View allAll Photos Tagged capable
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Douglas A-4 Skyhawk is a single-seat subsonic carrier-capable light attack aircraft developed for the United States Navy and United States Marine Corps in the early 1950s. The delta-winged, single turbojet-engine Skyhawk was designed and produced by Douglas Aircraft Company, and later by McDonnell Douglas. The Skyhawk was a relatively light aircraft, with a maximum takeoff weight of 24,500 pounds (11,100 kg) and had a top speed of 670 miles per hour (1,080 km/h). The aircraft's five hardpoints supported a variety of missiles, bombs, and other munitions, including nuclear bombs, with a bomb load equivalent to that of a World War II–era Boeing B-17 bomber.
Since its introduction, the Skyhawk had been adopted by countries beyond the United States and saw a very long career, with many baseline variants and local adaptations. Israel was, starting in 1966, the largest export customer for Skyhawks, and a total of 217 A-4s were eventually procured, plus another 46 that were transferred from U.S. units in Operation Nickel Grass to compensate for large losses during the Yom Kippur War.
The Skyhawk was the first U.S. warplane to be offered to the Israeli Air Force, marking the point where the U.S. took over from France as Israel's chief military supplier. A special version of the A-4 was developed for the IAF, the A-4H. This was an A-4E with improved avionics and an uprated J52-P-8A engine with more thrust from the A-4F that had replaced the Wright J65 in earlier Skyhawk variants. Armament consisted of twin DEFA 30 mm cannon in place of the rather unreliable Colt Mk.12 20 mm cannons. Later modifications included the avionics hump and an extended tailpipe, implemented in Israel by IAI to provide greater protection against heat-seeking surface-to-air missiles.
Deliveries began after the Six-Day War, and A-4s soon formed the backbone of the IAF's ground-attack force. In Heyl Ha'avir (Israels Air Force/IAF) service, the A-4 Skyhawk was named as the Ayit (Hebrew: עיט, for Eagle). A total of 90 A-4Hs were delivered and became the IAF’s primary attack plane in the War of Attrition between 1968 and 1970. They cost only a quarter of a Phantom II and carried half of its payload, making them highly efficient attack aircraft, even though losses were high and a number of A-4Es were imported to fill the gaps.
In early 1973, the improved A-4N Skyhawk for Israel entered service, based on the A-4M models used by the U.S. Marine Corps, and it gradually replaced the simpler and less capable A-4Hs, which were still operated in 2nd line duties. Many of the A-4Hs and A-4Es were subsequently stored in reserve in flying condition, for modernization or for sale, and two countries made purchases from this overstock: Indonesia and Uruguay.
Due to the declining relationship between Indonesia and the Soviet Union, there was a lack of spare parts for military hardware supplied by the Communist Bloc. Soon, most of them were scrapped. The Indonesian Air Force (TNI-AU) acquired ex-Israeli A-4Es to replace its Il-28 Beagles and Tu-16 Badgers in a covert operation with Israel, since both countries did not maintain diplomatic relationships. A total of thirty-two A-4s served the Indonesian Air Force from 1982 until 2003.
Uruguay was the other IDF customer, even though a smaller one. The Uruguayan Air Force was originally created as part of the National Army of Uruguay but was established as a separate branch on December 4, 1953, becoming the youngest, and also the smallest branch of the Armed Forces of Uruguay.
Since the end of the 1960s and the beginning of the 1970s, the Air Force was involved in the fight against the guerrilla activity that was present in the country, focusing against the MLN-T (Movimiento de Liberación Nacional – Tupamaros or Tupamaros – National Liberation Movement), that later triggered a participation in the country's politics.
On February 8, 1973, President Juan María Bordaberry tried to assert his authority over the Armed Forces by returning them to their normal duties and appointing a retired Army general, Antonio Francese, as the new Minister of National Defense. Initially, the Navy of Uruguay supported the appointment, but the National Army and Uruguayan Air Force commanders rejected it outright. On February 9 and 10, the Army and Air Force issued public proclamations and demanded his dismissal and changes in the country's political and economic system. Bordaberry then gave up to the pressure, and on February 12, at the Cap. Juan Manuel Boiso Lanza Air Base, Headquarters of the General Command of the Air Force, the National Security Council (Consejo de Seguridad Nacional) was created. The Commander-in-Chief of the Air Force was one of its permanent members, and the Armed Forces of Uruguay from now on were effectively in control of the country, with Bordaberry just participating in a self-coup.
During this period of time, the Air Force took control of the country's airdromes, some aircraft that were seized from the subversion, appointed some of its general officers to led the flag carrier PLUNA, reinforced the combat fleet with Cessna A-37B Dragonfly and FMA IA-58A Pucará attack aircraft in 1976 and 1981, modernized the transport aircraft with the purchase of five Embraer C-95 Bandeirante in 1975 and five CASA C-212 Aviocar and one Gates Learjet 35A in 1981, introduced to service two brand new Bell 212 helicopters, and achieved another milestone, with the first landing of a Uruguayan aircraft in Antarctica, on January 28, 1984, with a Fairchild-Hiller FH-227D.
Since the end of the military government, the Air Force returned to its normal tasks, and always acting under the command of the President and in agreement with the Minister of National Defense, without having entered the country's politics again, whose participation, in addition, has been forbidden in almost all activities for the Armed Forces. Towards the late Eighties, the Uruguayan Air Force underwent a fundamental modernization program: Between 1989 and 1999 a total number of 48 aircraft were acquired, including twelve Skyhawks (ten single seaters and two trainers), followed by three Lockheed C-130B Hercules in 1992, to carry out long-range strategic missions, six Pilatus PC-7U Turbo Trainers, also acquired in 1992 for advanced training (replacing the aging fleet of Beechcraft T-34 Mentors in Santa Bernardina, Durazno, that had been in service with the Air Force since 1977), two Beechcraft Baron 58 and ten Cessna U-206H Stationair in 1998 (with Uruguay becoming the first operator of this variant, used for transport, training and surveillance). Two Eurocopter AS365N2 Dauphin for search and rescue and transport followed, also in 1998, and 13 Aermacchi SF-260 in 1999, to fully replace the aging fleet of T-34 training aircraft and become the new basic trainer of the Uruguayan Air Force within the Military School of Aeronautics (Escuela Militar de Aeronáutica) in Pando, Canelones. Furthermore, on April 27, 1994, through Decree No. 177/994 of the Executive Power, a new Air Force Organization was approved, and the Tactical Regiments and Aviation Groups disappeared to become Air Squadrons, leading to the current structure of the Uruguayan Air Force.
The Skyhawks were procured as more capable complement and partial replacement for the FAU’s Cessna A-37B Dragonfly and FMA IA-58A Pucará attack aircraft fleet. Being fast jets, however, they would also be tasked with limited airspace defense duties and supposed to escort and provide aerial cover for the other attack types in the FAU’s inventory. The Skyhawks were all former IDF A-4H/TA-4Hs. They retained their characteristic tail pipe extensions against IR-guided missiles (primarily MANPADS) as well as the retrofitted avionics hump, but there were many less visible changes, too.
After several years in storage, a full refurbishment had taken place at Israel Aircraft Industries (IAI). The single seaters’ original Stewart-Warner AN/APG-53A navigation and fire control radar was retained, but some critical avionics were removed before export, e. g. the ability to carry and deploy AGM-45 Shrike anti-radar-missiles or the rather unreliable AGM-12 Bullpup, as well as the Skyhawk’s LABS (toss-bombing capability) that made it a potential nuclear bomber. On the other side avionics and wirings to carry AIM-9B Sidewinder AAMs on the outer pair of underwing pylons were added, so that the FAU Skyhawks could engage into aerial combat with more than just their onboard guns.
The A-4Hs’ 30 mm DEFA cannons were removed before delivery, too, even though their characteristic gondola fairings were retained. In Uruguay they were replaced with 20 mm Hispano-Suiza HS.804 autocannons, to create communality with the FAU’s Pucará COIN/attack aircraft and simplify logistics. MER and TER units (Multiple/Triple Ejector Racks), leased from Argentina, boosted the Skyhawks’ ordnance delivery capabilities. A Marconi ARL18223 360° radar warning receiver and a Litton LTN-211 GPS navigation system were introduced, too. Despite these many modifications the FAU’s A-4Hs retained their designation and, unofficially, the former Israeli “Eagles” were aptly nicknamed “Águila” by their new crews and later by the public, too.
Upon introduction into service the machines received a disruptive NATO-style grey/green camouflage with off-white undersides, which they should retain for the rest of their lives – except for a single machine (648), which was painted in an experimental all-grey scheme. However, like the FAU Pucarás, which received grim looking but distinctive nose art during their career, the Skyhawks soon received similar decorations, representing the local ‘Jabalí’ (wild boars).
During the Nineties, the Uruguayan Skyhawks were frequently deployed together with Pucarás along the Brazilian border: Brazilian nationals were detected removing cattle from Uruguayan territory! Dissuasive missions were flown by the Pucarás departing from Rivera to Chuy in eastern Uruguay, covering a span of more than 200 nm (368 km) along the Uruguay/Brazil border, relaying the location of the offending persons to Uruguay’s Army armored units on the ground to take dissuading action. The Skyhawks flew high altitude escorts and prevented intrusion of the Uruguayan airspace from Brazil, and they were frequently called in to identify and repel intruders with low-level flypasts.
The Skyhawks furthermore frequently showed up around the Uruguayan city Masoller as a visible show of force in a longstanding border and territory dispute with Brazil, although this had not harmed close diplomatic and economic relations between the two countries. The disputed area is called Rincón de Artigas (Portuguese: Rincão de Artigas), and the dispute arose from the fact that the treaty that delimited the Brazil-Uruguay border in 1861 determined that the border in that area would be a creek called Arroyo de la Invernada (Portuguese: Arroio da Invernada), but the two countries disagree on which actual stream is the so-named one. Another disputed territory is a Brazilian island at the confluence of the Quaraí River and the Uruguay River. None of these involvements led to armed conflict, though.
The Uruguayan Skyhawk fired in anger only over their homeland during drugbusting raids and for interception of low performance, drug trafficking aircraft which were increasingly operating in the region. However, the slower IA 58 Pucará turned out to be the better-suited platform for this task, even though the Skyhawks more than once scared suspicious aircraft away or forced them to land, sometimes with the use of gunfire. At least one such drug transport aircraft was reputedly shot down over Uruguayan territory as its pilot did not reply or react and tried to escape over the border into safe airspace.
These duties lasted well into the Nineties, but Uruguay’s small Skyhawk fleet was relatively expensive to operate so that maintenance and their operations, too, were dramatically cut back after 2000. The airframes’ age also showed with dramatic effect: two A-4Hs were lost independently in 2001 and 2002 due to structural fatigue. Active duties were more and more cut back and relegated back to the A-37s and IA 58s. In October 2008, it was decided that the Uruguayan A-4 Skyhawk fleet would be withdrawn and replaced by more modern aircraft, able to perform equally well in the training role and, if required, close support and interdiction missions on the battlefield. The last flight of an FAU A-4 took place in September 2009.
This replacement program did not yield any fruits, though. In May 2013 eighteen refurbished Sukhoi Su-30 MKI multirole air superiority fighters were offered by the Russian Federation and Sukhoi in remarkably favorable condition that included credit facilities and an agreement branch for maintenance. These conditions were also offered for the Yak-130 Mitten. By December 2013 Uruguayan personnel had test flown this plane in Russia. In the meantime, a number of A-37B Dragonfly were purchased from the Ecuadorian Air Force in January 2014 to fill the FAU’s operational gaps. Also, the Uruguayan and Swiss governments discussed a possible agreement for the purchase of ten Swiss Air Force Northrop F-5Es plus engines, spare parts and training, but no actual progress was made. The Uruguayan Air Force also used to show interest on the IA-58D Pucará Delta modernization program offered by Fábrica Argentina de Aviones, but more recently, among some of the possible aircraft that the Air Force was considering, there were the Hongdu JL-10 or the Alenia Aermacchi M-346 Master. But despite of how necessary a new attack aircraft is for the FAU, no procurements have been achieved yet.
General characteristics:
Crew: 1
Length: 40 ft 1.5 in (12.230 m)
Wingspan: 27 ft 6 in (8.38 m)
Height: 15 ft 2 in (4.62 m)
Wing area: 260 sq ft (24 m²)
Airfoil: root: NACA 0008-1.1-25; tip: NACA 0005-.825-50
Empty weight: 9,853 lb (4,469 kg)
Gross weight: 16,216 lb (7,355 kg)
Max takeoff weight: 24,500 lb (11,113 kg)
Powerplant:
1× Pratt & Whitney J52-P-8A turbojet engine, 9,300 lbf (41 kN) thrust
Performance:
Maximum speed: 585 kn (673 mph, 1,083 km/h) at sea level
Range: 1,008 nmi (1,160 mi, 1,867 km)
Ferry range: 2,194 nmi (2,525 mi, 4,063 km)
g limits: +8/-3
Rate of climb: 5,750 ft/min (29.2 m/s)
Wing loading: 62.4 lb/sq ft (305 kg/m²)
Thrust/weight: 0.526
Armament:
2× 20 mm (0.79 in) Hispano-Suiza HS.804 autocannon with 100 RPG
5× hardpoints with a total capacity of 8,500 lb (3,900 kg)
The kit and its assembly:
The third build in my recent “Uruguayan What-if Trip”, and a rather spontaneous idea. When I searched for decals for my Uruguayan Sherman tank, I came across a decal sheet from an Airfix IA 58 Pucará (2008 re-boxing), which included, beyond Argentinian markings, a Uruguayan machine, too. This made me wonder about a jet-powered successor, and the omnipresent Skyhawk appeared like a natural choice for a light attack aircraft – even though I also considered an IAI Kfir but found its Mach 2 capability a bit overdone.
Checking history I found a suitable time frame during the Nineties for a potential introduction of the A-4 into Uruguayan service, and this was also the time when Indonesia indirectly bought 2nd hand A-4E/Hs from Israel. This was a good match and defined both the background story as well as the model and its details.
The model kit is an Italeri A-4E/F (Revell re-boxing), built mostly OOB with a short/early fin tip (the kit comes with an optional part for it, but it is too short and I used the alternative A-4M fin tip from the kit and re-shaped its leading edge) and the bent refueling probe because of the radar in the nose (the original straight boom interfered with it). I just implanted an extended resin tailpipe (from Aires, see below), used the OOB optional brake parachute fairing and scratched fairings for the A-4H’s former DEFA guns (which were placed, due to their size, in a lower position than the original 20 mm guns and had an odd shape) from styrene rods.
I also modified the ordnance: the OOB ventral drop tank was taken over but the kit’s original LAU-19 pods molded onto the inner wing pylons were cut off and moved to the outer stations. The inner pylons then received MERs with five Mk. 82 500 lb iron bombs each (left over from a Hasegawa Skyhawk kit) – typically for the Skyhawk, the inner front stations on the MERs (and on TERs, too) were left empty, because anything bigger than a 250 lb Mk. 81 bomb interfered with the landing gear covers.
Building posed no real problems; some PSR was necessary on many seams, though, but that’s standard for the Italeri Skyhawk kit. Just the extended tailpipe caused unexpected trouble: the very nice and detailed Aires resin insert turned out to be a whole 2mm(!) wider than the Skyhawk’s tail section, even though its height and shape was fine. I solved this pragmatically and, after several trials, glued the extended pipe between the fuselage halves, closed them with some force and filled the resulting wedge-shaped ventral gap that extended forward almost up to the wings’ trailing edge with putty. Under the paint this stunt is not obvious, and I suspect that the Italeri Skyhawk’s tail is simply too narrow?
Different/additional blade antennae were added under the front fuselage and behind the canopy as well as a tiny pitot in front of the windscreen (piece of thin wire) and fairings for the radar warning receivers were integrated into the fin’s leading edge and above the extended tail pipe, scratched from styrene sheet material. And, finally, a thin rod (made from heated styrene) was added for the Skyhawk’s steerable front wheel mechanism.
A good thing about the Italeri Skyhawk is that its clear part encompasses the whole canopy, including its frame. It comes as a single piece, though, but can be easily cut in two parts to allow an open cockpit display. The alternative Hasegawa A-4E/F has the flaw that the clear part is molded without the canopy frame, which has a rather complex shape, so that modding it into open position is a very complicated task.
Painting and markings:
Basically very simple: I relied upon FAU Pucarás as benchmark, which carry a rather unremarkable NATO-style livery in dark grey and dark green over very light grey, almost white undersides. This does not sound interesting, but it’s not a color combo typically seen on a Skyhawk, so that this already offers a subtle whiffy touch – and it suits the Skyhawk IMHO well.
To make the simple scheme more interesting, though, I decided to apply the camouflage in a more disruptive, higher resolution pattern, using the Kuwaiti A-4KU pattern as benchmark, just with replaced colors. On real-life pictures, the Uruguayan Pucarás as well as some early A-37s show a good contrast between the green and the grey, so that I chose Tamiya XF-62 (U.S. WWII Olive Drab) and Humbrol 156 (RAF Dark Camouflage Grey) as basic tones; the undersides were painted in Humbrol 147 (FS 36495), leaving a brightness margin for post-shading with an even lighter tone.
The landing gear as well as the air intakes’ interior were painted in white, the landing gear covers’ edges received a thin red edge. The cockpit interior became standard Dark Gull Grey.
For good contrast with the light undersides, the rocket launchers became light grey (Humbrol 127) drab. The MERs became classic white and the ten 250 lb bombs were painted in olive drab.
As usual, the kit received an overall light black ink washing and some post-panel shading, which also acts as a weathering measure. Esp. the Pucarás’ grey appears very bleached on many photos.
Roundels, fin flash and FAU taglines came from the aforementioned Airfix Pucará sheet, even though they turned out to be rather thick and not printed sharply. Most stencils were taken from an Airfix A-4Q Skyhawk, one of the new mold kits, which also came with Argentinian markings and stencils in Spanish. The respective sheet also provided a decal for the black anti-glare panel, even though it had to be cut in two halves to fit in front of the wider A-4E windshield, and the resulting gap was painted out with black. The tactical codes once belonged to a Kawasaki T-4 (Hasegawa). The soot-hiding squares above the gun muzzles are generic black decals. The only decal that was taken over from the Skyhawk’s OOB decal sheet were the rings around the arrester hook.
Overall, the FAU Skyhawk still looked rather dry. To add some excitement, I gave the aircraft a wild boar “face”, similar to the FAU Pucarás. The decoration originally belongs to an USAF A-10 and came from a HiDecal sheet. Unfortunately, this boar face was carried by a rather special A-10 with an experimental desert paint scheme consisting of Brown (FS 20140), Tan Special (FS 20400) and Sand (FS 20266) that was applied before deployment to Saudi Arabia in November 1990. This scheme did not catch on, though, and most A-10s retained their murky Europe One/Lizard scheme. Therefore, the artwork consists primarily of black and sand – white would have been better, stylistically. But I took what I could get and, as a kind of compensation, the sand color does not make the boar snout stand out too much. To my surprise, the four decals that create the wraparound hog face fitted quite well in size and around the Skyhawk’s rather pointed nose. I just left the nostrils away because they’d look odd together with the small black radome and a small ventral gap between the mouth halves had to be bridged with black paint and another piece of decal sheet that simulates a di-electric cover.
Finally, the model was sealed with matt acrylic varnish and ordnance as well as landing gear were mounted.
The third and for now the last build in my recent ‘Uruguayan whif’ model series. I like the grey-green Skyhawk a lot – it’s not spectacular and looks very down-to-earth (except for the nose art, maybe), but it’s very believable. The NATO style livery is rather unusual for the A-4, it was AFAIK not carried by any real in-service Skyhawk, but it suits the aircraft well.
The Typhoon FGR.Mk 4 is a highly capable and extremely agile fourth-generation multi-role combat aircraft, capable of being deployed for the full spectrum of air operations, including air policing, peace support and high-intensity conflict. Initially deployed in the air-to-air role as the Typhoon F.Mk 2, the aircraft now has a potent, precision multi-role capability as the FGR4. The pilot performs many essential functions through the aircraft’s hands on throttle and stick (HOTAS) interface which, combined with an advanced cockpit and the Helmet Equipment Assembly (HEA), renders Typhoon superbly equipped for all aspects of air operations.
Although Typhoon has flown precision attack missions in all its combat deployments to date, its most essential role remains the provision of quick reaction alert (QRA) for UK and Falkland Islands airspace. Detachments have also reinforced NATO air defence in the Baltic and Black Sea regions.
With its multi-role capability and variety of weapons, the Typhoon FGR4 is capable of engaging numerous target types. In the air-to-air role it employs the infraredguided Advanced Short Range Air-to-Air Missile (ASRAAM) and radar-guided, beyond visual range Advanced Medium Range Air-to-Air Missile (AMRAAM). These weapons, used in conjunction with the jet’s ECR-90 Captor radar and PIRATE electro-optical targeting system, combine with the Typhoon’s superior performance and manoeuvrability to make it a formidable platform.
For ground-attack and close air support (CAS) missions, Typhoon is compatible with the GPS/laser-guided Enhanced Paveway II and Paveway IV weapons, usually in conjunction with the Litening III targeting pod. Its regular configuration for the armed reconnaissance and CAS roles includes Litening III, Paveway IV and the internal 27mm gun.
Paveway IV offers cockpit-programmable impact angle, impact direction and fuse delay features for precisely tailored target effects. The 27mm gun is ideally suited to providing warning shots or for accurate attacks against targets including light vehicles and personnel.
“The Boeing Airplane Co. today announced another step toward space transportation.
Boeing unveiled a model of a space vehicle capable of carrying men on reconnaissance trips around the earth or to other planets. The vehicle also would be a space-borne service station to other interplanetary ships.
