View allAll Photos Tagged capable
These solidly built, medium-displacement cruisers are capable of a very reasonable pace in open seas, where they offer a particularly sea-kindly motion. Thanks to the inboard genoa tracks they do point quite close – up to 33° in fact, although they lose a lot of speed when pinched that tight. Her favourite point of sail is around 50-55° off the apparent wind, when she surges forward relentlessly, oblivious to the sea state.
The Moody 36 is also easy to sail singlehanded, with all the sail control lines and winches within easy reach in the compact cockpit, and you’re not going to get shoulder cramps if you have to hand-steer her for hours on end, either. Nor are you going to become bruised and battered if the seas come up when you’re working at the galley, where the chunky fiddles act as solid handholds. You’ll feel very secure making your way forward on deck, with one hand firmly clutching the wooden handrails.
On a reach the she is capable of averaging 6.5-7.5 knots in all but the choppiest waters. She does lack downwind performance, so needs a big fat spinnaker to really get her tramping along.
Power:Mu capable Bhusawal WAM4-6P #21329 with 01169 Mumbai LTT - Gorakhpur Special Fare AC (Holi) Special
MonsMeg, capable of blasting a 150kg gunstone for 3.2km (two miles) Mons Meg was at the cutting edge of military technology!
Out of Prestwick and using call-sign 'RG02', the 2nd of two US Navy 'COD' Grumman C-2A Greyhounds, BuAerNo. 162161 drones South Westerly past Worthing at FL190
In the UK to support US Navy Carrier assets, the pair are with VRC-40 'Rawhides'
Not many of these Carrier On-board Delivery workhorses remain in service now as they are in the process of being replaced by a 'COD' version of the CV-22 Osprey 'Tilt-rotor'
276A3741
MARINE CORPS BASE HAWAII (June 28, 2018) A Philippine Marine kicks in a door to clear a room during urban operations training as part of the Rim of the Pacific (RIMPAC) exercise aboard Marine Corps Base Hawaii June 28, 2018. Marines training with the U.S. Navy and partner nations from around the world enhances prowess. RIMPAC provides high-value training for task-organized, highly-capable Marine Air-Ground Task Force and enhances the critical crisis response capability of U.S. Marines in the Pacific. Twenty-five nations, more than 45 ships and submarines, about 200 aircraft, and 25,000 personnel are participating in RIMPAC from June 27 to Aug. 2 in and around the Hawaiian Islands and Southern California. (U.S. Marine Corps photo by Sgt. Zachary Orr)
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four sub-variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower. The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.
The versatile aircraft underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 onwards, placed in a streamlined fairing in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could also be used for target illumination and guiding precision weapons.
Many Valkyries also received improved radar warning systems, with sensor arrays, depending on the systems, mounted on the wing-tips, on the fins and/or on the LERXs. Improved ECR measures were also added to some machines, typically in conformal fairings on the flanks of the legs/engine pods.
The U.N.S. Marine Corps, which evolved from the United States Marine Corps after the national service was transferred to the global U.N. Spacy command in 2008, was a late adopter of the VF-1, because the Valkyries’ as well as the Destroids’ potential for landing operations was underestimated. But especially the VF-1’s versatility and VTOL capabilities made it a perfect candidate as a replacement for the service’s AV-8B Harrier II and AH-1 Cobra fleet in the close air support (CAS) and interdiction role. The first VF-1s were taken into service in January 2010 by SVMF-49 “Vikings” at Miramar Air Base in California/USA, and other units followed soon, immediately joining the battle against the Zentraedi forces.
The UNSMC’s VF-1s were almost identical to the standard Valkyries, but they had from the start additional hardpoints for light loads like sensor pods added to their upper legs, on the lower corners of the air intake ducts. These were intended to carry FLIR, laser target designators (for respective guided smart weapons) or ECM pods, while freeing the swiveling underwing hardpoints to offensive ordnance.
Insisting on their independent heritage, the UNSMC’s Valkyries were never repainted in the U.N. Spacy’s standard tan and white livery. They either received a unique two tone low visibility gray paint scheme (the fighter units) or retained paint schemes that were typical for their former units, including some all-field green machines or VF-1s in a disruptive wraparound livery in grey, green and black.
Beyond A and J single-seaters (the UNSMC did not receive the premium S variant), a handful of VF-1D two-seaters were upgraded to the UNSMC’s specification and very effectively operated in the FAC (Forward Air Control) role, guiding both long-range artillery as well as attack aircraft against enemy positions.
The UNSMC’s VF-1s suffered heavy losses, though – for instance, SVMF-49 was completely wiped out during the so-called “Zentraedi Rain of Death” in April 2011, when the Zentraedi Imperial Grand Fleet, consisting of nearly five million warships, appeared in orbit around the Earth. Commanded by Dolza, Supreme Commander of the Zentraedi, they were ordered to incinerate the planet's surface, which they did. 70% of the Earth was utterly destroyed, according to the staff at Alaska Base. Dolza initially believed this to be total victory, until a massive energy pulse began to form on the Earth's surface. This was the Grand Cannon, a weapon of incredible destructive power that the Zentraedi were unaware of, and it disintegrated a good deal of the armada that was hanging over the Northern Hemisphere. While the Zentraedi were successful in rendering the weapon inoperable before it could fire a second time, the SDF-1 began a counterattack of its own alongside the renegade Imperial-Class Fleet and Seventh Mechanized Space Division, which destroyed the Imperial Grand Fleet. After this event, though, the UNSMC as well as other still independent services like the U.N. Navy were dissolved and the respective units integrated into the all-encompassing U.N. Spacy.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)
However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
General characteristics:
All-environment variable fighter and tactical combat Battroid,
used by U.N. Spacy, U.N. Navy, U.N. Space Air Force and U.N.S. Marine Corps
Accommodation:
Pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or 225.63 kN in overboost
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip)
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design Features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
2x Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min
4x underwing hard points for a wide variety of ordnance, including…
12x AMM-1 hybrid guided multipurpose missiles (3/point), or
12x MK-82 LDGB conventional bombs (3/point), or
6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or
4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,
or a combination of above load-outs
2x auxiliary hardpoints on the legs for light loads like a FLIR sensor, laser rangefinder/
target designator or ECM pod (typically not used for offensive ordnance)
The kit and its assembly:
This fictional VF-1 was born from spontaneous inspiration and the question if the USMC could have adopted the Valkyrie within the Macross time frame and applied its rather special grey/green/black paint scheme from the Nineties that was carried by AH-1s, CH-46s and also some OV-10s.
The model is a simple, vintage ARII VF-1 in Fighter mode, in this case a VF-1D two-seater that received the cockpit section and the head unit from a VF-1J Gerwalk model to create a single seater. While the parts are interchangeable, the Gerwalk and the Fighter kit have different molds for the cockpit sections and the canopies, too. This is mostly evident through the lack of a front landing gear well under the Gerwalk's cockpit - I had to "carve" a suitable opening into the bottom of the nose, but that was not a problem.
The kit was otherwiese built OOB, with the landing gear down and (finally, after the scenic flight pictures) with an open canopy for final display among the rest of my VF-1 fleet. However, I added some non-canonical small details like small hardpoints on the upper legs and the FLIR and targeting pods on them, scratched from styrene bits.
The ordnance was changed from twelve AMM-1 missiles under the wings to something better suited for attack missions. Finding suitable material became quite a challenge, though. I eventually settled on a pair of large laser-guided smart bombs and two pairs of small air-to-ground missile clusters. The LGBs are streamlined 1:72 2.000 lb general purpose bombs, IIRC from a Hobby Boss F-5E kit, and the launch tubes were scratched from a pair of Bazooka starters from an Academy 1:72 P-51 kit. The ventral standard GU-11 pod was retained and modified to hold a scratched wire display for in-flight pictures at its rear end.
Some blade antennae were added around the hull as a standard measure to improve the simple kit’s look. The cockpit was taken OOB, I just added a pilot figure for the scenic shots and the thick canopy was later mounted on a small lift arm in open position.
Painting and markings:
Adapting the characteristic USMC three-tone paint scheme for the VF-1 was not easy; I used the symmetric pattern from the AH-1s as starting point for the fuselage and gradually evolved it onto the wings into an asymmetric free-form pattern, making sure that the areas where low-viz roundels and some vital stencils would sit on grey for good contrast and readability. The tones became authentic: USMC Field Green (FS 34095, Humbrol 105), USN Medium Grey (FS 35237, Humbrol 145) and black (using Revell 06 Tar Black, which is a very dark grey and not pure black). For some contrast the wings' leading edges were painted with a sand brown/yellow (Humbrol 94).
The landing gear became standard white (Revell 301), the cockpit interior medium grey (Revell 47) with a black ejection seat with brown cushions, and the air intakes as well as the interior of the VG wings dark grey (Revell 77). To set the camouflaged nose radome apart I gave it a slightly different shade of green. The GU-11 pod became bare metal (Revell 91). The LGBs were painted olive drab overall while the AGMs became light grey.
Roundels as well as the UNSMC and unit tags were printed at home in black on clear decal sheet. The unit markings came from an Academy OV-10. The modex came from an 1:72 Revell F8F sheet. Stencils becvame eitrher black or white to keep the low-viz look, just a few tiny color highlights bereak the camouflage up. Some of the characteristic vernier thrusters around the hull are also self-made decals.
Finally, after some typical details and position lights were added with clear paint over a silver base, the small VF-1 was sealed with a coat of matt acrylic varnish.
A spontaneous interim project - and the UMSC's three-tone paint scheme suits the VF-1 well, which might have been a very suitable aircraft for this service and its mission profiles. I am still a bit uncertain about the camouflage's effectiveness, though - yes, it's disruptive, but the color contrasts are so high that a hiding effect seems very poor, even though I find that the scheme works well over urban terrain? It's fictional, though, and even though there are canonical U.N.S. Marines VF-1s to be found in literature, none I came across so far carried this type of livery.
HI Fiona,
It was a great event! Please see below the story and some photos attached, if you'd like to post this on Indigo where appropriate and on the gallery, I will leave this into your capable hands!
Thanks again for the contribution. We really had a good and inspiring time!
Sandrine
****
Encouraged by Informa`s One Planet Eating initiatives, the Hong Kong team got together at HOME to share a few healthy tapas, organic cocktails and be inspired by Christian Mongendre, our Guest Speaker, who created HOME. You can check him out: www.lifestyleasia.com/470121/tastemakers-christian-mongen...
In balancing mind and body, HOME - Eat to Live strives to use only organic produce whenever possible. Much of our ingredients are sourced locally from a network of farms and our food is made fresh daily. Our menu aims to appeal to everyone. We believe that healthy, plant-based foods should be tasty, filling, and nutritious. We offer vegan, gluten free & raw options, including healthy desserts and organic cocktails. We are committed to supporting a sustainable, plant-based lifestyle, collectively lowering our carbon footprint and preserving our earth's fresh water supply through a plant-based menu, mindful ingredient sourcing, eco-friendly packaging and practices.
During the talk, Christian raised awareness about recycling, compost, biodegradable materials like the plastic they use, from corn, LED lights which create no heat.
He also told us about the importance of eating more plant based food, and the impact on our planet. As a very demanding person, he wanted to create a vegetarian and sustainable restaurant and also bring taste and colour to our plates, with no processed food. Christian also pointed out the menu of HOME, each dish is called by animals in danger: Golden Snub Nosed Monkey Open Faced Toast, Manta Ray Salad Bowl, Siberian Tiger Earth Bowl, Northern White Rhino Sliders , Hawaiian Monk Seal Flatbread...
The team was very engaged and questioned him around the cost of eating healthy, being higher than eating meat. At HOME, they try to educate their customers about the origin of the products they use, Kale is one example, they were the first restaurant to import Kale but as demand grows, price goes down and we reach economies of scale. To make 'Healthy food' affordable, the market demand need to change and it is starting to change.
Finally, we asked him for advice around Pledges we should all make:
- Wellbeing = Food, "you are what you eat" , what you are eating to regenerate your body
- How are you breathing: Try to take time and be conscious of your breath
- Try Meditation
- Drink high quality water and not distilled
- Exercise and organise more events like 'Walk the World'
- Cut down on sweets and opt for healthier snacks
- Choose an organic range of teas
- Recycle
- Having LED lights
- And last but not least, we all agreed to at least TRY: Meat Free Monday !
Alena & Sandrine
Sandrine Declippeleir
Account Director - Professional Services, Asia Pacific
Business intelligence | informa
T: +852 3757 9703
M: +852 9222 1747
sandrine.declippeleir@informa.com<
Agribusiness intelligence | Financial intelligence | Maritime intelligence | Pharma intelligence | TMT intelligence
Informa | Nexxus Building, Level 16 | 41 Connaught Road | Central | Hong Kong
Follow me on:
hk.linkedin.com/in/sandrinedeclippeleir
This electronic message and all contents transmitted with it are confidential and may be privileged. They are intended solely for the addressee. If you are not the intended recipient, you are hereby notified that any disclosure, distribution, copying or use of this message or taking any action in reliance on the contents of it is strictly prohibited. If you have received this electronic message in error, please destroy it immediately, and notify the sender.
Informa Group plc | Registered in England & Wales No. 3099067 | 5 Howick Place | London | SW1P 1WG
"The Vought F4U Corsair was a carrier-capable fighter aircraft that saw service primarily in World War II and the Korean War. Demand for the aircraft soon overwhelmed Vought's manufacturing capability, resulting in production by Goodyear and Brewster: Goodyear-built Corsairs were designated FG and Brewster-built aircraft F3A. From the first prototype delivery to the U.S. Navy in 1940, to final delivery in 1953 to the French, 12,571 F4U Corsairs were manufactured by Vought,[1] in 16 separate models, in the longest production run of any piston-engined fighter in U.S. history (1942–1953). Wikipedia.
* * *
"Le Chance Vought F4U Corsair est un avion militaire, fabriqué par les États-Unis, utilisé durant la Seconde Guerre mondiale jusqu'en 1968. C'est l'un des appareils les plus connus de la Seconde Guerre mondiale, notamment grâce à la série télévisée Les Têtes brûlées. Il s'illustra essentiellement dans le Pacifique, servant à la fois au sein de l'US Navy et de l'US Marine Corps." Wikipedia.
Data Sheet
Thialf, Heerema's largest deepwater construction vessel (DCV), and is capable of a tandem lift of 14,200 t (15,600 short tons). The dual cranes provide for depth reach lowering capability as well as heavy lift capacity to set topsides. This multi-functional dynamic positioned DCV is tailored for the installation of foundations, moorings, SPARs, TLPs and integrated topsides, as well as pipelines and flowlines.
Dimensions Length overall 201.6 m 661 ft
Length of vessel 165.3 m 542 ft
Width 88.4 m 290 ft
Depth to workdeck 49.5 m 162 ft
Draught 11.8-31.6 m 43-104 ft
GRT 136,709 t -
NRT 41,012 t -
Accommodation / Helicopter Deck
The living quarters are equipped to accommodate 736 men. All quarters have heating and air conditioning facilities. The helicopter deck is suitable for a Boeing Chinook 234.
Life-Saving / Fire-fighting
Life-saving and fire-fighting equipment according to the latest governmental requirements.
Mooring System
12 Delta Flipper anchors of 22.5 t each, on 3 1/8" wire ropes of 2,400 meters (8,000 ft) long. Minimum breaking strength 480 t. Kongsberg Albatross ADP 503 and ADP 311 automatic and dynamic positioning and mooring assistance.
Diving System
Containerized saturation diving system with diving bell can be made available.
Portside Crane Main hoist revolving 7,826 st up to 31.2 m (102 ft)
Auxiliary hoist 1,000 st 36.0 - 79.2 m (120 - 260 ft)
Whip hoist 220 st 41.0 - 129.5 m (134 - 425 ft)
Starboard Crane Main hoist revolving 7,826 st up to 31.2 m (102 ft)
Auxiliary hoist 1,000 st 36.0 - 79.2 m (120 - 260 ft)
Whip hoist 220 st 41.0 - 129.5 m (134 - 425 ft)
Main Hoist Lifting Height
95 m (312 ft) above work deck for each crane. Lowering depth of auxiliary hoists 460 m (1,500 ft) below work deck at minimum radius.
Main Hoist Plumbing Depth
Lowering depth of main hoist at minimum radius with 3,500 t is 307 meters below heel point and with 2,990 t, 351 meters below heel point. Heel point is 24.4 meters (80 ft) above work deck.
Tandem Lift
Main hoist 14,200 t (15,600 sht) at 31.2 meters (102 ft) radius (subject to stability calculations).
Ballast System
Ballast pump capacity 20,800 cubic meters/hour.
Dynamic Positioning System
The Thialf is equipped with a Class III Dynamic Positioning system with the following characteristics:
Thrusters
6 x 5,500 kW - 360 degrees azimuth, total thrust 400 t
Modes of Operation
• Manual
• Joy-stick
• Auto-pilot
• Full DP mode
• Position mooring
Special DP functions
• Track follow
• Heavy lift
• Follow floating object
• External force compensation
Position reference systems
• 2 x satellite DGPS
• 1 x mechanical taut wire (300 m)
• 1 x Artemis
• 2 x acoustic SSBL/LBL
• 1 x Fan-beam laser
Transit speed with 1 tug
Max. 7.0 knot at 12.5 m draft
Deck Load / Transit Speed
Deck load capacity 15 t/square meter
Total deck load capacity 12,000 t
Transit speed with 12,000 tons deck load 6 knots at 12.5 meters (43.6 ft) draft.
HMS Warrior (1860)
HMS Warrior is a 40-gun steam-powered armoured frigate built for the Royal Navy in 1859–1861. She was the name ship of the Warrior-class ironclads. Warrior and her sister ship HMS Black Prince were the first armour-plated, iron-hulled warships, and were built in response to France's launching in 1859 of the first ocean-going ironclad warship, the wooden-hulled Gloire. Warrior conducted a publicity tour of Great Britain in 1863 and spent her active career with the Channel Squadron. Obsolescent following the 1871 launching of the mastless and more capable HMS Devastation, she was placed in reserve in 1875, and was "paid off" – decommissioned – in 1883.
She subsequently served as a storeship and depot ship, and in 1904 was assigned to the Royal Navy's torpedo training school. The ship was converted into an oil jetty in 1927 and remained in that role until 1979, at which point she was donated by the Navy to the Maritime Trust for restoration. The restoration process took eight years, during which many of her features and fittings were either restored or recreated. When this was finished she returned to Portsmouth as a museum ship. Listed as part of the National Historic Fleet, Warrior has been based in Portsmouth since 1987.
The launching of the steam-powered ship of the line Napoléon by France in 1850 began an arms race between France and Britain that lasted for a decade. The destruction of a wooden Ottoman fleet by a Russian fleet firing explosive shells in the Battle of Sinop, early in the Crimean War, followed by the destruction of Russian coastal fortifications during the Battle of Kinburn in the Crimean War by French armoured floating batteries, and tests against armour plates, showed the superiority of ironclads over unarmoured ships. France's launching in 1859 of the first ocean-going ironclad warship, the wooden-hulled Gloire, upset the balance of power by neutralising the British investment in wooden ships of the line and started an invasion scare in Britain, as the Royal Navy lacked any ships that could counter Gloire and her two sisters. The situation was perceived to be so serious that Queen Victoria asked the Admiralty if the navy was adequate for the tasks that it would have to perform in wartime. Warrior and her sister were ordered in response.
The Admiralty initially specified that the ship should be capable of 15 knots (28 km/h; 17 mph), and have a full set of sails for worldwide cruising range. Iron construction was chosen as it gave the best trade-off between speed and protection; an iron hull was lighter than a wooden one of the same size and shape, giving more capacity for guns, armour and engines.
Chief Constructor of the Navy Isaac Watts and Chief Engineer Thomas Lloyd designed the ship. To minimise risk they copied the hull design of the large wooden frigate HMS Mersey, modifying it for iron construction and to accommodate an armoured box, or citadel, amidships along the single gun deck, which protected most of the ship's guns. Ships with this configuration of guns and armour are classified as broadside ironclads.
The Warrior-class design used many well-proven technologies that had been used in ocean-going ships for years, including her iron hull, steam engine, and screw propeller; only her wrought-iron armour was a major technological advance. Naval architect and historian David K. Brown wrote, "What made [Warrior] truly novel was the way in which these individual aspects were blended together, making her the biggest and most powerful warship in the world." Being faster, better armoured and harder to hit than her rivals, she was superior to any existing naval ship. The Admiralty immediately stopped the construction of all wooden ships of the line, and ordered another eleven ironclads over the next few years. Jacky Fisher, who was the ship's gunnery lieutenant in 1863–64, later wrote that in spite of this, most people did not realise at the time what a significant change it would bring about: "It certainly was not appreciated that this, our first armourclad ship of war, would cause a fundamental change in what had been in vogue for something like a thousand years."
Although built in response to Gloire, the Warriors had a very different operational concept from the French ship, which was meant to replace wooden ships of the line. The Warriors were designed by Watts as 40-gun armoured frigates and were not intended to stand in the line of battle, as the Admiralty was uncertain about their ability to withstand concentrated fire from wooden two- and three-deck ships of the line. Unlike Gloire, they were planned to be fast enough to force battle on a fleeing enemy and to control the range at which a battle was fought to their own advantage.[10] In contrast to Gloire's square profile, Warrior has a clipper bow, but she is twice as long as a typical clipper ship.
HMS Warrior is 380 feet 2 inches (115.9 m) long between perpendiculars and 420 feet (128.0 m) long overall. She has a beam of 58 feet 4 inches (17.8 m) and a draught of 26 feet 9 inches (8.2 m). The ship displaces 9,137 long tons (9,284 t) and has a tonnage of 6,109 tons burthen. The ship's length made her relatively unmanoeuvrable, making it harder for her to use her strengthened stem for ramming, an ancient tactic that was coming back into use at the time. The ends of the hull are subdivided by watertight transverse bulkheads and decks into 92 compartments, and the hull has a double bottom underneath the engine and boiler rooms.
Restoring Warrior was discussed in the early 1960s, but did not develop into a serious project. In 1967, the Greater London Council proposed to restore the ship as an attraction in London, but Warrior was still required in Pembroke by the Royal Navy and the scheme went no further. In 1968 the Duke of Edinburgh chaired a meeting that discussed preserving and restoring Warrior and other historic vessels, and a year later The Maritime Trust was established to save the decrepit ironclad and other historic ships. The Maritime Trust and a major supporter, the Manifold Trust led by the Conservative MP John Smith, maintained an interest in Warrior. In 1976 the Royal Navy announced that the Llanion Oil Depot would close in 1978, and the Manifold Trust began to seek funds to restore her. With the promise of financial support for restoration, the Royal Navy donated the ship to the trust in 1979. The Ship's Preservation Trust acquired ownership of the ship in 1983; it became the Warrior Preservation Trust in 1985.
In August 1979 Warrior began her 800-mile (1,300 km) journey to her temporary home in the Coal Dock at Hartlepool for restoration as a museum ship. She arrived on 2 September 1979 and began the £9 million restoration project, largely funded by the Manifold Trust. The Maritime Trust decided to restore Warrior to her 1862 condition with the aim that no further major work would be necessary for the next 20 years. The first two years of the restoration were generally devoted to safely removing material added after her first commission, like the poop deck and the 200 long tons (200 t) of concrete decking. Intensive research was done to find detailed descriptions of the ship and her equipment as of 1862 to make the restoration as accurate as economically feasible. Sources included surviving official records, and the papers of those who had served on the ship during her active service. Bolt-holes and ridges in the paint gave clues to the location of some fittings and fixtures, and the sketch plans of Midshipman Henry Murray, found in Captain Cochrane's Letter Book, showed the locations of the armament, moveable fittings and stores.
Work on carving a replacement for Warrior's figurehead, which was destroyed in the 1960s, began in 1981 using photographs of the original as a guide. The 12-foot (3.7 m) work-in-progress was displayed at the 1982 London International Boat Show with the carvers still at work; it dominated coverage of the show. Before it was finished in mid-1983, the figurehead appeared on the BBC children's television programme Blue Peter. For much of 1984 it was displayed at the Main Gate of the Portsmouth Royal Dockyard. It was mounted on the ship on 6 February 1985.
Replacement of the ship's 86-foot-3-inch (26.3 m)-tall, 42-inch (1.1 m)-wide lower masts in wood was not feasible, so they were made of steel tube cut and welded to shape, with a ladder inside each mast to allow access to the platforms on the masts. The three masts and the bowsprit were stepped in place between September 1984 and February 1985. Warrior's engines, boilers and auxiliary machinery were considered too expensive to rebuild, so replicas were built from sheet steel with a few components made from cast iron to duplicate the look of the real equipment. The replica engines can rotate slowly, using electrical power, to allow visitors to imagine how they might have looked in operation.
The Woolwich Rotunda Artillery Museum and the States of Jersey lent examples of Warrior's original primary guns, the muzzle-loading 68-pounder and the breech-loading 110-pounder, which were used as moulds for fibreglass replicas. The Armstrong guns were built with working breeches; they, and the muzzles of all the guns, had to be sealed to prevent people leaving rubbish in them. Little information was available on the wooden gun carriages despite extensive research, and a prototype had to be developed and tested before they could be built.
