movements.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 & 2.5-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engin:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
Evolution models:
2.5-16 Evolution II
With the debut of the BMW M3 Sport Evolution, Mercedes' direct competitor, it became obvious that the 2.5-16 needed a boost for the circuit. In March 1989, the 190 E 2.5-16 Evolution debuted at the Geneva Auto Show. The Evo I, as it came to be called, had a new spoiler and wider wheel arches. Many changes were made to under-the-skin components such as brakes and suspension. There was a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. All were intended to allow the Evolution cars to be even more effective round a track.
The Evo I's output is similar to the 202 bhp (151 kW) of the "regular" 2.5-16. However this car had a redesigned engine of similar capacity but, most importantly, a shorter stroke and bigger bore which would allow for a higher rev limit and improved top-end power capabilities. Additional changes stretch to "rotating masses lightened, lubrication improved and cam timing altered". Cosworth also list a project code "WAC" for the development of the short-stroke Evolution engine.
Only 502 units of the Evolution model were produced for homologation in compliance with DTM rules. For those customers desiring even more performance, a PowerPack option engineered by AMG was available for DM 18,000. The PowerPack option included hotter camshafts, a larger diameter throttle body, more aggressive ignition and fuel management as well as optimization of the intake and exhaust systems. The net result was an additional 30 bhp (22 kW).
In March 1990, at the Geneva Auto Show, the 190 E 2.5-16 Evolution II was shown. With the success of the first Evolution model, this model's 502-unit production was already sold before it was unveiled.
The "Evo II" included the AMG PowerPack fitted to the same short-stroke 2.5 engine as the Evolution, as well as a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. An obvious modification to the Evolution II is a radical body kit (designed by Prof. Richard Eppler from the University of Stuttgart) with a large adjustable rear wing, rear window spoiler, and Evolution II 17-inch wheels. The kit served an aerodynamic purpose — it was wind tunnel tested to reduce drag to 0.29, while at the same time increasing downforce. Period anecdotes tell of a BMW executive who was quoted as saying "if that rear wing works, we'll have to redesign our wind tunnel." The anecdote claims that BMW did.
As mentioned 500 were made in "blauschwarz" blue/black metallic. But the last two, numbers 501 and 502 were made in astral silver.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.5-16 Evolution II sedan has been created for Flickr LUGNuts' 84th Build Challenge, our 7th birthday, - "LUGNuts Turns 7…or 49 in Dog Years", - where all the previous challenges are available to build to. In this case Challenge 57, - "From Mild to Wild", for vehicles that have been turned into something special out of the ordinary. And also challenge 33, - "Size Matters", - as a buddy challenge with Sirmanperson, who has produced the same 190E 2.5-16 Evolution II in 1:17 scale.
10.11.14
Well this is interesting, and I don't even like it that much. I defiantly feel the obligation to produce content every day. And I don't want to produce really bad content at that. I feel like this is passible for my standards. I can only justified that because it required effort. I'd do something like this again, but if I do I'll know how to do it better and more efficiently.
Eleven supremely fit and ruthlessly efficient cricketers, on top of their game, had their dreams of a first-ever world title ended by one audacious man. That cricket is a team game is an oft repeated cliché but South Africa were eliminated from the World Twenty20 at Trent Bridge solely because of Shahid Afridi's intensity and all-round skill.
Pakistan were yet to win a game against significant opposition in the tournament because of a team performance. They lost to England and Sri Lanka, beat minnows Netherlands and Ireland, and relied on Umar Gul to rout New Zealand. Their players hadn't contributed collectively and so it was unlikely all 11 players would maximise potential against opponents as able as South Africa. To have a hope of playing at Lord's on Sunday, Pakistan needed individual brilliance from one of their matchwinners: probably Gul, possibly Younis Khan, or perhaps Misbah-ul-Haq.
Instead, it came from Afridi. Pakistan and Afridi supporters always hope that it will come from him. They roar him to the crease, brimming with optimism, hoping he will destroy the opposition with his recklessly cavalier approach. Thousands of fans celebrated his arrival at the crease at Trent Bridge after Pakistan had lost Shahzaib Hasan in the second over.