The model was shown at the annual meeting of the Association of the United States Army in Washington, D. C.
“This capsule was designed to be simpler and cheaper in its construction than any other orbital station now being considered,” said Dr. Walter Hiltner, Boeing’s lunar-systems manager.
Ship Built in Space
Here is Boeing’s description of the project:
The space ship would be built at a station orbiting the earth. Dimensions of the vehicle are 20 by 74 feet.
Technicians assembling the ship would have no need for space suits. They would be working under a large plastic bubble having controlled pressure and atmosphere.”
From top-to-bottom, many neat things going on here. My take:
- Two astronauts in the airlock preparing to conduct an EVA, with another crewmate at a control console, possibly responsible for the depress/repress & oversight of the impending spacewalk.
- The two gentlemen in the immediate vicinity of a large board that sort of looks like a planetary/solar system? chart, with courses already laid in? If so, outstanding. Engage.
- Below them, at the level of the fellow in the second airlock, possibly ECS equipment, like pressurized oxygen tanks…and other provisions?
- Then…what looks to be two rows of Mercury/Gemini-like possible escape/survival capsules, girdling the inner wall of the vehicle, immediately above & below the central ‘garage’? for the shuttle craft.
- Then possibly another level of provisions, equipment, etc., with a third airlock.
- Next appears to be the living/relaxation level, with what looks to be the sleeping compartment, possible galley? or reading room/library, and of course, TV room.
- Finally, possible fuel tanks. However, since I know jack about ion or nuclear propulsion, is that guess credible? Idk.
Even a good looking shuttle (earth ferry?) craft, tethered to a telescoping or otherwise articulating “dock/pier”, which looks to be able to draw the shuttle vehicle into the central bay, hence the two interior airlocks leading into it.
Tangential & excessive, but who cares. Yet another unsung aerospace hero, and associate of the aforementioned Dr. Hiltner:
news.rice.edu/2016/03/24/rice-mourns-aerospace-pioneer-an...
Credit: Rice University Office of Public Affairs website
The vehicle was part of Boeing Aircraft Company’s Program for Astronomical Research and Scientific Experiments Concerning Space (PARSECS).
An EXCELLENT & HIGHLY INFORMATIVE PARSECS discussion - as with many other topics - by a bunch of really knowledgeable folks:
www.secretprojects.co.uk/threads/parsecs-1960.7039/
Credit: “SECRET PROJECTS: UNBUILT PROJECTS, MILITARY AND AEROSPACE TECHNOLOGY” website
Another superb & detailed work by Robert Fetterly, along with many others. I salute you Sir, thank you for your service.
Rest In Peace:
www.peninsuladailynews.com/news/back-to-the-future-artist...
Credit: Peninsula Daily News website
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.
The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.
From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.
The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.
After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.
The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.
Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.
The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.
The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.
The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.
After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.
General characteristics:
Crew: 1
Length: 31 ft 10 in (9.70 m)
Wingspan: 36 ft 10 in (11.23 m)
Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical
Wing area: 242.1 ft² (22.5 m²)
Empty weight: 5,564 lb (2,524 kg)
Gross weight: 7,415 lb (3,363 kg)
Powerplant:
1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,
delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller
Performance:
Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)
Cruise speed: 272 mph (438 km/h, 236 kn)
Range: 493 mi (793 km) on internal fuel at cruising speed
965 mi (1,553 km) with 90 gal drop tank
Service ceiling: 42,500 ft (12,954 m)
Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)
Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds
Armament:
4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard
Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb
(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers
The kit and its assembly:
This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.
With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.
With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.
Painting and markings:
The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.
Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!
Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.
I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.
The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.
The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.
The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.
A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.
The English Electric Lightning is a British fighter aircraft that served as an interceptor during the 1960s, the 1970s and into the late 1980s. It was capable of a top speed of above Mach 2. The Lightning was designed, developed, and manufactured by English Electric.
The specification for the aircraft followed the cancellation of the Air Ministry's 1942 specification E.24/43 supersonic research aircraft which had resulted in the Miles M.52 programme. Teddy Petter, formerly chief designer at Westland Aircraft, who had been taken on by English Electric in 1944 to head an office to develop aircraft rather than just make other manufacturers' designs, was a keen early proponent of Britain's need to develop a supersonic fighter aircraft. In 1947, Petter approached the Ministry of Supply (MoS) with his proposal, and in response Specification ER.103 was issued for a single research aircraft, which was to be capable of flight at Mach 1.5 (1,593 km/h; 990 mph) and 50,000 ft (15,000 m).
Petter initiated a design proposal with Frederick Page leading the design and Ray Creasey responsible for the aerodynamics. By July 1948 their proposal incorporated the stacked engine configuration and a high-mounted tailplane. As it was designed for Mach 1.5, the wing leading edge was swept back 40° to keep it clear of the Mach cone. This proposal was submitted in November 1948 and in January 1949 the project was designated P.1 by English Electric. On 29 March 1949 the MoS granted approval to start the detailed design, develop wind tunnel models and build a full-size mockup.
The design that had developed during 1948 evolved further during 1949 to further improve performance, taking many design cues from the CAC CA-23. To achieve Mach 2 the wing sweep was increased to 60° with the ailerons moved to the wingtips. In late 1949, low-speed wind tunnel tests showed that a vortex was generated by the wing which caused a large downwash on the tailplane; this issue was solved by lowering the tail below the wing. Following the resignation of Petter from English Electric, Page took over as design team leader for the P.1 and the running of EE design office. In 1949, the Ministry of Supply had issued Specification F23/49, which expanded upon the scope of ER103 to include fighter-level manoeuvring. On 1 April 1950, English Electric received a contract for two flying airframes, as well as one static airframe, designated P.1.
The Royal Aircraft Establishment disagreed with Petter's choice of sweep angle (60 degrees) and tailplane position (low) considering it to be dangerous. To assess the effects of wing sweep and tailplane position on the stability and control of Petter's design Short Brothers were issued a contract by the Ministry of Supply to produce the Short SB.5 in mid-1950. This was a low-speed research aircraft that could test sweep angles from 50 to 69 degrees and high or low tailplane positions. Testing with the wings and tail set to the P.1 configuration started in January 1954 and confirmed this combination as the correct one.
From 1953 onward, the first three prototype aircraft were hand-built at Samlesbury Aerodrome, where all Lightnings were built. These aircraft were given the aircraft serials WG760, WG763, and WG765 (the structural test airframe). The prototypes were powered by un-reheated Armstrong Siddeley Sapphire turbojets, as the selected Rolls-Royce Avon engines had fallen behind schedule due to their own development problems. Since there was no space in the fuselage for fuel the thin wings were the fuel tanks and since they also provided space for the stowed main undercarriage the fuel capacity was relatively small, giving the prototypes an extremely limited endurance, and the narrow tyres housed in the thin wings rapidly wore out if there was any crosswind component during take-off or landing. Outwardly, the prototypes looked very much like the production series, but they were distinguished by the rounded-triangular air intake with no centre-body at the nose, short fin, and lack of operational equipment.
On 9 June 1952, it was decided that there would be a second phase of prototypes built to develop the aircraft toward achieving Mach 2.0 (2,450 km/h; 1,522 mph); these were designated P.1B while the initial three prototypes were retroactively reclassified as P.1A. P.1B was a significant improvement on P.1A. While it was similar in aerodynamics, structure and control systems, it incorporated extensive alterations to the forward fuselage, reheated Rolls-Royce Avon R24R engines, a conical centre body inlet cone, variable nozzle reheat and provision for weapons systems integrated with the ADC and AI.23 radar. Three P.1B prototypes were built, assigned serials XA847, XA853 and XA856.
In May 1954, WG760 and its support equipment were moved to RAF Boscombe Down for pre-flight ground taxi trials; on the morning of 4 August 1954, WG760, piloted by Roland Beamont, flew for the first time from Boscombe Down. One week later, WG760 officially achieved supersonic flight for the first time, having exceeded the speed of sound during its third flight. During its first flight, WG760 had unknowingly exceeded Mach 1 (1,225 km/h; 761 mph), but due to position error the Mach meter only showed a maximum of Mach 0.95 (1,164 km/h; 723 mph). The occurrence was noticed during flight data analysis a few days later. While WG760 had proven the P.1 design to be viable, it was limited to Mach 1.51 (1,850 km/h; 1,149 mph) due to directional stability limits. In May 1956, the P.1 received the "Lightning" name, which was said to have been partially selected to reflect the aircraft's supersonic capabilities.
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.
The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.
The versatile aircraft also underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 onwards, placed in a streamlined fairing on the upper side of the nose, just in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could also be used for target illumination and guiding precision weapons.
Many Valkyries also received improved radar warning systems, with receivers, depending on the systems, mounted on the wingtips, on the fins and/or on the LERXs. Improved ECR measures were also mounted on some machines, typically in conformal fairings on the flanks of the legs/engine pods.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68).
However, the fighter was frequently updated, leading to several “re-built” variants, and remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
This VF-1A was assigned to SVF-51 “Yellow Jackets”, and based onboard the UES Constellation platform in Lower Earth Orbit (LEO). The Constellation was tasked during the First Space War with the close defense of Moon Base Apollo, but also undertook atmospheric missions.
This particular fighter sported the squadron’s typical striped high visibility markings over a standard gloss light gray base on wings and legs, but unlike normal machines of this unit, with deep yellow and black markings, was, together with two sister ships, assigned to the unit’s staff flight. Each of these VF-1’s carried the unit markings and additional flight leader decoration on the noses in non-regular colors: turquoise on “001”, violet on “002” and pink on “003” – giving them one of the most distinctive and attractive paint schemes during the Space War.
General characteristics:
All-environment variable fighter and tactical combat Battroid,
used by U.N. Spacy, U.N. Navy, U.N. Space Air Force
Accommodation:
Pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design Features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
1x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min
4x underwing hard points for a wide variety of ordnance, including
12x AMM-1 hybrid guided multipurpose missiles (3/point), or
12x MK-82 LDGB conventional bombs (3/point), or
6x RMS-1 large anti-spaceship reaction missiles (2/outboard point, 1/inboard point), or
4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles, or a combination of above load-outs and other guided and unguided ordnance
The kit and its assembly:
It has been a while that I tackled one of these vintage ARII kits, and this time the build became a relief project from Corona cabin fever and a major conversion project. This garish Valkyrie is fictional but was heavily based on a profile drawing published in the Macross source book “Variable Fighter Master File VF-1 Valkyrie” of SVF-51 (originally with deep yellow accents)
The kit is a VF-1J, but the head unit was replaced with an “A” variant from the spares box. It was basically built OOB, with the landing gear down. The only mods are some standard blade antennae, an IRST fairing under the nose and the fins’ tops were slightly modified, too. The pylons were modified to take the new ordnance – optically guided glide bombs à la AGM-62 “Walleye”, scratched from obscure AAMs from a Kangnam MiG-29 and painted in the style of early USAF GBUs.
The gun pod was also modified to accept a scratched wire display in its tail and holds the Valkyrie in flight. The pilot figure was just a guest for the in-flight photo sessions, later the canopy was glued to a mount in open position.
Painting and markings:
I had wanted to apply this spectacular scheme onto a model for a while, but could not get myself to use yellow, because I already have a similar VF-1 in USN high-viz livery and with yellow and black decorations. I considered other tones, and eventually settled for pink – as an unusual choice, but there are canonical VF-1s with such an exotic tone in their liveries.
The rest was straightforwardly adapted from the profile, even though the creation of the trim lines without masking was a challenge. I used various stripes of generic decal material in black and white to create shapes and demarcation lines, filling up larger areas with paint. The overall basic tone is Humbrol 40 (glossy FS 36440), plus Humbrol 200 (Pink), 22 (Gloss Black) and Revell 301 (Semi-matt White) for the flaps’ upper surfaces and the landing gear. The cockpit became medium grey with a black seat and brown cushions. The ventral gun pod became aluminum.
After basic painting, the model received an overall washing with thinned black ink to emphasize the engraved panel lines. A little post-shading was done, too, for a more graphic look, and then the decals (including most trim lines, e. g. in black on the wings and the nose, in white on the fins) were applied. The following basic markings came from various 1:100 VF-1 sheets, the tail code letters came from an RAF SEAC Spitfire from WWII. The modex codes consist of single digit decals (2mm size, TL Modellbau).
Finally, after some detail painting and highlights with clear paint had been added, the VF-1 was sealed with a semi-gloss acrylic varnish.
A small and quick interim project, realized in just a few days – most time passed while waiting for the gloss Humbrol enamels to cure properly… There are certainly better VF-1 models than the vintage ARII kits, but I just love them because they are small, simple and easy to modify. Staying close to the benchmark profile was quite a challenge but worked out fine, even though I had hoped that the pink would stand out a little more. But the plan to change the unit’s ID color for a staff flight aircraft turned out well, even though some compromises had to be made.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X (sometimes referred to as VF-X1) was strictly a conventional/non-transformable jet aircraft, even though it incorporated many structural components and several key technologies that were vital for the transformable VF-1’s successful development that ran in parallel. Therefore, the VF-X was never intended as an air superiority fighter, but rather a flight-capable analogue test bed and proof of concept for the VF-1’s basic layout and major components. In this role, however, the VF-X made vital contributions to systems’ development that were later incorporated into the VF-1’s serial production and sped the program up considerably.
VF-X production started in early 2006, with four airframes built. The flight tests began in February 2007. The first prototype (“01”) was piloted and evaluated by ace pilot Roy Fokker, in order to explore the aircraft’s flight envelope, general handling and for external stores carriage tests. The three other VF-Xs successively joined the test program, each with a different focus. “02” was primarily tasked with the flight control and pilot interface program, “03” was allocated to the engine, vectoring thrust and steering systems development, and “04” was primarily involved in structural and fatigue tests.
In November 2007, the successful VF-X tests and the flights of the VF-X-1 (the first fully transformable VF-1 prototype, which had been under construction in parallel to the VF-X program) led to formal adoption of the “Valkyrie” variable fighter by the United Nations Government.
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict.
Introduced in 2008, the VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha, even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four sub-variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements. These included the GBP-1S "Armored Valkyrie” external armor and infantry weapons pack, so-called FAST Packs for "Super Valkyries” for orbital use, and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Strike Valkyrie” with additional firepower.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), and several upgrade programs were introduced.
The fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction.
General characteristics:
Accommodation: One pilot in a Marty & Beck Mk-7 zero/zero ejection seat
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Empty weight: 13.25 metric tons
Standard T-O mass: 18.5 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
Performance:
Top speed: Mach 2.71 at 10,000 m; Mach 3.87 at 30,000+ m
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Armament:
None installed, but the VF-X had 4x underwing hard points for a wide variety of ordnance, plus a ventral hardpoint for a Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min or other stores like test instruments
The model and its assembly:
Another submission to the “Prototypes” group build at whatifmodelers.com in July 2020. Being a VF-1 fan (and have built maybe twenty o these simple Arii kits), adding a VF-X was, more or less, a must – even more so because I had a suitable Valkyrie Fighter kit at hand for the conversion. As a side note, I have actually built something quite similar from a VF-1D many years ago: a fictional, non-transformable advanced trainer, without knowing about the VF-X at all.
Thanks to the “Macross - Perfect Memory” source book, the differences between the transformable VF-1 and its early testbed were easy to identify:
- Fixed legs with faired ducts from the intakes on (thighs)
- Ankle recesses disappeared
- Less and slightly different panel lines on the back and on the nose
- ventral head unit deleted and a respective fairing installed instead
- Levelled underside (shoulder fairings of the folded arms were cut down)
- Leg attachment points on the nose deleted
- No small, circular vernier thrusters all around the hull
- Some new/different venting grills (created mostly with 0.5mm black decal stripes)
Beyond the changes, the VF-1A was basically built OOB. Thankfully, the VF-X already features the later VF-1’s vectored thrust nozzles/feet, so that no changes had to be made in this respect. A pilot figure was added to the cockpit for the beauty pics, and after the flight scenes had been shot, the canopy remained open on a swing arm for static display. For the same reason, the model was built with the landing gear extended.
As a test aircraft, the underwing pylons and their AMM-1 ordnance were left away and the attachment points hidden with putty. I also omitted the ventral gun pod and left the aircraft clean. However, for the flight scene pictures, I implanted an adapter for a display holder made from wire.
In order to emphasize the test vehicle character of the VF-X, I gave the model a scratched spin recovery parachute installation between the fins, using a real world F-22 testbed as benchmark. It consists of styrene profiles, quite a delicate construction. For the same reason I gave the VF-X a long sensor boom on the nose, which changes the Valkyrie’s look, too. Finally, some small blade antennae were added to the nose and to the spine behind the cockpit.
Painting and markings:
To be honest, I have no idea if there was only a single VF-X prototype in the Macross universe, or more. Just one appears in the TV series in episode #33, and lack of suitable information and my personal lack of Japanese language proficiency prevents any deeper research. However, this would not keep me from inventing a personal interpretation of the canonical VF-X, especially because I do not really like the original livery from the TV series: an overall light grey with some simple black trim and “TEST” written on the (fixed) legs. Yamato did an 1:60 scale toy of the VF-X, but it was/is just a VF-1 with a ventral fairing; they added some shading to the basic grey – but this does not make the aircraft more attractive, IMHO.
When I looked at the original conceptual drawing of the VF-X in the “Macross - Perfect Memory” source book, however, I was immediately reminded of the F-15 prototypes from the Seventies (and this program used a total of twelve machines!). These featured originally a light grey (FS 36375?) overall base, to which bright dayglo orange markings on wings, fins and fuselage were soon added – in a very similar pattern to the VF-X. I think the VF-X livery was actually inspired by this, the time frame matches well with the production of the Macross TV series, too, and that’s what I adapted for my model.
In order to come close to the F-15 prototype livery, I gave “my” VF-X an overall basic coat of RAL 7047 “Telegrau 4”, one of German Telekom’s corporate colors and a very pale grey that can easily be mistaken for white when you do not have a contrast reference.
The cockpit received a medium grey finish, the ejection seat became black with brown cushions; the pilot figure is a 1:100 seated passenger from an architecture supplies, painted like an early VF-1 pilot in a white/blue suit. The jet nozzles/feet were painted with Revell 91 (Iron) and later treated with grinded graphite for a more metallic finish. The landing gear became classic white (I used Revell 301, which is a very pure tone, as contrast to the RAL 7047 on the hull), the air intake ducts and the internal sections of the VG wings were painted with dark grey (Revell 77).
For some diversity I took inspiration from the Yamato VF-X toy and added slightly darker (Humbrol 166, RAF Light Aircraft Grey) areas to the hull and the legs. Next, the panel lines were emphasized through a thinned black ink wash, but I did no panel post shading so that the VF-X would not look too dirty or worn.
Onto this basis I applied the orange dayglo markings. On the wings and fins, these were painted – they were applied with spray paint from a rattle can, involving lots of masking. The leading edges on wings and fins were created with grey decal sheet material, too. At this stage, some surface details and more fake panel lines were added with a soft pencil.
The orange cheatline under the cockpit is a personal addition; I found that some more orange had to be added to the nose for visual balance, and I eventually went for the simple, trimmed stripe (TL Modellbau material) instead of trying to apply decal sheet material around the jagged air intakes (F-15 prototype style). The black “TEST”, “VFX” and “U.N. Spacy” markings were designed at the computer and printed on clear inkjet decal paper. Even though the “real” VF-X does not feature the UNS “kite” insignia, I decided to add them to the model. These come from the OOB sheet, which also provided most (slightly yellowed) stencils.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri).
A rather different VF-1 project (and it is – to my astonishment – #28 in my 1:100 VF-1 Fighter mode collection!!!), with more changes to the basic model kit than one might expect at first sight. VF-X and VF-1 differ considerably from each other, despite identical outlines! However, I like the outcome, and I think that going a different route from the canonical grey/black livery paid out, the bright orange markings really make this VF-X stand out, and it looks IMHO more like a testbed than the “real” aircraft from the TV series.
The VL- 650 Partisan is a light military, single-engine, low-wing single-seat aircraft capable of performing fighter, close air support, and counter insurgency (COIN) missions.
Please watch this and many other fantastic creations here: www.flickr.com/photos/einon/
The pilot is accommodated in an enclosed, heated and ventilated cockpit with adjustable seats. The cockpit canopy slides backwards to open. The landing gear retracts backwards under the wings. Rubber dampers provide shock absorption, and hydraulic brakes are used for wheel braking.
The aircraft was specially designed for low-altitude missions against day and night visible ground targets in a broad area. Its readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions. Therefore, the Partisan can also take-off from short unprepared runways, even ones covered in deep snow when fitted with skis. The aircraft is also slightly armoured, being capable to survive shell impacts up to 20mm.
The Partisan was intended for close ground force support, and it can also be used for training of pilots in visual day/night flights, aiming, missile firing and bombing of ground targets.
Permanent armament comprises two wing-mounted 20mm cannons and one 37mm anti-tank engine mounted cannon. It can also use rockets, guided and unguided bombs, external guns and air to air missiles.
General characteristics
Crew: 1
Length: 8.03 m
Wingspan: 10.54 m
Height: 3.10 m
Wing area: 21.0 m²
Empty weight: 1030 kg
Max. takeoff weight: 4224 kg
Powerplant: 1 × V-435 Turboprop; (2 000hp)
Performance
Maximum speed: 695 km/h at 1,500 m (5,000 ft)
Cruise speed: 310 km/h
Stall speed: 40 km/h
Range: 800 km
Armament
Guns: One 37mm cannon engine mounted; Two 20mm guns on the wings.
Guns: 2 externals pods with two 12,7mm (0´50) machine guns.
