View allAll Photos Tagged Normalizes

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

I've just presented myself with an award for this photo. It was voted by me as the best photo I've ever taken of MiniPup!

 

Shot this last evening while traveling the Mauka Road at a speed somewhere between 60-70 miles per hour.

 

I was heading in a Northeasterly direction. The sun was obviously setting behind me as I shot this through the windshield.

 

The Mauka Road is the most dangerous road on the West side of the Big Island of Hawai'i. It's posted at 55 MPH and designed for 35 MPH.

 

The good thing about this road is that it keeps the population numbers normalized.

April 19, 2015 - New York City - Governor Andrew M. Cuomo has dinner at the Intercontinental Hotel in New York City Sunday April 19, 2015 with leaders from business and higher education that will be joining New York's trade mission to Cuba. This is the first Governor-led state trade mission to Cuba since President Obama began the process to normalize diplomatic relations between the United States and Cuba. (Office of the Governor - Kevin P. Coughlin)

The word autumn comes from the Old French word autompne (automne in modern French), and was later normalized to the original Latin word autumnus. There are rare examples of its use as early as the 14th century, but it became common by the 16th century.

 

Before the 16th century, "harvest" was the term usually used to refer to the season. However as more people gradually moved from working the land to living in towns (especially those who could read and write, the only people whose use of language we now know), the word harvest lost its reference to the time of year and came to refer only to the actual activity of reaping, and fall, as well as autumn, began to replace it as a reference to the season.

 

The alternative word fall is now mostly a North American English word for the season. It traces its origins to old Germanic languages. The exact derivation is unclear, the Old English fiæll or feallan and the Old Norse fall all being possible candidates. However, these words all have the meaning "to fall from a height" and are clearly derived either from a common root or from each other. The term came to denote the season in the 16th century, a contraction of Middle English expressions like "fall of the leaf" and "fall of the year".

 

During the 17th century, English immigration to the colonies in North America was at its peak, and the new settlers took their language with them. While the term fall gradually became obsolescent in Britain, it became the more common term in North America, where autumn is nonetheless preferred in scientific and often in literary contexts.

 

In North America, autumn is also associated with the Halloween season (which in turn was influenced by Samhain, a Celtic autumn festival), and with it a widespread marketing campaign that promotes it. The television, film, book, costume, home decoration, and confectionery industries use this time of year to promote products closely associated with such holiday, with promotions going from early September to 31 October, since their themes rapidly lose strength once the holiday ends, and advertising starts concentrating on Christmas.

 

Since 1997, Autumn has been one of the top 100 names for girls in the United States.

 

"http://en.wikipedia.org/wiki/Autumn"

Why OM-D E-M10 better than new model OM-D Mark II bodies ?

-

www.dpreview.com/reviews/image-comparison?attr18=daylight...

-

Please check ISO 800 and 1600 too and see more detailed what i want show ?

 

You can buy my artworks and photos from my portfolio - stock.adobe.com/contributor/206626298/CiddiBiri .

www.istockphoto.com/pl/en/portfolio/xakar - ShutterStock : bit.ly/cidcidarius

150706-F-WU507-251: A Vietnamese-American woman waves the flags of Vietnam and the United States as she watches the arrival of Nguyen Phu Trong, general secretary of Vietnam's Communist Party, at Joint Base Andrews, Maryland, July 6, 2015. Trong is scheduled to meet with President Obama July 7, which will be the first visit at the White House since the two countries normalized relations about 20 years ago. (U.S. Air Force photo by Senior Master Sgt. Kevin Wallace/RELEASED)

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

We often take a lot of things for granted—everything we grow up with normalizes our view of how the world is, or should be. But the further down the class hierarchy you grow up, the more acutely you realize the imbalances of our world in wealth and welfare.

 

But then there are the simplest of utilities, like a zipper, which have no real big-picture significance, yet are used by most everyone, often daily. A beautiful little utility, often given nary a thought.