In 1985 a new berth beside Portsmouth Harbour railway station was dredged, and a new jetty constructed in preparation for Warrior's arrival in Portsmouth. The ship left Hartlepool on 12 June 1987 under the command of Captain Collin Allen and was towed 390 miles (630 km) to the Solent in four days. When she entered Portsmouth Harbour she was welcomed by thousands of people lining the town walls and shore, and by over 90 boats and ships. She opened as a museum on 27 July. The restored ironclad was renamed HMS Warrior (1860) to avoid confusion with the Northwood Headquarters, commissioned as HMS Warrior in 1963, which was at the time the operational headquarters of the Royal Navy.
Warrior is part of the National Historic Fleet, and is berthed in the Portsmouth Historic Dockyard complex, which is also the home of Nelson's flagship HMS Victory and the Tudor warship Mary Rose. In 1995 she received over 280,000 visitors, and the whole dockyard receives between 400,000 and 500,000 visitors annually. Warrior continued to be managed by the Warrior Preservation Trust until 2017. In April of that year, the trust was taken over by the National Museum of the Royal Navy and Warrior became part of the museum's fleet. The ship continues to be used as a venue for weddings and functions to generate funds for her maintenance. The trust also maintained a collection of material related to the ship and an archive, although it is not yet open to the public.
(Wikipedia)
Die HMS Warrior aus dem Jahr 1860 war das erste ozeantaugliche Panzerschiff mit eisernem Rumpf. Sie wurde von der britischen Royal Navy als Gegenmaßnahme zum französischen Panzerschiff La Gloire gebaut. Sie gab der gleichnamigen Schiffsklasse ihren Namen und war das Schwesterschiff der HMS Black Prince. Sie liegt heute als Museumsschiff in Portsmouth.
Als sie vom Stapel lief, war sie durch ihren 4,5 Zoll (11,43 cm) dicken geschmiedeten Eisengürtel praktisch unverwundbar für die Geschosse der zur Zeit ihres Baus gebräuchlichen Schiffsartillerie. Um die Sinksicherheit noch weiter zu verbessern, war der Rumpf in 92 wasserdichte Abteilungen unterteilt und hatte unterhalb von Maschinenanlage und Munitionsräumen einen Doppelboden. Die einzige bedeutende Verwundbarkeit war die fehlende Panzerung um die Rudermaschine herum, so dass ein unglücklicher Treffer sie manövrierunfähig hätte machen können.
Der Hauptantrieb des Schiffes bestand aus einer liegenden zweizylindrigen Dampfmaschine von Penn, die von zehn Kesseln mit Dampf versorgt wurde. Allerdings war der Kohleverbrauch extrem hoch und die 850 t Kohle an Bord reichten nur für knapp 2.100 sm Fahrtstrecke unter optimalen Bedingungen. Daher führte die Warrior weiterhin eine vollständige Takelage als Vollschiff von 4.500 m² Segelfläche. Fuhr sie unter Segeln, dann konnten beide Schornsteine eingezogen werden, um die Handhabung der Segel nicht zu behindern. Die Schraube konnte bei Fahrt unter Segeln in den Rumpf eingezogen werden, um den Wasserwiderstand zu reduzieren. In der Praxis wurde sie jedoch mit langsamer Fahrt weiterbetrieben, da das An- und Abkuppeln der Welle an die Schraube recht mühsam war.
Als sie am 29. Dezember 1860 bei den Themse-Eisenwerken bei London vom Stapel laufen sollte, fror sie auf der Slipanlage fest. Dies war im kältesten Winter seit 50 Jahren. Die Warrior wurde am 24. Oktober 1861 fertiggestellt. Die Gesamtkosten betrugen 357.291 Pfund.
Die HMS Warrior war ein Batterieschiff – die Kanonen waren in seitlichen Batterien angeordnet und konnten nur zur Seite schießen. Es war geplant das Schiff mit 36 Kanonen zu bestücken. Bei Indienststellung wurde sie jedoch mit 26 68-Pfündern Vorderladern, 10 110-Pfündern Armstrong-Kanonen und 4 40-Pfündern Armstrong-Kanonen bewaffnet. 1863 wurden die 40-Pfünder durch verbesserte Kanonen gleichen Kalibers ersetzt. Vom 22. November 1864 bis zum 25. Juli 1867 wurde das Schiff überholt. Hierbei wurde sie mit 4 8-inch-Kanonen, 24 7-inch-Kanonen und 4 20-Pfündern (Salutkanonen) versehen. Der rasante Fortschritt der Marinetechnologie ließ sie und ihr Schwesterschiff Black Prince innerhalb von 10 Jahren veralten. Am 1. April 1875 wurde sie der ersten Reserveflotte zugeordnet und am 31. Mai 1883 vom Seedienst abgezogen. Ab 17. Januar 1884 wurden ihre Kanonen und die oberen Masten in Portsmouth entfernt.
Ihr Rumpf wurde als Lager verwendet, und von 1902 bis 1904 diente sie einer Kreuzerflottille als Depot. Ihr Name wurde 1904, als sie zur Torpedoausbildungsschule Vernon gebracht wurde, in Vernon III geändert. Sie versorgte die dort liegenden Rümpfe mit Dampf und Elektrizität. Im Oktober 1923 erhielt sie ihren alten Namen Warrior wieder.
Ein Abschwung in der Nachfrage nach Schrott bewirkte, dass sie sich am 25. April 1925 nicht wie geplant zur Verschrottung verkaufen ließ. Seit 1929 lag sie in der Marinewerft Pembroke Dock in Wales als schwimmernder Ölanleger. Dort blieb sie die folgenden 50 Jahre. Am 27. August 1942 wurde sie nochmals in Oil Fuel Hulk C77 umbenannt, da der Name Warrior mittlerweile für den in Bau befindlichen leichten Flugzeugträger HMS Warrior (R31) der Colossus-Klasse vorgesehen war.
Die Restaurierung zum Museumsschiff begann am 3. September 1979 in Hartlepool und wurde 1984 abgeschlossen. Dann wurde sie zu ihrem gegenwärtigen Liegeplatz in Portsmouth geschleppt. Sie wurde in Warrior (1860) umbenannt, um Verwechslungen mit dem gleichnamigen Hauptquartier der Royal Navy in Northwood zu vermeiden.
(Wikipedia)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Saab JAS 39 Gripen (griffin) is a light single-engine multirole fighter aircraft manufactured by the Swedish aerospace company Saab. In 1979, the Swedish government began development studies for an aircraft capable of fighter, attack and reconnaissance missions to replace the Saab 35 Draken and 37 Viggen. The preferred aircraft was a single-engine, lightweight single-seater, embracing fly-by-wire technology, canards, and an aerodynamically unstable design. The powerplant selected was the Volvo-Flygmotor RM12, a license-built derivative of the General Electric F404−400; engine development priorities were weight reduction and lowering component count. A new design from Saab was selected and developed as the JAS 39, first flying in 1988.
The Gripen is a multirole fighter aircraft, intended as a lightweight and agile aerial platform with advanced, highly adaptable avionics. It has canard control surfaces that contribute a positive lift force at all speeds, while the generous lift from the delta wing compensates for the rear stabilizer producing negative lift at high speeds, increasing induced drag. It is capable of flying at a 70–80 degrees angle of attack.
Being intentionally unstable and employing digital fly-by-wire flight controls to maintain stability removes many flight restrictions, improves manoeuvrability and reduces drag. The Gripen also has good short takeoff performance, being able to maintain a high sink rate and strengthened to withstand the stresses of short landings. A pair of air brakes are located on the sides of the rear fuselage; the canards also angle downward to act as air brakes and decrease landing distance
To enable the Gripen to have a long service life, roughly 50 years, Saab designed it to have low maintenance requirements. Major systems such as the RM12 engine and PS-05/A radar are modular to reduce operating cost and increase reliability. The Gripen’s systems were designed to be flexible, so that newly developed sensors, computers and armaments could be easily integrated as technology advances. The aircraft was estimated to be roughly 67% sourced from Swedish or European suppliers and 33% from the US.
To market the aircraft internationally, Saab formed partnerships and collaborative efforts with overseas aerospace companies. One example of such efforts was Gripen International, a joint partnership between Saab and BAE Systems formed in 2001. Gripen International was responsible for marketing the aircraft, and was heavily involved in the successful export of the type to South Africa; the organisation was later dissolved amidst allegations of bribery being employed to secure foreign interest and sales. On the export market, the Gripen has achieved moderate success in sales to nations in Central Europe, South Africa and Southeast Asia.
The Swedish Air Force placed a total order for 204 Gripens in three batches. The first delivery of the JAS 39A/B (single seat and two seat variants) occurred on 8 June 1993, when aircraft “39102” was handed over to the Flygvapnet during a ceremony at Linköping. The final Batch three 1st generation aircraft was delivered to FMV on 26 November 2008, but in the meantime an upgraded Gripen variant, the JAS 39C/D already rolled off of the production lines and made the initial versions obsolete. The JAS C/D gradually replaced the A/B versions in the frontline units until 2012, which were then offered for export, mothballed or used for spares for the updated Swedish Gripen fleet.
A late European export customer became the nascent Republic of Scotland. According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated that the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron for transport and SAR duties”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continued, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action with the foundation of the Poblachd na h-Alba Adhair an Airm (Republic of Scotland Air Corps/RoScAC) after the country's independence from Great Britain in late 2017. For the fighter role, Scotland was offered refurbished F-16C and Ds from the USA, but this was declined, as the type was considered too costly and complex. An offer from Austria to buy the country’s small Eurofighter fleet (even at a symbolic price) was rejected for the same reason.
Eventually, and in order to build a certain aura of neutrality, Scotland’s young and small air arm initially received twelve refurbished, NATO-compatible Saab JAS 39 Gripen (ten single-seater and two two-seaters) as well as Sk 90 trainers from Swedish overstock. These second hand machines were just the initial step in the mid-term procurement plan, though.
Even though all Scottish Gripens (locally called “Grìbhean”, designated F.1 for the JAS 39A single seaters and F.2 for the fully combat-capable JAS 39B two-seaters, respectively) were multi-role aircraft and capable of strike missions, its primary roles were interception/air defense and, to a lesser degree, reconnaissance. Due to severe budget restrictions and time pressure, these aircraft were almost identical to the Flygvapnet’s JAS 39A/B aircraft. They used the PS-05/A pulse-Doppler X band multi-mode radar, developed by Ericsson and GEC-Marconi, which was based on the latter's advanced Blue Vixen radar for the Sea Harrier that also served as the basis for the Eurofighter's CAPTOR radar. This all-weather radar is capable of locating and identifying targets 120 km (74 mi) away and automatically tracking multiple targets in the upper and lower spheres, on the ground and sea or in the air. It can guide several beyond visual range air-to-air missiles to multiple targets simultaneously. Therefore, RoScAC also procured AIM-9 Sidewinder and AIM-120 AMRAAM as primary armament for its Grìbhean fleet, plus AGM-65 Maverick air-to-ground missiles.
The twelve Grìbhean F.1 and F.2s formed the RoScAC’s 1st fighter (Sabaid) squadron, based at former RAF base Lossiemouth. Upon delivery and during their first months of service, the machines retained the former Swedish grey paint scheme, just with new tactical markings. In 2018, the RoScAC fighter fleet was supplemented with brand new KAI/Lockheed Martin TA-50 ‘Golden Eagle’ armed trainers from South Korea, which could also take over interceptor and air patrol duties. This expansion of resources allowed the RoScAC to initiate an update program for the JAS 39 fleet. It started in 2019 and included in-flight refueling through a fixed but detachable probe, a EuroFIRST PIRATE IRST, enhanced avionics with elements from the Swedish JAS 39C/D, and a tactical datalink.
With these updates, the machines could now also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
The aircraft’s designations did not change, though, the only visible external change were the additional IRST fairing under the nose, and the machines received a new tactical camouflage with dark green and dark grey upper surfaces, originally introduced with the RoScAC’s TA-50s. However, all Grìbhean F.1 single seaters received individual fin designs instead of the grey camouflage, comprising simple red and yellow fins, the Scottish flag (instead of the standard fin flash) and even a large pink thistle on a white background and a white unicorn on a black background.
Despite being 2nd hand aircraft, the Scottish JAS 39A and Bs are expected to remain in service until at least 2035.
General characteristics:
Crew: one
Length: 14.1 m (46 ft 3 in)
Wingspan: 8.4 m (27 ft 7 in)
Height: 4.5 m (14 ft 9 in)
Wing area: 30 m2 (320 sq ft)
Empty weight: 6,800 kg (14,991 lb)
Max takeoff weight: 14,000 kg (30,865 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan engine,
54 kN (12,000 lbf) dry thrust, 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: 2,460 km/h (1,530 mph, 1,330 kn)/Mach 2
Combat range: 800 km (500 mi, 430 nmi)
Ferry range: 3,200 km (2,000 mi, 1,700 nmi)
Service ceiling: 15,240 m (50,000 ft)
g limits: +9/-3
Wing loading: 283 kg/m2 (58 lb/sq ft)
Thrust/weight: 0.97
Takeoff distance: 500 m (1,640 ft)
Landing distance: 600 m (1,969 ft)
Armament:
1× 27 mm Mauser BK-27 revolver cannon with 120 rounds
8 hardpoints (Two under the fuselage, one of them dedicated to FLIR / ECM / LD / Recon pods plus
two under and one on the tip of each wing) with a capacity of 5 300 kg (11 700 lb)
The kit and its assembly:
Nothing spectacular – actually, this build is almost OOB and rather a livery what-if model. However, I had the plan to build a (fictional) Scottish Gripen on my agenda for some years now, since I started to build RoScAC models, and the “Back into service” group build at whatifmodlers.com in late 2019 was a good motivation to tackle this project.
The starting point was the Italeri JAS 39A kit, a rather simple affair that goes together well but needs some PSR on almost every seam. Not much was changed, since the model would depict a slightly updated Gripen A – the only changes I made were the additional IRST fairing under the nose, the ejection handle on the seat and a modified ordnance which consists of a pair of AIM-9L and AIM-120 (the latter including appropriate launch rails) from a Hasegawa air-to-air weapons set. The ventral drop tank is OOB.
Painting and markings:
The motivation a behind was actually the desire to build a Gripen in a different livery than the usual and rather dull grey-in-grey scheme. Therefore I invented a tactical paint scheme for “my” RoScAC, which is a modified RAF scheme from the Seventies with uppers surfaces in Dark Green (Humbrol 163) and Dark Sea Grey (164), medium grey flanks, pylons, drop tank and a (theoretically) grey fin (167 Barley Grey, today better known as Camouflage Grey) plus undersides in Light Aircraft Grey (166), with a relatively high and wavy waterline, so that a side or lower view would rather blend with the sky than the ground below. The scheme was designed as a compromise between air superiority and landscape camouflage and somewhat inspired by the many experimental schemes tested by the German Luftwaffe in the early Eighties. The Scottish TA-50 I built some years ago was the overall benchmark, but due to the Gripen’s highly blended fuselage/wing intersections, I just painted the flanks under the cockpit and the air intakes as well as a short portion of the tail section in Barley Grey. That’s overall darker than intended (esp. in combination with the fin decoration, see below), but anything grey above the wings would have looked awkward.
As a reminiscence of the late British F-4 Phantoms, which carried a grey low-viz scheme with bright fins as quick ID markings, I added such a detail to the Gripen, too – in this case in the form of a stylized Scottish flag on the fin, with some mild 3D effect. The shadow and light effects were created through wet-in-wet painting of lighter and darker shades into the basic blue (using Humbrol 25, 104 and ModelMaster French Blue). Later, the white cross was added with simple decal stripes, onto which similar light effects were added with white and light grey, too.
Even though this one looks similar to my Scottish TA-50, which was the first model to carry this paint scheme, I like the very different look of this Gripen through its non-all-grey paint scheme. It’s also my final build of my initial RoScAC ideas, even though I am now considering a helicopter model (an SAR SA 365 Dauphin, maybe?) in fictional Scottish markings, too.
The ultimate truth is not capable of being fully and adequately expressed in concepts and words. The ultimate truth is about the situation that pertains between God and man. “The Torah speaks in the language of man.” Revelation is always an accommodation to the capacity of man. No two minds are alike, just as no two faces are alike. The voice of God reaches the spirit of man in a variety of ways, in a multiplicity of languages. One truth comes to expression in many ways of understanding.
-Moral Grandeur and Spiritual Audacity: Essays by Abraham Joshua Heschel
I attended a good friends wedding in Inverness, I stayed overnight and decided to capture Inverness Castle and the surrounding area, moving a few miles further North to visit Urquhart Castle too.
This set of photos is from my visit to Inverness on Friday 27th July 2018, it was a magnificent summers day, the city was beautiful , I had a great day .
Inverness - from the Scottish Gaelic: Inbhir Nis ,meaning "Mouth of the River Ness".
Scots: Inerness) is a city in the Scottish Highlands. It is the administrative centre for the Highland council area, and is regarded as the capital of the Highlands. Inverness lies near two important battle sites: the 11th-century battle of Blàr nam Fèinne against Norway which took place on the Aird and the 18th century Battle of Culloden which took place on Culloden Moor.
It is the northernmost city in the United Kingdom and lies within the Great Glen (Gleann Mòr) at its north-eastern extremity where the River Ness enters the Moray Firth.
At the latest, a settlement was established by the 6th century with the first royal charter being granted by Dabíd mac Maíl Choluim (King David I) in the 12th century. The Gaelic king Mac Bethad Mac Findláich (MacBeth) whose 11th-century killing of King Duncan was immortalised in Shakespeare's largely fictionalized play Macbeth, held a castle within the city where he ruled as Mormaer of Moray and Ross.
The population of Inverness grew from 40,969 in 2001 to 46,869 in 2012.
The Greater Inverness area, including Culloden and Westhill, had a population of 59,969 in 2012. In 2018 it has a population of 69,989.
Inverness is one of Europe's fastest growing cities,with a quarter of the Highland population living in or around it, and is ranked fifth out of 189 British cities for its quality of life, the highest of any Scottish city.
In the recent past, Inverness has experienced rapid economic growth: between 1998 and 2008, Inverness and the rest of the central Highlands showed the largest growth of average economic productivity per person in Scotland and the second greatest growth in the United Kingdom as a whole, with an increase of 86%.
Inverness is twinned with one German city, Augsburg, and two French towns, La Baule and Saint-Valery-en-Caux.
Inverness College is the main campus for the University of the Highlands and Islands.
With around 8,500 students, Inverness College hosts around a quarter of all the University of the Highlands and Islands' students, and 30% of those studying to degree level.
In 2014, a survey by a property website described Inverness as the happiest place in Scotland and the second happiest in the UK.
Inverness was again found to be the happiest place in Scotland by a new study conducted in 2015.
Inverness was one of the chief strongholds of the Picts, and in CE 565 was visited by St Columba with the intention of converting the Pictish king Brude, who is supposed to have resided in the vitrified fort on Craig Phadrig, on the western edge of the city.
A 93 oz (2.9 kg) silver chain dating to 500–800 was found just to the south of Torvean in 1983.
A church or a monk's cell is thought to have been established by early Celtic monks on St Michael's Mount, a mound close to the river, now the site of the Old High Church and graveyard.
The castle is said to have been built by Máel Coluim III (Malcolm III) of Scotland, after he had razed to the ground the castle in which Mac Bethad mac Findláich (Macbeth) had, according to much later tradition, murdered Máel Coluim's father Donnchad (Duncan I), and which stood on a hill around 1 km to the north-east.
The strategic location of Inverness has led to many conflicts in the area. Reputedly there was a battle in the early 11th century between King Malcolm and Thorfinn of Norway at Blar Nam Feinne, to the southwest of the city.
Inverness had four traditional fairs, including Legavrik or "Leth-Gheamhradh", meaning midwinter, and Faoilleach. William the Lion (d. 1214) granted Inverness four charters, by one of which it was created a royal burgh. Of the Dominican friary founded by Alexander III in 1233, only one pillar and a worn knight's effigy survive in a secluded graveyard near the town centre.
Medieval Inverness suffered regular raids from the Western Isles, particularly by the MacDonald Lords of the Isles in the fifteenth century. In 1187 one Domhnall Bán (Donald Ban) led islanders in a battle at Torvean against men from Inverness Castle led by the governor's son, Donnchadh Mac An Toisich (Duncan Mackintosh).
Both leaders were killed in the battle, Donald Ban is said to have been buried in a large cairn near the river, close to where the silver chain was found.
Local tradition says that the citizens fought off the Clan Donald in 1340 at the Battle of Blairnacoi on Drumderfit Hill, north of Inverness across the Beauly Firth.
On his way to the Battle of Harlaw in 1411, Donald of Islay harried the city, and sixteen years later James I held a parliament in the castle to which the northern chieftains were summoned, of whom three were arrested for defying the king's command.
Clan Munro defeated Clan Mackintosh in 1454 at the Battle of Clachnaharry just west of the city.
Clan Donald and their allies stormed the castle during the Raid on Ross in 1491.
Engraving of Inverness from A Tour in Scotland by Thomas Pennant, 1771.
In 1562, during the progress undertaken to suppress Huntly's insurrection, Mary, Queen of Scots, was denied admittance into Inverness Castle by the governor, who belonged to the earl's faction, and whom she afterwards caused to be hanged.
The Clan Munro and Clan Fraser of Lovat took the castle for her.
The house in which she lived meanwhile stood in Bridge Street until the 1970s, when it was demolished to make way for the second Bridge Street development.
Beyond the then northern limits of the town, Oliver Cromwell built a citadel capable of accommodating 1,000 men, but with the exception of a portion of the ramparts it was demolished at the Restoration. The only surviving modern remnant is a clock tower.
Inverness played a role in the Jacobite rising of 1689. In early May, it was besieged by a contingent of Jacobites led by MacDonell of Keppoch. The town was actually rescued by Viscount Dundee, the overall Jacobite commander, when he arrived with the main Jacobite army, although he required Inverness to profess loyalty to King James VII.
In 1715 the Jacobites occupied the royal fortress as a barracks. In 1727 the government built the first Fort George here, but in 1746 it surrendered to the Jacobites and they blew it up.
Culloden Moor lies nearby, and was the site of the Battle of Culloden in 1746, which ended the Jacobite rising of 1745–46.
The Rose Street drill hall was completed in around 1908.
On 7 September 1921, the first British Cabinet meeting to be held outside London took place in the Town House, when David Lloyd George, on holiday in Gairloch, called an emergency meeting to discuss the situation in Ireland.
The Inverness Formula composed at this meeting was the basis of the Anglo-Irish Treaty.
Inverness and its immediate hinterland have a large number of originally Gaelic place names as the area was solidly Gaelic-speaking until the late 19th century.
Several springs which were traditionally thought to have healing qualities exist around Inverness. Fuaran Dearg, which translates as the "red spring" is a chalybeate spring located near Dochgarroch. Fuaran a' Chladaich (The Spring on the Beach) near Bunchrew was once accessed by a causeway from the shore. Although submerged at high tide it continues to bubble and was traditionally known for treating cholera. Fuaran Allt an Ionnlaid (Well of the Washing Burn) at Clachnaharry, where the Marquis of Montrose was allowed to drink while on his way from his capture in Sutherland to his execution in Edinburgh, was known for treating skin conditions. Also at Clachnaharry, Fuaran Priseag (The Precious Well) was said to have been blessed by Saint Kessock and could treat weak and sore eyes, as well as expelling evil and shielding curses if a silver coin was offered. Tobar na h-Oige (Well of the Young) is located near Culloden and was known for curing all ailments. Fuaran a' Chragan Bhreag (Well of the Speckled Rock) is located near Craig Dundain and Fuaran na Capaich (The Keppoch Well) is located near Culloden.[28] Although a Gaelic name itself, Craig Phadraig is alternatively known as Làrach an Taigh Mhóir, or "the place of the Great house".
Several Gaelic place names are now largely obsolete due to the feature being removed or forgotten. Drochaid an Easain Duibh (Bridge by the Small Dark Waterfall), referred to in the tale Aonghas Mòr Thom na h-Iubhraich agus na Sìthichean (Great Angus of Tomnahurich and the Fairies) has not yet been located within Inverness and Slag nam Mèirleach (meaning Robbers' hollow), adjacent to Dores Road in Holm is no longer in use. Until the late 19th century, four mussel beds existed on the delta mouth of the River Ness: 'Scalp Phàdraig Mhòir' (Scalp of Great Patrick), 'Rònach' (Place of the Seals) 'Cridhe an Uisge' (The Water Heart) and 'Scalp nan Caorach' (Scalp of the Sheep) – these mussel beds were all removed to allow better access for fishing boats and ships.
Allt Muineach (The Thicket River) now runs underground between Culcabock Roundabout and Millburn Roundabout. An Loch Gorm (The Turquoise Loch), a small sea loch which was situated beside Morrisons supermarket, was filled in during the 19th century and lives on only in the name of Lochgorm Warehouse. Abban Street stems from the word àban, a word of local Gaelic dialect meaning a small channel of water.
Many prominent points around Inverness retain fully Gaelic names.