Rockets: 2 FS-1000 rocket pods with 18 90mm rockets each or 2 rocket pods with 4 152mm rockets each or 4 simple 152mm anti-tank guided rockets.
Missiles: 2 defensive air to air AA-2020 Valkyria missiles;
Bombs: Maximum – 2 500kg guided or unguided bombs.
Hope you like it!
Please watch this and many other fantastic creations here: www.flickr.com/photos/einon/
Please fav or comment!
Eínon
Citroen's charming 2CV had established itself as a supremely capable car for the masses, offering affordable transportation to farmers and city-dwellers alike. Over rutted fields, muddy roads or cobblestone streets, the "Deux Chevaux" was nearly unstoppable, but there were still places even an experienced 2CV driver feared to tread. Enter the Citroen 2CV 4x4 Sahara, the world's first dual-engine 4x4 vehicle; just 694 were built, and less than 30 survive today.
Though suitable for use anywhere the pavement ended, the Sahara was designed and constructed to tackle its namesake desert, an environment where redundancy wasn’t just a good idea, but potentially the difference between life and death. French mining and oil exploration companies had a strong presence in North Africa, and the need for a lightweight and relatively inexpensive vehicle capable of traversing sand dunes or mountains was apparent. The 2CV Sahara was designed and built for these customers, though it also proved popular with the Spanish Guardia Civil and the Israeli National Park Authority.
1:43rd Scale model by Vitesse.
The Blackburn Buccaneer is a British carrier-capable attack aircraft designed in the 1950s for the Royal Navy (RN). Designed and initially produced by Blackburn Aircraft at Brough, it was later officially known as the Hawker Siddeley Buccaneer when Blackburn became a part of the Hawker Siddeley Group, but this name is rarely used.
The Buccaneer was originally designed in response to the Soviet Union's Sverdlov-class cruiser construction programme. Instead of building a new fleet of its own, the Royal Navy could use the Buccaneer to attack these ships by approaching at low altitudes below the ship's radar horizon. The Buccaneer could attack using a nuclear bomb, or conventional weapons. It was later intended to carry short-range anti-shipping missiles to improve its survivability against more modern ship-based anti-aircraft weapons.
The Buccaneer entered Royal Navy service in 1962. The initial production aircraft suffered a series of accidents due to insufficient engine power, which was quickly addressed in the Buccaneer S.2, equipped with more powerful Rolls-Royce Spey jet engines. The Buccaneer was also offered as a possible solution for the Royal Air Force (RAF) requirement for a supersonic interdictor carrying nuclear weapons. It was rejected as not meeting the specification in favour of the much more advanced supersonic BAC TSR-2, but the cost of the TSR-2 programme led to its cancellation, only to be followed by the cancellation of its selected replacement, the General Dynamics F-111K. The RAF purchased Buccaneers and American Phantom IIs as TSR-2 substitutes, the Buccaneer entering service in 1969.
The Royal Navy retired the last of its large aircraft carriers in 1978, moving their strike role to the British Aerospace Sea Harrier, and passing their Buccaneers to the RAF. After a crash in 1980 revealed metal fatigue problems, the RAF fleet was reduced to 60 aircraft, while the rest were scrapped. The ending of the Cold War led to a reduction in strength of the RAF, and the accelerated retirement of the remaining fleet, with the last Buccaneers in RAF service being retired in 1994 in favour of the Panavia Tornado. The South African Air Force (SAAF) also procured the type. Buccaneers saw combat action in the first Gulf War of 1991, and the South African Border War.
XN974 was first built and flew as and S.1, but was later converted to a S.2 - she was the first S.2 off the production line making her first flight as an S.2 on the 5th June 1964. This was the only Buccaneer that flew both as an S.1 and S.2.
The airframe on to the Royal Aeronautical Establishment in Bedford for work trials and from there to HMS Eagle for sea trials. On her return flight from the USA after hot weather testing, she achieved a record from Goose Bay to Lossiemouth by becoming the first Fleet Air Arm aircraft to fly the transatlantic route non-stop without the support of re-fuelling.
This pair of extremely capable parent brought up not 1 not 2 not 3 but 4 little ones in a tiny little nest. Not all fledged at the same time. The parents never leave any of their chick behind. They continue to feed the last remaining one until he was ready to leave the nest 2 days later than its siblings. .
@jurong eco gardens, sg
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.
In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.
The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).
For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.
The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.
In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.
Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.
Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.
Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.
Specifications:
Crew: 4 (commander, driver, gunner, radio operator/second driver)
Weight: 22.6 t
Length: 7.74 m (25 ft 4 ¼ in)
Width: 2.98 m ( 9 ft 9 in)
Height: XXX
Ground clearance: 440 mm (1 ft 4 in)
Suspension: hydraulic all-wheel drive and steering
Armor:
Unknown, but sufficient to withstand 14.5 mm AP rounds
Performance:
Speed: 90 km/h (56 mph) on roads
Operational range: 720 km (445 mi)
Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel
Engine:
1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,
delivering 300 hp with petrol, 390 hp with diesel
Armament:
1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)
1× co-axial 7.92 mm M3 machine gun with 2.000 rounds
Two groups of four Wegmann 76 mm smoke mortars
The kit and its assembly:
I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.
This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.
Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).
An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!
Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.
Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.
Painting and markings:
The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).
Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.
Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
How can God create a creature so capable of perfect unconditional love and loyalty and then give it such a short life span? Today our hearts are broken as we say goodbye to Maya. She is the best.
She was instinctively a herding dog and her favorite thing to herd is me. Almost every day she were gently take my hand into her mouth and lead me to the kitchen pantry which just happens to be where we keep the treats. And then she would point at the door just in case I didn't remember where they were kept. And then she would just stare at me with those big brown eyes until I caved and gave her a biscuit. How could I ever refuse?
The McDonnell Douglas F/A-18 Hornet is a twin-engine, supersonic, all-weather, carrier-capable, multirole combat jet, designed as both a fighter and attack aircraft (hence the F/A designation). Designed by McDonnell Douglas (now Boeing) and Northrop, the F/A-18 was derived from the latter's YF-17 in the 1970s for use by the United States Navy and Marine Corps. The Hornet is also used by the air forces of several other nations, and since 1986, by the U.S. Navy's Flight Demonstration Squadron, the Blue Angels.
The F/A-18 has a top speed of Mach 1.8 (1,034 knots, 1,190 mph or 1,915 km/h at 40,000 ft or 12,200 m). It can carry a wide variety of bombs and missiles, including air-to-air and air-to-ground, supplemented by the 20-mm M61 Vulcan cannon. It is powered by two General Electric F404 turbofan engines, which give the aircraft a high thrust-to-weight ratio. The F/A-18 has excellent aerodynamic characteristics, primarily attributed to its leading-edge extensions. The fighter's primary missions are fighter escort, fleet air defense, suppression of enemy air defenses, air interdiction, close air support, and aerial reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized for its lack of range and payload compared to its earlier contemporaries, such as the Grumman F-14 Tomcat in the fighter and strike fighter role, and the Grumman A-6 Intruder and LTV A-7 Corsair II in the attack role.
The Hornet first saw combat action during the 1986 United States bombing of Libya and subsequently participated in the 1991 Gulf War and 2003 Iraq War. The F/A-18 Hornet served as the baseline for the Boeing F/A-18E/F Super Hornet, its larger, evolutionary redesign.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background
The Focke Wulf Ta 338 originated as a response of request by the RLM in mid 1943 for an aircraft capable of vertical takeoff and landing (VTOL), optimized for the interceptor and point defense role and without a hazardous liquid rocket engine as means of propulsion. In the course of the year, several German manufacturers responded with a multitude of highly innovative if not unusual design, including Heinkel with the ducted fan project "Lerche", Rheinmetall-Borsig with a jet-powered tailsitter, and Focke Wulf. This company’s engineering teams submitted two designs: the revolutionary "Triebflügel" concept and the more conservative, yet still futuristic "P.03.10338" tail sitter proposal, conceived by Focke Wulf’s leading engineer Kurt Tank and Walter Kappus from BMW, responsible for the engine development.
The P.03.10338 was based on the proven Fw 190 fighter, but the similarities were only superficial. Only the wings and a part of the fuselage structure around the cockpit would be used, but Tank assumed that using existing parts and tools would appreciably reduce development and production time.
A great part of the fuselage structure had to be re-designed to accommodate a powerful BMW 803 engine and its integral gearbox for an eight-bladed contraprop.
The BMW 803 was BMW's attempt to build a high-output aircraft engine, primarily for heavy bombers, by basically "coupling" two BMW 801 engines back-to-back into a single and very compact power unit. The result was a 28-cylinder, four-row radial engine, each comprising a multiple-bank in-line engine with two cylinders in each bank, which, due to cooling concerns, were liquid cooled.
This arrangement was from the start intended to drive independent contra-rotating propellers, in order to avoid stiffness problems with the whole engine driving just a single crankshaft and also to simply convert the raw power of this unit into propulsion. The front half of the engine drove the front propeller directly, while the rear engine drove a number of smaller shafts that passed between the cylinders of the front engine before being geared back together to drive the rear prop. This complex layout resulted in a rather large and heavy gearbox on the front of the engine, and the front engine needing an extended shaft to "clear" that gearbox. The four-row 803 engine weighed 2,950 kg (6,490 lb) dry and 4,130 kg (9,086 lb) fully loaded, and initial versions delivered 3,900 PS (3,847 hp; 2,868 kW).
While the engine was heavy and there were alternatives with a better weight/output ratio (e. g. the Jumo 222), the BMW 803 was favored for this project because it was the most powerful engine available, and it was relatively compact so that it could be fitted into a fighter's airframe. On the P.03.10338 it drove an all-metal, eight-blade contraprop with a diameter of 4,25 m (13 ft 11 in).
In order to accept this massive engine, the P.03.10338’s structure had to be stiffened and the load-bearing structures re-arranged. The aircraft kept the Fw 190's wing structure and surface, but the attachment points at the fuselage had to be moved for the new engine mount, so that they ended up in mid position. The original space for the Fw 190's landing gear was used for a pair of radiator baths in the wings' inner leading edge, the port radiator catering to the front engine half while the radiator on starboard was connected with the rear half. An additional annular oil and sodium cooler for the gearbox and the valve train, respectively, was mounted in the fuselage nose.
The tail section was completely re-designed. Instead of the Fw 190's standard tail with fin and stabilizers the P.03.10338’s tail surfaces were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. On the four fin tips, aerodynamic bodies carried landing pads while the fuselage end contained an extendable landing damper. The pilot sat in a standard Fw 190 cockpit, and the aircraft was supposed to start and land vertically from a mobile launch pad. In the case of an emergency landing, the lower stabilizers could be jettisoned. Nor internal armament was carried, instead any weaponry was to be mounted under the outer wings or the fuselage, in the form of various “Rüstsätze” packages.
Among the many exotic proposals to the VTOL fighter request, Kurt Tank's design appeared as one of the most simple options, and the type received the official RLM designation Ta 338. In a rush of urgency (and maybe blinded by clever Wunderwaffen marketing from Focke Wulf’s side), a series of pre-production aircraft was ordered instead of a dedicated prototype, which was to equip an Erprobungskommando (test unit, abbreviated “EK”) that would evaluate the type and develop tactics and procedures for the new fighter.
Fueled by a growing number of bomber raids over Germany, the “EK338” was formed as a part of JG300 in August 1944 in Schönwalde near Berlin, but it took until November 1944 that the first Ta 338 A-0 machines were delivered and made operational. These initial eight machines immediately revealed several flaws and operational problems, even though the VTOL concept basically worked and the aircraft flew well – once it was in the air and cruising at speeds exceeding 300 km/h (186 mph).
Beyond the many difficulties concerning the aircraft’s handling (esp. the landing was hazardous), the lack of a landing gear hampered ground mobility and servicing. Output of the BMW 803 was sufficient, even though the aircraft had clear limits concerning the take-off weight, so that ordnance was limited to only 500 kg (1.100 lb). Furthermore, the noise and the dust kicked up by starting or landing aircraft was immense, and servicing the engine or the weapons was more complicated than expected through the high position of many vital and frequently tended parts.
After three Ta 338 A-0 were lost in accidents until December 1944, a modified version was ordered for a second group of the EK 338. This led to the Ta 338 A-1, which now had shorter but more sharply swept tail fins that carried single wheels and an improved suspension under enlarged aerodynamic bodies.
This machine was now driven by an improved BMW 803 A-2 that delivered more power and was, with an MW-50 injection system, able to produce a temporary emergency output of 4.500 hp (3.308 kW).
Vertical start was further assisted by optional RATO units, mounted in racks at the rear fuselage flanks: either four Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or two larger 9.8 kN (2,203 lbf) solid fuel booster rockets, could be used. These improvements now allowed a wider range of weapons and equipment to be mounted, including underwing pods with unguided rockets against bomber pulks and also a conformal pod with two cameras for tactical reconnaissance.
The hazardous handling and the complicated maintenance remained the Ta 338’s Achilles heel, and the tactical benefit of VTOL operations could not outbalance these flaws. Furthermore, the Ta 338’s range remained very limited, as well as the potential firepower. Four 20mm or two 30mm cannons were deemed unsatisfactory for an interceptor of this class and power. And while bundles of unguided missiles proved to be very effective against large groups of bombers, it was more efficient to bring these weapons with simple and cheap vehicles like the Bachem Ba 349 Natter VTOL rocket fighter into target range, since these were effectively “one-shot” weapons. Once the Ta 338 fired its weapons it had to retreat unarmed.
In mid 1945, in the advent of defeat, further tests of the Ta 338 were stopped. I./EK338 was disbanded in March 1945 and all machines retreated from the Eastern front, while II./EK338 kept defending the Ruhrgebiet industrial complex until the Allied invasion in April 1945. Being circled by Allied forces, it was not possible to evacuate or destroy all remaining Ta 338s, so that at least two more or less intact airframes were captured by the U.S. Army and later brought to the United States for further studies.
General characteristics:
Crew: 1
Length/height on the ground: 10.40 m (34 ft 2 in)
Wingspan: 10.50 m (34 ft 5 in)
Fin span: 4:07 m (13 ft 4 in)
Wing area: 18.30 m² (196.99 ft²)
Empty weight: 11,599 lb (5,261 kg)
Loaded weight: 16,221 lb (7,358 kg)
Max. takeoff weight: 16,221 lb (7,358 kg)
Powerplant:
1× BMW 803 A-2 28-cylinder, liquid-cooled four-row radial engine,
rated at 4.100 hp (2.950 kW) and at 4.500 hp (3.308 kW) with emergency boost.
4x Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or
2x 9.8 kN (2,203 lbf) solid fuel booster rockets
Performance:
Maximum speed: 860 km/h (534 mph)
Cruise speed: 650 km/h (403 mph)
Range: 750 km (465 ml)
Service ceiling: 43,300 ft (13,100 m)
Rate of climb: 10,820 ft/min (3,300 m/min)
Wing loading: 65.9 lb/ft² (322 kg/m²)
Armament:
No internal armament, any weapons were to be mounted on three hardpoints (one under the fuselage for up to 1.000 kg (2.200 lb) and two under the outer wings, 500 kg (1.100 lb) each. Total ordnance was limited to 1.000 kg (2.200 lb).
Various armament and equipment sets (Rüstsätze) were tested:
R1 with 4× 20 mm (.79 in) MG 151/20 cannons
R2 with 2x 30 mm (1.18 in) MK 213C cannons
R3 with 48x 73 mm (2.874 in) Henschel Hs 297 Föhn rocket shells
R4 with 66x 55 mm (2.165 in) R4M rocket shells
R5 with a single 1.000 kg (2.200 lb) bomb under the fuselage
R6 with an underfuselage pod with one Rb 20/20 and one Rb 75/30 topographic camera
The kit and its assembly:
This purely fictional kitbashing is a hardware tribute to a highly inspiring line drawing of a Fw 190 VTOL tailsitter – actually an idea for an operational RC model! I found the idea, that reminded a lot of the Lockheed XFV-1 ‘Salmon’ prototype, just with Fw 190 components and some adaptations, very sexy, and so I decided on short notice to follow the urge and build a 1:72 version of the so far unnamed concept.
What looks simple (“Heh, it’s just a Fw 190 with a different tail, isn’t it?”) turned out to become a major kitbashing. The basis was a simple Hobby Boss Fw 190 D-9, chose because of the longer tail section, and the engine would be changed, anyway. Lots of work followed, though.
The wings were sliced off and moved upwards on the flanks. The original tail was cut off, and the cruciform fins are two pairs of MiG-21F stabilizers (from an Academy and Hasegawa kit), outfitted with reversed Mk. 84 bombs as aerodynamic fairings that carry four small wheels (from an 1:144 T-22M bomber) on scratched struts (made from wire).
The cockpit was taken OOB, only a pilot figure was cramped into the seat in order to conceal the poor interior detail. The engine is a bash from a Ju 188’s BMW 801 cowling and the original Fw 190 D-9’s annular radiator as well as a part of its Jumo 213 cowling. BMW 801 exhaust stubs were inserted, too, and the propeller comes from a 1:100 VEB Plasticart Tu-20/95 bomber.
Since the BMW 803 had liquid cooling, radiators had to go somewhere. The annular radiator would certainly not have been enough, so I used the space in the wings that became available through the deleted Fw 190 landing gear (the wells were closed) for additional radiators in the wings’ leading edges. Again, these were scratched with styrene profiles, putty and some very fine styrene mesh.
As ordnance I settled for a pair of gun pods – in this case these are slipper tanks from a Hobby Boss MiG-15, blended into the wings and outfitted with hollow steel needles as barrels.
Painting and markings:
Several design options were possible: all NMF with some colorful markings or an overall RLM76 finish with added camouflage. But I definitively went for a semi-finished look, inspired by late WWII Fw 190 fighters.
For instance, the wings’ undersides were partly left in bare metal, but the rudders painted in RLM76 while the leading edges became RLM75. This color was also taken on the wings’ upper sides, with RLM82 thinly painted over. The fuselage is standard RLM76, with RLM82 and 83 on the upper side and speckles on the flanks. The engine cowling became NMF, but with a flashy ‘Hartmann Tulpe’ decoration.
Further highlights are the red fuselage band (from JG300 in early 1945) and the propeller spinner, which received a red tip and segments in black and white on both moving propeller parts. Large red “X”s were used as individual aircraft code – an unusual Luftwaffe practice but taken over from some Me 262s.
After a light black ink wash some panel shading and light weathering (e.g. exhaust soot, leaked oil, leading edges) was done, and the kit sealed under matt acrylic varnish.
Building this “thing” on the basis of a line drawing was real fun, even though challenging and more work than expected. I tried to stay close to the drawing, the biggest difference is the tail – the MiG-21 stabilizers were the best option (and what I had at hand as donation parts), maybe four fins from a Hawker Harrier or an LTV A-7 had been “better”, but now the aircraft looks even faster. ;)
Besides, the Ta 338 is so utterly Luft ’46 – I am curious how many people might take this for real or as a Hydra prop from a contemporary Captain America movie…
Best I was able to manage tonight. 20 degree temps and winds heavy enough to blow the SUV around the road made any hope of taking any photos impossible.
That said, I do know my Sammy 35 is capable of shots like this now... :)
The fluke, or tail fin, of a humpback whale is very broad and flat, ranging in width from 10 to 15 feet. Attached to a muscular base known as the caudal peduncle, the fluke is capable of propelling the whale at over 12 knots for short periods of time. Flukes normally have a serrated edge, a deeply notched center called the median notch, and a variable pattern of black and white markings (used in identification of individuals). The term fluking refers to the action of raising the tail above the water in order to descend sharply beneath the surface. This is the same guy from my last shot where you can see him leaping from the water.
The humpback whale is one of the larger rorqual species; adults range in length from 12–16 m and weigh about 36,000 kg. It has a distinctive body shape, with long pectoral fins and a knobbly head. It is known for breaching and other distinctive surface behaviors, making it popular with whale watchers. Males produce a complex song lasting 10 to 20 minutes, which they repeat for hours at a time. Its purpose is not clear, though it may have a role in mating.
Found in oceans and seas around the world, humpback whales typically migrate up to 25,000 km (16,000 mi) each year. Humpbacks feed in polar waters, and migrate to tropical or subtropical waters to breed and give birth when they fast and live off their fat reserves. Their diet consists mostly of krill and small fish. Humpbacks have a diverse repertoire of feeding methods, including the bubble net technique.
Like other large whales, the humpback was a target for the whaling industry. Once hunted to the brink of extinction, its population fell by an estimated 90% before a 1966 moratorium. While stocks have partially recovered, entanglement in fishing gear, collisions with ships and noise pollution continue to impact the population of 80,000.
Jpeg with post processing in camera raw and photoshop. Shot handheld using a Fuji X-T2 & 100-400mm F4.5-5.6 @ 226mm (effective 340mm), aperture f8, exposure 1/2000 second, ISO 800
"This four-storey gatehouse is the tallest and most elaborate of the four, and was built in the early 14th century. It was intended as a self-contained fort, and each floor is capable of being defended separately. The current gatehouse was built to replace a 12th-century gate known as Munecagate, which stood 100 yards (91 m) to the north-west, on the site of the Roman gate porta decumana – that location is indicated by a slight dip in the earth rampart. Today, Monk Bar houses a museum called the Richard III Experience at Monk Bar and retains its portcullis in working order.
York has, since Roman times, been defended by walls of one form or another. To this day, substantial portions of the walls remain, and York has more miles of intact wall than any other city in England. They are known variously as York City Walls, the Bar Walls and the Roman walls (though this last is a misnomer as very little of the extant stonework is of Roman origin, and the course of the wall has been substantially altered since Roman times). The walls are generally 13 feet (4m) high and 6 feet (1.8m) wide.
