View allAll Photos Tagged Reduce
equipment: Takahashi FSQ-106ED, Reducer QE 0.73x, and Canon EOS 5Dmk2-sp2, modified by Seo-san on Takahashi EM-200 Temma 2 Jr, autoguided with hiro-design off-axis guider, SX Lodestar, and PHD Guiding
exposure: 4 times x 1 hour, 5 x 15 minutes, 4 x 4 min, and 7 x 1 minute at ISO 1,600 and f/3.6
site: 11,00 feet above sea level near Mauna Loa Observatory in Hawaii
After my little break to Florida, it's back to the regularly scheduled program. Strong winds, blowing snow, and running long hood forward mean reduced visibility for the crew of the RRVW 2053 as they roll west of Olivia with covered hoppers of fertilizer for the co-op in Danube.
Llyn Cynwch,
Dolgellau,
Gwynedd.
TAKEN Sun 14th Nov'21
Staying at Llofft Allan, Ystumgwern Luxury Barn Conversions, Dyffryn, Gwynedd.
The lovely flower was reused—it had fallen out of the planter and The Bear picked it up for me. The sweet little bud vase is also reused, it used to be a mini candle holder.
IR HDR. IR converted Canon 40D. Canon 17-55 F2.8 IS lens. Shot at ISO 100, F16, AEB +/-3 total of 7 exposures processed with Photomatix. Levels adjusted in PSE. Blue and Red color channels swapped with GIMP.
High Dynamic Range (HDR)
High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.
HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.
The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.
Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).
In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).
Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.
In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.
An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.
Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.
Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.
Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range
Tone mapping
Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.
Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include
Adobe Photoshop
Aurora HDR
Dynamic Photo HDR
HDR Efex Pro
HDR PhotoStudio
Luminance HDR
MagicRaw
Oloneo PhotoEngine
Photomatix Pro
PTGui
Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.
HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.
History of HDR photography
The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.
Mid 20th century
Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.
Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.
With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.
Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.
Late 20th century
Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.
In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.
In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.
Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.
In 1993, another commercial medical camera producing an HDR video image, by the Technion.
Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.
On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.
The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.
21st century
In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.
On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.
HDR sensors
Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.
Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.
en.wikipedia.org/wiki/High-dynamic-range_imaging
Infrared Photography
In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)
When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.
The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.
Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.
Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.
Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.
False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.
Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.
Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.
Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.
As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.
Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.
Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.
In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.
There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.
Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.
In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.
Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.
An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.
Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.
While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.
Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.
Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.
Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".
Phase One digital camera backs can be ordered in an infrared modified form.
Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.
Time for a break from the London Underground, with a few photos I mocked up for a good friend, who happens to be a great designer, on his Project Sign initiative - re-imagining the everyday clutter of street signage and instructions into something altogether more positive and uplifting.
He (@KevanWorrall) provided the sign graphics and I provided the situational photos and 'Shopped them into place, providing a mock up of what they will look like if and when they hit the streets.
It has been a really fun project to be a part of and I would really like to see some of these in the wild...
Couple more on my website
...the non-durable goods stock around here.
Still plenty to go, despite the size of the pie.
Pleasant problem though...
"Reduce dai cessi di Messina, dalle casbah di Catania,
così, trascino con me la morte nella vita".
P.P.Pasolini
Kahlúa coffee liqueur, 16% ABV, 70cl, £16.75
Usually 20% ABV, but reduced strength now in UK & Canada.
Originally 26.5% ABV, but Kahlúa Especial available at 36% ABV.
Produced in Veracruz, Mexico for:
Pernod Ricard UK Ltd, Chiswick, London.
Pernod Ricard SA, Paris.
M&S coffee liqueur, 16% ABV, 70cl, £15.00
Produced and bottled in France for M&S.
www.marksandspencer.com/food/coffee-liqueur/p/fdp60708031
Tesco coffee liqueur, 20% ABV, 70cl, £8.75
Produced and bottled in the UK for Tesco.
www.tesco.com/groceries/en-GB/products/293073568?srsltid=...
Trying all three neat, the Kahlúa had a slightly smoother taste, but used in a cocktail or over ice cream you wouldn't notice any difference. The Tesco being around half the price seems a bargain.