Beinn Bhuidhe Bheag – Little Yellow Hill
Beinn Uan – Lamb Hill
Cnoc na Mòine – The Peat Hill
Cnoc na Gaoithe – The Hill of the Wind
Cnoc an t-Seòmair – The Hill of the Room
Creag Liath – Grey Crag
Creag nan Sidhean – The Crag of the Fairies
Doire Mhòr – Great Oakwood
Carn a' Bhodaich – The Old Man's Cairn
Meall Mòr – Great Hill
In the colonial period, a Gaelic speaking settlement named New Inverness was established in McIntosh County, Georgia, by settlers from in and around Inverness.
The name was also given by expatriates to settlements in Quebec, Nova Scotia, Montana, Florida, Illinois, and California.
The name Inverness is also given to a feature on Miranda, a moon of the planet Uranus, as well as a 2637 m tall mountain in British Columbia, Canada.[
Inverness is also known by its nicknames Inversnecky or The Sneck, with its inhabitants traditionally known as "Clann Na Cloiche" ("Children of the Stone" in Gaelic) owing to the importance of the Clach Na Cudainn stone in the city's history.
Inverness is situated at the mouth of the River Ness (which flows from nearby Loch Ness) and at the south-western extremity of the Moray Firth. The city lies at the end of the Great Glen with Loch Ness, Loch Ashie and Loch Duntelchaig to the west. Inverness's Caledonian Canal also runs through the Great Glen, connecting Loch Ness, Loch Oich, and Loch Lochy.
The Ness Islands, a publicly owned park, consists of two wooded islands connected by footbridges and has been used as a place of recreation since the 1840s.
Craig Phadraig, once an ancient Gaelic and Pictish hillfort, is a 240 m hill which offers hikes on a clear pathway through the wooded terrain.
Inverness lies on the Great Glen Fault.
There are minor earthquakes, usually unnoticed by locals, about every 3 years. The last earthquake to affect Inverness was in 1934.
Climate
Like the rest of Scotland, Inverness has an oceanic climate. Its sheltered location makes it one of the driest areas in Scotland. Inverness sees around 18.3 days of falling snow per year, and the record accumulation of snow was 1 foot 2 inches in January 2010.
The climate here is much colder than south-eastern Britain.
The highest temperature recorded is 29.7 °C in July 2006. Typically the year's warmest day rises to 25.4 °C with a total of 2 days per year reaching or exceeding 25.1 °C. The lowest temperature recorded is -18.7 °C in January 2010. Typically the coldest night falls to -10.6 °C.
Climate in this area has mild differences between highs and lows[clarification needed], and there is adequate rainfall year-round.
The Köppen climate classification subtype for this climate is "Cfb" (marine west coast climate/oceanic climate).
Important buildings in Inverness include Inverness Castle, and various churches.
The castle was built in 1835 on the site of its medieval predecessor. It is now a sheriff court.
Inverness Cathedral, dedicated to St Andrew, is a cathedral of the Scottish Episcopal Church and seat of the ordinary of the Diocese of Moray, Ross and Caithness. The cathedral has a curiously square-topped look to its spires, as funds ran out before they could be completed.
The oldest church is the Old High Church, on St Michael's Mount by the riverside, a site perhaps used for worship since Celtic times. The church tower dates from mediaeval times, making it the oldest surviving building in Inverness. It is used by the Church of Scotland congregation of Old High St Stephen's, Inverness,[98] and it is the venue for the annual Kirking of the Council, which is attended by local councillors.
There is no Catholic cathedral in the area as the Diocese's cathedral (St Mary) is at Aberdeen, the seat of the Diocese of Aberdeen. The Catholic population is served by two parish churches: St Mary's Church, founded in 1837, is the older of the two and the first Catholic church founded in Inverness since the Reformation.
St Ninian's was built during the 1960s and 1970s.
Inverness College is the hub campus for the UHI Millennium Institute.
Porterfield Prison, officially HMP Inverness, serves the courts of the Highlands, Western Isles, Orkney Isles and Moray, providing secure custody for all remand prisoners and short-term adult prisoners, both male and female, who are segregated.
Notable people
Main category: People from Inverness
Charlie Christie – Footballer; career included playing for Celtic and Inverness Caledonian Thistle
Charles Fraser Mackintosh (Teàrlach Friseal Mac An Toisich) – lawyer, author and politician. Born and raised in Inverness and represented the Highlands in Westminster.
Yvette Cooper – Work and Pensions Secretary in the Brown Cabinet,was born in Inverness
Don Cowie – Footballer, currently playing for Heart of Midlothian
James Alexander Forbes – British Vice-Consul to Mexican California as well as the first British Consul to the American state of California
Karen Gillan – Actress, best known as Amy Pond, the Doctor's Companion in Doctor Who
Elspet Gray – Actress
Murray Grigor – Scottish film-maker
Derry Irvine – Former Lord Chancellor (under Tony Blair); was born in Inverness
Malcolm Jones – Musician; guitar player for Runrig
Charles Kennedy – Former leader of the Liberal Democrats; was born in Inverness
Russell Knox – Scottish professional golfer who plays on the PGA Tour
Kevin MacDonald – Former footballer who played for Liverpool F.C., and former caretaker first team coach at Aston Villa
John A. Mackay – Presbyterian theologian, missionary, and educator
Mary Macpherson – (Màiri Nic a' Phearsain) poet and political activist, "Great Mairi of the Songs" raised her children in Inverness, where she wrote much of her work.
John McGinlay – Former footballer who played as a striker, most notably for Bolton Wanderers
Very Rev Mitford Mitchell DD Moderator of the General Assembly of the Church of Scotland in 1903
Ethel Moir – Nursing orderly with Scottish Women's Hospitals for Foreign Service
Ali Smith – Author; born in Inverness in 1962
Mr Egg – MacAcidhouse musician; born in Inverness on 7 January 1959
Major General Douglas Wimberley—British Army officer, born in Inverness 16 August 1896, service in World War I and World War II
Josephine Tey – Author
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the late 1970ies, the Mikoyan OKB design bureau began working on a very light “strike fighter” that was intended to be a direct competitor to the F-16 Fighting Falcon. This new Mikoyan design, designated Izdeliye 33 (Izd 33) (and variously translated as “Article 33”, “Project 33”, “Product 33”, or “Project R-33”), was of conventional layout and similar in appearance to the F-16, with a fixed geometry, chin-mounted air intake and a blended wing and body layout and pronounced leading edge root extensions (LERX).
The aircraft was originally powered by a single Klimov RD-33 afterburning turbofan engine – the same engine used by the twin-engined MiG-29. Overall, the Izdeliye 33 was less complex and capable than the MiG-29, but also much cheaper in acquisition and operation.
The Izdeliye 33’s outlines resembled the MiG-29, but actually only a few components were shared, e .g. the landing gear. All aerodynamic surfaces were different, and the BWB fuselage with its single engine and air intake duct necessitated a much different internal structure.
After extensive wind-tunnel testing and evaluation of several aerodynamic details (e. g. different LERX layouts with blended edges or dogtooth tips, and different elevator layouts), the first prototype was built and successfully tested in 1984.
Progress was slow, since most of OKB MiG’s resources were concentrated on the MiG-29, though, but the aircraft showed good characteristics. State acceptance trials were underway when the program received a hard blow in 1986: the Soviet Air Force (VVS) dropped its support for the Izdeliye 33, due to VVS’ change of operational needs, financial constraints, a growing preference for multirole designs and the doctrine not to operate single engine combat aircraft anymore.
Since development of the Izdeliye 33 had already progressed to the hardware stage and the VVS was about to introduce it’s a new fighter generation (the MiG-29 as tactical fighter and the bigger Su-27 as long range inteceptor), which were not allowed for export at that time, the Izdeliye 33’s role was changed.
With the domestic market barred, it became a light fighter aircraft with not-so-up-tp-date avionics for foreign operators, much like the former American F-5 program. Sales potential was regarded as high, because many Soviet-friendly nations operating the ageing MiG-21 or MiG-23 export models at that time would appreciate a relatively simple and cost-efficient replacement.
In due course the aircraft received the official designation MiG-33SE ("S" for, "seriynyy" = serial and "E" for "eksportnyy" = export).
These production aircraft differed in several details from the Izdeliye 33, the most obvious change were enlarged elevator surfaces and bulges on the flanks which had become necessary in roder to fit bigger low pressure tires to the main landing gear for operations on rough airstrips.
Compared with the prototypes, the operational MiG-33 was powered by a Tumansky R-25-300 turbojet, rated at 55 kN (12,000 lbf) dry military power, 68.5 kN (15,400 lbf) with afterburner and 96.8 kN (21,800 lbf) for 3 minutes with boosted afterburner (CSR mode, altitude < 4,000 metres (13,000 ft)). The air intake received an adjustable ramp and the radome became smaller.
The first airframes left the Sokol production plant at Nizhny Novgorod in 1987. When the aircraft became known to the public it received the ACSS code name “Foghorn” in the West.
Instead of the MiG-29's state-of-the-art Phazotron RLPK-29 radar fire control system, a less sophisticated RLPK-29E targeting system, based on the N019EA "Rubin" radar, was fitted. As a secondary sensor, a modified S-31E optoelectronic targeting/navigation system and different IFF transponders were fitted.
This avionics suite still featured modes for look-down/shoot-down and close-in fighting. With this equipment, the MiG-33SE was able to carry the new and very effective R-73 (NATO: AA-11 "Archer") short-range air-to-air missile, as well as the R-27 (AA-10 "Alamo") mid-range AAM with IR and radar homing. A SPO-15L "Beryoza" ("Birch") radar warning receiver was carried, too, along with chaff/flare dispensers.
The new type quickly found buyers: first orders came, among others, from Algeria, Angola, Eritrea, North Korea and Vietnam, and deliveries started in early 1988. In 1989 the MiG-33SE was also offered to India for license production (replacing the country’s large MiG-21 fleet), but the country wanted a more potent aircraft and eventually became one of the first MiG-29 export customers.
Beyond its operational service, the MiG-33SE left other footprints in Asia, too. Following the cancellation of U.S. and European companies’ participation in the development of the Westernized Chengdu J-7 variant known as the “Super-7”, China launched a program in 1991 to develop an indigenous evolution of this MiG-21-based design, which it designated the FC-1 (“Fighter China 1”).
To expedite its development, officials of the Chengdu Aircraft Industries Corporation (CAC) or the China National Aero-Technology Import and Export Corporation (CATIC) – perhaps both – approached Mikoyan for technical support.
In 1998, CATIC purchased Izdeliye 33 design and test information from the Mikoyan design bureau, along with other research and development assistance. These designs were used for the development of JF-17 / FC-1 by Pakistan and China, which entered production in 2007.
General characteristics:
Crew: 1
Length (incl. pitot): 16,2 m (53 ft)
Wingspan: 10.73 m (35 ft 1.5 in)
Height: 5,5 m (18 ft)
Wing area: 35,6 m² (382 ft²)
Empty weight: 18,900 lb (8,570 kg)
Loaded weight: 26,500 lb (12,000 kg)
Max. takeoff weight: 42,300 lb (19,200 kg)
Fuel capacity: 3,500 kg. (7,716 lbs.) internally
Powerplant:
1× Tumansky R-25-300 turbojet, rated at 55 kN (12,000 lbf) dry military power,
68.5 kN (15,400 lbf) with afterburner and 96.8 kN (21,800 lbf) emergency power
Performance:
Maximum speed: Mach 2.2 (2,530+ km/h, 1,500+ mph) at high altitude; 1,110 km/h (690 mph) at low altitude
Range: 1,550 km (837 nmi, 963 mi) with drop tanks
Ferry range: 3,335 km (1,800 nmi, 2,073 mi) with auxiliary fuel
Service ceiling: 17,060 m (59,000 ft)
Rate of climb: 285 m/s (56,000 ft/min)
Wing loading: 337 kg/m² (69 lb/ft²)
Thrust/weight: 0.7 at loaded weight
Maximum design g-load: +9 g
Armament:
1x 30 mm GSh-30-1 cannon with 150 rounds in the left fuselage side
7 Hard points (6x pylons under-wing, 1x under fuselage) for up to 3,500 kg (7,720 lb)
of ordnance including six air-to-air missiles — a mix of semi-active radar homing
(SARH)/infrared homing R-60, R-27, R-73, active radar homing R-77 AAMs.
Air-to-ground weapons include RBK-500, PB-250, FAB-250, FAB 500-M62, TN-100, ECM Pods,
S-8 rockets in respective pods, S-24 unguided rockets and guided Kh-25 and Kh-29 ASMs
The kit and its assembly:
Firts submission to 2016's first Group Build I take part in - the Cold War GB at whatifmodelers.com, and this year also starts with a "real what-if aircraft": MiG’s Izdeliye 33 was a real project, but it never got off of the drawing board or beyond wind tunnel test models. Nevertheless, it makes a great Whif topic, had it entered production and service.
Most interesting is the fact that the Izdeliye 33 looks a lot like the American F-16, but only superficially. Creating this aircraft as a model from scratch is rather challenging, because there are only few sources to consult, and you need a basis to start from. For the latter you have IMHO two options, beyond carving it from wood: convert an F-16 kit and change details or use a MiG-29 as basis, because it was a contemporary design and features many analogies and design details.
I rejected the F-16 route, because the result would certainly look like a poor Soviet fighter prop from a Hollywood B movie. The MiG-29 route would take (much) more work, but the result appear like a unique aircraft with Russian heritage, IMHO. And I think that's also the way the MiG engineers went somehow: take the two engine design, and narrow it for just a single engine.
Another factor for this design route was the donation kit that I had bought for this project some time ago: a Nakotne MiG-29 from Latvia, which is the worst model representation of the Fulcrum that I have seen so far. It is simple, and almost no detail is correct. Furthermore, it features crude, raised panel lines and a plastic that is rather brittle and thick, not easy to work with. I was somehow reminded of the products of VEB Plasticart from GDR times… But this wrongness was actually the kit’s selling point, as well as its low price tag.
The basic idea was to narrow the fuselage so that a single, wide air intake and an engine bay of bigger diameter than the original RD-33 nacelles remained – easy to do, because the whole lower fuselage half, even including the air intakes, are just a single piece! The front section was cut off, too, and a totally new cockpit tub was added - from a Revell Fiat G.91.
Inside, a jet engine fan, a scratched air duct with a ramp and some engine bay interior (which is visible through empty holes for the main landing gear bays…) were added.
Using the finished, narrowed fuselage as pattern, the upper half was cut into pieces, too: The spine and the cockpit section remained, shortened at the end and lowered in depth, as well as narrow outer BWB sections that would match the spine’s width when mounted. With lots of putty and body sculpting a new upper fuselage was created, as well as a new tail section for a bigger, single jet exhaust.
The nozzle is a mix from a Revell F-16 intersection (necessary in order to bridge the rather oval fuselage end with the round nozzle), a Matchbox F-14 nozzle and inside a sprocket wheel from an 1:72 Panzer IV mimicks an afterburner...
A new nose cone had to be used, too, and as a weird concidence a vintage Matchbox F-16 radome in the spares box (probably 30 years old!) was a perfect match to the fuselage, which had to be shortened at the front end, too, because the narrowed fuselage somewhat disturbed overall proportions.
The wings were taken OOB from the Nakotne kit, their (utterly wrong) square shape reminds a lot of the F-16, but they were placed about 5mm further forward. The elevators come from an Intech F-16C, with a dogtooth manually added (F-15 style, as seen on the later Izdeliye 33 model that can be found in literature). The single, tall fin is a mix of an Intech F-16 root combined with a modified Italeri F-18 Hornet fin. The stabilizer fins under the rear fuselage belong to an Italeri F-16.
The landing gear had to be modified, too. The OOB pieces are rather clumsy, and only the main struts survived. Their attchment points had to be moved forward, though, due to the overall change of proportions of the model. New wheels were used, too. The main wheels come from an Italeri X-32, while the front wheel comes, IIRC, from a Matchbox A-4M main landing gear.
Besides, the front wheel arrangement had to be re-designed, because the original position half way between the air intake trunks was not possible anymore and the new intake ramp needed space, too. Finding a plausible arrangement was not easy, since I did not want to change the OOB air intake position. So a new well was cut out under the cockpit section, the cockpit floor becoming a part of the well, and the single front wheel now retracts forward. O.K.,FOD now poses a serious issue, but I'd assume that my MiG-33 would have received louvres like the MiG-29 that prevent damage while taxiing?
Keen eyes might notice a front wheel change in the course of several beauty pics - the result of a kit crash from the holder which (only) smashed the front wheel strut. I replaced it with a better piece from an Italeri BAe Hawk. Took some adaptation work, but in the end it looks even better than the original attempt.
Around the hull several sensors, pitots and antennae were added from scratch, since the whole kit had lost a lot of its raised panel lines and other details in the construction process.
The underwing pylons were taken OOB, but the ordnance was totally replaced by more delicate versions of the R-27 and R-60 AAMs - these were taken from a leftover OOB set from an Italeri MiG-29.
Lots of work, but worthwhile!
Painting and markings:
As a non VVS-aircraft, there were many options for exotic customers, and I settled for Vietnam. Reason behind it is that I was inspired by VPAF Su-22 fighter bombers, which carry either a four-tone tactical camouflage or are painted in two shades of an intense (if not blatant) and cold baby blue!
These uniform upper and lower surfaces really carry bright colors, and together with the red and yellow VPAF cockades plus the typically red tactical codes these aircraft rather look like aggressors or fake museum or movie pieces! Especially when they carry drop tanks sporting the tactical scheme’s colors… Ugh!
The basic tone for everything is Humbrol's 44 (Pastel Blue), a co0lor I never expected to apply on a model in this amount! On the underside it was used at 100% as basic tone, while for the upper surfaces it was mixed 4:1 with Humbrol 144 (FS 35614, Intermediate Blue) and a drop of ModelMaster's Ultramarine Blue. The difference between these two tones is hard to tell, though.
Radomes were painted in Ocean Grey (Humbrol 106), while the cockpit was kept in typical Soviet cockpit teal. The landing gear wells were painted with a mix of Aluminum and Chromate Primer (Humbrol 56 and 81).
A serious issue during the painting process was the recreation of panel lines and some surface structures. Some lines in the wings and the spine were still intact, and these were in a first step made visible through grinded graphite, gently rubbed across the surfaces with a soft cloth.
From these, new/additional panel lines were painted on the blank surfaces with a very soft pencil - and you can hardly tell where these blur into each other. Panels themselves were emphasized through dry painting with lighter basic tones, and some more effects were added through more dull blue-grey shades. Not perfect, but for such a heavily modified kit not bad at all.
The decals appear minimalistic, just with roundels (from a PrintScale L-39 sheet), the tactical code (typical Chinese code digits from a Trumpeter J-8II sheet) and the eagle emblems (from a Begemot MiG-29 sheet), but there are probably more than sixty small red or black stencils all over the hull, taken from the OOB Nakotne sheet.
After some final weathering with graphite (esp. around the nozzle) the whole kit was sealed with acrylic matt varnish from the rattle can, and final details like position lights, pitot tips or the glossy IRST in front of the canopy were crafted.
The missiles received typical real world liveries, basically with white bodies and the R-27's fins in shades of grey.
A major conversion project, but the result looks interesting: the F-16 that was not, sort of.
It's funny to find many influences from other designs, and while one could take the Izdeliye 33 as a blunt F-16 copy I do not think that it was one, rather a retrograded MiG-29, following aerodynamic necessities that would lead to a similar overall outline.
And the bright blue color is really uniue - if this one does not stand out (at least on the ground, at altitude it appreas to be very effectice!), what else? Probably only the Red Arrows...
Some background:
The idea for a heavy infantry support vehicle capable of demolishing heavily defended buildings or fortified areas with a single shot came out of the experiences of the heavy urban fighting in the Battle of Stalingrad in 1942. At the time, the Wehrmacht had only the Sturm-Infanteriegeschütz 33B available for destroying buildings, a Sturmgeschütz III variant armed with a 15 cm sIG 33 heavy infantry gun. Twelve of them were lost in the fighting at Stalingrad. Its successor, the Sturmpanzer IV, also known by Allies as Brummbär, was in production from early 1943. This was essentially an improved version of the earlier design, mounting the same gun on the Panzer IV chassis with greatly improved armour protection.
While greatly improved compared to the earlier models, by this time infantry anti-tank weapons were improving dramatically, too, and the Wehrmacht still saw a need for a similar, but more heavily armoured and armed vehicle. Therefore, a decision was made to create a new vehicle based on the Tiger tank and arm it with a 210 mm howitzer. However, this weapon turned out not to be available at the time and was therefore replaced by a 380 mm rocket launcher, which was adapted from a Kriegsmarine depth charge launcher.
The 380 mm Raketen-Werfer 61 L/5.4 was a breech-loading barrel, which fired a short-range, rocket-propelled projectile roughly 1.5 m (4 ft 11 in) long. The gun itself existed in two iterations at the time. One, the RaG 43 (Raketenabschuss-Gerät 43), was a ship-mounted anti-aircraft weapon used for firing a cable-spooled parachute-anchor creating a hazard for aircraft. The second, the RTG 38 (Raketen Tauch-Geschoss 38), was a land-based system, originally planned for use in coastal installations by the Kriegsmarine firing depth-charges against submarines with a range of about 3.000 m. For use in a vehicle, the RTG 38 was to find use as a demolition gun and had to be modified for that role. This modification work was carried out by Rheinmetall at their Sommerda works.
The design of the rocket system caused some problems. Modified for use in a vehicle, the recoil from the modified rocket-mortar was enormous, about 40-tonnes, and this meant that only a heavy chassis could be used to mount the gun. The hot rocket exhaust could not be vented into the fighting compartment nor could the barrel withstand the pressure if the gasses were not vented. Therefore, a ring of ventilation shafts was put around the barrel which channeled the exhaust and gave the weapon something of a pepperbox appearance.
The shells for the weapon were extremely heavy, far too heavy for a man to load manually. As a result, each of them had to be carried by means of a ceiling-mounted trolley from their rack to a roller-mounted tray at the breech. Once on the tray, four soldiers could then push it into the breech to load it. The whole process took 10 minutes per shot from loading, aiming, elevating and, finally, to firing.
There were a variety of rocket-assisted round types with a weight of up to 376 kg (829 lb), and a maximum range of up to 6,000 m (20,000 ft), which either contained a high explosive charge of 125 kg (276 lb) or a shaped charge for use against fortifications, which could penetrate up to 2.5 m (8 ft 2 in) of reinforced concrete. The stated range of the former was 5,650 m (6,180 yd). A normal charge first accelerated the projectile to 45 m/s (150 ft/s) to leave the short, rifled barrel, the 40 kg (88 lb) rocket charge then boosted this to about 250 m/s (820 ft/s).
In September 1943 plans were made for Krupp to fabricate new Tiger I armored hulls for the Sturmtiger. The Tiger I hulls were to be sent to Henschel for chassis assembly and then to Alkett, where the superstructures would be mounted. The first prototype was ready and presented in October 1943. By May 1944, the Sturmtiger prototype had been kept busy with trials and firing tests for the development of range tables, but production had still not started yet and the concept was likely to be scrapped. Rather than ditch the idea though, orders were given that, instead of interrupting the production of the Tiger I, the Sturmtigers would be built on the chassis of Tiger I tanks which had already been in action and suffered serious damage. Twelve superstructures and RW 61 weapons were prepared and mounted on rebuilt Tiger I chassis. However, by August 1944 the dire need for this kind of vehicle led to the adaptation of another chassis to the 380 mm Sturmmörser: the SdKfz. 184, better known as “Ferdinand” (after its designer’s forename) and later, in an upgraded version, “Elefant”.
The Elefant (German for "elephant") was actually a heavy tank destroyer and the result of mismanagement and poor planning: Porsche GmbH had manufactured about 100 chassis for their unsuccessful proposal for the Tiger I tank, the so-called "Porsche Tiger". Both the successful Henschel proposal and the Porsche design used the same Krupp-designed turret—the Henschel design had its turret more-or-less centrally located on its hull, while the Porsche design placed the turret much closer to the front of the superstructure. Since the competing Henschel Tiger design was chosen for production, the Porsche chassis were no longer required for the Tiger tank project, and Porsche was left with 100 unfinished heavy tank hulls.
It was therefore decided that the Porsche chassis were to be used as the basis of a new heavy tank hunter, the Ferdinand, mounting Krupp's newly developed 88 mm (3.5 in) Panzerjägerkanone 43/2 (PaK 43) anti-tank gun with a new, long L71 barrel. This precise long-range weapon was intended to destroy enemy tanks before they came within their own range of effective fire, but in order to mount the very long and heavy weapon on the Porsche hull, its layout had to be completely redesigned.
Porsche’s SdKfz. 184’s unusual petrol-electric transmission made it much easier to relocate the engines than would be the case on a mechanical-transmission vehicle, since the engines could be mounted anywhere, and only the length of the power cables needed to be altered, as opposed to re-designing the driveshafts and locating the engines for the easiest routing of power shafts to the gearbox. Without the forward-mounted turret of the Porsche Tiger prototype, the twin engines were relocated to the front, where the turret had been, leaving room ahead of them for the driver and radio operator. As the engines were placed in the middle, the driver and the radio operator were isolated from the rest of the crew and could be addressed only by intercom. The now empty rear half of the hull was covered with a heavily armored, full five-sided casemate with slightly sloped upper faces and armored solid roof, and turned into a crew compartment, mounting a single 8.8 cm Pak 43 cannon in the forward face of the casemate.