York is a cathedral city and unitary authority area in North Yorkshire, England. The population of the council area which includes nearby villages was 208,200 as of 2017 and the population of the urban area was 153,717 at the 2011 census. Located at the confluence of the Rivers Ouse and Foss, it is the county town of the historic county of Yorkshire. The city is known for its famous historical landmarks such as York Minster and the city walls, as well as a variety of cultural and sporting activities, which makes it a popular tourist destination in England. The local authority is the City of York Council, a single tier governing body responsible for providing all local services and facilities throughout the city. The City of York local government district includes rural areas beyond the old city boundaries. It is about 25 miles north-east of Leeds and 34 miles north-west of Kingston upon Hull. York is the largest settlement in the ceremonial county of North Yorkshire.
The city was founded by the Romans as Eboracum in 71 AD. It became the capital of the Roman province of Britannia Inferior, and later of the kingdoms of Deira, Northumbria and Jórvík. In the Middle Ages, York grew as a major wool trading centre and became the capital of the northern ecclesiastical province of the Church of England, a role it has retained. In the 19th century, York became a major hub of the railway network and a confectionery manufacturing centre, a status it maintained well into the 20th century. During the Second World War, York was bombed as part of the Baedeker Blitz. Although less affected by bombing than other northern cities, several historic buildings were gutted and restoration efforts continued into the 1960s.
The economy of York is dominated by services. The University of York and National Health Service are major employers, whilst tourism has become an important element of the local economy. In 2016, York became sister cities with the Chinese city of Nanjing, as per an agreement signed by the Lord Mayor of York, focusing on building links in tourism, education, science, technology and culture. Today, the city is a popular tourist attraction, especially for international visitors from America, Germany, France and China. In 2017, York became UK's first human rights city, which formalised the city's aim to use human rights in decision making." - info from Wikipedia.
Summer 2019 I did a solo cycling tour across Europe through 12 countries over the course of 3 months. I began my adventure in Edinburgh, Scotland and finished in Florence, Italy cycling 8,816 km. During my trip I took 47,000 photos.
Now on Instagram.
Become a patron to my photography on Patreon.
MARINE CORPS BASE HAWAII (July 1, 2018) Japanese soldiers with the Japan Ground Self-Defense Force form together during a beach insertion rehearsal at Pyramid Rock as part of exercise Rim of the Pacific (RIMPAC). RIMPAC provides high-value training for task-organized, highly-capable Marine-Air Ground Task Force and enhances the critical crisis response capability of U.S. Marines in the Pacific. Twenty-five nations, 46 ships, five submarines, about 200 aircraft and 25,000 personnel are participating in RIMPAC from June 27 to Aug. 2 in and around the Hawaiian Islands and Southern California. (U.S. Marine Corps photo by Sgt. Zachary Orr)
A modular marksman rifle, capable of chambering multiple calibers, such as 5.56 NATO, 7.62 NATO, 7.62x39mm, 7.62x45 or 6.8mm SPC.
A combination of the ACR and SCAR receivers was the inspiration for this design. I wanted a sleek extended lower RIS. I think it looks good. If you think it'd be week, just imagine its made of titanium. Problem solved. :P
Satisfying the inspector that i was capable of leaving cleaning to take up fireing, (The common form of progression many years ago), I took up banking duties for 18 months or so, Pushing heavy loads of passenger or usually goods/Ballast and such up St Davids bank! (A tough bank), Then a step up to branchline work (Passenger). The M7 was ok, But the Standard 82 and the Ivatt 2MT were a definate improvment! The 82 was good, and had a good stride, The Riddles 8000 was too cumbersom for branchwork i thought, A nice engine though!! No it was the Henry Ivatts 41 that took my fancy, As Oliver Bulleid was his apprentice and married Henry Ivatts daughter i bet there was some interesting conversation over the sunday lunch? Be that as it may! The 2MT was a lovely economical swift machine. I would drag coal from the docks and wagons of Fyffes bananas or hundreds of VW vans for transformation into sleek colourful camper vans, Quite the thing back then!. Besides getting hundreds to work every morning and returning them home after a good night out of course, With 41306, 307, 308, 318, 209, 321, etc, With many 82 standards 3MTs like 82010, 11, 13, 17, 18, 19, 22, 23, 24, or 82025.Or 8000 Riddles 4Mts 80037, 80041, 80064, And of course 41318, Where it should be now, With me again! Shame ive not got the rest of it though.?? I later moved onto Bulleid and Mausell, And later again Austerity and such of Bristol Barrow road, But thats another story....Miss my Ivatt.!! Dont know what to do with the flamecut, Its hung on the floor at the moment!!? Very heavy!.
This bicycle rides beautifully and handles lots of cargo with ease. The Rolling Jackass lever activated center-stand is a pretty critical component, because swinging my leg over the top tube and reaching down to manipulate any other type of stand would be absolutely ridiculous with a heavy load in the back, particularly if that load is a child. The 60mm (2.35") tires soak up the road but roll very quickly and smoothly. The Supernova E3 Pro headlamp provides an amazing amount of light with an extremely crisp pattern right where I need it. Of course, the Brook sprung saddle is divine.
As for the Stokemonkey electric assist, our first few outings lead us to believe that the 36V 20Ah battery has about a 70 mile range when riding heavily loaded. With about a 200lb load (adult passenger, several bags of groceries, and the battery [all this in addition to my own weight]), I was able to use the electric assist in such a way that it felt as if I was riding alone on a normal bicycle. I continued to pedal at what I would consider a normal output for the given terrain, and the Stokemonkey's brushless motor took care of all the extra pounds, and kept the average speed well above what I'd be capable of on my own (about 16-17 mph average vs 13-14 mph by myself).
*Update* September 3: Just hit the 200 mile mark with this bike. Lots of good things to report: The Stokemonkey works as advertised, and has operated perfectly with the exception of the crappy magnet sensor on the "Cycle Analyst:" computer that came with it. I can easily carry up to a 200lb load on the back of the bicycle up every hill in my area during my regular work commute, and I think that in "Western Washinton Terrain" (barring any unusually long hills), I could carry such a load for 50-100 miles with this current battery (LiFePO4 36V 20AH) depending on my own personal effort ( I never have to even sweat on hills if I don't want to, thanks to the 500-600 watts of extra power). The bike doesn't fly up the hill with such a big load, but I can go a few miles an hour faster than I'd be going on my unloaded "normal" bike. The only problems I've had are with the drivetrain. I broke one chain by being overenthusiastic about starting up an extremely steep hill, going full throttle on the Stokemonkey, and standing on the pedals in too high of a gear. I'll be avoiding such an occurrence in the future by downshifting well in advance of hills and maintaining a 50-70 rpm cadence.
One issue of note that Surly may need to seriously address in the future is the addition of some sort of drag brake unit on the bicycle for descending long, steep hills. Even though I've got very large disc rotors, they get EXTREMELY hot when I'm descending with a heavy load. I have to take the same precautions going downhill with a large load that a tandem captain would, yet I have no drag brake like the "Arai" on our tandem. What is the solution for the Big Dummy, which has too-narrow rear dropout spacing to affix an Arai-like drum brake? Perhaps a modern 135mm-spaced (mountain standard) internal rear hub drag brake? For now I'm just going with good braking technique and slow, controlled descents.
At the beginning of the Vietnam War, there was little interest in a dedicated counterinsurgency (COIN) aircraft. The USAF was too committed to an all-jet, nuclear-capable force, while the US Army was satisfied with its helicopter fleet; the Navy concentrated on its carriers, and while the Marines were mildly interested, they lacked funding.
Vietnam was to change that. Horrendous losses among US Army UH-1s was to lead to a rethinking of helicopter doctrine, and pointed up the lack of a dedicated COIN aircraft. The USAF found itself depending on World War II-era A-26K Invaders, former US Navy A-1 Skyraiders, and converted trainers like the T-28 Trojan. The USAF also found itself in the market for a better forward air control (FAC) aircraft, due to the high loss rate of its O-1 Birddogs and O-2 Skymasters. Finally, the US Navy needed something to better cover its Mobile River Force units in the Mekong Delta, which could not always depend on USAF air support. In 1963, all three services issued a requirement for a new light design capable of performing as both a COIN and FAC aircraft. North American's NA-300 was selected in 1964 and designated OV-10A Bronco.
The OV-10 design drew heavily on independent research done at the China Lake research establishment, which in turn was inspired by the World War II P-38 Lightning fighter. The P-38 used a central "gondola" fuselage to concentrate all of its firepower along the centerline, which made for better accuracy; the OV-10 would do the same. As in the P-38, the engines were contained in twin booms that stretched back to the tail. The Bronco's four machine gun armament was placed in sponsons on either side of the fuselage, while ordnance was carried beneath the sponsons. To satisfy the USAF's requirements for a FAC aircraft, the two-man crew flew underneath a large, spacious canopy that gave them superb visibility. Because the Marines wanted an aircraft that could carry a Recon team, the fuselage was extended and, if the rear seat was removed, five paratroopers could be squeezed into the back, or two stretchers.
When the OV-10 arrived in Vietnam in 1968, there was a fear that the Bronco would be the jack of all trades and master of none. In fact, it proved to be excellent in all of its roles. As a FAC, it was a huge improvement over the slower O-1 and O-2; as a COIN aircraft, it was also a good aircraft, though it could not carry the same amount of ordnance as an A-1. The Navy equipped one squadron with OV-10As as VAL-4--nicknamed the "Black Ponies" for their dark green camouflage--and these were used extensively over the Mekong Delta. There were problems with the design: the airframe was actually too heavy for the engines, which left it underpowered, and ditching was invariably fatal for the pilot, as his seat tended to hurl forward into the instrument panel. Nonetheless, the Bronco turned in a sterling performance in Southeast Asia.
Though the Navy transferred its surviving Black Ponies to the Marines after the end of American involvement in Vietnam, the USAF and Marines would keep theirs for the next 20 years. For the 1970s and 1980s, the OV-10 replaced all other FAC designs in USAF service, aside from a handful of OA-37B Dragonfly squadrons. The Marines also kept their OV-10s and further refined the design by adding all-weather capability in the long-nosed OV-10D variant.
By the First Gulf War in 1991, the OV-10 was starting to show its age. The USAF began retiring its fleet even before Desert Storm; the Bronco was considered to be too slow to survive a modern air defense environment. Though the Marines used some of their OV-10Ds, the loss of two aircraft also led the USMC to retire their Broncos after war's end. Both services chose jets as replacements--the USAF with modified OA-10A Thunderbolt IIs, and the Marines with two-seat all-weather F/A-18Ds.
OV-10s were also a mild export success, going to seven other countries, mainly in the COIN role. Most have since been retired in favor of newer designs, though the Philippines still has a large and active OV-10 force. The type enjoyed a brief renaissance in 2015 when two former Marine OV-10Ds were taken up by the USAF for use against ISIS forces in Iraq, to see if the design was still viable. Though the OV-10s performed well, the USAF is not likely to put it back into production. 360 were built, and at least 25 are on display in museums aside from the aircraft that are still operational.
There's a little mystery behind this aircraft. There was only one OV-10A with 4643 in its tail number--67-14643. However, according to some reports, 67-14643 was shot down over South Vietnam in 1972. However, that's a bit strange...since Dad took this picture of 67-14643 at Ramstein in 1978. Either the reports are wrong, or the USAF renumbered one of its OV-10s. According to another online database, however, 67-14643 survived its Vietnam service, was assigned to the 601st Tactical Air Control Wing at Sembach, West Germany, and remained there until the USAF began retiring the Bronco in the late 1980s. It was then supplied to Colombia as FAC2214, and it served in the Fuerza Aerea Colombiana until 2015, when it was retired for good. 67-14643/FAC2214 then was placed on display as a gate guard, so it's still around...assuming that it wasn't lost in Vietnam in 1972!
Whatever the case, when Dad snapped this picture, the European-based OV-10 squadrons of the 601st TACW were just beginning to switch to the low-visibility Europe One camouflage from the overall light gray used by the FAC community over Vietnam. 67-14643 was still gray in 1978.
The aircraft tractor was developed from a similar version that was used for agriculture. Powered by a 4 cylinder diesel engine the gearbox had three forward and one reverse, high and low gears, capable of of towing 30 tons.
This tractor was used by the RAF in Malta up until the 50's when it scrapped. Two tractors and parts were recovered from a scrapyard which allowed one of then to be refurbished to full working condition.
This exhibit is used when required in its original role as an aircraft tractor.
Malta Aviation Museum,
Ta' Qali, Malta
For my video youtu.be/DvmbeFdVNfY
Putin and his generals make up a fearsome combination! They bragged about devastating hypersonic missiles capable of mach 20 speed yet all that’s needed it's a slingshot and a little boy or even girl to resolve this conflict!
Let’s pray and hope that this little boy is our “hero’: Zelensky! his slingshot may just be his ability to communicate and keeping his people together fighting those fat, filthy, ugly bloodthirsty Generals hungry for another piece of ribbon to add to their collection; these warmongers are just little caricatures of their own sick imaginations worse than Covid 19 depending on a host {man child Putin} to justify their existence
Those Generals aren’t productive members of Russian society, they’re corrupt bludgers bleeding the Russian economy to satiate their gross inordinate pleasures of the flesh! those degenerates have wives, mistresses, call girls etc to maintain and expensive toys to pay -$500M yacht, castles, mansions all over Europe etc
The McDonnell Douglas (now Boeing) AV-8B Harrier II is a single-engine ground-attack aircraft that constitutes the second generation of the Harrier family, capable of vertical or short takeoff and landing (V/STOL). The aircraft is primarily employed on light attack or multi-role missions, ranging from close air support of ground troops to armed reconnaissance. The AV-8B is used by the United States Marine Corps (USMC), the Spanish Navy, and the Italian Navy. A variant of the AV-8B, the British Aerospace Harrier II, was developed for the British military, while another, the TAV-8B, is a dedicated two-seat trainer.
The project that eventually led to the AV-8B's creation started in the early 1970s as a cooperative effort between the United States and United Kingdom, aimed at addressing the operational inadequacies of the first-generation Hawker Siddeley Harrier. Early efforts centered on a larger, more powerful Pegasus engine to dramatically improve the capabilities of the Harrier. Because of budgetary constraints, the UK abandoned the project in 1975. Following the UK's withdrawal, McDonnell Douglas extensively redesigned the earlier AV-8A Harrier to create the AV-8B. While retaining the general layout of its predecessor, the aircraft incorporates a new, larger composite wing with an additional hardpoint on each side, an elevated cockpit, a redesigned fuselage and other structural and aerodynamic refinements. The aircraft is powered by an upgraded version of the Pegasus. The AV-8B made its maiden flight in November 1981 and entered service with the USMC in January 1985. Later upgrades added a night-attack capability and radar, resulting in the AV-8B(NA) and AV-8B Harrier II Plus versions, respectively. An enlarged version named Harrier III was also studied but not pursued. The UK, through British Aerospace, re-joined the improved Harrier project as a partner in 1981, giving it a significant work-share in the project. Following corporate mergers in the 1990s, Boeing and BAE Systems have jointly supported the program. Approximately 340 aircraft were produced in a 22-year production program that ended in 2003.
Typically operated from small aircraft carriers, large amphibious assault ships and simple forward operating bases, AV-8Bs have participated in numerous military and humanitarian operations, proving themselves versatile assets. U.S. Army General Norman Schwarzkopf named the USMC Harrier II as one of several important weapons in the Gulf War. It also served in Operation Enduring Freedom in Afghanistan, the Iraq War and subsequent War in Iraq, along with Operation Odyssey Dawn in Libya in 2011. Italian and Spanish Harrier IIs have taken part in overseas conflicts in conjunction with NATO coalitions. During its service history, the AV-8B has had a high accident rate, related to the percentage of time spent in critical take-off and landing phases. USMC and Italian Navy AV-8Bs are being replaced by the Lockheed Martin F-35B Lightning II, with the former expected to operate its Harriers until 2025.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Saab JAS 39 Gripen (griffin) is a light single-engine multirole fighter aircraft manufactured by the Swedish aerospace company Saab. In 1979, the Swedish government began development studies for an aircraft capable of fighter, attack and reconnaissance missions to replace the Saab 35 Draken and 37 Viggen. The preferred aircraft was a single-engine, lightweight single-seater, embracing fly-by-wire technology, canards, and an aerodynamically unstable design. The powerplant selected was the Volvo-Flygmotor RM12, a license-built derivative of the General Electric F404−400; engine development priorities were weight reduction and lowering component count. A new design from Saab was selected and developed as the JAS 39, first flying in 1988.
The Gripen is a multirole fighter aircraft, intended as a lightweight and agile aerial platform with advanced, highly adaptable avionics. It has canard control surfaces that contribute a positive lift force at all speeds, while the generous lift from the delta wing compensates for the rear stabilizer producing negative lift at high speeds, increasing induced drag. It is capable of flying at a 70–80 degrees angle of attack.
Being intentionally unstable and employing digital fly-by-wire flight controls to maintain stability removes many flight restrictions, improves manoeuvrability and reduces drag. The Gripen also has good short takeoff performance, being able to maintain a high sink rate and strengthened to withstand the stresses of short landings. A pair of air brakes are located on the sides of the rear fuselage; the canards also angle downward to act as air brakes and decrease landing distance
To enable the Gripen to have a long service life, roughly 50 years, Saab designed it to have low maintenance requirements. Major systems such as the RM12 engine and PS-05/A radar are modular to reduce operating cost and increase reliability. The Gripen’s systems were designed to be flexible, so that newly developed sensors, computers and armaments could be easily integrated as technology advances. The aircraft was estimated to be roughly 67% sourced from Swedish or European suppliers and 33% from the US.
To market the aircraft internationally, Saab formed partnerships and collaborative efforts with overseas aerospace companies. One example of such efforts was Gripen International, a joint partnership between Saab and BAE Systems formed in 2001. Gripen International was responsible for marketing the aircraft, and was heavily involved in the successful export of the type to South Africa; the organisation was later dissolved amidst allegations of bribery being employed to secure foreign interest and sales. On the export market, the Gripen has achieved moderate success in sales to nations in Central Europe, South Africa and Southeast Asia.
The Swedish Air Force placed a total order for 204 Gripens in three batches. The first delivery of the JAS 39A/B (single seat and two seat variants) occurred on 8 June 1993, when aircraft “39102” was handed over to the Flygvapnet during a ceremony at Linköping. The final Batch three 1st generation aircraft was delivered to FMV on 26 November 2008, but in the meantime an upgraded Gripen variant, the JAS 39C/D already rolled off of the production lines and made the initial versions obsolete. The JAS C/D gradually replaced the A/B versions in the frontline units until 2012, which were then offered for export, mothballed or used for spares for the updated Swedish Gripen fleet.
A late European export customer became the nascent Republic of Scotland. According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated that the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron for transport and SAR duties”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continued, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action with the foundation of the Poblachd na h-Alba Adhair an Airm (Republic of Scotland Air Corps/RoScAC) after the country's independence from Great Britain in late 2017. For the fighter role, Scotland was offered refurbished F-16C and Ds from the USA, but this was declined, as the type was considered too costly and complex. An offer from Austria to buy the country’s small Eurofighter fleet (even at a symbolic price) was rejected for the same reason.
Eventually, and in order to build a certain aura of neutrality, Scotland’s young and small air arm initially received twelve refurbished, NATO-compatible Saab JAS 39 Gripen (ten single-seater and two two-seaters) as well as Sk 90 trainers from Swedish overstock. These second hand machines were just the initial step in the mid-term procurement plan, though.
Even though all Scottish Gripens (locally called “Grìbhean”, designated F.1 for the JAS 39A single seaters and F.2 for the fully combat-capable JAS 39B two-seaters, respectively) were multi-role aircraft and capable of strike missions, its primary roles were interception/air defense and, to a lesser degree, reconnaissance. Due to severe budget restrictions and time pressure, these aircraft were almost identical to the Flygvapnet’s JAS 39A/B aircraft. They used the PS-05/A pulse-Doppler X band multi-mode radar, developed by Ericsson and GEC-Marconi, which was based on the latter's advanced Blue Vixen radar for the Sea Harrier that also served as the basis for the Eurofighter's CAPTOR radar. This all-weather radar is capable of locating and identifying targets 120 km (74 mi) away and automatically tracking multiple targets in the upper and lower spheres, on the ground and sea or in the air. It can guide several beyond visual range air-to-air missiles to multiple targets simultaneously. Therefore, RoScAC also procured AIM-9 Sidewinder and AIM-120 AMRAAM as primary armament for its Grìbhean fleet, plus AGM-65 Maverick air-to-ground missiles.
The twelve Grìbhean F.1 and F.2s formed the RoScAC’s 1st fighter (Sabaid) squadron, based at former RAF base Lossiemouth. Upon delivery and during their first months of service, the machines retained the former Swedish grey paint scheme, just with new tactical markings. In 2018, the RoScAC fighter fleet was supplemented with brand new KAI/Lockheed Martin TA-50 ‘Golden Eagle’ armed trainers from South Korea, which could also take over interceptor and air patrol duties. This expansion of resources allowed the RoScAC to initiate an update program for the JAS 39 fleet. It started in 2019 and included in-flight refueling through a fixed but detachable probe, a EuroFIRST PIRATE IRST, enhanced avionics with elements from the Swedish JAS 39C/D, and a tactical datalink.
With these updates, the machines could now also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
The aircraft’s designations did not change, though, the only visible external change were the additional IRST fairing under the nose, and the machines received a new tactical camouflage with dark green and dark grey upper surfaces, originally introduced with the RoScAC’s TA-50s. However, all Grìbhean F.1 single seaters received individual fin designs instead of the grey camouflage, comprising simple red and yellow fins, the Scottish flag (instead of the standard fin flash) and even a large pink thistle on a white background and a white unicorn on a black background.