_MX73362p
All Rights Reserved © 2026 Frederick Roll
Please do not use this image without prior permission
Abstract from the Chronicles of the Old Earth:
« In the year 2305 and asteroid is discovered in a collision course with Earth. Every State on the planet agreed to move the population to other places like Mars, the Moon, or the recent Terranova base at the Alpha Centauri B system. The evacuation of the planet was peremptory if the quasi extinction of the human race was to be avoided. Two decades afterwards, the asteroid is just upon the Earth, but reduces its velocity drastically, until impacting on the province of Badajoz (Spain), in the European continent. The great crater becomes a tourist attraction, and many of the exiles return to their homes to resume a life they began to yearn. »
« In 2335, millions of insectoid looking bugs emerge from the depths of the Earth. Like a guided panspermia, the Earth is colonized by creatures that annihilate without pity any living being. The fight is fierce and brutal, the 1st Corps of International Armies fights these hordes obtaining pyrrhic victories at the expense of a lot of human lives. Troops decrease in number, and the enemies only increase. The Council of States decides almost with unanimity to abandon the fight, to let the inhabitants evacuate and leave to their devices to those who wish to stay. Mother Earth has been abandoned, and the human hearts mourn its loss. »
700 years have passed, we are in the first months of 3017, all memory of the Earth has been buried in oblivion, cut off of minds and hearts; but not only because its painful loss, but also because of some spurious motives that justify this forgetfulness. The ship Columbus, during one of its exploration voyages, suffers a breakdown in its warp drive. They are stranded in space, near a planet not reflected on the navigation charts of the knowledge core. The repairs would mean a delay of several months in its mission, but the scans have revealed interesting resources on this blue planet. An outpost is built, the terrain is conditioned for the cargo and transport platforms, allowing the research work to begin. The constructions are human, there is barely any animal life; but plenty of plat life, the atmosphere is breathable, rich in oxygen. Everything is very strange. What planet is this and how come there are no records about it? In the following days they find an ovoid case with an specimen inside, the decision is clear: transport it to the Columbus for further study. And then… then the apocalypse is unleashed.
This diorama has been build by the Brickstons Group members ( Pepi Blas, Victor M. Nouvillas, Emiliano Martinez and Alfonso Abeger) and Evo García, Luis López and Juan Manuel Boillos.
You can see all the photos in this album www.flickr.com/photos/144538203@N07/albums/72157681054545022
----------------------------------------------------------------------
Extracto de las Crónicas
de la Vieja Tierra:
«En el año 2305 se descubre un asteroide que tiene ruta de colisión con la Tierra. Todos los Estados acordaron trasladar a la población hacia otros lugares como Marte o la Luna y la reciente base de Terranova en el sistema Alfa Centauri B. La evacuación del planeta era perentoria si se quería evitar la quasi extinción de la especie humana. Dos décadas después el asteroide se cierne sobre la Tierra, pero reduce drásticamente su velocidad hasta impactar en la provincia de Badajoz (España), en el continente Europeo. El gran cráter se convierte en un reclamo turístico y muchos de los exiliados vuelven a sus hogares para retomar una vida que añoran.
»En el 2335, millones de bichos con aspecto insectoide emergen de las profundidades terrestres. Como una gran panspermia dirigida, la Tierra es colonizada por unas criaturas que aniquilan sin piedad a cualquier ser vivo. La lucha es encarnizada y brutal, el I Cuerpo de Ejércitos Internacional se bate contra estas hordas obteniendo pírricas victorias a costa de muchas vidas humanas. Los efectivos disminuyen y los enemigos no dejan de aumentar. El Consejo de Estados decide casi por unanimidad abandonar la lucha, permitir a los habitantes la evacuación y dejar a su suerte a aquellas personas que decidan quedarse. Se ha renunciado a la madre Tierra y los corazones humanos lloran la pérdida.»
Han pasado 700 años, corren los primeros meses del 3017, todo recuerdo sobre la Tierra ha sido enterrado en el olvido, cercenado de mentes y corazones; pero no sólo por lo doloroso de la pérdida, también por motivos espurios que justifican este olvido.
La nave Columbus en uno de sus viajes de exploración del universo sufre una avería en el motor de curvatura. Han quedado varados en el espacio, cerca de un planeta sin reflejo en las cartas de navegación del núcleo de conocimientos.La reparación supondrá un retraso de varios meses en su misión, pero los resultados de los escáneres han permitido conocer que existen recursos interesantes en ese planeta azul. Se monta un puesto de avanzada y exploración, se acondiciona el terreno para las plataformas de carga y transporte permitiendo iniciar los trabajos de investigación. Las construcciones son humanas, apenas encuentran vida animal; pero sí vegetal, la atmósfera es respirable, rica en oxígeno. Todo es muy extraño. ¿Qué planeta es este del que no se tienen datos?
En el devenir de los días hallan una carcasa ovoide con un espécimen dentro, la decisión es clara, transportarlo a la Columbus para su ulterior estudio. Y entonces… entonces se desata el apocalipsis.
