View allAll Photos Tagged capable
Not capable of true macro 1:1 reproduction, this lens does have an exceptionally close focus distance of 24cm nonetheless; as does its 24mm brother (at 10.8cm).
The extremely high loss rate of early F-100 Super Sabres led the USAF to request a two-seat conversion trainer, which originally had not been planned. An F-100C was returned to North American for conversion into the TF-100C, which involved extending the fuselage and the canopy slightly to provide for a second cockpit with a full set of flight controls. The crash of the only TF-100C in April 1957 did not interrupt work on the project, as the USAF had requested the two-seater be combat capable and incorporate all of the modifications made to the baseline Super Sabre. As a result, the F-100F two-seater was built from the F-100D tactical fighter bomber, and differed in performance only in the deletion of two of the four 20mm cannon; a few F-100Fs were subsequently modified to carry the AGM-12 Bullpup air-to-surface missile, while a few also had better navigational equipment than the standard Super Sabres—these aircraft were specifically intended for Pacific-based F-100 units. The F-100F entered service in January 1958.
The F-100F’s otherwise unremarkable career as a conversion trainer was to be changed by the Vietnam War, by two projects: the Wild Weasel suppression of enemy air defenses (SEAD) campaign and the Misty “fast FAC” forward air control program.
The Wild Weasel campaign began in response to increasing losses by USAF aircraft to North Vietnamese SA-2 Guideline (S-75 Dvina) surface-to-air missiles. Unable to attack the SAM sites before they were made operational due to Rules of Engagement restrictions, something had to be done to defend the strike forces from SAM attacks: while scoring comparatively few kills at first, the SAM sites were forcing American aircraft out of previously-safe high and medium altitudes into the murderous low-altitude North Vietnamese antiaircraft defenses. Wild Weasel was intended to not only provide early warning of SAM launches, but also to attack and destroy SAM sites and their attendant radars.
The F-100F was determined to be the best platform for what became known as Wild Weasel I, as it was readily available in Southeast Asia and would need a minimum of conversion. Wild Weasel I F-100Fs were equipped with a comprehensive warning and detection suite originally developed for the U-2 spyplane, allowing the Weasels to detect Fansong, Firecan, and Spin Scan guidance radars—those used by SA-2s, radar-guided antiaircraft guns, and MiG-21 fighters. The intent was that a single F-100F would lead the way into the target area accompanied by three or four F-105D Thunderchiefs, with the F-100 using rockets to mark any sites for the accompanying F-105s, or strafing the sites themselves; later, the Weasels would be equipped with AGM-45 Shrike antiradar missiles designed to destroy the radars directly. The F-100F Weasels flew their first combat mission in April 1966, and while successful, showed one shortcoming: the F-100 simply could not keep up with the F-105. Once the Thuds had dropped their ordnance, they would rapidly leave the slower F-100 behind. Moreover, the comparative low speed of the Super Sabre made it very vulnerable to the deadly air defenses around the Hanoi area. Subsequently, the USAF made the decision to withdraw the F-100F Weasels in favor of modified F-105F Wild Weasel II aircraft in late 1966.
The Misty FAC program—officially known as Commando Sabre—had similar origins. Prior to 1967, the antiaircraft threat in South Vietnam and southern North Vietnam was relatively low. This began to change, with a resultant spike in losses among forward air control (FAC) pilots. FACs were flying propeller-driven O-1 Birddogs and O-2 Skymasters, which were highly vulnerable to medium-altitude antiaircraft fire, especially around Mu Gia Pass, the northern “terminus” of the Ho Chi Minh Trail. The USAF began looking into the “fast FAC” role, using two-seat jets. Two-seat F-105Fs were in short supply and were needed for Wild Weasels in the north; there were not yet enough F-4 Phantom IIs to go around to both strike and fighter units. The F-100F again seemed tailor made to the role, and the USAF began Project Commando Sabre in June 1967, with the unit designated as Detachment 1 of the 612th Tactical Fighter Squadron, based at Phu Cat, South Vietnam.
Major George “Bud” Day was put in command of Commando Sabre, due to his experience with both the F-100 and South Vietnam; Day selected the callsign “Misty” based on a song by the same name, and handpicked the crews. Each crew had to have at least 100 missions in Southeast Asia and 1000 flying hours in the F-100. Misty F-100Fs were identical to the baseline F-100F, with the only modifications being more radios to speak with strike units and a strike camera installed in the lower fuselage. While Commando Sabre was originally intended as fast FACs, Day expanded the program to include hunter-killer teams directly attacking North Vietnamese antiaircraft sites, reconnaissance, rescue force escort, and artillery spotting in the I Corps sector of South Vietnam.
If anything, Misty loss rates were worse than the F-100 Wild Weasels had been: 42 Misty F-100s were shot down, nearly thirty percent losses. This included Day, who was shot down and captured in August 1967; he was joined by three others in the next few years, and eight men were killed on Misty operations. Losses were so high that a Misty tour of duty was reduced to 60 missions rather than the standard 100. Once a Misty finished a tour of duty, they returned to a “safer” unit flying close air support missions. The threat level increased around Mu Gia and Ban Karai Passes until even the Mistys could no longer operate there and were replaced by F-4 Wolf FACs. The program ended in May 1970 and the surviving F-100Fs withdrawn from Vietnam.
Like all F-100Fs, they were allocated to Air National Guard units by 1972, and withdrawn completely by 1978, though foreign operated F-100Fs were flown until 1988, and a handful continued in civilian hands as aggressor and target-towing aircraft, operated by the Tracor Corporation, until 1998. 339 F-100Fs were built and a quarter were lost to enemy action and accidents; eleven are known to survive, with four aircraft still flyable.
These are two of those flyable (at least in theory) aircraft: F-100Fs N416FS and N419FS, formerly 56-3916 and 56-3971. Both seem to have nearly identical histories: they were delivered to the Royal Danish Air Force in the early 1960s, serving with either 727 or 730 Eskadrille at Skrydstrup. After the Super Sabre was retired from RDAF service, the two aircraft were bought by Tracor Flight Systems of Mojave, California in 1982; they were used as testbeds, chase aircraft, and target-towing aircraft. They were possibly the last regularly flying F-100s in service by the time they were retired in 2001. Both were subsequently acquired by Big Sky Warbirds of Bozeman, Montana, and flown there in 2003, where they remain today.
Getting this picture was the culmination of almost a decade of trying! Google Earth showed the aircraft parked on a taxiway of Bozeman International Airport, but I never seemed to be in a position to get there with a camera. It also looked like the aircraft were inaccessible in any case. I took a chance in September 2021, and on my way to Yellowstone, stopped by the airport. Bozeman is (as of this writing) undergoing some expansion, and the taxiway was closed. I spotted the two F-100s parked across the way instead, and finally managed to get a picture.
It's not the greatest angle or picture in the world, but it does show N416FS and N419FS. The former is important to my family: a good friend, Dale Fiala, flew N416FS for Tracor, and Dad built him a model, shown here: www.flickr.com/photos/31469080@N07/17912208780/in/photoli...
Central Air Force Museum. Monino.
The Sukhoi Su-15 (NATO reporting name 'Flagon') was a twin-engined supersonic interceptor developed by the Soviet Union in the 1960s to replace the Sukhoi Su-11, which was becoming obsolete as the United States and Britain introduced newer and more capable strategic bombers. The Su-15 was a major part of the Soviet interceptor force until the fall of the Soviet Union.
The aircraft is most famous for being involved in the downing of Korean Air Flight 007.
Development.
Recognizing the limitations of the earlier Su-9 and Su-11 in intercepting the then-new Boeing B-52 Stratofortress, particular in terms of radar and aircraft performance, the Sukhoi OKB quickly began the development of a heavily revised and more capable aircraft. A variety of development aircraft evolved, including the T-49, which shared the fuselage of the Su-9 (including its single engine), but used cheek-mounted intakes to leave the nose clear for a large radome for the RP-22 Oryol-D ("Eagle") radar(NATO "Skip Spin"), and the T-5, essentially a heavily modified Su-11 with a widened rear fuselage containing two Tumansky R-11 engines.
These led to the T-58, which combined the twin engines with a modified version of the T-49's nose, but with side inlets further back, behind the cockpit. It was approved for production on 5 February 1962, as the Su-15, and the prototype first flew on 30 May 1962. It entered service testing 5 August 1963, but its service entry was delayed by political infighting with the Yakovlev OKB over production line capacity in Novosibirsk, which was also building the Yak-28P. The Su-15 proved to be superior in most respects other than range, and it was officially commissioned on 3 April 1965. Series production began the following year, and it entered service with the PVO in 1967, replacing Su-9s, Su-11s, and Yakovlev Yak-25s. The initial Su-15 received the NATO reporting name "Flagon-A". A simplified trainer version, the Su-15UT (NATO "Flagon-C"), with no radar or combat capability, entered service in 1970.
Initial delta-winged Su-15s had poor take-off and landing characteristics, and so Sukhoi investigated a new wing design with extended wingtips (increasing wing area) and boundary layer control. Su-15s with the new wing went into production in 1969. They were dubbed "Flagon-D" by NATO, although the Soviet designation was unchanged.
Also in 1969 testing began of the upgraded Su-15T with the Volkov Taifun ("Typhoon") radar, which was based on the MiG-25's powerful RP-25 Smerch-A ("Tornado") radar (NATO "Foxfire"). The Taifun proved troublesome, however, and ceased production after only 10 aircraft had been built. It was followed in December 1971 by the Su-15TM (NATO "Flagon-E"), with the improved Taifun-M radar (NATO "Twin Scan") and provision for UPK-23-250 gun pod or R-60 (AA-8 "Aphid") short-range air-to-air missiles. Aerodynamic demands forced a redesign of the radome with an ogival shape, earning a new NATO reporting name, "Flagon-F", although again the Soviet designation did not change. A comparable combat-capable trainer, the Su-15UM (NATO "Flagon-G"), followed from 1976. The final Su-15UMs, the last Su-15s produced, came off the line in 1979.
Various OKB proposals for upgraded Su-15s with better engines and aerodynamics to satisfy a VVS requirement for a long-range tactical fighter were rejected in favor of the Mikoyan MiG-23 fighter.
Design
Although many components of the Su-15 were similar or identical to the previous Su-9 and Su-11 (NATO reporting name "Fishpot"), including Sukhoi's characteristic rear-fuselage airbrakes, the Su-15 abandoned the shock-cone nose intake for side-mounted intakes feeding two powerful turbojet engines, initially the Tumansky R-11F2S-300. The change allowed room in the nose for a powerful search radar, initially the RP-22 Oryol-D (NATO 'Skip Spin'). The early Su-15 ("Flagon-A") had pure delta wings like its predecessors, but these were replaced from the 11th production series onward by a new 'kinked' delta planform of increased span and area, with a small wing fence above each outer pylon and blown flaps to improve landing characteristics. This was accompanied by a new tail of greater anhedral and a vertical fin of reduced height.
The Su-15 had maximum speed of Mach 2.5 and a rate of climb of 228 m/s. Take-off and landing speeds were comparatively high, with a take-off speed of 247 mph (395 km/h) for early delta-winged 'Flagon-A's and 231 mph (370 km/h) for the larger-winged 'Flagon-F.' While the controls were responsive and precise, the aircraft was unforgiving of pilot error.
Despite its powerful radar, the Su-15, like most Soviet interceptors before the late 1980s, was heavily dependent on ground control interception (GCI), with aircraft vectored onto targets by ground radar stations. It was fitted with the Lazur-S datalink system, which transmitted instructions to the pilot to accomplish the interception. The later Su-15TM had a Vozdukh-1M datalink and SAU-58 (sistema automaticheskogo upravleniya, automatic control system) capable of carrying out completely automatic, 'hands-off' interceptions until the last moments of the interception.
Primary armament of the Su-15 was the R-8/K-8 (AA-3 "Anab"; later R-98) air-to-air missile. Early models carried two missiles, but 'Flagon-D' and later versions could carry four. Like most Soviet missiles, the R-98 was made in both infrared and semi-active radar homing versions, and standard practice was to fire the weapons in pairs (one semi-active radar homing, one IR homing) to give the greatest chance of a successful hit. The IR homing missile was normally fired first in order to prevent the possibility of the IR missile locking on to the radar homing missile. Later 'Flagon-F' models often carried two R-98s and one or two pairs of short-range R-60 (AA-8 'Aphid') missiles. Late-model 'Flagons' also sometimes carried a pair of UPK-23-250 23 mm gun pods on the fuselage pylons, each containing a two-barrel GSh-23L cannon.
Operational history.
The Su-15 formed a significant part of the V-PVO's interceptor force, and was designed to intercept easier targets such as the American B-52 and U-2, and the British V bombers, leaving the more difficult targets such as the XB-70 and B-58 to the faster MiG-25P. The Taifun radar of the Su-15TM was optimised for counter-countermeasure operation, as opposed to range. As an interceptor, the task of the Su-15TM was to fly under autopilot, using GCI commands sent through the datalink. The radar would only be turned on as the interceptor approached the target in order to provide targeting parameters for the radar homing K-8/R-8/R-98 missiles, the high power of the radar allowing it to 'burn through' enemy ECM signals. If all else failed, IR homing versions of the K-8 would provide a last opportunity to shoot down the intruder, along with any gun pods the Su-15 might be carrying.
The Su-15 was optimised for the high-altitude interception role with its fast climb-rate and high speed at high altitude but lacked look-down/shoot-down capability, even with the Su-15TM's more sophisticated Taifun radar. This eventually led to the MiG-23P, which did have look-down/shoot-down capability, becoming the preferred asset of the V-PVO, especially once NATO switched to low-level penetration tactics. Even so, the Su-15 remained an important part of the V-PVO until the fall of the Soviet Union.
As one of the V-PVO's principal interceptors, the Su-15 was involved in a number of incidents with foreign aircraft intruding into Soviet airspace:
One such attack was in 1978, when Korean Air Flight 902 was attacked over Murmansk by a PVO Su-15. Although the civilian aircraft survived the missile hit, two passengers were killed, and the damaged plane subsequently made a forced landing on a frozen lake.
In a 1981 incident, a Baku, Azerbaijan-based Su-15 deliberately rammed an Argentine Canadair CL-44 of Transporte Aéreo Rioplatense (killing the three Argentines and one Briton aboard) which was delivering arms from Israel to Iran after it strayed into Soviet airspace.[1]
Most famously, in the Korean Air Flight 007 incident in 1983, a Korean Boeing 747 was shot down near Moneron Island, after it strayed into restricted Soviet airspace, by a Su-15TM based on Sakhalin, killing all 246 passengers and 23 crew. The incident remains somewhat controversial to this day.
The Su-15 was also credited with shooting down 5 reconnaissance balloons sent to spy on Soviet territory in 1975.
Although it was produced in large numbers (1,290 of all types), the Su-15, like other highly sensitive Soviet aircraft, was never exported to the Warsaw Pact or any other country due to its sophisticated systems. Some Su-15 were reported to be deployed in Egypt in 1972 but were used with Soviet crews. At one point, the Su-15 was considered as a strike fighter, but proved to be too specialised as an interceptor to be used in that role.
After the fall of the Soviet Union, the Su-15 was abruptly retired from the new Russian Air Force in 1993 to comply with the Treaty on Conventional Armed Forces in Europe. Most were hastily scrapped in favour of more advanced interceptors, including the Su-27 and MiG-31, but some are in reserve storage for emergency use. In the Ukraine, the last Su-15s (at Kramatorsk and Belbek) were withdrawn from use in 1996.
General characteristics
Crew: 1
Length: 19.56 m (64 ft 2 in)
Wingspan: 9.34 m (30 ft 7 in)
Height: 4.84 m (15 ft 10 in)
Wing area: 36.6 m² (394 ft²)
Empty weight: 10,874 kg (23,973 lb)
Loaded weight: 17,194 kg (37,920 lb)
Powerplant: 2 × Tumansky R-13-300 turbojets
Dry thrust: 40.21 kN (9,040 lbf) each
Thrust with afterburner: 70.0 kN (15,730 lbf) each
Performance
Maximum speed: Mach 2.1, 2,230 km/h (1,386 mph) armed (2 x K-8/R-8/R-98 missiles, no external fuel tanks) at high altitude, Mach 2.5 clean at high altitude
Range: 1,380 km (897 mi) combat
Ferry range: 1,700 km (1,106 mi)
Service ceiling: 18,100 m (59,383 ft)
Rate of climb: 228 m/s (45,000 ft/min)
Armament
2 × R-98M (AA-3 "Anab"), normally 1 radar homing and 1 IR homing (outer wing pylons)
2 × or 4 × R-60 (AA-8 "Aphid") (inner pylons)
Option of 2 × UPK-23-250 23 mm gun pods on fuselage pylons
Avionics
Radar: «Taifun-M»
Detection range:
high-flying targets: 70 km
low-flying targets: 15 km
Lock range:
high-flying targets: 45 km
low-flying targets: 10 km
Angular range:
vertical: +30°/-10°
horizontal: +/- 70°
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Saab 35 Draken ('The Kite' or 'The Dragon') was a Swedish fighter-interceptor developed and manufactured by Svenska Aeroplan Aktiebolaget (SAAB) between 1955 and 1974. Development of the Saab 35 Draken started in 1948 as the Swedish air force future replacement for the then also in development Saab 29 Tunnan dayfighter and Saab 32B Lansen night fighter. It featured an innovative but unproven double delta wing, which led to the creation of a sub-scale test aircraft, the Saab 210, which was produced and flown to test this previously unexplored aerodynamic feature. The full-scale production version entered service with frontline squadrons of the Swedish Air Force on 8 March 1960. It received the designation Flygplan 35 (Fpl 35; 'Aeroplane 35') and was produced in several variants and types, most commonly as a fighter type with the prefix J (J 35), standing for Jaktflygplan (Pursuit-aircraft), the Swedish term for fighter aircraft.
The Saab 35 Draken was known for, among other things, its many "firsts" within aviation. It was the first Western European-built combat aircraft with true supersonic capability to enter service and the first fully supersonic aircraft to be deployed in Western Europe. Design-wise it was one of, if not the first, combat aircraft designed with double delta wings, being drawn up by early 1950. The unconventional wing design also had the side effect of making it the first known aircraft to perform and be capable of the Cobra maneuver. It was also one of the first Western-European-built aircraft to exceed Mach 2 in level flight, reaching it on 14 January 1960.
The Draken functioned as an effective supersonic fighter aircraft of the Cold War period. Even though the type was designed and intended as an interceptor, the Draken was considered to be a very capable dogfighter for the era, and its large wing area allowed the compact Saab 35 to carry a relatively high payload, too. In Swedish service, it underwent several upgrades, the ultimate of these being the J 35 J model which served until 1999. The Draken was also exported to several countries and remained operational in Austria until 2005.
In Swedish service, the Saab 35 was replaced by the Saab 37 “Viggen”. Development work on the new type was already initiated at Saab in 1952 and, following the selection of a radical canard delta wing configuration, the resulting aircraft performed its first flight on 8 February 1967 and entered service on 21 June 1971. However, being a radical and new design, the service introduction of the Viggen – esp. of its initial version, the AJ 37 fighter-bomber – was not without teething troubles, and in the late Sixties the Swedish Air Force expected an attack aircraft gap in its line-up. The former A 32 A Lansen attack aircraft were reaching the end of their airframe lifetime and were simply outdated, even though it was still needed as an anti-ship attack platform for the indigenous Rb 04 guided missile, so that Saab suggested an interim solution: the conversion of seventy of the 120 produced J 35 D fighters into dedicated attack aircraft, with the designation A 35 G (Gustav).
The Saab A 35 G was heavily modified to make it into a fighter bomber aircraft. Compared to the fighter versions the outer wings where completely redesigned and the aircraft featured 9 hardpoints in total. Airframe and landing gear were strengthened to cope with an increased payload of 10,000 lb (4,540 kg) vs. the fighters’ usual 6,393 lb (2,900 kg). Several airframe components were restored or replaced to extend the life of the aircraft, and the landing gear featured low-pressure tires for a better field performance on improvised/dispersed airfields.
A wide array of ordnance could be carried, such as bombs of up to 1.000 lb (454 kg) caliber, MERs with up to six 100 kg (220 lb) bombs each, pods with unguided 75 mm or 135 mm rockets, single 14.5 cm psrak m49/56 high-explosive anti-tank rockets and, as a new weapon, the indigenous guided Rb 05 air-to-ground missile. This had been developed for the AJ 37 "Viggen in 1967 and was roughly comparable with the American AGM-12 Bullpup, but had some unique features. The Rb 05’s supersonic speed was deemed necessary to reduce the threat of surface-to-air missiles, and it allowed the missile to be deployed against slow/large aerial targets, too, making it a dual-purpose weapon. Consequently, the Rb 05’s fuze could be set by the pilot to impact mode for ground targets, or proximity mode for attacking air targets such as bombers.
The missile had a maximum range of 9 km (5.6 ml) and would usually be launched after a high-speed attack run on very low altitude and a climb to 400m for launch. Since the RB 05 was roll-stabilized, the aircraft did not need to be aimed straight at the target when launching and could immediately descend into terrain cover again, and this also made it possible to attack aerial targets from unusual angles and flight paths. Tracking the flares on the missile, the pilot would then visually guide the missile (the missile's engine was smokeless as to not obscure the view) with a small manual joystick towards the target. Guidance commands were transmitted to the missile via a jam-proof radio transmission link.
The A 35 G kept the J 35 D’s two 30 mm ADEN cannons, and a limited air defense capability was retained, too: the Gustav could carry up to four IR-guided Rb 24 (AIM-9B Sidewinder) AAMs, in addition to the Rb 05 in air-to-air mode. However, the aircraft lacked any air intercept radar, and had instead a Ferranti LRMTS (laser rangefinder and marked target seeker) and a counterweight installed in the nose, which resembled the S 35 E photo reconnaissance version’s nose, just without the windows for the side-looking cameras. For its attack role, the A 35 G received a new inertial navigation system, new altimeters and a ballistic computer from Saab called BT-9Rm, which worked with both bombs and rockets and even allowed for toss bombing. The Gustav Draken was furthermore fitted with electronic countermeasure (ECM) systems, a RHAWS and chaff and flare dispensers in their tail cones to improve its survivability over the battlefield.
The Gustav conversion program was accepted by the Swedish government in 1968. Work started in early 1969, the first revamped aircraft reached the operational units in late 1971. However, since production of the AJ 37 was starting at the same time, only 61 aircraft were eventually re-built from existing J 35 D airframes (one prototype and sixty production aircraft). Västgöta Wing (F 6) at Karlsborg was the first squadron to receive the A 35 G, replacing its A 32 A fighter bombers, the other unit to operate the type was Skaraborg Wing (F 7) at Såtenäs.
Among Sweden’s Draken fleet the Gustav was easy to recognize because it was the only version that carried the new “Fields & Meadows” splinter camouflage as standard livery. Service of the A 35 G lasted only until the early Eighties, though: as more and more AJ 37 all-weather fighter bombers reached the Swedish frontline units during the Seventies, the interim attack Draken, which was only effective under daylight and more or less good weather conditions, was withdrawn and either used for spares in the running J 35 J modernization program or directly scrapped, because many airframes had, suffering from the special stress of low-level flight operations, reached the end of their lifespan.
Another factor for the quick withdrawal was the disappointing performance of the type’s primary weapon, the Rb 05 missile: Its manual joystick steering in the cramped Draken cockpit (to be operated while the pilot was expected to fly at low altitude and evade enemy fire!) presented a number of problems, and the Rb 05’s ultimate accuracy was, even under ideal conditions, on the order of just 10 meters (33 ft), greater than desired. Targets like tanks or even ships were hard to hit with this level of scattering, combined with imminent danger for the pilot, and the air-to-air mode was even less effective. On the more modern Saab 37 the Rb 05 was therefore replaced by the Rb 75, a license-produced version of the American TV-guided AGM-65 Maverick “fire and forget” weapon. TV and laser seeker heads for the Rb 05 to improve the weapon’s accuracy and handling had been planned since the early Seventies, but were never realized.
General characteristics:
Crew: 1
Length: 15.35 m (50 ft 4 in)
Wingspan: 9.42 m (30 ft 11 in)
Height: 3.89 m (12 ft 9 in)
Wing area: 49.2 m² (530 ft²)
Airfoil: 5%
Empty weight: 8,175 kg (18,006 lb)
Gross weight: 11,500 kg (25,330 lb)
Max takeoff weight: 13,554 kg (29,845 lb)
Powerplant:
1× Svenska Flygmotor RM6C (license-built Rolls Royce Avon with Swedish EBK67 afterburner)
turbojet engine, 56.5 kN (12,700 lbf) thrust dry, 77.3 kN (17,240 lbf) with afterburner
Performance:
Maximum speed: 2,150 km/h (1,335 mph, 1,168 kn) at 11,000 m (36,089 ft), clean
1,430 km/h (888 mph, 777 kn) w. two dop tanks and two 454 kg (1.00 lb) bombs
Range: 1.120 km (605 nmi; 696 mi); clean, internal fuel only
Ferry range: 2,750 km (1,480 nmi; 1,710 mi) with four external 500 l drop tanks
Service ceiling: 20,000 m (66,000 ft)
Rate of climb: 199 m/s (39,200 ft/min)
Wing loading: 231.6 kg/m² (47.4 lb/ft²)
Thrust/weight: 0.7
Takeoff roll: 800 m (2,625 ft)
Armament:
2× 30 mm akan m/55 ADEN cannon with 100 rounds per gun
9× hardpoints with a total capacity of 4,500 kg (10.000 lb)
The kit and its assembly:
Even though the model depicts a what-if aircraft, the Draken’s proposed “Gustav” attack variant based on the J 35 D interceptor was real – even though I could not find much detail information about it. So, I took some inspiration from the contemporary Danish Saab 35XD export version, which probably had similar features to the Gustav? Another inspiring factor was a pair of Rb 05 missiles (from an Airfix Viggen) that I had bought with a spare parts lot some time ago – and an attack Draken would be the perfect carrier for these exotic (and unsuccessful) missiles.
For a low-budget build I used one of Mistercraft’s many recent re-boxings of the vintage Revell Draken from 1957(!), and this kit is nothing for those who are faint at heart. It is horrible.
The kit probably depicts a late J 35 A (already with a long tail section), but even for this variant it lacks details like the air scoops for the afterburner or a proper landing gear. The Draken’s characteristic tail wheel is also missing completely. Worst pitfall, however: there is NO interior at all, not even a lumpy seat! The canopy, the early model with struts, is disturbingly clean and crisp, though. The overall fit is mediocre at best, too – there are only a few visible seams, but any of them calls for filling and PSR. It’s a very toyish kit, even though the general outlines are O.K.
And the Mistercraft instructions are really audacious: they show all the parts that are actually NOT there at all. Suddenly a seat appears in the cockpit, a fin fairing from a J 35 D or later, or the tail wheel… And the decal sheets only roughly meet the aircraft you see in the painting instructions - there are three sheets, totally puzzled together, including material for aircraft not mentioned in the instructions, but that’s a common feature of most Mistercraft kits. But: how much can you taunt your disappointed customers?
So, this leaves lots of room for improvements, and calls for a lot of scratching and improvisation, too. First measure was to open both the air intakes (which end after 2mm in vertical walls) and the exhaust, which received an afterburner dummy deep inside to create depth. Next, I implanted a complete cockpit, consisting of s scratched dashboard (styrene sheet), the tub from an Italeri Bae Hawk trainer’s rear cockpit (which comes with neat side consoles and fits quite well) plus a shallow vintage ejection seat, probably left over from an early MiG from a KP kit or one of its many later reincarnations. As an alternative, there’s a Quickboost resin aftermarket set with a complete cockpit interior (even including side walls, IIRC intended to be used with the Hasegawa Draken) available but using it on this crappy kit would have been a waste of resources – it’s more expensive than the kit itself, and even with a fine cockpit the exterior would still remain sh!t.
Since I could not find any detail about the Gustav Draken’s equipment I gave it a laser rangefinder in a poor-fitting S 35 E (or is it a Danish export F-35?) nose that comes as an optional part with the vintage Revell mold – which is weird, because the recce Draken was built between 1963 and 1968 in 2 series, several years after the kit’s launch? Maybe the Mistercraft kit is based on the 1989 Revell re-boxing? But that kit also features an all-in-one pilot/seat part and a two-piece canopy… Weird!
Once the hull was closed many surface details had to be added. The afterburner air scoops were created from plastic profiles, which are aftermarket roof rails in H0 scale. Styrene profile material was also used to create the intakes behind the cockpit, better than nothing. The OOB pitot on the fin was very robust, and since it would be wrong on a J 35 D I cut it off and added a fairing to the fin tip, a shortened/modified ACMI pod, which bears a better pitot alternative at its tip. The pitot on the nose was scratched from heated styrene, since the kit offers no part at all.
Under the rear fuselage the whole tail wheel arrangement had to be scratched. The shallow fairing consists of a section from a Matchbox EA-6B drop tank, the wheel and its strut were tinkered together with bits from the scrap box and profile material. Not stellar, but better than OOB (= nothing!).
The landing gear struts were taken from the kit but beefed up with some details. The main wheels had to be replaced, the new ones come from a KP MiG-21, IIRC.
The ordnance consists of a pair of Rb 05’s from an Airfix Viggen, a pair of OOB drop tanks and MERs from a Matchbox A-7D, together with fourteen streamlined bombs from the same kit – twelve on the MERs and single bombs on the outer pylons. AFAIK, Sweden never used MERs on their aircraft, but the bombs come pretty close to some small bombs that I have seen as AJ 37 ordnance. Most pylons are OOB, I just added a single ventral station and two outer hardpoints under the wings. The Rb 05s received a prominent place under the air intakes on Sidewinder launch rails.
Painting and markings:
Finally a good excuse to apply the famous and complex “Fields & Meadows” paint scheme to a Draken model! However, this “combo” actually existed in real life, but only on a single aircraft: around 1980 a J 35 B (s/n 35520), aircraft “20” of F18, was painted in this fashion, but AFAIK it was only an instructional airframe. You find some pictures of this aircraft online but getting a clear three-side view (esp. from above!) as a reliable painting benchmark is impossible. However, a complete paint scheme of this aircraft is provided with one of Mistercraft’s Revell Draken re-boxings (not the one I bought, though), even though it is mismarked as a J 35 F of F10 in the instructions. One of the common Mistercraft errors, err, “surprises” (*sigh*).
Finding suitable model paints for the elaborate scheme is not easy, either, and after having applied it several times I stuck to my favorites: Humbrol 150 (Forest Green, FS 34127), 75 (Bronze Green), 118 (US Light Tan, FS 30219, a bit light but RAF Dark Earth is too somber) and Revell 06 (Tar Black, RAL 9021) on the upper surfaces and Humbrol 247 (RLM76) underneath.
A large ventral section was, typical for the J 35, left in bare metal, since leaking fuel and oil would frequently eat away any paint there. The section was painted with Revell 91 (Iron) and later treated with Matt Aluminum Metallizer (Humbrol). As per usual, the model received an overall light black ink washing and some post-shading in order to emphasize the panels, correct the splinter camouflage and dramatize the surface. Some extra weathering was done around the gun ports and the jet nozzle with graphite.
Internal details like the cockpit and the landing gear were painted with the help of Swedish Saab 35 reference pictures. The cockpit tub was painted in a dark, bluish green (Humbrol 76) with grey-green (Revell 67) side walls.
The landing gear and its respective wells were painted in a bluish grey (Revell 57), parts of the struts were painted in a bright turquoise (a mix of Humbrol 89 and 80; looks quite weird, but I like such details!). The wheel hubs became medium grey (Revell 47). The Rb 05 missiles were painted in white as live weapons, so that they stand out well from the airframe. The drop tanks received the same blue-grey as the underside (Humbrol 247). MERs and launch rails were painted in a neutral grey (RAL 7001) and the bombs became olive drab (RAL 6014, Gelboliv) with yellow rings and golden fuzes.
Decals/markings were puzzled together from a Moose Republic Saab 32 sheet (unit code number and emblem) and the spares box, including the red tactical tail code from an Italeri 1:72 Gripen and roundels from a Hasegawa Draken. Stencils were taken from the kit’s OOB sheet and also from the Hasegawa Draken sheet. Finally, the model was sealed with matt acrylic varnish (Italeri).
What a horror trip! The paint scheme itself was/is challenging enough, but modding the crappy vintage Revell kit into something more presentable was already a fight in itself. However, I like the outcome. “Fields & Meadows” suits the Draken with its huge and flat upper surface well, and while the Gustav conversion did not take much effort the “mud mover” ordnance under this Mach 2 fighter really looks strange and makes you wonder what this is. A nice what-if model, despite its blurriness!
Coachwork by Carrozzeria Figoni
Chassis n° 55221
Les Grandes Marques du Monde au Grand Palais 2020
Bonhams
Parijs - Paris
Frankrijk - France
February 2020
Estimated : € 4.000.000 - 7.000.000
Sold for € 4.600.000
Here, Bonhams proudly offers the renowned 'Geoffrey St John', 56-years in his ownership, 1932 Bugatti Type 55 Supersport with its unique, 1933-fitted, Figoni coachwork. This magnificent high-performance, Post-Vintage Thoroughbred two-seater began life as a works-backed Bugatti entry in the 1932 Le Mans 24-Hour race. It was co-driven there by two of France's most capable and charismatic drivers, the aristocratic Sarthois (from Le Mans) Count Guy Bouriat Quintart and the renowned Monegasque future French Champion, Louis Chiron.
While this 2.3-litre supercharged straight-8 Bugatti originated with a spartan lightweight racing body tailored to that year's Le Mans 24-Hour regulations, following its post-race sale to Parisian magazine publisher Jacques Dupuy it was speedily rebodied in Boulogne sur-Seine on the outskirts of Paris by the now legendary Italian-born stylist/coachbuilder Giuseppe Figoni.
Following an awards-rich early history in France, this mouth-watering sports Bugatti survived World War 2 and, as long ago as August, 1963 – some 56 years ago – it was acquired by its long standing owner, leading British Bugattiste, Geoffrey St John.
This magnificent car became the apple of his eye, and he was devastated in June 1994 when it was involved in a road accident in France, assailed by a speeding car driven by a youth who was both uninsured, and drunk. Frontal damage to the car was beautifully repaired in a subsequent, utterly painstaking 5,000-hour restoration, from which his Bugatti Type 55 – chassis '55221' – re-emerged, the vast majority of its original St John-ownership fabric having been successfully preserved and repaired...A photographic record of the restoration has been documented by Independent Bugatti Consultant Mark Morris.
In fact, Bugatti Type 55 chassis '55221' was ordered by Guy Bouriat as early as January 1, 1932. The order form specifies: "2.3 litre Supersport car, Type 55, supercharged, 4-seat torpedo body, complying with Le Mans regulations. With 6 Bugatti wheels and all necessary accessories for a 24 hours race. Automatic fuel cap." The address on the form is Bouriat's family home in Paris, 44 Rue Fabert, near the Champ de Mars. No trace has been found in the factory archives of any related invoice or payment – perhaps indicative of it having been treated as a works entry for Bouriat as an established (and well connected) racing driver.
To meet this formal order, chassis No. '55221'/(initial) engine '14' was assembled at the works in April 1932, concurrent with sister chassis using engines '15' and '16'. It was factory-bodied as a torpedo, the Molsheim bodyshop register recording it as being the first of the bodies built in June 1932: "Carr 24h . 55/14 -55221. juin 32". The car was then delivered to Paris by road on June 11th, 1932 – ready for the following weekend's important race at Le Mans.
Le Mans 24-Hours - June 18-19, 1932.
Guy Bouriat and Louis Chiron in '55221' starred under race number '15' amongst the 27 entries for this late-Depression-era 24-Hour Grand Prix d'Endurance.