Did they know that Afridi's last half-century, in any format of the game, came 28 innings ago, against Zimbabwe at Multan in 2008? And the one before that was 19 innings earlier, against Sri Lanka in Abu Dhabi in 2007? It didn't matter, for when it comes to Afridi, there's always reason to hope. He'll disappoint more often than not, but his successes are so spectacular that it's worth the heartbreaks.
Afridi batted at No. 6 during the initial stages of the World Twenty20 and having to necessarily find the boundary immediately didn't work for him. He made 5 against England, holing out to mid-on, was bowled for 13 by Dirk Nannes against Netherlands, and was dismissed for a first-ball duck against Sri Lanka. Pakistan decided to push him up to No. 5 against New Zealand and he made 29 low-pressure runs off 18 balls, and 24 off 13 balls at No 3 against Ireland. Afridi said Younis supported him fully, put no pressure on him, and asked him to bat higher in the order, only requesting that he take his time and not attempt impractical risks like trying to pull Muttiah Muralitharan into orbit off his first delivery.
On first evidence at Trent Bridge, Afridi appeared not to heed that request, whacking his first ball, from Wayne Parnell, over mid-on for four. He was bristling with aggression when Jacques Kallis tested his skill against the short ball. Afridi was beaten by the first couple but pulled two out of the following three to the midwicket boundary. Kallis walked up to him and stared and Afridi's response was an attempt to get under the skin of the bowler. "He [Kallis] came close to me, I gave him a kiss," Afridi said. "A flying kiss."
Afridi's posture had betrayed disappointment when Kamran Akmal fell off his 12th ball, having scored 23 off the first 11, by top-edging a pull to mid-on. Afridi had also started quickly, scoring 15 off nine, but wasn't about to go the Akmal way. No risks were taken immediately after the fielding restrictions were lifted, Afridi being content with working the ball cleverly into gaps to score at a run a ball.
Not until the 11th over did he cut loose, against Johan Botha, and his execution was precise. Three times in a row Afridi made room by moving towards leg, and all three times he placed the ball into the gap on the extra cover boundary. And when Graeme Smith reinforced his field, Afridi played the deftest of late cuts to take 18 off the over. His first moment of indiscretion was also his last for an ill-timed swipe across the line against JP Duminy's first ball went straight in the air. Trent Bridge reverberated with applause as Afridi returned to the dugout, having scored 51 off 34 balls. And he was only half done.
While Afridi's batting deteriorated over the last couple of years, his bowling has been vital to Pakistan's limited-over success. He even said on Cricinfo that he rates himself as a bowler first. So unlike his batting, Afridi's legspin was in top form during the World Twenty20 with eight wickets and an economy of less than six an over, going into the game against South Africa.
Bouyed by his batting, Afridi's high intensity levels kept him in the thick of the action. He appeared stunned after Gul dropped Smith and hit his head on the ground, standing motionless for a few moments before realising the ball needed to be collected, and then attended to his injured team-mate. He was given the ball in the seventh over and found rhythm immediately, getting one to turn, bounce and rip past Kallis' bat. Gibbs watched that from the non-striker's end and so pushed forward, playing away from his body for the legbreak, a ball later. It didn't turn. Instead it fizzed off the pitch and skidded straight through, knocking back off stump.
Afridi had an edge put down by Kamran Akmal off AB de Villiers in his next over. Unfazed, he forced the batsmen to play on the next ball, and celebrated in trademark style: running to the side of the pitch, standing upright with his chest proudly out, a knowing grin in his face and his left hand raised in triumph while his team-mates rushed in from all corners of the outfield. As they mobbed him, the DJ got the crowd going by playing Dil Dil Pakistan.
Afridi finished with 2 for 16 to go with his half-century. After he was done, Saeed Ajmal dismissed Kallis, Gul bowled a succession of yorkers, and Mohammad Aamer kept his cool when entrusted with the final over. There was no doubt, though, why Pakistan had won. It was obvious from the number of times Smith mentioned Afridi's name during the post-match press conference without even being specifically asked.