Este diorama lo han construido los miembros de The Brickstons Group Pepi Blas, Victor M. Nouvillas, Emiliano Martinez y Alfonso Abeger, con la colaboración adicional de Evo García, Luis López y Juan Manuel Boillos.
Puedes ver todas las fotos en este álbum www.flickr.com/photos/144538203@N07/albums/72157681054545022
Fairfield, Stockton - the reduced network due to the Covid19 situation has seen the 36/37/38 branded Enviro 200 MMC models turning up anywhere on Stockton’s network - here 26289 is operating service 59 between Stockton and North Tees Hospital, reduced to just hourly at present.
Canon 5D3 with Celestron CGEM 1100HD and 0.7x reducer. Stack of 21 images at ISO 800 and at 10 minutes exposure, each with dark frame. Manual Guiding with Celestron off-axis guider and Orion's 12.5mm illuminated reticle eye piece.
The very dim surface brightness, haze and the 5D3 IR filter all combined to make it very difficult to get the H II region without noise. Still, the seeing was the best yet so the stars are fairly pin-point. The 0.7x reducer is both very good and very heavy (big chuck on glass!). Very little coma in the corners, some small amount of chromatic abberation (but that is correctable in software).
The cocoon is is about 12 arc-min across (about 1/3 size of the moon) and is both a reflective and emissive region being driven by the young star (100k years) in the middle. The darker blotches surrounding it (areas of fewer stars) are the result of dust, part of a dark lane that surrounds the nebula.
Venus is haunting the halls of MH posting up signs to help save the earth!!!!
*Now I know it isn't earth day yet,but I just had to do this pic(especially with Venus),lol*
DISCLAIMER
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".
The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.
But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.
Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.
Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.
Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.
The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.
The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.
The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.
AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.
Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.
The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.
Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.
Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.
While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.
USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.
The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.
Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.
International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.
General F-24A characteristics:
Crew: 1 pilot
Length: 47 ft 4 in (14.4 m)
Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)
Height: 13 ft 10 in (4.20 m)
Wing area: 36.55 m² (392 ft²)
Empty weight: 13.150 lb (5.090 kg)
Loaded weight: 15.480 lb (6.830 kg)
Max. take-off weight: 27.530 lb (12.500 kg)
Powerplant
1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner
Performance
Maximum speed: Mach 2
Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks
Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks
Service ceiling: 55,000 ft (16,800 m)
Rate of climb: 52,800 ft/min (255 m/s)
Wing loading: 70.0 lb/ft² (342 kg/m²)
Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)
Armament
1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG
Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.
The kit and its assembly:
A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.
As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.
I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.
Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):
● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear
● Fin and nose cone from an Italeri F-16A
● Inner wings from a (vintage) Hasegawa MiG-21F
● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)
The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.
The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?
Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.
The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.
For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.
All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.
Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.
The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.
Painting and markings:
At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.
A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).
“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.
The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.
Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.
Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.
In order to reduce the swelling from the sprain (and broken bone) in my foot, the doctor told me to ice it a few times a day. My friend (where I'm currently staying) has a swimming pool whose water temperature is about 48°F/8.9°C and works admirably for the purpose. The swelling in my foot is mostly gone now, as is the bruising. The pain, I'm hoping, will follow soon. (This is a short video of me stepping into the pool, being careful to keep my weight on my unharmed right foot. I didn't want an unplanned swim.)
Hecha con la X-A1 + Sigma Mini-Wide II 28mm 2.8
-----------------------------------------
En la foto:
-Super-Takumar 55mm 1.8 + adaptador M42 to EOS
-Zuiko OM 24mm 2.8 + adaptador OM to EOS
-Sigma Super-Wide II 24mm 2.8 + adaptador PK to EOS
-Focal reducer EOS to FX
-Fuji X-E1
'Copyright Saab AB'
Full-size "Draken's"
J 35A
Fighter version, total production 90 including prototypes. The J 35As were delivered between 1959 and 1961. The tail section was lengthened after the 66th aircraft to house a new afterburner for additional thrust, the longer tail cone unexpectedly reduced drag. This forced the installation of a retractable tail-wheel. The two versions were nicknamed Adam kort (Adam short) and Adam lång (Adam long). The Adam was fitted with a French Cyrano Radar (Swedish designation PS-02) (same as on the "Mirage III") as the Swedish radar hadn't been developed in time.
J 35B
Fighter version, built and delivered between 1962 and 1963, total production 73. This variant had improved radar and gun sights, and was also fully integrated into the Swedish STRIL 60 system; a combat guidance and air surveillance system. Fitted with a Swedish built radar PS-03.