Charles Faroux of the journal 'L'Auto' reported: "There are four Bugattis entered of which two, above all, deserve attention by the speed they achieved during testing days: one is at the hands of Chiron and Bouriat, while the other has Count Czaykowski and the brave Friderich as pilots... I would not be at all surprised to see these two pairs fight hard with the Alfa Romeos, as did the Bentleys and Mercedes."
While '55221' was fitted with a 130-litre fuel tank, the sister Type 55 for Count Czaykowski/Friderich had only a 115-litre tank. In the opening race period, four Alfa Romeo 8C-2300s led, with this Bouriat/Chiron Bugatti keeping pace in fifth place. But, as Faroux then reported: "At the beginning of the third hour, we are told to the astonishment of everyone, that Bouriat, then fifth, (has) run out of gas... Bouriat was helped to the pit. Of course he is declared out of the race since his forced stop happened on the 22nd lap when he had two more laps to run before refuelling" – having thus infringed the organising ACO club's unpitying minimum refuelling distance rule.
The 'L'Auto' issue of June 20, 1932, then described how: "Wisely, Bouriat and Chiron had lined their tank with a thick piece of felt and duckboard providing good protection against flying stones. This protection could not extend to a small part above the rear axle trumpet; it is in this small gap that a stone stuck, bending the metal sheet which resisted, but whose crimping parted and let 50 litres of gas leak through it. Bouriat, then in his twentieth lap, who knew he could run forty more laps on his fuel, thought there was a breakdown of his fuel supply and finds his carburettor empty and the floats, lacking damping, detached. Unavoidable withdrawal. Having abandoned, he is given 5 litres of fuel to go back to the pit. It is while refuelling to return to the pit that he sees the leak in the tank and realizes the cause of it. What a terrible tragedy...".
This Bugatti '55221' had in fact represented the French industry's best hope of a home win at Le Mans that year, but its split fuel tank helped leave the course clear for Raymond Sommer/Luigi Chinetti to win – for Alfa Romeo and Italy...
Post-race, '55221' was sold to Jacques Dupuy, motoring-enthusiast son of Paul Dupuy, proprietor of the newspaper 'Le Petit Parisien', and founder of the magazines 'Mirroir des Sports' and 'Sciences et Vie'. In a 1992 letter to Pierre-Yves Laugier, Jacques Dupuy recalled: "I bought the Bugatti from Guy Bouriat. It was a black 2+2 torpedo with light aluminium body. The car could reach 200 km/h...I kept it with its bucket seats for a few months before taking it to Figoni's. It was bodied there according to my drawings. The steel body was black and white. The dashboard was in black leather...I sold the car about three or four years later, after the 1936 Paris-Nice rally, to Monsieur Gandon, a wine and spirits merchant at 152 Boulevard Hausmann."
Between 1928 and 1933, the Figoni bodyshop at "14 rue Lemoine, Boulogne, Seine", bodied some 77 Bugattis.
Jean Dupuy's order for this Bugatti Type 55 appears in the Figoni register in February 1933, while the August issue that year of 'L'Équipement Automobile' carries a profile drawing of the car and cites its Nitrolac enamel paintwork as being "iris black and Leda white".
M. Dupuy also recalled how: "During my custody, I had to go twice to the factory one of them was for repairing the compressor (factory note dated March 21st 1933). I won the Paris-Nice rally in 1933 beating the Alfa Romeos in the Sport category. At La Turbie, I reached 83km/h standing start. This car is the 2300cc single shaft...which was maintained for me by Mr Rocatti, a Bugatti specialist in Paris who had a garage at Buttes-Chaumont".
XIIth Critérium International de Tourisme Paris-Nice, 1933
The journal 'L'Auto' for March 30th 1933 described how the Paris-Nice Rally was to be run in three stages: Paris-Vichy, Vichy-Marseille and Marseille-Nice. Jacques Dupuy's Type 55 would run as number '52' in up-to-3-litre Class D. In the 1km Michelet stage – with standing start and flying finish - Dupuy set the fastest time, of 34 seconds, averaging 105,882km/h (66.09mph). Upon arrival in Nice on April 3rd, an idling and acceleration test took place on the Quai des États-Unis in which Dupuy's Bugatti set times of 49.6 secs and 18 secs respectively.
Next day, in a 500 metres trial before thousands of spectators on the Promenade des Anglais Dupuy again bettered the rival Alfa Romeos of Gunzburg and Weinberg, at 142,860 km/h (88mph). In the final stage on the famous 6.3km (3.9-mile) La Turbie hill-climb, Dupuy finally won the Paris-Nice event overall, with a climb time of 4mins 25.6secs, 85.391km/h (53mph). The 'L'Auto' report described how: "Victory goes to Jacques Dupuy. This young pilot had a 2.3 litre double camshaft Bugatti at his disposal. No need to be a pre-eminent driver and Jacques Dupuy never had such pretentiousness. But you had to own a car complying with the regulations. The 2.3 litre Bugatti fully satisfied. In congratulating Dupuy, one must not forget the maker of Molsheim...".
The Bois de Boulogne Concours d'Elégance - June 24, 1933
Two months after his Paris-Nice victory Jacques Dupuy entered his freshly Figoni-bodied Bugatti '55221' in the annual Parisian Grand Concours d'Elégance. The Countess de Rivals-Mazères had been invited "to enhance his convertible" and after the car had won the 'L'Auto'-sponsored first class judged, for over 10hp open cars, the Countess helped show it in two further categories backed by the journals 'Fémina' and 'L'Intransigeant' In the third category (cars over 15 HP presented by ladies and driven by a chauffeur in livery), Mme de Rivals-Mazères – accompanied by two Scottie dogs - "sur Bugatti 17C cabriolet transformable Figoni" won a Spark gramophone...
Owner Dupuy recovered his laurelled thoroughbred and would use it for three more years before selling it, as he recalled, to Marcel Gandon.
The new owner was the 38-year-old son of wine merchant Alphonse Gandon, of 152 Boulevard Hausmann, Paris, but he kept '55221' only briefly – from early-1936 to April 1937 – when he bought a brand-new Type 57S Atalante. On November 28, 1936, the unique Figoni-bodied Type 55 was sold via Bugatti to Garage Bayard, 22 Rue Bayard, Paris, the sale document stating: "Sold to garage Bayard one car Type 55 N° 55221, engine 14 (ex Gandon) 2 seat roadster bodywork (convertible by Figoni) in good working order, second hand sold as is for a net price of 25 000 francs".
Paris-Saint-Raphaël Rallye Féminin 1937
The Garage Bayard was run by Charles de Lavoreille, Jacques de Valence and a M. Richer-Delavau and the latter's wife ran '55221' in the March 17-22, 1937 'IXe Paris-Saint-Raphaël Féminin' – entry number '48', facing a 1,039 km route to be completed in five days, staging through Nevers, Clermont-Ferrand, Orange and Toulon. In initial 500 metres standing start, and 1km flying-start tests at Nevers Mme Richer-Delavau placed 6th in each, and in the Saint-Sébastien hill-climb at Saint Raphaël, she maintained her position with a time of 47.8secs, behind Mmes Lamberjack and Lucy O'Reilly Schell in their Delahaye Sport. Overall in the Rally she would finish sixth and fifth in class.
M. Laugier's Bugatti records show that on December 27, 1937, an un-named Parisian enthusiast bought '55221' from Garage Bayard. This might have been Roger Teillac, a Bugatti specialist based in the Avenue de Suffren, as his archives contain three pictures of the car, but wearing a 1938 Nancy licence plate. Teillac possibly maintained the car for another owner 1938-39 or had taken back the car in the post-war summer of 1946 when his establishment repaired its oil sump, split by frost.
Certainly, Louis Stephanazzi had acquired the car on May 7, 1938, and registered it '5658 KU 5' to his home address of 49bis Avenue Anatole France, Nancy. Family memory recalls that the car was hidden dismantled during the war in the garage that Stephanazzi ran in town. The Germans requisitioned his garage where they would repair their vehicles. At the back were a Bugatti Type 57 convertible, bought in Paris in August 1938, and the 55 roadster, which both survived the conflict.
On September 16, 1946, the Type 55 was sold in Paris under licence plate '4239 RP 4' and one month later, it passed to André Couston, a dealer from Nice, resident at 4bis Avenue Mont Alban. On October 18, 1946 he re-registered the car '3286 BA 8'. At the time André Couston also owned the first Type 55 roadster, chassis '55201'.
On July 30th 1948, '55221' returned to Paris, registered '7220 RQ 4'. Its owner was possibly Jacques Devinot who told M. Laugier in June 1993: "I owned three Bugattis...(including)...the Type 55 convertible...bought around 1948 from a garage near Porte de Champerret. It was then sold to Mr Bierlein from Paris in 1950 who sold it to a Canadian man. I found it back later at Docime's, dismantled. The registration papers were never changed and the Canadian man came to see me to get a sale certificate which I refused to do, having already done one for Mr Bierlein. When I bought the car, the chassis had been bent and I had to dismantle the car and correct it. As I see it, every bit was original on the car which was in a cream and black livery". He also had a luggage rack installed by Figoni»
The Police register confirms M. Devinot's dates, while a letter from him states that in August 1950 the Bugatti was owned by Gaston Bierlein, of Hôtel Pylone 1, Megève, Haute-Savoie. He kept the car for five years before selling it on March 24, 1955, to Canadian journalist Douglas Lachance, of 59 Avenue Hoche, Paris. The car – with its engine dismantled or removed - was then consigned to leading Bugatti specialist Gaston Docime, in the Rue de la Saussaie, Neuilly-sur-Seine. It remained in there until August 28, 1962 when British Type 55 enthusiast Anthony Austin Morse, a dentist of 4 Westfield Road, Rugby, imported it into England, less engine, with a £20 deposit on the import duty pending valuation.
A. A. Morse then owned three Type 55s - '55220', '55221' and '55223' – but he quickly sold the unique Figoni-bodied example to Henry H. Thomas of White Cottage, Belmond Park Road, Maidenhead, proprietor of the Fernley Service Station, who on July 25, 1963, re-sold it to Geoffrey St John, of Woodland Cottage, Greenwich Lane, Leafield, Oxon for £750
In a letter to Geoffrey St John, dated August 12, 1963, the eminent British Bugatti Registrar Hugh Conway wrote: "I did point out the engineless car to Morse, at Docime's, which he bought for £100 and sold to Thomas..." In another letter, Conway remarked that the engine of '55221' could have been sold by Docime in the USA.
Geoffrey St John restored the car to running order with engine 26 ex 55223 installed. It became a stable-mate for his Type 35B and Type 51 Grand Prix cars and it has remained in this single family ownership to this day. Geoffrey St John was a talented technician working for Smiths Industries, and eventually became the company's Chief Engineer, while dedicating most of his spare time to Bugatti restoration, tuning and racing. He was a most talented driver and became the sporting Bugatti marque's foremost British exponent over many years. He was exceptionally highly regarded as a twin-cam 2.3 Bugatti specialists, and always took particular delight in driving '55221' widely throughout the UK, and in Continental Europe, particularly – of course in France.
It was on a French road – near Auxerre in June 1994 – that he had the misfortune to be hit by a drunken driver, as described. The damage sustained took some two years of work to put right, Geoffrey St John being determined (at considerable extra expense) to save absolutely all of the car's original fabric that had escaped total destruction. Chassis straightening, keeping all the original parts, was carried out by renowned British specialist Gino Hoskins (Images on file).
A November 2019 inspection report on the car has been compiled by leading French Bugatti authority Pierre-Yves Laugier. He sums up its present condition thus: "The car keeps its original chassis, repaired in 1994. It (the original element of the chassis) is 90% complete with a few additional strengthening plates added according to Christian Huet, Parisian expert in charge of the accident file. The exterior of the car after restoration was completely in accordance with the original after more than 5,000 hours work.
"It (then) took part in its first event in the summer of 1996 (and so) the only Figoni roadster on a Supersport Type 55 Bugatti chassis is ready to join the world of rallies and concours d'élégance. It remains one of the most beautiful expressions of a Sports car by a coachbuilder, multi-purpose and powerful, one of the most important witnesses of the golden era of coachbuilding and know-how of the Bugatti brand..."
In detail M. Laugier observed: "The frame bore number 22, but the fixing hole of the spare wheel shows only one of the '2s' (the other having been drilled through). The front axle is of the right type, with no number and is probably new". In fact Geoffrey St John always maintained that the current front axle is an original, Bugatti-manufactured, hollow front axle of correct Type 55 specification...
M. Laugier continued: "The engine (comprising a matched pair of upper and lower crankcase castings – the left-rear mounting leg of which carries) assembly number '48' from roadster '55223'/engine '26'. One observes important welding traces under the rear-left mounting piece. Front-left mounting piece (the integrally cast engine leg), which was completely destroyed in the accident, was melted down and re-cast from a pattern amongst Geoffrey St John's spare parts collection. The re-cast leg was then welded back into place.
The clutch casing carries on both parts number '14'. Both gearbox and rear-axle sumps were rewelded after the accident. Traces are still visible on the original parts.
"The car was equipped with an overdrive. Compressor No '33' is ancient and of the right kind, but is not the one on the car in 1933, because a note of the repair workshop for compressors dated March 21st, 1933. states: 'Compressor 55 N° 45, Mr Rocatti, Paris, client Mr Dupuy, milling of notches in the chambers' The body of the gearbox is engraved (stamped) '39'. It is probably the factory replacement box, following the 38 (other such gearboxes that were) produced from 1931 to 1933.
"It could have been fitted to the car after one of the races in which it took part between 1933 and 1937. The original gearbox of the car, No '14', is today on a Type 55 chassis '55235' with a British history and which in 1962 was equipped with a Cotal gearbox. The original rear axle numbered '14' is the original one (installed in) the car and has race type ratio of 14 x 54 instead of the usual 13 x 54 of the first Type 55."
Mark Morris adds: "The front axle is of the right type, with no number" .
Pierre-Yves Laugier's report continues: "The fixed parts of the body are made of steel, while the opening parts are made of aluminium. After the accident in 1994, the wooden dashboard was rebuilt as the original wood board was split in two. The aluminium part of the bonnet had also to be completely replaced as well as the left front wing and the right door. Most of the wooden structure was kept. The work was carried out at Terry Hall's workshop. Drums and left front brake shoe were rewelded and two brake shoes were replaced. The wheel rim of several wheels was redone by welding - particularly visible on the spare wheel."
M. Laugier further observes: "The chassis plate of the vehicle is ancient. It wears number '55221', apparently over-stamped. It is of the Type 57 'Bas-Rhin' type and the number '57282' can be detected underneath (which) tallies with a Type 57 chassis number delivered in the Nord department in April 1935".
Since completion of restoration work in 1996 until Mr St John's recent passing, '55221' was regularly exercised by him. In similar style to the modern-day Bugatti Veyron, Chiron and EB110 models – which are both a schoolboy pin-up and a modern car collector's dream - so in its heyday the Bugatti Type 55 was a hugely coveted automotive jewel.
It is in essence a Grand Prix car with sports bodywork for use on the open road, powered by a 2.3-litre supercharged twin-cam 8-cylinder engine –as developed for the multiple Grand Prix-winning Bugatti Type 51 and only moderately detuned. Even in 1932 this power unit's blistering power and torque endowed the Type 55 with 0-60mph acceleration in 13 seconds and the hitherto unheard-of top speed – for a road car - of 115mph.
Even in the backwash from The Great Depression, the most style-conscious of high-society glitterati all aspired to the Type 55 – and, with its technical specification and haute couture body styling, it was squarely aimed at the most wealthy...and the most dashing...clientele such as the Duc de la Tremoille, Victor Rothschild and Nicholas Embiricos. With its contemporary price tag of some $7,500, Bugatti produced only 38 Type 55s, 27 of which are now known to survive.
And amongst them, this Figoni-bodied example – with its waistline-level doors offering proper cockpit wprotection in contrast to the doorless, cut-down cockpit sides of the more common Jean Bugatti roadster style – is unique. It is offered here in running order, accompanied by not only the immensely fine-detailed Pierre-Yves Laugier and Mark Morris inspection and history reports, but also by a substantial array of relevant spare parts. After 56 years in one ownership this is – when judged by the highest standards - a unique example of perhaps the most mouth-watering of all Bugatti models, and a definitive connoisseur's car to be truly, truly, coveted...
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.
The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.
From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.
The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.
After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.
The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.
Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.
The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.
The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.
The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.
After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.
General characteristics:
Crew: 1
Length: 31 ft 10 in (9.70 m)
Wingspan: 36 ft 10 in (11.23 m)
Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical
Wing area: 242.1 ft² (22.5 m²)
Empty weight: 5,564 lb (2,524 kg)
Gross weight: 7,415 lb (3,363 kg)
Powerplant:
1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,
delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller
Performance:
Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)
Cruise speed: 272 mph (438 km/h, 236 kn)
Range: 493 mi (793 km) on internal fuel at cruising speed
965 mi (1,553 km) with 90 gal drop tank
Service ceiling: 42,500 ft (12,954 m)
Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)
Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds
Armament:
4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard
Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb
(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers
The kit and its assembly:
This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.
With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.
With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.
Painting and markings:
The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.
Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!
Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.
I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.
The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.
The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.
The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.
A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.
In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.
The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).
For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.
The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.
In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.
Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.
Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.
Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.
Specifications:
Crew: 4 (commander, driver, gunner, radio operator/second driver)
Weight: 22.6 t
Length: 7.74 m (25 ft 4 ¼ in)
Width: 2.98 m ( 9 ft 9 in)
Height: XXX
Ground clearance: 440 mm (1 ft 4 in)
Suspension: hydraulic all-wheel drive and steering
Armor:
Unknown, but sufficient to withstand 14.5 mm AP rounds
Performance:
Speed: 90 km/h (56 mph) on roads
Operational range: 720 km (445 mi)
Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel
Engine:
1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,
delivering 300 hp with petrol, 390 hp with diesel
Armament:
1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)
1× co-axial 7.92 mm M3 machine gun with 2.000 rounds
Two groups of four Wegmann 76 mm smoke mortars
The kit and its assembly:
I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.
This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.
Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).
An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!
Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.
Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.
Painting and markings:
The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).
Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.
Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The KAI T-50 Golden Eagle (골든이글) is a family of South Korean supersonic advanced trainers and light combat aircraft, developed by Korea Aerospace Industries (KAI) with Lockheed Martin. The T-50 is South Korea's first indigenous supersonic aircraft and one of the world's few supersonic trainers.
The T-50 program started in the late Nineties and was originally intended to develop an indigenous trainer aircraft capable of supersonic flight, to train and prepare pilots for the KF-16 and F-15K, replacing trainers such as T-38 and A-37 that were then in service with the ROKAF. Prior South Korean aircraft programs include the turboprop KT-1 basic trainer produced by Daewoo Aerospace (now part of KAI), and license-manufactured KF-16.
The mother program, code-named KTX-2, began in 1992, but the Ministry of Finance and Economy suspended the original project in 1995 due to financial constraints. The basic design of the aircraft was set by 1999, and eventually the development of the aircraft was funded 70% by the South Korean government, 17% by KAI, and 13% by Lockheed Martin.
In general, the T-50 series of aircraft closely resembles the KF-16 in configuration, but it actually is a completely new design: the T-50 is 11% smaller and 23% lighter than an F-16, and in order to create enough space for the two-seat cockpit, the air intake was bifurcated and placed under the wing gloves, resembling the F/A-18's layout.
The aircraft was formally designated as the T-50 'Golden Eagle' in February 2000, the T-50A designation had been reserved by the U.S. military to prevent it from being inadvertently assigned to another aircraft model. Final assembly of the first T-50 took place between 15 January and 14 September 2001. The first flight of the T-50 took place in August 2002, and initial operational assessment from 28 July to 14 August 2003.
The trainer has a cockpit for two pilots in a tandem arrangement, both crew members sitting in "normal" election seats, not in the F-16's reclined position. The high-mounted canopy is applied with stretched acrylic, providing the pilots with good visibility, and has been tested to offer the canopy with ballistic protection against 4-lb objects impacting at 400 knots.
The ROKAF, as original development driver, placed an initial production contract for 25 T-50s in December 2003, with aircraft scheduled to be delivered between 2005 and 2009. Original T-50 aircraft were equipped with the AN/APG-67(v)4 radar from Lockheed Martin. The T-50 trainer is powered by a GE F404 engine built under license by Samsung Techwin. Under the terms of the T-50/F404-102 co-production agreement, GE provides engine kits directly to Samsung Techwin who produces designated parts as well as performing final engine assembly and testing.
The T-50 program quickly expanded beyond a pure trainer concept to include the TA-50 armed trainer aircraft, as well as the FA-50 light attack aircraft, which has already similar capabilities as the multirole KF-16. Reconnaissance and electronic warfare variants were also being developed, designated as RA-50 and EA-50.
The TA-50 variant is a more heavily armed version of the T-50 trainer, intended for lead-in fighter training and light attack roles. It is equipped with an Elta EL/M-2032 fire control radar and designed to operate as a full-fledged combat platform. This variant mounts a lightweight three-barrel cannon version of the M61 Vulcan internally behind the cockpit, which fires linkless 20 mm ammunition. Wingtip rails can accommodate the AIM-9 Sidewinder missile, a variety of additional weapons can be mounted to underwing hardpoints, including precision-guided weapons, air-to-air missiles, and air-to-ground missiles. The TA-50 can also mount additional utility pods for reconnaissance, targeting assistance, and electronic warfare. Compatible air-to-surface weapons include the AGM-65 Maverick missile, Hydra 70 and LOGIR rocket launchers, CBU-58 and Mk-20 cluster bombs, and Mk-82, -83, and -84 general purpose bombs.
Among the operators of the TA-50 are the Philippines, Thailand and the ROKAF, and the type has attracted a global interest, also in Europe. The young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) chose, soon after the country's independence from the United Kingdom, after its departure from the European Union in 2017, the TA-50 as a complement to its initial procurements and add more flexibility to its small and young air arm.
According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six [Lockheed Martin] C-130J Hercules, and a helicopter squadron”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action after the country's independence in late 2017 with the purchase of twelve refurbished Saab JAS 39A Gripen interceptors for Quick Reaction Alert duties and upgraded, former Swedish Air Force Sk 90 trainers for the RoScAC. But these second hand machines were just the initial step in the mid-term procurement plan.
The twelve KAI TA-50 aircraft procured as a second step were to fulfill the complex requirement for a light and cost-effective multi-purpose aircraft that could be used in a wide variety of tasks: primarily as an advanced trainer for supersonic flight and as a trainer for the fighter role (since all Scottish Gripens were single seaters and dedicated to the interceptor/air defense role), but also as a light attack and point defense aircraft.
Scotland was offered refurbished F-16C and Ds, but this was declined as the type was deemed to be too costly and complex. Beyond the KAI T-50, the Alenia Aermacchi M-346 Master and the BAe Hawk were considered, too, but, eventually, a modified TA-50 that was tailored to the RoScAC’s procurement plans was chosen by the Scottish government.
In order to fulfill the complex duty profile, the Scottish TA-50s were upgraded with elements from the FA-50 attack aircraft. They possess more internal fuel capacity, enhanced avionics, a longer radome and a tactical datalink. Its EL/M-2032 pulse-Doppler radar has been modified so that it offers now a range two-thirds greater than the TA-50's standard radar. It enables the aircraft to operate in any weather, detect surface targets and deploy AIM-120 AAMs for BVR interceptions. The machines can also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
Another unique feature of the Scottish Golden Eagle is its powerplant: even though the machines are originally powered by a single General Electric F404 afterburning turbofan and designed around this engine, the RoScAC TF-50s are powered by a Volvo RM12 low-bypass afterburning turbofan. These are procured and serviced through Saab in Sweden, as a part of the long-term collaboration contract for the RoScAC’s Saab Gripen fleet. This decision was taken in order to decrease overall fleet costs through a unified engine.
The RM12 is a derivative of the General Electric F404-400. Changes from the standard F404 includes greater reliability for single-engine operations (including more stringent birdstrike protection) and slightly increased thrust. Several subsystems and components were also re-designed to reduce maintenance demands, and the F404's analogue Engine Control Unit was replaced with the Digital Engine Control – jointly developed by Volvo and GE – which communicates with the cockpit through the digital data buses and, as redundancy, mechanical calculators controlled by a single wire will regulate the fuel-flow into the engine.
Another modification of the RoScAC’s TA-50 is the exchange of the original General Dynamics A-50 3-barrel rotary cannon for a single barrel Mauser BK-27 27mm revolver cannon. Being slightly heavier and having a lower cadence, the BK-27 featured a much higher kinetic energy, accuracy and range. Furthermore, the BK-27 is the standard weapon of the other, Sweden-built aircraft in RoScAC service, so that further synergies and cost reductions were expected.
The Scottish Department of National Defense announced the selection of the TA-50 in August 2018, after having procured refurbished Saab Sk 90 and JAS 39 Gripen from Sweden as initial outfit of the country's small air arm with No. 1 Squadron based at Lossiemouth AB.
Funding for the twelve aircraft was approved by Congress on September 2018 and worth € 420 mio., making the Golden Eagle the young country’s first brand new military aircraft. Deliveries of the Golden Hawk TF.1, how the type was officially designated in Scottish service, began in November 2019, lasting until December 2020.
The first four Scottish Golden Hawk TF.1 aircraft were allocated to the newly established RoScAC No. 2 Squadron, based at Leuchars, where the RoScAC took control from the British Army. The latter had just taken over the former air base from the RAF in 2015, losing its “RAF air base” status and was consequentially re-designated “Leuchars Station”, primarily catering to the Royal Scots Dragoon Guards who have, in the meantime, become part of Scotland’s Army Corps. The brand new machines were publically displayed on the shared army and air corps facility in the RoScAC’s new paint scheme on 1st of December 2019 for the first time, and immediately took up service.
General characteristics:
Crew: 2
Length: 13.14 m (43.1 ft)
Wingspan (with wingtip missiles): 9.45 m (31 ft)
Height: 4.94 m (16.2 ft)
Wing area: 23.69 m² (255 ft²)
Empty weight: 6,470 kg (14,285 lb)
Max. takeoff weight: 12,300 kg (27,300 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan, rated at 54 kN (12,100 lbf) dry thrust
and 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: Mach 1.5 (1,640 km/h, 1,020 mph at 9,144 m or 30,000 ft)
Range: 1,851 km (1,150 mi)
Service ceiling: 14,630 m (48,000 ft)
Rate of climb: 198 m/s (39,000 ft/min)
Thrust/weight: 0.96
Max g limit: -3 g / +8 g
Armament:
1× 27mm Mauser BK-27 revolver cannon with 120 rounds
A total of 7 hardpoints (4 underwing, 2 wingtip and one under fuselage)
for up to 3,740 kg (8,250 lb) of payload
The kit and its assembly:
A rare thing concerning my builds: an alternative reality whif. A fictional air force of an independent Scotland crept into my mind after the hysterical “Brexit” events in 2016 and the former (failed) public vote concerning the independence of Scotland from the UK. What would happen to the military, if the independence would take place, nevertheless, and British forces left the country?
The aforementioned Scottish National Party (SNP) paper from 2013 is real, and I took it as a benchmark. Primary focus would certainly be set on air space defense, and the Gripen appears as a good and not too expensive choice. The Sk 90 is a personal invention, but would fulfill a good complementary role.
Nevertheless, another multi-role aircraft would make sense as an addition, and both M-346 and T-50 caught my eye (Russian options were ruled out due to the tense political relations), and I gave the TA-50 the “Go” because of its engine and its proximity to the Gripen.
The T-50 really looks like the juvenile offspring from a date between an F-16 and an F-18. There’s even a kit available, from Academy – but it’s a Snap-Fit offering without a landing gear but, as an alternative, a clear display that can be attached to the engine nozzle. It also comes with stickers instead of waterslide decals. This sounds crappy and toy-like, but, after taking a close look at kit reviews, I gave it a try.
And I am positively surprised. While the kit consists of only few parts, moulded in the colors of a ROCAF trainer as expected, the surfaces have minute, engraved detail. Fit is very good, too, and there’s even a decent cockpit that’s actually better than the offering of some “normal” model kits. The interior comes with multi-part seats, side consoles and dashboards that feature correctly shaped instrument details (no decals). The air intakes are great, too: seamless, with relatively thin walls, nice!
So far, so good. But not enough. I could have built the kit OOB with the landing gear tucked up, but I went for the more complicated route and trans-/implanted the complete landing gear from an Intech F-16, which is available for less than EUR 5,- (and not much worth, to be honest). AFAIK, there’s white metal landing gear for the T-50 available from Scale Aircraft Conversions, but it’s 1:48 and for this set’s price I could have bought three Intech F-16s…
But back to the conversion. This landing gear transplantation stunt sounds more complicated as it actually turned out to be. For the front wheel well I simply cut a long opening into the fuselage and added inside a styrene sheet as a well roof, attached under the cockpit floor.
For the main landing gear I just opened the flush covers on the T-50 fuselage, cut out the interior from the Intech F-16, tailored it a little and glued it into its new place.
This was made easy by the fact that the T-50 is a bit smaller than the F-16, so that the transplants are by tendency a little too large and offer enough “flesh” for adaptations. Once in place, the F-16 struts were mounted (also slightly tailored to fit well) and covers added. The front wheel cover was created with 0.5 mm styrene sheet, for the main covers I used the parts from the Intech F-16 kit because they were thinner than the leftover T-50 fuselage parts and feature some surface detail on the inside. They had to be adapted in size, though. But the operation worked like a charm, highly recommended!
Around the hull, some small details like missing air scoops, some pitots and antennae were added. In a bout of boredom (while waiting for ordered parts…) I also added static dischargers on the aerodynamic surfaces’ trailing edges – the kit comes with obvious attachment points, and they are a small detail that improves the modern look of the T-50 even more.
Since the Academy kit comes clean with only a ventral drop tank as ordnance, underwing pylons from a SEPECAT Jaguar (resin aftermarket parts from Pavla) and a pair of AGM-65 from the Italeri NATO Weapons set plus launch rails were added, plus a pair of Sidewinders (from a Hasegawa AAM set, painted as blue training rounds) on the wing tip launch rails.
Since the T-50 trainer comes unarmed, a gun nozzle had to be added – its position is very similar to the gun on board of the F-16, on the upper side of the port side LERX. Another addition are conformal chaff/flare dispensers at the fin’s base, adding some beef to the sleek aircraft.
Painting and markings:
I did not want a grey-in-grey livery, yet something “different” and rather typical or familiar for the British isles. My approach is actually a compromise, with classic RAF colors and design features inspired by camouflage experiments of the German Luftwaffe on F-4F Phantoms and Alpha Jets in the early Eighties.
For the upper sides I went for a classic British scheme, in Dark Green and Dark Sea Grey (Humbrol 163 and 164), colors I deem very appropriate for the Scottish landscape and for potential naval operations. These were combined with elements from late RAF interceptors: Barley Grey (Humbrol 167) for the flanks including the pylons, plus Light Aircraft Grey (Humbrol 166) for the undersides, with a relatively high waterline and a grey fin, so that a side or lower view would rather blend with the sky than the ground below.
Another creative field were the national markings: how could fictional Scottish roundels look like, and how to create them so that they are easy to make and replicate (for a full set for this kit, as well as for potential future builds…)? Designing and printing marking decals myself was an option, but I eventually settled for a composite solution which somewhat influenced the roundels’ design, too.
My Scottish roundel interpretationconsists of a blue disk with a white cross – it’s simple, different from any other contemporary national marking, esp. the UK roundel, and easy to create from single decal parts. In fact, the blue roundels were die-punched from blue decal sheet, and the cross consists of two thin white decal strips, cut into the correct length with the same stencil, using generic sheet material from TL Modellbau.
Another issue was the potential tactical code, and a small fleet only needs a simple system. Going back to a WWII system with letter codes for squadrons and individual aircraft was one option, but, IMHO, too complicated. I adopted the British single letter aircraft code, though, since this system is very traditional, but since the RoScAC would certainly not operate too many squadrons, I rather adapted a system similar to the Swedish or Spanish format with a single number representing the squadron. The result is a simple 2-digit code, and I adapted the German system of placing the tactical code on the fuselage, separated by the roundel. Keeping British traditions up I repeated the individual aircraft code letter on the fin, where a Scottish flag, a small, self-printed Fife coat-or-arms and a serial number were added, too.
The kit saw only light weathering and shading, and the kit was finally sealed with matt acrylic varnish (Italeri).
Creating this whif, based on an alternative historic timeline with a near future perspective, was fun – and it might spawn more models that circle around the story. A Scottish Sk 90 and a Gripen are certain options (and for both I have kits in the stash…), but there might also be an entry level trainer, some helicopters for the army and SAR duties, as well as a transport aircraft. The foundation has been laid out, now it’s time to fill Scotland’s history to come with detail and proof. ;-)
Besides, despite being a snap-fit kit, Academy’s T-50 is a nice basis, reminding me of some Hobby Boss kits but with less flaws (e .g. most of the interiors), except for the complete lack of a landing gear. But with the F-16 and Jaguar transplants the simple kit developed into something more convincing.
Unlike Los Angeles, we rarely have celebrity sightings here in Chicago. However, today I unexpectedly ran into the Ohlsson twins after brunch at the Bongo Room. Available now. Email anytime Kennyk@k2modern.com.
While Skakdi are capable of physically wearing Kanohi Masks, they do not possess the measure of focus nor the mental capacity to utilize their powers...
Except for the very small fraction of the population who were mutated by the personal experiment of one curious Great Being.
About 1-3% of the Skakdi population have well above average mental capacities - even beyond that of Toa. While the average Skakdi cannot use Kanohi powers, these mutant Skakdi can use the powers of multiple masks at the same time, without even wearing them.
Known as Shamans, or Witch Doctors, these Skakdi are physically larger than their regular counterparts, and their spines are more elaborate. Their mutations also cause the appearance of various abnormal growths on their bodies, though luckily these are always symmetrical.
Other physical characteristics are more vibrant skin pigments - the average Skakdi are bi-colored without armor, though both colors are always different shades of the same color - and hunched back.
Skakdi Witch Doctors are equally revered and feared by their counterparts, while their existence is seldom considered more than a rumor beyond the shores of Zakaz. The Witch Doctors wield terrifying power, and are able to activate and control the powers of Kanohi masks even at a distance, thus using the powers of opponents' masks against them. They also wield elemental powers, considered by their fellow Skakdi to be "magic", and immense physical strength.
It's fortunate, therefore, that Witch Doctors seldom engage in combat. While they are rarely seen outside of Zakaz, all Witch Doctors travel to other islands occasionally to harvest Kanohi - usually still attached to the original owner's head. Beyond this, they do not engage in the warmongering typical of their race.
Instead, the Witch Doctors dedicate their time to rituals, incantations, hexes and the consumption of various mushrooms, while practicing the use of Kanohi powers, Their innate abilities allow them to control 3-4 masks, however if exercised (much like a muscle), this can be increased. The most powerful known Witch Doctor managed to simultaneously activate the powers of 35 Kanohi. After this, he claimed to have been "enlightened", and traveled to a nearby Skakdi village where he preached that their world was actually the body of a larger being, who was travelling through the void. The villagers promptly tore the Witch Doctor to bits and ate his remains.
Two shamanistic pursuits of the Witch Doctors not related to Kanohi are Voodoo and the training of familiars. The former involved the crafting of - usually Skakdi-like - effigies which can then be linked to the soul of another, thus any force affecting the effigy would effect the individual bound to it. Familiars, in turn, are rahi who are tamed by the Witch Doctor, and kept as loyal pets.
This particular Witch Doctor once caught a newly hatched Visorak, tamed it, and enchanted it so that it will never grow in size.
Witch Doctors often live in huts or hovels deep in the jungles of their homeland. While the homes of the Shaman often mirror their denizens and are thus unique, one constant in all such homes is a ritual altar, which functions much like a table. Witch Doctors are keen collectors of all kinds of oddities, so seeing various Kanohi, old weapons and even kraata around their altars is not unheard of.