From this readily available basis, the SdKfz. 184/1 was hurriedly developed. It differed from the tank hunter primarily through its new casemate that held the 380 mm Raketenwerfer. Since the SdKfz. 184/1 was intended for use in urban areas in close range street fighting, it needed to be heavily armoured to survive. Its front plate had a greater slope than the Ferdinand while the sides were more vertical and the roof was flat. Its sloped (at 47° from vertical) frontal casemate armor was 150 mm (5.9 in) thick, while its superstructure side and rear plates had a strength of 82 mm (3.2 in). The SdKfz.184/1 also received add-on armor of 100 mm thickness, bolted to the hull’s original vertical front plates, increasing the thickness to 200 mm but adding 5 tons of weight. All these measures pushed the weight of the vehicle up from the Ferdinand’s already bulky 65 t to 75 t, limiting the vehicle’s manoeuvrability even further. Located at the rear of the loading hatch was a Nahverteidigungswaffe launcher which was used for close defense against infantry with SMi 35 anti-personnel mines, even though smoke grenades or signal flares could be fired with the device in all directions, too. For close-range defense, a 7.92 mm MG 34 machine gun was carried in a ball mount in the front plate, an addition that was introduced to the Elefant tank hunters, too, after the SdKfz. 184 had during its initial deployments turned out to be very vulnerable to infantry attacks.
Due to the size of the RW 61 and the bulkiness of the ammunition, only fourteen rounds could be carried internally, of which one was already loaded, with another stored in the loading tray, and the rest were carried in two storage racks, leaving only little space for the crew of four in the rear compartment. To help with the loading of ammunition into the vehicle, a loading crane was fitted at the rear of the superstructure next to the loading hatch on the roof.
Due to the internal limits and the tactical nature of the vehicle, it was intended that each SdKfz. 184/1 (as well as each Sturmtiger) would be accompanied by an ammunition carrier, typically based on the Panzer IV chassis, but the lack of resources did not make this possible. There were even plans to build a dedicated, heavily armored ammunition carrier on the Tiger I chassis, but only one such carrier was completed and tested, it never reached production status.
By the time the first RW 61 carriers had become available, Germany had lost the initiative, with the Wehrmacht being almost exclusively on the defensive rather than the offensive, and this new tactical situation significantly weakened the value of both Sturmtiger and Sturmelefant, how the SdKfz 184/1 was semi-officially baptized. Nevertheless, three new Panzer companies were raised to operate the Sturmpanzer types: Panzer Sturmmörser Kompanien (PzStuMrKp) ("Armored Assault Mortar Company") 1000, 1001 and 1002. These originally were supposed to be equipped with fourteen vehicles each, but this figure was later reduced to four each, divided into two platoons, consisting of mixed vehicle types – whatever was available and operational.
PzStuMrKp 1000 was raised on 13 August 1944 and fought during the Warsaw Uprising with two vehicles, as did the prototype in a separate action, which may have been the only time the Sturmtiger was used in its intended role. PzStuMrKp 1001 and 1002 followed in September and October. Both PzStuMrKp 1000 and 1001 served during the Ardennes Offensive, with a total of four Sturmtiger and three Sturmelefanten.
After this offensive, the Sturmpanzer were used in the defence of Germany, mainly on the Western Front. During the battle for the bridge at Remagen, German forces mobilized Sturmmörserkompanie 1000 and 1001 (with a total of 7 vehicles, five Sturmtiger and two Sturmelefanten) to take part in the battle. The tanks were originally tasked with using their mortars against the bridge itself, though it was discovered that they lacked the accuracy needed to hit the bridge and cause significant damage with precise hits to vital structures. During this action, one of the Sturmtigers in Sturmmörserkompanie 1001 near Düren and Euskirchen allegedly hit a group of stationary Shermans tanks in a village with a 380mm round, resulting in nearly all the Shermans being put out of action and their crews killed or wounded - the only recorded tank-on-tank combat a Sturmtiger was ever engaged in. After the bridge fell to the Allies, Sturmmörserkompanie 1000 and 1001 were tasked with bombardment of Allied forces to cover the German retreat, as opposed to the bunker busting for which they had originally been designed for. None was actually destroyed through enemy fire, but many vehicles had to be given up due to mechanical failures or the lack of fuel. Most were blown up by their crews, but a few fell into allied hands in an operational state.
Total production numbers of the SdKfz. 184/1 are uncertain but, being an emergency product and based on a limited chassis supply, the number of vehicles that left the Nibelungenwerke in Austria was no more than ten – also because the tank hunter conversion had top priority and the exotic RW 61 launcher was in very limited supply. As a consequence, only a total of 18 Sturmtiger had been finished by December 1945 and put into service, too. However, the 380 mm Raketen-Werfer 61 remained in production and was in early 1946 adapted to the new Einheitspanzer E-50/75 chassis.
Specifications:
Crew: Six (driver, radio operator/machine gunner in the front cabin,
commander, gunner, 2× loader in the casemate section)
Weight: 75 tons
Length: 7,05 m (23 ft 1½ in)
Width: 3,38 m (11 ft 1 in)
Height w/o crane: 3,02 m (9 ft 10¾ in)
Ground clearance: 1ft 6¾ in (48 cm)
Climbing: 2 ft 6½ in (78 cm)
Fording depth: 3 ft 3¼ (1m)
Trench crossing: 8 ft 7 ¾ in (2,64 m)
Suspension: Longitudinal torsion-bar
Fuel capacity: 1.050 liters
Armour:
62 to 200 mm (2.44 to 7.87 in)
Performance:
30 km/h (19 mph) on road
15 km/h (10 miles per hour () off road
Operational range: 150 km (93 mi) on road
90 km (56 mi) cross-country
Power/weight: 8 hp/ton
Engine:
2× Maybach HL120 TRM petrol engines with 300 PS (246 hp, 221 kW) each, powering…
2× Siemens-Schuckert D1495a 500 Volt electric engines with 320 PS (316 hp, 230 kW) each
Transmission:
Electric
Armament:
1x 380 mm RW 61 rocket launcher L/5.4 with 14 rounds
1x 7.92 mm (0.312 in) MG 34 machine gun with 600 rounds
1x 100 mm grenade launcher (firing anti-personnel mines, smoke grenades or signal flares)
The kit and its assembly:.
This fictional tank model is not my own idea, it is rather based on a picture of a similar kitbashing of an Elefant with a Sturmtiger casemate and its massive missile launcher – even though it was a rather crude model, with a casemate created from cardboard. However, I found the idea charming, even more so because the Ferdinand/Elefant was rather a rolling bunker than an agile tank hunter, despite its powerful weapon. Why not use the same chassis as a carrier for the Sturmtiger’s huge mortar as an assault SPG?
The resulting Sturmelefant was created as a kitbashing: the chassis is an early boxing of the Trumpeter Elefant, which comes not only with IP track segments but also alternative vinyl tracks (later boxing do not feature them), and casemate parts come from a Trumpeter Sturmtiger.
While one would think that switching the casemate would be straightforward affair, the conversion turned out to be more complex than expected. Both Elefant and Sturmtiger come with separate casemate pieces, but they are not compatible. The Sturmtiger casemate is 2mm wider than the Elefant’s hull, and its glacis plate is deeper than the Elefant’s, leaving 4mm wide gaps at the sides and the rear. One option could have been to trim down the glacis plate, but I found the roofline to become much too low – and the casemate’s length would have been reduced.
So, I used the Sturmtiger casemate “as is” and filled the gaps with styrene sheet strips. This worked, but the casemate’s width created now inward-bent sections that looked unplausible. Nobody, even grazed German engineers, would not have neglected the laws of structural integrity. What to do? Tailoring the casemate’s sides down would have been one route, but this would have had created a strange shape. The alternative I chose was to widen the flanks of the Elefant’s hull underneath the casemate, which was achieved with tailored 0.5 mm styrene sheet panels and some PSR – possible through the Elefant’s simple shape and the mudguards that run along the vehicle’s flanks.
Some more PSR was necessary to blend the rear into a coherent shape and to fill a small gap at the glacis plate’s base. Putty was also used to fill/hide almost all openings on the glacis plate, since no driver sight or ball mount for a machine gun was necessary anymore. New bolts between hull and casemate were created with small drops of white glue. The rest of the surface details were taken from the respective donor kits.
Painting and markings:
This was not an easy choice. A classic Hinterhalt scheme would have been a natural choice, but since the Sturmelefant would have been converted from existing hulls with new parts, I decided to emphasize this heritage through a simple, uniform livery: all Ferdinand elements would be painted/left in a uniform Dunkelgelb (RAL, 7028, Humbrol 83), while the new casemate as well as the bolted-on front armor were left in a red primer livery, in two different shades (Humbrol 70 and 113). This looked a little too simple for my taste, so that I eventually added snaky lines in Dunkelgelb onto the primer-painted sections, blurring the contrast between the two tones.
Markings remained minimal, just three German crosses on the flanks and at the rear and a tactical code on the casemate – the latter in black and in a hand-written style, as if the vehicle had been rushed into frontline service.
After the decals had been secured under sone varnish the model received an overall washing with dark brown, highly thinned acrylic paint, some dry-brushing with light grey and some rust traces, before it was sealed overall with matt acrylic varnish and received some dirt stains with mixed watercolors and finally, after the tracks had been mounted, some artist pigments as physical dust on the lower areas.
Again a project that appeared simple but turned out to be more demanding because the parts would not fit as well as expected. The resulting bunker breaker looks plausible, less massive than the real Sturmtiger but still a menacing sight.
HI Fiona,
It was a great event! Please see below the story and some photos attached, if you'd like to post this on Indigo where appropriate and on the gallery, I will leave this into your capable hands!
Thanks again for the contribution. We really had a good and inspiring time!
Sandrine
****
Encouraged by Informa`s One Planet Eating initiatives, the Hong Kong team got together at HOME to share a few healthy tapas, organic cocktails and be inspired by Christian Mongendre, our Guest Speaker, who created HOME. You can check him out: www.lifestyleasia.com/470121/tastemakers-christian-mongen...
In balancing mind and body, HOME - Eat to Live strives to use only organic produce whenever possible. Much of our ingredients are sourced locally from a network of farms and our food is made fresh daily. Our menu aims to appeal to everyone. We believe that healthy, plant-based foods should be tasty, filling, and nutritious. We offer vegan, gluten free & raw options, including healthy desserts and organic cocktails. We are committed to supporting a sustainable, plant-based lifestyle, collectively lowering our carbon footprint and preserving our earth's fresh water supply through a plant-based menu, mindful ingredient sourcing, eco-friendly packaging and practices.
During the talk, Christian raised awareness about recycling, compost, biodegradable materials like the plastic they use, from corn, LED lights which create no heat.
He also told us about the importance of eating more plant based food, and the impact on our planet. As a very demanding person, he wanted to create a vegetarian and sustainable restaurant and also bring taste and colour to our plates, with no processed food. Christian also pointed out the menu of HOME, each dish is called by animals in danger: Golden Snub Nosed Monkey Open Faced Toast, Manta Ray Salad Bowl, Siberian Tiger Earth Bowl, Northern White Rhino Sliders , Hawaiian Monk Seal Flatbread...
The team was very engaged and questioned him around the cost of eating healthy, being higher than eating meat. At HOME, they try to educate their customers about the origin of the products they use, Kale is one example, they were the first restaurant to import Kale but as demand grows, price goes down and we reach economies of scale. To make 'Healthy food' affordable, the market demand need to change and it is starting to change.
Finally, we asked him for advice around Pledges we should all make:
- Wellbeing = Food, "you are what you eat" , what you are eating to regenerate your body
- How are you breathing: Try to take time and be conscious of your breath
- Try Meditation
- Drink high quality water and not distilled
- Exercise and organise more events like 'Walk the World'
- Cut down on sweets and opt for healthier snacks
- Choose an organic range of teas
- Recycle
- Having LED lights
- And last but not least, we all agreed to at least TRY: Meat Free Monday !
Alena & Sandrine
Sandrine Declippeleir
Account Director - Professional Services, Asia Pacific
Business intelligence | informa
T: +852 3757 9703
M: +852 9222 1747
sandrine.declippeleir@informa.com<
Agribusiness intelligence | Financial intelligence | Maritime intelligence | Pharma intelligence | TMT intelligence
Informa | Nexxus Building, Level 16 | 41 Connaught Road | Central | Hong Kong
Follow me on:
hk.linkedin.com/in/sandrinedeclippeleir
This electronic message and all contents transmitted with it are confidential and may be privileged. They are intended solely for the addressee. If you are not the intended recipient, you are hereby notified that any disclosure, distribution, copying or use of this message or taking any action in reliance on the contents of it is strictly prohibited. If you have received this electronic message in error, please destroy it immediately, and notify the sender.
Informa Group plc | Registered in England & Wales No. 3099067 | 5 Howick Place | London | SW1P 1WG
According to my lens, I should be capable of doing macro photography - so I decided I would test it out. I have found that I actually use the setting a lot, but just have never realized it was "macro". I decided to make my succulent my subject for this project since the texture on him is so unique.
What I like about macro photography is that you can really capture a specific place in the photo and create the remainder to feel like it's framing itself. In this case, the succulent itself is framing a branch or two - honing in on the rigid texture of it.
How can I apply this to my life? Well, sometimes I get frustrated with all of the interests I have and get overwhelmed. It's a constant struggle to determine "what is my dream job?" (which I ask myself every day). But, if I take the time to focus in on a passion of mine and use the other attributes about me (talents, skills, interests, experiences, etc.) to help shape that passion, it can really start to support itself. Using my own strengths to support myself instead of feeling that my interests are at random is a work-in-progress that I need to do each day.
Fagus sylvatica is a large tree, capable of reaching heights of up to 50 m (160 ft) tall[2] and 3 m (9.8 ft) trunk diameter, though more typically 25–35 m (82–115 ft) tall and up to 1.5 m (4.9 ft) trunk diameter. A 10-year-old sapling will stand about 4 m (13 ft) tall. It has a typical lifespan of 150–200 years, though sometimes up to 300 years. In cultivated forest stands trees are normally harvested at 80–120 years of age.[3] 30 years are needed to attain full maturity (as compared to 40 for American beech). Like most trees, its form depends on the location: in forest areas, F. sylvatica grows to over 30 m (100 ft), with branches being high up on the trunk. In open locations, it will become much shorter (typically 15–24 m (50–80 ft)) and more massive.
The leaves are alternate, simple, and entire or with a slightly crenate margin, 5–10 cm long and 3–7 cm broad, with 6–7 veins on each side of the leaf (7–10 veins in Fagus orientalis). When crenate, there is one point at each vein tip, never any points between the veins. The buds are long and slender, 15–30 mm (0.59–1.18 in) long and 2–3 mm (0.079–0.118 in) thick, but thicker (to 4–5 mm (0.16–0.20 in)) where the buds include flower buds.
The leaves of beech are often not abscissed in the autumn and instead remain on the tree until the spring. This process is called marcescence. This particularly occurs when trees are saplings or when plants are clipped as a hedge (making beech hedges attractive screens, even in winter), but it also often continues to occur on the lower branches when the tree is mature.
Small quantities of seeds may be produced around 10 years of age, but not a heavy crop until the tree is at least 30 years old. F. sylvatica male flowers are borne in the small catkins which are a hallmark of the Fagales order (beeches, chestnuts, oaks, walnuts, hickories, birches, and hornbeams). The female flowers produce beechnuts, small triangular nuts 15–20 millimetres (0.59–0.79 in) long and 7–10 mm (0.28–0.39 in) wide at the base; there are two nuts in each cupule, maturing in the autumn 5–6 months after pollination. Flower and seed production is particularly abundant in years following a hot, sunny and dry summer, though rarely for two years in a row.
wikipedia
Who created Painshill
Painshill’s Grade 1 listed 18th century landscape garden was created in the naturalistic style between 1738 and 1773, and was the artistic vision of the Honourable Charles Hamilton, 9th son and 14th child of the 6th Earl of Abercorn.
Hamilton’s vision
Inspired by Renaissance and contemporary art and visits to Italy on the Grand Tour, the Hon. Charles Hamilton decided to create a tranquil landscape setting enriched by follies, water, trees, shrubberies and a vineyard.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. It was preceded into production by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible.
After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I, and was the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties, which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) with constant updates and several sub-variants during its long and successful career. Its success was increased by the GBP-1S "Armored" Valkyrie and FAST Pack "Super" Valkyrie weapon systems, the latter enabling the fighter to operate in space.
After the end of Space War I, the VF-1A continued to be manufactured both in the Sol system (notably on the Lunar facility Apollo Base) and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary VF of the UN Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.
One notable operator of the VF-1 was the U.N. Spacy's Zentraedi Fleet, namely SVF-789, which was founded in 2012 as a cultural integration and training squadron with two flights of VF-1 at Tefé in Brazil. This mixed all-Zentraedi/Meltraedi unit was the first in the UN Spacy’s Zentraedi Fleet to be completely equipped with the 1st generation Valkyrie (other units, like SVF-122, which was made up exclusively from Zentraedi loyalists, kept a mixed lot of vehicles).
SVF-789’s flight leaders and some of its instructors were all former Quadrono Battalion aces (under the command of the famous Milia Fallyna, later married with aforementioned Maximilian Jenius), e. g. the Meltraedi pilot Taqisha T’saqeel who commanded SVF-789’s 3rd Flight.
Almost all future Zentraedi and Meltradi pilots for the U.N. Spacy received their training at Tefé, and the squadron was soon expanded to a total of five flights. During this early phase of the squadron's long career the VF-1s carried a characteristic dark-green wrap-around scheme, frequently decorated with colorful trim, reflecting the unit’s Zentraedi/Meltraedi heritage (the squadron’s motto and title “Dar es Carrack” meant “Victory is everywhere”) and boldly representing the individual flights.
In late 2013 the unit embarked upon Breetai Kridanik’s Nupetiet-Vergnitzs-Class Fleet Command Battleship, and the machines received a standard all-grey livery, even though some typical decoration (e. g. the squadron code in Zentraedi symbols) remained.
When the UN Spacy eventually mothballed the majority of its legacy Zentraedi ships, the unit was re-assigned to the Tokugawa-class Super Dimensional Carrier UES Xerxes. In 2022, SVF-789 left the Sol System as part of the Pioneer Mission. By this time it had been made part of the Expeditionary Marine Corps and re-equipped with VAF-6 Alphas.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters.
The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68) and ongoing modernization programs like the “Plus” MLU update that incorporated stronger engines and avionics from the VF-1’s successor, the VF-4 (including the more powerful radar, IRST sensor and a laser designator/range finder). These updates later led to the VF-1N, P an X variants.
However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
General characteristics:
Equipment Type: all-environment variable fighter and tactical combat battroid
Government: U.N. Spacy, U.N. Navy, U.N. Space Air Force
Accommodation: pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (fully extended)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Powerplant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2008 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Minimum time from Fighter to Battroid (manual): 0.9 sec.
Armament:
2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 rds fired at 1,200 rds/min
4 x underwing hard points for a wide variety of ordnance, including
- 12x AMM-1 hybrid guided multipurpose missiles (3/point), or
- 12x MK-82 LDGB conventional bombs (3/point), or
- 6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or
- 4x UUM-7 micro-missile pods (1/point), each carrying 15x Bifors HMM-01 micro-missiles,
or a combination of above load-outs
Optional Armament:
Shinnakasu Heavy Industry GBP-1S ground-combat protector weapon system, or
Shinnakasu Heavy Industry FAST Pack augmentative space weapon system
The kit and its assembly:
The second vintage 1:100 ARII VF-1 as a part of a Zentraedi squadron series, the canonical SVF-789. This one was inspired by a profile of such a machine in the “Macross Variable Fighter Master File: VF-1 Valkyrie Part 1” Art Book – true robot porn and full of valuable detail and background material for anyone who’d consider building a VF-1.
The SVF-789 machine shown in the book is a simple VF-1A, but with Zentraedi language markings and in a rather unusual livery in all dark green, yellow and black trim and grey low-viz roundels. While this does IMHO not really look sexy, I found the idea of a squadron, manned by former (alien) enemies very interesting. And so I took up the idea and started fleshing it out – including the idea of SVF-789’s initial base deep in the Amazonian jungle (justifying somehow the all-green livery!?).
This second build was to represent a flight leader’s aircraft, and consequently the basis is a VF-1J kit (which only differs outwardly through the head). In order to set the machine a little more apart I decided to incorporate some “Plus” program updates, including a different nose tip for the updated radar and two small fairings for IRST and laser designator sensors above and below the nose section, respectively. The fins’ tips were also modified – they were elongated a little through styrene sheet replacements.
This update is a bit early for the official Macross timeline, but I just wanted more than a standard J Valkyrie in a more exotic paint scheme.
Otherwise, this VF-1J fighter kit was built OOB, with the landing gear tucked up and the usual additions of some blade antennae, a pilot figure and a custom display stand in/under the ventral cannon pod.
The ordnance is non-standard, though; in this case the aircraft received two pairs of air-to-ground missiles (actually some misshapen Soviet AAMs from the Academy MiG-23 kit – either very fat R-60 ‘Aphid’ AAMs or very poor renditions of vintage K-6 ‘Alkali’ missiles?) inboards and four AMM-1 missiles on the outer pylons, with the lowest missile replaced by scratched ECM and chaff dispenser pods. The gun pod was also modified with a new nozzle, with parts from a surplus AMM-1 missile – also inspired by a source book entry.
Painting and markings:
This was planned to be a more exotic or extravagant interpretation of the profile from the book, which was already used as a guideline for the VF-1A build. The overall design of an all-green livery with a white nose tip as basis was kept, together with yellow trim on wings, fins and the stabilizer fins on the Valkyrie’s legs. The VF-1A already deviated from this slightly, but now I wanted something more outstanding – a bold flight leader’s mount.
Zentraedi vehicles tend to be rather colorful, so the tones I chose for painting were rather bright. For instance, the initial idea for the green was FS 34079, a tone which also comes close to the printed profile in the book. But it looked IMHO too militaristic, or too little anime-esque, so I eventually settled for something brighter and used Humbrol 195 (called Dark Satin Green, but it’s actually RAL 6020, Chromoxyd Grün, a color used on German railway wagons during and after WWII), later shaded with black ink for the engravings and Humbrol 76 (Uniform Green) for highlights.
The nose became pure white, the leading edge trim was painted with Revell 310 (Lufthansa Gelb, RAL 1028), a deep and rich tone that stands out well from the murky green.
In order to set this J Valkyrie apart from the all-dark green basic VF-1As, I added two bright green tones and a light purple as flight color: Humbrol 36 (called Pastel Green, but it’s actually very yellow-ish), 38 (Lime) and Napoleonic Violet from ModelMaster’s Authentic Line, respectively. 36 was applied to the lower legs and around the cockpit section, including the spinal fairing with the air brake. The slightly darker 38 was used on the wings and fins as well as for the fuselage’s and wings’ underside. On top of the wings and the inner and outer fins, the surfaces were segmented, with the dark green as basic color.
As an additional contrast, the head, shoulder guards and additional trim highlights on the legs as well as for a double chevron on the breast plate were painted in the pale purple tone. A sick color combination, but very Zentraedi/Meltraedi-esque!
The cockpit interior was, according to Macross references, painted in Dark Gull Grey. The seat received brown cushions and the pilot figure was turned into a micronized Meltraedi (yes, the fictional pilot Taqisha T’saqeel is to be female) with a colorful jumpsuit in violet and white, plus a white and red helmet – and bright green skin! The gun pod became dark blue (Humbrol 112, Field Blue), the AMM-1 missiles received a pale grey livery while the air-to-ground missiles and the chaff dispenser became olive drab. As an additional contrast, the ECM pod became white. A wild mix of colors!
This was even enhanced through U.N. Spacy roundels in standard full color – their red really stands out. The squadron emblem/symbol on the fin was painted with a brush, but in this case in a smaller variant and with two USN/USAF style code letters for the home basis added.
Since I can not print white letters onto clear decal sheet at home, the aircraft’s tactical code ‘300’ was created with letters from the human alphabet. A simplification and deviation from the original concept, but I found the only alternative of painting tiny and delicate Zentraedi codes by brush and hand just to be too risky.
Finally, the kit was sealed with a sheen acrylic varnish – with the many, contrasting colors a pure matt finish somehow did not appear right.
Building was relatively simple, just the rhinoplasty was a little tricky – a very subtle modification, though, but the pointed and slightly deeper nose changed the VF-1’s look. The standard Zentraedi-style VF-1 of SVF-789 already looked …different, but this one is … bright, if not challenging to the naked eye. Anyway, there’s more in the creative pipeline from the Zentraedi unit – this aircraft’s pilot in the form of a modified resin garage kit.
Dcr 56311 in the very capable hands of Simon Rudge with a stone train running to Norwich recorded 251012
Capable of 12 frames per second burst mode shooting (RAW+JPEG), the snapper can also capture 14 frames per second with the mirror locked up and the camera shooting JPEGs.
---
Check out my preview of the EOS-1D X here:
Canon EOS-1D X exclusive hands-on
More photos here:
Canon EOS-1D X unveiling: photo gallery
Follow me on Twitter @ ShawnCNETAsia
and check out CNET Asia Cameras for your daily camera fix:)
Not capable of true macro 1:1 reproduction, this lens does have an exceptionally close focus distance of 24cm nonetheless; as does its 24mm brother (at 10.8cm).