Despite being 2nd hand aircraft, the Scottish JAS 39A and Bs are expected to remain in service until at least 2035.
General characteristics:
Crew: one
Length: 14.1 m (46 ft 3 in)
Wingspan: 8.4 m (27 ft 7 in)
Height: 4.5 m (14 ft 9 in)
Wing area: 30 m2 (320 sq ft)
Empty weight: 6,800 kg (14,991 lb)
Max takeoff weight: 14,000 kg (30,865 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan engine,
54 kN (12,000 lbf) dry thrust, 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: 2,460 km/h (1,530 mph, 1,330 kn)/Mach 2
Combat range: 800 km (500 mi, 430 nmi)
Ferry range: 3,200 km (2,000 mi, 1,700 nmi)
Service ceiling: 15,240 m (50,000 ft)
g limits: +9/-3
Wing loading: 283 kg/m2 (58 lb/sq ft)
Thrust/weight: 0.97
Takeoff distance: 500 m (1,640 ft)
Landing distance: 600 m (1,969 ft)
Armament:
1× 27 mm Mauser BK-27 revolver cannon with 120 rounds
8 hardpoints (Two under the fuselage, one of them dedicated to FLIR / ECM / LD / Recon pods plus
two under and one on the tip of each wing) with a capacity of 5 300 kg (11 700 lb)
The kit and its assembly:
Nothing spectacular – actually, this build is almost OOB and rather a livery what-if model. However, I had the plan to build a (fictional) Scottish Gripen on my agenda for some years now, since I started to build RoScAC models, and the “Back into service” group build at whatifmodlers.com in late 2019 was a good motivation to tackle this project.
The starting point was the Italeri JAS 39A kit, a rather simple affair that goes together well but needs some PSR on almost every seam. Not much was changed, since the model would depict a slightly updated Gripen A – the only changes I made were the additional IRST fairing under the nose, the ejection handle on the seat and a modified ordnance which consists of a pair of AIM-9L and AIM-120 (the latter including appropriate launch rails) from a Hasegawa air-to-air weapons set. The ventral drop tank is OOB.
Painting and markings:
The motivation a behind was actually the desire to build a Gripen in a different livery than the usual and rather dull grey-in-grey scheme. Therefore I invented a tactical paint scheme for “my” RoScAC, which is a modified RAF scheme from the Seventies with uppers surfaces in Dark Green (Humbrol 163) and Dark Sea Grey (164), medium grey flanks, pylons, drop tank and a (theoretically) grey fin (167 Barley Grey, today better known as Camouflage Grey) plus undersides in Light Aircraft Grey (166), with a relatively high and wavy waterline, so that a side or lower view would rather blend with the sky than the ground below. The scheme was designed as a compromise between air superiority and landscape camouflage and somewhat inspired by the many experimental schemes tested by the German Luftwaffe in the early Eighties. The Scottish TA-50 I built some years ago was the overall benchmark, but due to the Gripen’s highly blended fuselage/wing intersections, I just painted the flanks under the cockpit and the air intakes as well as a short portion of the tail section in Barley Grey. That’s overall darker than intended (esp. in combination with the fin decoration, see below), but anything grey above the wings would have looked awkward.
As a reminiscence of the late British F-4 Phantoms, which carried a grey low-viz scheme with bright fins as quick ID markings, I added such a detail to the Gripen, too – in this case in the form of a stylized Scottish flag on the fin, with some mild 3D effect. The shadow and light effects were created through wet-in-wet painting of lighter and darker shades into the basic blue (using Humbrol 25, 104 and ModelMaster French Blue). Later, the white cross was added with simple decal stripes, onto which similar light effects were added with white and light grey, too.
Even though this one looks similar to my Scottish TA-50, which was the first model to carry this paint scheme, I like the very different look of this Gripen through its non-all-grey paint scheme. It’s also my final build of my initial RoScAC ideas, even though I am now considering a helicopter model (an SAR SA 365 Dauphin, maybe?) in fictional Scottish markings, too.
Some background:
Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.
The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.
In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.
Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.
The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.
At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.
General characteristics:
Accommodation: pilot only, in standard cockpit in main body
Overall Height: 18.2 meters
Overall Length: 7.6 meters
Overall Width: 12.6 meters
Max Weight: 39.8 metric tons
Powerplant & propulsion:
1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,
driving 2x main booster Thrusters and 12x vernier thrusters
Performance:
unknown
Armament:
None
Special Equipment and Features:
Standard all-frequency radar antenna
Standard laser long-range sensor
Ectromelia infrared, visible light and ultraviolet frequency sensor cluster
ECM/ECCM suite
The kit and its assembly:
I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.
The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).
I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!
But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.
Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.
However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.
Painting and markings:
Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.
Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.
The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.
The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?
Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.
A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.
Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.
The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.
The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.
Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.
General characteristics:
All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.
Accommodation:
Single pilot in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Empty weight: 13.25 metric tons
Standard take-off mass: 18.5 metric tons
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm
4x underwing hardpoints for a wide variety of ordnance
The kit and its assembly:
The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.
However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?
I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...
The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.
Painting and markings:
As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.
The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.
The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.
Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.
No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.
Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.
Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.
Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
Operated by the Islamic Revolutionary Guards Corps, Iran's small Bell AH-1J fleet has seen a fair share of indigenous modernization in recent years. In 1971, Iran purchased 202 examples of an improved AH-1J, named "AH-1J International", from the United States. This improved Cobra featured an uprated P&WC T400-WV-402 engine and a stronger drivetrain, so that it would have a better performance under “hot & high” conditions. Recoil damping gear was fitted to the 20 mm M197 gun turret, and the gunner was given a stabilized sight and a stabilized seat, too. Of the AH-1Js delivered to the Shah's Imperial Iranian Army Aviation, 62 were TOW-capable.
Iranian AH-1Js participated in the Iran–Iraq War—which saw the most intensive use of helicopters in any conventional war. Iranian AH-1Js (particularly the TOW-capable ones) were "exceptionally effective" in anti-armor warfare, inflicting heavy losses on Iraqi armored and vehicle formations. In operations over the barren terrain in Khuzestan and later in southern Iraq, beside the standard tactics, Iranian pilots developed special, effective tactics, often in the same manner as the Soviets did with their Mi-24s. Due to the post-Revolution weapons sanctions, Iranians had to make do with what was at hand: lacking other guided ordnance they equipped the AH-1Js with AGM-65 Maverick missiles and used them with some success in several operations. About half of the AH-1Js were lost during the conflict to combat, accidents, and simple wear and tear –the rest of the fleet was kept operational and busy during the following years.
However, time and use took their toll on the Iranian Cobras, for which no replacement could be found. In 2001, Brigadier General Ahmad Kazemi, the then-commander in chief of the IRGC Air Force (from 2009, it became known as the IRGC Aerospace Force, or IRGCASF), requested Ali Khamenei, leader of the Islamic Republic, to permit the IRGC to procure two former army AH-1J Cobra helicopters that had been restored by the Iranian Helicopters Support and Renewal Company (IHSRC, called ‘Panha’ in Iran). They belonged to the Iranian Army Aviation Force (IRIAA, as it was then known), which lacked the funds to pay for the necessary restoration and renewal of parts and fuselage sections.
The first of these refurbished AH-1Js was a TOW Cobra capable of using the Iranian-made clone of the BGM-71A TOW anti-tank missile, the “Towfan”, while the second helicopter was a Non-TOW version capable of using only the 2¾-inch Hydra unguided rockets. They entered IRGCAF service at Fat'h helicopter base, Karaj, to the west of Tehran, in 2001. This marked the start of an ongoing but slow modernization program for the remaining Iranian Cobra fleet.
IHSRC also worked on the restoration of two more battle-damaged AH-1J TOW Cobras, in a project known as “Panha-2091”. The front sections of their fuselages had been destroyed by cannon rounds from Iraqi tanks during the Iran-Iraq war and the extensive restoration work required manufacture of new fuselage panels and structural parts. Panha engineers also co-operated with their colleagues from IAMI (Iranian Aircraft Manufacturing Industries, also known as HESA in Iran) and designed a new canopy for the helicopters equipped with a flat, bulletproof windshield instead of the former oval, non-bulletproof version. Under a project named HESA-2091, both helicopters were thoroughly modernized and equipped with multifunction displays and a new weapon control system with a head-up display for the pilot. Internal avionics were revamped with the addition of a GPS system in the nose, and a warning radar with four antennae providing 360 degrees coverage was integrated, too. Design and production of the new digital systems and their components was carried out by the Iranian Electronics Industries Company (IEI) with the assistance of Isfahan University of Technology and a Chinese-connected company, Safa Electronic Component Industries. Installation was performed by IAMI in Shahin-Shahr.
These two helicopters were ultimately named ‘Tiztak-2091’ and became prototypes for a larger modernization project for 102 remaining AH-1J Cobra attack helicopters for the Iranian Army Aviation Force. However, in total, the cost of this bold conversion projects exceeded the whole IRIAA budget for 2001, and this resulted in the cancellation of the wider modernization program just a year later. Step forward the IRGC which procured the two Tiztak-2091 prototypes alongside four more former IRIAA AH-1J Non-TOW Cobra helicopters from the Iranian Defence Ministry. These were revamped and delivered to frontline units between 2003 and 2005. However, further conversions have only be done sparingly since then, due to the lack of funds and material.
Despite these limitations, the IAAF immediately began working on upgrade projects to further increase combat capability of the small but busy fleet of Cobra helicopters. The Tiztak helicopters had been equipped with new targeting/surveillance turrets instead of their M-65 Telescopic Sight Units under a IAMI project named Towfan-2 back in 2012. The first helicopters were equipped with the Oqab EO/IR targeting turret produced by IOI (Iranian Optics Industries) in 2012, while others received an RU-290 thermal camera, a product of Rayan Roshd-Afzar.
After the formation of the Army Aviation Force of the Islamic Revolutionary Guard Corps (IRGCAA) on February 23, 2016, the IRGCASF helicopter base at Fat’h was transferred to the IRGCGF (IRGC Ground Force), of which the IRGCAA was now a part. IRGCAA today operates more than 80 helicopters including nine Bell AH-1J International Cobras, with three examples modernized by Iranian Aircraft Manufacturing Industries (IAMI). IRGCAA had also been trying to equip its small fleet of AH-1Js with a new air-to-surface missile and an anti-tank missile, the Qaem-114 (outwardly almost identical to the American AGM-119 Hellfire), but this did not proceed beyond prototype stage.
Despite the active Iranian AH-1J fleet’s relatively small size after 2001, the Cobras were extremely active during counter-terrorism and counter-insurgency operations in the southeast and northwest of Iran. Both the IAAF and now the IRGCAA had always had two fire support teams, each formed with two to three AH-1Js in Orumiyeh and Zahedan, to be used against the PKK/PJAK and Jaish ul-Adl terrorist groups. The fire-support team at the IRGCGF Hamzeh Garrison in the northwest of Iran had two Bell 214A utility helicopters for SAR operations to accompany the Cobras while the team in Zahedan International Airport had two to three Mi-171Sh helicopters; usually, one armed with B8M1 rocket pods as a heavy fire support gunship.
The most notable use of the AH-1Js in combat by the IRGC took place in spring and summer 2008 when two AH-1Js stationed in Zahedan were extensively used in close-air-support missions during a counter-terrorism operation by IRGC Ground Forces against the Jondollah group (later to be rebranded as Jaish ul-Adl after being listed as a terrorist organization by the US State Department). After the arrest and execution of its leader, Abdolmalek Reigi by Iran, the group stopped its activities in 2009. It resumed again a few years later resulting in the launch of new anti-terror operations involving the AH-1Js in 2013, which continued periodically until 2020.
General characteristics:
Crew: 2
Length: 53 ft 5 in (16.28 m) with both rotors turning
45 ft 9 in (14 m) for fuselage only
Width: 10 ft 9 in (3.28 m) for stub wings only
Height: 13 ft 5 in (4.09 m)
Main rotor diameter: 43 ft 11 in (13.39 m)
Main rotor area: 1,514.97 sq ft (140.745 m²)
Empty weight: 2,802 kg (6,177 lb)
Max takeoff weight: 4,530 kg (9,987 lb)
Powerplant:
2× P&W Canada T400-CP-400 (PT6T-3 Twin-Pac) turboshaft engines, coupled to produce 1,530 shp
(1,140 kW; de-rated from 1,800 shp (1,342 kW) for drivetrain limitations)
Performance:
Maximum speed: 236 km/h (147 mph, 127 kn)
Range: 600 km (370 mi, 320 nmi)
Service ceiling: 10,500 ft (3,200 m)
Rate of climb: 1,090 ft/min (5.5 m/s)
Armament:
1× 20 mm (0.787 in) M197 3-barreled Gatling cannon in M97 chin turret with 750 rounds
4× hardpoints under the sub wings for 2.75” (70 mm) Mk 40 or Hydra 70 rockets in 7 or 19 rounds
pods; up to 16 5” (127 mm) Zuni rockets in 4-round LAU-10D/A launchers, up to eight Toophan
ATGM in a dual or quad launcher on each wing, AIM-9 Sidewinder or Misagh-2 anti-aircraft
missiles (1 mounted on each hardpoint)
The kit and its assembly:
This is the counterpart to another modified Fujimi AH-1 model, actually a kit bashing of the AH-1S and the AH-1J model to produce something that comes close to the real IAMI HESA-2091 helicopter, an upgraded/re-built AH-1J International of the Iranian Army Air Force. The “leftover” parts were used to create an (Indonesian) AH-1G – even though the HESA-2091 was the “core project”.
To create this Iranian variant, the AH-1J was taken as the basis and the nose as well as the flat-window canopy from the AH-1S were transplanted. While the nose with the TOW sensor turret was just an optional part that fits naturally on the fuselage (even though not without some PSR), the clear parts was more challenging, because the flat canopy is shorter than the original. In this case I had to fill some triangular gaps between the hood and the engine section, and this was done with 1.5 mm styrene sheet wedges and some more PSR to blend the parts that were not meant to be combined into each other.
The cockpit was taken OOB, together with the pilot figures that come with the kit. I also retained the original all-metal main rotor because the Iranian Cobras AFAIK were never upgraded with composite material blades?
To set the HESA-2091 further apart from the original AH-1J I changed the sensor turret in the nose and scratched a ball-shaped fairing that resembles the indigenous RU-290 thermal camera – it’s actually the ball joint from a classic clear Matchbox kit display, with a base scratched from 0.5mm styrene sheet. The “ball” turned out to be a bit too large, but the overall look is O.K., since I wanted a non-TOW AH-1J. For a “different-than-a-stock-AH-1J” look A small radome for a missile guidance antenna was added to the nose above the sensor turret, too. Another personal addition are the small end plates on the stabilizers – inspired by similar installations on Bell’s early twin-engine AH-1s, even though these later disappeared and were technically replaced by a ventral fin extension and a longer fuselage; the Iranian AH-1Js retained the short, original fuselage of the single-engine Cobra variants, though. The end plates were cut from leftover rotor blades from the scrap box, IIRC they belong to a Matchbox Dauphin 2.
Being part of the historical Zahedan fire support team I gave the Cobra an armament consisting of a nineteen round 70mm Hydra unguided missile pods (OOB), a pair of AGM-65 Maverick missiles (an ordnance actually deployed by Iranian Cobras), together with their respective launch rails, and I added launch tubes for indigenous Misagh-2 anti-aircraft missiles (which are actually MANPADS) to the stub wings’ tips as a self-defense measure. These were scratched from 2mm styrene rods.
Painting and markings:
Finding a suitable paint scheme was not easy. A conservative choice would have been an early mid-stone/earth scheme or a tri-color scheme consisting of sand, earth and dark green. However, while doing WWW research I came across some more exotic and contemporary specimen, carrying a kind of leopard-esque mottle scheme or even a “high resolution” fractal/digital cammo consisting of three shades of beige/brown/grey – even though I am not certain if the latter was a “real” camouflage for operational helicopters or just a “show and shine” propaganda livery?
Re-creating the latter from scratch would have been prohibitively complex, because the pixelized mottles were really fine, maybe just 2” wide each in real life. But I used this scheme as an inspiration for a simplified variant, also kept in three shades of brown, even though the result was a kind of compromise due to the limited material options to create it.
The base became an overall coat with Tamiya XF-57 (Buff), plus very light grey (RAL 7035; Humbrol 196) undersides. A light black ink washing was applied, and panels were post-shaded to create a more vivid surface.
Then came the pixelized mottles in two contrast colors: first came a layer in RAL 1015 (Hellelfenbein/Light Ivory) and then a second in RAL 8011 (Nussbraun/Nut Brown) in a 1:1 ratio, slightly overlapping and letting the Buff base shine through. These mottles were not painted but rather created with square bits from generic decal stripe material in various widths from TL Modellbau. While not as sophisticated as the original camouflage, effect and look are quite similar, and add to the unique look of this HESA-2091(-ish) model. And even though I was sceptical, esp. because of the reddish Nussbraun, the blurring effect of the scheme is surprisingly good – esp. when you put the model in front of a dry mountain background! I’ll keep the concept in the back of my head for further what-if models. All those single pixels were a lot of work, but the result looks really good.
Another detail from many real late Iranian Cobras was taken over, too: a black tail rotor drive shaft cover that extends up onto the fin’s leading edge – probably a measure to hide exhaust soot stains on the tail boom? A black anti-glare panel was added in front of the windscreen, too, and the rotor blades became medium grey (Humbrol 165, Medium Sea Grey) except for the main rotor blades’ undersides, which became black. The cockpit interior was uniformly painted in a very dark grey (Revell 06, Anthracite) and the pilots received khaki jumpsuits and modern grey and olive drab “bone domes”.
The decals were puzzled together from various sources. The Iranian roundels came from a Begemot MiG-29 sheet, registration numbers and fin flashes from an Iranian F-5. The IAAF abbreviation was created with single black 4 mm letters.
Graphite was used to weather the model, esp. the area on top of the tail boom, and the model was finally sealed with matt acrylic varnish overall.
An exotic model – the Iranian home-brew HESA-2091 looks familiar, but it’s a unique combination of classic Cobra elements. More spectacular is the pixelated paint scheme, and the attempt to generate it with the help of square decal bits worked (and looks) better than expected! This might also work well in grey as a winter camouflage? Hmmm….
Capable of firing between a thirty- and seventy-degree angle, this gun typically found itself in an indirect fire role but could be direct-fired at a shallow angle if direly necessary. Unlike the Anti-Armor Field Gun, it fires a large projectile at relatively low velocity and is better suited against infantry, light vehicles, and fortifications than armored targets.
(wheel adjusts mortar elevation when spun)
Flying squirrels are not capable of flight like birds or bats; instead, they glide between trees. They are capable of obtaining lift within the course of these flights, with flights recorded to 90 meters (295 ft). The direction and speed of the animal in midair are varied by changing the positions of its limbs, largely controlled by small cartilaginous wrist bones. The wrist is connected to the styliform cartilage, which forms a wing tip used during gliding. After being extended, the wing tip may adjust to various angles, controlling aerodynamic movements. The wrist also changes the tautness of the patagium, a furry parachute-like membrane that stretches from wrist to ankle. It has a fluffy tail that stabilizes in flight. The tail acts as an adjunct airfoil, working as an air brake before landing on a tree trunk.
The colugos, Petauridae, and Anomaluridae are gliding mammals which are similar to flying squirrels because of convergent evolution. These mammals can glide through the trees, but they do not actually fly (like birds and bats). They have a membrane of skin on either side of their body.
Prior to the 21st century, the evolutionary history of the flying squirrel was frequently debated. This debate was clarified greatly as a result of two molecular studies. These studies found support that flying squirrels originated 18–20 million years ago, are monophyletic, and have a sister relationship with tree squirrels. Due to their close ancestry, the morphological differences between flying squirrels and tree squirrels reveal insight into the formation of the gliding mechanism. Compared to squirrels of similar size, flying squirrels, northern and southern flying squirrels show lengthening in bones of the lumbar vertebrae and forearm, whereas bones of the feet, hands, and distal vertebrae are reduced in length. Such differences in body proportions reveal the flying squirrels’ adaptation to minimize wing loading and to increase more maneuverability while gliding.
Several hypotheses have attempted to explain the evolution of gliding in flying squirrels. One possible explanation is related to energy efficiency and foraging. Gliding is an energetically efficient way to progress from one tree to another while foraging, as opposed to climbing down trees and maneuvering on the ground floor or executing dangerous leaps in the air. By gliding at high speeds, flying squirrels can rummage through a greater area of forest more quickly than tree squirrels. Flying squirrels can glide long distances by increasing their aerial speed and increasing their lift.Other hypotheses state that the mechanism evolved to avoid nearby predators and prevent injuries. If a dangerous situation arises on a specific tree, flying squirrels can glide to another, and thereby typically escape the previous danger. Furthermore, take-off and landing procedures during leaps, implemented for safety purposes, may explain the gliding mechanism. While leaps at high speeds are important to escape danger, the high-force impact of landing on a new tree could be detrimental to a squirrel’s health. Yet the gliding mechanism of flying squirrels involves structures and techniques during flight that allow for great stability and control. If a leap is miscalculated, a flying squirrel may easily steer back onto the original course by using its gliding ability. A flying squirrel also creates a large glide angle when approaching its target tree, decreasing its velocity due to an increase in air resistance and allowing all four limbs to absorb the impact of the target.