All Witch Doctors carry a special staff, which they adorn with the heads of those whose Kanohi they collected. The Shaman are capable of using not only the Kanohi they wear, but also those on their staff. They also all possess ritual daggers, used in the art of Voodoo, as well as other rituals requiring living sacrifice.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.
The initial production model, the F-94A, entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 radar, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.
The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. Its Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a roomier cockpit and the canopy received a bow frame in the center between the two crew members. A new Instrument Landing System (ILS) was fitted, too, which made operations at night and/or in bad weather much safer. However, this new variant’s punch with just four machine guns remained weak, and, to improve the load of fire, wing-mounted pods with two additional pairs of 0.5” machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were nevertheless built.
The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm since aircraft technology had already developed at a fast pace – supersonic performance had already become standard. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48. This was a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the proposed new variant was exclusively armed with unguided air-to-air missiles.
Tests were positive and eventually the F-94C was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time. It still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft, though.
The F-94C's introduction and the availability of the more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and to Air National Guards. By 1955 most of them had already been phased out of USAF service, and some of these relatively young surplus machines were subsequently exported or handed over to friendly nations, too. When sent to the ANG, the F-94As were modified by Lockheed to F-94B standards and then returned to the ANG as B models. They primarily replaced outdated F-80C Shooting Stars and F-51D/H Mustangs.
At that time the USAF was looking for a tactical reconnaissance aircraft, a more effective successor for the RF-80A which had shown its worth and weaknesses during the Korea War. For instance, the plane could not fly at low altitude long enough to perform suitable visual reconnaissance, and its camera equipment was still based on WWII standards. Lockheed saw the opportunity to fill this operational gap with conversions of existing F-94A/B airframes, which had, in most cases, only had clocked few flying hours, primarily at high altitudes where Soviet bombers were expected to lurk, and still a lot of airframe life to offer. This led to another private venture, the RF-94B, auspiciously christened “Stargazer”.
The RF-94B was based on the F-94B interceptor with its J33 engine and the original unswept tail. The F-94B’s wings were retained but received a different leading-edge profile to better cope with operations at low altitude. The interceptor’s nose with the radome and the machine guns underneath was replaced by a new all-metal nose cone, which was more than 3 feet longer than the former radar nose, with windows for several sets of cameras; the wedge-shaped nose cone quickly earned the aircraft the unofficial nickname “Crocodile”.
One camera was looking ahead into flight direction and could be mounted at different angled downward (but not moved during flight), followed by two oblique cameras, looking to the left and the right, and a vertical camera as well as a long-range camera focussed on the horizon, which was behind a round window at port side. An additional, spacious compartment in front of the landing gear well held an innovative Tri-Metrogen horizon-to-horizon view system that consisted of three synchronized cameras. Coupled with a computerized control system based on light, speed, and altitude, it adjusted camera settings to produce pictures with greater delineation.
All cameras could be triggered individually by pilot or a dedicated observer/camera systems operator in the 2nd seat. Talking into a wire recorder, the crew could describe ground movements that might not have appeared in still pictures. A vertical view finder with a periscopic presentation on the cockpit panel was added for the pilot to enhance visual reconnaissance and target identification directly under the aircraft. Using magnesium flares carried under its wings in flash-ejector cartridges, the RF-94B was furthermore able to fly night missions.
The RF-94B was supposed to operate unarmed, but it could still carry a pair of 1.000 lb bombs under its wings or, thanks to added plumbings, an extra pair of drop tanks for ferry flights. The F-94A/B’s machine gun pods as well as the F-94C’s unguided missile launchers could be mounted to the wings, too, making it a viable attack aircraft in a secondary role.
The USAF was highly interested in this update proposal for the outdated interceptors (almost 500 F-94A/Bs had been built) and ordered 100 RF-94B conversions with an option for 100 more – just when a severe (and superior) competitor entered the stage after a lot of development troubles: Republic’s RF-84F Thunderflash reconnaissance version. The first YRF-84F had already been completed in February 1952 and it had an overall slightly better performance than the RF-94B. However, it offered more internal space for reconnaissance systems and was able to carry up to fifteen cameras with the support of many automatized systems, so that it was a single seater. Being largely identical to the F-84F and sharing its technical and logistical infrastructures, the USAF decided on short notice to change its procurement decision and rather adopt the more modern and promising Thunderflash as its standard tactical reconnaissance aircraft. The RF-94B conversion order was reduced to the initial 100 aircraft, and to avoid operational complexity these aircraft were exclusively delivered to Air National Guardss that had experience with the F-94A/B to replace their obsolete RF-80As.
Gradual replacement lasted until 1958, and while the RF-94B’s performance was overall better than the RF-80A’s, it was still disappointing and not the expected tactical intelligence gathering leap forward. The airframe did not cope well with constant low-level operations, and the aircraft’s marginal speed and handling did not ensure its survivability. However, unlike the RF-84F, which suffered from frequent engine problems, the Stargazers’ J33 made them highly reliable platforms – even though the complex Tri-Metrogen device turned out to be capricious, so that it was soon replaced with up to three standard cameras.
For better handling and less drag esp. at low altitude, the F-94B’s large Fletcher type wingtip tanks were frequently replaced with smaller ones with about half capacity. It also became common practice to operate the RF-94Bs with only a crew of one, and from 1960 on the RF-94B was, thanks to its second seat, more and more used as a trainer before pilots mounted more potent reconnaissance aircraft like the RF-101 Voodoo, which eventually replaced the RF-94B in ANG service. The last RF-94B was phased out in 1968, and, unlike the RF-84F, it was not operated by any foreign air force.
General characteristics:
Crew: 2 (but frequently operated by a single pilot)
Length: 43 ft 4 3/4 in (13.25 m)
Wingspan (with tip tanks): 40 ft 9 1/2 in (12.45 m)
Height: 12 ft. 2 (3.73 m)
Wing area: 234' 8" sq ft (29.11 m²)
Empty weight: 10,064 lb (4,570 kg)
Loaded weight: 15,330 lb (6,960 kg)
Max. takeoff weight: 24,184 lb (10,970 kg)
Powerplant:
1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust,
5,400 lbf (24 kN) with water injection and 6,000 lbf (26.6 kN) thrust with afterburner
Performance:
Maximum speed: 630 mph (1,014 km/h) at height and in level flight
Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks
Ferry range: 1,457 mi (1,275 nmi, 2,345 km)
Service ceiling: 42,750 ft (14,000 m)
Rate of climb: 6,858 ft/min (34.9 m/s)
Wing loading: 57.4 lb/ft² (384 kg/m²)
Thrust/weight: 0.48
Armament:
No internal guns; 2x 165 US Gallon (1,204 liter) drop tanks on the wing tips and…
2x underwing hardpoints for two additional 165 US Gallon (1,204 liter) ferry tanks
or bombs of up to 1.000 lb (454 kg) caliber each, plus…
2x optional (rarely fitted) pods on the wings’ leading edges with either a pair of 0.5" (12.7 mm)
machine guns or twelve 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets each
The kit and its assembly:
This project was originally earmarked as a submission for the 2021 “Reconnaissance & Surveillance” group build at whatifmodellers.com, in the form of a Heller F-94B with a new nose section. The inspiration behind this build was the real-world EF-94C (s/n 50-963): a solitary conversion with a bulbous camera nose. However, the EF-94C was not a reconnaissance aircraft but rather a chase plane/camera ship for the Air Research and Development Command, hence its unusual designation with the suffix “E”, standing for “Exempt” instead of the more appropriate “R” for a dedicated recce aircraft. There also was another EF-94C, but this was a totally different kind of aircraft: an ejection seat testbed.
I had a surplus Heller F-94B kit in The Stash™ and it was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit.
The biggest change was the new camera nose, and it was scratched from an unlikely donor part: it consists of a Matchbox B-17G tail gunner station, slimmed down by the gunner station glazing's width at the seam in the middle, and this "sandwich" was furthermore turned upside down. Getting the transitional sections right took lots of PSR, though, and I added some styrene profiles to integrate the new nose into the rest of the hull. It was unintentional, but the new nose profile reminds a lot of a RF-101 recce Voodoo, and there's, with the straight wings, a very F-89ish look to the aircraft now? There's also something F2H-2ish about the outlines?
The large original wing tip tanks were cut off and replaced with smaller alternatives from a Hasegawa A-37. Because it was easy to realize on this kit I lowered the flaps, together with open ventral air brakes. The cockpit was taken OOB, I just modified the work station on the rear seat and replaced the rubber sight protector for the WSO with two screens for a camera operator. Finally, the one-piece cockpit glazing was cut into two parts to present the model with an open canopy.
Painting and markings:
This was a tough decision: either an NMF finish (the natural first choice), an overall light grey anti-corrosive coat of paint, both with relatively colorful unit markings, or camouflage. The USAF’s earlier RF-80As carried a unique scheme in olive drab/neutral grey with a medium waterline, but that would look rather vintage on the F-94. I decided that some tactical camouflage would make most sense on this kind of aircraft and eventually settled for the USAF’s SEA scheme with reduced tactical markings, which – after some field tests and improvisations in Vietnam – became standardized and was officially introduced to USAF aircraft around 1965 as well as to ANG units.
Even though I had already built a camouflaged F-94 some time ago (a Hellenic aircraft in worn SEA colors), I settled for this route. The basic colors (FS 30219, 34227, 34279 and 36622) all came from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the paint scheme of the USAF’s probably only T-33 in SEA colors: a trainer based on Iceland during the Seventies and available as a markings option in one of the Special Hobby 1:32 T-33 kits. The low waterline received a wavy shape, inspired by an early ANG RF-101 in SEA camouflage I came across in a book. The new SEA scheme was apparently applied with a lot of enthusiasm and properness when it was brand new, but this quickly vaned. As an extra, the wing tip tanks received black anti-glare sections on their inner faces and a black anti-glare panel was added in front of the windscreen - a decal from a T-33 aftermarket sheet. Beyond a black ink wash the model received some subtle panel post-shading, but rather to emphasize surface details than for serious weathering.
The cockpit became very dark grey (Revell 06) while the landing gear wells were kept in zinc chromate green primer (Humbrol 80, Grass Green), with bright red (Humbrol 60, Matt Red) cover interiors and struts and wheels in aluminum (Humbrol 56). The interior of the flaps and the ventral air brakes became red, too.
The decals/markings came from a Special Hobby 1:72 F-86H; there’s a dedicated ANG boxing of the kit that comes with an optional camouflaged aircraft of the NY ANG, the least unit to operate the “Sabre Hog” during the Seventies. Since this 138th TFS formerly operated the F-94A/B, it was a perfect option for the RF-94B! I just used a different Bu. No. code on the fin, taken from a PrintScale A/T-37 set, and most stencils were perocured from the scrap box.
After a final light treatment with graphite around the afterburner for a more metallic shine of the iron metallic (Revell 97) underneath, the kit was sealed with a coat of matt acrylic varnish (Italeri).
A camouflaged F-94 is an unusual sight, but it works very well. The new/longer nose considerably changes the aircraft's profile, and even though the change is massive, the "Crocodile" looks surprisingly plausible, if not believable! And, despite the long nose, the aircraft looks pretty sleek, especially in the air.
From Wikipedia:
A wood-burning stove is a heating appliance capable of burning wood fuel and wood-derived biomass fuel, such as wood pellets. Generally the appliance consists of a solid metal ... closed fire chamber, a fire brick base and an adjustable air control. The appliance will be connected by ventilating stove pipes to a suitable chimney or flue, which will fill with hot combustion gases once the fuel is ignited. The chimney or flue gases must be hotter than the outside temperature to ensure combustion gases are drawn out of the fire chamber and up the chimney.
This photograph was taken during the monthly Photo Walk at Armand Bayou Nature Center.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.
As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.
The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.
The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.
Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).
However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.
Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.
The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.
The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.
As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.
Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.
With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.
General characteristics:
Crew: 1
Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position
15.48 m (50 8 ½ in) including pitot
Wingspan: 9 m (29 ft 6 in)
Height: 3.8885 m (12 ft 9 in)
Wing area: 25 m² (269 ft²)
Empty weight: 5,210 kg (11,475 lb)
Loaded weight: 7,890 kg (17,380 lb)
Max. takeoff weight: 9,050 kg (19,935 lb)
Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;
plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks
Powerplant:
2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning
Performance:
Maximum speed: 1,380km/h at sea level (Mach=1.16)
1,850km/h at 12,000m (Mach=1.8)
Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks
Combat range: 500 km (312 mi; 270 nmi)
Ferry range: 2,000 km (1,242 mi; 690 nmi)
Service ceiling: 19,750 m (64,690 ft)
Rate of climb: 180 m/s (35,000 ft/min)
Wing loading: 353.3 kg/m² (72.4 lb/ft²)
Thrust/weight: 0.86
Armament:
No internal guns.
4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,
plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)
AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs
The kit and its assembly:
Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.
However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.
The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.
Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.
On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.
The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.
Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.
The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.
Painting and markings:
No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.
Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).
The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).
The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.
After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.
Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).
The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.
The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.
The new Rapid Response Fire Vessel (RFV) 821 demonstrating its high speed capabilities.
This class of vessels is capable of over 40 kts and have 2 1300GPM monitors.
Dear People!
Behind me stands Mother Ukraine. Ukraine that stands firmly on its feet, does not bow its head, looks ahead, believes in its future and victory over all the evil that Russia has brought us. Ukraine that is capable of achieving a just peace – having a shield and a sword. Defending its people, its colors, its Independence. Today I address all those who value Ukraine, cherish their state, and lovingly call it “Mine.” I thank you for 2024. Our people who endure all difficulties with dignity. People for whom being citizens of Ukraine is a source of pride. And for me, it is a pride to be the President of such people – Ukrainians who prove that no cruise missile can defeat a nation that has wings.
Throughout this leap year, we have proven it every day. And we saw it yesterday. When we were uplifted with happiness because 189 Ukrainians returned from captivity to their native land. Because they will celebrate the New Year at home. Because we are bringing our people back. 1,358 people this year. 3,956 Ukrainians during this time. And I’m giving not estimates but precise numbers, because each one represents a person, our person, a very important person. And with each return – we bring life back to Ukraine.
And every time this happens, we all cry. It doesn’t matter if it’s a moved mother, or it’s a child who finally has their father back, or the President of Ukraine – we all cry because we are all human, and we have kept the light within us.
And it helped us endure through over 1,000 days. To be brave when it was needed most. To be strong when it was so vital. As did our teachers, our medics, our power engineers, our transport workers, as did all our air defense personnel, mobile fire groups. The guys who brought down 1,310 cruise and ballistic missiles this year, and 7800 Iranian “Shahed” drones. Bravo! We are proud! Thank you! We lived through this year together. We overcame everything 2024 brought together. Victories and setbacks. Joys and challenges. Tears of happiness when we succeeded. And tears of pain when our hearts were wounded.
July. Morning. Okhmatdyt. That’s how weaklings and cowards strike. And we will never forget those children’s eyes. We will never forgive them for this! When evil brings death, our response is a human chain. This is what the strength of Ukrainians looks like. And that unity of ours could be seen from space. God saw it. He saw what kind of people we have. What kind of children we have. And I will never forget those incredibly mature and strong eyes of the boy from Okhmatdyt. How much life is in him, energy and dignity! And how much stronger this child alone is than Putin! How much stronger all our children are than their entire evil. Ukrainian boys and girls who are winning this war, gaining knowledge online and even in underground schools, winning global science competitions, raising funds for our army, and inventing technological solutions that help with our defense. You are a phenomenal generation! This is who we are fighting for. This is who our heroes, our warriors, protect above all. Those who stand firm and carry Independence on their shoulders. Where freedom and valor fight every day – even now, on this New Year's night. On all our fronts. On all of them. In the east, where it’s extremely, extremely difficult and challenging right now. But we believe, we know: you will stand strong. Our guys will stand strong. Your spirit and courage will stand strong. All the things that helped you not to surrender our Sumy and Kharkiv, our Kherson and our Zaporizhzhia this year. And the Russians wanted it so badly. But instead – you paid the occupiers back, bringing the war back home to Russia. And the one who sowed evil on our land received it on their own. In the Kursk region and in other places where our response, our justice, came this year.
Justice. Just one word, but behind it stand hundreds of thousands of our people. Our defense industry and our science. Whose minds and work have made us stronger, because 30% of everything our guys had on the battlefield this year – all this was made in Ukraine.
And at one of these facilities, I asked a young engineer: "How did you manage to achieve so much? How were these people able to do all of this?" And the young man joked: "They're not just people, they're missiles."
And you know, at that moment, I felt ashamed as a citizen that since the 90s, the state hadn’t noticed such people of ours. And I am proud, when meeting them throughout the year I hear: they are happy to be needed by Ukraine. And that Ukraine is once again building its own, its own missiles. And for the first time, it produces over a million drones in a year. Forcing the enemy to learn Ukrainian. Palianytsia, Peklo, Ruta. Making them tremble at the words Neptune and Sapsan. All these are our missiles. Ukrainian. Hor, Vampire, Kolibri, Kamik, Liutyi, Heavy Shot, Firepoint. All these are our drones. Ukrainian. And all these are our arguments, the arguments for a just peace.
It is achieved only by the strong. And we have proven time and again that we are strong. Our athletes. Oleksandr Khyzhniak, our Tank. Olga Kharlan, Yaroslava Mahuchikh, all our Olympians and Paralympians, for whom we cheered, worried, and screamed with joy and pride when the blue and yellow flag was raised. We took the hits and fought back alongside Oleksandr Usyk. All of this is about something bigger than just sports. It’s about our character. It’s about who we are and what we are capable of. It’s about meanings and symbols. It’s about Sashko’s fights, like Ukraine’s daily battles, showing us: it doesn't matter how much bigger the enemy is compared to you, what matters is how much bigger your will is. Then it takes the breath away of the whole world! And all the leaders told me frankly: "We've never seen anything like this – when a full hall of Notre-Dame de Paris is applauding." And those were applause for you. For all our people. This is what respect for Ukraine sounds like. This is what Independence is.
It’s when we don’t give up what’s ours. And when we don’t forget our people. Those who are in captivity. And we will fight for every person who, unfortunately, is still there. And we will fight for all those whom Russia has forced into occupation; but couldn’t occupy their Ukrainian hearts. And no matter how many passports evil hands out at gunpoint, our people say: "You are not our kin, you are temporary." And all those imposed weeds will not take root on our land, will not defeat the natives. I always recall the story about one of our Ukrainian elderly men, whom the occupiers asked: "What time is it?" And he answered: "Time to get off our land." This is what the inner will is, which simply cannot be occupied. And I turn to all those who carry this will in their hearts on the temporarily occupied territories. Dear Ukrainians! I know you are celebrating the New Year according to our time, and now you hear these words. In our Crimea, in Donbas, in Melitopol, in Mariupol – everywhere where Ukraine is awaited. And where, one day, Ukraine will return to be together. And the only thing that will divide Ukrainians is a generously laid table.
I know that all our people will be at this table. Those who are now abroad but have kept Ukraine in their hearts. So today, in the first minute of the New Year, in Warsaw, New York, or Buenos Aires, "Shche ne vmerla…" will sound. In Berlin, Prague or Tokyo, people will say today: “Glory to Ukraine!” And the world will respond: “Glory to the Heroes!” Because Ukraine is not alone. Because we have our friends with us. Since the first minutes of this war, America has stood with Ukraine. I believe that America will also stand with Ukraine in the first minutes of peace.
I remember my conversation with Joe Biden after the Russian invasion. I remember my conversation with Donald Trump after he was elected. All the conversations with Congressmen, Senators, ordinary Americans, with all those who support us in the US, in Europe, and around the world – in those many and varied conversations, there was always unity on the main point: Putin cannot win. Ukraine will prevail.
I thank all Americans for proving these words with deeds. I have no doubt that the new American President is willing and capable of achieving peace and ending Putin’s aggression. He understands that the first is impossible without the second. Because this is not a street fight where you have to calm down both sides. This is the full-scale aggression of a mad state against a civilized one. And I believe that we, together with the United States, are capable of exerting that force. Of compelling Russia into a just peace. That means not forgetting, and not erasing everything Russia has done. Bucha, Olenivka, Avdiivka, all our destroyed towns and villages. This is why a truly just peace cannot be based on the principle of “let’s start with a clean slate.” Because the score is not 0:0. The score is thousands, thousands of Ukrainians whose lives Russia has stolen.
And today, the heart of Ukraine is covered with scars. These are the names of our fallen heroes. May God protect every family in the world from experiencing such losses. I would not wish any leader in the world to experience these feelings – the moment you hand over awards posthumously. You see the eyes of a mother, a wife, or a child of a warrior who gave their life for Ukraine, and you hear them say: "Please, let it all not be in vain." Thousands of our guys and girls have not faded into oblivion. They are with us, they are by our side, always, they are watching over us from the heavens. And we have no right to let them down, and we cannot betray their feat and memory.
And every day in the coming year, I, and all of us, must fight for a Ukraine that is strong enough. Because only such a Ukraine is respected and heard. Both on the battlefield and at the negotiating table.
I thank everyone who has stood by us this year. Our partners, allies, friends, leaders. Leaders indeed, not because it is customary to call them that, but because they prove their leadership by their actions. Those who were not afraid to come to Ukraine, knowing how valuable it is to see us standing shoulder to shoulder. With whom, despite the distance and time difference, we worked together, found solutions and achieved results. Patriots, IRIS-Ts, NASAMS and ATACMS systems, F-16s, SCALPs, Storm Shadows. The Czech initiative and a million shells. The Danish model and hundreds of millions in our domestic production. 27 security agreements and 40 billion to support our army. The European Union and 50 billion to support our economy. The G7 and the decision on 50 billion dollars of frozen Russian assets. This is our great international work. This is our great international victory. I thank our partners, thank you for this; I thank our team. The Army, the Government, the Office, the Parliament, the regions, the communities, the volunteers. All those who strengthen our country from within and care about people.
I thank everyone thanks to whom Ukraine is standing and will stand. It will overcome its path to peace, to a strong Ukraine. And to a European Ukraine. And these are not just words, but a reality that began this June with the opening of negotiations on Ukraine's accession to the EU. And this is a historic result. And this path is irreversible. And Ukraine will be in the European Union. And one day Ukraine will be in NATO and will strengthen the Alliance. It will strengthen the stability of the world. The unity of Europe, which determines the destiny of every nation on the continent. And this unity must be respected by all. By both Budapest and Bratislava. I know the Hungarian and Slovak peoples are actually with us, with Ukraine, with Ukrainians, on the side of truth. The authorities of these countries should also acknowledge the truth. There is no need to be afraid of Ukraine being in Europe. We must do everything to prevent Russia from being in Europe. Its tanks, its missiles, and the evil it will surely spread further if Ukraine does not withstand. If Russia shakes your hand today, it does not mean that tomorrow, it will not start killing you with the same hand. Because Russians are afraid of the free people. Of what they are not familiar with. They are afraid of freedom. They were born under Putin, went to school under Putin, joined the army under Putin and are dying for his sick ideas.
And that is why it is so crucial today to support all peoples who defend freedom. Those who refuse to give it up in Chișinău. Those who are fighting for their future in Tbilisi. And I am sure that the day will come when we will all say: "Long Live Belarus!"
Dear Ukrainians!
May 2025 be our year. The year of Ukraine. We know that peace will not be given to us as a gift. But we will do everything to stop Russia and end the war. This is what each of us wishes for.
Behind all of us stands Mother Ukraine. And she deserves to live in peace. I wish this to all of us. And as the President of Ukraine, as well as a citizen, I will do everything to achieve it in the coming year. Knowing that I will not be alone. I know that you stand shoulder to shoulder with me – millions of Ukrainians. Strong. Free. Beautiful. Independent.
Happy New Year, dear people!
Happy New Year, Ukraine!
Glory to Ukraine!
A Stanley 735B at the Osnabrück unter Dampf festival.
Steam locomotives, steam engines capable of propelling themselves along either road or rails, developed around one hundred years earlier than internal combustion engine cars although their weight restricted them to agricultural and heavy haulage work on roads. The light car developed contemporaneously with both steam and internal combustion engines, as both engineering and road building matured. As the steam car could use the vast experience of steam engines already developed with the steam railway locomotive, it initially had the advantage. In 1900 the steam car was broadly superior and even managed to hold absolute land speed records. By 1920 the internal combustion engine had progressed to such a point that the steam car was an anachronism.
Few steam cars have been built since the 1920s, although the technology is not implausible and projects intermittently occur to recreate a "modern" steam car with modern levels of convenience, performance and efficiency.
The greatest technical challenges to the steam car have focused on its boiler. This represents much of the total mass of the drivetrain, making the car heavier (an internal-combustion-engined car requires no boiler), and requires careful attention from the driver - although even the cars of 1900 had considerable automation to manage this. The single largest restriction is the need to supply feedwater to the boiler. This must either be carried and frequently replenished, or the car must also be fitted with a condenser, a further weight and inconvenience.
The steam car does have advantages, although most of these are now less important than in its heyday. The engine (excluding the boiler) is smaller and lighter than an internal combustion engine. It is also better suited to the speed and torque characteristics of the axle, thus avoiding the need for the heavy and complex transmission required for an internal combustion engine. The car is also quieter, even without a silencer.
Steam cars dropped-off in popularity following the adoption of the electric starter, which eliminated the need for risky hand cranking to start gasoline-powered cars. The introduction of assembly-line mass production by Henry Ford, which hugely reduced the cost of owning a conventional automobile, was also a strong factor in the steam car's demise as the Model T was both cheap and reliable. Additionally during the 'heyday' of steam cars the internal combustion engine made steady gains in efficiency, matching and then surpassing the efficiency of a steam engine when the weight of a boiler is factored in.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.
As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.
The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.
The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.
Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).
However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.
Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.
The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.
The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.
As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.
Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.
With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.
General characteristics:
Crew: 1
Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position
15.48 m (50 8 ½ in) including pitot
Wingspan: 9 m (29 ft 6 in)
Height: 3.8885 m (12 ft 9 in)
Wing area: 25 m² (269 ft²)
Empty weight: 5,210 kg (11,475 lb)
Loaded weight: 7,890 kg (17,380 lb)
Max. takeoff weight: 9,050 kg (19,935 lb)
Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;
plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks
Powerplant:
2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning
Performance:
Maximum speed: 1,380km/h at sea level (Mach=1.16)
1,850km/h at 12,000m (Mach=1.8)
Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks
Combat range: 500 km (312 mi; 270 nmi)
Ferry range: 2,000 km (1,242 mi; 690 nmi)
Service ceiling: 19,750 m (64,690 ft)
Rate of climb: 180 m/s (35,000 ft/min)
Wing loading: 353.3 kg/m² (72.4 lb/ft²)
Thrust/weight: 0.86
Armament:
No internal guns.
4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,
plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)
AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs
The kit and its assembly:
Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.
However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.
The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.
Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.
On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.
The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.
Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.
The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.
Painting and markings:
No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.
Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).
The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).
The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.
After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.
Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).
The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.
The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.
A Malaysian marine provides security on Pyramid Rock Beach during an amphibious landing demonstration as part of Rim of the Pacific (RIMPAC) exercise at Marine Corps Base Hawaii July 29, 2018. RIMPAC provides high-value training for task-organized, highly capable Marine Air-Ground Task Force and enhances the critical crisis response capability of U.S. Marines in the Pacific. Twenty-five nations, 46 ships, five submarines, about 200 aircraft and 25,000 personnel are participating in RIMPAC from June 27 to Aug. 2 in and around the Hawaiian Islands and Southern California. (U.S. Marine Corps photo by Lance Cpl. Adam Montera)
Capable of 3-round burst with a revolving chamber for its 135mm gun, it can take out 3 enemy tanks in as many seconds.
Also mounting a 40mm grenade launcher, it can take out even more tanks and soft-skinned vehicles.
The F-105 Thunderchief, which would become a legend in the history of the Vietnam War, started out very modestly as a proposal for a large, supersonic replacement for the RF-84F Thunderflash tactical reconnaissance fighter in 1951. Later this was expanded by Republic’s famous chief designer, Alexander Kartveli, to a nuclear-capable, high-speed, low-altitude penetration tactical fighter-bomber which could also replace the F-84 Thunderstreak.
The USAF liked the idea, as the F-84 had shown itself to be at a disadvantage against Chinese and Soviet-flown MiG-15s over Korea, and ordered 200 of the new design before it was even finalized. This order was reduced to only 37 aircraft with the end of the Korean War, but nonetheless the first YF-105A Thunderchief flew in October 1955. Although it was equipped with an interim J57 engine and had drag problems, it still achieved supersonic speed. When the design was further refined as the YF-105B, with the J75 engine and area ruling, it went over Mach 2. This was in spite of the fact that the design had mushroomed in size from Kartveli’s initial idea to one of the largest and heaviest fighter ever to serve with the USAF: fully loaded, the F-105 was heavier than a B-17 bomber. The USAF ordered 1800 F-105s, though this would be reduced to 830 examples.
Almost immediately, the F-105 began to be plagued with problems. Some of the trouble could be traced to the normal teething problems of any new aircraft, but for awhile it seemed the Thunderchief was too hot to handle, with a catastrophically high accident rate. This led to the aircraft getting the nickname of “Thud,” supposedly for the sound it made when hitting the ground, along with other not-so-affectionate monikers such as “Ultra Hog” and “Squat Bomber.” Despite its immense size and bad reputation, however, the F-105 was superb at high speeds, especially at low level, was difficult to stall, and its cockpit was commended for its ergonomic layout. Earlier “narrow-nose” F-105Bs were replaced by wider-nosed, radar-equipped F-105Ds, the mainline version of the Thunderchief, while two-seat F-105Fs were built as conversion trainers.
Had it not been for the Vietnam War, however, the F-105 might have gone down in history as simply another mildly successful 1950s era design. Deployed to Vietnam at the beginning of the American involvement there in 1964, the Thunderchief was soon heading to North Vietnam to attack targets there in the opening rounds of Operation Rolling Thunder; this was in spite of the fact that the F-105 was designed primarily as a low-level (and, as its pilots insisted, one-way) tactical nuclear bomber. Instead, F-105s were heading north festooned with conventional bombs.
As Rolling Thunder gradually expanded to all of North Vietnam, now-camouflaged Thuds “going Downtown” became iconic, fighting their way through the densest concentration of antiaircraft fire in history, along with SAMs and MiG fighters. The F-105 now gained a reputation for something else: toughness, a Republic hallmark. Nor were they defenseless: unlike the USAF’s primary fighter, the F-4 Phantom II, the F-105 retained an internal 20mm gatling cannon, and MiG-17s which engaged F-105s was far from a foregone conclusion, as 27 MiGs were shot down by F-105s for the loss of about 20. If nothing else, Thud pilots no longer burdened with bombs could simply elect to head home at Mach 2 and two thousand feet, outdistancing any MiG defenders.
If the Thud had any weakness, it was its hydraulic system, which was found to be extremely vulnerable to damage. However, it was likely more due to poor tactics and the restrictive Rules of Engagement, which sent F-105s into battle on predictable routes, unable to return fire on SAM sites until missiles were launched at them, and their F-4 escorts hamstrung by being forced to wait until MiGs were on attack runs before the MiGs could be engaged. The tropical climate also took a toll on man and machine, with the end result that 382 F-105s were lost over Vietnam, nearly half of all Thuds ever produced and the highest loss rate of any USAF aircraft.
The combination of a high loss rate and the fact that the F-105 really was not designed to be used in the fashion it was over Vietnam led to the type’s gradual withdrawal after 1968 in favor of more F-4s and a USAF version of the USN’s A-7 Corsair II. An improved all-weather bombing system, Thunderstick II, was given to a few of the F-105D survivors, but this was not used operationally.
The Thud soldiered on another decade in Air National Guard and Reserve units until February 1984, when the type was finally retired in favor of the F-16, and its spiritual successor, the A-10 Thunderbolt II.
The wartime history of this F-105D, 62-4301, is somewhat murky. It is known to have been assigned to the 8th Tactical Fighter Wing at Itazuke, Japan, but in 1965, was assigned to the temporary 6441st TFW at Takhli RTAFB, Thailand as the USAF began Operation Rolling Thunder. As the 6441st was inactivated in 1966, it remained at Takhli with the 355th TFW or was sent to the 388th at Korat. 62-4301 was a lucky aircraft, given the horrendous losses suffered by the 355th during this time period, and at some point during this time period, was credited with a ground strafing kill of a VPAF Il-28 Beagle.
In 1972, with the Thuds being replaced by the A-7D Corsair II, 62-4301 finally came home and was assigned to the 507th TFW (Reserve) at Tinker AFB, Oklahoma. In 1980, it was sent to what would be the last USAF F-105 unit, the 419th TFG (Reserve) at Hill AFB, Utah. There, it was one of the few (if only) Thuds to be painted in Europe One wraparound tactical camouflage, and was named "My Karma." As such, it became one of the more photographed F-105s in the twilight of the Thud's career. Luckily, when 62-4301 was retired in 1983, it was saved from the boneyard and went on display at McClellan AFB, California--now the California Aerospace Museum.
This picture of 62-4301 was taken while it served with the 507th, and may have been taken by my dad while he was at Dobbins AFB, Georgia--I'm not sure what the background shows. He did visit Tinker once, so it may be there as well. At this point in its career, 62-4301 still wears SEA camouflage, with a small AFRES marking on the rear fuselage.
(Disclaimer: I found this picture among other photos in my dad’s slides. I’m not sure who took them; some of them may be his. If any of these pictures are yours or you know who took them, let me know and I will remove them from Flickr, unless I have permission to let them remain. These photos are historical artifacts, in many cases of aircraft long since gone to the scrapyard, so I feel they deserve to be shared to the public at large—to honor the men and women who flew and maintained them.)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the first German experiences with the newer Soviet tanks like the T-34 or the Kliment Voroshilov tank during Operation Barbarossa, the need for a Panzerjäger capable of destroying these more heavily armoured tanks became clear.
In early 1942, several German companies designed tank destroyers using existing chassis or components, primarily of both the Panzer III and Panzer IV tank, and integrating the powerful 8,8 cm Panzerjägerkanone 43/1 L/71 (or shortly Pak 43/1), a long-barreled anti-tank gun. Alkett, for instance, came up with the SdKfz. 164 “Hornisse” SPG (later renamed “Nashorn”), and Vomag AG proposed the SdKfz. 163, a derivative of the recently developed SdKfz. 162, the Jagdpanzer IV, which was armed with a Pak 39 L/48 at that time in a low, casemate-style hull.
However, mounting the bulky, heavy and powerful Pak 43/1 into the Panzer III hull was impossible, and even the Panzer IV was not really suited for this weapon – compromises had to be made. In consequence, the “Nashorn” was only a lightly armoured vehicle with an open crew compartment, and the Jagdpanzer IV was much too low and did not offer sufficient internal space for the large cannon.
Vomag’s design for the SdKfz. 163 eventually envisioned a completely new upper hull for the standard Panzer IV chassis, again a casemate style structure. However, the new vehicle was much taller than the Jagdpanzer IV – in fact, the Pak 43/1 and its massive mount necessitated the superstructure to be more than 2’ higher than the Jagdpanzer IV. This also resulted in a considerably higher weight: while a standard Panzer IV weighed less than 23 tons, the SdKfz. 163 weighed more than 28 tons!
The driver was located forward, slightly in front of the casemate, and was given the Fahrersehklappe 80 sight from the Tiger I. The rest of the crew occupied the cramped combat section behind him. Ventilation of the casemate’s fumes and heat was originally provided by natural convection, exiting through armored covers at the back of the roof.