The extremely high loss rate of early F-100 Super Sabres led the USAF to request a two-seat conversion trainer, which originally had not been planned. An F-100C was returned to North American for conversion into the TF-100C, which involved extending the fuselage and the canopy slightly to provide for a second cockpit with a full set of flight controls. The crash of the only TF-100C in April 1957 did not interrupt work on the project, as the USAF had requested the two-seater be combat capable and incorporate all of the modifications made to the baseline Super Sabre. As a result, the F-100F two-seater was built from the F-100D tactical fighter bomber, and differed in performance only in the deletion of two of the four 20mm cannon; a few F-100Fs were subsequently modified to carry the AGM-12 Bullpup air-to-surface missile, while a few also had better navigational equipment than the standard Super Sabres—these aircraft were specifically intended for Pacific-based F-100 units. The F-100F entered service in January 1958.
The F-100F’s otherwise unremarkable career as a conversion trainer was to be changed by the Vietnam War, by two projects: the Wild Weasel suppression of enemy air defenses (SEAD) campaign and the Misty “fast FAC” forward air control program.
The Wild Weasel campaign began in response to increasing losses by USAF aircraft to North Vietnamese SA-2 Guideline (S-75 Dvina) surface-to-air missiles. Unable to attack the SAM sites before they were made operational due to Rules of Engagement restrictions, something had to be done to defend the strike forces from SAM attacks: while scoring comparatively few kills at first, the SAM sites were forcing American aircraft out of previously-safe high and medium altitudes into the murderous low-altitude North Vietnamese antiaircraft defenses. Wild Weasel was intended to not only provide early warning of SAM launches, but also to attack and destroy SAM sites and their attendant radars.
The F-100F was determined to be the best platform for what became known as Wild Weasel I, as it was readily available in Southeast Asia and would need a minimum of conversion. Wild Weasel I F-100Fs were equipped with a comprehensive warning and detection suite originally developed for the U-2 spyplane, allowing the Weasels to detect Fansong, Firecan, and Spin Scan guidance radars—those used by SA-2s, radar-guided antiaircraft guns, and MiG-21 fighters. The intent was that a single F-100F would lead the way into the target area accompanied by three or four F-105D Thunderchiefs, with the F-100 using rockets to mark any sites for the accompanying F-105s, or strafing the sites themselves; later, the Weasels would be equipped with AGM-45 Shrike antiradar missiles designed to destroy the radars directly. The F-100F Weasels flew their first combat mission in April 1966, and while successful, showed one shortcoming: the F-100 simply could not keep up with the F-105. Once the Thuds had dropped their ordnance, they would rapidly leave the slower F-100 behind. Moreover, the comparative low speed of the Super Sabre made it very vulnerable to the deadly air defenses around the Hanoi area. Subsequently, the USAF made the decision to withdraw the F-100F Weasels in favor of modified F-105F Wild Weasel II aircraft in late 1966.
The Misty FAC program—officially known as Commando Sabre—had similar origins. Prior to 1967, the antiaircraft threat in South Vietnam and southern North Vietnam was relatively low. This began to change, with a resultant spike in losses among forward air control (FAC) pilots. FACs were flying propeller-driven O-1 Birddogs and O-2 Skymasters, which were highly vulnerable to medium-altitude antiaircraft fire, especially around Mu Gia Pass, the northern “terminus” of the Ho Chi Minh Trail. The USAF began looking into the “fast FAC” role, using two-seat jets. Two-seat F-105Fs were in short supply and were needed for Wild Weasels in the north; there were not yet enough F-4 Phantom IIs to go around to both strike and fighter units. The F-100F again seemed tailor made to the role, and the USAF began Project Commando Sabre in June 1967, with the unit designated as Detachment 1 of the 612th Tactical Fighter Squadron, based at Phu Cat, South Vietnam.
Major George “Bud” Day was put in command of Commando Sabre, due to his experience with both the F-100 and South Vietnam; Day selected the callsign “Misty” based on a song by the same name, and handpicked the crews. Each crew had to have at least 100 missions in Southeast Asia and 1000 flying hours in the F-100. Misty F-100Fs were identical to the baseline F-100F, with the only modifications being more radios to speak with strike units and a strike camera installed in the lower fuselage. While Commando Sabre was originally intended as fast FACs, Day expanded the program to include hunter-killer teams directly attacking North Vietnamese antiaircraft sites, reconnaissance, rescue force escort, and artillery spotting in the I Corps sector of South Vietnam.
If anything, Misty loss rates were worse than the F-100 Wild Weasels had been: 42 Misty F-100s were shot down, nearly thirty percent losses. This included Day, who was shot down and captured in August 1967; he was joined by three others in the next few years, and eight men were killed on Misty operations. Losses were so high that a Misty tour of duty was reduced to 60 missions rather than the standard 100. Once a Misty finished a tour of duty, they returned to a “safer” unit flying close air support missions. The threat level increased around Mu Gia and Ban Karai Passes until even the Mistys could no longer operate there and were replaced by F-4 Wolf FACs. The program ended in May 1970 and the surviving F-100Fs withdrawn from Vietnam.
Like all F-100Fs, they were allocated to Air National Guard units by 1972, and withdrawn completely by 1978, though foreign operated F-100Fs were flown until 1988, and a handful continued in civilian hands as aggressor and target-towing aircraft, operated by the Tracor Corporation, until 1998. 339 F-100Fs were built and a quarter were lost to enemy action and accidents; eleven are known to survive, with four aircraft still flyable.
These are two of those flyable (at least in theory) aircraft: F-100Fs N416FS and N419FS, formerly 56-3916 and 56-3971. Both seem to have nearly identical histories: they were delivered to the Royal Danish Air Force in the early 1960s, serving with either 727 or 730 Eskadrille at Skrydstrup. After the Super Sabre was retired from RDAF service, the two aircraft were bought by Tracor Flight Systems of Mojave, California in 1982; they were used as testbeds, chase aircraft, and target-towing aircraft. They were possibly the last regularly flying F-100s in service by the time they were retired in 2001. Both were subsequently acquired by Big Sky Warbirds of Bozeman, Montana, and flown there in 2003, where they remain today.
Getting this picture was the culmination of almost a decade of trying! Google Earth showed the aircraft parked on a taxiway of Bozeman International Airport, but I never seemed to be in a position to get there with a camera. It also looked like the aircraft were inaccessible in any case. I took a chance in September 2021, and on my way to Yellowstone, stopped by the airport. Bozeman is (as of this writing) undergoing some expansion, and the taxiway was closed. I spotted the two F-100s parked across the way instead, and finally managed to get a picture.
It's not the greatest angle or picture in the world, but it does show N416FS and N419FS. The former is important to my family: a good friend, Dale Fiala, flew N416FS for Tracor, and Dad built him a model, shown here: www.flickr.com/photos/31469080@N07/17912208780/in/photoli...
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .
The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).
Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.
The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.
The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.
In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.
During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.
The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.
General characteristics:
Crew: 1
Length: 36 ft 4 in (11.1 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,210 lb (6,000 kg)
Loaded weight: 20,130 lb (9,200 kg)
Max. take-off weight: 23,700 lb (10,750 kg)
Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)
Performance:
Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 46,800 ft (14,300 m)
Rate of climb: 7,660 ft/min (38.9 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Thrust/weight: .325
Armament:
4× 20 mm (0.787 in) cannon
6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.
The kit and its assembly
Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.
Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.
I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.
Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!
The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.
The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.
The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!
Painting and markings
I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.
Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).
I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.
The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.
The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.
The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.
Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.
finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!
So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.
Coachwork by Carrozzeria Figoni
Chassis n° 55221
Les Grandes Marques du Monde au Grand Palais 2020
Bonhams
Parijs - Paris
Frankrijk - France
February 2020
Estimated : € 4.000.000 - 7.000.000
Sold for € 4.600.000
Here, Bonhams proudly offers the renowned 'Geoffrey St John', 56-years in his ownership, 1932 Bugatti Type 55 Supersport with its unique, 1933-fitted, Figoni coachwork. This magnificent high-performance, Post-Vintage Thoroughbred two-seater began life as a works-backed Bugatti entry in the 1932 Le Mans 24-Hour race. It was co-driven there by two of France's most capable and charismatic drivers, the aristocratic Sarthois (from Le Mans) Count Guy Bouriat Quintart and the renowned Monegasque future French Champion, Louis Chiron.
While this 2.3-litre supercharged straight-8 Bugatti originated with a spartan lightweight racing body tailored to that year's Le Mans 24-Hour regulations, following its post-race sale to Parisian magazine publisher Jacques Dupuy it was speedily rebodied in Boulogne sur-Seine on the outskirts of Paris by the now legendary Italian-born stylist/coachbuilder Giuseppe Figoni.
Following an awards-rich early history in France, this mouth-watering sports Bugatti survived World War 2 and, as long ago as August, 1963 – some 56 years ago – it was acquired by its long standing owner, leading British Bugattiste, Geoffrey St John.
This magnificent car became the apple of his eye, and he was devastated in June 1994 when it was involved in a road accident in France, assailed by a speeding car driven by a youth who was both uninsured, and drunk. Frontal damage to the car was beautifully repaired in a subsequent, utterly painstaking 5,000-hour restoration, from which his Bugatti Type 55 – chassis '55221' – re-emerged, the vast majority of its original St John-ownership fabric having been successfully preserved and repaired...A photographic record of the restoration has been documented by Independent Bugatti Consultant Mark Morris.
In fact, Bugatti Type 55 chassis '55221' was ordered by Guy Bouriat as early as January 1, 1932. The order form specifies: "2.3 litre Supersport car, Type 55, supercharged, 4-seat torpedo body, complying with Le Mans regulations. With 6 Bugatti wheels and all necessary accessories for a 24 hours race. Automatic fuel cap." The address on the form is Bouriat's family home in Paris, 44 Rue Fabert, near the Champ de Mars. No trace has been found in the factory archives of any related invoice or payment – perhaps indicative of it having been treated as a works entry for Bouriat as an established (and well connected) racing driver.
To meet this formal order, chassis No. '55221'/(initial) engine '14' was assembled at the works in April 1932, concurrent with sister chassis using engines '15' and '16'. It was factory-bodied as a torpedo, the Molsheim bodyshop register recording it as being the first of the bodies built in June 1932: "Carr 24h . 55/14 -55221. juin 32". The car was then delivered to Paris by road on June 11th, 1932 – ready for the following weekend's important race at Le Mans.
Le Mans 24-Hours - June 18-19, 1932.
Guy Bouriat and Louis Chiron in '55221' starred under race number '15' amongst the 27 entries for this late-Depression-era 24-Hour Grand Prix d'Endurance.
Charles Faroux of the journal 'L'Auto' reported: "There are four Bugattis entered of which two, above all, deserve attention by the speed they achieved during testing days: one is at the hands of Chiron and Bouriat, while the other has Count Czaykowski and the brave Friderich as pilots... I would not be at all surprised to see these two pairs fight hard with the Alfa Romeos, as did the Bentleys and Mercedes."
While '55221' was fitted with a 130-litre fuel tank, the sister Type 55 for Count Czaykowski/Friderich had only a 115-litre tank. In the opening race period, four Alfa Romeo 8C-2300s led, with this Bouriat/Chiron Bugatti keeping pace in fifth place. But, as Faroux then reported: "At the beginning of the third hour, we are told to the astonishment of everyone, that Bouriat, then fifth, (has) run out of gas... Bouriat was helped to the pit. Of course he is declared out of the race since his forced stop happened on the 22nd lap when he had two more laps to run before refuelling" – having thus infringed the organising ACO club's unpitying minimum refuelling distance rule.
The 'L'Auto' issue of June 20, 1932, then described how: "Wisely, Bouriat and Chiron had lined their tank with a thick piece of felt and duckboard providing good protection against flying stones. This protection could not extend to a small part above the rear axle trumpet; it is in this small gap that a stone stuck, bending the metal sheet which resisted, but whose crimping parted and let 50 litres of gas leak through it. Bouriat, then in his twentieth lap, who knew he could run forty more laps on his fuel, thought there was a breakdown of his fuel supply and finds his carburettor empty and the floats, lacking damping, detached. Unavoidable withdrawal. Having abandoned, he is given 5 litres of fuel to go back to the pit. It is while refuelling to return to the pit that he sees the leak in the tank and realizes the cause of it. What a terrible tragedy...".
This Bugatti '55221' had in fact represented the French industry's best hope of a home win at Le Mans that year, but its split fuel tank helped leave the course clear for Raymond Sommer/Luigi Chinetti to win – for Alfa Romeo and Italy...
Post-race, '55221' was sold to Jacques Dupuy, motoring-enthusiast son of Paul Dupuy, proprietor of the newspaper 'Le Petit Parisien', and founder of the magazines 'Mirroir des Sports' and 'Sciences et Vie'. In a 1992 letter to Pierre-Yves Laugier, Jacques Dupuy recalled: "I bought the Bugatti from Guy Bouriat. It was a black 2+2 torpedo with light aluminium body. The car could reach 200 km/h...I kept it with its bucket seats for a few months before taking it to Figoni's. It was bodied there according to my drawings. The steel body was black and white. The dashboard was in black leather...I sold the car about three or four years later, after the 1936 Paris-Nice rally, to Monsieur Gandon, a wine and spirits merchant at 152 Boulevard Hausmann."
Between 1928 and 1933, the Figoni bodyshop at "14 rue Lemoine, Boulogne, Seine", bodied some 77 Bugattis.
Jean Dupuy's order for this Bugatti Type 55 appears in the Figoni register in February 1933, while the August issue that year of 'L'Équipement Automobile' carries a profile drawing of the car and cites its Nitrolac enamel paintwork as being "iris black and Leda white".
M. Dupuy also recalled how: "During my custody, I had to go twice to the factory one of them was for repairing the compressor (factory note dated March 21st 1933). I won the Paris-Nice rally in 1933 beating the Alfa Romeos in the Sport category. At La Turbie, I reached 83km/h standing start. This car is the 2300cc single shaft...which was maintained for me by Mr Rocatti, a Bugatti specialist in Paris who had a garage at Buttes-Chaumont".
XIIth Critérium International de Tourisme Paris-Nice, 1933
The journal 'L'Auto' for March 30th 1933 described how the Paris-Nice Rally was to be run in three stages: Paris-Vichy, Vichy-Marseille and Marseille-Nice. Jacques Dupuy's Type 55 would run as number '52' in up-to-3-litre Class D. In the 1km Michelet stage – with standing start and flying finish - Dupuy set the fastest time, of 34 seconds, averaging 105,882km/h (66.09mph). Upon arrival in Nice on April 3rd, an idling and acceleration test took place on the Quai des États-Unis in which Dupuy's Bugatti set times of 49.6 secs and 18 secs respectively.
Next day, in a 500 metres trial before thousands of spectators on the Promenade des Anglais Dupuy again bettered the rival Alfa Romeos of Gunzburg and Weinberg, at 142,860 km/h (88mph). In the final stage on the famous 6.3km (3.9-mile) La Turbie hill-climb, Dupuy finally won the Paris-Nice event overall, with a climb time of 4mins 25.6secs, 85.391km/h (53mph). The 'L'Auto' report described how: "Victory goes to Jacques Dupuy. This young pilot had a 2.3 litre double camshaft Bugatti at his disposal. No need to be a pre-eminent driver and Jacques Dupuy never had such pretentiousness. But you had to own a car complying with the regulations. The 2.3 litre Bugatti fully satisfied. In congratulating Dupuy, one must not forget the maker of Molsheim...".
The Bois de Boulogne Concours d'Elégance - June 24, 1933
Two months after his Paris-Nice victory Jacques Dupuy entered his freshly Figoni-bodied Bugatti '55221' in the annual Parisian Grand Concours d'Elégance. The Countess de Rivals-Mazères had been invited "to enhance his convertible" and after the car had won the 'L'Auto'-sponsored first class judged, for over 10hp open cars, the Countess helped show it in two further categories backed by the journals 'Fémina' and 'L'Intransigeant' In the third category (cars over 15 HP presented by ladies and driven by a chauffeur in livery), Mme de Rivals-Mazères – accompanied by two Scottie dogs - "sur Bugatti 17C cabriolet transformable Figoni" won a Spark gramophone...
Owner Dupuy recovered his laurelled thoroughbred and would use it for three more years before selling it, as he recalled, to Marcel Gandon.
The new owner was the 38-year-old son of wine merchant Alphonse Gandon, of 152 Boulevard Hausmann, Paris, but he kept '55221' only briefly – from early-1936 to April 1937 – when he bought a brand-new Type 57S Atalante. On November 28, 1936, the unique Figoni-bodied Type 55 was sold via Bugatti to Garage Bayard, 22 Rue Bayard, Paris, the sale document stating: "Sold to garage Bayard one car Type 55 N° 55221, engine 14 (ex Gandon) 2 seat roadster bodywork (convertible by Figoni) in good working order, second hand sold as is for a net price of 25 000 francs".
Paris-Saint-Raphaël Rallye Féminin 1937
The Garage Bayard was run by Charles de Lavoreille, Jacques de Valence and a M. Richer-Delavau and the latter's wife ran '55221' in the March 17-22, 1937 'IXe Paris-Saint-Raphaël Féminin' – entry number '48', facing a 1,039 km route to be completed in five days, staging through Nevers, Clermont-Ferrand, Orange and Toulon. In initial 500 metres standing start, and 1km flying-start tests at Nevers Mme Richer-Delavau placed 6th in each, and in the Saint-Sébastien hill-climb at Saint Raphaël, she maintained her position with a time of 47.8secs, behind Mmes Lamberjack and Lucy O'Reilly Schell in their Delahaye Sport. Overall in the Rally she would finish sixth and fifth in class.
M. Laugier's Bugatti records show that on December 27, 1937, an un-named Parisian enthusiast bought '55221' from Garage Bayard. This might have been Roger Teillac, a Bugatti specialist based in the Avenue de Suffren, as his archives contain three pictures of the car, but wearing a 1938 Nancy licence plate. Teillac possibly maintained the car for another owner 1938-39 or had taken back the car in the post-war summer of 1946 when his establishment repaired its oil sump, split by frost.
Certainly, Louis Stephanazzi had acquired the car on May 7, 1938, and registered it '5658 KU 5' to his home address of 49bis Avenue Anatole France, Nancy. Family memory recalls that the car was hidden dismantled during the war in the garage that Stephanazzi ran in town. The Germans requisitioned his garage where they would repair their vehicles. At the back were a Bugatti Type 57 convertible, bought in Paris in August 1938, and the 55 roadster, which both survived the conflict.
On September 16, 1946, the Type 55 was sold in Paris under licence plate '4239 RP 4' and one month later, it passed to André Couston, a dealer from Nice, resident at 4bis Avenue Mont Alban. On October 18, 1946 he re-registered the car '3286 BA 8'. At the time André Couston also owned the first Type 55 roadster, chassis '55201'.
On July 30th 1948, '55221' returned to Paris, registered '7220 RQ 4'. Its owner was possibly Jacques Devinot who told M. Laugier in June 1993: "I owned three Bugattis...(including)...the Type 55 convertible...bought around 1948 from a garage near Porte de Champerret. It was then sold to Mr Bierlein from Paris in 1950 who sold it to a Canadian man. I found it back later at Docime's, dismantled. The registration papers were never changed and the Canadian man came to see me to get a sale certificate which I refused to do, having already done one for Mr Bierlein. When I bought the car, the chassis had been bent and I had to dismantle the car and correct it. As I see it, every bit was original on the car which was in a cream and black livery". He also had a luggage rack installed by Figoni»
The Police register confirms M. Devinot's dates, while a letter from him states that in August 1950 the Bugatti was owned by Gaston Bierlein, of Hôtel Pylone 1, Megève, Haute-Savoie. He kept the car for five years before selling it on March 24, 1955, to Canadian journalist Douglas Lachance, of 59 Avenue Hoche, Paris. The car – with its engine dismantled or removed - was then consigned to leading Bugatti specialist Gaston Docime, in the Rue de la Saussaie, Neuilly-sur-Seine. It remained in there until August 28, 1962 when British Type 55 enthusiast Anthony Austin Morse, a dentist of 4 Westfield Road, Rugby, imported it into England, less engine, with a £20 deposit on the import duty pending valuation.
A. A. Morse then owned three Type 55s - '55220', '55221' and '55223' – but he quickly sold the unique Figoni-bodied example to Henry H. Thomas of White Cottage, Belmond Park Road, Maidenhead, proprietor of the Fernley Service Station, who on July 25, 1963, re-sold it to Geoffrey St John, of Woodland Cottage, Greenwich Lane, Leafield, Oxon for £750
In a letter to Geoffrey St John, dated August 12, 1963, the eminent British Bugatti Registrar Hugh Conway wrote: "I did point out the engineless car to Morse, at Docime's, which he bought for £100 and sold to Thomas..." In another letter, Conway remarked that the engine of '55221' could have been sold by Docime in the USA.
Geoffrey St John restored the car to running order with engine 26 ex 55223 installed. It became a stable-mate for his Type 35B and Type 51 Grand Prix cars and it has remained in this single family ownership to this day. Geoffrey St John was a talented technician working for Smiths Industries, and eventually became the company's Chief Engineer, while dedicating most of his spare time to Bugatti restoration, tuning and racing. He was a most talented driver and became the sporting Bugatti marque's foremost British exponent over many years. He was exceptionally highly regarded as a twin-cam 2.3 Bugatti specialists, and always took particular delight in driving '55221' widely throughout the UK, and in Continental Europe, particularly – of course in France.
It was on a French road – near Auxerre in June 1994 – that he had the misfortune to be hit by a drunken driver, as described. The damage sustained took some two years of work to put right, Geoffrey St John being determined (at considerable extra expense) to save absolutely all of the car's original fabric that had escaped total destruction. Chassis straightening, keeping all the original parts, was carried out by renowned British specialist Gino Hoskins (Images on file).
A November 2019 inspection report on the car has been compiled by leading French Bugatti authority Pierre-Yves Laugier. He sums up its present condition thus: "The car keeps its original chassis, repaired in 1994. It (the original element of the chassis) is 90% complete with a few additional strengthening plates added according to Christian Huet, Parisian expert in charge of the accident file. The exterior of the car after restoration was completely in accordance with the original after more than 5,000 hours work.
"It (then) took part in its first event in the summer of 1996 (and so) the only Figoni roadster on a Supersport Type 55 Bugatti chassis is ready to join the world of rallies and concours d'élégance. It remains one of the most beautiful expressions of a Sports car by a coachbuilder, multi-purpose and powerful, one of the most important witnesses of the golden era of coachbuilding and know-how of the Bugatti brand..."
In detail M. Laugier observed: "The frame bore number 22, but the fixing hole of the spare wheel shows only one of the '2s' (the other having been drilled through). The front axle is of the right type, with no number and is probably new". In fact Geoffrey St John always maintained that the current front axle is an original, Bugatti-manufactured, hollow front axle of correct Type 55 specification...
M. Laugier continued: "The engine (comprising a matched pair of upper and lower crankcase castings – the left-rear mounting leg of which carries) assembly number '48' from roadster '55223'/engine '26'. One observes important welding traces under the rear-left mounting piece. Front-left mounting piece (the integrally cast engine leg), which was completely destroyed in the accident, was melted down and re-cast from a pattern amongst Geoffrey St John's spare parts collection. The re-cast leg was then welded back into place.
The clutch casing carries on both parts number '14'. Both gearbox and rear-axle sumps were rewelded after the accident. Traces are still visible on the original parts.
"The car was equipped with an overdrive. Compressor No '33' is ancient and of the right kind, but is not the one on the car in 1933, because a note of the repair workshop for compressors dated March 21st, 1933. states: 'Compressor 55 N° 45, Mr Rocatti, Paris, client Mr Dupuy, milling of notches in the chambers' The body of the gearbox is engraved (stamped) '39'. It is probably the factory replacement box, following the 38 (other such gearboxes that were) produced from 1931 to 1933.
"It could have been fitted to the car after one of the races in which it took part between 1933 and 1937. The original gearbox of the car, No '14', is today on a Type 55 chassis '55235' with a British history and which in 1962 was equipped with a Cotal gearbox. The original rear axle numbered '14' is the original one (installed in) the car and has race type ratio of 14 x 54 instead of the usual 13 x 54 of the first Type 55."
Mark Morris adds: "The front axle is of the right type, with no number" .
Pierre-Yves Laugier's report continues: "The fixed parts of the body are made of steel, while the opening parts are made of aluminium. After the accident in 1994, the wooden dashboard was rebuilt as the original wood board was split in two. The aluminium part of the bonnet had also to be completely replaced as well as the left front wing and the right door. Most of the wooden structure was kept. The work was carried out at Terry Hall's workshop. Drums and left front brake shoe were rewelded and two brake shoes were replaced. The wheel rim of several wheels was redone by welding - particularly visible on the spare wheel."
M. Laugier further observes: "The chassis plate of the vehicle is ancient. It wears number '55221', apparently over-stamped. It is of the Type 57 'Bas-Rhin' type and the number '57282' can be detected underneath (which) tallies with a Type 57 chassis number delivered in the Nord department in April 1935".