Session 5: Managing Capital Flows

 

This session will focus on the challenges in the region associated with the normalization of U.S. and other advanced economy monetary conditions, including ongoing and possible spillovers to Asia, appropriate policies to be implemented by spillover-receiving countries, and the possible role for international policy coordination in ameliorating the negative impact of volatile capital flows. Key themes to be addressed include: How EM policy makers can prepare for / cope with financial volatility associated with asynchronous AE monetary policy stances. Experience with macroprudential policies and their potential role in managing capital flows. Regional insurance mechanisms, and their role in containing contagion from financial turbulence. Past experience of the IMF in facilitating coordination of macro-financial policies among key economies and possible ways forward.

 

Moderator:

 

Maurice Obstfeld, Economic Counsellor and Head of Research Department, IMF

 

Panelists:

 

Sukudhew Singh, Deputy Governor, Bank Negara Malaysia

 

In-chang Song, Deputy Minister of the Ministry of Finance and Strategy, Korea

Yiping Huang, Professor, National School of Development, Peking University

Chatib Basri, Former Minister of Finance of Indonesia and Senior Lecturer Department of Economics University of Indonesia

Eswar Prasad, Professor of Economics, Cornell University

 

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

As an advanced treatment method, stem cell therapy has shown it can improve cardiac function by increasing myocardial capillary density, regenerating cardiomyocytes, reducing apoptosis, alleviating fibrosis during the treatment of cardiovascular diseases, and have significant improvement in cardiac function after treatment.

 

The Beneficial Effects Of Stem Cell Therapy On Cardiovascular Diseases

 

Stem cell transplantation can regenerate the myocardium and improve cardiac function and is an ideal choice for the treatment of acute myocardial infarction, ischemic heart disease, ischemia-reperfusion injury of the heart, and other cardiovascular diseases. At SQ1 medical center, we provide you with a customized stem cell therapy plan, after the treatment course and cooperating with the doctor’s diet plan and lifestyle advice, 83% of the patients reported significant treatment effects, and the related symptoms are greatly improved.

 

Stem cell therapy at SQ1 helps:

Reduce fibrosis

 

Repair damaged myocardial tissue

 

Improve cardiac function

 

Promote angiogenesis

 

Increased cardiac ejection function score

 

Normalization of heart rhythm

 

Alleviate heart failure symptoms (edema, dyspnea, tachycardia)

 

Improve limb function

 

Reduce muscle atrophy

 

Reduce or eliminate inflammation

 

Cardiovascular Diseases That Stem Cell Therapy Can Treat

 

Ischemic heart disease (coronary heart disease/myocardial infarction)

 

Peripheral Arterial Disease (PAD)

 

Ischemic stroke

 

Arrhythmia

 

Hypertension

 

Heart failure

 

Valvular heart disease

 

Congenital heart disease

 

Coronary Artery Disease (CAD)

 

Cardiomyopathy

 

Aortic disease

 

Pulmonary embolism

 

Deep vein thrombosis

 

On November 13-15,2021, the 2021 American Heart Association Annual Conference was held online, and reported the latest results of the clinical result of the largest stem cell therapy for heart failure (DREAM-HF trial): stem cell therapy can significantly reduce the risk of heart attack, stroke, and death in patients with chronic, high-risk, reduced ejection fraction heart failure (HFrEF), especially those with higher levels of inflammation.

 

Learn More About Cardiovascular Diseases

 

Cardiovascular diseases generally refer to cardiovascular and cerebrovascular diseases, which is the general term for ischemic or bleeding diseases of the heart, brain, and other tissues over the body caused by hyperlipidemia, blood viscosity, atherosclerosis, hypertension, etc. In recent years, due to the improvement in living quality and changes in dietary structure, the incidence of cardiovascular disease is increasing, which seriously threatens human health.