The gun/crew compartment’s casemate was well-protected with sloped sides and thick armor plates. Its thickness was 80 mm (3.93 in) at a 40° angle on the front, 40 mm/12° (1.57 in) for the front hull, 50 mm/25° (1.97 in) for the side superstructure, 30 mm (1.18 in) for the side of the lower hull, 30 mm/0° (1.18 in) for the rear of the casemate and 20 mm/10° (0.79 in) for the back of the hull. The top and bottom were protected by 10 mm (0.39 in) of armor at 90°. This was enough to withstand direct frontal hits from the Soviet 76,2 mm (3”) gun which the T-34 and the KV-1 carried.
The SdKfz. 163’s main weapon, the Pak 43/1, was a formidable gun: Accurate at over 3,000 m (3,280 yards) and with a muzzle velocity of over 1,000 m/s (3,280 ft/s), the 88 mm (3.5 inch) gun has more than earned its reputation as one of the best anti-tank guns of the war. Even the early versions, with a relatively short L56 barrel, were already able to penetrate 100mm of steel armour at 30°/1000m, and late versions with the long L71 barrel even achieved 192mm.
The main gun had an elevation of +15°/-5° and could traverse with an arc of fire of 12° to the left and 17° to the right, due to the weapon’s off-center position and limited through the side walls and the “survival space” for the crew when the Pak 43/1 was fired. The recoil cylinder was located under and the recuperator above the gun. There were also two counterbalance cylinders (one on each side), and the gun featured a muzzle brake, so that the already stressed Panzer IV chassis could better cope with the weapon’s recoil.
The Pak 43/1 was able to fire different shells, ranging from the armor piercing PzGr. 39/43 and PzGr. 40/43 to the high explosive Gr. 39/3 HL. The main gun sight was a telescopic Selbstfahrlafetten-Zielfernrohr la, with Carl Zeiss scopes, calibrated from 0 to 1,500 m (0-5,000 ft) for the Pz.Gr.39 and 0 to 2,000 m (6,500 ft) for the Pz.Gr.40. There was a 5x magnification 8° field of view.
46 8.8 cm rounds could be stored inside of the SdKfz. 163’s hull. In addition, a MP 40 sub-machine gun, intended to be fired through the two firing ports on each side of the superstructure, was carried as a hand weapon, and a single MG 34 machine gun was located in the front bow in a ball mount for self-defense, at the radio operator’s place. Another MG 34 could be fastened to the open commander’s hatch, and 1.250 rounds for the light weapons were carried.
The SdKfz. 163 was, together with the SdKfz. 164, accepted by the Oberkommando des Heeres (OKH) in late 1942, and immediately ordered into production. Curiously, it never received an official name, unlike the SdKfz. 164. In practice, however, the tank hunter was, in official circles, frequently referred to as “Jagdpanzer IV/ 43” in order to distinguish it from the standard “Jagdpanzer IV”, the SdKfz. 162, with its 7,5cm armament. However, the SdKfz. 163 also received unofficial nicknames from the crews (see below).
Production was split between two factories: Alkett from Berlin and Stahlindustrie from Duisburg. Alkett, where most of the Panzer IVs were manufactured, was charged with series production of 10 vehicles in January and February 1943, 20 in March and then at a rate of 20 vehicles per month until March 1944. Stahlindustrie was tasked with a smaller production series of 5 in May, 10 in June, 15 in July and then 10 per month (also until March 1944), for a planned initial total of 365 vehicles.
Initially, all SdKfz. 163s were directly sent to the Eastern Front where they had to cope with the heavy and well-armoured Soviet tanks. Soon it became apparent that these early vehicles were too heavy for the original Panzer IV chassis, leading to frequent breakdowns of the suspension and the transmission.
Efforts were made to ameliorate this during the running production, and other Panzer IV improvements were also gradually introduced to the SdKfz. 163s, too. For instance, the springs were stiffened and new all-metal road wheels were introduced – initially, only one or two front pairs of the road wheels were upgraded/replaced in field workshops, but later SdKfz. 163s had their complete running gear modified with the new wheels directly at the factories. These late production vehicles were recognizable through only three return rollers per side, in order to save material and production costs.
Furthermore, an electric ventilator was added (recognizable by a shallow, cylindrical fairing above the radio operator’s position) and the loopholes in the side walls for observation and self-defense turned out to be more detrimental to the strength of the armor than expected. In later models, these holes were completely omitted during production and in the field they were frequently welded over, being filled with plugs or 15 mm (0.59 in) thick steel plates. Another important modification was the replacement of the Pak 43/1’s original monobloc barrel with a dual piece barrel, due to the rapid wear of the high-velocity gun. Although this did not reduce wear, it did make replacement easier and was, over time, retrofitted to many earlier SdKfz. 163s.
Despite these improvements, the SdKfz. 163 remained troublesome. Its high silhouette made it hard to conceal and the heavy casemate armour, together with the heavy gun, moved the center of gravity forward and high that off-road handling was complicated – with an overstressed and easily damaged suspension as well as the long gun barrel that protruded 8’ to the front, especially early SdKfz. 163s were prone to stoop down and bury the long Pak 43/1 barrel into the ground. Even the vehicles with the upgraded suspension kept this nasty behavior and showed poor off-road handling. This, together with the tank’s bulbous shape, soon earned the SdKfz. 163 the rather deprecative nickname “Ringeltaube” (Culver), which was quickly forbidden. Another unofficial nickname was “Sau” (Sow), due to the tank’s front-heavy handling, and this was soon forbidden, too.
Despite the suspension improvements, the tank’s relatively high weight remained a constant source of trouble. Technical reliability was poor and the cramped interior did not add much to the vehicle’s popularity either, despite the SdKfz. 163 immense firepower even at long range. When the bigger SdKfz. 171, the Jagdpanther, as well as the Jagdpanzer IV/L70 with an uprated 7.5 cm cannon became available in mid-1944, SdKfz. 163 production was prematurely stopped, with only a total of 223 vehicles having been produced. The Eastern Front survivors were concentrated and re-allocated to newly founded Panzerjäger units at the Western front, where the Allied invasion was expected and less demanding terrain and enemies were a better match for the overweight and clumsy vehicles. Roundabout 100 vehicles became involved in the defense against the Allied invasion, and only a few survived until 1945.
Specifications:
Crew: Five (commander, gunner, loader, driver, radio operator)
Weight: 28.2 tons (62,170 lbs)
Length: 5.92 m (19 ft 5 in) hull only
8.53 m (28 ft) overall
Width: 2.88 m (9 ft 5 in)
Height: 2.52 m (8 ft 3 in)
Suspension: Leaf spring
Fuel capacity: 470 l (120 US gal)
Armour:
10 – 50 mm (0.39 – 1.96 in)
Performance:
Maximum road speed: 38 km/h (23.6 mph)
Sustained road speed: 34 km/h (21.1 mph)
Off-road speed: 24 km/h (15 mph)
Operational range: 210 km (125 mi)
Power/weight: 10,64 PS/t
Engine:
Maybach HL 120 TRM V12 petrol engine with 300 PS (296 hp, 221 kW)
Transmission:
ZF Synchromesh SSG 77 gear with 6 forward and 1 reverse ratios
Armament:
1× 8.8 cm Panzerabwehrkanone PaK 43/1 L71 with 46 rounds
1× 7.92 mm Maschinengewehr 34 with 1,250 rounds in bow mount;
an optional MG 34 could be mounted to the commander cupola,
and an MP 40 sub-machine gun was carried for self-defense
The kit and its assembly:
This fictional tank is, once more, a personal interpretation of a what-if idea: what if an 8.8 cm Pak 43/1 could have been mounted (effectively) onto the Panzer IV chassis? In real life, this did not happen, even though Krupp apparently built one prototype of a proposed Jagdpanzer IV with a 8.8 cm Pak 43 L/71 on the basis of the SdKfz. 165 (the “Brummbär” assault SPG) – a fact I found when I was already working on my model. Apparently, my idea seems to be not too far-fetched, even though I have no idea what that prototype looked like.
However, the PaK 43/1 was a huge weapon, and mating it with the rather compact Panzer IV would not be an easy endeavor. Taking the Jagdpanther as a benchmark, only a casemate layout would make sense, and it would be tall and voluminous. The “Brummbär” appeared to be a suitable basis, and I already had a Trumpeter model of a late SdKfz. 165 in the stash.
Just changing the barrel appeared too simple to me, so I decided to make major cosmetic changes. The first thing I wanted to change were the almost vertical side walls, giving them more slope. Easier said than done – I cut away the side panels as well as wedges from the casemate’s front and rear wall, cleaned the sidewalls and glued them back into place. Sound simple, but the commander’s hatch had to be considered, the late SdKfz. 165’s machine gun mount had to go (it was literally cut out and filled with a piece of styrene sheet + PSR; the front bow machine gun was relocated to the right side of the glacis plate) and, due to the bigger angle, the side walls had to be extended downwards by roughly 1.5mm, so that the original mudguard sideline was retained.
The gun barrel caused some headaches, too. I had an aftermarket metal barrel for a PaK 43/1 from a Tiger I in the stash, and in order to keep things simple I decided to keep the SdKfz. 165’s large ball mount. I needed some kind of mantlet as an adapter, though, and eventually found one from a Schmalturm in the stash – it’s quite narrow, but a good match. It had to be drilled open considerably in order to accept the metal barrel, but the whole construction looks very plausible.
Another cosmetic trick to change the SdKfz. 165’s look and esp. its profile was the addition of protective side shields for the entry hatch area at the rear (frequently seen on Jagdpanzer IVs) – these were created from 0.5 mm styrene sheet material and visually extend the casemate almost the up to hull’s rear end.
Painting and markings:
Inspiration for the paint scheme came from a picture of a Jagdpanther that took part in the 1944 Ardennenoffensive (Battle at the Bulge): It was painted in the contemporary standard tones Dunkelgelb (RAL 7028), Olivgrün (RAL 6003) and Rotbraun (RAL 8012), but I found the pattern interesting, which consisted primarily of yellow and green stripes, but edged with thin, brown stripes in order to enhance the contrast between them – not only decorative, but I expected this to be very effective in a forest or heath environment, too.
The picture offered only a limited frontal view, so that much of the pattern had to be guessed/improvised. Painting was done with brushes and enamels, I used Humbrol 103 (Cream), 86 (Light Olive) and 160 (German Red Brown) in this case. The green tone is supposed to be authentic, even though I find Humbrol’s 86 to be quite dull, the real RAL 6003 is brighter, almost like FS 34102. The brown tone I used, RAL 8012, is wrong, because it was only introduced in Oct. 1944 and actually is the overall factory primer onto which the other colors were added. It should rather be RAL 8017 (Schokoladenbraun), a darker and less reddish color that was introduced in early 1944, but I assume that frontline workshops, where the camouflage was applied in situ, just used what they had at hand. Dunkelgelb is actually very close to Humbrol 83 (ochre), but I decided to use a lighter tone for more contrast, and the following weathering washing would tone everything down.
I also extended the camouflage into the running gear – not a typical practice, but I found that it helps breaking up the tank’s outlines even more and it justifies wheels in different colors, too. The all-metal road wheels were painted with a mix of medium grey and iron. The black vinyl track was treated with a cloudy mix of grey, red brown and iron acrylic paint.
The kit received a washing with highly thinned dark brown acrylic paint as well as an overall dry-brushing treatment with light grey. Around the lower front of the hull I also did some dry-brushing with red brown and iron, simulating chipped paint. After the decals had been applied, the model was sealed with acrylic matt varnish and finally I dusted the lower areas and esp. the running gear with a grey-brown mix of mineral artist pigments, partly into a base of wet acrylic varnish that creates a kind of mud crust.
And here they are back in London with their adoring new owner, waiting for her to find somebody capable of restoring them. Sixteen years on, the childhood dream has come true. One little girl and her two horse friends, reunited at last.
A lifelong kiddie ride enthusiast, I fell in love with the coin operated rides of Bognor Pier as a young child in the 1990s. The pier was packed with rare examples of 1950s and 60s amusement machines at that time, some of them the last of their kind.
My mum thankfully took photographs of all of the rides on July 19th 1996, which would turn out to be the last day my childhood self ever got to see her beloved rides. When we returned to the pier in 1997, ALL of the vintage coin operated rides were gone. I believed they had been scrapped and spent years mourning their loss, writing songs in their memory, contacting the council, local archives and Bognor Pier itself but nobody could tell me where the rides had gone. I even started a website in their memory, desperate to preserve the memory of the old British coin operated rides which are (sadly) fast becoming just that, a fading memory. You can see the website here: coinoperatedrides.weebly.com. If anybody has old photos or memories they wouldn't mind sharing for the website, I'd love to see/hear them!
However, over SIXTEEN YEARS LATER, I discovered that some of the rides had not been scrapped and had instead been thrown in a damp shed on Bognor Pier soon after this photograph was taken. In a strange twist of events, I am now the extremely proud owner of my favourite childhood horse 'friends', Carousel and Silver, and am attempting to get them restored. They are in a very bad way, but I still love them for the important pieces of British seaside amusement history that they are.
I am desperately seeking people's memories of these horses (and the other rides on the pier), and especially old photographs of them. I would love to know if they had been on Bognor Pier since the '50s and '60s, or if they had come there from other seaside resorts at a later date, for instance. If you have any information or pictures, please comment below!
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
From Mad Max Fury Road: One of Immortan Joe's five "wives".
Comikaze Expo, Saturday, October 31, 2015
Pictures and Text from Gizmag
For motorcyclists wishing to balance the inequities of the road-going pecking order, this could be the perfect mount. Vespa's 150 TAP might only be good for 40 mph, but the integrated M20 light anti-armor cannon shoots 75 mm rounds capable of penetrating 100 mm of armor from four miles.
Many motorcyclists over the years have wished for more "presence" with which to balance the inequities of the road-going pecking order, but until I wandered into the newly opened Vespa Museum near the Australian Albert Park Formula One Circuit this week, I had no idea that there had ever been a production two-wheeler which could command complete respect from fellow-roadgoers
n the late 1950s, French Vespa licensee ACMA (Ateliers de Construction de Motocycles et Automobiles) produced 500 (perhaps more) examples of this military Vespa with integrated M20 recoilless rifle / light anti-armor cannon, in two production runs in 1956 and 1959.
Though there's a lot of dubious information on the Vespa 150 TAP on the internet, much of which claims the rider could fire the M20 on the move, a close inspection of the 150 TAP convinced me that it was not set up to be fired from the scooter, partly due to the lack of access to the firing mechanism of the American-made M20 recoilless rifle, partly due to its mounting slightly across the frame (which would no doubt have resulted in some handling difficulties for the rider of the lightweight 150 kg scooter – recoilless is only a relative term in this instant), and partly due to the thin saddle covering, which might well have resulted in a fate worse than death. There's also the slight issue of aiming the M20 – not much point in getting that much firepower in place with limited ammunition and wasting it.
The idea behind a military Vespa was not entirely new, even though the iconic freedom machine of the Baby Boomers was less than a decade old when it was pressed into military service.
The Italian Vespa factory had developed a Vespa Force Armate (Armed Forces) prototype between 1949 and 1951 which boasted many advantages over the military motorcycles of the time: lighter weight; better low speed maneuverability; lower fuel consumption; the ability to carry a spare wheel and to change it rapidly on either end (if you think fixing a motorcycle tire is problematic, try doing it while people are shooting at you); and thanks to the scooter's reliable drive train (chains were one of the weaknesses of motorcycles of the period), less likelihood of being stranded in a hostile environment.
Vespa's factory-developed Vespa Force Armate prototype was envisaged with a variety of options, including mounting a submachine-gun on the handlebars, a radio under the saddle and an armored leg shield.
Though NATO trials showed the Vespa Force Armate was only 3 mph (5 km/h) down on the much larger traditional military bikes of the time in terms of top speed, and resulted in glowing appraisals. But after more than two years of negotiations, Enrico Piaggio canned the model. In a letter sent by Piaggio himself in 1952, he concluded he was “not interested in canvassing for State Orders since we know that its organs pay low prices and late” and that he was convinced that “the military are not worth the time of day.”
Hence when the French military decided it wanted a better mobility option for its airborne special forces ("Troupes Aéro Portées", hence the subsequent “TAP” acronym) than its existing American-made WWII Cushman scooters for the Algerian War, it organized a competition between French manufacturers for a replacement model.
In the end, it boiled down to a three-way shoot-out between prototypes based on the Valmobile 100, the Bernardet 250 and the Vespa. French Vespa licensee ACMA won the gig.
Despite an unmistakably different profile, the Vespa 150 TAP differed little from the Vespa scooter of the time. It used a 150cc two-stroke engine derived by ACMA from the Vespa 125 motor, with different bore and stroke to the Vespa 150 engine from the factory.
Other than the engine, plus the M20 light anti-armor cannon, rack and ammunition mounts, the only major differences to a standard Vespa were a strengthened frame and lower gearing which gave it a top speed of just 40 mph (64 km/h).
The TAPs were designed to be dropped into theater by parachute on a palette, protected by hay-bales, fully assembled and ready for almost immediate action. As such, the TAP offered a highly mobile lethal capability with which to counter guerrillas – the M20 was originally designed as an anti-tank weapon and using a HEAT warhead, it was claimed to be capable of penetrating 100mm of armor and striking from a distance of 7,000 yards (6.4 km). The 150 TAP was often deployed with a trailer, which was used for additional supplies and a lightweight stand for the M20.
Though the M20 with HEAT warhead was found to be ineffective against up-armored T-34 tanks during the Korean War, it was ideal against more makeshift field fortifications and used quite effectively during the Algerian and Indochine conflicts (the second ultimately becoming the Vietnam War).
Alternative warheads were available for the M20, one of which could lay a smokescreen – another helpful capability in the asymmetric conflicts in which it was used.
A group of attendees at the White Mountain Central Railroad's 2014 "Railroad Days" event enjoy a rare ride powered by the line's little Porter 0-4-0T saddle-tanker on a sunny September afternoon. The little 1931 product of the H. K. Porter Co. only runs at special events like this one, primarily because she's just too small to push the line's regular passenger trains, which typically consist of 4-5 converted log flats loaded with passengers. While she might be capable of moving them on level track, the grades here are just too steep. The little push-cart shown here appears to have been built purposely for events like this one. While she does go to the top of the hill a couple of times during a day of operations, most of her operations are confined to the yard between the main station building and the mechanical shop.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Sondergerät SG104 "Münchhausen" was a German airborne recoillless 355.6 mm (14-inch) caliber gun, intended to engage even the roughest enemy battleships, primarily those of the Royal Navy. The design of this unusual and massive weapon began in 1939. The rationale behind it was that a battleship’s most vulnerable part was the deck – a flat surface, with relatively thin armor (as typical hits were expected on the flanks) and ideally with vital targets underneath, so that a single, good hit would cripple of even destroy a ship. The purpose of such a high angle of attack was likely to allow the projectile to penetrate the target ship's deck, where the ship's armor, if there was any, would have been much thinner than the armor on its sidesHowever, hitting the deck properly with another ship’s main gun was not easy, since it could only be affected through indirect hits and the typical angle of the attack from aballistic shot would not necessarily be ideal for deep penetration, esp. at long range.
The solution to this problem: ensure that the heavy projectile would hit its target directly from above, ideally at a very steep angle. To achieve this, the gun with battleship caliber was “relocated” from a carrier ship or a coastal battery onto an aircraft – specifically to a type that was capable of dive-bombing, a feature that almost any German bomber model of the time offered.
Firing such a heavy weapon caused a lot fo problems, which were severe even if the gun was mounted on a ship or on land. To compensate for such a large-caliber gun’s recoil and to make firing a 14 in shell (which alone weighed around almost 700 kg/1.550 lb, plus the charge) from a relatively light airframe feasible, the respective gun had to be as light as possible and avoid any recoil, which would easily tear an aircraft – even a bomber – apart upon firing. Therefore, the Gerät 104 was designed as a recoilless cannon. Its firing system involved venting the same amount of the weapon's propellant gas for its round to the rear of the launch tube (which was open at both ends), in the same fashion as a rocket launcher. This created a forward directed momentum which was nearly equal to the rearward momentum (recoil) imparted to the system by accelerating the projectile itself. The balance thus created did not leave much net momentum to be imparted to the weapon's mounting or the carrying airframe in the form of felt recoil. A further share of the recoil induced by the moving round itself could be compensated by a muzzle brake which re-directed a part of the firing gases backwards. Since recoil had been mostly negated, a heavy and complex recoil damping mechanism was not necessary – even though the weapon itself was huge and heavy.
Work on the "Münchhausen" device (a secret project handle after a fictional German nobleman created by the German writer Rudolf Erich Raspe in the late 18th century who reputedly had ridden on a cannonball between enemy frontlines), was done by Rheinmetall-Borsig and lasted until 1941. The first test of a prototype weapon was conducted on 9th of September 1940 in Unterlüss with a satisfactory result, even though the weapon was only mounted onto an open rack and not integrated into an airframe yet. At that time, potential carriers were the Ju 88, the Dornier Do 217 and the new Junkers Ju 288. Even though the system’s efficacy was doubted, the prospect of delivering a single, fatal blow to an important , armored arget superseded any doubts at the RLM, and the project was greenlit in early 1942 for the next stage: the integration of the Sondergerät 104 into an existing airframe. The Ju 88 and its successor, the Ju 188, turned out to be too light and lacked carrying capacity for the complete, loaded weapon, and the favored Ju 288 was never produced, so that only the Dornier Do 217 or the bigger He 177 remained as a suitable carriers. The Do 217 was eventually chosen because it had the biggest payload and the airframe was proven and readily available.
After calculations had verified that the designed 14 in rifle would have effectively no recoil, preliminary tests with dumm airframes were carried out. After ground trials with a Do 217 E day bomber to check recoil and blast effects on the airframe, the development and production of a limited Nullserie (pre-production series) of the dedicated Do 217 F variant for field tests and eventual operational use against British sea and land targets was ordered in April 1942.
The resulting Do 217 F-0 was based on the late “E” bomber variant and powered by a pair of BMW 801 radial engines. It was, however, heavily modified for its unique weapon and the highly specialized mission profile: upon arriving at the zone of operation at high altitude, the aircraft would initiate a dive with an angle of attack between 50° and 80° from the horizontal, firing the SG 104 at an altitude between 6,000 and 2,000 meters. The flight time of the projectile could range from 16.0 seconds for a shot from an altitude of 6,000 meters at a 50° angle to just 4.4 seconds for a shot from 2.000 meters at an almost vertical 80° angle. Muzzle velocity of the SG 104 was only 300 m/s, but, prior to impact, the effective velocity of the projectile was projected to range between 449 and 468 m/s (1,616 to 1,674 km/h). Together with the round's weight of roughly 700 kg (1.550 lb) and a hardened tip, this would still ensure a high penetration potential.
The operational Sondergerät 104 had an empty mass of 2.780 kg (6,123 lb) and its complete 14 inch double cartridge weighed around 1.600 kg (3,525 lb). The loaded mass of the weapon was 4,237 kg, stretching the limits of the Do 217’s load capacity to the maximum, so that some armor and less vital pieces of equipment were deleted. Crew and defensive armament were reduced to a minimum.
Even though there had been plans to integrate the wepaon into the airframe (on the Ju 288), the Gerät 104 was on the Do 217 F-0 mounted externally and occupied the whole space under the aircraft, precluding any use of the bomb bay. The latter was occupied by the Gerät 104’s complex mount, which extended to the outside under a streamlined fairing and held the weapon at a distance from the airframe. Between the mount’s struts inside of the fuselage, an additional fuel tank for balance reasons was added, too.
The gun’s center, where the heavy round was carried, was positioned under the aircraft’s center of gravity, so that the gun barrel markedly protruded from under the aircraft’s nose. To make enough space, the Do 217 Es bomb aimer’s ventral gondola and his rearward-facing defensive position under the cockpit were omitted and faired over. The nose section was also totally different: the original extensive glazing (the so-called “Kampfkopf”) was replaced by a smaller, conventional canopy, similar to the later Do 217 J and N night fighter versions, together with a solid nose - the original glass panels would have easily shattered upon firing the gun, esp. in a steep high-speed dive. A "Lotfernrohr" bomb aiming device was still installed in a streamlined and protected fairing, though, so that the navigator could guide the pilot during the approach to the target and during the attack run.
To stabilize the heavy aircraft during its attack and to time- and safely pull out of the dive, a massive mechanical dive brake was mounted at the extended tail tip, which unfolded with four "petals". A charecteristic stabilizing dorsal strake was added between the twin fins, too.
The ventral area behind the gun’s rear-facing muzzle received additional metal plating and blast guiding vanes, after trials in late 1940 had revealed that firing the SG 104 could easily damage the Do 217’s tail structure, esp. all of the tail surfaces’ rudders and the fins’ lower ends in particular. Due to all this extra weight, the Do 217 F-0’s defensive armament consisted only of a single 13 mm MG 131 machine gun in a manually operated dorsal position behind the cockpit cabin, which offered space for a crew of three. A fixed 15 mm MG 151 autocannon was mounted in the nose, too, a weapon with a long barrel for extended range and accuracy. It was not an offensive weapon, though, rather intended as an aiming aid for the SG 104 because it was loaded with tracer bullets: during the final phase of the attack dive, the pilot kept firing the MG 151, and the bullet trail showed if he was on target to fire the SG 104 when the right altitude/range had been reached.
The first Do 217 F-0 was flown and tested in late 1943, and after some detail changes the type was cleared for a limited production run of ten aircraft in January 1944. The first operational machine was delivered to a dedicated testing commando, the Erprobungskommando 104 “Münchhausen”, also known as “Sonderkommando Münchhausen” or simply “E-Staffel 104”. The unit was based at Bordeaux/Merignac and directly attached to the KG 40's as a staff flight. At that time, KG 40 operated Do 217 and He 177 bombers and frequently flew reconnaissance and anti-shipping missions over the Atlantic west of France, up to the British west and southern coast, equipped with experimental Henschel Hs 293 glide bombs.
Initial flights confirmed that the Do 217 airframe was burdened with the SG 104 to its limits, the already rather sluggish aircraft (the Do 217 had generally a high wing loading and was not easy to fly) lost anything that was left of what could be called agility. It needed an experienced pilot to handle it safely, esp. during start and landing. It is no wonder that two Do 217 F-0s suffered ground accidents during the first two weeks of operations, but the machines could be repaired, resume the test program and carry out attack missions.
However, during one of the first test shots with the weapon, one Do 217 F-0 lost its complete tail section though the gun blast, and the aircraft crashed into the Bay of Biscay, killing the complete crew.
On 4th or April 1944 the first "hot" attack against an enemy ship was executed in the Celtic Sea off of Brest, against a convoy of 20 ships homeward bound from Gibraltar. The attack was not successful, though, the shot missing its target, and the German bomber was attacked and heavily damaged by British Bristol Beaufighters that had been deployed to protect the ships. The Do 217F-0 eventually crashed and sank into the Atlantic before it could reach land again.
A couple of days later, on 10th of April, the first attempt to attack and destroy a land target was undertaken: two Do 217 F-0s took off to attack Bouldnor Battery, an armored British artillery position located on the Isle of Wight. One machine had to abort the attack due to oil leakages, the second Do 217 F-0 eventually reached its target and made a shallow attack run, but heavy fog obscured the location and the otherwise successful shot missed the fortification. Upon return to its home base the aircraft was intercepted by RAF fighters over the Channel and heavily damaged, even though German fighters deployed from France came to the rescue, fought the British attackers off and escorted the limping Do 217 F-0 back to its home base.
These events revealed that the overall SG 104 concept was generally feasible, but also showed that the Do 217 F-0 was very vulnerable without air superiority or a suitable escort, so that new tactics had to be developed. One consequence was that further Do 217 F-0 deployments were now supported by V/KG 40, the Luftwaffe's only long range maritime fighter unit. These escorts consisted of Junkers Ju 88C-6s, which were capable of keeping up with the Do 217 F-0 and fend of intercepting RAF Coastal Command’s Beaufighters and later also Mosquitos.
In the meantime, tests with the SG 104 progressed and several modifications were tested on different EKdo 104's Do 217 F-0s. One major upgrade was a further strengthening of the tail section, which added another 200 kg (440 lb) to the aircraft's dry weight. Furthermore, at least three aircraft were outfitted with additional dive brakes under the outer wings, so that the dive could be better controlled and intercepted. these aircraft, however, lost their plumbed underwing hardpoints, but these were only ever used for drop tanks during transfer flights - a loaded SG 104 precluded any other ordnance. On two other aircraft the SG 104 was modified to test different muzzle brakes and deflectors for the rear-facing opening, so that the gun blast was more effectively guided away from the airframe to prevent instability and structural damage. For instance, one machine was equipped with a bifurcated blast deflector that directed the rearward gasses partly sideways, away from the fuselage.
These tests did not last long, though. During the Allied Normandy landings in June 1944 E-Staffel 104 was hastily thrown into action and made several poorly-prepared attack runs against Allied support ships. The biggest success was a full hit and the resulting sinking of the Norwegian destroyer HNoMS Svenner (G03) by "1A+BA" at dawn on 6th of June, off Sword, one of the Allied landing zones. Other targets were engaged, too, but only with little effect. This involvement, however, led to the loss of three Do 217 F-0s within just two days and four more heavily damaged aircraft – leaving only two of EKdo 104's Do 217 F-0s operational.
With the Allied invasion of France and a worsening war condition, the SG 104 program was stopped in August 1944 and the idea of an airborne anti-ship gun axed in favor of more flexible guided weapons like the Hs 293 missile and the Fritz-X glide bomb. Plans for a further developed weapon with a three-round drum magazine were immediately stopped, also because there was no carrier aircraft in sight that could carry and deploy this complex 6.5 tons weapon. However, work on the SG 104 and the experience gained from EKdo 104's field tests were not in vain. The knowledge gathered from the Münchhausen program was directly used for the design of a wide range of other, smaller recoilless aircraft weapons, including the magnetically-triggered SG 113 "Förstersonde" anti-tank weapon or the lightweight SG 118 "Rohrblock" unguided air-to-air missile battery for the Heinkel He 162 "Volksjäger".
General characteristics:
Crew: 3 (pilot, navigator, radio operator/gunner)
Length: 20,73 m (67 ft 11 in) overall
18,93 m (62 ft 3/4 in) hull only
Wingspan: 19 m (62 ft 4 in)
Height: 4.97 m (16 ft 4 in)
Wing area: 57 m² (610 sq ft)
Empty weight: 9,065 kg (19,985 lb)
Empty equipped weight:10,950 kg (24,140 lb)
Max takeoff weight: 16,700 kg (36,817 lb)
Fuel capacity: 2,960 l (780 US gal; 650 imp gal) in fuselage tank and four wing tanks
Powerplant:
2× BMW 801D-2 14-cylinder air-cooled radial piston engines, delivering
1,300 kW (1,700 hp) each for take-off and 1,070 kW (1,440 hp) at 5,700 m (18,700 ft),
driving 3-bladed VDM constant-speed propellers
Performance:
Maximum speed: 475 km/h (295 mph, 256 kn) at sea level
560 km/h (350 mph; 300 kn) at 5,700 m (18,700 ft)
Cruise speed: 400 km/h (250 mph, 220 kn) with loaded Gerät 104 at optimum altitude
Range: 2,180 km (1,350 mi, 1,180 nmi) with maximum internal fuel
Ferry range: 2,500 km (1,600 mi, 1,300 nmi); unarmed, with auxiliary fuel tanks
Service ceiling: 7,370 m (24,180 ft) with loaded Gerät 104,
9,500 m (31,200 ft) after firing
Rate of climb: 3.5 m/s (690 ft/min)
Time to altitude: 1,000 m (3,300 ft) in 4 minutes 10 seconds
2,000 m (6,600 ft) in 8 minutes 20 seconds
6,100 m (20,000 ft) in 24 minutes 40 seconds
Armament:
1x 355.6 mm (14-inch) Sondergerät 104 recoilless gun with a single round in ventral position
1x 15 mm (0.787 in) MG 151 machine cannon with 200 rounds, fixed in the nose
1x 13 mm (0.512 in) MG 131 machine gun with 500 rounds, movable in dorsal position
Two underwing hardpoints for a 900 l drop tank each, but only used during unarmed ferry flights
The kit and its assembly:
This was another submission to the "Gunships" group build at whatifmodellers.com in late 2021, and inspiration struck when I realized that I had two Italeri Do 217 in The Stash - a bomber and a night fighter - that could be combined into a suitable (fictional) carrier for a Sondergerät 104. This mighty weapon actually existed and even reached the hardware/test stage - but it was never integrated into an airframe and tested in flight. But that's what this model is supposed to depict.
On the Do 217, the Sg 104 would have been carried externally under the fuselage, even though there had been plans to integrate this recoilless rifle into airframes, esp. into the Ju 288. Since the latter never made it into production, the Do 217 would have been the most logical alternative, also because it had the highest payload of all German bombers during WWII and probably the only aircraft capable of carrying and deploying the Münchhausen device, as the SG 104 was also known.
The fictional Do 217 F-0 is a kitbashing, using a Do 217 N fuselage, combined with the wings from a Do 217 K bomber, plus some modifications. What initially sounded like a simple plan soon turned into a improvisation mess: it took some time to realize that I had already donated the Do 217 K's BMW 801 engines to another project, an upgraded He 115... I did not want to use the nightfighter's more powerful DB 603s, and I was lucky to have an Italeri Ju 188 kit at hand which comes with optional BMW 801s and Jumo 211s. Transplanting these engines onto the Do 217's wings took some tailoring of the adapter plates, but was feasible. However, the BMW 801s from the Ju 188 kit have a flaw: they lack the engine's characteristic cooling fans... Another lucky find: I found two such parts in the scrap box, even though from different kits - one left over from another Italeri Do 217 K, the other one from what I assume is/was an Italeri 1:72 Fw 190 A/F. To make matters worse, one propeller from the Ju 188 kit was missing, so that I had to find a(nother) replacement. :-/
I eventually used something that looked like an 1:72 F6F Hellcat propeller, but I an not certain about this because I have never built this model...? With some trimming on the blades' trailing edges and other mods, the donor's overall look could be adapted to the Ju 188 benchmark. Both propellers were mounted on metal axis' so that they could also carry the cooling fans. Lots of work, but the result looks quite good.
The Do 217 N's hull lost the lower rear gunner position and its ventral gondola, which was faired over with a piece of styrene sheet. The pilot was taken OOB, the gunner in the rear position was replaced by a more blob-like crew member from the scrap box. The plan to add a navigator in the seat to the lower right of the pilot did not work out due to space shortage, but this figure would probably have been invisble, anyway.
All gun openings in the nose were filled and PSRed away, and a fairing for a bomb aiming device and a single gun (the barrel is a hollow steel needle) were added.
The SG 104 was scratched. Starting point was a white metal replacement barrel for an 1:35 ISU-152 SPG with a brass muzzle brake. However, after dry-fitting the barrel under the hull the barrel turned out to be much too wide, so that only the muzzal brake survived and the rest of the weapon was created from a buddy refueling pod (from an Italeri 1:72 Luftwaffe Tornado, because of its two conical ends) and protective plastic caps from medical canulas. To attach this creation to the hull I abused a conformal belly tank from a Matchbox Gloster Meteor night fighter and tailored it into a streamlined fairing. While this quite a Frankenstein creation, the overall dimensions match the real SG 104 prototype and its look well.
Other cosmetic modifications include a pair of underwing dive brakes, translanted from an Italeri 1:72 Ju 88 A-4 kit, an extended (scratched) tail "stinger" which resembles the real dive brake arrangement that was installed on some Do 217 E bombers, and I added blast deflector vanes and a dorsal stabilizer fin.
In order to provide the aircraft with enough ground clearance, the tail wheel was slightly extended. Thanks to the long tail stinger, this is not blatantly obvious.
Painting and markings:
This was not an easy choice, but as a kind of prototype I decided that the paint scheme should be rather conservative. However, German aircraft operating over the Atlantic tended to carry rather pale schemes, so that the standard pattern of RLM 70/71/65 (Dunkelgrün, Schwarzgrün and Hellblau) with a low waterline - typical for experimental types - would hardly be appropriate.