SK 35C
25 J 35As with short tail sections rebuilt into a twin-seated trainer version.The minor modification meant that the aircraft could easily be converted back to a J 35A standard if necessary. The trainer version lacked armament.
J 35D
Fighter version, delivered between 1963 and 1964, total production 120. The aircraft had a new and more powerful Rolls-Royce Avon 300 (RM6C), which could deliver 77.3 kN thrust when using its afterburner. This was also the fastest "Draken" version, capable of accelerating until out of fuel. It was also the last "Draken" to carry two cannons. Fitted with the PS-03 radar.
S 35E
Reconnaissance version, total production 60 with 32 built from scratch and the remainder converted from the J 35D model. The armament and radar was removed and several cameras (of ortho and oblique types) fitted. The aircraft was unarmed to make room for the nine cameras of Vinten design (five in the nose and four in the fuselage) but was fitted with a countermeasure system to increase its survivability. It also carried an active infrared reconnaissance system of EG&G design in a pod fitted to a hardpoint.
J 35F
Fighter version, delivered between 1965 and 1972, total production: 230. This variant had improved electronics and avionics, e.g. integrated radar, aim and missile systems. The aircraft's main armament were IR and SARH versions of the Hughes 'Falcon' missile originally intended for the J 35D, but one of the cannon was removed to make space for more avionics. The J 35F2 was a J 35F, produced with a Hughes N71 Infra-red search and track sensor. This was a change in the production line from the no. 35501 airframe. The Hawé mods I & II where carried out on the P/S-01/011 radar sets in the early 1980s to improve resistance to ECM.
J 35J
In 1985 the Swedish government decided to modify 54 J 35F2s to the J 35J standard.[20] In 1987, 12 more modifications were ordered: between 1987 and 1991, the aircraft received a longer lifespan, modern electronics and cannon, additional two Sidewinder (AIM-9P) pylons under the air intakes and increased fuel capacity. The final operational J 35J flew for the last time in 1999.
Saab 35H
Proposed export version for the Swiss Air Force; none sold or delivered.
Saab 35XD
51 Danish export versions: F-35 single-seat strike aircraft, TF-35 two-seat trainer and RF-35 reconnaissance aircraft. The type was heavily modified to make it into a strike aircraft; compared to the Swedish versions the outer wings where completely redesigned, and the radar was missing. These aircraft could carry heavy bombs as well as 'Bullpup' missiles; during the WDNS upgrade of the 1980s they received the ALQ-162 jammer, a Marconi 900 Series HUD and a Ferranti LRMTS (laser rangefinder and marked target seeker)
Saab 35XS
12 fighter version units for the Finnish Air Force; built by Saab and assembled under licence by Valmet in Finland. The "S" stood for "Suomi" (Finland).
Saab 35BS
Used J 35Bs sold to Finland.
Saab 35FS
Used J 35F1s sold to Finland.
Saab 35CS
Used SK 35Cs sold to Finland.
Saab 35Ö
In the mid-1980s, Saab re-purchased 24 J 35D aircraft from the Swedish Air Force and converted them into the J 35Ö version (also called J 35OE in English literature) for export to Austria. Austria bought AIM-9P5 all aspect 'Sidewinders' for these aircraft during the war in former Yugoslavia.
Weatherspoons in Bishops Stortford , had their "mixed grill" on special offer today .
Seemed churlish not to partake !
The Port Jackson , Bishops Stortford , Hertfordshire
Bank Holiday Monday 28th-August-2017 .
Lacq, Pyrénées-Atlantiques (Southwestern part of France).
Production de gaz.
Réduire les émissions de gaz à effet de serre est devenu une nécessité ! !
Canon Rebel 2000
Quantaray 28-90
Kodak Tri-X 400 (shot @ 200)
Kodak D-76 developer
Beseler #3.5 filter
Kentmere VC RC glossy paper
Kodak Dektol developer
CanoScan 9000F mark II
I normally slide this little rocket stove under the cauldron (A back boiler for our hot water system) to get hot water when the solar panels aren't getting enough sun. Heating the boiler directly means that the thermal mass in the fireplace isn't heated and the house stays cool in the summer.
When there's long slow cooking to be done, I use twigs and empty corn cobs as fuel and add a jacket and a cooking surface to the rocket stove directing the flame sideways under the cauldron which heats the water while the food is cooking.
At the moment, there's a lot of veg in the garden and I use the hot water to wash out the glass jars and cooking pots, then I have a nice long shower when the work's done.