 

Cardiomyocytes will be lost permanently after necrosis; The irreversible death of cardiomyocytes is one of the most important factors in the onset of heart diseases such as myocardial infarction and heart failure. Due to the limited regeneration capacity of cardiomyocytes, cardiovascular disease has become the “No.1 Killer” that threatens human health. The number of morbidity and mortality is increasing each year. Cardiovascular disease has become a major global public health issue.

 

Risk Factors For Cardiovascular Diseases

 

Cardiovascular diseases can be roughly divided into two categories: congenital and acquired diseases. Congenital factors include family inheritance or self-gene mutation, acquired factors are unhealthy lifestyle, other related diseases, and adverse drug reactions. The onset of the disease is often affected by a combination of factors.

 

FactorFactor Description

Family inheritanceFamily disease history: such as family members with chronic cardiovascular disease, especially early-onset patients at age <50 years.

Hereditary syndromes, those syndromes might affect the heart or blood vessels, causing corresponding cardiovascular diseases.

Congenital heart defectCongenital structural or functional defects of the heart

Congenital vascular structural defects. these defects could lead to local vascular stenosis.

Autoimmune disease: Malfunction of the immune system, which will attach and damage own tissues and organs.

Diseases or drug factorsInfection by pathogens, such as viruses, bacteria, and scarring and inflammation of cardiovascular tissue caused by infection

Malignant tumors and the side effects from radiotherapy and chemotherapy against the tumor.

Various chronic liver and kidney diseases

Long-term heavy mental stress

Long-term use of prescription/over-the-counter medications, such as birth control pills or corticosteroids

Long-term use of certain dietary supplements or Chinese herbal medicine that may interfere with heart or vascular functions

Unhealthy living habitsLack of physical activity

High-fat, high-sugar, high-salt diet

Chronic alcoholism

Injecting or intaking drugs

Overweight (or obese)

 

Clinical Symptoms Of Cardiovascular Diseases

 

Symptoms of cardiovascular diseases depend on the specific type of disease; it varies from type to type.

 

DiseaseCommon Symptoms

Cardiovascular diseasesChest pain, tightness, pressure, and burning sensation spreading pain from the chest area

Insufficient blood and oxygen supply manifested as shortness of breath, irregular heartbeat, dizziness, weakness, fatigue, sweating, paleness, blue lips, and cold limbs.

The cardiac disease may also cause discomfort in other areas, such as upper abdominal pain, nausea, vomiting, and swelling of the abdomen or extremities. Patients with severe symptoms may experience syncope and even shock.

Peripheral vascular diseasesThe most common location of illness is in the legs for atherosclerosis or deep vein thrombosis. Pain, numbness, and weakness may occur in the affected area, and exercise may worsen the symptoms.

When the condition worsens, other symptoms like edema, ulcers, and spasms may occur and may lead to disability if not treated in time.

The deep vein thrombosis may fall off and enters the lung, it can cause pulmonary embolism manifested as chest and back pain, shortness of breath, rapid heartbeat, dry cough (with hemoptysis or bloody sputum), dizziness, restlessness, confusion, or even coma.

Cerebrovascular diseasePatients with stroke may show different degrees of central nervous system dysfunction, such as headache, dizziness, blurred vision, and loss of language ability

Weakness or numbness in the limbs, inability to walk or move, as well as balance problems.

 

Advantages Of Stem Cell Treatment For Cardiovascular Diseases

 

Currently, the conventional treatment method for cardiovascular diseases includes drug therapy, interventional therapy, and surgical therapy. Although those methods can improve cardiac function to a certain extent, they are not able to reverse the myocardial damage caused by ischemia. Patients can also choose heart transplantation to restore myocardial function, but the lack of donors, immune rejection, on and high costs limit the clinical application of heart transplantation as treatment for patients with late-stage heart diseases.