I eventually found a compromise on a He 177 bomber (coded 6N+BN) from 1944 that was operated by KG 100: this particular aircraft had a lightened upper camouflage - still a standard splinter scheme but consisting of RLM 71 and 02 (Dunkelgrün and Grau; I used Modelmaster 2081 and Humbrol 240), a combination that had been used on German fighters during the Battle of Britain when the standard colors turned out to be too dark for operations over the Channel. The aircraft also carried standard RLM 65 (or maybe the new RLM76) underneath (Humbrol 65) and on the fin, but with a very high and slightly wavy waterline. As a rather unusual feature, no typical camouflage mottles were carried on the flanks or the fin, giving the aircraft a very bleak and simple look.
Despite my fears that this might look rather boring I adapted this scheme for the Do 217 F-0, and once basic painting was completed I was rather pleased by the aircraft's look! As an aircraft operated at the Western front, no additional markings like fuselage bands were carried.
To set the SG 104 apart from the airframe, I painted the weapon's visible parts in RLM 66 (Schwarzgrau, Humbrol 67), because this tone was frequently used for machinery (including the interior surfaces of aircraft towards 1945).
RLM 02 was also used for the interior surfaces and the landing gear, even though I used a slightly different, lighter shade in form of Revell 45 (Helloliv).
A light black ink washing was applied and post-shading to emphasize panel lines. Most markings/decals came from a Begemot 1:72 He 11 sheet, including the unusual green tactical code - it belongs to a staff unit, a suitable marking for such an experimental aircraft. The green (Humbrol 2) was carried over to the tips of the propeller spinners. The unit's code "1A" is fictional, AFAIK this combination had never been used by the Luftwaffe.
The small unit badge was alucky find: it actually depicts the fictional Baron von Münchhausen riding on a cannonball, and it comes from an Academy 1:72 Me 163 kit and its respective sheet. The mission markings underneath, depicting two anti-ship missions plus a successful sinking, came from a TL Modellbau 1:72 scale sheet with generic German WWII victory markings.
After some soot stains around the engine exhaust and weapon muzzles had been added with graphite, the model was sealed with matt acrylic varnish and final details like position lights and wire antennae (from heated black plastic sprue material) were added.
Well, what started as a combination of two kits of the same kind with a simple huge pipe underneath turned out to be more demanding than expected. The (incomplete) replacement engines were quite a challenge, and body work on the hull (tail stinger, fairing for the SG 104 as well as the weapon itself) turned out to be more complex and extensive than initially thought of. The result looks quite convincing, also supported by the rather simple paint scheme which IMHO just "looks right" and very convincing. And the whole thing is probably the most direct representation of the inspiring "Gunship" theme!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Sondergerät SG104 "Münchhausen" was a German airborne recoillless 355.6 mm (14-inch) caliber gun, intended to engage even the roughest enemy battleships, primarily those of the Royal Navy. The design of this unusual and massive weapon began in 1939. The rationale behind it was that a battleship’s most vulnerable part was the deck – a flat surface, with relatively thin armor (as typical hits were expected on the flanks) and ideally with vital targets underneath, so that a single, good hit would cripple of even destroy a ship. The purpose of such a high angle of attack was likely to allow the projectile to penetrate the target ship's deck, where the ship's armor, if there was any, would have been much thinner than the armor on its sidesHowever, hitting the deck properly with another ship’s main gun was not easy, since it could only be affected through indirect hits and the typical angle of the attack from aballistic shot would not necessarily be ideal for deep penetration, esp. at long range.
The solution to this problem: ensure that the heavy projectile would hit its target directly from above, ideally at a very steep angle. To achieve this, the gun with battleship caliber was “relocated” from a carrier ship or a coastal battery onto an aircraft – specifically to a type that was capable of dive-bombing, a feature that almost any German bomber model of the time offered.
Firing such a heavy weapon caused a lot fo problems, which were severe even if the gun was mounted on a ship or on land. To compensate for such a large-caliber gun’s recoil and to make firing a 14 in shell (which alone weighed around almost 700 kg/1.550 lb, plus the charge) from a relatively light airframe feasible, the respective gun had to be as light as possible and avoid any recoil, which would easily tear an aircraft – even a bomber – apart upon firing. Therefore, the Gerät 104 was designed as a recoilless cannon. Its firing system involved venting the same amount of the weapon's propellant gas for its round to the rear of the launch tube (which was open at both ends), in the same fashion as a rocket launcher. This created a forward directed momentum which was nearly equal to the rearward momentum (recoil) imparted to the system by accelerating the projectile itself. The balance thus created did not leave much net momentum to be imparted to the weapon's mounting or the carrying airframe in the form of felt recoil. A further share of the recoil induced by the moving round itself could be compensated by a muzzle brake which re-directed a part of the firing gases backwards. Since recoil had been mostly negated, a heavy and complex recoil damping mechanism was not necessary – even though the weapon itself was huge and heavy.
Work on the "Münchhausen" device (a secret project handle after a fictional German nobleman created by the German writer Rudolf Erich Raspe in the late 18th century who reputedly had ridden on a cannonball between enemy frontlines), was done by Rheinmetall-Borsig and lasted until 1941. The first test of a prototype weapon was conducted on 9th of September 1940 in Unterlüss with a satisfactory result, even though the weapon was only mounted onto an open rack and not integrated into an airframe yet. At that time, potential carriers were the Ju 88, the Dornier Do 217 and the new Junkers Ju 288. Even though the system’s efficacy was doubted, the prospect of delivering a single, fatal blow to an important , armored arget superseded any doubts at the RLM, and the project was greenlit in early 1942 for the next stage: the integration of the Sondergerät 104 into an existing airframe. The Ju 88 and its successor, the Ju 188, turned out to be too light and lacked carrying capacity for the complete, loaded weapon, and the favored Ju 288 was never produced, so that only the Dornier Do 217 or the bigger He 177 remained as a suitable carriers. The Do 217 was eventually chosen because it had the biggest payload and the airframe was proven and readily available.
After calculations had verified that the designed 14 in rifle would have effectively no recoil, preliminary tests with dumm airframes were carried out. After ground trials with a Do 217 E day bomber to check recoil and blast effects on the airframe, the development and production of a limited Nullserie (pre-production series) of the dedicated Do 217 F variant for field tests and eventual operational use against British sea and land targets was ordered in April 1942.
The resulting Do 217 F-0 was based on the late “E” bomber variant and powered by a pair of BMW 801 radial engines. It was, however, heavily modified for its unique weapon and the highly specialized mission profile: upon arriving at the zone of operation at high altitude, the aircraft would initiate a dive with an angle of attack between 50° and 80° from the horizontal, firing the SG 104 at an altitude between 6,000 and 2,000 meters. The flight time of the projectile could range from 16.0 seconds for a shot from an altitude of 6,000 meters at a 50° angle to just 4.4 seconds for a shot from 2.000 meters at an almost vertical 80° angle. Muzzle velocity of the SG 104 was only 300 m/s, but, prior to impact, the effective velocity of the projectile was projected to range between 449 and 468 m/s (1,616 to 1,674 km/h). Together with the round's weight of roughly 700 kg (1.550 lb) and a hardened tip, this would still ensure a high penetration potential.
The operational Sondergerät 104 had an empty mass of 2.780 kg (6,123 lb) and its complete 14 inch double cartridge weighed around 1.600 kg (3,525 lb). The loaded mass of the weapon was 4,237 kg, stretching the limits of the Do 217’s load capacity to the maximum, so that some armor and less vital pieces of equipment were deleted. Crew and defensive armament were reduced to a minimum.
Even though there had been plans to integrate the wepaon into the airframe (on the Ju 288), the Gerät 104 was on the Do 217 F-0 mounted externally and occupied the whole space under the aircraft, precluding any use of the bomb bay. The latter was occupied by the Gerät 104’s complex mount, which extended to the outside under a streamlined fairing and held the weapon at a distance from the airframe. Between the mount’s struts inside of the fuselage, an additional fuel tank for balance reasons was added, too.
The gun’s center, where the heavy round was carried, was positioned under the aircraft’s center of gravity, so that the gun barrel markedly protruded from under the aircraft’s nose. To make enough space, the Do 217 Es bomb aimer’s ventral gondola and his rearward-facing defensive position under the cockpit were omitted and faired over. The nose section was also totally different: the original extensive glazing (the so-called “Kampfkopf”) was replaced by a smaller, conventional canopy, similar to the later Do 217 J and N night fighter versions, together with a solid nose - the original glass panels would have easily shattered upon firing the gun, esp. in a steep high-speed dive. A "Lotfernrohr" bomb aiming device was still installed in a streamlined and protected fairing, though, so that the navigator could guide the pilot during the approach to the target and during the attack run.
To stabilize the heavy aircraft during its attack and to time- and safely pull out of the dive, a massive mechanical dive brake was mounted at the extended tail tip, which unfolded with four "petals". A charecteristic stabilizing dorsal strake was added between the twin fins, too.
The ventral area behind the gun’s rear-facing muzzle received additional metal plating and blast guiding vanes, after trials in late 1940 had revealed that firing the SG 104 could easily damage the Do 217’s tail structure, esp. all of the tail surfaces’ rudders and the fins’ lower ends in particular. Due to all this extra weight, the Do 217 F-0’s defensive armament consisted only of a single 13 mm MG 131 machine gun in a manually operated dorsal position behind the cockpit cabin, which offered space for a crew of three. A fixed 15 mm MG 151 autocannon was mounted in the nose, too, a weapon with a long barrel for extended range and accuracy. It was not an offensive weapon, though, rather intended as an aiming aid for the SG 104 because it was loaded with tracer bullets: during the final phase of the attack dive, the pilot kept firing the MG 151, and the bullet trail showed if he was on target to fire the SG 104 when the right altitude/range had been reached.
The first Do 217 F-0 was flown and tested in late 1943, and after some detail changes the type was cleared for a limited production run of ten aircraft in January 1944. The first operational machine was delivered to a dedicated testing commando, the Erprobungskommando 104 “Münchhausen”, also known as “Sonderkommando Münchhausen” or simply “E-Staffel 104”. The unit was based at Bordeaux/Merignac and directly attached to the KG 40's as a staff flight. At that time, KG 40 operated Do 217 and He 177 bombers and frequently flew reconnaissance and anti-shipping missions over the Atlantic west of France, up to the British west and southern coast, equipped with experimental Henschel Hs 293 glide bombs.
Initial flights confirmed that the Do 217 airframe was burdened with the SG 104 to its limits, the already rather sluggish aircraft (the Do 217 had generally a high wing loading and was not easy to fly) lost anything that was left of what could be called agility. It needed an experienced pilot to handle it safely, esp. during start and landing. It is no wonder that two Do 217 F-0s suffered ground accidents during the first two weeks of operations, but the machines could be repaired, resume the test program and carry out attack missions.
However, during one of the first test shots with the weapon, one Do 217 F-0 lost its complete tail section though the gun blast, and the aircraft crashed into the Bay of Biscay, killing the complete crew.
On 4th or April 1944 the first "hot" attack against an enemy ship was executed in the Celtic Sea off of Brest, against a convoy of 20 ships homeward bound from Gibraltar. The attack was not successful, though, the shot missing its target, and the German bomber was attacked and heavily damaged by British Bristol Beaufighters that had been deployed to protect the ships. The Do 217F-0 eventually crashed and sank into the Atlantic before it could reach land again.
A couple of days later, on 10th of April, the first attempt to attack and destroy a land target was undertaken: two Do 217 F-0s took off to attack Bouldnor Battery, an armored British artillery position located on the Isle of Wight. One machine had to abort the attack due to oil leakages, the second Do 217 F-0 eventually reached its target and made a shallow attack run, but heavy fog obscured the location and the otherwise successful shot missed the fortification. Upon return to its home base the aircraft was intercepted by RAF fighters over the Channel and heavily damaged, even though German fighters deployed from France came to the rescue, fought the British attackers off and escorted the limping Do 217 F-0 back to its home base.
These events revealed that the overall SG 104 concept was generally feasible, but also showed that the Do 217 F-0 was very vulnerable without air superiority or a suitable escort, so that new tactics had to be developed. One consequence was that further Do 217 F-0 deployments were now supported by V/KG 40, the Luftwaffe's only long range maritime fighter unit. These escorts consisted of Junkers Ju 88C-6s, which were capable of keeping up with the Do 217 F-0 and fend of intercepting RAF Coastal Command’s Beaufighters and later also Mosquitos.
In the meantime, tests with the SG 104 progressed and several modifications were tested on different EKdo 104's Do 217 F-0s. One major upgrade was a further strengthening of the tail section, which added another 200 kg (440 lb) to the aircraft's dry weight. Furthermore, at least three aircraft were outfitted with additional dive brakes under the outer wings, so that the dive could be better controlled and intercepted. these aircraft, however, lost their plumbed underwing hardpoints, but these were only ever used for drop tanks during transfer flights - a loaded SG 104 precluded any other ordnance. On two other aircraft the SG 104 was modified to test different muzzle brakes and deflectors for the rear-facing opening, so that the gun blast was more effectively guided away from the airframe to prevent instability and structural damage. For instance, one machine was equipped with a bifurcated blast deflector that directed the rearward gasses partly sideways, away from the fuselage.
These tests did not last long, though. During the Allied Normandy landings in June 1944 E-Staffel 104 was hastily thrown into action and made several poorly-prepared attack runs against Allied support ships. The biggest success was a full hit and the resulting sinking of the Norwegian destroyer HNoMS Svenner (G03) by "1A+BA" at dawn on 6th of June, off Sword, one of the Allied landing zones. Other targets were engaged, too, but only with little effect. This involvement, however, led to the loss of three Do 217 F-0s within just two days and four more heavily damaged aircraft – leaving only two of EKdo 104's Do 217 F-0s operational.
With the Allied invasion of France and a worsening war condition, the SG 104 program was stopped in August 1944 and the idea of an airborne anti-ship gun axed in favor of more flexible guided weapons like the Hs 293 missile and the Fritz-X glide bomb. Plans for a further developed weapon with a three-round drum magazine were immediately stopped, also because there was no carrier aircraft in sight that could carry and deploy this complex 6.5 tons weapon. However, work on the SG 104 and the experience gained from EKdo 104's field tests were not in vain. The knowledge gathered from the Münchhausen program was directly used for the design of a wide range of other, smaller recoilless aircraft weapons, including the magnetically-triggered SG 113 "Förstersonde" anti-tank weapon or the lightweight SG 118 "Rohrblock" unguided air-to-air missile battery for the Heinkel He 162 "Volksjäger".
General characteristics:
Crew: 3 (pilot, navigator, radio operator/gunner)
Length: 20,73 m (67 ft 11 in) overall
18,93 m (62 ft 3/4 in) hull only
Wingspan: 19 m (62 ft 4 in)
Height: 4.97 m (16 ft 4 in)
Wing area: 57 m² (610 sq ft)
Empty weight: 9,065 kg (19,985 lb)
Empty equipped weight:10,950 kg (24,140 lb)
Max takeoff weight: 16,700 kg (36,817 lb)
Fuel capacity: 2,960 l (780 US gal; 650 imp gal) in fuselage tank and four wing tanks
Powerplant:
2× BMW 801D-2 14-cylinder air-cooled radial piston engines, delivering
1,300 kW (1,700 hp) each for take-off and 1,070 kW (1,440 hp) at 5,700 m (18,700 ft),
driving 3-bladed VDM constant-speed propellers
Performance:
Maximum speed: 475 km/h (295 mph, 256 kn) at sea level
560 km/h (350 mph; 300 kn) at 5,700 m (18,700 ft)
Cruise speed: 400 km/h (250 mph, 220 kn) with loaded Gerät 104 at optimum altitude
Range: 2,180 km (1,350 mi, 1,180 nmi) with maximum internal fuel
Ferry range: 2,500 km (1,600 mi, 1,300 nmi); unarmed, with auxiliary fuel tanks
Service ceiling: 7,370 m (24,180 ft) with loaded Gerät 104,
9,500 m (31,200 ft) after firing
Rate of climb: 3.5 m/s (690 ft/min)
Time to altitude: 1,000 m (3,300 ft) in 4 minutes 10 seconds
2,000 m (6,600 ft) in 8 minutes 20 seconds
6,100 m (20,000 ft) in 24 minutes 40 seconds
Armament:
1x 355.6 mm (14-inch) Sondergerät 104 recoilless gun with a single round in ventral position
1x 15 mm (0.787 in) MG 151 machine cannon with 200 rounds, fixed in the nose
1x 13 mm (0.512 in) MG 131 machine gun with 500 rounds, movable in dorsal position
Two underwing hardpoints for a 900 l drop tank each, but only used during unarmed ferry flights
The kit and its assembly:
This was another submission to the "Gunships" group build at whatifmodellers.com in late 2021, and inspiration struck when I realized that I had two Italeri Do 217 in The Stash - a bomber and a night fighter - that could be combined into a suitable (fictional) carrier for a Sondergerät 104. This mighty weapon actually existed and even reached the hardware/test stage - but it was never integrated into an airframe and tested in flight. But that's what this model is supposed to depict.
On the Do 217, the Sg 104 would have been carried externally under the fuselage, even though there had been plans to integrate this recoilless rifle into airframes, esp. into the Ju 288. Since the latter never made it into production, the Do 217 would have been the most logical alternative, also because it had the highest payload of all German bombers during WWII and probably the only aircraft capable of carrying and deploying the Münchhausen device, as the SG 104 was also known.
The fictional Do 217 F-0 is a kitbashing, using a Do 217 N fuselage, combined with the wings from a Do 217 K bomber, plus some modifications. What initially sounded like a simple plan soon turned into a improvisation mess: it took some time to realize that I had already donated the Do 217 K's BMW 801 engines to another project, an upgraded He 115... I did not want to use the nightfighter's more powerful DB 603s, and I was lucky to have an Italeri Ju 188 kit at hand which comes with optional BMW 801s and Jumo 211s. Transplanting these engines onto the Do 217's wings took some tailoring of the adapter plates, but was feasible. However, the BMW 801s from the Ju 188 kit have a flaw: they lack the engine's characteristic cooling fans... Another lucky find: I found two such parts in the scrap box, even though from different kits - one left over from another Italeri Do 217 K, the other one from what I assume is/was an Italeri 1:72 Fw 190 A/F. To make matters worse, one propeller from the Ju 188 kit was missing, so that I had to find a(nother) replacement. :-/
I eventually used something that looked like an 1:72 F6F Hellcat propeller, but I an not certain about this because I have never built this model...? With some trimming on the blades' trailing edges and other mods, the donor's overall look could be adapted to the Ju 188 benchmark. Both propellers were mounted on metal axis' so that they could also carry the cooling fans. Lots of work, but the result looks quite good.
The Do 217 N's hull lost the lower rear gunner position and its ventral gondola, which was faired over with a piece of styrene sheet. The pilot was taken OOB, the gunner in the rear position was replaced by a more blob-like crew member from the scrap box. The plan to add a navigator in the seat to the lower right of the pilot did not work out due to space shortage, but this figure would probably have been invisble, anyway.
All gun openings in the nose were filled and PSRed away, and a fairing for a bomb aiming device and a single gun (the barrel is a hollow steel needle) were added.
The SG 104 was scratched. Starting point was a white metal replacement barrel for an 1:35 ISU-152 SPG with a brass muzzle brake. However, after dry-fitting the barrel under the hull the barrel turned out to be much too wide, so that only the muzzal brake survived and the rest of the weapon was created from a buddy refueling pod (from an Italeri 1:72 Luftwaffe Tornado, because of its two conical ends) and protective plastic caps from medical canulas. To attach this creation to the hull I abused a conformal belly tank from a Matchbox Gloster Meteor night fighter and tailored it into a streamlined fairing. While this quite a Frankenstein creation, the overall dimensions match the real SG 104 prototype and its look well.
Other cosmetic modifications include a pair of underwing dive brakes, translanted from an Italeri 1:72 Ju 88 A-4 kit, an extended (scratched) tail "stinger" which resembles the real dive brake arrangement that was installed on some Do 217 E bombers, and I added blast deflector vanes and a dorsal stabilizer fin.
In order to provide the aircraft with enough ground clearance, the tail wheel was slightly extended. Thanks to the long tail stinger, this is not blatantly obvious.
Painting and markings:
This was not an easy choice, but as a kind of prototype I decided that the paint scheme should be rather conservative. However, German aircraft operating over the Atlantic tended to carry rather pale schemes, so that the standard pattern of RLM 70/71/65 (Dunkelgrün, Schwarzgrün and Hellblau) with a low waterline - typical for experimental types - would hardly be appropriate.
I eventually found a compromise on a He 177 bomber (coded 6N+BN) from 1944 that was operated by KG 100: this particular aircraft had a lightened upper camouflage - still a standard splinter scheme but consisting of RLM 71 and 02 (Dunkelgrün and Grau; I used Modelmaster 2081 and Humbrol 240), a combination that had been used on German fighters during the Battle of Britain when the standard colors turned out to be too dark for operations over the Channel. The aircraft also carried standard RLM 65 (or maybe the new RLM76) underneath (Humbrol 65) and on the fin, but with a very high and slightly wavy waterline. As a rather unusual feature, no typical camouflage mottles were carried on the flanks or the fin, giving the aircraft a very bleak and simple look.
Despite my fears that this might look rather boring I adapted this scheme for the Do 217 F-0, and once basic painting was completed I was rather pleased by the aircraft's look! As an aircraft operated at the Western front, no additional markings like fuselage bands were carried.
To set the SG 104 apart from the airframe, I painted the weapon's visible parts in RLM 66 (Schwarzgrau, Humbrol 67), because this tone was frequently used for machinery (including the interior surfaces of aircraft towards 1945).
RLM 02 was also used for the interior surfaces and the landing gear, even though I used a slightly different, lighter shade in form of Revell 45 (Helloliv).
A light black ink washing was applied and post-shading to emphasize panel lines. Most markings/decals came from a Begemot 1:72 He 11 sheet, including the unusual green tactical code - it belongs to a staff unit, a suitable marking for such an experimental aircraft. The green (Humbrol 2) was carried over to the tips of the propeller spinners. The unit's code "1A" is fictional, AFAIK this combination had never been used by the Luftwaffe.
The small unit badge was alucky find: it actually depicts the fictional Baron von Münchhausen riding on a cannonball, and it comes from an Academy 1:72 Me 163 kit and its respective sheet. The mission markings underneath, depicting two anti-ship missions plus a successful sinking, came from a TL Modellbau 1:72 scale sheet with generic German WWII victory markings.
After some soot stains around the engine exhaust and weapon muzzles had been added with graphite, the model was sealed with matt acrylic varnish and final details like position lights and wire antennae (from heated black plastic sprue material) were added.
Well, what started as a combination of two kits of the same kind with a simple huge pipe underneath turned out to be more demanding than expected. The (incomplete) replacement engines were quite a challenge, and body work on the hull (tail stinger, fairing for the SG 104 as well as the weapon itself) turned out to be more complex and extensive than initially thought of. The result looks quite convincing, also supported by the rather simple paint scheme which IMHO just "looks right" and very convincing. And the whole thing is probably the most direct representation of the inspiring "Gunship" theme!
Whilst 67023 and 67027 were away on RHTT duties the once a month visit to Sheffield Midland on the 1Q50 1340 Derby RTC - Doncaster Wood Yard was covered by 37521 which had lead into Midland and 37116 which will lead out after a reversal..
15 11 18
Speeding north through Lichfield Trent Valley with the 1Z53 Willesden Railnet to Shieldmuir Mail Terminal is Royal Mail Class 325, 325009.
The Class 325's are yet another one of those Greek tragedies of the British railway scene. These specially built, 100mph units were very capable machines, but sadly the powers that be quickly pulled the rug out from under them, and what would have been the primary motive power for mail traffic across the UK's electric railway network is now only just starting to make a comeback.
The origins of the Class 325 go back to the early 1990's. At the time British Rail's parcels and mail arm, Rail Express Systems, was in the process of phasing out the traditional Travelling Post Office as computer sorting removed the need for sorting by-hand aboard the trains. At the same time RES desired a fleet of units that would be much more flexible, efficient and cost effective than the ageing fleet of Class 86 electrics, Class 47 diesels and MkI based coaching stock of the 1960's that it was using presently.
Previously, Royal Mail had trialed reusing former London commuter EMU's and re-purposing them as parcels units. Initially, Class 307's built in the 1950's were used on services out of London Liverpool Street, these being designated Class 300. However, these units weren't particularly reliable, and their age meant that they were only a few years away from being life-expired. In 1994, Rail Express Systems placed an order for a set of 100mph electric multiple units to be built on the underpinnings of the Class 319 dual-voltage Thameslink units used in London. Originally, this class was designated Class 350, but was eventually changed to Class 325.
Construction of these units was done by ABB at their Derby works between 1995 and 1996, with 16 of these trains eventually built. The construction of the Class 325's coincided with a major refurbishment of the mail-on-rail system, with new distribution centres and sorting offices constructed at major railway locations, this project being dubbed Railnet. For the Class 325's, these included Railnet terminals at Shieldmuir near Glasgow (to serve the lowlands of Scotland), Warrington (to serve North West England), Low Fell near Newcastle, and Willesden in North London. Additional Railnet terminals off the Class 325's network included Tonbridge, Bristol Parkway, Doncaster and Stafford. Willesden Railnet terminal is by far the largest, a 7 platform station under a huge barrel roof which is essentially another London terminus just with no passengers, built at a cost of £30m.
The Class 325's eventually began operations after a short period of trials in 1995. The units are fitted with large round oleo buffers, and have no gangways between carriages. Each set is made up of four cars, with roller doors in place of sliding ones and no windows. Each car has two roller shutter sliding doors on each side and is designed to hold up to 12 tonnes. They have a pantograph to pick up power from the 25 kV AC overhead lines, and also a shoe to pick up power off the 750 V DC third rail. They cannot work in multiple with any other multiple unit stock, but are fitted with drop-head buck-eye coupling and can therefore be hauled by locomotives. The units were built in such a way that they could easily be converted for passenger use if no longer required for mail services, and cab fronts designed to look similar to the then recently built Networker Class 165/166 and 365/465 commuter units.
Based at Crewe International Electric Maintenance Depot, the Class 325's effects on the mail services up the West and East Coast Mainlines were profound, with turnaround times and flexibility when it came to shunting being among its many advantages. They were also much more reliable than Class 86's or 47's, and could easily be put to work on the 3rd Rail Southern Region without the need for diesels or locomotive changes.
However, their tenure on mail services was seriously short lived, as in 2003, Royal Mail decided to cease the Mail Train contract with freight operator EWS after 166 years of operation. The last mail services under the original Victorian contract ended on January 9th, 2004, and the Class 325's, along with the hundreds of carriages of stock and locomotives, entered storage at various locations across the network, while the millions of pounds of infrastructure and the Railnet buildings fell silent after less than 10 years of operation.
The Class 325's were thankfully not out of action for long though, as at Christmas 2004, in light of heavy demand and congestion on the roads in bad weather, Royal Mail reluctantly awarded GBRf the contract to run a limited number of Class 325's on services between London and Glasgow over the winter period. GBRf however were not cleared to use the Class 325's on their own, and thus instead chose to drag the units using Class 86's and 87's. After a traction reshuffle the Class 325s resumed service with their power cars and without locomotive haulage.
Eventually, GBRf lost the contract in 2010 to EWS's successor, DB Schenker, who now operate both Royal Mail services but the continued maintenance of the Class 325 stock. On an average weekday there are 15 diagrammed services out of Willesden Railnet, 5 to and from Warrington, 3 to Shieldmuir and 3 to Low Fell. Today, 15 out of the original 16 units remain in service, 325010 being scrapped in 2012 after years of neglect in storage.
Sadly, like many pieces of the Mail Train puzzle, so many were wasted after less than 10 years of operation, infrastructure built to last for 100 years demolished after no time at all. At least the Class 325's have found their way back into work, doing a job that makes eminent sense over the road haulage alternative Royal Mail hoped would be the better option over the mail train. Instead the Class 325's are proof as to why mail-by-rail is the superior option, no traffic jams, no slippery roads, no 60mph speed limiter on the lorries, just 100mph haulage of your valuables and parcels up and down the country all the way!
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.
The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.
The versatile aircraft also underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 onwards, placed in a streamlined fairing on the upper side of the nose, just in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could also be used for target illumination and guiding precision weapons.
Many Valkyries also received improved radar warning systems, with receivers, depending on the systems, mounted on the wing-tips, on the fins and/or on the LERXs. Improved ECR measures were also mounted on some machines, typically in conformal fairings on the flanks of the legs/engine pods.
After joining the global U.N. Spacy union, Germany adopted the VF-1 in late 2008, it replaced the Eurofighter Typhoon interceptors as well as Tornado IDS and ECR fighter bombers. An initial delivery of 120 aircraft was completed until 2011, partially delayed by the outbreak of Space War One in 2009. This initial batch included 85 VF-1A single seaters, fourteen VF-1J fighters for commanders and staff leaders, and twenty VF-1D two-seaters for conversion training over Germany (even though initial Valkyrie training took place at Ataria Island). These machines were erratically registered under the tactical codes 26+01 to 26+99. Additionally, there was a single VF-1S (27+00) as a personal mount for the General der Luftwaffe.
The German single-seaters were delivered as multi-role fighters that could operate as interceptors/air superiority fighters as well as attack aircraft. Beyond the standard equipment they also carried a passive IRST sensor in front of the cockpit that allowed target acquisition without emitting radar impulses, a LRMTS (Laser Rangefinder and Marked Target Sensor) under the nose, a Weapon Delivery and Navigation System (WDNS) and an extended suite of radar warning sensors and ECM jammers.
After Space War I, attritions were replaced with a second batch of VF-1 single seaters in 2015, called VF-1L (for “Luftwaffe”). These machines had updated avionics and, among modifications, a laser target designator in a small external pod under the cockpit. About forty VF-1 survivors from the first batch were upgraded to this standard, too, and the VF-1Ls were registered under the codes 27+01 – 90.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)
However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
General characteristics:
All-environment variable fighter and tactical combat Battroid,
used by U.N. Spacy, U.N. Navy, U.N. Space Air Force
Accommodation:
Pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design Features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min
4x underwing hard points for a wide variety of ordnance, including
12x AMM-1 hybrid guided multipurpose missiles (3/point), or
12x MK-82 LDGB conventional bombs (3/point), or
6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or
4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,
or a combination of above load-outs
The kit and its assembly:
This fictional VF-1 is more or less “only” a camouflage experiment, spawned by a recent discussion about the German Luftwaffe’s so-called “Norm ‘81” paint scheme that was carried by the F-4Fs during the Eighties and the early Nineties. It is one of the most complex standardized paint scheme I am aware of, consisting of no less than six basic shades of grey and applied in two different patterns (early variant with angled/splinter camouflage, later this was changed into more organic shapes).
I have built a fictional post-GDR MiG-21 with the Norm ’81 scheme some years ago, but had always been curious how a Macross VF-1 would look with it, or how it could be adapted to the F-14esque airframe?
Concerning the model, it’s another vintage ARII VF-1, in this case a VF-1J, built OOB and with the landing gear down and an open canopy. However, I added some small details like the sensors in front of the cockpit, RHAWS sensors and bulges for ECM equipment on the lower legs (all canonical). The ordnance was subtly changed, with just two AMM-1 missiles on each outer pylon plus small ECM pods on the lo hardpoint (procured from an 1:144 Tornado). The inner stations were modified to hold quadruple starters for (fictional) air-to-ground missiles, left over from a Zvezda 1:72 Ka-58 helicopter and probably depicting Soviet/Russian 9M119 “Svir” laser-guided anti-tank missiles, or at least something similar. At the model’s 1:100 scale they are large enough to represent domestic alternatives to AGM-65 Maverick missiles – suitable against Zentraedi pods and other large ground targets. The ventral GU-11 pod was modified to hold a scratched wire display for in-flight pictures. Some blade antennae were added as a standard measure to improve the simple kit’s look. The cockpit was taken OOB, I just added a pilot figure for the scenic shots and the thick canopy was later mounted on a small lift arm in open position.
Painting and markings:
This was quite a challenge: adapting the Norm’ 81 scheme to the swing-wing Valkyrie, with its folded legs and the twin tail as well as lacking the Phantom’s spine and bulged air intakes, was not easy, and I went for the most straightforward solution and simplified things on the VF-1’s short spine.
The Norm ‘81’s “official” colors are all RAL tones, and I decided to use these for an authentic lokk, namely:
RAL 7009 Grüngrau: Revell 67 (acrylic)
RAL 7012 Basaltgrau: Revell 77 (acrylic)
RAL 7039 Quarzgrau: Xtracolor X259 (enamel)
RAL 7037 Staubgrau: Xtracolor X258 (enamel)
RAL 7030 Steingrau: Revell 75 (enamel)
RAL 7035 Lichtgrau: Humbrol 196 (enamel)
This basically plan worked and left me with a very murky aircraft: Norm ’81 turned out to be a kind of all-propose camouflage that works well against both sky and ground, at least in the typical German climate, and especially good at medium to low altitude. RAL 7030, 7037 and 7039 appear like gradually darker shades of the basically same brownish grey hue, framed with darker contrast areas that appear either greenish or bluish.
However, the Xtracolor enamels turned out to be total sh!t: they lacked pigments in the glossy and translucent base and therefore ANY opacity, esp. on any edge, at least when you use a brush like me. Not certain if using an airbrush improves this? The result were uneven and rather thick areas of paint, not what I had hoped for. And the Revell 75 just did what I hate about the company's enamels: drying up prematurely with a gooey consistency, leaving visible streaks.
After a black ink wash, very light post-shading was added. I should have from the start tried to stick to the acrylics and also mix the Xtracolor tones from Revell acrylics, a stunt that turned during the weathering process (trying to hide the many blemishes) out to be quite feasible. RAL 7037 was mixed from Revell 47 plus 89 in a ~1:1 ratio, and RAL 7039 from Revell 47, 77 and 87 with a touch of 09. Nevertheless, the paint finish turned out sub-optimal, but some shading and weathering saved most of the mess – even I am not satisfied with the outcome, the model looks more weathered than intended (even though most operational German F-4Fs with this paint scheme looked quite shaggy and worn, making the different shades of grey almost undiscernible).
After some consideration I gave this German VF-1 full-color (yet small) "Kite" roundels, together with a German tactical code. German flags and a vintage JaboG 32 squadron badge decorate the fin - a plausible move, because there are British Valkyries in source books that carry RAF fin flashes. Stencils and other markings came from VF-1 OOB sheets.
Finally, after some typical highlights with clear paint over a silver base were added, and the small VF-1 was sealed with a coat of matt acrylic varnish.
A spontaneous interim project, with interesting results. The adapted Norm ’81 scheme works well on the VF-1, and it even is a contemporary design from the era when the original TV series was conceived and aired. With the authentic tones I’d call it quite ugly – even though I was amazed during the photo session how well the different shades of grey (four from above!) blend into each other and break up the aircraft’s outlines. If there were no red-and-white roundels or the orange pilot in the cockpit (chosen intentionally for some color contrast), the camouflage would be very effective! Not perfect, but another special member in my growing VF-1 model fleet. ^^
CFB Edmonton Race Weekend - Harold Schmidt's 911 GT2 (930 chassis) racecar. Capable of 800hp at full boost but only lasting six hours at that power level.
Capable of firing between a thirty- and seventy-degree angle, this gun typically found itself in an indirect fire role but could be direct-fired at a shallow angle if direly necessary. Unlike the Anti-Armor Field Gun, it fires a large projectile at relatively low velocity and is better suited against infantry, light vehicles, and fortifications than armored targets.