Since completion of restoration work in 1996 until Mr St John's recent passing, '55221' was regularly exercised by him. In similar style to the modern-day Bugatti Veyron, Chiron and EB110 models – which are both a schoolboy pin-up and a modern car collector's dream - so in its heyday the Bugatti Type 55 was a hugely coveted automotive jewel.
It is in essence a Grand Prix car with sports bodywork for use on the open road, powered by a 2.3-litre supercharged twin-cam 8-cylinder engine –as developed for the multiple Grand Prix-winning Bugatti Type 51 and only moderately detuned. Even in 1932 this power unit's blistering power and torque endowed the Type 55 with 0-60mph acceleration in 13 seconds and the hitherto unheard-of top speed – for a road car - of 115mph.
Even in the backwash from The Great Depression, the most style-conscious of high-society glitterati all aspired to the Type 55 – and, with its technical specification and haute couture body styling, it was squarely aimed at the most wealthy...and the most dashing...clientele such as the Duc de la Tremoille, Victor Rothschild and Nicholas Embiricos. With its contemporary price tag of some $7,500, Bugatti produced only 38 Type 55s, 27 of which are now known to survive.
And amongst them, this Figoni-bodied example – with its waistline-level doors offering proper cockpit wprotection in contrast to the doorless, cut-down cockpit sides of the more common Jean Bugatti roadster style – is unique. It is offered here in running order, accompanied by not only the immensely fine-detailed Pierre-Yves Laugier and Mark Morris inspection and history reports, but also by a substantial array of relevant spare parts. After 56 years in one ownership this is – when judged by the highest standards - a unique example of perhaps the most mouth-watering of all Bugatti models, and a definitive connoisseur's car to be truly, truly, coveted...
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.
The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.
From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.
The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.
After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.
The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.
Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.
The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.
The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.
The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.
After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.
General characteristics:
Crew: 1
Length: 31 ft 10 in (9.70 m)
Wingspan: 36 ft 10 in (11.23 m)
Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical
Wing area: 242.1 ft² (22.5 m²)
Empty weight: 5,564 lb (2,524 kg)
Gross weight: 7,415 lb (3,363 kg)
Powerplant:
1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,
delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller
Performance:
Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)
Cruise speed: 272 mph (438 km/h, 236 kn)
Range: 493 mi (793 km) on internal fuel at cruising speed
965 mi (1,553 km) with 90 gal drop tank
Service ceiling: 42,500 ft (12,954 m)
Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)
Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds
Armament:
4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard
Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb
(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers
The kit and its assembly:
This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.
With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.
With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.
Painting and markings:
The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.
Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!
Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.
I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.
The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.
The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.
The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.
A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The KAI T-50 Golden Eagle (골든이글) is a family of South Korean supersonic advanced trainers and light combat aircraft, developed by Korea Aerospace Industries (KAI) with Lockheed Martin. The T-50 is South Korea's first indigenous supersonic aircraft and one of the world's few supersonic trainers.
The T-50 program started in the late Nineties and was originally intended to develop an indigenous trainer aircraft capable of supersonic flight, to train and prepare pilots for the KF-16 and F-15K, replacing trainers such as T-38 and A-37 that were then in service with the ROKAF. Prior South Korean aircraft programs include the turboprop KT-1 basic trainer produced by Daewoo Aerospace (now part of KAI), and license-manufactured KF-16.
The mother program, code-named KTX-2, began in 1992, but the Ministry of Finance and Economy suspended the original project in 1995 due to financial constraints. The basic design of the aircraft was set by 1999, and eventually the development of the aircraft was funded 70% by the South Korean government, 17% by KAI, and 13% by Lockheed Martin.
In general, the T-50 series of aircraft closely resembles the KF-16 in configuration, but it actually is a completely new design: the T-50 is 11% smaller and 23% lighter than an F-16, and in order to create enough space for the two-seat cockpit, the air intake was bifurcated and placed under the wing gloves, resembling the F/A-18's layout.
The aircraft was formally designated as the T-50 'Golden Eagle' in February 2000, the T-50A designation had been reserved by the U.S. military to prevent it from being inadvertently assigned to another aircraft model. Final assembly of the first T-50 took place between 15 January and 14 September 2001. The first flight of the T-50 took place in August 2002, and initial operational assessment from 28 July to 14 August 2003.
The trainer has a cockpit for two pilots in a tandem arrangement, both crew members sitting in "normal" election seats, not in the F-16's reclined position. The high-mounted canopy is applied with stretched acrylic, providing the pilots with good visibility, and has been tested to offer the canopy with ballistic protection against 4-lb objects impacting at 400 knots.
The ROKAF, as original development driver, placed an initial production contract for 25 T-50s in December 2003, with aircraft scheduled to be delivered between 2005 and 2009. Original T-50 aircraft were equipped with the AN/APG-67(v)4 radar from Lockheed Martin. The T-50 trainer is powered by a GE F404 engine built under license by Samsung Techwin. Under the terms of the T-50/F404-102 co-production agreement, GE provides engine kits directly to Samsung Techwin who produces designated parts as well as performing final engine assembly and testing.
The T-50 program quickly expanded beyond a pure trainer concept to include the TA-50 armed trainer aircraft, as well as the FA-50 light attack aircraft, which has already similar capabilities as the multirole KF-16. Reconnaissance and electronic warfare variants were also being developed, designated as RA-50 and EA-50.
The TA-50 variant is a more heavily armed version of the T-50 trainer, intended for lead-in fighter training and light attack roles. It is equipped with an Elta EL/M-2032 fire control radar and designed to operate as a full-fledged combat platform. This variant mounts a lightweight three-barrel cannon version of the M61 Vulcan internally behind the cockpit, which fires linkless 20 mm ammunition. Wingtip rails can accommodate the AIM-9 Sidewinder missile, a variety of additional weapons can be mounted to underwing hardpoints, including precision-guided weapons, air-to-air missiles, and air-to-ground missiles. The TA-50 can also mount additional utility pods for reconnaissance, targeting assistance, and electronic warfare. Compatible air-to-surface weapons include the AGM-65 Maverick missile, Hydra 70 and LOGIR rocket launchers, CBU-58 and Mk-20 cluster bombs, and Mk-82, -83, and -84 general purpose bombs.
Among the operators of the TA-50 are the Philippines, Thailand and the ROKAF, and the type has attracted a global interest, also in Europe. The young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) chose, soon after the country's independence from the United Kingdom, after its departure from the European Union in 2017, the TA-50 as a complement to its initial procurements and add more flexibility to its small and young air arm.
According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six [Lockheed Martin] C-130J Hercules, and a helicopter squadron”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action after the country's independence in late 2017 with the purchase of twelve refurbished Saab JAS 39A Gripen interceptors for Quick Reaction Alert duties and upgraded, former Swedish Air Force Sk 90 trainers for the RoScAC. But these second hand machines were just the initial step in the mid-term procurement plan.
The twelve KAI TA-50 aircraft procured as a second step were to fulfill the complex requirement for a light and cost-effective multi-purpose aircraft that could be used in a wide variety of tasks: primarily as an advanced trainer for supersonic flight and as a trainer for the fighter role (since all Scottish Gripens were single seaters and dedicated to the interceptor/air defense role), but also as a light attack and point defense aircraft.
Scotland was offered refurbished F-16C and Ds, but this was declined as the type was deemed to be too costly and complex. Beyond the KAI T-50, the Alenia Aermacchi M-346 Master and the BAe Hawk were considered, too, but, eventually, a modified TA-50 that was tailored to the RoScAC’s procurement plans was chosen by the Scottish government.
In order to fulfill the complex duty profile, the Scottish TA-50s were upgraded with elements from the FA-50 attack aircraft. They possess more internal fuel capacity, enhanced avionics, a longer radome and a tactical datalink. Its EL/M-2032 pulse-Doppler radar has been modified so that it offers now a range two-thirds greater than the TA-50's standard radar. It enables the aircraft to operate in any weather, detect surface targets and deploy AIM-120 AAMs for BVR interceptions. The machines can also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
Another unique feature of the Scottish Golden Eagle is its powerplant: even though the machines are originally powered by a single General Electric F404 afterburning turbofan and designed around this engine, the RoScAC TF-50s are powered by a Volvo RM12 low-bypass afterburning turbofan. These are procured and serviced through Saab in Sweden, as a part of the long-term collaboration contract for the RoScAC’s Saab Gripen fleet. This decision was taken in order to decrease overall fleet costs through a unified engine.
The RM12 is a derivative of the General Electric F404-400. Changes from the standard F404 includes greater reliability for single-engine operations (including more stringent birdstrike protection) and slightly increased thrust. Several subsystems and components were also re-designed to reduce maintenance demands, and the F404's analogue Engine Control Unit was replaced with the Digital Engine Control – jointly developed by Volvo and GE – which communicates with the cockpit through the digital data buses and, as redundancy, mechanical calculators controlled by a single wire will regulate the fuel-flow into the engine.
Another modification of the RoScAC’s TA-50 is the exchange of the original General Dynamics A-50 3-barrel rotary cannon for a single barrel Mauser BK-27 27mm revolver cannon. Being slightly heavier and having a lower cadence, the BK-27 featured a much higher kinetic energy, accuracy and range. Furthermore, the BK-27 is the standard weapon of the other, Sweden-built aircraft in RoScAC service, so that further synergies and cost reductions were expected.
The Scottish Department of National Defense announced the selection of the TA-50 in August 2018, after having procured refurbished Saab Sk 90 and JAS 39 Gripen from Sweden as initial outfit of the country's small air arm with No. 1 Squadron based at Lossiemouth AB.
Funding for the twelve aircraft was approved by Congress on September 2018 and worth € 420 mio., making the Golden Eagle the young country’s first brand new military aircraft. Deliveries of the Golden Hawk TF.1, how the type was officially designated in Scottish service, began in November 2019, lasting until December 2020.
The first four Scottish Golden Hawk TF.1 aircraft were allocated to the newly established RoScAC No. 2 Squadron, based at Leuchars, where the RoScAC took control from the British Army. The latter had just taken over the former air base from the RAF in 2015, losing its “RAF air base” status and was consequentially re-designated “Leuchars Station”, primarily catering to the Royal Scots Dragoon Guards who have, in the meantime, become part of Scotland’s Army Corps. The brand new machines were publically displayed on the shared army and air corps facility in the RoScAC’s new paint scheme on 1st of December 2019 for the first time, and immediately took up service.
General characteristics:
Crew: 2
Length: 13.14 m (43.1 ft)
Wingspan (with wingtip missiles): 9.45 m (31 ft)
Height: 4.94 m (16.2 ft)
Wing area: 23.69 m² (255 ft²)
Empty weight: 6,470 kg (14,285 lb)
Max. takeoff weight: 12,300 kg (27,300 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan, rated at 54 kN (12,100 lbf) dry thrust
and 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: Mach 1.5 (1,640 km/h, 1,020 mph at 9,144 m or 30,000 ft)
Range: 1,851 km (1,150 mi)
Service ceiling: 14,630 m (48,000 ft)
Rate of climb: 198 m/s (39,000 ft/min)
Thrust/weight: 0.96
Max g limit: -3 g / +8 g
Armament:
1× 27mm Mauser BK-27 revolver cannon with 120 rounds
A total of 7 hardpoints (4 underwing, 2 wingtip and one under fuselage)
for up to 3,740 kg (8,250 lb) of payload
The kit and its assembly:
A rare thing concerning my builds: an alternative reality whif. A fictional air force of an independent Scotland crept into my mind after the hysterical “Brexit” events in 2016 and the former (failed) public vote concerning the independence of Scotland from the UK. What would happen to the military, if the independence would take place, nevertheless, and British forces left the country?
The aforementioned Scottish National Party (SNP) paper from 2013 is real, and I took it as a benchmark. Primary focus would certainly be set on air space defense, and the Gripen appears as a good and not too expensive choice. The Sk 90 is a personal invention, but would fulfill a good complementary role.
Nevertheless, another multi-role aircraft would make sense as an addition, and both M-346 and T-50 caught my eye (Russian options were ruled out due to the tense political relations), and I gave the TA-50 the “Go” because of its engine and its proximity to the Gripen.
The T-50 really looks like the juvenile offspring from a date between an F-16 and an F-18. There’s even a kit available, from Academy – but it’s a Snap-Fit offering without a landing gear but, as an alternative, a clear display that can be attached to the engine nozzle. It also comes with stickers instead of waterslide decals. This sounds crappy and toy-like, but, after taking a close look at kit reviews, I gave it a try.
And I am positively surprised. While the kit consists of only few parts, moulded in the colors of a ROCAF trainer as expected, the surfaces have minute, engraved detail. Fit is very good, too, and there’s even a decent cockpit that’s actually better than the offering of some “normal” model kits. The interior comes with multi-part seats, side consoles and dashboards that feature correctly shaped instrument details (no decals). The air intakes are great, too: seamless, with relatively thin walls, nice!
So far, so good. But not enough. I could have built the kit OOB with the landing gear tucked up, but I went for the more complicated route and trans-/implanted the complete landing gear from an Intech F-16, which is available for less than EUR 5,- (and not much worth, to be honest). AFAIK, there’s white metal landing gear for the T-50 available from Scale Aircraft Conversions, but it’s 1:48 and for this set’s price I could have bought three Intech F-16s…
But back to the conversion. This landing gear transplantation stunt sounds more complicated as it actually turned out to be. For the front wheel well I simply cut a long opening into the fuselage and added inside a styrene sheet as a well roof, attached under the cockpit floor.
For the main landing gear I just opened the flush covers on the T-50 fuselage, cut out the interior from the Intech F-16, tailored it a little and glued it into its new place.
This was made easy by the fact that the T-50 is a bit smaller than the F-16, so that the transplants are by tendency a little too large and offer enough “flesh” for adaptations. Once in place, the F-16 struts were mounted (also slightly tailored to fit well) and covers added. The front wheel cover was created with 0.5 mm styrene sheet, for the main covers I used the parts from the Intech F-16 kit because they were thinner than the leftover T-50 fuselage parts and feature some surface detail on the inside. They had to be adapted in size, though. But the operation worked like a charm, highly recommended!
Around the hull, some small details like missing air scoops, some pitots and antennae were added. In a bout of boredom (while waiting for ordered parts…) I also added static dischargers on the aerodynamic surfaces’ trailing edges – the kit comes with obvious attachment points, and they are a small detail that improves the modern look of the T-50 even more.
Since the Academy kit comes clean with only a ventral drop tank as ordnance, underwing pylons from a SEPECAT Jaguar (resin aftermarket parts from Pavla) and a pair of AGM-65 from the Italeri NATO Weapons set plus launch rails were added, plus a pair of Sidewinders (from a Hasegawa AAM set, painted as blue training rounds) on the wing tip launch rails.
Since the T-50 trainer comes unarmed, a gun nozzle had to be added – its position is very similar to the gun on board of the F-16, on the upper side of the port side LERX. Another addition are conformal chaff/flare dispensers at the fin’s base, adding some beef to the sleek aircraft.
Painting and markings:
I did not want a grey-in-grey livery, yet something “different” and rather typical or familiar for the British isles. My approach is actually a compromise, with classic RAF colors and design features inspired by camouflage experiments of the German Luftwaffe on F-4F Phantoms and Alpha Jets in the early Eighties.
For the upper sides I went for a classic British scheme, in Dark Green and Dark Sea Grey (Humbrol 163 and 164), colors I deem very appropriate for the Scottish landscape and for potential naval operations. These were combined with elements from late RAF interceptors: Barley Grey (Humbrol 167) for the flanks including the pylons, plus Light Aircraft Grey (Humbrol 166) for the undersides, with a relatively high waterline and a grey fin, so that a side or lower view would rather blend with the sky than the ground below.
Another creative field were the national markings: how could fictional Scottish roundels look like, and how to create them so that they are easy to make and replicate (for a full set for this kit, as well as for potential future builds…)? Designing and printing marking decals myself was an option, but I eventually settled for a composite solution which somewhat influenced the roundels’ design, too.
My Scottish roundel interpretationconsists of a blue disk with a white cross – it’s simple, different from any other contemporary national marking, esp. the UK roundel, and easy to create from single decal parts. In fact, the blue roundels were die-punched from blue decal sheet, and the cross consists of two thin white decal strips, cut into the correct length with the same stencil, using generic sheet material from TL Modellbau.
Another issue was the potential tactical code, and a small fleet only needs a simple system. Going back to a WWII system with letter codes for squadrons and individual aircraft was one option, but, IMHO, too complicated. I adopted the British single letter aircraft code, though, since this system is very traditional, but since the RoScAC would certainly not operate too many squadrons, I rather adapted a system similar to the Swedish or Spanish format with a single number representing the squadron. The result is a simple 2-digit code, and I adapted the German system of placing the tactical code on the fuselage, separated by the roundel. Keeping British traditions up I repeated the individual aircraft code letter on the fin, where a Scottish flag, a small, self-printed Fife coat-or-arms and a serial number were added, too.
The kit saw only light weathering and shading, and the kit was finally sealed with matt acrylic varnish (Italeri).
Creating this whif, based on an alternative historic timeline with a near future perspective, was fun – and it might spawn more models that circle around the story. A Scottish Sk 90 and a Gripen are certain options (and for both I have kits in the stash…), but there might also be an entry level trainer, some helicopters for the army and SAR duties, as well as a transport aircraft. The foundation has been laid out, now it’s time to fill Scotland’s history to come with detail and proof. ;-)
Besides, despite being a snap-fit kit, Academy’s T-50 is a nice basis, reminding me of some Hobby Boss kits but with less flaws (e .g. most of the interiors), except for the complete lack of a landing gear. But with the F-16 and Jaguar transplants the simple kit developed into something more convincing.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.
In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.
The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).
For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.
The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.
In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.
Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.
Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.
Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.
Specifications:
Crew: 4 (commander, driver, gunner, radio operator/second driver)
Weight: 22.6 t
Length: 7.74 m (25 ft 4 ¼ in)
Width: 2.98 m ( 9 ft 9 in)
Height: XXX
Ground clearance: 440 mm (1 ft 4 in)
Suspension: hydraulic all-wheel drive and steering
Armor:
Unknown, but sufficient to withstand 14.5 mm AP rounds
Performance:
Speed: 90 km/h (56 mph) on roads
Operational range: 720 km (445 mi)
Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel
Engine:
1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,
delivering 300 hp with petrol, 390 hp with diesel
Armament:
1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)
1× co-axial 7.92 mm M3 machine gun with 2.000 rounds
Two groups of four Wegmann 76 mm smoke mortars
The kit and its assembly:
I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.
This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.
Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).
An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!
Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.
Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.
Painting and markings:
The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).
Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.
Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.
Unlike Los Angeles, we rarely have celebrity sightings here in Chicago. However, today I unexpectedly ran into the Ohlsson twins after brunch at the Bongo Room. Available now. Email anytime Kennyk@k2modern.com.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.
The initial production model, the F-94A, entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 radar, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.
The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. Its Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a roomier cockpit and the canopy received a bow frame in the center between the two crew members. A new Instrument Landing System (ILS) was fitted, too, which made operations at night and/or in bad weather much safer. However, this new variant’s punch with just four machine guns remained weak, and, to improve the load of fire, wing-mounted pods with two additional pairs of 0.5” machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were nevertheless built.
The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm since aircraft technology had already developed at a fast pace – supersonic performance had already become standard. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48. This was a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the proposed new variant was exclusively armed with unguided air-to-air missiles.
Tests were positive and eventually the F-94C was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time. It still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft, though.
The F-94C's introduction and the availability of the more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and to Air National Guards. By 1955 most of them had already been phased out of USAF service, and some of these relatively young surplus machines were subsequently exported or handed over to friendly nations, too. When sent to the ANG, the F-94As were modified by Lockheed to F-94B standards and then returned to the ANG as B models. They primarily replaced outdated F-80C Shooting Stars and F-51D/H Mustangs.
At that time the USAF was looking for a tactical reconnaissance aircraft, a more effective successor for the RF-80A which had shown its worth and weaknesses during the Korea War. For instance, the plane could not fly at low altitude long enough to perform suitable visual reconnaissance, and its camera equipment was still based on WWII standards. Lockheed saw the opportunity to fill this operational gap with conversions of existing F-94A/B airframes, which had, in most cases, only had clocked few flying hours, primarily at high altitudes where Soviet bombers were expected to lurk, and still a lot of airframe life to offer. This led to another private venture, the RF-94B, auspiciously christened “Stargazer”.
The RF-94B was based on the F-94B interceptor with its J33 engine and the original unswept tail. The F-94B’s wings were retained but received a different leading-edge profile to better cope with operations at low altitude. The interceptor’s nose with the radome and the machine guns underneath was replaced by a new all-metal nose cone, which was more than 3 feet longer than the former radar nose, with windows for several sets of cameras; the wedge-shaped nose cone quickly earned the aircraft the unofficial nickname “Crocodile”.
One camera was looking ahead into flight direction and could be mounted at different angled downward (but not moved during flight), followed by two oblique cameras, looking to the left and the right, and a vertical camera as well as a long-range camera focussed on the horizon, which was behind a round window at port side. An additional, spacious compartment in front of the landing gear well held an innovative Tri-Metrogen horizon-to-horizon view system that consisted of three synchronized cameras. Coupled with a computerized control system based on light, speed, and altitude, it adjusted camera settings to produce pictures with greater delineation.
All cameras could be triggered individually by pilot or a dedicated observer/camera systems operator in the 2nd seat. Talking into a wire recorder, the crew could describe ground movements that might not have appeared in still pictures. A vertical view finder with a periscopic presentation on the cockpit panel was added for the pilot to enhance visual reconnaissance and target identification directly under the aircraft. Using magnesium flares carried under its wings in flash-ejector cartridges, the RF-94B was furthermore able to fly night missions.
The RF-94B was supposed to operate unarmed, but it could still carry a pair of 1.000 lb bombs under its wings or, thanks to added plumbings, an extra pair of drop tanks for ferry flights. The F-94A/B’s machine gun pods as well as the F-94C’s unguided missile launchers could be mounted to the wings, too, making it a viable attack aircraft in a secondary role.
The USAF was highly interested in this update proposal for the outdated interceptors (almost 500 F-94A/Bs had been built) and ordered 100 RF-94B conversions with an option for 100 more – just when a severe (and superior) competitor entered the stage after a lot of development troubles: Republic’s RF-84F Thunderflash reconnaissance version. The first YRF-84F had already been completed in February 1952 and it had an overall slightly better performance than the RF-94B. However, it offered more internal space for reconnaissance systems and was able to carry up to fifteen cameras with the support of many automatized systems, so that it was a single seater. Being largely identical to the F-84F and sharing its technical and logistical infrastructures, the USAF decided on short notice to change its procurement decision and rather adopt the more modern and promising Thunderflash as its standard tactical reconnaissance aircraft. The RF-94B conversion order was reduced to the initial 100 aircraft, and to avoid operational complexity these aircraft were exclusively delivered to Air National Guardss that had experience with the F-94A/B to replace their obsolete RF-80As.
Gradual replacement lasted until 1958, and while the RF-94B’s performance was overall better than the RF-80A’s, it was still disappointing and not the expected tactical intelligence gathering leap forward. The airframe did not cope well with constant low-level operations, and the aircraft’s marginal speed and handling did not ensure its survivability. However, unlike the RF-84F, which suffered from frequent engine problems, the Stargazers’ J33 made them highly reliable platforms – even though the complex Tri-Metrogen device turned out to be capricious, so that it was soon replaced with up to three standard cameras.
For better handling and less drag esp. at low altitude, the F-94B’s large Fletcher type wingtip tanks were frequently replaced with smaller ones with about half capacity. It also became common practice to operate the RF-94Bs with only a crew of one, and from 1960 on the RF-94B was, thanks to its second seat, more and more used as a trainer before pilots mounted more potent reconnaissance aircraft like the RF-101 Voodoo, which eventually replaced the RF-94B in ANG service. The last RF-94B was phased out in 1968, and, unlike the RF-84F, it was not operated by any foreign air force.
General characteristics:
Crew: 2 (but frequently operated by a single pilot)
Length: 43 ft 4 3/4 in (13.25 m)
Wingspan (with tip tanks): 40 ft 9 1/2 in (12.45 m)
Height: 12 ft. 2 (3.73 m)
Wing area: 234' 8" sq ft (29.11 m²)
Empty weight: 10,064 lb (4,570 kg)
Loaded weight: 15,330 lb (6,960 kg)
Max. takeoff weight: 24,184 lb (10,970 kg)
Powerplant:
1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust,
5,400 lbf (24 kN) with water injection and 6,000 lbf (26.6 kN) thrust with afterburner
Performance:
Maximum speed: 630 mph (1,014 km/h) at height and in level flight
Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks
Ferry range: 1,457 mi (1,275 nmi, 2,345 km)
Service ceiling: 42,750 ft (14,000 m)
Rate of climb: 6,858 ft/min (34.9 m/s)
Wing loading: 57.4 lb/ft² (384 kg/m²)
Thrust/weight: 0.48
Armament:
No internal guns; 2x 165 US Gallon (1,204 liter) drop tanks on the wing tips and…
2x underwing hardpoints for two additional 165 US Gallon (1,204 liter) ferry tanks
or bombs of up to 1.000 lb (454 kg) caliber each, plus…
2x optional (rarely fitted) pods on the wings’ leading edges with either a pair of 0.5" (12.7 mm)
machine guns or twelve 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets each
The kit and its assembly:
This project was originally earmarked as a submission for the 2021 “Reconnaissance & Surveillance” group build at whatifmodellers.com, in the form of a Heller F-94B with a new nose section. The inspiration behind this build was the real-world EF-94C (s/n 50-963): a solitary conversion with a bulbous camera nose. However, the EF-94C was not a reconnaissance aircraft but rather a chase plane/camera ship for the Air Research and Development Command, hence its unusual designation with the suffix “E”, standing for “Exempt” instead of the more appropriate “R” for a dedicated recce aircraft. There also was another EF-94C, but this was a totally different kind of aircraft: an ejection seat testbed.