 

However, stem cell transplantation can overcome those drawbacks. Compared with conventional therapy, stem cell therapy has incomparable advantages:

 

Stem cell therapy

Conventional treatment

Curative Treatment or diseases management

Stem cell therapy is a new treatment for cardiovascular diseases, which aims to repair or regenerate damaged myocardial tissue, promote angiogenesis, and thus help the heart return to a healthy status and rebuild cardiac function.

 

If treated with stem cells at an early stage, damage to cardiac cells can be reversed. Stem cell therapy can also free you from drug dependence and surgery.

 

Conventional treatments for early-stage cardiovascular diseases include drug therapy and interventional therapy, both of which can only relieve some related symptoms, such as decreasing blood sugar/blood pressure, and reducing chest tightness, but cannot completely cure cardiovascular diseases.

 

Cardiomyocyte loss is irreversible, and cardiovascular disease caused by myocardial damage is considered incurable in conventional medicine.

 

Dosage

When stem cells repair damaged myocardial tissue and blood vessels, you will gradually restore normal heart function, and the dosage of drugs you are taking can be gradually reduced, and even interventional treatment can be avoided. Drug dependence can be completely reversed if treated with stem cells at an early stage.

 

Stem cell experts based on your current level of disease and other comorbidities will design a customized protocol and decide, the number of stem cells, source of stem cells, and cycles of stem cell therapy.

 

If you choose drug therapy for cardiovascular disease, you may find the dose of the medications is gradually increased, or you need to take the medications for life.

 

When drug treatment fails to control the progress of the disease condition, you may need to choose interventional treatment, but this is not a one-time-for-all solution, you need regular follow-up and may even need another interventional treatment.

 

Side-effects

No Side-effects as stem cells are our cells that are used to treat the disease and regenerate lung tissue to regain proper functioning.

 

Medications may have side effects on the digestive and nervous system, such as dry cough, edema, dizziness, headache, nausea, allergic reactions, etc.

 

Convenience

Stem cell therapy is performed by stem cell specialists which requires a special laboratory to process the stem cells and the medical set-up to extract and inject the stem cell.

 

The therapy is going to be injection-based and needs to be performed in a hospital.

 

It’s relatively easy to take medications, but the patient needs to take them repeatedly every day, which is prone to the development of drug dependence.

 

If you choose interventional or surgical treatment, the patient needs to be hospitalized for surgery, which is not ideal due to the trauma and high risk from the surgery.

 

Longevity

If treated in the early stage, in the long run, stem cell therapy can eliminate drug dependence, restore cardiovascular function (as all related clinical measurements return to normal), and return the patient to a healthy life. If conducted at a later stage, stem cell therapy can still reduce drug dependence, and in rare cases, you might need several treatment regimens. The endothelial stem cells we use improve the condition of not only the heart muscle, but also the coronary vessels.

 

The effect of drug therapy is short-term, and patients need to take medications daily, once stopped, the symptoms will resume or even worsen.

 

Interventional therapy is a one-time therapy, but if there is a recurrence or other unexpected conditions, another interventional therapy is needed, and its effect is not guaranteed for a lifetime.

 

End-stage

Stem cells are the fundamental part of our body, the main function of stem cells is to regenerate and repair damaged cells, produce new body cells thus repair and regenerate myocardial tissue thus delaying or avoiding the necessity to conduct kidney transplantation surgery.

 

Heart transplantation is the only treatment option for end-stage patients. Heart transplantation surgery is highly sophisticated with the risk of infections and rejection reactions. At the same time, limited donors, and high costs are important concerning factors for receiving heart transplantation.

 

How Can Stem Cell Therapy For Cardiovascular Diseases Work

 

Multidirectional differentiation into cardiomyocytes: In the myocardial microenvironment, the transplanted stem cells can differentiate into cardiomyocytes expressing myocardial-specific genes. This increases the number of cardiomyocytes, therefore improving the ejection function of the heart.

 

Multidirectional differentiation into vascular endothelial cells: Stem cells can be directly induced to differentiate into vascular endothelial cells by inducers such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid and heparin. This effect will promote the formation of new blood vessels.