(wheel adjusts mortar elevation when spun)
The English Electric Lightning is a British fighter aircraft that served as an interceptor during the 1960s, the 1970s and into the late 1980s. It was capable of a top speed of above Mach 2. The Lightning was designed, developed, and manufactured by English Electric.
The specification for the aircraft followed the cancellation of the Air Ministry's 1942 specification E.24/43 supersonic research aircraft which had resulted in the Miles M.52 programme. Teddy Petter, formerly chief designer at Westland Aircraft, who had been taken on by English Electric in 1944 to head an office to develop aircraft rather than just make other manufacturers' designs, was a keen early proponent of Britain's need to develop a supersonic fighter aircraft. In 1947, Petter approached the Ministry of Supply (MoS) with his proposal, and in response Specification ER.103 was issued for a single research aircraft, which was to be capable of flight at Mach 1.5 (1,593 km/h; 990 mph) and 50,000 ft (15,000 m).
Petter initiated a design proposal with Frederick Page leading the design and Ray Creasey responsible for the aerodynamics. By July 1948 their proposal incorporated the stacked engine configuration and a high-mounted tailplane. As it was designed for Mach 1.5, the wing leading edge was swept back 40° to keep it clear of the Mach cone. This proposal was submitted in November 1948 and in January 1949 the project was designated P.1 by English Electric. On 29 March 1949 the MoS granted approval to start the detailed design, develop wind tunnel models and build a full-size mockup.
The design that had developed during 1948 evolved further during 1949 to further improve performance, taking many design cues from the CAC CA-23. To achieve Mach 2 the wing sweep was increased to 60° with the ailerons moved to the wingtips. In late 1949, low-speed wind tunnel tests showed that a vortex was generated by the wing which caused a large downwash on the tailplane; this issue was solved by lowering the tail below the wing. Following the resignation of Petter from English Electric, Page took over as design team leader for the P.1 and the running of EE design office. In 1949, the Ministry of Supply had issued Specification F23/49, which expanded upon the scope of ER103 to include fighter-level manoeuvring. On 1 April 1950, English Electric received a contract for two flying airframes, as well as one static airframe, designated P.1.
The Royal Aircraft Establishment disagreed with Petter's choice of sweep angle (60 degrees) and tailplane position (low) considering it to be dangerous. To assess the effects of wing sweep and tailplane position on the stability and control of Petter's design Short Brothers were issued a contract by the Ministry of Supply to produce the Short SB.5 in mid-1950. This was a low-speed research aircraft that could test sweep angles from 50 to 69 degrees and high or low tailplane positions. Testing with the wings and tail set to the P.1 configuration started in January 1954 and confirmed this combination as the correct one.
From 1953 onward, the first three prototype aircraft were hand-built at Samlesbury Aerodrome, where all Lightnings were built. These aircraft were given the aircraft serials WG760, WG763, and WG765 (the structural test airframe). The prototypes were powered by un-reheated Armstrong Siddeley Sapphire turbojets, as the selected Rolls-Royce Avon engines had fallen behind schedule due to their own development problems. Since there was no space in the fuselage for fuel the thin wings were the fuel tanks and since they also provided space for the stowed main undercarriage the fuel capacity was relatively small, giving the prototypes an extremely limited endurance, and the narrow tyres housed in the thin wings rapidly wore out if there was any crosswind component during take-off or landing. Outwardly, the prototypes looked very much like the production series, but they were distinguished by the rounded-triangular air intake with no centre-body at the nose, short fin, and lack of operational equipment.
On 9 June 1952, it was decided that there would be a second phase of prototypes built to develop the aircraft toward achieving Mach 2.0 (2,450 km/h; 1,522 mph); these were designated P.1B while the initial three prototypes were retroactively reclassified as P.1A. P.1B was a significant improvement on P.1A. While it was similar in aerodynamics, structure and control systems, it incorporated extensive alterations to the forward fuselage, reheated Rolls-Royce Avon R24R engines, a conical centre body inlet cone, variable nozzle reheat and provision for weapons systems integrated with the ADC and AI.23 radar. Three P.1B prototypes were built, assigned serials XA847, XA853 and XA856.
In May 1954, WG760 and its support equipment were moved to RAF Boscombe Down for pre-flight ground taxi trials; on the morning of 4 August 1954, WG760, piloted by Roland Beamont, flew for the first time from Boscombe Down. One week later, WG760 officially achieved supersonic flight for the first time, having exceeded the speed of sound during its third flight. During its first flight, WG760 had unknowingly exceeded Mach 1 (1,225 km/h; 761 mph), but due to position error the Mach meter only showed a maximum of Mach 0.95 (1,164 km/h; 723 mph). The occurrence was noticed during flight data analysis a few days later. While WG760 had proven the P.1 design to be viable, it was limited to Mach 1.51 (1,850 km/h; 1,149 mph) due to directional stability limits. In May 1956, the P.1 received the "Lightning" name, which was said to have been partially selected to reflect the aircraft's supersonic capabilities.
Speeding south through Lichfield Trent Valley with the 1Z56 Warrington Railnet to Willesden Railnet is Royal Mail Class 325, 325009.
The Class 325's are yet another one of those Greek tragedies of the British railway scene. These specially built, 100mph units were very capable machines, but sadly the powers that be quickly pulled the rug out from under them, and what would have been the primary motive power for mail traffic across the UK's electric railway network is now only just starting to make a comeback.
The origins of the Class 325 go back to the early 1990's. At the time British Rail's parcels and mail arm, Rail Express Systems, was in the process of phasing out the traditional Travelling Post Office as computer sorting removed the need for sorting by-hand aboard the trains. At the same time RES desired a fleet of units that would be much more flexible, efficient and cost effective than the ageing fleet of Class 86 electrics, Class 47 diesels and MkI based coaching stock of the 1960's that it was using presently.
Previously, Royal Mail had trialed reusing former London commuter EMU's and re-purposing them as parcels units. Initially, Class 307's built in the 1950's were used on services out of London Liverpool Street, these being designated Class 300. However, these units weren't particularly reliable, and their age meant that they were only a few years away from being life-expired. In 1994, Rail Express Systems placed an order for a set of 100mph electric multiple units to be built on the underpinnings of the Class 319 dual-voltage Thameslink units used in London. Originally, this class was designated Class 350, but was eventually changed to Class 325.
Construction of these units was done by ABB at their Derby works between 1995 and 1996, with 16 of these trains eventually built. The construction of the Class 325's coincided with a major refurbishment of the mail-on-rail system, with new distribution centres and sorting offices constructed at major railway locations, this project being dubbed Railnet. For the Class 325's, these included Railnet terminals at Shieldmuir near Glasgow (to serve the lowlands of Scotland), Warrington (to serve North West England), Low Fell near Newcastle, and Willesden in North London. Additional Railnet terminals off the Class 325's network included Tonbridge, Bristol Parkway, Doncaster and Stafford. Willesden Railnet terminal is by far the largest, a 7 platform station under a huge barrel roof which is essentially another London terminus just with no passengers, built at a cost of £30m.
The Class 325's eventually began operations after a short period of trials in 1995. The units are fitted with large round oleo buffers, and have no gangways between carriages. Each set is made up of four cars, with roller doors in place of sliding ones and no windows. Each car has two roller shutter sliding doors on each side and is designed to hold up to 12 tonnes. They have a pantograph to pick up power from the 25 kV AC overhead lines, and also a shoe to pick up power off the 750 V DC third rail. They cannot work in multiple with any other multiple unit stock, but are fitted with drop-head buck-eye coupling and can therefore be hauled by locomotives. The units were built in such a way that they could easily be converted for passenger use if no longer required for mail services, and cab fronts designed to look similar to the then recently built Networker Class 165/166 and 365/465 commuter units.
Based at Crewe International Electric Maintenance Depot, the Class 325's effects on the mail services up the West and East Coast Mainlines were profound, with turnaround times and flexibility when it came to shunting being among its many advantages. They were also much more reliable than Class 86's or 47's, and could easily be put to work on the 3rd Rail Southern Region without the need for diesels or locomotive changes.
However, their tenure on mail services was seriously short lived, as in 2003, Royal Mail decided to cease the Mail Train contract with freight operator EWS after 166 years of operation. The last mail services under the original Victorian contract ended on January 9th, 2004, and the Class 325's, along with the hundreds of carriages of stock and locomotives, entered storage at various locations across the network, while the millions of pounds of infrastructure and the Railnet buildings fell silent after less than 10 years of operation.
The Class 325's were thankfully not out of action for long though, as at Christmas 2004, in light of heavy demand and congestion on the roads in bad weather, Royal Mail reluctantly awarded GBRf the contract to run a limited number of Class 325's on services between London and Glasgow over the winter period. GBRf however were not cleared to use the Class 325's on their own, and thus instead chose to drag the units using Class 86's and 87's. After a traction reshuffle the Class 325s resumed service with their power cars and without locomotive haulage.
Eventually, GBRf lost the contract in 2010 to EWS's successor, DB Schenker, who now operate both Royal Mail services but the continued maintenance of the Class 325 stock. On an average weekday there are 15 diagrammed services out of Willesden Railnet, 5 to and from Warrington, 3 to Shieldmuir and 3 to Low Fell. Today, 15 out of the original 16 units remain in service, 325010 being scrapped in 2012 after years of neglect in storage.
Sadly, like many pieces of the Mail Train puzzle, so many were wasted after less than 10 years of operation, infrastructure built to last for 100 years demolished after no time at all. At least the Class 325's have found their way back into work, doing a job that makes eminent sense over the road haulage alternative Royal Mail hoped would be the better option over the mail train. Instead the Class 325's are proof as to why mail-by-rail is the superior option, no traffic jams, no slippery roads, no 60mph speed limiter on the lorries, just 100mph haulage of your valuables and parcels up and down the country all the way!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
Robert has always struck me as someone skilled, who was knowledgeable, capable, and understanding. His is a maturity that far outstretches his age. His filters adjust for his company, his views remain logical even when opinionated. He could converse with the friends or parents of any friend he made and hold that relationship long after the fickleness of younger ones. Being able to adapt to any situation even if it isn’t your suit is an incredible trait.
I remember the night of this photo, the birthday of my now ex-girlfriend, at Caprice Night club. I was never comfortable in that scene growing up. I thought the idea of a club beneath me, the pretentious, anime watching moron who only listened to hard rock music (AND DUBSTEP, DUH). I enjoyed being near friends, but at parties and the like I’d always find a set away area to go and sit by myself. Robert came to join me and for a little while that night. It was nice having company. I envied that he was able to go out in the fray of it all, though curios that he would come to sit down and enjoy being separated as much as I did. It’s something I’ve worked to exemplify in my self. On that note, catch me photographing MIA nightclub on the 18th and 19th. I’ve grown up a bit. Now I listen to Rock, Dubstep, and Yung Lean too.
Kodak Disposable - December, 2012
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Wasp was a transonic British jet-powered fighter aircraft that was developed by Folland for the Royal Air Force (RAF) during the late 1940s and early 1950s. The Wasp’s origins could be traced back to a privately funded 1952 concept for a bigger and more capable day fighter aircraft than Folland’s very light Midget/Gnat. The Wasp’s development had been continued until the Gnat’s service introduction, and by then it had evolved under the handle “Fo-145” into a supersonic aircraft that took advantage of the new Armstrong Siddeley Sapphire turbojet engine, swept wings and area rule. The aircraft was built with the minimum airframe size to take the reheated Saphire and a radar system that would allow it to deploy the new de Havilland Blue Jay (later Firestreak) guided air-to-air missile. In this form the aircraft was expected to surpass the Royal Air Force’s contemporary day fighter, the only gun-armed Hawker Hunter, which had been in service since 1954, while using basically the same engine as its F.2 variant, in both performance and armament aspects. The missile-armed Wasp was also expected to replace the disappointing Supermarine Swift and the Fairey Fireflash AAMs that had been developed for it.
The Wasp strongly resembled the smaller Gnat, with a similar but much thinner shoulder mounted wing, with a sweep of 35° at quarter chord, but the new aircraft featured some innovations. Beyond the area-ruled fuselage, the aircraft had full-span leading edge slats and trailing edge flaps with roll control achieved using spoilers rather than traditional ailerons. Anticipating supersonic performance, the tailplane was all-moving. The cockpit had been raised and offered the pilot a much better all-round field of view.
The Wasp was armed with four 30 mm (1.18 in) ADEN cannon, located under the air intakes. Each gun had a provision of 125 rounds, from form a mutual ventral ammunition bay that could be quickly replaced. Four underwing hardpoints could carry an ordnance load of up to 4.000 lb, and the Wasp’s main armament consisted of up to four IR-guided “Firestreak” AAMs. To effectively deploy them, however, a radar system was necessary. For launch, the missile seeker was slaved to the Wasp’s AI.Mk.20 X-band radar until lock was achieved and the weapon was launched, leaving the interceptor free to acquire another target. The AI.Mk.20 had been developed by EKCO since 1953 under the development label “Green Willow” for the upcoming EE Lightning interceptor, should the latter’s more complex and powerful Ferranti AIRPASS system fail. A major advantage of the AI.Mk.20 was that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters, despite its total weight of roughly 400 lb (200 kg). For the Firestreak AAM, EKCO had developed a spiral-scan radar with a compact 18 in (460 mm) antenna that offered an effective range of about 10 miles (16 km), although only against targets very close to the centerline of the radar. The radar’s maximum detection range was 25 mi (40 km) and the system also acted as a ranging radar, providing range input to the gyro gunsight for air-to-air gunnery.
Beyond Firestreaks, the Wasp could also carry drop tanks (which were area-ruled and coulc only be carried on the inner pair of pylons), SNEB Pods with eighteen 68 mm (2.68 in) unguided rocket projectiles against air and ground targets, or iron bombs of up to 1.000 lb caliber. Other equipment included a nose-mounted, and a forward-facing gun camera.
The Royal Air Force was sufficiently impressed to order two prototypes. Since the afterburning version of the Sapphire was not ready yet, the first prototype flew on 30 July 1954 with a non-afterburning engine, an Armstrong Siddeley Sapphire Sa.6 with 8,000 lbf (35.59 kN). In spite of this lack of power the aircraft nevertheless nearly reached Mach 1 in its maiden flight. The second prototype, equipped with the intended Sapphire Sa.7 afterburning engine with 11,000 lbf (48.9 kN) thrust engine, showed the aircraft’s full potential. The Wasp turned out to have very good handling, and the RAF officially ordered sixty Folland Fo-145 day-fighters under the designation “Wasp F.Mk.1”. The only changes from the prototypes were small leading-edge extensions at the wing roots, improving low speed handling, esp. during landings and at high angles of incidence in flight.
Most Wasps were delivered to RAF Germany frontline units, including No. 20 and 92 Squadrons based in Northern Germany. However, the Wasp’s active service did not last long, because technological advancements quickly rendered the aircraft obsolete in its original interceptor role. The Wasp’s performance had not turned out as significantly superior to the Hunter as expected. Range was rather limited, and the aircraft turned out to be underpowered, since the reheated Sapphire Sa6 did not develop as much power as expected. The AI.Mk.20 radar was rather weak and capricious, too, and the Firestreak was an operational nightmare. The missile was, due to its solid Magpie rocket motor and the ammonia coolant for the IR seeker head, highly toxic and RAF armorers had to wear some form of CRBN protection to safely mount the missile onto an aircraft. Furthermore, unlike modern missiles, Firestreak’s effectiveness was very limited since it could only be fired outside cloud - and over Europe or in winter, skies were rarely clear.
Plans for a second production run of the Folland Wasp with a more powerful Sapphire Sa7R engine with a raised thrust of 12,300 lbf (54.7 kN) and updated avionics were not carried out. During the 1960s, following the successful introduction of the supersonic English Electric Lightning in the interceptor role, the Wasp, as well as the older but more prosperous and versatile Hunter, transitioned to being operated as a fighter-bomber, advanced trainer and for tactical photo reconnaissance missions.
This led to a limited MLU program for the F.Mk.1s and conversions of the remaining airframes into two new variants: the new main version was the GR.Mk.2, a dedicated CAS/ground attack variant, which had its radar removed and replaced with ballast, outwardly recognizable through a solid metal nose which replaced the original fiberglass radome. Many of these machines also had two of the 30mm guns removed to save weight. Furthermore, a handful Wasps were converted into PR.Mk.3s. These had as set of five cameras in a new nose section with various windows, and all the guns and the ammunition bay were replaced with an additional fuel tank, operating as pure, unarmed reconnaissance aircraft. When Folland was integrated into the Hawker Siddeley Group in 1963 the aircraft’s official name was changed accordingly, even though the Folland name heritage persisted.
Most of these aircraft remained allocated to RAF Germany units and retired towards the late Sixties, but four GR.Mk.2s were operated by RAF No. 57 (Reserve) Squadron and based at No. 3 Flying Training School at Cranwell, where they were flown as adversaries in dissimilar aerial combat training. The last of the type was withdrawn from service in 1969, but one aircraft remained flying with the Aeroplane and Armament Experimental Establishment at Boscombe Down until 24 January 1975.
General characteristics:
Crew: 1
Length: 45 ft 10.5 in (13.983 m)
Wingspan: 31 ft 7.5 in (9.639 m)
Height: 13 ft 2.75 in (4.0323 m)
Wing area: 250 sq ft (23 m2)
Empty weight: 13,810 lb (6,264 kg)
Gross weight: 21,035 lb (9,541 kg)
Max takeoff weight: 23,459 lb (10,641 kg)
Powerplant:
1× Armstrong Siddeley Sapphire Sa.6, producing 7,450 lbf (33.1 kN) thrust at 8,300 rpm,
military power dry, and 11,000 lbf (48.9 kN) with afterburner
Performance:
Maximum speed: 631 kn (726 mph, 1,169 km/h) / M1.1 at 35,000 ft (10,668 m)
654 kn (753 mph; 1,211 km/h) at sea level
Cruise speed: 501 kn (577 mph, 928 km/h)
Range: 1,110 nmi (1,280 mi, 2,060 km)
Service ceiling: 49,000 ft (15,000 m)
Rate of climb: 16,300 ft/min (83 m/s)
Wing loading: 84 lb/sq ft (410 kg/m2)
Thrust/weight: 0.5
Armament:
4× 30 mm (1.18 in) ADEN cannon, 125 rounds per gun
4× underwing hardpoints for a total external ordnance of 4.000 lb, including Firestreak AAMs,
SNEB pods, bombs of up to 1.000 lb caliber or two 125 imp gal (570 l) drop tanks
The kit and its assembly
This kit travesty is a remake of a simple but brilliant idea of fellow modeler chrisonord at whatifmodellers’com (www.whatifmodellers.com/index.php?topic=48434.msg899420#m...), who posted his own build in late 2020: a Grumman Tiger in standard contemporary RAF colors as Folland Wasp GR.Mk.2. The result looked like a highly credible “big brother” or maybe successor of Folland’s diminutive Midge/Gnat fighter, something in the Hawker Hunter’s class. I really like the idea a lot and decided that it was, one and a half years later, to build my personal interpretation of the subject – also because I had a Hasegawa F11F kit in The Stash™ without a proper plan.
The Tiger was built basically OOB – a simple and straightforward affair that goes together well, just the fine, raised panel lines show the mould’s age. The only changes I made: the arrester hook disappeared under PSR, small stabilizer fins (from an Italeri BAe Hawk) were added under the tail section, and I replaced the Tiger’s rugged twin wheel front landing gear with a single wheel alternative, left over from a Matchbox T-2 Buckeye. On the main landing gear, the rearward-facing stabilizing struts were deleted (for a lighter look of a land-based aircraft) and their wells filled with putty. A late modification were additional swing arms for the main landing gear, though: once the kit could sit on its own three feet, the stance was odd and low, esp. under the tail – probably due to the new front wheel. As a remedy I glued additional swing arm elements, made from 1mm steel wire, under the original struts, what moved the main wheel a little backwards and raised the main landing gear my 1mm. Does not sound like much, but it was enough to lift the tail and give the aircraft a more convincing stance and ground clearance.
The area-ruled drop tanks and their respective pylons were taken from the Hasegawa kit. For a special “British” touch – because the Tiger had a radome (into which no radar was ever fitted, though) – I added a pair of Firestreak AAMs on the outer underwing stations, procured from a Gomix Gloster Javelin (which comes with four of these, plus pylons).
Painting and markings:
Since the RAF theme was more or less settled, paintwork revolved around more or less authentical colors and markings. The Wasp received a standard RAF day fighter scheme from the late Fifties, with upper camouflage in RAF Dark Green/Dark Sea Grey and Light Aircraft Grey undersides with a low waterline. I used Humbrol 163, 106 and 166, respectively – Ocean Grey was used because I did not have the proper 164 at hand, but 106 also offered the benefit of a slightly better contrast to the murky Dark Green. A black ink washing was applied plus some panel post-shading. The silver leading edges on wings, stabilizers and fin were created with decal sheet material, avoiding the inconvenience of masking.
The cockpit interior was painted in a very dark grey (Revell 09, Anthracite) while the landing gear, wheels and wells received a greyish-metallic finish (Humbrol 56, Aluminum Dope). The air intakes’ interior became bright aluminum (Revell 99), the area around the jet nozzle was painted with Revell 91 (Iron metallic) and later treated with graphite for a dark metallic shine. The drop tanks were camouflaged, the Firestreaks became white so that they would stand out well and add to a certain vintage look.
The decals were a mix from various sources. The No. 20 Squadron badges and the Type D high-viz roundels on the wings were left over from an Airfix Hawker Hunter. The fuselage roundels came from an Italeri BAe Hawk sheet, IIRC. The bent fin flash, all the stencils as well as the serial code (which was puzzled together from two real serials and was AFAIK not allocated to any real RAF aircraft) came from an Xtradecal Supermarine Swift sheet. The individual red “B” letter came from a Matchbox A.W. Meteor night fighter.
Finally, the kit was sealed with matt acrylic varnish – I considered a glossy finish, since this was typical for RAF aircraft in the Fifties, but eventually just gave the radome a light shine.
Basically a simple project, and quickly done in just a couple of days. However, chrisonord’s great eye for similarities makes this “Tiger in disguise” a great fictional aircraft model with only little effort, it’s IMHO very convincing. And the RAF colors and markings suit the F11F very well.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .
The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).
Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.
The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.
The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.
In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.
During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.
The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.
General characteristics:
Crew: 1
Length: 36 ft 4 in (11.1 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,210 lb (6,000 kg)
Loaded weight: 20,130 lb (9,200 kg)
Max. take-off weight: 23,700 lb (10,750 kg)
Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)
Performance:
Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 46,800 ft (14,300 m)
Rate of climb: 7,660 ft/min (38.9 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Thrust/weight: .325
Armament:
4× 20 mm (0.787 in) cannon
6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.
The kit and its assembly
Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.
Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.
I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.
Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!
The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.
The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.
The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!
Painting and markings
I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.
Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).
I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.
The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.
The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.
The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.
Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.
finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!
So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.
Still a capable camera today. Don't underestimate the old black crow. Yes it's limited if you know what those limits are. Expect to sharpen PP a little.
The colors are true.
It has been said it has that transparency film like IQ about it.
The 300 ED IF manual is a beast to keep steady in hand with it's shallow depth of field. This image was cropped at 100%.
So it's a bit gritty when zoomed in, it's still impressive for 4.2mp.
I paid $38.00 for this body it has the early D2h Err hiccup at first start up.
After a two or three shots it's fine not worth sending off to get fixed as you can buy another working one for way less Nikon charges for repair.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .
The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).
Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.
The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.
The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.
In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.
During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.
The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.
General characteristics:
Crew: 1
Length: 36 ft 4 in (11.1 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,210 lb (6,000 kg)
Loaded weight: 20,130 lb (9,200 kg)
Max. take-off weight: 23,700 lb (10,750 kg)
Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)
Performance:
Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 46,800 ft (14,300 m)
Rate of climb: 7,660 ft/min (38.9 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Thrust/weight: .325
Armament:
4× 20 mm (0.787 in) cannon
6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.
The kit and its assembly
Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.
Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.
I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.
Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!
The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.
The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.
The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!
Painting and markings
I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.
Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).
I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.
The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.
The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.
The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.
Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.
finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!
So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.
Bats are mammals of the order Chiroptera (/kaɪˈrɒptərə/; from the Greek χείρ - cheir, "hand" and πτερόν - pteron, "wing") whose forelimbs form webbed wings, making them the only mammals naturally capable of true and sustained flight. By contrast, other mammals said to fly, such as flying squirrels, gliding possums, and colugos, can only glide for short distances. Bats do not flap their entire forelimbs, as birds do, but instead flap their spread-out digits, which are very long and covered with a thin membrane or patagium.
Bats are the second largest order of mammals (after the rodents), representing about 20% of all classified mammal species worldwide, with about 1,240 bat species divided into two suborders: the less specialized and largely fruit-eating megabats, or flying foxes, and the highly specialized and echolocating microbats. About 70% of bat species are insectivores. Most of the rest are frugivores, or fruit eaters. A few species, such as the fish-eating bat, feed from animals other than insects, with the vampire bats being hematophagous, or feeding on blood.
Bats are present throughout most of the world, with the exception of extremely cold regions. They perform vital ecological roles of pollinating flowers and dispersing fruit seeds; many tropical plant species depend entirely on bats for the distribution of their seeds. Bats are economically important, as they consume insect pests, reducing the need for pesticides. The smallest bat is the Kitti's hog-nosed bat, measuring 29–34 mm in length, 15 cm across the wings and 2–2.6 g in mass. It is also arguably the smallest extant species of mammal, with the Etruscan shrew being the other contender. The largest species of bat are a few species of Pteropus (fruit bats or flying foxes) and the giant golden-crowned flying fox with a weight up to 1.6 kg and wingspan up to 1.7 m.
CLASSIFICATION AND EVOLUTION
Bats are mammals. In many languages, the word for "bat" is cognate with the word for "mouse": for example, chauve-souris ("bald-mouse") in French, murciélago ("blind mouse") in Spanish, saguzahar ("old mouse") in Basque, летучая мышь ("flying mouse") in Russian, slijepi miš ("blind mouse") in Bosnian, nahkhiir ("leather mouse") in Estonian, vlermuis (winged mouse) in Afrikaans, from the Dutch word vleermuis (from Middle Dutch "winged mouse"). An older English name for bats is flittermouse, which matches their name in other Germanic languages (for example German Fledermaus and Swedish fladdermus). Bats were formerly thought to have been most closely related to the flying lemurs, treeshrews, and primates, but recent molecular cladistics research indicates that they actually belong to Laurasiatheria, a diverse group also containing Carnivora and Artiodactyla.
The two traditionally recognized suborders of bats are:
- Megachiroptera (megabats)
- Microchiroptera (microbats/echolocating bats)
Not all megabats are larger than microbats. The major distinctions between the two suborders are:
- Microbats use echolocation; with the exception of the Rousettus genus, megabats do not.
- Microbats lack the claw at the second finger of the forelimb.
- The ears of microbats do not close to form a ring; the edges are separated from each other at the base of the ear.
- Microbats lack underfur; they are either naked or have guard hairs.
Megabats eat fruit, nectar, or pollen. Most microbats eat insects; others may feed on fruit, nectar, pollen, fish, frogs, small mammals, or the blood of animals. Megabats have well-developed visual cortices and show good visual acuity, while microbats rely on echolocation for navigation and finding prey.
The phylogenetic relationships of the different groups of bats have been the subject of much debate. The traditional subdivision between Megachiroptera and Microchiroptera reflects the view that these groups of bats have evolved independently of each other for a long time, from a common ancestor already capable of flight. This hypothesis recognized differences between microbats and megabats and acknowledged that flight has only evolved once in mammals. Most molecular biological evidence supports the view that bats form a single or monophyletic group.
Researchers have proposed alternative views of chiropteran phylogeny and classification, but more research is needed.
In the 1980s, a hypothesis based on morphological evidence was offered that stated the Megachiroptera evolved flight separately from the Microchiroptera. The so-called flying primates theory proposes that, when adaptations to flight are removed, the Megachiroptera are allied to primates by anatomical features not shared with Microchiroptera. One example is that the brains of megabats show a number of advanced characteristics that link them to primates. Although recent genetic studies strongly support the monophyly of bats, debate continues as to the meaning of available genetic and morphological evidence.
Genetic evidence indicates that megabats originated during the early Eocene and should be placed within the four major lines of microbats.
Consequently, two new suborders based on molecular data have been proposed. The new suborder of Yinpterochiroptera includes the Pteropodidae, or megabat family, as well as the Rhinolophidae, Hipposideridae, Craseonycteridae, Megadermatidae, and Rhinopomatidae families The other new suborder, Yangochiroptera, includes all of the remaining families of bats (all of which use laryngeal echolocation). These two new suborders are strongly supported by statistical tests. Teeling (2005) found 100% bootstrap support in all maximum likelihood analyses for the division of Chiroptera into these two modified suborders. This conclusion is further supported by a 15-base-pair deletion in BRCA1 and a seven-base-pair deletion in PLCB4 present in all Yangochiroptera and absent in all Yinpterochiroptera. Perhaps most convincingly, a phylogenomic study by Tsagkogeorga et al (2013) showed that the two new proposed suborders were supported by analyses of thousands of genes.
The chiropteran phylogeny based on molecular evidence is controversial because microbat paraphyly implies that one of two seemingly unlikely hypotheses occurred. The first suggests that laryngeal echolocation evolved twice in Chiroptera, once in Yangochiroptera and once in the rhinolophoids. The second proposes that laryngeal echolocation had a single origin in Chiroptera, was subsequently lost in the family Pteropodidae (all megabats), and later evolved as a system of tongue-clicking in the genus Rousettus.
Analyses of the sequence of the "vocalization" gene, FoxP2, were inconclusive as to whether laryngeal echolocation was secondarily lost in the pteropodids or independently gained in the echolocating lineages. However, analyses of the "hearing" gene, Prestin seemed to favor the independent gain in echolocating species rather than a secondary loss in the pteropodids.
In addition to Yinpterochiroptera and Yangochiroptera, the names Pteropodiformes and Vespertilioniformes have also been proposed for these suborders. Under this new proposed nomenclature, the suborder Pteropodiformes includes all extant bat families more closely related to the genus Pteropus than the genus Vespertilio, while the suborder Vespertilioniformes includes all extant bat families more closely related to the genus Vespertilio than to the genus Pteropus.
Little fossil evidence is available to help map the evolution of bats, since their small, delicate skeletons do not fossilize very well. However, a Late Cretaceous tooth from South America resembles that of an early microchiropteran bat. Most of the oldest known, definitely identified bat fossils were already very similar to modern microbats. These fossils, Icaronycteris, Archaeonycteris, Palaeochiropteryx and Hassianycteris, are from the early Eocene period, 52.5 million years ago. Archaeopteropus, formerly classified as the earliest known megachiropteran, is now classified as a microchiropteran.
Bats were formerly grouped in the superorder Archonta, along with the treeshrews (Scandentia), colugos (Dermoptera), and the primates, because of the apparent similarities between Megachiroptera and such mammals. Genetic studies have now placed bats in the superorder Laurasiatheria, along with carnivorans, pangolins, odd-toed ungulates, even-toed ungulates, and cetaceans. A recent study by Zhang et al. places Chiroptera as a sister taxon to the clade Perissodactyla (which includes horses and other odd-toed ungulates). However, the first phylogenomic analysis of bats shows that they are not sisters to Perissodactyla, instead they are sisters to a larger group that includes ungulates and carnivores.
Megabats primarily eat fruit or nectar. In New Guinea, they are likely to have evolved for some time in the absence of microbats, which has resulted in some smaller megabats of the genus Nyctimene becoming (partly) insectivorous to fill the vacant microbat ecological niche. Furthermore, some evidence indicates that the fruit bat genus Pteralopex from the Solomon Islands, and its close relative Mirimiri from Fiji, have evolved to fill some niches that were open because there are no nonvolant or nonflying mammals on those islands.
FOSSIL BATS
Fossilized remains of bats are few, as they are terrestrial and light-boned. Only an estimated 12% of the bat fossil record is complete at the genus level. Fossil remains of an Eocene bat, Icaronycteris, were found in 1960. Another Eocene bat, Onychonycteris finneyi, was found in the 52-million-year-old Green River Formation in Wyoming, United States, in 2003. This intermediate fossil has helped to resolve a long-standing disagreement regarding whether flight or echolocation developed first in bats. The shape of the rib cage, faceted infraspious fossa of the scapula, manus morphology, robust clavicle, and keeled sternum all indicated Onychonycteris was capable of powered flight. However, the well-preserved skeleton showed that the small cochlea of the inner ear did not have the morphology necessary to echolocate. O. finneyi lacked an enlarged orbical apophysis on the malleus, and a stylohyal element with an expanded paddle-like cranial tip - both of which are characteristics linked to echolocation in other prehistoric and extant bat species. Because of these absences, and the presence of characteristics necessary for flight, Onychonycteris provides strong support for the “flight first” hypothesis in the evolution of flight and echolocation in bats.
The appearance and flight movement of bats 52.5 million years ago were different from those of bats today. Onychonycteris had claws on all five of its fingers, whereas modern bats have at most two claws appearing on two digits of each hand. It also had longer hind legs and shorter forearms, similar to climbing mammals that hang under branches such as sloths and gibbons. This palm-sized bat had short, broad wings, suggesting it could not fly as fast or as far as later bat species. Instead of flapping its wings continuously while flying, Onychonycteris likely alternated between flaps and glides while in the air. Such physical characteristics suggest that this bat did not fly as much as modern bats do, rather flying from tree to tree and spending most of its waking day climbing or hanging on the branches of trees. The distinctive features noted on the Onychonycteris fossil also support the claim that mammalian flight most likely evolved in arboreal gliders, rather than terrestrial runners. This model of flight development, commonly known as the "trees-down" theory, implies that bats attained powered flight by taking advantage of height and gravity, rather than relying on running speeds fast enough for a ground-level take off.
The mid-Eocene genus Necromantis is one of the earliest examples of bats specialised to hunt vertebrate prey, as well as one of the largest bats of its epoch.
HABITATS
Flight has enabled bats to become one of the most widely distributed groups of mammals. Apart from the Arctic, the Antarctic and a few isolated oceanic islands, bats exist all over the world. Bats are found in almost every habitat available on Earth. Different species select different habitats during different seasons, ranging from seasides to mountains and even deserts, but bat habitats have two basic requirements: roosts, where they spend the day or hibernate, and places for foraging. Most temperate species additionally need a relatively warm hibernation shelter. Bat roosts can be found in hollows, crevices, foliage, and even human-made structures, and include "tents" the bats construct by biting leaves.
The United States is home to an estimated 45 to 48 species of bats. The three most common species are Myotis lucifugus (little brown bat), Eptesicus fuscus (big brown bat), and Tadarida brasiliensis (Mexican free-tailed bat). The little and the big brown bats are common throughout the northern two-thirds of the country, while the Mexican free-tailed bat is the most common species in the southwest, sometimes even appearing in portions of the Southeast.
ANATOMY
WINGS
The finger bones of bats are much more flexible than those of other mammals, owing to their flattened cross-section and to low levels of minerals, such as calcium, near their tips. In 2006, Sears et al. published a study that traces the elongation of manual bat digits, a key feature required for wing development, to the upregulation of bone morphogenetic proteins (Bmps). During embryonic development, the gene controlling Bmp signaling, Bmp2, is subjected to increased expression in bat forelimbs - resulting in the extension of the offspring's manual digits. This crucial genetic alteration helps create the specialized limbs required for volant locomotion. Sears et al. (2006) also studied the relative proportion of bat forelimb digits from several extant species and compared these with a fossil of Lcaronycteris index, an early extinct species from approximately 50 million years ago. The study found no significant differences in relative digit proportion, suggesting that bat wing morphology has been conserved for over 50 million years.The wings of bats are much thinner and consist of more bones than the wings of birds, allowing bats to maneuver more accurately than the latter, and fly with more lift and less drag. By folding the wings in toward their bodies on the upstroke, they save 35 percent energy during flight. The membranes are also delicate, ripping easily; however, the tissue of the bat's membrane is able to regrow, such that small tears can heal quickly. The surface of their wings is equipped with touch-sensitive receptors on small bumps called Merkel cells, also found on human fingertips. These sensitive areas are different in bats, as each bump has a tiny hair in the center, making it even more sensitive and allowing the bat to detect and collect information about the air flowing over its wings, and to fly more efficiently by changing the shape of its wings in response. An additional kind of receptor cell is found in the wing membrane of species that use their wings to catch prey. This receptor cell is sensitive to the stretching of the membrane. The cells are concentrated in areas of the membrane where insects hit the wings when the bats capture them.