George Binoy is a senior sub-editor at Cricinfo
Feeds: George Binoy
An energy efficient bulb in a shop in Gaziantep, Turkey. Energy efficiency is a key priority for Turkey and the World Bank. The World Bank has provided more than $1 billion to Turkey for energy efficiency and renewable energy projects. Photo: Yusuf Türker/ World Bank
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The "Entwicklung" tank series (= "development"), more commonly known as the E-Series, was a late-World War II attempt by Germany to produce a standardized series of tank designs. There were to be six standard designs in different weight classes, from which several specialized variants were to be developed. This intended to reverse the trend of extremely complex tank designs that had resulted in poor production rates and mechanical unreliability.
The E-series designs were simpler, cheaper to produce and more efficient than their predecessors; however, their design offered only modest improvements in armor and firepower over the designs they were intended to replace, such as the Jagdpanzer 38(t), Panther Ausf.G or Tiger II. However, the resulting high degree of standardization of German armored vehicles would also have made logistics and maintenance easier. Indeed, nearly all of the E-series vehicles — up through and including the E-75 — were intended to use what were essentially the Tiger II's eighty centimeter diameter, steel-rimmed road wheels for their suspension, meant to overlap each other (as on the later production Tiger I-E and Panther designs that also used them), even though in a much simplified fashion.
Focus of initial chassis and combat vehicle development was the E-50/75 Standardpanzer, designed by Adler, both being mostly identical and only differing in armor thickness, overall weight and running gear design to cope with the different weights.
The E-50 Standardpanzer was intended as a medium tank, replacing the Panther and Tiger I battle tanks and the conversions based on these older vehicles. The E-50 hull was to be longer than the Panther, and in fact it was practically identical to the Königstiger (Tiger II) in overall dimensions except for the glacis plate layout. Compared with the earlier designs, however, the amount of drilling and machining involved in producing the Standardpanzer designs was reduced drastically, which would have made them quicker, easier and cheaper to produce, as would the proposed conical spring system, replacing their predecessors' torsion bar system which required a special steel alloy.
The basis development, the E-50 Ausf. A combat tank, was to carry the narrow-mantlet 'Schmalturm' turret (originally designed for the Panther Ausf. F), coupled with a variant of the powerful KwK 43 88 mm L/71 gun, but heavier guns (a new 10,5 cm gun for both the E-50 and E-75 and the 12,8 cm caliber gun for the E-75) in bigger turrets were under development.
In service the vehicle received the inventory ordnance number "SdKfZ. 191" and was officially called "Einheitspanzer 50" (Standard tank), retaining its E-50 abbreviation. The weight of the E-50 vehicle family would fall between 50 and 75 tons. The engine was an improved Maybach HL234 with up to 900 hp output. Maximum speed was supposed to be up to 60 km/h.
The E-75 Standardpanzer (SdKfz. 192), based on the same hull, was intended to be the standard heavy tank and become the replacement of the heavy Tiger II and Jagdtiger tanks. The E-75 would have been built on the same production lines as the E-50 for ease of manufacture, and the two vehicles were to share many components, including the same Maybach HL 234 engine and running gear elements. As its name indicates, the resulting vehicle would have weighed in at over 75 tons, reducing its speed to around 40 km/h. To offset the increased weight, the bogies were spaced differently from on the E-50, with an extra pair added on each side and eight instead of six wheels plus a slightly wider track, giving the E-75 a slightly improved track to ground contact length.
The KwK 45 10,5cm gun had already started in 1943 as an answer to the heavy KV and later the IS series of Soviet combat tanks, and it was ready for service in September 1945, just in time for the deployment of the E-50/75 family of tanks. The KwK 45 was specifically designed to fit into the turret mountings of the 8.8cm KwK 43. This would enable older vehicles to be upgunned with minimum modifications; hence, the fleet could be upgraded in a shorter time and at a lower cost.