 

Anti-inflammation and anti-fibrosis: After the stem cells are infused back into the body, on one hand, they will inhibit the release of inflammatory factors, and inhibit inflammatory reactions in the cardiovascular system on time. On the other hand, the stem cells pretreated with endothelin-1 can enhance the anti-fibrotic function of the myocadiac tissue. In addition, scientific research has shown that stem cells have significant effects in improving cardiac function and reducing fibrosis by expressing hepatocyte growth factor (HGF).

 

Immunomodulatory effect: Stem cell immune regulation includes paracrine and immune cell regulation mechanisms. Various soluble factors produced and secreted by mesenchymal stem cells play an important role in immune regulation. For example, NO can not only inhibit the growth of T cells but also regulate immune cells by up-regulation of inducible nitric oxide synthase(iNOS). The immune regulatory effect of mesenchymal stem cells is exerted through immune suppression the proliferation and maturation of immune cells

 

SQ1 Stem Cell Services

During the whole treatment process, we’ll provide complete and first-class medical services to you. And to ensure your treatment effect, you can consult your doctor any time after the treatment.

www.sq1stemcell.com/stem-cell-treatment-for-cardiovascula...

   

letshayabusa1: medievalpoc: Facts to counteract the normalization of neo-nazis by Flavia Dzodan This past weekend, Richard Spencer was punched while giving an interview to an Australian outlet. Now certain media is wondering whether punching a neo nazi is the right thing to do. […] However, since these interviews and profiles rarely (if ever) point to this man’s history of neo-nazi advocacy (including eugenics and mass extermination), here’s a rundown of the past seven years of Richard Spencer, in his own words, calling for ethnic cleansing, mass sterilization and a whites only ethnostate. [image is from The De Brailes Hours [British Library ms 49999] f. 40v] [PoC in the De Brailes Hours] I hate the guy, too, but it still doesn’t excuse assault, especially a sucker punch. no sucker punches??? then i guess it’s time for a little TREASON

Session 5: Managing Capital Flows

 

This session will focus on the challenges in the region associated with the normalization of U.S. and other advanced economy monetary conditions, including ongoing and possible spillovers to Asia, appropriate policies to be implemented by spillover-receiving countries, and the possible role for international policy coordination in ameliorating the negative impact of volatile capital flows. Key themes to be addressed include: How EM policy makers can prepare for / cope with financial volatility associated with asynchronous AE monetary policy stances. Experience with macroprudential policies and their potential role in managing capital flows. Regional insurance mechanisms, and their role in containing contagion from financial turbulence. Past experience of the IMF in facilitating coordination of macro-financial policies among key economies and possible ways forward.

 

Moderator:

 

Maurice Obstfeld, Economic Counsellor and Head of Research Department, IMF

 

Panelists:

 

Sukudhew Singh, Deputy Governor, Bank Negara Malaysia

 

In-chang Song, Deputy Minister of the Ministry of Finance and Strategy, Korea

Yiping Huang, Professor, National School of Development, Peking University

Chatib Basri, Former Minister of Finance of Indonesia and Senior Lecturer Department of Economics University of Indonesia

Eswar Prasad, Professor of Economics, Cornell University

 

Reframing the Pap Smear – Opening Reception

 

Monday, January 9, 2012

Venue: Art Bar

Visual Arts

 

Don’t fear the smear! Women’s health doctor demystifies the speculum as a tool to embrace, not avoid.

 

Reframe the Pap – the creation of women’s health doctor Sheila Wijayasinghe – looks at images of the speculum, the medical tool used in Pap tests to normalize the instrument by placing it in various familiar surroundings – with the view that women should be equally comfortable with regular pap testing as they would be with everyday objects.

 

“Pap testing is a women’s best defense against cervical cancer. Women should embrace the speculum as a tool of positivity and not fear the smear,” says Dr. Wijayasinghe.