OTHER
The teeth of microbats resemble insectivorans. They are very sharp to bite through the hardened armor of insects or the skin of fruit.
Mammals have one-way valves in their veins to prevent the blood from flowing backwards, but bats also have one-way valves in their arteries.
The tube-lipped nectar bat (Anoura fistulata) has the longest tongue of any mammal relative to its body size. This is beneficial to them in terms of pollination and feeding. Their long, narrow tongues can reach deep into the long cup shape of some flowers. When the tongue retracts, it coils up inside its rib cage.
Bats possess highly adapted lung systems to cope with the pressures of powered-flight. Flight is an energetically taxing aerobic activity and requires large amounts of oxygen to be sustained. In bats, the relative alveolar surface area and pulmonary capillary blood volume are significantly larger than most other small quadrupedal mammals.
ECHOLOCATION
Bat echolocation is a perceptual system where ultrasonic sounds are emitted specifically to produce echoes. By comparing the outgoing pulse with the returning echoes, the brain and auditory nervous system can produce detailed images of the bat's surroundings. This allows bats to detect, localize, and even classify their prey in complete darkness. At 130 decibels in intensity, bat calls are some of the most intense, airborne animal sounds.
To clearly distinguish returning information, bats must be able to separate their calls from the echoes that they receive. Microbats use two distinct approaches.
Low duty cycle echolocation: Bats can separate their calls and returning echoes by time. Bats that use this approach time their short calls to finish before echoes return. This is important because these bats contract their middle ear muscles when emitting a call, so they can avoid deafening themselves. The time interval between the call and echo allows them to relax these muscles, so they can clearly hear the returning echo. The delay of the returning echoes provides the bat with the ability to estimate the range to their prey.
High duty cycle echolocation: Bats emit a continuous call and separate pulse and echo in frequency. The ears of these bats are sharply tuned to a specific frequency range. They emit calls outside of this range to avoid self-deafening. They then receive echoes back at the finely tuned frequency range by taking advantage of the Doppler shift of their motion in flight. The Doppler shift of the returning echoes yields information relating to the motion and location of the bat's prey. These bats must deal with changes in the Doppler shift due to changes in their flight speed. They have adapted to change their pulse emission frequency in relation to their flight speed so echoes still return in the optimal hearing range.
The new Yinpterochiroptera and Yangochiroptera classification of bats, supported by molecular evidence, suggests two possibilities for the evolution of echolocation. It may have been gained once in a common ancestor of all bats and was then subsequently lost in the Old World fruit bats, only to be regained in the horseshoe bats, or echolocation evolved independently in both the Yinpterochiroptera and Yangochiroptera lineages.
Two groups of moths exploit a bat sense to echolocate: tiger moths produce ultrasonic signals to warn the bats that they (the moths) are chemically protected or aposematic, other moth species produce signals to jam bat echolocation. Many moth species have a hearing organ called a tympanum, which responds to an incoming bat signal by causing the moth's flight muscles to twitch erratically, sending the moth into random evasive maneuvers.
In addition to echolocating prey, bat ears are sensitive to the fluttering of moth wings, the sounds produced by tymbalate insects, and the movement of ground-dwelling prey, such as centipedes, earwigs, etc. The complex geometry of ridges on the inner surface of bat ears helps to sharply focus not only echolocation signals, but also to passively listen for any other sound produced by the prey. These ridges can be regarded as the acoustic equivalent of a Fresnel lens, and may be seen in a large variety of unrelated animals, such as the aye-aye, lesser galago, bat-eared fox, mouse lemur, and others.
By repeated scanning, bats can mentally construct an accurate image of the environment in which they are moving and of their prey item.
OTHER SENSES
Although the eyes of most microbat species are small and poorly developed, leading to poor visual acuity, no species is blind. Microbats use vision to navigate, especially for long distances when beyond the range of echolocation, and species that are gleaners - that is, ones that attempt to swoop down from above to ambush tasty insects like crickets on the ground or moths up a tree - often have eyesight about as good as a rat's. Some species have been shown to be able to detect ultraviolet light, and most cave dwelling species have developed the ability to utilize very dim light. They also have high-quality senses of smell and hearing. Bats hunt at night, reducing competition with birds, minimizing contact with certain predators, and travel large distances (up to 800 km) in their search for food. Megabat species often have excellent eyesight as good as, if not better than, human vision; they need this for the warm climates they live in and the very social world they occupy, where relations and friends need to be distinguished from other bats in the colony. This eyesight is, unlike its microbat relations, adapted to both night and daylight vision and enables the bat to have some colour vision whereas the microbat sees in blurred shades of grey.
BEHAVIOUR
Most microbats are nocturnal and are active at twilight. A large portion of bats migrate hundreds of kilometres to winter hibernation dens, while some pass into torpor in cold weather, rousing and feeding when warm weather allows for insects to be active. Others retreat to caves for winter and hibernate for six months. Bats rarely fly in rain, as the rain interferes with their echolocation, and they are unable to locate their food.
The social structure of bats varies, with some leading solitary lives and others living in caves colonized by more than a million bats. The fission-fusion social structure is seen among several species of bats. The term "fusion" refers to a large numbers of bats that congregate in one roosting area, and "fission" refers to breaking up and the mixing of subgroups, with individual bats switching roosts with others and often ending up in different trees and with different roostmates.
Studies also show that bats make all kinds of sounds to communicate with others. Scientists in the field have listened to bats and have been able to associate certain sounds with certain behaviours that bats make after the sounds are made.
Insectivores make up 70% of bat species and locate their prey by means of echolocation. Of the remainder, most feed on fruits. Only three species sustain themselves with blood.
Some species even prey on vertebrates. The leaf-nosed bats (Phyllostomidae) of Central America and South America, and the two bulldog bat (Noctilionidae) species feed on fish. At least two species of bat are known to feed on other bats: the spectral bat, also known as the American false vampire bat, and the ghost bat of Australia. One species, the greater noctule bat, catches and eats small birds in the air.
Predators of bats include bat hawks, bat falcons and even spiders.
REPRODUCTION
Most bats have a breeding season, which is in the spring for species living in a temperate climate. Bats may have one to three litters in a season, depending on the species and on environmental conditions, such as the availability of food and roost sites. Females generally have one offspring at a time, which could be a result of the mother's need to fly to feed while pregnant. Female bats nurse their young until they are nearly adult size, because a young bat cannot forage on its own until its wings are fully developed.
Female bats use a variety of strategies to control the timing of pregnancy and the birth of young, to make delivery coincide with maximum food ability and other ecological factors. Females of some species have delayed fertilization, in which sperm is stored in the reproductive tract for several months after mating. In many such cases, mating occurs in the fall, and fertilization does not occur until the following spring. Other species exhibit delayed implantation, in which the egg is fertilized after mating, but remains free in the reproductive tract until external conditions become favorable for giving birth and caring for the offspring.
In yet another strategy, fertilization and implantation both occur, but development of the fetus is delayed until favorable conditions prevail, during the delayed development the mother still gives the fertilized egg nutrients, and oxygenated blood to keep it alive. However, this process can go for a long period of time, because of the advanced gas exchange system. All of these adaptations result in the pup being born during a time of high local production of fruit or insects.
At birth, the wings are too small to be used for flight. Young microbats become independent at the age of six to eight weeks, while megabats do not until they are four months old.
LIFE EXPECTANCY
A single bat can live over 20 years, but bat population growth is limited by the slow birth rate.
HUNTING, FEEDING AND DRINKING
Newborn bats rely on the milk from their mothers. When they are a few weeks old, bats are expected to fly and hunt on their own. It is up to them to find and catch their prey, along with satisfying their thirst.
HUNTING
Most bats are nocturnal creatures. Their daylight hours are spent grooming and sleeping; they hunt during the night. The means by which bats navigate while finding and catching their prey in the dark was unknown until the 1790s, when Lazzaro Spallanzani conducted a series of experiments on a group of blind bats. These bats were placed in a room in total darkness, with silk threads strung across the room. Even then, the bats were able to navigate their way through the room. Spallanzani concluded the bats were not using their eyes to fly through complete darkness, but something else.
Spallanzani decided the bats were able to catch and find their prey through the use of their ears. To prove this theory, Spallanzani plugged the ears of the bats in his experiment. To his pleasure, he found that the bats with plugged ears were not able to fly with the same amount of skill and precision as they were able to without their ears plugged. Unfortunately for Spallanzani, the twin concepts of sound waves and acoustics would not be understood for another century and he could not explain why specifically the bats were crashing into walls and the threads that he'd strung up around the room, and because of the methodology Spallanzani used, many of his test subjects died.
It was thus well known through the nineteenth century that the chiropteran ability to navigate had something to do with hearing, but how they accomplish this was not proven conclusively until the 1930s, by Donald R. Griffin, a biology student at Harvard University. Using a locally native species, the little brown bat, he discovered that bats use echolocation to locate and catch their prey. When bats fly, they produce a constant stream of high-pitched sounds. When the sound waves produced by these sounds hit an insect or other animal, the echoes bounce back to the bat, and guide them to the source.
FEEDING AND DIET
The majority of food consumed by bats includes insects, fruits and flower nectar, vertebrates and blood. Almost three-fourths of the world's bats are insect eaters. Bats consume both aerial and ground-dwelling insects. Each bat is typically able to consume one-third of its body weight in insects each night, and several hundred insects in a few hours. This means that a group of a thousand bats could eat four tons of insects each year. If bats were to become extinct, it has been calculated that the insect population would reach an alarmingly high number.
VITAMIN C
In a test of 34 bat species from six major families of bats, including major insect- and fruit-eating bat families, all were found to have lost the ability to synthesize vitamin C, and this loss may derive from a common bat ancestor, as a single mutation. However, recent results show that there are at least two species of bat, the frugivorous bat (Rousettus leschenaultii) and insectivorous bat (Hipposideros armiger), that have retained their ability to produce vitamin C. In fact, the whole Chiroptera are in the process of losing the ability to synthesize Vc which most of them have already lost.
AERIAL INSECTIVORES
Watching a bat catch and eat an insect is difficult. The action is so fast that all one sees is a bat rapidly change directions, and continue on its way. Scientist Frederick A. Webster discovered how bats catch their prey. In 1960, Webster developed a high-speed camera that was able to take one thousand pictures per second. These photos revealed the fast and precise way in which bats catch insects. Occasionally, a bat will catch an insect in mid-air with its mouth, and eat it in the air. However, more often than not, a bat will use its tail membrane or wings to scoop up the insect and trap it in a sort of "bug net". Then, the bat will take the insect back to its roost. There, the bat will proceed to eat said insect, often using its tail membrane as a kind of napkin, to prevent its meal from falling to the ground. One common insect prey is Helicoverpa zea, a moth that causes major agricultural damage.
FORAGE GLEANERS
These bats typically fly down and grasp their prey off the ground with their teeth, and take it to a nearby perch to eat it. Generally, these bats do not use echolocation to locate their prey. Instead, they rely on the sounds produced by the insects. Some make unique sounds, and almost all make some noise while moving through the environment.
FRUITS AND FLOWER NECTAR
Fruit eating, or frugivory, is a specific habit found in two families of bats. Megachiropterans and microchiropterans both include species of bat that feed on fruits. These bats feed on the juices of sweet fruits, and fulfill the needs of some seeds to be dispersed. The fruits preferred by most fruit-eating bats are fleshy and sweet, but not particularly strong smelling or colorful. To get the juice of these fruits, bats pull the fruit off the trees with their teeth, and fly back to their roosts with the fruit in their mouths. There, the bats will consume the fruit in a specific way. To do this, the bats crush open the fruit and eat the parts that satisfy their hunger. The remainder of the fruit, the seeds and pulp, are spat onto the ground. These seeds take root and begin to grow into new fruit trees. Over 150 types of plants depend on bats in order to reproduce.Some bats prefer the nectar of flowers to insects or other animals. These bats have evolved specifically for this purpose. For example, these bats possess long muzzles and long, extensible tongues covered in fine bristles that aid them in feeding on particular flowers and plants.[68] When they sip the nectar from these flowers, pollen gets stuck to their fur, and is dusted off when the bats take flight, thus pollinating the plants below them. The rainforest is said to be the most benefitted of all the biomes where bats live, because of the large variety of appealing plants. Because of their specific eating habits, nectar-feeding bats are more prone to extinction than any other type of bat. However, bats benefit from eating fruits and nectar just as much as from eating insects.
VERTEBRATES
A small group of carnivorous bats feed on other vertebrates and are considered the top carnivores of the bat world. These bats typically eat a variety of animals, but normally consume frogs, lizards, birds, and sometimes other bats. For example, one vertebrate predator, Trachops cirrhosus, is particularly skilled at catching frogs. These bats locate large groups of frogs by distinguishing their mating calls from other sounds around them. They follow the sounds to the source and pluck them from the surface of the water with their sharp canine teeth. Another example is the greater noctule bat, which is believed to catch birds on the wing.
Also, several species of bat feed on fish. These types of bats are found on almost all continents. They use echolocation to detect tiny ripples in the water's surface to locate fish. From there, the bats swoop down low, inches from the water, and use specially enlarged claws on their hind feet to grab the fish out of the water. The bats then take the fish to a feeding roost and consume the animal.
BLOOD
A few species of bats exclusively consume blood as their diet. This type of diet is referred to as hematophagy, and three species of bats exhibit this behavior. These species are the common, the white-winged, and the hairy-legged vampire bats. The common vampire bat typically consumes the blood of mammals, while the hairy-legged and white-winged vampires feed on the blood of birds. These species live only in Mexico, Central, and South America, with a presence also on the Island of Trinidad.
DEFECATION
Bat dung, or guano, is so rich in nutrients that it is mined from caves, bagged, and used by farmers to fertilize their crops. During the U.S. Civil War, guano was used to make gunpowder.
To survive hibernation months, some species build up large reserves of body fat, both as fuel and as insulation.
DRINKING
In 1960, Frederic A. Webster discovered bats' method of drinking water using a high-speed camera and flashgun that could take 1,000 photos per second. Webster's camera captured a bat skimming the surface of a body of water, and lowering its jaw to get just one drop of water. It then skimmed again to get a second drop of water, and so on, until it has had its fill. A bat's precision and control during flight is very fine, and it almost never misses. Other bats, such as the flying fox or fruit bat, gently skim the water's surface, then land nearby to lick water from chest fur.
WIKIPEDIA
I am capable of posting something other than Norway...
This is the Philadelphia instantiation of The Thinker. On a related note, the art scene in Philadelphia is fantastic. If you've never been, there is much to see, including the wonderful Art Museum(s).
More Norway coming up.... ;)
Thanks for looking!
_________________________________________________
Comments and constructive criticism always appreciated.
Stream on Black....Follow on Facebook....My Profile (to get to webpage)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The CAC Sabre, sometimes known as the Avon Sabre or CA-27, was an Australian variant of the North American Aviation F-86F Sabre fighter aircraft. In 1951, Commonwealth Aircraft Corporation obtained a license agreement to build the F-86F Sabre. In a major departure from the North American blueprint, it was decided that the CA-27 would be powered by a license-built version of the Rolls-Royce Avon R.A.7, rather than the General Electric J47. In theory, the Avon was capable of more than double the maximum thrust and double the thrust-to-weight ratio of the US engine. This necessitated a re-design of the fuselage, as the Avon was shorter, wider and lighter than the J47.
To accommodate the Avon, over 60 percent of the fuselage was altered and there was a 25 percent increase in the size of the air intake. Another major revision was in replacing the F-86F's six machine guns with two 30mm ADEN cannon, while other changes were also made to the cockpit and to provide an increased fuel capacity.
The prototype aircraft first flew on 3 August 1953. The production aircrafts' first deliveries to the Royal Australian Air Force began in 1954. The first batch of aircraft were powered by the Avon 20 engine and were designated the Sabre Mk 30. Between 1957 and 1958 this batch had the wing slats removed and were re-designated Sabre Mk 31. These Sabres were supplemented by 20 new-built aircraft. The last batch of aircraft were designated Sabre Mk 32 and used the Avon 26 engine, of which 69 were built up to 1961.
Beyond these land-based versions, an indigenous version for carrier operations had been developed and built in small numbers, too, the Sea Sabre Mk 40 and 41. The roots of this aircraft, which was rather a prestigious idea than a sensible project, could be traced back to the immediate post WWII era. A review by the Australian Government's Defence Committee recommended that the post-war forces of the RAN be structured around a Task Force incorporating multiple aircraft carriers. Initial plans were for three carriers, with two active and a third in reserve, although funding cuts led to the purchase of only two carriers in June 1947: Majestic and sister ship HMS Terrible, for the combined cost of AU£2.75 million, plus stores, fuel, and ammunition. As Terrible was the closer of the two ships to completion, she was finished without modification, and was commissioned into the RAN on 16 December 1948 as HMAS Sydney. Work progressed on Majestic at a slower rate, as she was upgraded with the latest technology and equipment. To cover Majestic's absence, the Colossus-class carrier HMS Vengeance was loaned to the RAN from 13 November 1952 until 12 August 1955.
Labour difficulties, late delivery of equipment, additional requirements for Australian operations, and the prioritization of merchant ships over naval construction delayed the completion of Majestic. Incorporation of new systems and enhancements caused the cost of the RAN carrier acquisition program to increase to AU£8.3 million. Construction and fitting out did not finish until October 1955. As the carrier neared completion, a commissioning crew was formed in Australia and first used to return Vengeance to the United Kingdom.
The completed carrier was commissioned into the RAN as HMAS Majestic on 26 October 1955, but only two days later, the ship was renamed Melbourne and recommissioned.
In the meantime, the rather political decision had been made to equip Melbourne with an indigenous jet-powered aircraft, replacing the piston-driven Hawker Fury that had been successfully operated from HMAS Sydney and HMAS Vengeance, so that the "new jet age" was even more recognizable. The choice fell on the CAC Sabre, certainly inspired by North American's successful contemporary development of the navalized FJ-2 Fury from the land-based F-86 Sabre. The CAC 27 was already a proven design, and with its more powerful Avon engine it even offered a better suitability for carrier operations than the FJ-2 with its rather weak J47 engine.
Work on this project, which was initially simply designated Sabre Mk 40, started in 1954, just when the first CAC 27's were delivered to operative RAAF units. While the navalized Avon Sabre differed outwardly only little from its land-based brethren, many details were changed and locally developed. Therefore, there was also, beyond the general outlines, little in common with the North American FJ-2 an -3 Fury.
Externally, a completely new wing with a folding mechanism was fitted. It was based on the F-86's so-called "6-3" wing, with a leading edge that was extended 6 inches at the root and 3 inches at the tip. This modification enhanced maneuverability at the expense of a small increase in landing speed due to deletion of the leading edge slats, a detail that was later introduced on the Sabre Mk 31, too. As a side benefit, the new wing leading edges without the slat mechanisms held extra fuel. However, the Mk 40's wing was different as camber was applied to the underside of the leading edge to improve low-speed handling for carrier operations. The wings were provided with four stations outboard of the landing gear wells for up to 1000 lb external loads on the inboard stations and 500 lb on the outboard stations.
Slightly larger stabilizers were fitted and the landing gear was strengthened, including a longer front wheel strut. The latter necessitated an enlarged front wheel well, so that the front leg’s attachment point had to be moved forward. A ventral launch cable hook was added under the wing roots and an external massive arrester hook under the rear fuselage.
Internally, systems were protected against salt and humidity and a Rolls-Royce Avon 211 turbojet was fitted, a downrated variant of the already navalized Avon 208 from the British DH Sea Vixen, but adapted to the different CAC 27 airframe and delivering 8.000 lbf (35.5 kN) thrust – slightly more than the engines of the land-based CAC Sabres, but also without an afterburner.
A single Mk 40 prototype was built from a new CAC 27 airframe taken directly from the production line in early 1955 and made its maiden flight on August 20th of the same year. In order to reflect its naval nature and its ancestry, this new CAC 27 variant was officially christened “Sea Sabre”.
Even though the modified machine handled well, and the new, cambered wing proved to be effective, many minor technical flaws were discovered and delayed the aircraft's development until 1957. These included the wing folding mechanism and the respective fuel plumbing connections, the landing gear, which had to be beefed up even more for hard carrier landings and the airframe’s structural strength for catapult launches, esp. around the ventral launch hook.
In the meantime, work on the land-based CAC 27 progressed in parallel, too, and innovations that led to the Mk 31 and 32 were also incorporated into the naval Mk 40, leading to the Sea Sabre Mk 41, which became the effective production aircraft. These updates included, among others, a detachable (but fixed) refueling probe under the starboard wing, two more pylons for light loads located under the wing roots and the capability to carry and deploy IR-guided AIM-9 Sidewinder air-to-air missiles, what significantly increased the Mk 41's efficiency as day fighter. With all these constant changes it took until April 1958 that the Sabre Mk 41, after a second prototype had been directly built to the new standard, was finally approved and cleared for production. Upon delivery, the RAN Sea Sabres carried a standard NATO paint scheme with Extra Dark Sea Grey upper surfaces and Sky undersides.
In the meantime, the political enthusiasm concerning the Australian carrier fleet had waned, so that only twenty-two aircraft were ordered. The reason behind this decision was that Australia’s carrier fleet and its capacity had become severely reduced: Following the first decommissioning of HMAS Sydney in 1958, Melbourne became the only aircraft carrier in Australian service, and she was unavailable to provide air cover for the RAN for up to four months in every year; this time was required for refits, refueling, personnel leave, and non-carrier duties, such as the transportation of troops or aircraft. Although one of the largest ships to serve in the RAN, Melbourne was one of the smallest carriers to operate in the post-World War II period, so that its contribution to military actions was rather limited. To make matters worse, a decision was made in 1959 to restrict Melbourne's role to helicopter operations only, rendering any carrier-based aircraft in Australian service obsolete. However, this decision was reversed shortly before its planned 1963 implementation, but Australia’s fleet of carrier-borne fixed-wing aircraft would not grow to proportions envisioned 10 years ago.
Nevertheless, on 10 November 1964, an AU£212 million increase in defense spending included the purchase of new aircraft for Melbourne. The RAN planned to acquire 14 Grumman S-2E Tracker anti-submarine aircraft and to modernize Melbourne to operate these. The acquisition of 18 new fighter-bombers was suggested (either Sea Sabre Mk 41s or the American Douglas A-4 Skyhawk), too, but these were dropped from the initial plan. A separate proposal to order 10 A-4G Skyhawks, a variant of the Skyhawk designed specifically for the RAN and optimized for air defense, was approved in 1965, but the new aircraft did not fly from Melbourne until the conclusion of her refit in 1969. This move, however, precluded the production of any new and further Sea Sabre.
At that time, the RAN Sea Sabres received a new livery in US Navy style, with upper surfaces in Light Gull Gray with white undersides. The CAC Sea Sabres remained the main day fighter and attack aircraft for the RAN, after the vintage Sea Furies had been retired in 1962. The other contemporary RAN fighter type in service, the Sea Venom FAW.53 all-weather fighter that had replaced the Furies, already showed its obsolescence.
In 1969, the RAN purchased another ten A-4G Skyhawks, primarily in order to replace the Sea Venoms on the carriers, instead of the proposed seventh and eighth Oberon-class submarines. These were operated together with the Sea Sabres in mixed units on board of Melbourne and from land bases, e.g. from NAS Nowra in New South Wales, where a number of Sea Sabres were also allocated to 724 Squadron for operational training.
Around 1970, Melbourne operated a standard air group of four jet aircraft, six Trackers, and ten Wessex helicopters until 1972, when the Wessexes were replaced with ten Westland Sea King anti-submarine warfare helicopters and the number of jet fighters doubled. Even though the A-4G’s more and more took over the operational duties on board of Melbourne, the Sea Sabres were still frequently deployed on the carrier, too, until the early Eighties, when both the Skyhawks and the Sea Sabres received once more a new camouflage, this time a wraparound scheme in two shades of grey, reflecting their primary airspace defense mission.
The CAC 27 Mk 41s’ last carrier operations took place in 1981 in the course of Melbourne’s involvements in two major exercises, Sea Hawk and Kangaroo 81, the ship’s final missions at sea. After Melbourne was decommissioned in 1984, the Fleet Air Arm ceased fixed-wing combat aircraft operation. This was the operational end of the Sabre Mk 41, which had reached the end of their airframe lifetime, and the Sea Sabre fleet had, during its career, severely suffered from accidents and losses: upon retirement, only eight of the original twenty-two aircraft still existed in flightworthy condition, so that the aircraft were all scrapped. The younger RAN A-4Gs were eventually sold to New Zealand, where they were kept in service until 2002.
General characteristics:
Crew: 1
Length: 37 ft 6 in (11.43 m)
Wingspan: 37 ft 1 in (11.3 m)
Height: 14 ft 5 in (4.39 m)
Wing area: 302.3 sq ft (28.1 m²)
Empty weight: 12,000 lb (5,443 kg)
Loaded weight: 16,000 lb (7,256 kg)
Max. takeoff weight: 21,210 lb (9,621 kg)
Powerplant:
1× Rolls-Royce Avon 208A turbojet engine with 8,200 lbf (36.44 kN)
Performance:
Maximum speed: 700 mph (1,100 km/h) (605 knots)
Range: 1,153 mi, (1,000 NM, 1,850 km)
Service ceiling: 52,000 ft (15,850 m)
Rate of climb: 12,000 ft/min at sea level (61 m/s)
Armament:
2× 30 mm ADEN cannons with 150 rounds per gun
5,300 lb (2,400 kg) of payload on six external hardpoints;
Bombs were usually mounted on outer two pylons as the mid pair were wet-plumbed pylons for
2× 200 gallons drop tanks, while the inner pair was usually occupied by a pair of AIM-9 Sidewinder
AAMs
A wide variety of bombs could be carried with maximum standard loadout being 2x 1,000 lb bombs
or 2x Matra pods with unguided SURA missiles plus 2 drop tanks for ground attacks, or 2x AIM-9 plus
two drop tanks as day fighter
The kit and its assembly:
This project was initially inspired by a set of decals from an ESCI A-4G which I had bought in a lot – I wondered if I could use it for a submission to the “In the navy” group build at whatifmodelers.com in early 2020. I considered an FJ-3M in Australian colors on this basis and had stashed away a Sword kit of that aircraft for this purpose. However, I had already built an FJ variant for the GB (a kitbashed mix of an F-86D and an FJ-4B in USMC colors), and was reluctant to add another Fury.
This spontaneously changed after (thanks to Corona virus quarantine…) I cleaned up one of my kit hoards and found a conversion set for a 1:72 CAC 27 from JAYS Model Kits which I had bought eons ago without a concrete plan. That was the eventual trigger to spin the RAN Fury idea further – why not a navalized version of the Avon Sabre for HMAS Melbourne?
The result is either another kitbash or a highly modified FJ-3M from Sword. The JAYS Model Kits set comes with a THICK sprue that carries two fuselage halves and an air intake, and it also offers a vacu canopy as a thin fallback option because the set is actually intended to be used together with a Hobby Craft F-86F.
While the parts, molded in a somewhat waxy and brittle styrene, look crude on the massive sprue, the fuselage halves come with very fine recessed engravings. And once you have cleaned the parts (NOTHING for people faint at heart, a mini drill with a saw blade is highly recommended), their fit is surprisingly good. The air intake was so exact that no putty was needed to blend it with the rest of the fuselage.
The rest came from the Sword kit and integrating the parts into the CAC 27 fuselage went more smoothly than expected. For instance, the FJ-3M comes with a nice cockpit tub that also holds a full air intake duct. Thanks to the slightly wider fuselage of the CAC 27, it could be mounted into the new fuselage halves without problems and the intake duct almost perfectly matches the intake frame from the conversion set. The tailpipe could be easily integrated without any mods, too. The fins had to be glued directly to the fuselage – but this is the way how the Sword kit is actually constructed! Even the FJ-3M’s wings match the different fuselage perfectly. The only modifications I had to make is a slight enlargement of the ventral wing opening at the front and at the read in order to take the deeper wing element from the Sword kit, but that was an easy task. Once in place, the parts blend almost perfectly into each other, just minor PSR was necessary to hide the seams!
Other mods include an extended front wheel well for the longer leg from the FJ-3M and a scratched arrester hook installation, made from wire, which is on purpose different from the Y-shaped hook of the Furies.
For the canopy I relied on the vacu piece that came with the JAYS set. Fitting it was not easy, though, it took some PSR to blend the windscreen into the rest of the fuselage. Not perfect, but O.K. for such a solution from a conversion set.
The underwing pylons were taken from the Sword kit, including the early Sidewinders. I just replaced the drop tanks – the OOB tanks are very wide, and even though they might be authentic for the FJ-3, I was skeptical if they fit at all under the wings with the landing gear extended? In order to avoid trouble and for a more modern look, I replaced them outright with more slender tanks, which were to mimic A-4 tanks (USN FJ-4s frequently carried Skyhawk tanks). They actually come from a Revell F-16 kit, with modified fins. The refueling probe comes from the Sword kit.
A last word about the Sword kit: much light, but also much shadow. While I appreciate the fine surface engravings, the recognizably cambered wings, a detailed cockpit with a two-piece resin seat and a pretty landing gear as well as the long air intake, I wonder why the creators totally failed to provide ANY detail of the arrester hook (there is literally nothing, as if this was a land-based Sabre variant!?) or went for doubtful solutions like a front landing gear that consists of five(!) single, tiny parts? Sadism? The resin seat was also broken (despite being packed in a seperate bag), and it did not fit into the cockpit tub at all. Meh!
Painting and markings:
From the start I planned to give the model the late RAN A-4Gs’ unique air superiority paint scheme, which was AFAIK introduced in the late Seventies: a two-tone wraparound scheme consisting of “Light Admiralty Grey” (BS381C 697) and “Aircraft Grey” (BS 381C 693). Quite simple, but finding suitable paints was not an easy task, and I based my choice on pictures of the real aircraft (esp. from "buzz" number 880 at the Fleet Air Arm Museum, you find pics of it with very good light condition) rather than rely on (pretty doubtful if not contradictive) recommendations in various painting instructions from models or decal sets.
I wanted to keep things simple and settled upon Dark Gull Grey (FS 36231) and Light Blue (FS 35414), both enamel colors from Modelmaster, since both are rather dull interpretations of these tones. Esp. the Light Blue comes quite close to Light Admiralty Grey, even though it should be lighter for more contrast to the darker grey tone. But it has that subtle greenish touch of the original BS tone, and I did not want to mix the colors.
The pattern was adapted from the late A-4Gs’ scheme, and the colors were dulled down even more through a light black ink wash. Some post-shading with lighter tones emphasized the contrast between the two colors again. And while it is not an exact representation of the unique RAN air superiority scheme, I think that the overall impression is there.
The cockpit interior was painted in very dark grey, while the landing gear, its wells and the inside of the air intake became white. A red rim was painted around the front opening, and the landing gear covers received a red outline, too. The white drop tanks are a detail I took from real world RAN A-4Gs - in the early days of the air superiority scheme, the tanks were frequently still finished in the old USN style livery, hence the white body but fins and tail section already in the updated colors.
The decals became a fight, though. As mentioned above, the came from an ESCI kit – and, as expected, the were brittle. All decals with a clear carrier film disintegrated while soaking in water, only those with a fully printed carrier film were more or less usable. One roundel broke and had to be repaired, and the checkered fin flash was a very delicate affair that broke several times, even though I tried to save and repair it with paint. But you can unfortunately see the damage.
Most stencils and some replacements (e. g. the “Navy” tag) come from the Sword FJ-3. While these decals are crisply printed, their carrier film is utterly thin, so thin that applying esp. the larger decals turned out to be hazardous and complicated. Another point that did not really convince me about the Sword kit.
Finally, the kit was sealed with matt acrylic varnish (Italeri) and some soot stains were added around the exhaust and the gun ports with graphite.
In the end, this build looks, despite the troubles and the rather exotic ingredients like a relatively simple Sabre with Australian markings, just with a different Navy livery. You neither immediately recognize the FJ-3 behind it, nor the Avon Sabre’s bigger fuselage, unless you take a close and probably educated look. Very subtle, though.
The RAN air superiority scheme from the late Skyhawks suits the Sabre/Fury-thing well – I like the fact that it is a modern fighter scheme, but, thanks to the tones and the colorful other markings, not as dull and boring like many others, e. g. the contemporary USN "Ghost" scheme. Made me wonder about an early RAAF F-18 in this livery - should look very pretty, too?
Moscow. Kubinka tank museum.
The Iosif Stalin tank (or IS tank, named after the Soviet leader Joseph Stalin), was a heavy tank developed by the Soviet Union during World War II. The tanks in the series are also sometimes called JS or ИС tanks.
The heavy tank was designed with thick armour to counter the German 88 mm guns, and sported a main gun that was capable of defeating the German Tiger and Panther tanks. It was mainly a breakthrough tank, firing a heavy high-explosive shell that was useful against entrenchments and bunkers. The IS-2 was put into service in April 1944, and was used as a spearhead in the Battle for Berlin by the Red Army in the final stage of the war.
The IS-3 had a superior armour layout, with a hemispherical turret like many later Soviet tanks
In late 1944 the design was upgraded to the IS-3. This tank had improved armour layout, and a hemispherical cast turret (resembling an overturned "soup bowl") which was to be the hallmark of post-war Soviet tanks. While this low, hemispherical turret may have made the IS-3 a smaller target, it also imposed severe penalties inside the tank by significantly diminishing the working headroom, especially for the loader (Soviet tanks in general are characterized by uncomfortably small interior space compared to Western tanks). The low turret also limited the maximum depression of the main gun, since the gun breech had little room inside the turret to pivot on its vertical axis. As a result, the IS-3 was less able to take advantage of hull-down positions, a tactic at which Western tanks were better suited (Perrett 1987:21). The IS-3's pointed prow earned it the nickname Shchuka (Pike) by its crews. It weighed slightly less and stood 30 cm lower.
The IS-3 came too late to see action in World War II. Though some older sources claim that the tank saw action at the end of the war in Europe, there are no official reports to confirm this. It is now generally accepted that the tank saw no action against the Germans, although one regiment may have been deployed against the Japanese in Manchuria.
In 1952, a further development was put into production, the IS-10. Due of the political climate in the wake of Stalin's 1953 death, it was renamed T-10.
In the mid-1950s, the remaining IS-2 tanks (mostly model 1944 variants) were upgraded to keep them battle-worthy. This upgrade produced the IS-2M, which introduced fittings such as external fuel tanks on the rear hull (the basic IS-2 had these only on the hull sides), stowage bins on both sides of the hull, and protective skirting along the top edges of the tracks. IS-3 was also slightly modernized as IS-3M.
[edit] Operational history
The IS-2 tank first saw combat in the spring of 1944. IS-2s were assigned to separate heavy tank regiments, normally of 21 tanks each. These regiments were used to reinforce the most important attack sectors during major offensive operations. Tactically, they were employed as breakthrough tanks. Their role was to support infantry in the assault, using their large guns to destroy bunkers, buildings, dug-in crew-served weapons, and other 'soft' targets. They were also capable of taking on any German AFVs if required. Once a breakthrough was achieved, lighter, more mobile T-34s would take over the exploitation.