The breech used a horizontally sliding breech block for loading the fixed cartridge cases. The gun recoiled only approximately 29 cm (11.5 inch) in most applications, automatically opening the breech and ejecting the empty cartridge case as the gun returns to battery from full recoil. The cannon had a weight of 1.287 kg and was able to achieve a rate of fire of up to eight shots per minute Schuss/Minute, with an effective range of 4.000 m (2.5 mi) ). HE rounds were fired with a muzzle velocity of 1.100 m (3,600 ft ) per second and APDS rounds achieved 1.500 m (4,900 ft) per second. This was sufficient to penetrate 170 mm (6.7 in) of armor at a range of 1.800m (5,900 ft) or 280 mm (11 in) of armor with APDS rounds, respectively.
In the E-50 tank, the KwK 45 was carried by the Ausf. C variant in a voluminous Henschel turret, which was similar in outline to the earlier Königstiger heavy tank, but it was a simplified construction and had varying armor strengths for the E-50 and E-75 tanks. Instead of the initial L52 barrel, which made the KwK 45 compatible with the Schmalturm turret of the initial E-50 variants, the bigger turret of the Ausf. C allowed to add additional counterweights so that a longer caliber 60 barrel without a muzzle brake could be installed, which improved the weapon's range and hitting power further. Otherwise the E-50 Ausf. C was identical to the earlier versions. Thanks to the relatively spacious turret, a total of 64 105mm shells could be carried (typically 50% high explosive and 50% armor-piercing), plus 4.800 rounds for the secondary 7,92 MG 34s on board (32 ammunition belts with 150 round each).
In order to improve the tanks' long-range strike capability, some of the new E-50/75 battle tanks were additionally equipped with launch rails and a visual guidance system for the new Ruhrstahl X-7 anti-tank missile, unofficially nicknamed "Rotkäppchen" (Little Red Riding Hood).
The aircraft-shaped X-7 was the first operational anti-tank guided missile in history. It was created on the basis of a command of the Army Ordnance Office to Dr. Ing. Kramer and its origins dated back as far the beginning of the year 1934, but it had no high priority from official side and there were numerous problems to be eradicated. An appropriate number was built in the factory in Brackwede and handed over to the army for field-testing before the war, but the weapon initially did not receive much interest. The main version was wire-steered, but other trial versions were equipped with the automatic infrared steering system "Steinbock" (Capricorn) or with the electro-optical guidance systems "Pfeifenkopf" (Pipe bowl) and "Pinsel" (Brush) - the latter used vidicon cameras to detect the difference between the target and the background. Various guidance systems were tested, too, both for anti-aircraft and anti-tank use.
As an anti-tank weapon the small, aircraft-shaped missile could easily be transported and deployed on light vehicles, but it was also tested as an auxiliary weapon for tanks, from which it could be fired and steered from the inside with the help of an optical guidance system.
The X-7 was a compact weapon and had a length of 0,95 m (37 1/2 in), a body diameter of 150 mm (6 in), a wing span of 0,60 m (23 1/2 in). Its launch weight was about 9kg (~20 lb). It was powered by a solid fuel twin rocket engine that delivered 676 N of thrust for 3 seconds at the start for a maximum speed of 245 m/s (550 mph; 476 kn; 880 km/h) and sustained 55 N for another 8 seconds, achieving a cruise speed of 100 m/s. The missile carried a 2.5 kg (5.5 lb) hollow charge, triggered with an impact fuze, that could penetrate more than 200 mm (7.9 in) of armor at a 30° angle.
For the use on board of tanks, the X-7 was carried on special launch rigs which could be easily attached to turrets or casemate hulls. Typically, two of the missiles were carried, ready to launch. The optical guidance system was based on the ZG 1229 "Vampir" infrared night vision system - but for the X-7 guidance, the device had been modified into a periscope that was mounted on the roof of the gunner's station, so that the missile could be fired and guided in the safety of the armored turret.