The Corsair is widely considered the most capable of all carrier-based fighter aircraft of World War Two. Designed and originally built by Chance Vought, it was also manufactured under license by Goodyear at the height of production during the Second World War. Its distinctive "bent" wings were designed to keep the landing gear short and robust for carrier landings and give clearance for the enormous 13' 4" diameter propeller required to pull her to over 400 MPH - the first American fighter to do so. It was considered the performance equal to many other fighters like the Mustang but its short range kept it either carrier-based or land-based in the South Pacific war close to the action. The Corsair continued to be operated by the USN and the Marines after the war and saw considerable action during the Korean War.
Corsairs were first operated from carriers by the Fleet Air Arm of the Royal Navy. Trained in the US, RNFAA pilots including Canadian Lt. Robert Hampton Gray were deployed on carriers such as HMS Formidable and Victorious and carried out daring fighter escort and attack operations in the North Atlantic. This included the famous raids against the holed-up German battleship Tirpitz. HMS Formidable also fought in the Pacific theatre later in the war where Lt. Gray won the Victoria Cross. The Vintage Wings of Canada Corsair, presently in standard U.S. “shipyard blue” markings, will be painted in markings to honour Hampton Gray.
But I have the greatest respect for this instrument, for it is capable of such nuances, such a wide range of intensity at the hands of masters like Maurice Ravel. OK. OK. There was also Mozart and Chopin and Beethoven and Liberace -- ha! ha! Incidently, I never seen Liberace other than on tv? He was slightly before my time... I used to listen to Claude Debussy a lot. Please correct me if I am wrong but I am told he belongs to the "Impressionnists"? But that was before I discovered Ravel. Wow! Such power! Such fragility! Not so much his Bolero but his other orchestral work. He's a master arranger. The Waltz, in particular. I like digging behind the story of the works to find all kinds of nuggest that enhances my listening experience. In the case of The Waltz, it is said that he composed it in 1904 for a ballet that was to be presented in Paris? But it was turned down? It is said that it was a satire of the Vienna's waltzes... I can just imagine the long gowns swirling at the sound of the violins in those magical envenings... I think I would have liked to live in that era... So much grace... / Non, je n'apprendrai jamais le piano. Par contre, ça ne m'empêche pas d'avoir le plus grand respect de cet instrument dont j'admire profondément la sonorité. Shoppenhauer voyait la musique comme une représentation de la volonté elle-même (the "will"), en fait, la seule forme artistique qui ne soit pas un essai de représentation du monde. J'ai toujours aimé le piano. Elton John. Antonio Carlos Jobim. Claude Debussy et beaucoup d'autres que j'oublie... Mais, surtout, Maurice Ravel. Ah! Ravel, tout un monde! Surtout les orchestrations, tellement riche, l'émotion à l'état pur!
"Love alone is Capable of uniting living beings in such a way as to complete and fulfil them,
for it alone takes them and joins them by what is deepest in themselves"
(Pirre Teilhard de Chardin 1881-1953)
taken in St Stephens Green in Dublin...
Love getting images that show how we are living today....just sitting around and enjoying the company of people we love....
1/52
Thanks for stopping by and having a look...love to hear what you think....
The Lockheed F-117A was developed in response to an Air Force request for an aircraft capable of attacking high value targets without being detected by enemy radar. By the 1970s, new materials and techniques allowed engineers to design an aircraft with radar-evading or "stealth" qualities. The result was the F-117A, the world's first operational stealth aircraft.
The first F-117A flew on June 18, 1981, and the first F-117A unit, the 4450th Tactical Group (renamed the 37th Tactical Fighter Wing in October 1989), achieved initial operating capability in October 1983. The F-117A first saw combat during Operation Just Cause on Dec. 19, 1989, when two F-117As from the 37th TFW attacked military targets in Panama.
The F-117A again went into action during Operation Desert Shield/Storm in 1990-1991 when the 415th and the 416th squadrons of the 37th TFW moved to a base in Saudi Arabia. During Operation Desert Storm, the F-117As flew 1,271 sorties, achieving an 80 percent mission success rate, and suffered no losses or battle damage. A total of 59 F-117As were built between 1981 and 1990.
The aircraft on display is the second F-117A built and was specially modified for systems testing. The Air Force retired it to the museum in 1991 after its test program was completed. It is marked as it appeared during tests conducted for the Air Force Systems Command between 1981 and 1991.
National Museum of the US Air Force
Wright-Patterson AFB
Dayton, OH
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.
In the course of its career the versatile VF-1 underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 on, placed in a streamlined fairing in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could be used for target illumination and guiding precision weapons. Many Valkyries also received improved radar warning systems, with receivers, depending on the systems, mounted on the wingtips, on the fins and/or on the LERXs. Improved ECR measures were also mounted on some machines, typically in conformal fairings on the flanks of the legs/engine pods. Specialized reconnaissance and ECM sub-versions were developed from existing airframes, too.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68). However, beyond this original production several “re-built” variants existed, too, and remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet, even after 35 years after the type's service introduction!
General characteristics:
All-environment variable fighter and tactical combat Battroid, used by U.N. Spacy, U.N. Navy, U.N. Space Air Force. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Accommodation:
Single pilot in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Empty weight: 13.25 metric tons
Standard take-off mass: 18.5 metric tons
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min
4x underwing hard points for a wide variety of ordnance, including
12x AMM-1 hybrid guided multipurpose missiles (3/point), or
12x MK-82 LDGB conventional bombs (3/point), or
6x RMS-1 large anti-spaceship reaction missiles (2/outboard point, 1/inboard point), or
4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,
or a combination of above load-outs and other guided and unguided ordnance
The kit and its assembly:
After a long time, I found enough mojo to tackle another ARII 1:100 VF-1, but this time in Battroid mode. Unlike the simple Fighter mode kits, ARII’s Battroid kit of the iconic Valkyrie is more demanding and calls for some structural modifications to create a decent and presentable “giant robot” model – OOB, the model remains quite two-dimensional and “stiff”. The much newer WAVE kit in 1:100 scale is certainly a better model of the VF-1, but I love the old ARII kits because of their simplicity.
The kit is a “Super Valykrie” model, but it donated its FAST pack extra parts to a space-capable VF-1 Fighter build a long time ago and has been collecting dust in The Stash™ (SF/mecha sub-department at the Western flank) since then. The complete Battroid model was still left, though, even with most of the decals, and when I recently searched for artwork/visual references for another Macross project I came across screenshots from the original TV series of a canonical VF-1 that I had been planning to build for some years, and so I eventually set things in motion.
The kit was basically built OOB, but it received some upgrades. More severe surgery would be necessary to create a “good” Battroid model – e. g. creating vertical recesses around the torso – but this is IMHO not worthwhile. These updates included additional joints in the upper arms and legs, created with styrene tubes, as well as a new hip construction made from coated steel wire and styrene tube material that allows a three-dimensional posture of the legs - for a more vivid appearance and more dynamic poses. Other small mods that enhance the overall impression are “opened” exhausts inside of the feet and a different, open left hand. The GU-11 pod/handgun was taken OOB, it just received a shoulder belt created with painted masking tape. The single laser cannon on the head received a fairing made from paper tissue drenched with white glue.
Even though the model kit itself is not complex, it is a very early mecha kit: the VF-1 Battroids already came with vinyl caps (some of the contemporary ARII Macross models did not feature these useful items yet), but the model was constructed in an “onion layer” fashion that makes building and painting a protracted affair, esp. on arms and legs. You are supposed to finish a certain section, and then you add the next section like a clamp, while areas of the initial section become inaccessible for sanding and painting inside of the new section. You can only finish the single sections up to basic painting, mask them, and then add the next stage. Adding some joints during the construction phase helped but building an ARII VF-1 Battroid simply takes time and patience…
Painting and markings:
As mentioned above, this Valkyrie’s livery is canonical and it depicts a so-called “Alaska Guard” VF-1, based at the U.N. Spacy’s headquarters at Eielson Air Force Base in the far North of the United States around 2008/9. Several Battroid mode VF-1s in this guise appear during episode #15 of the original Macross TV series and offer a good look at their front and back, even though close inspection reveals that the livery was – intentionally or incidentally – not uniform! There are subtle differences between the VF-1s from the same unit, so that there’s apparently some room for artistic freedom.
However, this rather decorative livery IMHO works best on a VF-1 Battroid model, because the green areas, esp. on head and arms, mostly disappears when the Valkyrie transforms into Fighter mode – in the original TV livery the VF-1 is completely white from above, just with green wing tips and rudders on the V-tail.
A full profile of an “Alaska Guard” VF-1 with more details concerning markings and stencils can furthermore be found in Softbank Publishing’s (discontinued) “Variable Fighter Master File VF-1 Valkyrie” source book, even though these drawings show further differences to the original TV appearance. In the book the unit is identified as SVF-15 “Blue Foxes”, evolved from the real USAF’s 18th Aggressor Squadron in 2008. Looking at the VF-1’s colors, this unit name appears a bit odd, because the livery is basically all-white with olive-green trim? This could be a simple translation issue, though, because “blue” and “green” are in written Japanese described with the same kanji (青, “ao”). On the other side, the 18th Aggressor Squadron was/is nicknamed “Blue Foxes”? Strange, strange…
To ease painting, the model was built in sub-assemblies (see comments above) and treated separately. To avoid brush painting mess with the basic white, the sub-sections received a coat of very light grey (RAL 7047 Telegrau) and a pure white tone, both applied from rattle cans with an attempt to create a light shading effect. The green trim and further details were added with brushes. I used Revell 360 (Fern Green, RAL 6025), because it is a strong but still somewhat dull/subdued tone that IMHO matches the look from the TV series well. Some detail areas like the air intake louvres, the hollow of the knees and the handgun were painted in medium grey (Humbrol 140), so that the contrast to the rest was not too strong. The “feet” received an initial coat of Humbrol 53 (Iron) as a dark primer.
In “reality”, parts of the VF-1’s torso in Battroid mode are actually open – the kit is very simplified. To create an optical illusion of this trench and to visually “stretch” the rather massive breast section, the respective areas were painted with dark grey (Humbrol 79). There are also many position lights all around the hull; these were initially laid out with silver, the bigger ones received felt tip pen details, and they were later overlaid with clear acrylic paints.
Once the basic painting had been done, a light black ink washing was applied to the parts to emphasize engraved panel lines and recesses. After that the jet exhaust ‘feet’ were painted with Humbrol’s Steel Metallizer and some post-shading through dry-brushing was done, concentrating on the green areas. This was rather done for visual plasticity than for a worn look: this Valkyrie was supposed to look quite bright and clean, after all it’s from a headquarter unit and not an active frontline vehicle.
The feet received a thorough graphite treatment, so that the Metallizer’s shine was further enhanced. Some surface details that were not molded into the parts (esp. around the shoulders and the covers of the main landing gear) were painted with a thin black felt tip pen.
Stencils and markings were taken from the kit’s OOB decal sheet. The thin bands around the arms and legs were created with generic 1mm decal strips and all the vernier thrusters (sixteen are visible on the Battroid) were created with home-printed decals – most of them are molded into the parts and apparently supposed to be painted, but the decals are a tidier and more uniform solution.
Before the final assembly, the parts received a coat with matt acrylic varnish. As final measures some black panel lines were emphasized with a felt tip pen and color was added to several lamps and small windows with clear paints.
I can hardly remember when I built my last VF-1 Battroid, but tackling this one after a long while was a nice distraction from my usual what-if builds. I am pleased that this model depicts a canonical Valkyrie from the original TV series beyond the well-known “hero” liveries. Furthermore, green is a rare color among VF-1 liveries, so that it is even more “collectible”.
While the vintage ARII kit is a rather limited affair, adding some joints considerably improved the model’s impression, even though there are definitively better kit options available today when you want to build a 1:100 Battroid — but these do certainly not provide this authentic “Eighties feeling”.
Land Rover has a long history of delivering capable and premium offroad vehicles. The Range Rover has set the benchmark for premium offroad (now known as SUV) vehicle types. And, the original Land Rover (recently known as 'Defender') has set the benchmark for capable offroad attributes since its inception in 1948.
One thing the Defender isn't is comfortable, stylish, safe or pretty much anything you would use to describe a newly engineered car. Problem is, Land Rover has not been able to identify and produce a replacement vehicle design.
A few years ago Land Rover produced a series of concepts, under the title DC 100 (Defender Concept 100) looking at a modern interpretation of the core Land Rover values: offroad capability & robustness.
The version shown here was a followup concept, based on the three door DC 100 design.
The production version of this vehicle had been due in 2016/17, but at this stage there is no confirmation regarding the vehicle or the production date.
What we are left with are some interesting concepts glimpsing the thoughts of one of the original offroad capable product companies.
More info can be found at the following wikipedia link:
en.wikipedia.org/wiki/Land_Rover_DC100
This Lego miniland-scale Land Rover DC 100 Concept - has been created for Flickr LUGNuts' 105th Build Challenge, titled - 'The Great Outdoors!' - a challenge for any vehicle designed for outdoor adventuring.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.
The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.
The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.
Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.
Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.
Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.
The FAST Pack went through constant further development, including upgraded versions for late production and updated VF-1s (V3.0 and V4.0). Another addition to the early V2.0 variant of 2010 was the so-called “S-FAST Pack”. The S-FAST pack was originally developed at the Apollo lunar base, for the locally based VF-1 interceptor squadrons that were tasked with the defense of this important production and habitat site on the Moon, but it also found its way to other orbital stations and carriers.
Officially designated FAST Pack V2.1, the S-FAST Pack consisted of the standard pair of dorsal rocket boosters plus the pallets with additional maneuvering jets, sensors and weapons. The S-FAST pack added another pair of P&W+EF-2001 boosters under the inner wings, having the duty to give to fighter the power necessary to exit easily from the gravity of moons or little planets without atmosphere, and improve acceleration during combat situations. Range was also further extended, together with additional life support systems for prolonged deep space operations, or the case of emergency.
In order to accept the S-FAST pack and exploit its potential, the VF-1’s wings and inner wing attachment points had to be strengthened due to the additional load and propulsion. The use of the S-FAST pack also precluded the fighter from transforming into Battroid or Gerwalk mode – the underwing packs had to be jettisoned beforehand. The other standard FAST Pack 2.0 elements could still be carried, though.
The modfied Valkyries capable of accepting the S-FAST Pack received an additional “S” to their type designation – more than 100 VF-1s were converted or built in this deep space configuration until late 2011. Initial deployment of the S-FAST Pack was conducted through SVF-24 “Moon Shadows” in early 2010, a unit that was quickly disbanded, though, but re-formed as SVF-124 “Moon Shooters”, tasked with the defense of the lunar Apollo Base and several special missions.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)
However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
General characteristics:
All-environment variable fighter and tactical combat Battroid,
used by U.N. Spacy, U.N. Navy, U.N. Space Air Force
Accommodation:
Pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design Features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min
4x underwing hard points for a wide variety of ordnance, including
12x AMM-1 hybrid guided multipurpose missiles (3/point), or
12x MK-82 LDGB conventional bombs (3/point), or
6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or
4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,
or a combination of above load-outs
The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:
6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rear-ward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)
4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod
The kit and its assembly:
This VF-1 is another contribution to the “Old Kit” Group Build at whatifmodelers.com, running in late 2016. I am not certain about the moulds’ inception date, but since it is an ARII incarnation of this type of kit and even moulded in the early pastel green styrene, I’d think that it was produced in 1982 or 83.
Anyway, I love the Macross VF-1, IMHO a design masterpiece created by Shoji Kawamori and one of my favorite mecha designs ever, because it was created as a late 70ies style jet fighter that could transform into a robot in a secondary role. As a simple, purposeful military vehicle. And not like a flashy robot toy.
Effectively, this Super Valkyrie is a highly modified OOB kit with many donation parts, and this kit is a bit special, for several reasons. There are several 1:100 OOB kits with FAST Packs from ARII/Bandai available (and still around today), but these are normally only Battroids or Gerwalks with additional parts for the FAST kit conversion. The kit I used here is different: it is, after maybe 25 years of searching and building these kits, the #70 from the original production run. It is (so far!) the only Fighter mode kit with the additional FAST Pack parts! Must be rare, and I have never seen it in catalogues?
Until today, I converted my Super or Strike Valkyries from Gerwalk kits, a task that needs some improvisation esp. around the folded arms between the legs, and there’s no OOB option for an extended landing gear. The latter made this Fighter mode kit very attractive, even though the actual kit is pretty disappointing, and AFAIK this kit variant is only available as a VF-1S.
With the Super Valkyrie fighter kit you receive basically a Gerwalk with a standard fighter cockpit (which includes a front wheel well and an extended front wheel leg), plus extra parts. The leg/engine-mounted NP-FB-01 systems are less bulbous than the parts on the Gerwalk or Battroid kit, and the OOB dorsally mounted NP-BP-01 boosters are TINY, maybe 1:120 or even 1:144! WTF?
Further confusion: the kit includes a set of lower arm parts with integrated rocket launchers, but these are not necessary at all for the Fighter build?! As a kind of compensation there’s a new and exclusive element that simulates the folded arms under the ‘fuselage’ and which, as an added value, properly holds the hand gun under the fuselage. As a quirky flaw, though, the hand gun itself comes in the extended form for the Battroid/Gerwalk mode. For the fighter in flight mode, it has to be modified, but that’s easily done.
Anyway, with the potential option to build a Super Valkyrie with an extended landing gear, this was my route to go with this vintage kit. The Super Valkyrie already looks bulky with the FAST Pack added, but then I recently found the S-FAST Pack option with two more boosters under the wings – total overkill, but unique. And I had a spare pair of booster bulks in the stash (w/o their nozzles, though), as well as a complete pair of additional bigger standard FAST boosters that could replace the ridiculous OOB parts…
Building such a Super/Strike Valkyrie means building separate components, with a marriage of parts as one of the final steps. Consequently, cockpit, central fuselage with the wings and the air intakes, the folded stabilizer pack, the folded arms element with the handgun, the two legs and the four boosters plus other ordnance had to be built and painted separately.
Here and there, details were changed or added, e. g. a different head (a ‘J’ head for the flight leader’s aircraft with two instead of the rare, OOB ‘S’ variant with four laser cannon), covers for the main landing gear (the latter does not come with wells at all, but I did not scratch them since they are hardly recognizable when the kit is sitting on the ground), the typical blade aerials under the cockpit and the feet had to be modified internally to become truly ‘open’ jet exhausts.
The wing-mounted boosters received new nozzles and their front end was re-sculpted with 2C putty into a square shape, according to reference sketches. Not 100% exact, but the rest of the VF-1 isn’t either.
This VF-1 was also supposed to carry external ordnance and my first choice were four wing-mounted RMS-1 Anti-Ship Reaction Warheads, scratched from four 1.000 lb NATO bombs. But, once finished, I was not happy with them. So I looked for another option, and in a source book I found several laser-guided bombs and missiles, also for orbital use, and from this inspiration comes the final ordnance: four rocket-propelled kinetic impact projectiles. These are actually 1:72 JASDF LGB’s from a Hasegawa weapon set, sans aerodynamic steering surfaces and with rocket boosters added to the tail. Also not perfect, but their white color and sleek shape is a good counterpart to the FAST elements.
Experience from many former builds of this mecha kit family helped a lot, since the #70 kit is very basic and nothing really fits well. Even though there are not many major seams or large elements, PSR work was considerable. This is not a pleasant build, rather a fight with a lot of compromises and semi-accuracies.
Seriously, if you want a decent 1:100 VF-1, I’d rather recommend the much more modern WAVE kits (including more realistic proportions).
Painting and markings:
The paint scheme for this Super Valkyrie was settled upon before I considered the S-FAST Pack addition: U.N. Spacy’s SVF-124 is authentic, as well as its unique camouflage paint scheme.
The latter is a special scheme for the lunar environment where the unit was originally formed and based, with all-black undersides, a high, wavy waterline and a light grey upper surface, plus some medium grey trim and a few colorful US Navy style markings and codes.
My core reference is a ‘naked’ bread-and-butter VF-1A of SVF-124 in Fighter mode, depicted as a profile in a VF-1 source book from SoftBank Publishing. The colors for the FAST Pack elements are guesstimates and personal interpretations, though, since I could not find any reference for their look in this unit.
As a side note, another, later SVF-124 aircraft in a similar design is included as an option in a limited edition 1:72 VF-22S kit from Hasegawa, which is backed by CG pics in a VF-22 source book from Softbank, too.
Furthermore, SVF-124 finds mention in a Japanese modeler magazine, where the aforementioned VF-22S kit was presented in 2008. So there must be something behind the ‘Moon Shooters’ squadron.
According to the Hasegawa VF-22S’s painting instructions, the underside becomes black and the upper surfaces are to be painted with FS36270 (with some darker fields on the VF-22, though, similar to the USAF F-15 counter-shaded air superiority scheme, just a tad darker).
Due to the 1:100 scale tininess of my VF-1, I alternatively went for Revell 75 (RAL 7039), which is lighter and also has a brownish hue, so that the resulting aircraft would not look too cold and murky, and not resemble an USAF aircraft.
All FAST Pack elements were painted in a uniform dark grey (Humbrol 32), while some subtle decorative trim on the upper surfaces, e.g. the canopy frame, an anti-glare panel and a stripe behind the cockpit and decoration trim on the wings’ upper surfaces, was added with Revell 77 (RAL 7012). Overall, colors are rather dull, but IMHO very effective in the “landscape” this machine is supposed to operate, and the few colorful markings stand out even more!
The cockpit interior was painted in a bluish grey, with reddish brown seat cushions (late 70ies style!), and the landing gear became all white. For some added detail I painted the wings’ leading edges in a mustard tone (Humbrol 225, Mid Stone).
The kit received some weathering (black ink wash, drybrushing on panels) and extra treatment of the panel lines – even though the FAST Pack elements hide a lot of surface or obscure view.
More color and individuality came with the markings. The standard decals like stencils or the U.N. Spacy insignia come from the kit’s and some other VF-1s’ OOB sheets.