Frontal view of an IS-3. The squat, solid-looking front profile and pointed prow are highly distinctive.
The IS-3 first appeared to Western observers at the Allied Victory Parade in Berlin in September 1945. The IS-3 was an impressive development in the eyes of Western military observers, the British in particular, who responded with heavy tank designs of their own.
By the 1950s, the emergence of the main battle tank concept - combining medium tank mobility with the firepower of the heavy tank - had rendered heavy tanks obsolete in Soviet operational doctrine. In the late 1960s, the remaining Soviet heavy tanks were transferred to Red Army reserve service and storage. The IS-2 Model 1944 remained in active service much longer in the armies of Cuba, China and North Korea. A regiment of Chinese IS-2s was available for use in the Korean War, but saw no service there. In response to border disputes between the Soviet Union and China, some Soviet IS-3s were dug in as fixed pillboxes along the Soviet-Chinese border. The IS-3 was used in the 1956 Soviet invasion of Hungary and the Prague Spring in 1968.
During the early 1950s all IS-3s were modernised as IS-3M models. The Egyptian Army acquired about 100 IS-3M tanks in all from the Soviet Union.[5] During the Six Day War, a single regiment of IS-3M tanks was stationed with the 7th Infantry Division at Rafah and the 125th Tank Brigade of the 6th Mechanized Division at Kuntilla was also equipped with about 60 IS-3M tanks.[6] Israeli infantry and paratrooper units had considerable difficulty with the IS-3M when it was encountered due to its thick armour, which shrugged off hits from normal infantry anti-tank weapons such as the bazooka.[6] Even the 90mm AP shell fired by the main gun of the Israeli Defense Force (IDF) M-48A2 Patton tanks could not penetrate the frontal armour of the IS-3s at normal battle ranges.[6] There were a number of engagements between the M48A2 Pattons of the IDF 7th Armoured Brigade and IS-3s supporting Egyptian positions at Rafah in which several M48A2s were knocked out in the fighting.[6] Despite this, the slow rate of fire, poor engine performance (the engine was not well suited to hot-climate operations), and rudimentary fire control of the IS-3s proved to be a significant handicap, and about 73 IS-3s were lost in the 1967 war.[6] Most Egyptian IS-3 tanks were withdrawn from service, though at least one regiment of IS-3 tanks was retained in service as late as the 1973 October war.[6] The IDF itself experimented with a few captured IS-3M tanks, but found them ill-suited to fast moving desert tank warfare; those that were not scrapped were turned into stationary defensive pillbox emplacements in the Jordan River area.[6]
After the Korean War, China attempted to reverse-engineer the IS-2/IS-3 as Type 122 medium tank.[7] The project was cancelled in favour of the Type 59, a copy of the Soviet T-54A.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The McDonnell Douglas (now Boeing) T-45 Goshawk was a highly modified version of the BAe Hawk land-based training jet aircraft. Manufactured by McDonnell Douglas (now Boeing) and British Aerospace (now BAe Systems), the T-45 was used by the United States Navy and the United States Marine Corps (USMC) as an aircraft carrier-capable trainer.
The Goshawk's origins began in the mid-1970s, when the US Navy began looking for a single aircraft replacement for both its T-2 and TA-4 jet trainers. The US Navy started the VTXTS advanced trainer program in 1978. Several companies made submissions, e. g. North American or Northrop/Vought. Due to the size of the potential contract, European companies made submissions, too, including a navalized Alpha Jet from Dassault/Dornier and a fully carrier-capable version of the BAe Hawk Mk.60, mutually proposed by British Aerospace (BAe) and McDonnell Douglas (MDC). The latter eventually won the competition and BAe and MDC were awarded the T-45 contract in 1981.
The Hawk had not been designed for carrier operations and numerous modifications were required to make it suitable for use on carriers. These included improvements to the low-speed handling characteristics and a reduction in the approach speed. It was found that the aircraft was apt to stall at the low approach speed required. Modifications were designed by BAe in England; most notably a simple slat system was devised, operated by an actuator and linkage mechanism to fit into the small space available. Strakes were also added on the fuselage to improve airflow. Other changes were a strengthened airframe, a more robust and wider landing gear with a two-wheel nose landing gear, a catapult tow bar attachment and an arresting hook. The modified aircraft was christened “Goshawk”, flew in 1988 for the first time and became operational in 1991.
Beyond being a naval trainer the T-45 was also adapted for first-line duty with strike capabilities, in the form of the OA-45 for the USMC. The role of this aircraft dated back to the Vietnam War when twenty-three A-4 two-seaters were converted into OA-4Ms for “FastFAC” (Fast Forward Air Controller) missions, in order to control interdiction sorties dedicated to shaping the battlefield for future operations. Basically, the OA-4M was a TA-4F equipped with A-4M electronics. The most visible and characteristic change was the fitting of the A-4M’s dorsal electronics hump, neatly faired into the rear of the two-seat canopy. The nose sensor group of the OA-4M was basically the same as that of the A-4M, but the Angle/Rate Bombing system was not installed as it would not be needed.
When the T-45 was introduced in the early Nineties, the USMCs OA-4Ms had reached the end of their service life and the USMC started looking for a replacement, wanting a comparable, light and fast fixed-wing aircraft. The USMC did not accept the LTV A-7 as an A-4 replacement (even though a two-seater version was available), because it was already dated, too, and not part of the USMC inventory. The USMC's A-4Ms were supposed to be replaced by the VTOL AV-8 by the mid-nineties, but the AV-8, even as a two-seater, was deemed unsuitable for FFAC duties. The new T-45 looked like a good and economical alternative with future potential, since the airframe was brand new and the type's infrastructure was fully established, so that a small number of specialized aircraft could easily be supported without much extra cost.
With fresh experience from the 1st Gulf War in 1990-91 the decision was made to buy 25 extra T-45A airframes and convert them to OA-45A standard. Most important change were modified wings, using structures and systems from the BAe Hawk 100 series. While the T-45 only had two underwing and a single ventral hardpoint, the OA-45A featured a total of seven: four underwing and one ventral hardpoints, plus wingtip stations for defensive air-to-air missiles. Upgraded avionics allowed the deployment of a wide range of external stores, including air-to-ground missiles and rocket launchers, a reconnaissance pod, retarded and free-fall bombs of up to 1,000 pounds (450 kg) caliber, runway cratering, anti-personnel and light armor bombs, cluster bombs, practice bombs as well as external fuel tanks and ECM pods. This was a vital asset, since Desert Storm had proved that FFAC aircraft had to have an offensive capability to handle targets of opportunity on their own, when no air assets to control were available. A total ordnance load of up to 6,800 lb (3,085 kg) was possible, even though the aircraft was not supposed to play an offensive role and rather act from a distance, relying on its small size and agility.
Communication modifications for the FastFAC role included a KY-28 secure voice system, an ARC-159 radio and an ARC-114 VHF radio. Similar to the Skyhawk, a hump behind the cockpit had to be added to make room for the additional electronic equipment and a heat exchanger. Other additions were a continuous-wave Doppler navigation radar under a shallow ventral radome underneath the cockpit, a ground control bombing system, an APN-194 altimeter, an ALR-45 radar warning suite, a retrofitted, fixed midair refueling probe and cockpit armor plating that included Kevlar linings on the floor and the lower side walls as well as externally mounted armor plates for the upper areas.
VMA-131 of Marine Aircraft Group 49 (the Diamondbacks) retired its last four OA-4Ms on 22 June 1994, and the new OA-45A arrived just in time to replace the venerable Skyhawk two-seaters in the FastFAC role. Trainer versions of the Skyhawk remained in Navy service, however, finding a new lease on life with the advent of "adversary training". OA-45A deliveries were finished in 1996 and the 25 aircraft were distributed among the newly established Marine Aviation Logistics Squadron (MALS, formerly Headquarters & Maintenance Squadron/H&MS) 12 & 13. The USMC crews soon nicknamed their new mounts "GosHog", to underlöine ist offensive capabilities and to set themselves apart from the USN's "tame" trainers. Even though thos name was never officially approved it caught on quickly.
After initial experience with the new aircraft and in the wake of technological advances, the USMC decided to upgrade the OA-45As in 2000 to improve its effectiveness and interaction capabilities with ground troops. This primarily resulted in the addition of a forward-looking infrared camera laser in the aircraft’s nose section, which enabled the aircraft to execute all-weather/night reconnaissance and to illuminate targets for laser-guided infantry shells or ordnance launched by the OA-45 itself or by other aircraft. Through this measure the OA-45 became capable of carrying and independently deploying light laser-guided smart weapons like the GBU-12 and -16 “Paveway II” glide bombs or the laser-guided AGM-65E “Maverick” variant. The update was gradually executed during regular overhauls in the course of 2001 and 2002 (no new airframes were built/converted), the modified machines received the new designation OA-45B.
After this update phase, the OA-45Bs were deployed in several global conflicts and saw frequent use in the following years. For instance, MALS 13 used its OA-45Bs operationally for the first time in October 2002 when the squadron was tasked with providing support to six AV-8B Harrier aircraft in combat operations in Afghanistan during Operation Enduring Freedom. This mission lasted until October 2003, four aircraft were allocated and one OA-45B was lost during a landing accident.
On 15 January 2003, MALS 13 embarked 205 Marines and equipment aboard the USS Bonhomme Richard in support of combat operations in Southwest Asia during Operation Southern Watch. Four OA-45Bs successfully supported these troops from land bases, marking targets and flying reconnaissance missions.
Furthermore, six MALS 13 OA-45Bs took actively part in Operation Iraqi Freedom from Al Jaber Air Base, Kuwait, and An Numiniyah Expeditionary Air Field, Iraq, where the aircraft worked closely together with the advancing ground troops of the USMC’s 15th Marine Expeditionary Unit. They successfully illuminated targets for US Navy fighter bombers, which were launched from USS Abraham Lincoln (CVN-72) in the Persian Gulf, and effectively guided these aircraft to their targets. Two OA-45Bs were lost during this conflict, one through enemy MANPADS, the other through friendly AA fire. In late May 2003 the surviving machines and their crews returned to MCAS Yuma.
On 16 March 2007, the 200th T-45 airframe was delivered to the US Navy. From this final batch, six airframes were set aside and modified into OA-45Bs in order to fill the losses over the past years.
Later T-45 production aircraft were built with enhanced avionics systems for a heads-up display (HUD) and glass cockpit standard, while all extant T-45A aircraft were eventually converted to a T-45C configuration under the T-45 Required Avionics Modernization Program (T-45 RAMP), bringing all aircraft to same HUD plus glass cockpit standard. These updates, esp. concerning the cockpit, were introduced to the OA-45Bs, too, and they were re-designated again, now becoming OA-45Cs, to reflect the commonality with the Navy’s Goshawk trainers. Again, these modifications were gradually introduced in the course of the OA-45s’ normal maintenance program.
In 2007, an engine update of the whole T-45 fleet, including the OA-45s, with the Adour F405-RR-402 was considered. This new engine was based on the British Adour Mk 951, designed for the latest versions of the BAe Hawk and powering the BAe Taranis and Dassault nEUROn UCAV technology demonstrators. The Adour Mk 951 offered 6,500 lbf (29 kN) thrust and up to twice the service life of the F405-RR-401. It featured an all-new fan and combustor, revised HP and LP turbines, and introduced Full Authority Digital Engine Control (FADEC). The Mk 951 was certified in 2005, the F405-RR-402 derived from it was certified in 2008, but it did not enter service due to funding issues, so that this upgrade was not carried out.
The final delivery of the 246th T-45 airframe took place in November 2009, and both T-45 and the OA-45 "GosHog" are supposed to remain in service until 2035.
General characteristics:
Crew: 2 (pilot, observer)
Length: 39 ft 4 in (11.99 m)
Wingspan: 30 ft 10 in (9.39 m)
Height: 13 ft 5 in (4.08 m)
Wing area: 190.1 ft² (17.7 m²)
Empty weight: 10,403 lb (4,460 kg)
Max. takeoff weight: 14,081 lb (6,387 kg)
Powerplant:
1× Rolls-Royce Turbomeca F405-RR-401 (Adour) non-afterburning turbofan with 5,527 lbf (26 kN)
Performance:
Maximum speed: Mach 2 (2,204 km/h (1,190 kn; 1,370 mph) at high altitude
Combat radius: 800 km (497 mi, 432 nmi)
Ferry range: 3,200 km (1,983 mi) with drop tanks
Service ceiling: 15,240 m (50,000 ft)
Wing loading: 283 kg/m² (58 lb/ft²)
Thrust/weight: 0.97
Maximum g-load: +9 g
Armament:
No internal gun; seven external hardpoints (three on each wing and one under fuselage)
for a wide range of ordnance of up to 6,800 lb (3,085 kg), including up to six AIM-9 Sidewinder for
self-defense, pods with unguided rockets for target marking or ECM pods, but also offensive weapons
of up to 1.000 lb (454 kg) weight, including iron/cluster bombs and guided AGM-65, GBU-12 and -16.
The kit and its assembly:
This fictional T-45 variant is actually the result of a long idea evolution, and simply rooted in the idea of a dedicated OA-4M replacement for the USMC; in real life, the FFAC role has been transferred to F-18 two-seaters, though, but the T-45 appeared like a sound alternative to me.
There's only one T-45 kit available, a dubious T-45A from Italeri with poor wings and stabilizers. Wolfpack also offers a T-45, but it’s just a re-boxing of the Italeri kit with some PE parts and a price tag twice as big – but it does not mend the original kit’s issues… After reading the A-4 Skyhawk book from the French "Planes & Pilots" series, I was reminded of the USMC's special OA-4M FAC two-seaters (and the fact that it is available in kit form from Italeri and Hasegawa), and, cross-checking the real-world timeline of the T-45, I found that it could have been a suitable successor. The ide of the USMC’s OA-45 was born! :D
Building-wise the Italeri T-45 remained close to OOB, even though I transplanted several parts from an Italeri BAe Hawk Mk. 100 to create a different look. I modified the nose with the Mk. 100’s laser fairing and added some radar warning sensor bumps. This transplantation was not as easy as it might seem because the T-45’s nose is, due to the different and more massive front landing gear quite different from the Hawk’s. Took some major PSR to integrate the laser nose.
An ALR-45 “hot dog” fairing from a late A-4M (Italeri kit) was added to the fin, together with a small styrene wedge extending the fin’s leading edge. This small detail markedly changes the aircraft’s look. I furthermore added a refueling probe, scratched from coated wire and some white glue, as well as a low “camel back” fairing behind the cockpit, created from a streamlined bomb half with air outlets for an integrated heat exchanger. Blade antennae were relocated and added. A shallow bump for the Doppler radar was added under the fuselage behind the landing gear well – left over from an Airfix A-4B (from an Argentinian A-4P, to be correct, actually a dorsal fairing).
On the wings, a tailored pair of pylons and wing tip launch rails from the Italeri BAe Hawk Mk. 100 kit were added, too, as well as the donor kit’s pair of Sidewinders. The rest of the ordnance consists of drop tanks and LAU-19 pods for target marking missiles. The tanks were taken from the Hawk Mk. 100 kit, too, the rocket launchers came from an Italeri NATO aircraft weapons set. The centerline position carries an ALQ-131 ECM pod from a Hasegawa US aircraft weapons set on a pylon from the scrap box.
Painting and markings:
The low-viz idea prevailed, since I had some leftover OA-4M decals from Italeri kits in store, as well as some other suitable low-viz decals from a Revell A-4F kit. However, an all-grey livery was IMHO not enough, and when I came across a picture of a USN low-viz A-7E with an improvised desert camouflage in sand and reddish brown applied over the grey (even partly extending over its markings) from Operation Iraqi Freedom, I had that extra twist that would set the OA-45 apart. MALS-13 was chosen as operator because I had matching codes, and, as another benefit, the unit had actually been deployed overseas during the 2003 Iraq War, so that the whif’’s time frame was easily settled, adding to its credibility.
The livery was built up just like on the real aircraft: on top of a basic scheme in FS 36320 and 36375 (Humbrol 128 and 127) with a slightly darker anti-glare panel in front of the cockpit (FS 35237, I used Revell 57 as a slightly paler alternative) I applied the low-viz marking decals, which were protected with a coat of acrylic varnish. Next, additional desert camouflage was added with dry-brushed sand and millitary brown (supposedly FS 33711 and 30400 in real life, I used, after consulting pictures of aircraft from both Gulf Wars, Humbrol 103 (Cream) and 234 (Dark Flesh). They were applied with a kind of a dry-brushing technique, for a streaky and worn look, leaving out the codes and other markings. The pattern itself was inspired by an USMC OV-10 Bronco in desert camouflage from the 1st Gulf War.
On top of that a black ink washing was applied. Once things had thoroughly dried over night, I wet-sanded the additional desert camouflage away, carefully from front to back, so that the edges became blurred and the underlying grey became visible again.
The cockpit interior was painted in standard Dark Gull Grey (Humbrol 140), while the air intakes and the landing gear became white, the latter with red trim on the covers’ edges – just standard. Finally, the model was sealed with a coat of matt acrylic varnish (Italeri).
The upgraded T-45 is an interesting result. The add-ons suit the aircraft, which already looks sturdier than its land-based ancestor, well. The improvised desert paint scheme with the additional two-tone camouflage over the pale grey base really makes the aircraft an unusual sight, adding to its credibility.
Hardware-wise I am really happy how the added dorsal hump blends into the overall lines – in a profile view it extends the canopy’s curve and blends into the fin, much like the A-4F/M’s arrangement. And the modified fin yields a very different look, even though not much was changed. The T-45 looks much beefier now, and from certain angles really reminds of the OA-4M and sometimes even of a diminutive Su-25?
Capable of tolerating severe weather conditions, this hardy eucalypt is commonly found in subalpine areas across the eastern regions of Australia.
I put this on a tabletop with natural window light and a black background behind it. I took three different exposures, with only the focus changing in each one, and then combined them in Photoshop CS4. I've seen this technique referred to as "focus stacking". It certainly give more depth of field than the lens is capable of.
To see more images using this depth of field enhancing technique please see my Maximum Depth of Field Macros set. www.flickr.com/photos/9422878@N08/sets/72157624044378381/
en.wikipedia.org/wiki/Supermarine_Spitfire_
en.wikipedia.org/wiki/Yorkshire_Air_Museum#Collection
Supermarine Spitfire variants powered by early model Rolls-Royce Merlin engines mostly utilised single-speed, single-stage superchargers. The British Supermarine Spitfire was the only Allied fighter aircraft of the Second World War to fight in front line service from the beginnings of the conflict, in September 1939, through to the end in August 1945. Post-war, the Spitfire's service career continued into the 1950s. The basic airframe proved to be extremely adaptable, capable of taking far more powerful engines and far greater loads than its original role as a short-range interceptor had called for. This would lead to 19 marks of Spitfire and 52 sub-variants being produced throughout the Second World War, and beyond. The many changes were made in order to fulfil Royal Air Force requirements and to successfully engage in combat with ever-improving enemy aircraft. With the death of the original designer, Reginald J. Mitchell, in June 1937, all variants of the Spitfire were designed by his successor, Joseph Smith, and a team of engineers and draftsmen.
In 1936, before the first flight of the prototype, the Air Ministry placed an order for 310 Spitfires. However, in spite of the promises made by the Chairman of Vickers-Armstrongs (the parent company of Supermarine) that the company would be able to deliver Spitfire at a rate of five a week, it soon became clear that this would not happen. In 1936 the Supermarine company employed 500 people and was already engaged in fulfilling orders for 48 Walrus amphibian reconnaissance aircraft and 17 Stranraer patrol flying boats. In addition the small design staff, which would have to draft the blueprints for the production aircraft, was already working at full stretch. Although it was obvious that most of the work would have to be sub-contracted to outside sources, the Vickers-Armstrongs board was reluctant to allow this to happen. When other companies were able to start building Spitfire components there were continual delays because either parts provided to them would not fit, or the blueprints were inadequate; the sub-contractors themselves faced numerous problems building components which in many cases were more advanced and complicated than anything they had faced before.
As a consequence of the delays, the RAF received the first two Spitfires off the production line in July 1938, while the first Spitfire to enter squadron service was received by 19 Squadron in early August. For a time the future of the Spitfire was in serious doubt, with the Air Ministry suggesting that the programme be abandoned and that Supermarine change over to building the Bristol Beaufighter under licence. The managements of Supermarine and Vickers were eventually able to convince the Air Ministry that production would be sorted out and, in 1938, an order was placed with Morris Motors Limited for an additional 1,000 Spitfires to be built at huge new factory which was to be built at Castle Bromwich. This was followed in 1939 by an order for another 200 from Woolston and, only a few months later, another 450. This brought the total to 2,160, making it one of the largest orders in RAF history. Over the next three years a large number of modifications were made, most as a result of wartime experience.
Early in the Spitfire's operational life a major problem became apparent; at altitudes above about 15,000 ft (4,572 m), any condensation could freeze in the guns. Because of this the system of gun heating first fitted to K5054 was introduced on the 61st production Mk I. At the outset of World War II, the flash-hiders on the gun muzzles were removed and the practice of sealing the gun ports with fabric patches was instituted. The patches kept the gun barrels free of dirt and debris and allowed the hot air to heat the guns more efficiently. Early production aircraft were fitted with a ring and bead gunsight, although provision had been made for a reflector sight to be fitted once one had been selected. In July 1938, the Barr and Stroud GM 2 was selected as the standard RAF reflector gunsight and was fitted to the Spitfire from late 1938. These first production Mk Is were able to reach a maximum speed of 362 mph (583 km/h) at 18,500 ft (5,600 m), with a maximum rate of climb of 2,490 ft/min at 10,000 ft (3,000 m). The service ceiling (where the climb rate drops to 100 ft/min) was 31,900 ft (9,700 m).
All Merlin I to III series engines relied on external electric power to start; a well known sight on RAF fighter airfields was the "trolley acc" (trolley accumulator) which was a set of powerful batteries which could be wheeled up to aircraft. The lead from the "Trolley Acc" was plugged into a small recess on the starboard side cowling of the Spitfire. On Supermarine-built aircraft a small brass instruction plate was secured to the side cowling, just beneath the starboard exhausts.
The early Mk Is were powered by the 1,030 hp (768 kW) Merlin Mk II engine driving an Aero-Products "Watts" 10 ft 8 in (3.3 m) diameter two-blade wooden fixed-pitch propeller, weighing 83 lb (38 kg). From the 78th production airframe, the Aero Products propeller was replaced by a 350 lb (183 kg) de Havilland 9 ft 8 in (2.97 m) diameter, three-bladed, two-position, metal propeller, which greatly improved take-off performance, maximum speed and the service ceiling. From the 175th production aircraft, the Merlin Mk III, with a "universal" propeller shaft able to take a de Havilland or Rotol propeller, was fitted. Following complaints from pilots a new form of "blown" canopy was manufactured and started replacing the original "flat" version in early 1939. This canopy improved headroom and enabled better vision laterally, and to the rear. At the same time the manual hand-pump for operating the undercarriage was replaced by a hydraulic system driven by a pump mounted in the engine bay. Spitfire Is incorporating these modifications were able to achieve a maximum speed of 367 mph (591 km/h) at 18,600 ft (5,700 m), with a maximum rate of climb of 2,150 ft/min at 10,000 ft (3,000 m). The service ceiling was 34,400 ft (10,500 m).
A voltage regulator under a black, cylindrical cover was mounted low on the back of frame 11, directly behind the pilot's seat:[nb 3]starting in the N30xx series this was repositioned higher, appearing low in the rear transparency. From N32xx the regulator was mounted directly behind the pilot's headrest on frame 11. Other changes were made later in 1939 when a simplified design of pitot tube was introduced and the "rod" aerial mast was replaced by a streamlined, tapered design. To improve protection for the pilot and fuel tanks a thick laminated glass bulletproof plate was fitted to the curved, one piece windscreen and a 3 mm thick cover of light alloy, capable of deflecting small calibre rounds, was fitted over the top of the two fuel tanks. From about mid-1940, 73 pounds (33 kg) of armoured steel plating was provided in the form of head and back protection on the seat bulkhead and covering the forward face of the glycol header tank. In addition, the lower petrol tank was fitted with a fire-resistant covering called "Linatex", which was later replaced with a layer of self-sealing rubber.
In June 1940 de Havilland began manufacturing a kit to convert their two pitch propeller unit to a constant speed propeller. Although this propeller was a great deal heavier than the earlier types (500 lb (227 kg) compared with 350 lb (183 kg)) it provided another substantial improvement in take-off distance and climb rate. Starting on 24 June de Havilland engineers began fitting all Spitfires with these units and by 16 August every Spitfire and Hurricane had been modified. "Two step" rudder pedals were fitted to all frontline Spitfires; these allowed the pilot to lift his feet and legs higher during combat, improving his "blackout" threshold and allowing him to pull tighter sustained turns. Another modification was the small rear view mirror which was added to the top of the windscreen: an early "shrouded" style was later replaced by a simplified, rectangular, adjustable type.
Starting in September 1940, IFF equipment was installed. This weighed about 40 lb (18 kg) and could be identified by wire aerials strung between the tailplane tips and rear fuselage. Although the added weight and the aerials reduced maximum speed by about two mph (three km/h), it allowed the aircraft to be identified as "friendly" on radar: lack of such equipment was a factor leading to the Battle of Barking Creek. At about the same time new VHF T/R Type 1133 radios started replacing the HF TR9 sets. These had first been fitted to Spitfires of 54 and 66 Squadrons in May 1940, but ensuing production delays meant the bulk of Spitfires and Hurricanes were not fitted for another five months. The pilots enjoyed a much clearer reception which was a big advantage with the adoption of Wing formations throughout the RAF in 1941. The new installation meant that the wire running between the aerial mast and rudder could be removed, as could the triangular "prong" on the mast.
Weight increases and aerodynamic changes led to later Spitfire Is having a lower maximum speed than the early production versions. This was more than offset by the improvements in take-off distance and rate of climb brought about by the constant speed propeller units. During the Battle of Britain Spitfire Is equipped with constant-speed propellers had a maximum speed of 353 mph (568 km/h) at 20,000 ft (6,100 m), with a maximum rate of climb of 2,895 ft/min at 10,000 ft (3,000 m).
Although the Merlin III engine of Spitfire Is had a power rating of 1,030 hp (768 kW), supplies of 100 octane fuel from the United States started reaching Britain in early 1940. This meant that an "emergency boost" of +12 pounds per square inch was available for five minutes, with pilots able to call on 1,310 hp (977 kW) at 3,000 rpm at 9,000 feet (2,743 m). This boosted the maximum speed by 25 mph (40 km/h) at sea level and 34 mph (55 km/h) at 10,000 ft (3,000 m) and improved the climbing performance between sea level and full throttle height. The extra boost wasn't damaging as long as the limitations set forth in the pilot's notes were followed. As a precaution if the pilot had resorted to emergency boost, he had to report this on landing and it had to be noted in the engine log book. There was a wire 'gate' fitted, which the pilot had to break to set the engine to emergency power, this acted as an indicator that emergency power had been used and would be replaced by mechanics on the ground. The extra boost was also available for the Merlin XII fitted to the Spitfire II.
Late in 1940, a Martin-Baker designed quick-release canopy mechanism began to be retroactively fitted to all Spitfires. The system employed unlocking pins, actuated by cables operated by the pilot pulling a small, red rubber ball mounted on the canopy arch. When freed, the canopy was taken away by the slipstream. One of the most important modifications to the Spitfire was to replace the machine gun armament with wing mounted Hispano 20 mm cannon. In December 1938, Joseph Smith was instructed to prepare a scheme to equip a Spitfire with a single Hispano mounted under each wing. Smith objected to the idea and designed an installation in which the cannon were mounted on their sides within the wing, with only small external blisters on the upper and lower wing surfaces covering the 60 round drum magazine. The first Spitfire armed with a single Hispano in each wing was L1007 which was posted to Drem in January 1940 for squadron trials. On 13 January, this aircraft, piloted by Plt Off Proudman of 602 Squadron took part in an engagement when a Heinkel He 111 was shot down. Soon after this Supermarine was contracted to convert 30 Spitfires to take the cannon armed wing; 19 Squadron received the first of these in June 1940 and by 16 August 24 cannon armed Spitfires had been delivered. These were known as the Mk Ib: Mk Is armed with eight Brownings were retrospectively called the Mk Ia. With the early cannon installation, jamming was a serious problem. In one engagement, only two of the 12 aircraft had been able to fire off all of their ammunition. Further cannon-armed Spitfires, with improvements to the cannon mounts, were later issued to 92 Squadron, but due to the limited magazine capacity it was eventually decided the best armament mix was two cannon and four machine guns (most of these were later converted to the first Mk Vbs).
Sergeant Jennings in September 1940. The absence of a triangular prong on the rear of the mast indicates that VHF radio was fitted. The voltage regulator can be seen under the rear transparency. This photo makes a good comparison with K9795.
From November 1940, a decision was taken that Supermarine would start producing light-alloy covered ailerons which would replace the original fabric covered versions. However, seven months after the decision was taken to install them on all marks, Spitfires were still being delivered with the original fabric covered ailerons. From May 1941 metal ailerons were fitted to all Spitfires coming off the production lines.
The Yorkshire Air Museum & Allied Air Forces Memorial is an aviation museum in Elvington, York on the site of the former RAF Elvington airfield, a Second World War RAF Bomber Command station. The museum was founded, and first opened to the public, in the mid 1980s.
The museum is one of the largest independent air museums in Britain. It is also the only Allied Air Forces Memorial in Europe. The museum is an accredited museum under Arts Council accreditation scheme. It is a Member of Friends of the Few (Battle of Britain Memorial), the Royal Aeronautical Society, the Museums Association and the Association of Independent Museums.
The Museum is a registered charity (No. 516766) dedicated to the history of aviation and was also set up as a Memorial to all allied air forces personnel, particularly those who served in the Royal Air Force during the Second World War.
Site
Further information: RAF Elvington
The 20-acre (81,000 m2) parkland site includes buildings and hangars, some of which are listed. It incorporates a 7-acre (28,000 m2) managed environment area and a DEFRA and Environment Agency supported self sustainability project called "Nature of Flight". The museum is situated next to a 10,000 ft runway, which is privately owned.
History
Whilst the Royal Air Force carried on using the runway for aircraft landing and take off training until 1992, the buildings and hangars had long been abandoned. In 1980 Rachel Semlyen approached the owners of "what was then an abandoned and derelict wartime site, with the idea of restoring the buildings and creating a museum". In 1983, a group started clearing the undergrowth and the site was ready to be unveiled as the Yorkshire Air Museum in 1986.
Events
The Museum undertakes several annual events each year within the general attraction / entertainment area as well as educational / academic events for specific audiences, plus several corporate events in association with companies such as Bentley, Porsche, banking, government agencies etc. The unique annual Allied Air Forces Memorial Day takes place in September.
Exhibits
The Museum has over 50 aircraft spanning the development of aviation from 1853 up to the latest GR4 Tornado. Several aircraft including Victor, Nimrod, Buccaneer, Sea Devon, SE5a, Eastchurch Kitten, DC3 Dakota are kept live and operated on special "Thunder Days" during the year. Over 20 historic vehicles and a Registered Archive containing over 500,000 historic artefacts and documents are also preserved at the Museum, which is also the Official Archive for the National Aircrew Association and National Air Gunners Association. It is nationally registered and accredited through DCMS/Arts Council England and is a registered charity.
A permanent exhibition on RAF Bomber Command was opened at the museum by life member, Sir David Jason. In 2010 a new exhibition called "Pioneers of Aviation", and funded by the Heritage Lottery Fund, was opened featuring the lives and achievements of Sir George Cayley, Sir Barnes Wallis, Robert Blackburn, Nevil Shute and Amy Johnson.
Principal on-site businesses include: Restaurant, Retail Shop, Events, Aircraft Operation Engineering Workshops, Archives and Corporate Business Suite. The museum is also a location for TV and film companies.
Building 1 – Airborne Forces Display & No. 609 Squadron RAF Room
Building 2 – Uniform Display
Building 3 – Air Gunners' Exhibition
Building 4 – Archives & Reference Library
Building 5 – Museum Shop
Building 7 – Memorial Garden
Building 8 – Museum HQ, Main Entrance
Building 9 – Against the Odds
Building 10 – Elvington Corporate Room
Building 11 – Museum NAAFI Restaurant
Building 12 – Control Tower
Building 13 – French Officers' Mess
Building 14 – Airmens Billet and Station MT Display
Building 15 – Royal Observer Corp
Building 16 – Signal Square
Building 17 – Hangar T2 Main Aircraft exhibition
Building 18 – Archive & Collections Building
Building 19 – Handley Page Aircraft Workshop
Building 20 – Pioneer of Aviation Exhibition
Collection
Aircraft on display
Pre-World War II
Avro 504K – Replica
Blackburn Mercury – Replica
Cayley Glider – Replica
Mignet HM.14 Pou-du-Ciel
Port Victoria P.V.8 Eastchurch Kitten Replica
Royal Aircraft Factory BE.2c – Replica
Royal Aircraft Factory SE.5a – Replica
Wright Flyer – Replica
World War II
Avro Anson T.21 VV901
Douglas Dakota IV KN353
Fairchild Argus II FK338
Gloster Meteor F.8 WL168
Gloster Meteor NF.14 WS788
Handley Page Halifax III LV907
Hawker Hurricane I – Replica
Messerschmitt Bf 109 G-6 – Replica
Slingsby T.7 Kirby Cadet RA854
Supermarine Spitfire I – Replica
Waco Hadrian 237123
Post World War II
Air Command Commander Elite
Beagle Terrier 2 TJ704
Canadair CT-133 Silver Star 133417
de Havilland Devon C.2 VP967
de Havilland Vampire T.11 XH278
Europa Prototype 001
Mainair Demon
Saunders-Roe Skeeter AOP.12 XM553
Westland Dragonfly HR.5 WH991
Cold War
BAC Jet Provost T.4 XP640
Blackburn Buccaneer S.2 XN974
Blackburn Buccaneer S.2B XX901
British Aerospace Harrier GR.3 XV748
British Aerospace Nimrod MR.2 XV250
Dassault Mirage IIIE 538
Dassault Mirage IVA 45/BR
English Electric Canberra T.4 WH846
English Electric Lightning F.6 XS903 which arrived during June 1988.
Fairey Gannet AEW.3 XL502
Gloster Javelin FAW.9 XH767
Handley Page Victor K.2 XL231
Hawker Hunter FGA.78 QA10
Hawker Hunter T.7 XL572
Panavia Tornado GR.1 ZA354
Panavia Tornado GR.4 XZ631
Ground vehicles
Second World War
Thompson Brothers Aircraft Refueller
1938 Ford Model E
1940 "Tilly" Standard 12 hp Mkl RAF Utility Vehicle
1941 Chevrolet 4x4 CMP
1942 Austin K2 NAAFI Wagon
1942 Thornycroft ‘Amazon’ Coles Crane
Cold War
1947 Commer one and a half deck airport coach
1949 Citroen 11BL
1948 David Brown VIG.2 Aircraft Tractor
1949 David Brown VIG.3 Aircraft Tractor
1951 David Brown GP Airfield Tractor
1953 Alvis Saracen 12ton APC
1953 Austin Champ Cargo 4x4 General Purpose Vehicle
1956 Green Goddess Self Propelled Pump
1958 Commer Q4 Bikini Fire Pump Unit
1958 Lansing Aircraft Carrier Type Tug
1959 Daimler Ferret ASC MK.2/3/7
1966 Chieftain Main Battle Tank
1970 Douglas P3 nuclear aircraft 25 tonne tug
1971 Pathfinder Fire Engine 35ton (ex. Manchester Airport)
1972 TACR2 Range Rover - 6 wheeled fast response fire unit
1974 GMC 6 wheeled fast response airfield fire truck
1976 Dennis Mercury 17.5 tonne aircraft tug
Pathfinder Fire Engine