However, initial field tests in early 1946 revealed that the X-7 hardly offered any benefit when compared with the heavy German cannon. The potential benefit of a dive attack on a tank target, which would reduce the relative armor strength of the target or hit the weaker upper armor of such a target, was only theoretical because aiming and guiding the missile even at a direct course was not easy. A ballistic flight path was possible, but under combat conditions unrealistic. Furthermore, the missiles unprotected storage made them highly vulnerable against enemy fire, and many were lost early because the fell off of the launch racks or were simply ripped away when the tank moved through obstacles like trees or ruins. An internal storage of the weapon in a tank was also impossible. Therefore, the X-7 was soon banned from battle tanks and either mounted on light, unarmored vehicles, which could more easily employ "hit-and-run" tactics, or the light missiles were carried by two man teams for ambushes. In mid-1946, trials to fire the X-7 from a Flettner Fl 282 Kolibri helicopter ensued.
Specifications:
Crew: Five (commander, gunner, loader, radio operator, driver)
Weight: 54 tonnes (60 short tons)
Length: 7.27 metres (23 ft 8 in) (hull only)
9.36 metres (30 ft 8 in) incl. gun
Width: 3.88 metres (12 ft 9 in)
Height 3.35 metres (11 ft)
Ground clearance: 495 to 510 mm (1 ft 7.5 in to 1 ft 8.1 in)
Suspension: Conical spring
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
30–120 mm (1.2 – 4.7 in)
Performance:
Speed
- Maximum, road: 44 km/h (27.3 mph)
- Sustained, road: 38 km/h (24 mph)
- Cross country: 15 to 20 km/h (9.3 to 12.4 mph)
Operational range: 160 km (99 miles)
Power/weight: 16,67 PS/tonne (14,75 hp/ton)
Engine:
V-12 Maybach HL 234 gasoline engine with 900 PS (885 hp/650 kW)
Transmission:
ZF AK 7-200 with 7 forward 1 reverse gears
Armament:
1× 10,5 cm KwK 45 L/60 with 64 rounds
2× 7.92 mm Maschinengewehr 34 with a total of 5.200 rounds (one mounted co-axially with
the main gun and an optional AA gun on the commander's cupola)
2× X-7 "Rotkäppchen" anti-tank missile launch rails on some vehicles
The kit and its assembly:
Another Heer '46 model, and again one of the many 1:72 Modelcollect kits. Even though I rather have a knack for exotic vehicles I thought that a relatively simple battle tank could not hurt in the collection - but I still had an idea how to add a personal touch and take the basic idea further.
This came when I remembered the small X-7 missile, and wondered if that could not have been used from 1945 onwards - e.g. as an additional stand-off weapon for tanks like the post-war AS.12 in France - the light AMX-13 tank could carry four of these above the gun on its oscillating turret. And that made me wonder if and how the German missile could find its way on a battle tank?
In an initial step I scratched a pair of X-7s from bombs and styrene profile material - they look a little clumsy and they became actually too large for authentic 1:72 scale, but their outlines turned out well. Using them as benchmarks I checked different tank kits and eventually settled for an E-50 with the large Tiger-II-style Henschel turret. This offered a good size and height to mount the two missiles in racks on the turret's flanks - these are scratched from styrene profile material, too. Otherwise the kit remained OOB, I just used the kit's night vision device and some material from the scrap box to create an optical guidance gear, mounted on the turret in front of the gunner's hatch.
The E-50 kit goes together well, just some light PSR is necessary at the turret's base. This version of the kit also came with a surplus Schmalturm sprue and it did not come with vinyl tracks, like some former kits from this series that I have built, but rather with molded single track elements. I am not a fan of these, at least in 1:72 scale, and mounting these small bits was a tedious affair that took a whole day. The low mud guards hampered the process further.
Painting and markings:
The paint scheme is a variation of the classic German "Hinterhalt" camouflage, consisting of Dark Yellow, Olive Green and Red Brown. However, the pattern is a little special, because I wanted to recreate the original concept of the scheme, the ideal “factory finish”. It was intended to apply the green and brown contrast colors on top of the dark yellow in the form of overlapping small, round dots of uniform size, applied with a gauge, that let the light color shine though here and there – plus small contrast speckles added to the dark yellow. A really complex camouflage pattern, but quite effective, because it mimicked well the fractal shadows under a tree, disrupting a vehicle’s silhouette.