Based on the SVF-124 VF-1 profile and taking the basic design a bit further, I used dull red USAF 45° digits for the 2nd flight leader’s “200” modex and the Apollo Base’s code “MA” on the dorsal boosters. Some discreet red trim was also applied to the FAST Packs – but only a little.
Since all of SVF-124’s aircraft are rumored to carry personal markings, including nose art and similar decorations, I tried to give this VF-1JS a personal note: the pin-up badges on the dorsal boosters come from a Peddinghouse decal sheet for Allied WWII tanks, placed on a silver roundel base. Unfortunately (and not visible before I applied them) the pin-up decal was not printed on a white basis, so that the contrast on the silver is not very strong, but I left it that way. Additionally, the tagline “You’re a$$ next, Jerry” (which IS printed in opaque white…?) was added next to the artwork – but it’s so tiny that you have to get really close to decipher it at all…
Finally, after some soot stains around the exhausts and some vernier nozzels with graphite, the kit received a coat of matt acrylic varnish.
Building this vintage VF-1 kit took a while and a lot of effort, but I like the result: with the S-FAST Pack, the elegant VF-1 turned into a massive space fighter hulk! The normal Super Valkyries already look very compact and purposeful, but this here is truly menacing. Especially when standing on its own feet/landing gear, with its nose-down stance and the small, original wheels, this thing reminds of a Space Shuttle that had just landed.
Good that I recently built a simple VF-1 fighter as a warm-up session. ARII’s kit #70 is not a pleasant build, rather a fight with the elements and coupled with a lot of compromises – if you want a Super Valkyrie Fighter in 1:100, the much more modern WAVE kit is IMHO the better option (and actually not much more pricey than this vintage collector’s item). But for the vintage feeling, this exotic model kit was just the right ticket, and it turned, despite many weaknesses and rather corny details, into an impressive fighter. Esp. the lunar camouflage scheme looks odd, but very unique and purposeful.
Anyway, with so many inherent flaws of the ARII kit, my former method of converting a pure (and much more common) Gerwalk kit into a space-capable VF-1 fighter is not less challenging and complicated than trying to fix this OOB option into a decent model. :-/
Sunderland Museum and Winter Gardens is a municipal museum in Sunderland, England. It contains the only known British example of a gliding reptile, the oldest known vertebrate capable of gliding flight. The exhibit was discovered in Eppleton quarry. The museum has a Designated Collection of national importance.
My Daddy Wears one of These, a teacher (himself blind) at Sunderland Council Blind School teaches a blind child the shape of First World War helmets through handling them. Beginning in 1913, John Alfred Charlton Deas, a former curator at Sunderland Museum, organised several handling sessions for the blind. This included an invitation to the school to handle some of the museum collection, which was 'eagerly accepted'.
It was established in 1846, in the Athenaeum Building on Fawcett Street, the first municipally funded museum in the country outside London. The first recorded fine art acquisition was commissioned by the Sunderland Corporation, a painting of the opening of the new South Dock in 1850. This may have been the first time that an artwork was commissioned by a town council.
In 1879, the Museum moved to a new larger building next to Mowbray Park including a library and winter garden based on the model of the Crystal Palace. U.S. President Ulysses Grant was in attendance at the laying of the foundation stone by Alderman Samuel Storey in 1877. The building opened in 1879.
During World War II, Winter Garden was damaged by a parachute mine in 1941 and demolished the following year. A 1960s extension took its place, but in 2001, a lottery funded refurbishment of the museum created a new Winter Garden extension and improved facilities.
The Winter Gardens contain over 2,000 flowers and plants.
In 2003, the Museum was recognised as the most attended outside London.
The Museum contains a large collection of the locally made Sunderland Lustreware pottery. Other highlights of the Museum are a stuffed Lion which was acquired in 1879, the remains of a walrus brought back from Siberia in the 1880s and the first Nissan car to be made in Sunderland. Also featured are the skeletal remains of a male human being and a dinosaur bone which was found in the local area.
The library moved in 1995 to the new City Library and Arts Centre on Fawcett Street (occupying part of the former Binns Department Store). The relocation left more space for museum exhibitions. The new City Library Arts Centre also houses the Northern Gallery for Contemporary Art, renowned as one of the leading forums for emerging artists in the North of England.
John Morrison wrote an affectionate memoir of the two and a half years he spent working in the museum as a junior curator, starting about 1918, which appeared in the Australian literary journal Overland in 1968.
L.S. Lowry described his discovery of Sunderland in 1960, after which it became his second home: "One day I was travelling south from Tyneside and I realised this was what I had always been looking for."
Sunderland Museum, with six works and 30 on long-term loan, have a Lowry collection surpassed only by Salford and Manchester.
Sunderland is a port city in Tyne and Wear, England. It is located at the mouth of the River Wear on the North Sea, approximately 10 miles (16 km) south-east of Newcastle upon Tyne. The city has a population of 347000, making it the largest settlement in the North East of England. It is the administrative centre of the metropolitan borough of the same name.
The centre of the modern city is an amalgamation of three settlements founded in the Anglo-Saxon era: Monkwearmouth, on the north bank of the Wear, and Sunderland and Bishopwearmouth on the south bank. Monkwearmouth contains St Peter's Church, which was founded in 674 and formed part of Monkwearmouth–Jarrow Abbey, a significant centre of learning in the seventh and eighth centuries. Sunderland was a fishing settlement and later a port, being granted a town charter in 1179. The city traded in coal and salt, also developing shipbuilding industry in the fourteenth century and glassmaking industry in the seventeenth century. Following the decline of its traditional industries in the late 20th century, the area became an automotive building centre. In 1992, the borough of Sunderland was granted city status. It is historically part of County Durham.
Locals from the city are sometimes known as Mackems, a term which came into common use in the 1970s. ; its use and acceptance by residents, particularly among the older generations, is not universal. The term is also applied to the Sunderland dialect, which shares similarities with the other North East England dialects.
In 685, King Ecgfrith granted Benedict Biscop a "sunder-land". Also in 685 The Venerable Bede moved to the newly founded Jarrow monastery. He had started his monastic career at Monkwearmouth monastery and later wrote that he was "ácenned on sundorlande þæs ylcan mynstres" (born in a separate land of this same monastery). This can be taken as "sundorlande" (being Old English for "separate land") or the settlement of Sunderland. Alternatively, it is possible that Sunderland was later named in honour of Bede's connections to the area by people familiar with this statement of his.
The earliest inhabitants of the Sunderland area were Stone Age hunter-gatherers and artifacts from this era have been discovered, including microliths found during excavations at St Peter's Church, Monkwearmouth. During the final phase of the Stone Age, the Neolithic period (c. 4000 – c. 2000 BC), Hastings Hill, on the western outskirts of Sunderland, was a focal point of activity and a place of burial and ritual significance. Evidence includes the former presence of a cursus monument.
It is believed the Brigantes inhabited the area around the River Wear in the pre- and post-Roman era. There is a long-standing local legend that there was a Roman settlement on the south bank of the River Wear on what is the site of the former Vaux Brewery, although no archaeological investigation has taken place.
In March 2021, a "trove" of Roman artefacts were recovered in the River Wear at North Hylton, including four stone anchors, a discovery of huge significance that may affirm a persistent theory of a Roman Dam or Port existing at the River Wear.
Recorded settlements at the mouth of the Wear date to 674, when an Anglo-Saxon nobleman, Benedict Biscop, granted land by King Ecgfrith of Northumbria, founded the Wearmouth–Jarrow (St Peter's) monastery on the north bank of the river—an area that became known as Monkwearmouth. Biscop's monastery was the first built of stone in Northumbria. He employed glaziers from France and in doing he re-established glass making in Britain. In 686 the community was taken over by Ceolfrid, and Wearmouth–Jarrow became a major centre of learning and knowledge in Anglo-Saxon England with a library of around 300 volumes.
The Codex Amiatinus, described by White as the 'finest book in the world', was created at the monastery and was likely worked on by Bede, who was born at Wearmouth in 673. This is one of the oldest monasteries still standing in England. While at the monastery, Bede completed the Historia ecclesiastica gentis Anglorum (The Ecclesiastical History of the English People) in 731, a feat which earned him the title The father of English history.
In the late 8th century the Vikings raided the coast, and by the middle of the 9th century the monastery had been abandoned. Lands on the south side of the river were granted to the Bishop of Durham by Athelstan of England in 930; these became known as Bishopwearmouth and included settlements such as Ryhope which fall within the modern boundary of Sunderland.
Medieval developments after the Norman conquest
In 1100, Bishopwearmouth parish included a fishing village at the southern mouth of the river (now the East End) known as 'Soender-land' (which evolved into 'Sunderland'). This settlement was granted a charter in 1179 by Hugh Pudsey, then the Bishop of Durham (who had quasi-monarchical power within the County Palatine); the charter gave its merchants the same rights as those of Newcastle-upon-Tyne, but it nevertheless took time for Sunderland to develop as a port. Fishing was the main commercial activity at the time: mainly herring in the 13th century, then salmon in the 14th and 15th centuries. From 1346 ships were being built at Wearmouth, by a merchant named Thomas Menville, and by 1396 a small amount of coal was being exported.
Rapid growth of the port was initially prompted by the salt trade. Salt exports from Sunderland are recorded from as early as the 13th century, but in 1589 salt pans were laid at Bishopwearmouth Panns (the modern-day name of the area the pans occupied is Pann's Bank, on the river bank between the city centre and the East End). Large vats of seawater were heated using coal; as the water evaporated, the salt remained. As coal was required to heat the salt pans, a coal mining community began to emerge. Only poor-quality coal was used in salt panning; better-quality coal was traded via the port, which subsequently began to grow.
Both salt and coal continued to be exported through the 17th century, but the coal trade grew significantly (2–3,000 tons of coal were exported from Sunderland in the year 1600; by 1680 this had increased to 180,000 tons).[18] Because of the difficulty for colliers trying to navigate the shallow waters of the Wear, coal mined further inland was loaded onto keels (large, flat-bottomed boats) and taken downriver to the waiting colliers. The keels were manned by a close-knit group of workers known as 'keelmen'.
In 1634 a charter was granted by Bishop Thomas Morton, which incorporated the inhabitants of the 'antient borough' of Sunderland as the 'Mayor, Aldermen and Commonality' of the Borough and granted the privilege of a market and an annual fair. While as a consequence a mayor and twelve aldermen were appointed and a common council established, their establishment does not seem to have survived the ensuing Civil War.
Before the 1st English civil war the North, with the exclusion of Kingston upon Hull, declared for the King. In 1644 the North was captured by parliament. The villages that later become Sunderland, were taken in March 1644. One artifact of the English civil war near this area was the long trench; a tactic of later warfare. In the village of Offerton roughly three miles inland from the area, skirmishes occurred. Parliament also blockaded the River Tyne, crippling the Newcastle coal trade which allowed the coal trade of the area to flourish for a short period. There was intense rivalry between the ports of Sunderland and Newcastle when the two towns took opposing sides in the Civil War.
In 1669, after the Restoration, King Charles II granted letters patent to one Edward Andrew, Esq. to 'build a pier and erect a lighthouse or lighthouses and cleanse the harbour of Sunderland', and authorised the levying of a tonnage duty on shipping in order to raise the necessary funds; however it took time before these improvements were realized.
There is evidence of a growing number of shipbuilders or boatbuilders being active on the River Wear in the late 17th century: among others, the banking family Goodchilds opened a building yard in 1672 (it eventually closed when the bank went out of business in 1821); and in 1691 one Thomas Burn aged 17 is recorded as having taken over the running of a yard from his mother.
The River Wear Commission was formed in 1717 in response to the growing prosperity of Sunderland as a port. Under the Board of Commissioners (a committee of local land owners, ship owners, colliery owners and merchants) a succession of civil engineers adapted the natural riverscape to meet the needs of maritime trade and shipbuilding. Their first major harbour work was the construction in stone of the South Pier (later known as the Old South Pier), begun in 1723 with the aim of diverting the river channel away from sandbanks; the building of the South Pier continued until 1759. By 1748 the river was being manually dredged. A northern counterpart to the South Pier was not yet in place; instead, a temporary breakwater was formed at around this time, consisting of a row of piles driven into the seabed interspersed with old keelboats. From 1786 work began on a more permanent North Pier (which was later known as the Old North Pier): it was formed from a wooden frame, filled with stones and faced with masonry, and eventually extended 1,500 ft (460 m) into the sea. The work was initially overseen by Robert Stout (the Wear Commissioners' Engineer from 1781 to 1795). In 1794 a lighthouse was built at the seaward end, by which time around half the pier had been enclosed in masonry; it was completed in 1802.
By the start of the 18th century the banks of the Wear were described as being studded with small shipyards, as far as the tide flowed. After 1717, measures having been taken to increase the depth of the river, Sunderland's shipbuilding trade grew substantially (in parallel with its coal exports). A number of warships were built, alongside many commercial sailing ships. By the middle of the century the town was probably the premier shipbuilding centre in Britain. By 1788 Sunderland was Britain's fourth largest port (by measure of tonnage) after London, Newcastle and Liverpool; among these it was the leading coal exporter (though it did not rival Newcastle in terms of home coal trade). Still further growth was driven across the region, towards the end of the century, by London's insatiable demand for coal during the French Revolutionary Wars.
Sunderland's third-biggest export, after coal and salt, was glass. The town's first modern glassworks were established in the 1690s and the industry grew through the 17th century. Its flourishing was aided by trading ships bringing good-quality sand (as ballast) from the Baltic and elsewhere which, together with locally available limestone (and coal to fire the furnaces) was a key ingredient in the glassmaking process. Other industries that developed alongside the river included lime burning and pottery making (the town's first commercial pottery manufactory, the Garrison Pottery, had opened in old Sunderland in 1750).
The world's first steam dredger was built in Sunderland in 1796-7 and put to work on the river the following year. Designed by Stout's successor as Engineer, Jonathan Pickernell jr (in post from 1795 to 1804), it consisted of a set of 'bag and spoon' dredgers driven by a tailor-made 4-horsepower Boulton & Watt beam engine. It was designed to dredge to a maximum depth of 10 ft (3.0 m) below the waterline and remained in operation until 1804, when its constituent parts were sold as separate lots. Onshore, numerous small industries supported the business of the burgeoning port. In 1797 the world's first patent ropery (producing machine-made rope, rather than using a ropewalk) was built in Sunderland, using a steam-powered hemp-spinning machine which had been devised by a local schoolmaster, Richard Fothergill, in 1793; the ropery building still stands, in the Deptford area of the city.
In 1719, the parish of Sunderland was carved from the densely populated east end of Bishopwearmouth by the establishment of a new parish church, Holy Trinity Church, Sunderland (today also known as Sunderland Old Parish Church). Later, in 1769, St John's Church was built as a chapel of ease within Holy Trinity parish; built by a local coal fitter, John Thornhill, it stood in Prospect Row to the north-east of the parish church. (St John's was demolished in 1972.) By 1720 the port area was completely built up, with large houses and gardens facing the Town Moor and the sea, and labourers' dwellings vying with manufactories alongside the river. The three original settlements of Wearmouth (Bishopwearmouth, Monkwearmouth and Sunderland) had begun to combine, driven by the success of the port of Sunderland and salt panning and shipbuilding along the banks of the river. Around this time, Sunderland was known as 'Sunderland-near-the-Sea'.
By 1770 Sunderland had spread westwards along its High Street to join up with Bishopwearmouth. In 1796 Bishopwearmouth in turn gained a physical link with Monkwearmouth following the construction of a bridge, the Wearmouth Bridge, which was the world's second iron bridge (after the famous span at Ironbridge). It was built at the instigation of Rowland Burdon, the Member of Parliament (MP) for County Durham, and described by Nikolaus Pevsner as being 'a triumph of the new metallurgy and engineering ingenuity [...] of superb elegance'. Spanning the river in a single sweep of 236 feet (72 m), it was over twice the length of the earlier bridge at Ironbridge but only three-quarters the weight. At the time of building, it was the biggest single-span bridge in the world; and because Sunderland had developed on a plateau above the river, it never suffered from the problem of interrupting the passage of high-masted vessels.
During the War of Jenkins' Ear a pair of gun batteries were built (in 1742 and 1745) on the shoreline to the south of the South Pier, to defend the river from attack (a further battery was built on the cliff top in Roker, ten years later). One of the pair was washed away by the sea in 1780, but the other was expanded during the French Revolutionary Wars and became known as the Black Cat Battery. In 1794 Sunderland Barracks were built, behind the battery, close to what was then the tip of the headland.
In 1802 a new, 72 ft (22 m) high octagonal stone lighthouse was built on the end of the newly finished North Pier, designed by the chief Engineer Jonathan Pickernell. At the same time he built a lighthouse on the South Pier, which showed a red light (or by day a red flag) when the tide was high enough for ships to pass into the river. From 1820 Pickernell's lighthouse was lit by gas from its own gasometer. In 1840 work began to extend the North Pier to 1,770 ft (540 m) and the following year its lighthouse was moved in one piece, on a wooden cradle, to its new seaward end, remaining lit each night throughout the process.
In 1809 an Act of Parliament was passed creating an Improvement Commission, for 'paving, lighting, cleansing, watching and otherwise improving the town of Sunderland'; this provided the beginnings of a structure of local government for the township as a whole. Commissioners were appointed, with the power to levy contributions towards the works detailed in the Act, and in 1812–14 the Exchange Building was built, funded by public subscription, to serve as a combined Town Hall, Watch House, Market Hall, Magistrate's Court, Post Office and News Room. It became a regular gathering place for merchants conducting business, and the public rooms on the first floor were available for public functions when not being used for meetings of the Commissioners. By 1830 the Commissioners had made a number of improvements, ranging from the establishment of a police force to installing gas lighting across much of the town.
In other aspects, however, Local government was still divided between the three parishes (Holy Trinity Church, Sunderland, St Michael's, Bishopwearmouth, and St Peter's Church, Monkwearmouth) and when cholera broke out in 1831 their select vestrymen were unable to cope with the epidemic. Sunderland, a main trading port at the time, was the first British town to be struck with the 'Indian cholera' epidemic. The first victim, William Sproat, died on 23 October 1831. Sunderland was put into quarantine, and the port was blockaded, but in December of that year the disease spread to Gateshead and from there, it rapidly made its way across the country, killing an estimated 32,000 people; among those to die was Sunderland's Naval hero Jack Crawford. (The novel The Dress Lodger by American author Sheri Holman is set in Sunderland during the epidemic.)
Demands for democracy and organised town government saw the three parishes incorporated as the Borough of Sunderland in 1835. Later, the Sunderland Borough Act of 1851 abolished the Improvement Commission and vested its powers in the new Corporation.
In the early nineteenth century 'the three great proprietors of collieries upon the Wear Lord Durham, the Marquis of Londonderry and the Hetton Company'. In 1822 the Hetton colliery railway was opened, linking the company's collieries with staiths ('Hetton Staiths') on the riverside at Bishopwearmouth, where coal drops delivered the coal directly into waiting ships. Engineered by George Stephenson, it was the first railway in the world to be operated without animal power, and at the time (albeit briefly) was the longest railway in the world. At the same time Lord Durham began establishing rail links to an adjacent set of staiths ('Lambton Staiths'). Lord Londonderry, on the other hand, continued conveying his coal downriver on keels; but he was working on establishing his own separate port down the coast at Seaham Harbour.
Although the volume of coal exports were increasing, there was a growing concern that without the establishment of a purpose-built dock Sunderland would start losing trade to Newcastle and Hartlepool. The colliery rail links were on the south side of the river, but Sir Hedworth Williamson, who owned much of the land on the north bank, seized the initiative. He formed the Wearmouth Dock Company in 1832, obtained a Royal Charter for establishing a dock at Monkwearmouth riverside, and engaged no less a figure than Isambard Kingdom Brunel to provide designs (not only for docks but also for a double-deck suspension bridge to provide a rail link to the opposite side of the river). Building of the dock went ahead (albeit the smallest of Brunel's proposals) but not of the bridge; the resulting North Dock, opened in 1837, soon proved too small at 6 acres (2.4 ha), and it suffered through lack of a direct rail link to the colliery lines south of the Wear (instead, it would be linked, by way of the Brandling Junction Railway from 1839, to collieries in the Gateshead area).
Also in Monkwearmouth, further upstream, work began in 1826 on sinking a pit in the hope of reaching the seams of coal (even though, at this location, they were deep underground). Seven years later, coal was struck at 180 fathoms; digging deeper, the Bensham seam was found the following year at 267 fathoms and in 1835 Wearmouth Colliery, which was then the deepest mine in the world, began producing coal. When the superior Hutton seam was reached, at a still greater depth in 1846, the mine (which had begun as a speculative enterprise by Messrs Pemberton and Thompson) began to be profitable.
Meanwhile, south of the river, the Durham & Sunderland Railway Co. built a railway line across the Town Moor and established a passenger terminus there in 1836. In 1847 the line was bought by George Hudson's York and Newcastle Railway. Hudson, nicknamed 'The Railway King', was Member of Parliament for Sunderland and was already involved in a scheme to build a dock in the area. In 1846 he had formed the Sunderland Dock Company, which received parliamentary approval for the construction of a dock between the South Pier and Hendon Bay. The engineer overseeing the project was John Murray; the foundation stone for the entrance basin was laid in February 1848, and by the end of the year excavation of the new dock was largely complete, the spoil being used in the associated land reclamation works. Lined with limestone and entered from the river by way of a half tide basin, the dock (later named Hudson Dock) was formally opened by Hudson on 20 June 1850. Most of the dockside to the west was occupied with coal staiths linked to the railway line, but there was also a warehouse and granary built at the northern end by John Dobson in 1856 (this, along with a second warehouse dating from the 1860s, was demolished in 1992).