I had a surplus Heller F-94B kit in The Stash™ and it was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit.
The biggest change was the new camera nose, and it was scratched from an unlikely donor part: it consists of a Matchbox B-17G tail gunner station, slimmed down by the gunner station glazing's width at the seam in the middle, and this "sandwich" was furthermore turned upside down. Getting the transitional sections right took lots of PSR, though, and I added some styrene profiles to integrate the new nose into the rest of the hull. It was unintentional, but the new nose profile reminds a lot of a RF-101 recce Voodoo, and there's, with the straight wings, a very F-89ish look to the aircraft now? There's also something F2H-2ish about the outlines?
The large original wing tip tanks were cut off and replaced with smaller alternatives from a Hasegawa A-37. Because it was easy to realize on this kit I lowered the flaps, together with open ventral air brakes. The cockpit was taken OOB, I just modified the work station on the rear seat and replaced the rubber sight protector for the WSO with two screens for a camera operator. Finally, the one-piece cockpit glazing was cut into two parts to present the model with an open canopy.
Painting and markings:
This was a tough decision: either an NMF finish (the natural first choice), an overall light grey anti-corrosive coat of paint, both with relatively colorful unit markings, or camouflage. The USAF’s earlier RF-80As carried a unique scheme in olive drab/neutral grey with a medium waterline, but that would look rather vintage on the F-94. I decided that some tactical camouflage would make most sense on this kind of aircraft and eventually settled for the USAF’s SEA scheme with reduced tactical markings, which – after some field tests and improvisations in Vietnam – became standardized and was officially introduced to USAF aircraft around 1965 as well as to ANG units.
Even though I had already built a camouflaged F-94 some time ago (a Hellenic aircraft in worn SEA colors), I settled for this route. The basic colors (FS 30219, 34227, 34279 and 36622) all came from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the paint scheme of the USAF’s probably only T-33 in SEA colors: a trainer based on Iceland during the Seventies and available as a markings option in one of the Special Hobby 1:32 T-33 kits. The low waterline received a wavy shape, inspired by an early ANG RF-101 in SEA camouflage I came across in a book. The new SEA scheme was apparently applied with a lot of enthusiasm and properness when it was brand new, but this quickly vaned. As an extra, the wing tip tanks received black anti-glare sections on their inner faces and a black anti-glare panel was added in front of the windscreen - a decal from a T-33 aftermarket sheet. Beyond a black ink wash the model received some subtle panel post-shading, but rather to emphasize surface details than for serious weathering.
The cockpit became very dark grey (Revell 06) while the landing gear wells were kept in zinc chromate green primer (Humbrol 80, Grass Green), with bright red (Humbrol 60, Matt Red) cover interiors and struts and wheels in aluminum (Humbrol 56). The interior of the flaps and the ventral air brakes became red, too.
The decals/markings came from a Special Hobby 1:72 F-86H; there’s a dedicated ANG boxing of the kit that comes with an optional camouflaged aircraft of the NY ANG, the least unit to operate the “Sabre Hog” during the Seventies. Since this 138th TFS formerly operated the F-94A/B, it was a perfect option for the RF-94B! I just used a different Bu. No. code on the fin, taken from a PrintScale A/T-37 set, and most stencils were perocured from the scrap box.
After a final light treatment with graphite around the afterburner for a more metallic shine of the iron metallic (Revell 97) underneath, the kit was sealed with a coat of matt acrylic varnish (Italeri).
A camouflaged F-94 is an unusual sight, but it works very well. The new/longer nose considerably changes the aircraft's profile, and even though the change is massive, the "Crocodile" looks surprisingly plausible, if not believable! And, despite the long nose, the aircraft looks pretty sleek, especially in the air.
While Skakdi are capable of physically wearing Kanohi Masks, they do not possess the measure of focus nor the mental capacity to utilize their powers...
Except for the very small fraction of the population who were mutated by the personal experiment of one curious Great Being.
About 1-3% of the Skakdi population have well above average mental capacities - even beyond that of Toa. While the average Skakdi cannot use Kanohi powers, these mutant Skakdi can use the powers of multiple masks at the same time, without even wearing them.
Known as Shamans, or Witch Doctors, these Skakdi are physically larger than their regular counterparts, and their spines are more elaborate. Their mutations also cause the appearance of various abnormal growths on their bodies, though luckily these are always symmetrical.
Other physical characteristics are more vibrant skin pigments - the average Skakdi are bi-colored without armor, though both colors are always different shades of the same color - and hunched back.
Skakdi Witch Doctors are equally revered and feared by their counterparts, while their existence is seldom considered more than a rumor beyond the shores of Zakaz. The Witch Doctors wield terrifying power, and are able to activate and control the powers of Kanohi masks even at a distance, thus using the powers of opponents' masks against them. They also wield elemental powers, considered by their fellow Skakdi to be "magic", and immense physical strength.
It's fortunate, therefore, that Witch Doctors seldom engage in combat. While they are rarely seen outside of Zakaz, all Witch Doctors travel to other islands occasionally to harvest Kanohi - usually still attached to the original owner's head. Beyond this, they do not engage in the warmongering typical of their race.
Instead, the Witch Doctors dedicate their time to rituals, incantations, hexes and the consumption of various mushrooms, while practicing the use of Kanohi powers, Their innate abilities allow them to control 3-4 masks, however if exercised (much like a muscle), this can be increased. The most powerful known Witch Doctor managed to simultaneously activate the powers of 35 Kanohi. After this, he claimed to have been "enlightened", and traveled to a nearby Skakdi village where he preached that their world was actually the body of a larger being, who was travelling through the void. The villagers promptly tore the Witch Doctor to bits and ate his remains.
Two shamanistic pursuits of the Witch Doctors not related to Kanohi are Voodoo and the training of familiars. The former involved the crafting of - usually Skakdi-like - effigies which can then be linked to the soul of another, thus any force affecting the effigy would effect the individual bound to it. Familiars, in turn, are rahi who are tamed by the Witch Doctor, and kept as loyal pets.
This particular Witch Doctor once caught a newly hatched Visorak, tamed it, and enchanted it so that it will never grow in size.
Witch Doctors often live in huts or hovels deep in the jungles of their homeland. While the homes of the Shaman often mirror their denizens and are thus unique, one constant in all such homes is a ritual altar, which functions much like a table. Witch Doctors are keen collectors of all kinds of oddities, so seeing various Kanohi, old weapons and even kraata around their altars is not unheard of.
All Witch Doctors carry a special staff, which they adorn with the heads of those whose Kanohi they collected. The Shaman are capable of using not only the Kanohi they wear, but also those on their staff. They also all possess ritual daggers, used in the art of Voodoo, as well as other rituals requiring living sacrifice.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.
As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.
The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.
The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.
Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).
However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.
Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.
The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.
The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.
As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.
Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.
With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.
General characteristics:
Crew: 1
Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position
15.48 m (50 8 ½ in) including pitot
Wingspan: 9 m (29 ft 6 in)
Height: 3.8885 m (12 ft 9 in)
Wing area: 25 m² (269 ft²)
Empty weight: 5,210 kg (11,475 lb)
Loaded weight: 7,890 kg (17,380 lb)
Max. takeoff weight: 9,050 kg (19,935 lb)
Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;
plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks
Powerplant:
2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning
Performance:
Maximum speed: 1,380km/h at sea level (Mach=1.16)
1,850km/h at 12,000m (Mach=1.8)
Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks
Combat range: 500 km (312 mi; 270 nmi)
Ferry range: 2,000 km (1,242 mi; 690 nmi)
Service ceiling: 19,750 m (64,690 ft)
Rate of climb: 180 m/s (35,000 ft/min)
Wing loading: 353.3 kg/m² (72.4 lb/ft²)
Thrust/weight: 0.86
Armament:
No internal guns.
4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,
plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)
AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs
The kit and its assembly:
Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.
However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.
The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.
Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.
On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.
The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.
Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.
The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.
Painting and markings:
No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.
Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).
The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).
The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.
After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.
Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).
The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.
The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.
Dear People!
Behind me stands Mother Ukraine. Ukraine that stands firmly on its feet, does not bow its head, looks ahead, believes in its future and victory over all the evil that Russia has brought us. Ukraine that is capable of achieving a just peace – having a shield and a sword. Defending its people, its colors, its Independence. Today I address all those who value Ukraine, cherish their state, and lovingly call it “Mine.” I thank you for 2024. Our people who endure all difficulties with dignity. People for whom being citizens of Ukraine is a source of pride. And for me, it is a pride to be the President of such people – Ukrainians who prove that no cruise missile can defeat a nation that has wings.
Throughout this leap year, we have proven it every day. And we saw it yesterday. When we were uplifted with happiness because 189 Ukrainians returned from captivity to their native land. Because they will celebrate the New Year at home. Because we are bringing our people back. 1,358 people this year. 3,956 Ukrainians during this time. And I’m giving not estimates but precise numbers, because each one represents a person, our person, a very important person. And with each return – we bring life back to Ukraine.
And every time this happens, we all cry. It doesn’t matter if it’s a moved mother, or it’s a child who finally has their father back, or the President of Ukraine – we all cry because we are all human, and we have kept the light within us.
And it helped us endure through over 1,000 days. To be brave when it was needed most. To be strong when it was so vital. As did our teachers, our medics, our power engineers, our transport workers, as did all our air defense personnel, mobile fire groups. The guys who brought down 1,310 cruise and ballistic missiles this year, and 7800 Iranian “Shahed” drones. Bravo! We are proud! Thank you! We lived through this year together. We overcame everything 2024 brought together. Victories and setbacks. Joys and challenges. Tears of happiness when we succeeded. And tears of pain when our hearts were wounded.
July. Morning. Okhmatdyt. That’s how weaklings and cowards strike. And we will never forget those children’s eyes. We will never forgive them for this! When evil brings death, our response is a human chain. This is what the strength of Ukrainians looks like. And that unity of ours could be seen from space. God saw it. He saw what kind of people we have. What kind of children we have. And I will never forget those incredibly mature and strong eyes of the boy from Okhmatdyt. How much life is in him, energy and dignity! And how much stronger this child alone is than Putin! How much stronger all our children are than their entire evil. Ukrainian boys and girls who are winning this war, gaining knowledge online and even in underground schools, winning global science competitions, raising funds for our army, and inventing technological solutions that help with our defense. You are a phenomenal generation! This is who we are fighting for. This is who our heroes, our warriors, protect above all. Those who stand firm and carry Independence on their shoulders. Where freedom and valor fight every day – even now, on this New Year's night. On all our fronts. On all of them. In the east, where it’s extremely, extremely difficult and challenging right now. But we believe, we know: you will stand strong. Our guys will stand strong. Your spirit and courage will stand strong. All the things that helped you not to surrender our Sumy and Kharkiv, our Kherson and our Zaporizhzhia this year. And the Russians wanted it so badly. But instead – you paid the occupiers back, bringing the war back home to Russia. And the one who sowed evil on our land received it on their own. In the Kursk region and in other places where our response, our justice, came this year.
Justice. Just one word, but behind it stand hundreds of thousands of our people. Our defense industry and our science. Whose minds and work have made us stronger, because 30% of everything our guys had on the battlefield this year – all this was made in Ukraine.
And at one of these facilities, I asked a young engineer: "How did you manage to achieve so much? How were these people able to do all of this?" And the young man joked: "They're not just people, they're missiles."
And you know, at that moment, I felt ashamed as a citizen that since the 90s, the state hadn’t noticed such people of ours. And I am proud, when meeting them throughout the year I hear: they are happy to be needed by Ukraine. And that Ukraine is once again building its own, its own missiles. And for the first time, it produces over a million drones in a year. Forcing the enemy to learn Ukrainian. Palianytsia, Peklo, Ruta. Making them tremble at the words Neptune and Sapsan. All these are our missiles. Ukrainian. Hor, Vampire, Kolibri, Kamik, Liutyi, Heavy Shot, Firepoint. All these are our drones. Ukrainian. And all these are our arguments, the arguments for a just peace.
It is achieved only by the strong. And we have proven time and again that we are strong. Our athletes. Oleksandr Khyzhniak, our Tank. Olga Kharlan, Yaroslava Mahuchikh, all our Olympians and Paralympians, for whom we cheered, worried, and screamed with joy and pride when the blue and yellow flag was raised. We took the hits and fought back alongside Oleksandr Usyk. All of this is about something bigger than just sports. It’s about our character. It’s about who we are and what we are capable of. It’s about meanings and symbols. It’s about Sashko’s fights, like Ukraine’s daily battles, showing us: it doesn't matter how much bigger the enemy is compared to you, what matters is how much bigger your will is. Then it takes the breath away of the whole world! And all the leaders told me frankly: "We've never seen anything like this – when a full hall of Notre-Dame de Paris is applauding." And those were applause for you. For all our people. This is what respect for Ukraine sounds like. This is what Independence is.
It’s when we don’t give up what’s ours. And when we don’t forget our people. Those who are in captivity. And we will fight for every person who, unfortunately, is still there. And we will fight for all those whom Russia has forced into occupation; but couldn’t occupy their Ukrainian hearts. And no matter how many passports evil hands out at gunpoint, our people say: "You are not our kin, you are temporary." And all those imposed weeds will not take root on our land, will not defeat the natives. I always recall the story about one of our Ukrainian elderly men, whom the occupiers asked: "What time is it?" And he answered: "Time to get off our land." This is what the inner will is, which simply cannot be occupied. And I turn to all those who carry this will in their hearts on the temporarily occupied territories. Dear Ukrainians! I know you are celebrating the New Year according to our time, and now you hear these words. In our Crimea, in Donbas, in Melitopol, in Mariupol – everywhere where Ukraine is awaited. And where, one day, Ukraine will return to be together. And the only thing that will divide Ukrainians is a generously laid table.
I know that all our people will be at this table. Those who are now abroad but have kept Ukraine in their hearts. So today, in the first minute of the New Year, in Warsaw, New York, or Buenos Aires, "Shche ne vmerla…" will sound. In Berlin, Prague or Tokyo, people will say today: “Glory to Ukraine!” And the world will respond: “Glory to the Heroes!” Because Ukraine is not alone. Because we have our friends with us. Since the first minutes of this war, America has stood with Ukraine. I believe that America will also stand with Ukraine in the first minutes of peace.
I remember my conversation with Joe Biden after the Russian invasion. I remember my conversation with Donald Trump after he was elected. All the conversations with Congressmen, Senators, ordinary Americans, with all those who support us in the US, in Europe, and around the world – in those many and varied conversations, there was always unity on the main point: Putin cannot win. Ukraine will prevail.
I thank all Americans for proving these words with deeds. I have no doubt that the new American President is willing and capable of achieving peace and ending Putin’s aggression. He understands that the first is impossible without the second. Because this is not a street fight where you have to calm down both sides. This is the full-scale aggression of a mad state against a civilized one. And I believe that we, together with the United States, are capable of exerting that force. Of compelling Russia into a just peace. That means not forgetting, and not erasing everything Russia has done. Bucha, Olenivka, Avdiivka, all our destroyed towns and villages. This is why a truly just peace cannot be based on the principle of “let’s start with a clean slate.” Because the score is not 0:0. The score is thousands, thousands of Ukrainians whose lives Russia has stolen.
And today, the heart of Ukraine is covered with scars. These are the names of our fallen heroes. May God protect every family in the world from experiencing such losses. I would not wish any leader in the world to experience these feelings – the moment you hand over awards posthumously. You see the eyes of a mother, a wife, or a child of a warrior who gave their life for Ukraine, and you hear them say: "Please, let it all not be in vain." Thousands of our guys and girls have not faded into oblivion. They are with us, they are by our side, always, they are watching over us from the heavens. And we have no right to let them down, and we cannot betray their feat and memory.
And every day in the coming year, I, and all of us, must fight for a Ukraine that is strong enough. Because only such a Ukraine is respected and heard. Both on the battlefield and at the negotiating table.
I thank everyone who has stood by us this year. Our partners, allies, friends, leaders. Leaders indeed, not because it is customary to call them that, but because they prove their leadership by their actions. Those who were not afraid to come to Ukraine, knowing how valuable it is to see us standing shoulder to shoulder. With whom, despite the distance and time difference, we worked together, found solutions and achieved results. Patriots, IRIS-Ts, NASAMS and ATACMS systems, F-16s, SCALPs, Storm Shadows. The Czech initiative and a million shells. The Danish model and hundreds of millions in our domestic production. 27 security agreements and 40 billion to support our army. The European Union and 50 billion to support our economy. The G7 and the decision on 50 billion dollars of frozen Russian assets. This is our great international work. This is our great international victory. I thank our partners, thank you for this; I thank our team. The Army, the Government, the Office, the Parliament, the regions, the communities, the volunteers. All those who strengthen our country from within and care about people.
I thank everyone thanks to whom Ukraine is standing and will stand. It will overcome its path to peace, to a strong Ukraine. And to a European Ukraine. And these are not just words, but a reality that began this June with the opening of negotiations on Ukraine's accession to the EU. And this is a historic result. And this path is irreversible. And Ukraine will be in the European Union. And one day Ukraine will be in NATO and will strengthen the Alliance. It will strengthen the stability of the world. The unity of Europe, which determines the destiny of every nation on the continent. And this unity must be respected by all. By both Budapest and Bratislava. I know the Hungarian and Slovak peoples are actually with us, with Ukraine, with Ukrainians, on the side of truth. The authorities of these countries should also acknowledge the truth. There is no need to be afraid of Ukraine being in Europe. We must do everything to prevent Russia from being in Europe. Its tanks, its missiles, and the evil it will surely spread further if Ukraine does not withstand. If Russia shakes your hand today, it does not mean that tomorrow, it will not start killing you with the same hand. Because Russians are afraid of the free people. Of what they are not familiar with. They are afraid of freedom. They were born under Putin, went to school under Putin, joined the army under Putin and are dying for his sick ideas.
And that is why it is so crucial today to support all peoples who defend freedom. Those who refuse to give it up in Chișinău. Those who are fighting for their future in Tbilisi. And I am sure that the day will come when we will all say: "Long Live Belarus!"
Dear Ukrainians!
May 2025 be our year. The year of Ukraine. We know that peace will not be given to us as a gift. But we will do everything to stop Russia and end the war. This is what each of us wishes for.
Behind all of us stands Mother Ukraine. And she deserves to live in peace. I wish this to all of us. And as the President of Ukraine, as well as a citizen, I will do everything to achieve it in the coming year. Knowing that I will not be alone. I know that you stand shoulder to shoulder with me – millions of Ukrainians. Strong. Free. Beautiful. Independent.
Happy New Year, dear people!
Happy New Year, Ukraine!
Glory to Ukraine!
Royal Navy warship HMS Montrose flexes her warfighting muscle with the successful firing of a Harpoon missile - capable of destroying a target up to 80 miles away.
The anti-ship missile was fired at more than 800 mph into a specially-designed target barge in the Scottish exercise areas, obliterating it within minutes, and demonstrating the type of lethal power the warship wields.
The Royal Navy continually tests its personnel on exercises and training serials which are designed to build a world-class Service, and putting the weapons through their paces is part of ensuring their powerful capability.
Principal Warfare Officer Lieutenant Ben Evans said: “The intensity and stress of conducting complex warfare training increases tenfold when you know that there is almost a quarter of a tonne of warhead on the end of the live missile you are about to fire – but so is the satisfaction increased when you successfully achieve your goal.”
HMS Montrose, which is based at Devonport Naval Base, fired the Harpoon missile during a specialist training week following her participation in Exercise Joint Warrior – a huge multi-national exercise off the coast of Scotland.
Pictured by- PO(AET) Danny Swain
214 FLT, 815 NAS
HMS Montrose
-------------------------------------------------------
© Crown Copyright 2013
Photographer: PO(Phot) Wheelie A'barrow
Image 45155410.jpg from www.defenceimages.mod.uk
This image is available for high resolution download at www.defenceimagery.mod.uk subject to the terms and conditions of the Open Government License at www.nationalarchives.gov.uk/doc/open-government-licence/. Search for image number 45155410.jpg
For latest news visit www.gov.uk/government/organisations/ministry-of-defence
Follow us:
A Stanley 735B at the Osnabrück unter Dampf festival.
Steam locomotives, steam engines capable of propelling themselves along either road or rails, developed around one hundred years earlier than internal combustion engine cars although their weight restricted them to agricultural and heavy haulage work on roads. The light car developed contemporaneously with both steam and internal combustion engines, as both engineering and road building matured. As the steam car could use the vast experience of steam engines already developed with the steam railway locomotive, it initially had the advantage. In 1900 the steam car was broadly superior and even managed to hold absolute land speed records. By 1920 the internal combustion engine had progressed to such a point that the steam car was an anachronism.
Few steam cars have been built since the 1920s, although the technology is not implausible and projects intermittently occur to recreate a "modern" steam car with modern levels of convenience, performance and efficiency.
The greatest technical challenges to the steam car have focused on its boiler. This represents much of the total mass of the drivetrain, making the car heavier (an internal-combustion-engined car requires no boiler), and requires careful attention from the driver - although even the cars of 1900 had considerable automation to manage this. The single largest restriction is the need to supply feedwater to the boiler. This must either be carried and frequently replenished, or the car must also be fitted with a condenser, a further weight and inconvenience.
The steam car does have advantages, although most of these are now less important than in its heyday. The engine (excluding the boiler) is smaller and lighter than an internal combustion engine. It is also better suited to the speed and torque characteristics of the axle, thus avoiding the need for the heavy and complex transmission required for an internal combustion engine. The car is also quieter, even without a silencer.
Steam cars dropped-off in popularity following the adoption of the electric starter, which eliminated the need for risky hand cranking to start gasoline-powered cars. The introduction of assembly-line mass production by Henry Ford, which hugely reduced the cost of owning a conventional automobile, was also a strong factor in the steam car's demise as the Model T was both cheap and reliable. Additionally during the 'heyday' of steam cars the internal combustion engine made steady gains in efficiency, matching and then surpassing the efficiency of a steam engine when the weight of a boiler is factored in.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.
As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.
The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.
The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.
Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).
However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.
Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.
The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.
The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.
As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.
Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.
With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.
General characteristics:
Crew: 1
Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position
15.48 m (50 8 ½ in) including pitot
Wingspan: 9 m (29 ft 6 in)
Height: 3.8885 m (12 ft 9 in)
Wing area: 25 m² (269 ft²)
Empty weight: 5,210 kg (11,475 lb)
Loaded weight: 7,890 kg (17,380 lb)
Max. takeoff weight: 9,050 kg (19,935 lb)
Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;
plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks
Powerplant:
2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning
Performance:
Maximum speed: 1,380km/h at sea level (Mach=1.16)
1,850km/h at 12,000m (Mach=1.8)
Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks
Combat range: 500 km (312 mi; 270 nmi)
Ferry range: 2,000 km (1,242 mi; 690 nmi)
Service ceiling: 19,750 m (64,690 ft)
Rate of climb: 180 m/s (35,000 ft/min)
Wing loading: 353.3 kg/m² (72.4 lb/ft²)
Thrust/weight: 0.86
Armament:
No internal guns.
4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,
plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)
AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs
The kit and its assembly:
Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.
However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.
The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.
Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.
On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.
The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.
Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.
The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.
Painting and markings:
No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.
Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).
The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).
The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.
After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.
Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).
The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.
The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.
A Malaysian marine provides security on Pyramid Rock Beach during an amphibious landing demonstration as part of Rim of the Pacific (RIMPAC) exercise at Marine Corps Base Hawaii July 29, 2018. RIMPAC provides high-value training for task-organized, highly capable Marine Air-Ground Task Force and enhances the critical crisis response capability of U.S. Marines in the Pacific. Twenty-five nations, 46 ships, five submarines, about 200 aircraft and 25,000 personnel are participating in RIMPAC from June 27 to Aug. 2 in and around the Hawaiian Islands and Southern California. (U.S. Marine Corps photo by Lance Cpl. Adam Montera)
The roe deer is primarily an animal of mixed and small woodland but is capable of adapting to a wide variety of habitats. It has colonised the northern conifer forests and has penetrated many towns, making use of gardens, parks and other open spaces where there is food and cover. It may also be seen well out into open farmland.
The roe deer is a native species which has been present in Britain since at least the Mesolithic period. However, probably because of over-hunting, it became extremely scarce in medieval times and by 1700 was considered extinct in southern and central England and all of Wales. It also disappeared in most regions of Scotland except for the northern Highlands. After 1800 there were re-introductions into England and colonies were established in Dorset, Sussex and East Anglia. At the same time, there was a gradual re-colonisation of most of northern England and Scotland. Today, roe deer occur in most of southern England, all of northern England and Scotland, and they are continuing to spread into the Midlands and Wales.