In real life, however, only a few tanks had been painted this way around August 1944 in the factories (I have seen Panther, Hetzer, Jagdpanzer IV/L70 and a Sturmtiger, sometimes only partly, finished in this fashion), because the application was tedious and time-consuming. Eventually, the tanks were delivered to the frontline troops in a uniform dark yellow finish, together with the green and brown as thick pastes which were to be applied individually by the crew, depending on the local needs and with whatever was at hand.
I order to mimic the original Hinterhalt scheme’s look I initially gave the model an overall coat with RAL 8001 “Grünbraun” as primer and then added 7028 "Dunkelgelb" (Modelmaster) with a wide, flat brush, creating a cloudy finish. Once dry I used two self-made stamps for the application of the red brown (Humbrol 160) and the green (RAL 6003 from Modelmaster). The stamps were made from fine expanded rubber, die-punched into circles of 3 and 4mm diameter and then glued on top of sticks with superglue. Very simple, but worked like a charm!
Adding all the circles one by one was another tedious task, esp. on uneven underground and around corners. Once this basic painting was done, the kit received an overall wash with a mix of black and red brown acrylic paint. Next came the decal application; the crosses and the “kill marks” for the barrel were taken from the OOB sheet, the red tactical code and the small unit badges were taken from a TL Modellbau aftermarket sheet. Next came a light dry brushing treatment with beige and light grey, highlighting surface details and edges. After painting some details and adding some rust marks came a coat of matt varnish (from the rattle can), the tracks were finally mounted and the lower area of the tank received a treatment with a greyish-brown pigment mix, simulating dust and mud residue.
A relatively simple project, done in four days from which one day was spent with the camouflage and another one with the fiddly tracks. Creating the small X-7 missiles from scratch was tricky, too. Nevertheless, I think the effort was worthwhile, since the addition of the missiles and their racks give the otherwise simple battle tank a special touch and some Heer '46 futurism. After all, it’s a what-if model. The complex camouflage also looks good, and it demonstrates how effective the original concept of the Hinterhalt scheme actually was, had it been applied properly. I might re-apply the concept on a mecha model in the future – probably with different colors, though.
Some background:
Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.
The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.
In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.
Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.
The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.
At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.
General characteristics:
Accommodation: pilot only, in standard cockpit in main body
Overall Height: 18.2 meters
Overall Length: 7.6 meters
Overall Width: 12.6 meters
Max Weight: 39.8 metric tons
Powerplant & propulsion:
1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,
driving 2x main booster Thrusters and 12x vernier thrusters
Performance:
unknown
Armament:
None
Special Equipment and Features:
Standard all-frequency radar antenna
Standard laser long-range sensor
Ectromelia infrared, visible light and ultraviolet frequency sensor cluster
ECM/ECCM suite
The kit and its assembly:
I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.
The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).
I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!
But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.
Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.
However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.
Painting and markings:
Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.
Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.
The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.
The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?
Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.
A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D
Some background:
Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.
The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.
In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.
Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.
The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.
At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.
General characteristics:
Accommodation: pilot only, in standard cockpit in main body
Overall Height: 18.2 meters
Overall Length: 7.6 meters
Overall Width: 12.6 meters
Max Weight: 39.8 metric tons
Powerplant & propulsion:
1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,
driving 2x main booster Thrusters and 12x vernier thrusters
Performance:
unknown
Armament:
None
Special Equipment and Features:
Standard all-frequency radar antenna
Standard laser long-range sensor
Ectromelia infrared, visible light and ultraviolet frequency sensor cluster
ECM/ECCM suite
The kit and its assembly:
I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.
The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).
I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!
But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.
Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.
However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.
Painting and markings:
Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.
Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.
The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.
The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?
Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.
A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D
ENGLISH:
Economic and efficient dual purpose cow.