In 1850–56 a half-tidal sea-entrance was constructed at the south-east corner of the dock, protected by a pair of breakwaters, to allow larger ships to enter the dock direct from the North Sea. At the same time (1853–55) Hudson Dock itself was extended southwards and deepened, and, alongside the entrance basin to the north, the first of a pair of public graving docks was built. In 1854 the Londonderry, Seaham & Sunderland Railway opened, linking the Londonderry and South Hetton collieries to a separate set of staiths at Hudson Dock South. It also provided a passenger service from Sunderland to Seaham Harbour.
In 1859 the docks were purchased by the River Wear Commissioners. Under Thomas Meik as engineer the docks were further extended with the construction of Hendon Dock to the south (1864–67). (Hendon Dock was entered via Hudson Dock South, but in 1870 it too was provided with a half-tidal sea-entrance providing direct access from the North Sea.) Under Meik's successor, Henry Hay Wake, Hudson Dock was further enlarged and the entrances were improved: in 1875 lock gates were installed (along with a swing bridge) at the river entrance, to allow entry at all states of the tide; they were powered by hydraulic machinery, installed by Sir William Armstrong in the adjacent dock office building. Similarly, a new sea lock was constructed at the south-east entrance in 1877–80. The breakwater (known as the 'Northeast Pier') which protected the sea entrance to the docks was provided with a lighthouse (29 ft (8.8 m) high and of lattice construction, since demolished) which Chance Brothers equipped with a fifth-order optic and clockwork occulting mechanism in 1888; it displayed a sector light: white indicating the fairway and red indicating submerged hazards.
By 1889 two million tons of coal per year was passing through the dock. The eastern wharves, opposite the coal staiths, were mainly occupied by saw mills and timber yards, with large open spaces given over to the storage of pit props for use in the mines; while to the south of Hendon Dock, the Wear Fuel Works distilled coal tar to produce pitch, oil and other products.
After completion of the dock works, H. H. Wake embarked on the construction of Roker Pier (part of a scheme to protect the river approach by creating an outer harbour). Protection of a different kind was provided by the Wave Basin Battery, armed with four RML 80 pounder 5 ton guns, constructed just inside the Old South Pier in 1874.
Increasing industrialisation had prompted affluent residents to move away from the old port area, with several settling in the suburban terraces of the Fawcett Estate and Mowbray Park. The area around Fawcett Street itself increasingly functioned as the civic and commercial town centre. In 1848 George Hudson's York, Newcastle and Berwick Railway built a passenger terminus, Monkwearmouth Station, just north of Wearmouth Bridge; and south of the river another passenger terminus, in Fawcett Street, in 1853. Later, Thomas Elliot Harrison (chief engineer to the North Eastern Railway) made plans to carry the railway across the river; the Wearmouth Railway Bridge (reputedly 'the largest Hog-Back iron girder bridge in the world') opened in 1879. In 1886–90 Sunderland Town Hall was built in Fawcett Street, just to the east of the railway station, to a design by Brightwen Binyon.
Sunderland's shipbuilding industry continued to grow through most of the 19th century, becoming the town's dominant industry and a defining part of its identity. By 1815 it was 'the leading shipbuilding port for wooden trading vessels' with 600 ships constructed that year across 31 different yards. By 1840 the town had 76 shipyards and between 1820 and 1850 the number of ships being built on the Wear increased fivefold. From 1846 to 1854 almost a third of the UK's ships were built in Sunderland, and in 1850 the Sunderland Herald proclaimed the town to be the greatest shipbuilding port in the world.
During the century the size of ships being built increased and technologies evolved: in 1852 the first iron ship was launched on Wearside, built by marine engineer George Clark in partnership with shipbuilder John Barkes. Thirty years later Sunderland's ships were being built in steel (the last wooden ship having been launched in 1880). As the century progressed, the shipyards on the Wear decreased in number on the one hand, but increased in size on the other, so as to accommodate the increasing scale and complexity of ships being built.
Shipyards founded in the 19th century, and still operational in the 20th, included:
Sir James Laing & Sons (established by Philip Laing at Deptford in 1818, renamed Sir James Laing & sons in 1898)
S. P. Austin (established in 1826 at Monkwearmouth, moving across the river to a site alongside Wearmouth Bridge in 1866)
Bartram & Sons (established at Hylton in 1837, moved to South Dock in 1871)
William Doxford & Sons (established at Cox Green in 1840, moved to Pallion in 1857)
William Pickersgill's (established at Southwick in 1845)
J. L. Thompson & Sons (yard established at North Sands by Robert Thompson in 1846, taken over by his son Joseph in 1860, another son (also Robert) having established his own yard at Southwick in 1854)
John Crown & Sons (yard established at Monkwearmouth by Luke Crown (or Crone) by 1807, taken over by his grandson Jackie in 1854)
Short Brothers (established by George Short in 1850, moved to Pallion in 1866)
Sir J Priestman (established at Southwick in 1882)
Alongside the shipyards, marine engineering works were established from the 1820s onwards, initially providing engines for paddle steamers; in 1845 a ship named Experiment was the first of many to be converted to steam screw propulsion. Demand for steam-powered vessels increased during the Crimean War; nonetheless, sailing ships continued to be built, including fast fully-rigged composite-built clippers, including the City of Adelaide in 1864 and Torrens (the last such vessel ever built), in 1875.
By the middle of the century glassmaking was at its height on Wearside. James Hartley & Co., established in Sunderland in 1836, grew to be the largest glassworks in the country and (having patented an innovative production technique for rolled plate glass) produced much of the glass used in the construction of the Crystal Palace in 1851. A third of all UK-manufactured plate glass was produced at Hartley's by this time. Other manufacturers included the Cornhill Flint Glassworks (established at Southwick in 1865), which went on to specialise in pressed glass, as did the Wear Flint Glassworks (which had originally been established in 1697). In addition to the plate glass and pressed glass manufacturers there were 16 bottle works on the Wear in the 1850s, with the capacity to produce between 60 and 70,000 bottles a day.
Local potteries also flourished in the mid-19th century, again making use of raw materials (white clay and stone) being brought into Sunderland as ballast on ships. Sunderland pottery was exported across Europe, with Sunderland Lustreware proving particularly popular in the home market; however the industry sharply declined later in the century due to foreign competition, and the largest remaining manufacturer (Southwick Pottery) closed in 1897.
Victoria Hall was a large concert hall on Toward Road facing Mowbray Park. The hall was the scene of a tragedy on 16 June 1883 when 183 children died. During a variety show, children rushed towards a staircase for treats. At the bottom of the staircase, the door had been opened inward and bolted in such a way as to leave only a gap wide enough for one child to pass at a time. The children surged down the stairs and those at the front were trapped and crushed by the weight of the crowd behind them.
The asphyxiation of 183 children aged between three and 14 is the worst disaster of its kind in British history. The memorial, a grieving mother holding a dead child, is located in Mowbray Park inside a protective canopy. Newspaper reports triggered a mood of national outrage and an inquiry recommended that public venues be fitted with a minimum number of outward opening emergency exits, which led to the invention of 'push bar' emergency doors. This law remains in force. Victoria Hall remained in use until 1941 when it was destroyed by a German bomb.
The Lyceum was a public building on Lambton Street, opened August 1852, whose many rooms included a Mechanics' Institute and a hall 90 by 40 feet (27 m × 12 m) which Edward D. Davis converted into a theatre, opened September 1854, then was gutted by fire in December the following year. It was refurbished and reopened in September 1856 as the Royal Lyceum Theatre, and is notable as the venue of Henry Irving's first successes. The building was destroyed by fire in 1880 and demolished. The site was later developed for the Salvation Army.
The public transport network was enhanced in 1900 – 1919 with an electric tram system. The trams were gradually replaced by buses during the 1940s before being completely axed in 1954. In 1909 the Queen Alexandra Bridge was built, linking Deptford and Southwick.
The First World War led to a notable increase in shipbuilding but also resulted in the town being targeted by a Zeppelin raid in 1916. The Monkwearmouth area was struck on 1 April 1916 and 22 lives were lost. Many citizens also served in the armed forces during this period, over 25,000 men from a population of 151,000.
In the wake of the First World War, and on through the Great Depression of the 1930s, shipbuilding dramatically declined: the number of shipyards on the Wear went from fifteen in 1921 to six in 1937. The small yards of J. Blumer & Son (at North Dock) and the Sunderland Shipbuilding Co. Ltd. (at Hudson Dock) both closed in the 1920s, and other yards were closed down by National Shipbuilders Securities in the 1930s (including Osbourne, Graham & Co., way upriver at North Hylton, Robert Thompson & Sons at Southwick, and the 'overflow' yards operated by Swan, Hunter & Wigham Richardson and William Gray & Co.).
With the outbreak of World War II in 1939, Sunderland was a key target of the German Luftwaffe, who claimed the lives of 267 people in the town, caused damage or destruction to 4,000 homes, and devastated local industry. After the war, more housing was developed. The town's boundaries expanded in 1967 when neighbouring Ryhope, Silksworth, Herrington, South Hylton and Castletown were incorporated into Sunderland.
During the second half of the 20th century shipbuilding and coalmining declined; shipbuilding ended in 1988 and coalmining in 1993. At the worst of the unemployment crisis up to 20 per cent of the local workforce were unemployed in the mid-1980s.
As the former heavy industries declined, new industries were developed (including electronic, chemical, paper and motor manufacture) and the service sector expanded during the 1980s and 1990s. In 1986 Japanese car manufacturer Nissan opened its Nissan Motor Manufacturing UK factory in Washington, which has since become the UK's largest car factory.
From 1990, the banks of the Wear were regenerated with the creation of housing, retail parks and business centres on former shipbuilding sites. Alongside the creation of the National Glass Centre the University of Sunderland has built a new campus on the St Peter's site. The clearance of the Vaux Breweries site on the north west fringe of the city centre created a further opportunity for development in the city centre.
Sunderland received city status in 1992. Like many cities, Sunderland comprises a number of areas with their own distinct histories, Fulwell, Monkwearmouth, Roker, and Southwick on the northern side of the Wear, and Bishopwearmouth and Hendon to the south. On 24 March 2004, the city adopted Benedict Biscop as its patron saint.
The 20th century saw Sunderland A.F.C. established as the Wearside area's greatest claim to sporting fame. Founded in 1879 as Sunderland and District Teachers A.F.C. by schoolmaster James Allan, Sunderland joined The Football League for the 1890–91 season. By 1936 the club had been league champions on five occasions. They won their first FA Cup in 1937, but their only post-World War II major honour came in 1973 when they won a second FA Cup. They have had a checkered history and dropped into the old third division for a season and been relegated thrice from the Premier League, twice with the lowest points ever, earning the club a reputation as a yo-yo club. After 99 years at the historic Roker Park stadium, the club moved to the 42,000-seat Stadium of Light on the banks of the River Wear in 1997. At the time, it was the largest stadium built by an English football club since the 1920s, and has since been expanded to hold nearly 50,000 seated spectators.
In 2018 Sunderland was ranked as the best city to live and work in the UK by the finance firm OneFamily. In the same year, Sunderland was ranked as one of the top 10 safest cities in the UK.
Many fine old buildings remain despite the bombing that occurred during World War II. Religious buildings include Holy Trinity Church, built in 1719 for an independent Sunderland, St Michael's Church, built as Bishopwearmouth Parish Church and now known as Sunderland Minster and St Peter's Church, Monkwearmouth, part of which dates from AD 674, and was the original monastery. St Andrew's Church, Roker, known as the "Cathedral of the Arts and Crafts Movement", contains work by William Morris, Ernest Gimson and Eric Gill. St Mary's Catholic Church is the earliest surviving Gothic revival church in the city.
Sunderland Civic Centre was designed by Spence Bonnington & Collins and was officially opened by Princess Margaret, Countess of Snowdon in 1970. It closed in November 2021, following the opening of a new City Hall on the former Vaux Brewery redevelopment site.
Tyne and Wear is a ceremonial county in North East England. It borders Northumberland to the north and County Durham to the south, and the largest settlement is the city of Newcastle upon Tyne.
The county is largely urbanised. It had a population of 1.14 million in 2021. After Newcastle (300,125) the largest settlements are the city of Sunderland (170,134), Gateshead (120,046), and South Shields (75,337). Nearly all of the county's settlements belong to either the Tyneside or Wearside conurbations, the latter of which also extends into County Durham. Tyne and Wear contains five metropolitan boroughs: Gateshead, Newcastle upon Tyne, Sunderland, North Tyneside and South Tyneside, and is covered by two combined authorities, North of Tyne and North East. The county was established in 1974 and was historically part of Northumberland and County Durham, with the River Tyne forming the border between the two.
The most notable geographic features of the county are the River Tyne and River Wear, after which it is named and along which its major settlements developed. The county is also notable for its coastline to the North Sea in the east, which is characterised by tall limestone cliffs and wide beaches.
In the late 600s and into the 700s Saint Bede lived as a monk at the monastery of St. Peter and of St. Paul writing histories of the Early Middle Ages including the Ecclesiastical History of the English People.
Roughly 150 years ago, in the village of Marsden in South Shields, Souter Lighthouse was built, the first electric structure of this type.
The Local Government Act 1888 constituted Newcastle upon Tyne, Gateshead and Sunderland as county boroughs (Newcastle had "county corporate" status as the "County and Town of Newcastle upon Tyne" since 1400). Tynemouth joined them in 1904. Between the county boroughs, various other settlements also formed part of the administrative counties of Durham and of Northumberland.
The need to reform local government on Tyneside was recognised by the government as early as 1935, when a Royal Commission to Investigate the Conditions of Local Government on Tyneside was appointed. The three commissioners were to examine the system of local government in the areas of local government north and south of the river Tyne from the sea to the boundary of the Rural District of Castle Ward and Hexham in the County of Northumberland and to the Western boundary of the County of Durham, to consider what changes, if any, should be made in the existing arrangements with a view to securing greater economy and efficiency, and to make recommendations.
The report of the Royal Commission, published in 1937, recommended the establishment of a Regional Council for Northumberland and Tyneside (to be called the "Northumberland Regional Council") to administer services that needed to be exercised over a wide area, with a second tier of smaller units for other local-government purposes. The second-tier units would form by amalgamating the various existing boroughs and districts. The county boroughs in the area would lose their status. Within this area, a single municipality would be formed covering the four county boroughs of Newcastle, Gateshead, Tynemouth, South Shields and other urban districts and boroughs.
A minority report proposed amalgamation of Newcastle, Gateshead, Wallsend, Jarrow, Felling, Gosforth, Hebburn and Newburn into a single "county borough of Newcastle-on-Tyneside". The 1937 proposals never came into operation: local authorities could not agree on a scheme and the legislation of the time did not allow central government to compel one.
Tyneside (excluding Sunderland) was a Special Review Area under the Local Government Act 1958. The Local Government Commission for England came back with a recommendation to create a new county of Tyneside based on the review area, divided into four separate boroughs. This was not implemented. The Redcliffe-Maud Report proposed a Tyneside unitary authority, again excluding Sunderland, which would have set up a separate East Durham unitary authority.
The White Paper that led to the Local Government Act 1972 proposed as "area 2" a metropolitan county including Newcastle and Sunderland, extending as far south down the coast as Seaham and Easington, and bordering "area 4" (which would become Tees Valley). The Bill as presented in November 1971 pruned back the southern edge of the area, and gave it the name "Tyneside". The name "Tyneside" proved controversial on Wearside, and a government amendment changed the name to "Tyne and Wear" at the request of Sunderland County Borough Council.
Tyne and Wear either has or closely borders two official Met Office stations, neither located in one of the major urban centres. The locations for those are in marine Tynemouth where Tyne meets the North Sea east of Newcastle and inland Durham in County Durham around 20 kilometres (12 mi) south-west of Sunderland. There are some clear differences between the stations temperature and precipitation patterns even though both have a cool-summer and mild-winter oceanic climate.
Tyne and Wear contains green belt interspersed throughout the county, mainly on the fringes of the Tyneside/Wearside conurbation. There is also an inter-urban line of belt helping to keep the districts of South Tyneside, Gateshead, and Sunderland separated. It was first drawn up from the 1950s. All the county's districts contain some portion of belt.
Although Tyne and Wear County Council was abolished in 1986, several joint bodies exist to run certain services on a county-wide basis. Most notable is the Tyne and Wear Passenger Transport Authority, which co-ordinates transport policy. Through its passenger transport executive, known as Nexus, it owns and operates the Tyne and Wear Metro light rail system, and the Shields ferry service and the Tyne Tunnel, linking communities on either side of the River Tyne. Also through Nexus, the authority subsidises socially necessary transport services (including taxis) and operates a concessionary fares scheme for the elderly and disabled. Nexus has been an executive body of the North East Joint Transport Committee since November 2018.
Other joint bodies include the Tyne and Wear Fire and Rescue Service and Tyne & Wear Archives & Museums, which was created from the merger of the Tyne and Wear Archives Service and Tyne and Wear Museums. These joint bodies are administered by representatives of all five of the constituent councils. In addition the Northumbria Police force covers Northumberland and Tyne and Wear.
There have been occasional calls for Tyne and Wear to be abolished and the traditional border between Northumberland and County Durham to be restored.
Tyne and Wear is divided into 12 Parliamentary constituencies. Historically, the area has been a Labour stronghold; South Shields is the only Parliamentary constituency that has never returned a Conservative Member of Parliament (MP) to the House of Commons since the Reform Act of 1832.
Newcastle and Sunderland are known for declaring their election results early on election night. Therefore, they frequently give the first indication of nationwide trends. An example of this was at the 2016 European Union referendum. Newcastle was the first large city to declare, and 50.6% of voters voted to Remain; this proportion was far lower than predicted by experts. Sunderland declared soon after and gave a 62% vote to Leave, much higher than expected. These two results were seen as an early sign that the United Kingdom had voted to Leave.
Offshore Group Newcastle make oil platforms. Sage Group, who produce accounting software, are based at Hazlerigg at the northern end of the Newcastle bypass. Northern Rock, which became a bank in 1997 and was taken over by Virgin Money in November 2011, and the Newcastle Building Society are based in Gosforth. The Gosforth-based bakery Greggs now has over 1,500 shops. The Balliol Business Park in Longbenton contains Procter & Gamble research and global business centres and a tax credits call centre for HMRC, and is the former home of Findus UK. The Government National Insurance Contributions Office in Longbenton, demolished and replaced in 2000, had a 1 mile (1.6 km) long corridor.
Be-Ro and the Go-Ahead Group bus company are in central Newcastle. Nestlé use the former Rowntrees chocolate factory on the east of the A1. BAE Systems Land & Armaments in Scotswood, formerly Vickers-Armstrongs, is the main producer of British Army tanks such as the Challenger 2. A Rolls-Royce apprentice training site is next door.[18] Siemens Energy Service Fossil make steam turbines at the CA Parsons Works in South Heaton. Sir Charles Parsons invented the steam turbine in 1884, and developed an important local company. Domestos, a product whose main ingredient is sodium hypochlorite, was originated in Newcastle in 1929 by William Handley, and was distributed from the area for many years.
Clarke Chapman is next to the A167 in Gateshead. The MetroCentre, the largest shopping centre in Europe, is in Dunston. Scottish & Newcastle was the largest UK-owned brewery until it was bought by Heineken and Carlsberg in April 2008, and produced Newcastle Brown Ale at the Newcastle Federation Brewery in Dunston until production moved to Tadcaster in September 2010. At Team Valley are De La Rue, with their largest banknote printing facility, and Myson Radiators, the second largest in the UK market. Petards make surveillance equipment including ANPR cameras, and its Joyce-Loebl division makes electronic warfare systems and countermeasure dispensing systems such as the AN/ALE-47. Sevcon, an international company formed from a part of Smith Electric, is a world leader in electric vehicle controls. AEI Cables and Komatsu UK construction equipment at Birtley.
J. Barbour & Sons make outdoor clothing in Simonside, Jarrow. SAFT Batteries make primary lithium batteries on the Tyne in South Shields. Bellway plc houses is in Seaton Burn in North Tyneside. Cobalt Business Park, the largest office park in the UK, is at Wallsend, on the former site of Atmel, and is the home of North Tyneside Council. Swan Hunter until 2006 made ships in Wallsend, and still designs ships. Soil Machine Dynamics in Wallsend on the Tyne makes Remotely operated underwater vehicles, and its Ultra Trencher 1 is the world's largest submersible robot.
The car dealership Evans Halshaw is in Sunderland. The car factory owned by Nissan Motor Manufacturing UK between North Hylton and Washington is the largest in the UK. Grundfos, the world's leading pump manufacturer, builds pumps in Sunderland. Calsonic Kansei UK, formerly Magna, make automotive instrument panels and car trim at the Pennywell Industrial Estate. Gestamp UK make automotive components. Smith Electric Vehicles originated in Washington. The LG Electronics microwave oven factory opened in 1989, closed in May 2004, and later became the site of the Tanfield Group. Goodyear Dunlop had their only UK car tyre factory next to the Tanfield site until its 2006 closure. BAE Systems Global Combat Systems moved to a new £75 million factory at the former Goodyear site in 2011, where they make large calibre ammunition for tanks and artillery.
The government's child benefit office is in Washington. Liebherr build cranes next to the Wear at Deptford. The outdoor clothing company Berghaus is in Castletown. Vaux Breweries, who owned Swallow Hotels, closed in 1999. ScS Sofas are on Borough Road. There are many call centres in Sunderland, notably EDF Energy at the Doxford International Business Park, which is also the home of the headquarters of the large international transport company Arriva and Nike UK. Rolls-Royce planned to move their production of fan and turbine discs to BAE Systems' new site in 2016.