 

Every year in Canada over 1,300 women are diagnosed with cervical cancer and almost 400 women will die annually of this disease. While the Pap Test itself is a short procedure, it can invoke a great deal of anxiety in women. Some women are afraid of the speculum, the plastic or metal tool used for the Pap Test, and avoid seeing their doctor.

 

“Art and social media are some the best tools to promote healthy life choices. By starting a conversation about rarely discussed health topics we can increase awareness and help women make active choices to support their well-being,” added Dr. Wijayasinghe.

 

All proceeds raised from Reframe the Pap will go towards the Immigrant Women’s Health Center (IWHC) in Toronto, a sexual health clinic serving immigrant, refugee and marginalized women across the City of Toronto.

 

More About Reframing the Pap Smear Here

 

Art Bar: The Art Bar (named after a weekly figure drawing class ongoing since 1957) is our storefront room with large windows facing Queen Street West. It is an intimate space for parties, meetings, conferences or exhibitions.

 

Photos by: Laynna Meyler

cargocollective.com/laynnameyler

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

ISO 26000 Developing country Workshop

Reframing the Pap Smear – Opening Reception

 

Monday, January 9, 2012

Venue: Art Bar

Visual Arts

 

Don’t fear the smear! Women’s health doctor demystifies the speculum as a tool to embrace, not avoid.

 

Reframe the Pap – the creation of women’s health doctor Sheila Wijayasinghe – looks at images of the speculum, the medical tool used in Pap tests to normalize the instrument by placing it in various familiar surroundings – with the view that women should be equally comfortable with regular pap testing as they would be with everyday objects.

 

“Pap testing is a women’s best defense against cervical cancer. Women should embrace the speculum as a tool of positivity and not fear the smear,” says Dr. Wijayasinghe.

 

Every year in Canada over 1,300 women are diagnosed with cervical cancer and almost 400 women will die annually of this disease. While the Pap Test itself is a short procedure, it can invoke a great deal of anxiety in women. Some women are afraid of the speculum, the plastic or metal tool used for the Pap Test, and avoid seeing their doctor.

 

“Art and social media are some the best tools to promote healthy life choices. By starting a conversation about rarely discussed health topics we can increase awareness and help women make active choices to support their well-being,” added Dr. Wijayasinghe.

 

All proceeds raised from Reframe the Pap will go towards the Immigrant Women’s Health Center (IWHC) in Toronto, a sexual health clinic serving immigrant, refugee and marginalized women across the City of Toronto.

 

More About Reframing the Pap Smear Here

 

Art Bar: The Art Bar (named after a weekly figure drawing class ongoing since 1957) is our storefront room with large windows facing Queen Street West. It is an intimate space for parties, meetings, conferences or exhibitions.

 

Photos by: Laynna Meyler

cargocollective.com/laynnameyler

... the fermenting bucket is moved to a room that's roughly room temperature, topped with an airlock half-filled with water, and left for five to ten days, with occasional checking on bubbling and lids staying in place. Assistant Brewmaster Cork points secures a towel around the tank to compensate for a drafty basement.

This bracket is used to mount two PAR sensors (Part# S-LIA-M003) and two solar radiation sensors (Part# S-LIB-M003) on the Light Sensor Bracket (Part# M-LBB) for making the measurements needed to calculate the Normalized Difference Vegetation Index (NDVI).

 

www.onsetcomp.com/products/mounting/m-ndvi

Reframing the Pap Smear – Opening Reception

 

Monday, January 9, 2012

Venue: Art Bar

Visual Arts

 

Don’t fear the smear! Women’s health doctor demystifies the speculum as a tool to embrace, not avoid.

 

Reframe the Pap – the creation of women’s health doctor Sheila Wijayasinghe – looks at images of the speculum, the medical tool used in Pap tests to normalize the instrument by placing it in various familiar surroundings – with the view that women should be equally comfortable with regular pap testing as they would be with everyday objects.