Mature cows weigh 600 - 700 kg (1,300 - 1,500 lb.) and stand about 145 cm (4.7 ft.) tall at the withers,
and mature bulls weigh 900 - 1,200 kg (2,000 - 2,600 lb.).
ESPAÑOL:
Vacas doble propósito económico y eficiente.
Las vacas pesan entre 600 y 700 kg y miden unos 145 cm de altura a la cruz.
y los toros pesan 900 - 1200 kg.
DEUTSCH:
Wirtschaftliche und leistungsfähige Zweinutzungskuh.
Kühe wiegen 600 - 700 kg und sind am Widerrist etwa 145 cm gross.
und Bullen wiegen 900 - 1.200 kg.
FRANÇAIS:
Vache à double usage économique et productive.
Les vaches pèsent entre 600 et 700 kg et mesurent environ 145 cm au garrot.
et les taureaux pèsent entre 900 et 1 200 kg.
-->
More cattle breeds, dioramas or models in 1/87 (H0) see in
Some background:
Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.
The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.
In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.
Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.
The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.
At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.
General characteristics:
Accommodation: pilot only, in standard cockpit in main body
Overall Height: 18.2 meters
Overall Length: 7.6 meters
Overall Width: 12.6 meters
Max Weight: 39.8 metric tons
Powerplant & propulsion:
1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,
driving 2x main booster Thrusters and 12x vernier thrusters
Performance:
unknown
Armament:
None
Special Equipment and Features:
Standard all-frequency radar antenna
Standard laser long-range sensor
Ectromelia infrared, visible light and ultraviolet frequency sensor cluster
ECM/ECCM suite
The kit and its assembly:
I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.
The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).
I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!
But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.
Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.
However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.
Painting and markings:
Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.
Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.
The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.
The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?
Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.
A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D
I designed this model by using the 3D model ECHenry put up for sale as reference. I was able to get a lot more detail out of it that way. Not to mention as close to perfect proportions as I could possibly get. Having the actual model gave me some unique insight on the inner workings of ECHenry's design process. Like having differently scaled and oriented greebles duplicated in several places. Which is very much in the spirit of ILM model makers working on the original trilogy.
What that means for a Lego model is a lot of different techniques. The greebles on the engines and fuselage are as accurate as I could get them, and I'm super happy with the result. I even did my best to mimic panel detailing instead of maximizing tiles to be as efficient as possible.
The turret is a completely custom addition. The design was made by ThrawnsRevenge. We thought the underside looked a bit bare without something. And my head cannon is that one of the three people in the cockpit remotely operate it similar to an Apache helicopter's turret.
All in all I'm really happy with how this model turned out. I'd like to upload some IRL photos once I find space...
Instructions are available on Rebrickable if you want to build your own!
Image Courtesy: Kārlis Dambrāns (www.flickr.com/photos/janitors/14939447207), Licensed under the Creative Commons Attribution 2.0 Generic | Flickr
Four new, more energy-efficient cooling towers replaced five old ones atop Grand Central Terminal. In phase one, which occurred March 22-23, 2014, the rigging operation took 18 hours. Full installation was completed over the weekend of March 18, 2014.
Energy-efficient Towers Installed to Cool Grand Central
Photo: Metropolitan Transportation Authority / Patrick Cashin
Kenworth’s new, fuel-efficient T680 52-inch mid-roof sleeper Advantage Package, for regional haul and less-than truckload operations, is now available for order as of December 2016. The T680 Advantage with 52-inch sleeper features an optimized powertrain with either the PACCAR MX-13 or PACCAR MX-11 engine, Eaton Fuller Advantage(TM) series 10-speed automated transmission, and the new PACCAR Axle, the industry’s most efficient and lightest weight tandem drive axle. The 52-inch mid-roof sleeper configuration also offers new aerodynamic elements including a front air dam, flared-out fairings, lower sleeper fairing extenders and FlowBelow(TM) wheel covers that enhance fuel economy by effectively redirecting airflow around the chassis, sleeper and trailer. Other notable fuel-efficiency features are Kenworth’s Predictive Cruise Control, Neutral Coast, and Driver Performance Assistant.