The McDonnell Douglas F/A-18 Hornet is an all-weather supersonic, twin-engine, carrier-capable, multirole combat aircraft, designed as both a fighter and attack aircraft (hence the F/A designation). Designed by McDonnell Douglas and Northrop, the F/A-18 was derived from the latter's YF-17 in the 1970s for use by the United States Navy and Marine Corps. The Hornet is also used by the air forces of several other nations, and formerly by the U.S. Navy's Flight Demonstration Squadron, the Blue Angels.
The F/A-18 was designed to be a highly versatile aircraft due to its avionics, cockpit displays, and excellent aerodynamic characteristics, with the ability to carry a wide variety of weapons. The aircraft can perform fighter escort, fleet air defense, suppression of enemy air defenses, air interdiction, close air support, and aerial reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized by many Naval aviation experts for its lack of range and payload compared to its earlier contemporaries, such as the Grumman F-14 Tomcat in the fighter and strike fighter role, and the Grumman A-6 Intruder and LTV A-7 Corsair II in the attack role.
The Hornet first saw combat action during the 1986 United States bombing of Libya and subsequently participated in the 1991 Gulf War and 2003 Iraq War. The F/A-18 Hornet served as the baseline for the Boeing F/A-18E/F Super Hornet, its larger, evolutionary redesign, which supplanted both the older Hornet and the F-14 Tomcat in the U.S. Navy.
The F-105 Thunderchief, which would become a legend in the history of the Vietnam War, started out very modestly as a proposal for a large, supersonic replacement for the RF-84F Thunderflash tactical reconnaissance fighter in 1951. Later this was expanded by Republic’s famous chief designer, Alexander Kartveli, to a nuclear-capable, high-speed, low-altitude penetration tactical fighter-bomber which could also replace the F-84 Thunderstreak.
The USAF liked the idea, as the F-84 had shown itself to be at a disadvantage against Chinese and Soviet-flown MiG-15s over Korea, and ordered 200 of the new design before it was even finalized. This order was reduced to only 37 aircraft with the end of the Korean War, but nonetheless the first YF-105A Thunderchief flew in October 1955. Although it was equipped with an interim J57 engine and had drag problems, it still achieved supersonic speed. When the design was further refined as the YF-105B, with the J75 engine and area ruling, it went over Mach 2. This was in spite of the fact that the design had mushroomed in size from Kartveli’s initial idea to one of the largest and heaviest fighter ever to serve with the USAF: fully loaded, the F-105 was heavier than a B-17 bomber. The USAF ordered 1800 F-105s, though this would be reduced to 830 examples.
Almost immediately, the F-105 began to be plagued with problems. Some of the trouble could be traced to the normal teething problems of any new aircraft, but for awhile it seemed the Thunderchief was too hot to handle, with a catastrophically high accident rate. This led to the aircraft getting the nickname of “Thud,” supposedly for the sound it made when hitting the ground, along with other not-so-affectionate monikers such as “Ultra Hog” and “Squat Bomber.” Despite its immense size and bad reputation, however, the F-105 was superb at high speeds, especially at low level, was difficult to stall, and its cockpit was commended for its ergonomic layout. Earlier “narrow-nose” F-105Bs were replaced by wider-nosed, radar-equipped F-105Ds, the mainline version of the Thunderchief, while two-seat F-105Fs were built as conversion trainers.
Had it not been for the Vietnam War, however, the F-105 might have gone down in history as simply another mildly successful 1950s era design. Deployed to Vietnam at the beginning of the American involvement there in 1964, the Thunderchief was soon heading to North Vietnam to attack targets there in the opening rounds of Operation Rolling Thunder; this was in spite of the fact that the F-105 was designed primarily as a low-level (and, as its pilots insisted, one-way) tactical nuclear bomber. Instead, F-105s were heading north festooned with conventional bombs.
As Rolling Thunder gradually expanded to all of North Vietnam, now-camouflaged Thuds “going Downtown” became iconic, fighting their way through the densest concentration of antiaircraft fire in history, along with SAMs and MiG fighters. The F-105 now gained a reputation for something else: toughness, a Republic hallmark. Nor were they defenseless: unlike the USAF’s primary fighter, the F-4 Phantom II, the F-105 retained an internal 20mm gatling cannon, and MiG-17s which engaged F-105s was far from a foregone conclusion, as 27 MiGs were shot down by F-105s for the loss of about 20. If nothing else, Thud pilots no longer burdened with bombs could simply elect to head home at Mach 2 and two thousand feet, outdistancing any MiG defenders.
If the Thud had any weakness, it was its hydraulic system, which was found to be extremely vulnerable to damage. However, it was likely more due to poor tactics and the restrictive Rules of Engagement, which sent F-105s into battle on predictable routes, unable to return fire on SAM sites until missiles were launched at them, and their F-4 escorts hamstrung by being forced to wait until MiGs were on attack runs before the MiGs could be engaged. The tropical climate also took a toll on man and machine, with the end result that 382 F-105s were lost over Vietnam, nearly half of all Thuds ever produced and the highest loss rate of any USAF aircraft.
The combination of a high loss rate and the fact that the F-105 really was not designed to be used in the fashion it was over Vietnam led to the type’s gradual withdrawal after 1968 in favor of more F-4s and a USAF version of the USN’s A-7 Corsair II. An improved all-weather bombing system, Thunderstick II, was given to a few of the F-105D survivors, but this was not used operationally.
The Thud soldiered on another decade in Air National Guard and Reserve units until February 1984, when the type was finally retired in favor of the F-16, and its spiritual successor, the A-10 Thunderbolt II.
The wartime history of this F-105D, 62-4301, is somewhat murky. It is known to have been assigned to the 8th Tactical Fighter Wing at Itazuke, Japan, but in 1965, was assigned to the temporary 6441st TFW at Takhli RTAFB, Thailand as the USAF began Operation Rolling Thunder. As the 6441st was inactivated in 1966, it remained at Takhli with the 355th TFW or was sent to the 388th at Korat. 62-4301 was a lucky aircraft, given the horrendous losses suffered by the 355th during this time period, and at some point during this time period, was credited with a ground strafing kill of a VPAF Il-28 Beagle.
In 1972, with the Thuds being replaced by the A-7D Corsair II, 62-4301 finally came home and was assigned to the 507th TFW (Reserve) at Tinker AFB, Oklahoma. In 1980, it was sent to what would be the last USAF F-105 unit, the 419th TFG (Reserve) at Hill AFB, Utah. There, it was one of the few (if only) Thuds to be painted in Europe One wraparound tactical camouflage, and was named "My Karma." As such, it became one of the more photographed F-105s in the twilight of the Thud's career. Luckily, when 62-4301 was retired in 1983, it was saved from the boneyard and went on display at McClellan AFB, California--now the California Aerospace Museum.
This picture of 62-4301 was taken while it served with the 507th, and may have been taken by my dad while he was at Dobbins AFB, Georgia--I'm not sure what the background shows. He did visit Tinker once, so it may be there as well. At this point in its career, 62-4301 still wears SEA camouflage, with a small AFRES marking on the rear fuselage.
(Disclaimer: I found this picture among other photos in my dad’s slides. I’m not sure who took them; some of them may be his. If any of these pictures are yours or you know who took them, let me know and I will remove them from Flickr, unless I have permission to let them remain. These photos are historical artifacts, in many cases of aircraft long since gone to the scrapyard, so I feel they deserve to be shared to the public at large—to honor the men and women who flew and maintained them.)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the first German experiences with the newer Soviet tanks like the T-34 or the Kliment Voroshilov tank during Operation Barbarossa, the need for a Panzerjäger capable of destroying these more heavily armoured tanks became clear.
In early 1942, several German companies designed tank destroyers using existing chassis or components, primarily of both the Panzer III and Panzer IV tank, and integrating the powerful 8,8 cm Panzerjägerkanone 43/1 L/71 (or shortly Pak 43/1), a long-barreled anti-tank gun. Alkett, for instance, came up with the SdKfz. 164 “Hornisse” SPG (later renamed “Nashorn”), and Vomag AG proposed the SdKfz. 163, a derivative of the recently developed SdKfz. 162, the Jagdpanzer IV, which was armed with a Pak 39 L/48 at that time in a low, casemate-style hull.
However, mounting the bulky, heavy and powerful Pak 43/1 into the Panzer III hull was impossible, and even the Panzer IV was not really suited for this weapon – compromises had to be made. In consequence, the “Nashorn” was only a lightly armoured vehicle with an open crew compartment, and the Jagdpanzer IV was much too low and did not offer sufficient internal space for the large cannon.
Vomag’s design for the SdKfz. 163 eventually envisioned a completely new upper hull for the standard Panzer IV chassis, again a casemate style structure. However, the new vehicle was much taller than the Jagdpanzer IV – in fact, the Pak 43/1 and its massive mount necessitated the superstructure to be more than 2’ higher than the Jagdpanzer IV. This also resulted in a considerably higher weight: while a standard Panzer IV weighed less than 23 tons, the SdKfz. 163 weighed more than 28 tons!
The driver was located forward, slightly in front of the casemate, and was given the Fahrersehklappe 80 sight from the Tiger I. The rest of the crew occupied the cramped combat section behind him. Ventilation of the casemate’s fumes and heat was originally provided by natural convection, exiting through armored covers at the back of the roof.
The gun/crew compartment’s casemate was well-protected with sloped sides and thick armor plates. Its thickness was 80 mm (3.93 in) at a 40° angle on the front, 40 mm/12° (1.57 in) for the front hull, 50 mm/25° (1.97 in) for the side superstructure, 30 mm (1.18 in) for the side of the lower hull, 30 mm/0° (1.18 in) for the rear of the casemate and 20 mm/10° (0.79 in) for the back of the hull. The top and bottom were protected by 10 mm (0.39 in) of armor at 90°. This was enough to withstand direct frontal hits from the Soviet 76,2 mm (3”) gun which the T-34 and the KV-1 carried.
The SdKfz. 163’s main weapon, the Pak 43/1, was a formidable gun: Accurate at over 3,000 m (3,280 yards) and with a muzzle velocity of over 1,000 m/s (3,280 ft/s), the 88 mm (3.5 inch) gun has more than earned its reputation as one of the best anti-tank guns of the war. Even the early versions, with a relatively short L56 barrel, were already able to penetrate 100mm of steel armour at 30°/1000m, and late versions with the long L71 barrel even achieved 192mm.
The main gun had an elevation of +15°/-5° and could traverse with an arc of fire of 12° to the left and 17° to the right, due to the weapon’s off-center position and limited through the side walls and the “survival space” for the crew when the Pak 43/1 was fired. The recoil cylinder was located under and the recuperator above the gun. There were also two counterbalance cylinders (one on each side), and the gun featured a muzzle brake, so that the already stressed Panzer IV chassis could better cope with the weapon’s recoil.
The Pak 43/1 was able to fire different shells, ranging from the armor piercing PzGr. 39/43 and PzGr. 40/43 to the high explosive Gr. 39/3 HL. The main gun sight was a telescopic Selbstfahrlafetten-Zielfernrohr la, with Carl Zeiss scopes, calibrated from 0 to 1,500 m (0-5,000 ft) for the Pz.Gr.39 and 0 to 2,000 m (6,500 ft) for the Pz.Gr.40. There was a 5x magnification 8° field of view.
46 8.8 cm rounds could be stored inside of the SdKfz. 163’s hull. In addition, a MP 40 sub-machine gun, intended to be fired through the two firing ports on each side of the superstructure, was carried as a hand weapon, and a single MG 34 machine gun was located in the front bow in a ball mount for self-defense, at the radio operator’s place. Another MG 34 could be fastened to the open commander’s hatch, and 1.250 rounds for the light weapons were carried.
The SdKfz. 163 was, together with the SdKfz. 164, accepted by the Oberkommando des Heeres (OKH) in late 1942, and immediately ordered into production. Curiously, it never received an official name, unlike the SdKfz. 164. In practice, however, the tank hunter was, in official circles, frequently referred to as “Jagdpanzer IV/ 43” in order to distinguish it from the standard “Jagdpanzer IV”, the SdKfz. 162, with its 7,5cm armament. However, the SdKfz. 163 also received unofficial nicknames from the crews (see below).
Production was split between two factories: Alkett from Berlin and Stahlindustrie from Duisburg. Alkett, where most of the Panzer IVs were manufactured, was charged with series production of 10 vehicles in January and February 1943, 20 in March and then at a rate of 20 vehicles per month until March 1944. Stahlindustrie was tasked with a smaller production series of 5 in May, 10 in June, 15 in July and then 10 per month (also until March 1944), for a planned initial total of 365 vehicles.
Initially, all SdKfz. 163s were directly sent to the Eastern Front where they had to cope with the heavy and well-armoured Soviet tanks. Soon it became apparent that these early vehicles were too heavy for the original Panzer IV chassis, leading to frequent breakdowns of the suspension and the transmission.
Efforts were made to ameliorate this during the running production, and other Panzer IV improvements were also gradually introduced to the SdKfz. 163s, too. For instance, the springs were stiffened and new all-metal road wheels were introduced – initially, only one or two front pairs of the road wheels were upgraded/replaced in field workshops, but later SdKfz. 163s had their complete running gear modified with the new wheels directly at the factories. These late production vehicles were recognizable through only three return rollers per side, in order to save material and production costs.
Furthermore, an electric ventilator was added (recognizable by a shallow, cylindrical fairing above the radio operator’s position) and the loopholes in the side walls for observation and self-defense turned out to be more detrimental to the strength of the armor than expected. In later models, these holes were completely omitted during production and in the field they were frequently welded over, being filled with plugs or 15 mm (0.59 in) thick steel plates. Another important modification was the replacement of the Pak 43/1’s original monobloc barrel with a dual piece barrel, due to the rapid wear of the high-velocity gun. Although this did not reduce wear, it did make replacement easier and was, over time, retrofitted to many earlier SdKfz. 163s.
Despite these improvements, the SdKfz. 163 remained troublesome. Its high silhouette made it hard to conceal and the heavy casemate armour, together with the heavy gun, moved the center of gravity forward and high that off-road handling was complicated – with an overstressed and easily damaged suspension as well as the long gun barrel that protruded 8’ to the front, especially early SdKfz. 163s were prone to stoop down and bury the long Pak 43/1 barrel into the ground. Even the vehicles with the upgraded suspension kept this nasty behavior and showed poor off-road handling. This, together with the tank’s bulbous shape, soon earned the SdKfz. 163 the rather deprecative nickname “Ringeltaube” (Culver), which was quickly forbidden. Another unofficial nickname was “Sau” (Sow), due to the tank’s front-heavy handling, and this was soon forbidden, too.
Despite the suspension improvements, the tank’s relatively high weight remained a constant source of trouble. Technical reliability was poor and the cramped interior did not add much to the vehicle’s popularity either, despite the SdKfz. 163 immense firepower even at long range. When the bigger SdKfz. 171, the Jagdpanther, as well as the Jagdpanzer IV/L70 with an uprated 7.5 cm cannon became available in mid-1944, SdKfz. 163 production was prematurely stopped, with only a total of 223 vehicles having been produced. The Eastern Front survivors were concentrated and re-allocated to newly founded Panzerjäger units at the Western front, where the Allied invasion was expected and less demanding terrain and enemies were a better match for the overweight and clumsy vehicles. Roundabout 100 vehicles became involved in the defense against the Allied invasion, and only a few survived until 1945.
Specifications:
Crew: Five (commander, gunner, loader, driver, radio operator)
Weight: 28.2 tons (62,170 lbs)
Length: 5.92 m (19 ft 5 in) hull only
8.53 m (28 ft) overall
Width: 2.88 m (9 ft 5 in)
Height: 2.52 m (8 ft 3 in)
Suspension: Leaf spring
Fuel capacity: 470 l (120 US gal)
Armour:
10 – 50 mm (0.39 – 1.96 in)
Performance:
Maximum road speed: 38 km/h (23.6 mph)
Sustained road speed: 34 km/h (21.1 mph)
Off-road speed: 24 km/h (15 mph)
Operational range: 210 km (125 mi)
Power/weight: 10,64 PS/t
Engine:
Maybach HL 120 TRM V12 petrol engine with 300 PS (296 hp, 221 kW)
Transmission:
ZF Synchromesh SSG 77 gear with 6 forward and 1 reverse ratios
Armament:
1× 8.8 cm Panzerabwehrkanone PaK 43/1 L71 with 46 rounds
1× 7.92 mm Maschinengewehr 34 with 1,250 rounds in bow mount;
an optional MG 34 could be mounted to the commander cupola,
and an MP 40 sub-machine gun was carried for self-defense
The kit and its assembly:
This fictional tank is, once more, a personal interpretation of a what-if idea: what if an 8.8 cm Pak 43/1 could have been mounted (effectively) onto the Panzer IV chassis? In real life, this did not happen, even though Krupp apparently built one prototype of a proposed Jagdpanzer IV with a 8.8 cm Pak 43 L/71 on the basis of the SdKfz. 165 (the “Brummbär” assault SPG) – a fact I found when I was already working on my model. Apparently, my idea seems to be not too far-fetched, even though I have no idea what that prototype looked like.
However, the PaK 43/1 was a huge weapon, and mating it with the rather compact Panzer IV would not be an easy endeavor. Taking the Jagdpanther as a benchmark, only a casemate layout would make sense, and it would be tall and voluminous. The “Brummbär” appeared to be a suitable basis, and I already had a Trumpeter model of a late SdKfz. 165 in the stash.
Just changing the barrel appeared too simple to me, so I decided to make major cosmetic changes. The first thing I wanted to change were the almost vertical side walls, giving them more slope. Easier said than done – I cut away the side panels as well as wedges from the casemate’s front and rear wall, cleaned the sidewalls and glued them back into place. Sound simple, but the commander’s hatch had to be considered, the late SdKfz. 165’s machine gun mount had to go (it was literally cut out and filled with a piece of styrene sheet + PSR; the front bow machine gun was relocated to the right side of the glacis plate) and, due to the bigger angle, the side walls had to be extended downwards by roughly 1.5mm, so that the original mudguard sideline was retained.
The gun barrel caused some headaches, too. I had an aftermarket metal barrel for a PaK 43/1 from a Tiger I in the stash, and in order to keep things simple I decided to keep the SdKfz. 165’s large ball mount. I needed some kind of mantlet as an adapter, though, and eventually found one from a Schmalturm in the stash – it’s quite narrow, but a good match. It had to be drilled open considerably in order to accept the metal barrel, but the whole construction looks very plausible.
Another cosmetic trick to change the SdKfz. 165’s look and esp. its profile was the addition of protective side shields for the entry hatch area at the rear (frequently seen on Jagdpanzer IVs) – these were created from 0.5 mm styrene sheet material and visually extend the casemate almost the up to hull’s rear end.
Painting and markings:
Inspiration for the paint scheme came from a picture of a Jagdpanther that took part in the 1944 Ardennenoffensive (Battle at the Bulge): It was painted in the contemporary standard tones Dunkelgelb (RAL 7028), Olivgrün (RAL 6003) and Rotbraun (RAL 8012), but I found the pattern interesting, which consisted primarily of yellow and green stripes, but edged with thin, brown stripes in order to enhance the contrast between them – not only decorative, but I expected this to be very effective in a forest or heath environment, too.
The picture offered only a limited frontal view, so that much of the pattern had to be guessed/improvised. Painting was done with brushes and enamels, I used Humbrol 103 (Cream), 86 (Light Olive) and 160 (German Red Brown) in this case. The green tone is supposed to be authentic, even though I find Humbrol’s 86 to be quite dull, the real RAL 6003 is brighter, almost like FS 34102. The brown tone I used, RAL 8012, is wrong, because it was only introduced in Oct. 1944 and actually is the overall factory primer onto which the other colors were added. It should rather be RAL 8017 (Schokoladenbraun), a darker and less reddish color that was introduced in early 1944, but I assume that frontline workshops, where the camouflage was applied in situ, just used what they had at hand. Dunkelgelb is actually very close to Humbrol 83 (ochre), but I decided to use a lighter tone for more contrast, and the following weathering washing would tone everything down.
I also extended the camouflage into the running gear – not a typical practice, but I found that it helps breaking up the tank’s outlines even more and it justifies wheels in different colors, too. The all-metal road wheels were painted with a mix of medium grey and iron. The black vinyl track was treated with a cloudy mix of grey, red brown and iron acrylic paint.
The kit received a washing with highly thinned dark brown acrylic paint as well as an overall dry-brushing treatment with light grey. Around the lower front of the hull I also did some dry-brushing with red brown and iron, simulating chipped paint. After the decals had been applied, the model was sealed with acrylic matt varnish and finally I dusted the lower areas and esp. the running gear with a grey-brown mix of mineral artist pigments, partly into a base of wet acrylic varnish that creates a kind of mud crust.
And here they are back in London with their adoring new owner, waiting for her to find somebody capable of restoring them. Sixteen years on, the childhood dream has come true. One little girl and her two horse friends, reunited at last.
A lifelong kiddie ride enthusiast, I fell in love with the coin operated rides of Bognor Pier as a young child in the 1990s. The pier was packed with rare examples of 1950s and 60s amusement machines at that time, some of them the last of their kind.
My mum thankfully took photographs of all of the rides on July 19th 1996, which would turn out to be the last day my childhood self ever got to see her beloved rides. When we returned to the pier in 1997, ALL of the vintage coin operated rides were gone. I believed they had been scrapped and spent years mourning their loss, writing songs in their memory, contacting the council, local archives and Bognor Pier itself but nobody could tell me where the rides had gone. I even started a website in their memory, desperate to preserve the memory of the old British coin operated rides which are (sadly) fast becoming just that, a fading memory. You can see the website here: coinoperatedrides.weebly.com. If anybody has old photos or memories they wouldn't mind sharing for the website, I'd love to see/hear them!
However, over SIXTEEN YEARS LATER, I discovered that some of the rides had not been scrapped and had instead been thrown in a damp shed on Bognor Pier soon after this photograph was taken. In a strange twist of events, I am now the extremely proud owner of my favourite childhood horse 'friends', Carousel and Silver, and am attempting to get them restored. They are in a very bad way, but I still love them for the important pieces of British seaside amusement history that they are.
I am desperately seeking people's memories of these horses (and the other rides on the pier), and especially old photographs of them. I would love to know if they had been on Bognor Pier since the '50s and '60s, or if they had come there from other seaside resorts at a later date, for instance. If you have any information or pictures, please comment below!
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
Royal Air Force and French Air Force personnel treat a simulated casualty as part of Exercise Capable Eagle.
Royal Air Force medics have been responding after a simulated air attack on a North Yorkshire airfield.
RAF Leeming was playing the part of a foreign airbase being used by UK and French forces, as part of Exercise Capable Eagle, a test of the two countries’ ability to mount a combined air operation.
The exercise saw personnel planning, preparing for and flying missions, while facing a series of challenges.
One of those was an ‘attack’ by aircraft from 100 Squadron – itself normally based at RAF Leeming. 100 Squadron’s main role is to support training for all three services, including acting as an enemy when required. The simulated attack left a number of simulated casualties, giving the RAF’s healthcare experts a chance to test their skills.
While their colleagues are operating in Afghanistan daily, there is still a need for military medics to prepare for other possible operations. And Exercise Capable Eagle has given them the opportunity to do that.
-------------------------------------------------------
© Crown Copyright 2013
Photographer: SAC Mark Parkinson
Image 45156308.jpg from www.defenceimages.mod.uk
Use of this image is subject to the terms and conditions of the MoD News Licence at www.defenceimagery.mod.uk/fotoweb/20121001_Crown_copyrigh...
For latest news visit www.gov.uk/government/organisations/ministry-of-defence
Follow us:
The Hornet is a drone that has advanced artificial intelligence, capable of driving it autonomously, or of being remotely piloted by an operator on the ground. It has efficient and durable batteries that allow an autonomy of 5 hours, which correspond, at an average speed of 40 km / h, to 200 kilometers. This is also made possible by the adoption of a resistant and light frame in aeronautical metal alloys. It has 4 independent rotors, an advanced communication system, both visible and infrared cameras, laser alarm system, two grenade launchers and 2 smoke bomb launchers. The main armament consists of 2 reversed assault rifles, 5.56 x 45 mm, positioned on the sides of the main body.
On 1 August 2007, Bentley released details of a more powerful GT. Power is increased to 600 metric horsepower, with a top speed of 325 kilometres per hour (201.9 mph) and a 0-100 kph (0-62 mph) time of 4.3 seconds. The GT Speed can accelerate to 200 km/h (124 mph) from 0 in 12.8. The Continental's weight is also reduced by 35 kg (77 lb). Minor exterior changes include a tinted front grille and larger exhaust tailpipes. The Continental GT Speed is the first production Bentley officially capable of reaching 326 km/h (202.6 mph), despite the fact the car weighs over 2,400 kilograms.
Source: Wikipedia
------------------------------------------------------------------------------------------------------------------------------------
Camera: Nikon D300S
Exposure: 0.003 sec (1/320)
Aperture: f/2.8
Focal Length: 160 mm
ISO Speed: 320
If you like my pictures, why wouldn't you like my Facebook page!? Robin Kiewiet Photography