 

“Pap testing is a women’s best defense against cervical cancer. Women should embrace the speculum as a tool of positivity and not fear the smear,” says Dr. Wijayasinghe.

 

Every year in Canada over 1,300 women are diagnosed with cervical cancer and almost 400 women will die annually of this disease. While the Pap Test itself is a short procedure, it can invoke a great deal of anxiety in women. Some women are afraid of the speculum, the plastic or metal tool used for the Pap Test, and avoid seeing their doctor.

 

“Art and social media are some the best tools to promote healthy life choices. By starting a conversation about rarely discussed health topics we can increase awareness and help women make active choices to support their well-being,” added Dr. Wijayasinghe.

 

All proceeds raised from Reframe the Pap will go towards the Immigrant Women’s Health Center (IWHC) in Toronto, a sexual health clinic serving immigrant, refugee and marginalized women across the City of Toronto.

 

More About Reframing the Pap Smear Here

 

Art Bar: The Art Bar (named after a weekly figure drawing class ongoing since 1957) is our storefront room with large windows facing Queen Street West. It is an intimate space for parties, meetings, conferences or exhibitions.

 

Photos by: Laynna Meyler

cargocollective.com/laynnameyler

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

imcom.korea.army.mil

A change from last school year, Humphreys American School students in grades six to eight now attend class in the recently-completed education center. The two-story, 41,732 square foot building has 12 multipurpose rooms, a computer classroom, a video-tele training room, a science lab, conference room, two testing rooms and offices for the staff.

 

U.S. Army photo by Bob McElroy

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Io Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

   

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Reframing the Pap Smear – Opening Reception

 

Monday, January 9, 2012

Venue: Art Bar

Visual Arts

 

Don’t fear the smear! Women’s health doctor demystifies the speculum as a tool to embrace, not avoid.

 

Reframe the Pap – the creation of women’s health doctor Sheila Wijayasinghe – looks at images of the speculum, the medical tool used in Pap tests to normalize the instrument by placing it in various familiar surroundings – with the view that women should be equally comfortable with regular pap testing as they would be with everyday objects.

 

“Pap testing is a women’s best defense against cervical cancer. Women should embrace the speculum as a tool of positivity and not fear the smear,” says Dr. Wijayasinghe.

 

Every year in Canada over 1,300 women are diagnosed with cervical cancer and almost 400 women will die annually of this disease. While the Pap Test itself is a short procedure, it can invoke a great deal of anxiety in women. Some women are afraid of the speculum, the plastic or metal tool used for the Pap Test, and avoid seeing their doctor.

 

“Art and social media are some the best tools to promote healthy life choices. By starting a conversation about rarely discussed health topics we can increase awareness and help women make active choices to support their well-being,” added Dr. Wijayasinghe.

 

All proceeds raised from Reframe the Pap will go towards the Immigrant Women’s Health Center (IWHC) in Toronto, a sexual health clinic serving immigrant, refugee and marginalized women across the City of Toronto.

 

More About Reframing the Pap Smear Here

 

Art Bar: The Art Bar (named after a weekly figure drawing class ongoing since 1957) is our storefront room with large windows facing Queen Street West. It is an intimate space for parties, meetings, conferences or exhibitions.

 

Photos by: Laynna Meyler

cargocollective.com/laynnameyler

Reframing the Pap Smear – Opening Reception

 

Monday, January 9, 2012

Venue: Art Bar

Visual Arts

 

Don’t fear the smear! Women’s health doctor demystifies the speculum as a tool to embrace, not avoid.

 

Reframe the Pap – the creation of women’s health doctor Sheila Wijayasinghe – looks at images of the speculum, the medical tool used in Pap tests to normalize the instrument by placing it in various familiar surroundings – with the view that women should be equally comfortable with regular pap testing as they would be with everyday objects.

 

“Pap testing is a women’s best defense against cervical cancer. Women should embrace the speculum as a tool of positivity and not fear the smear,” says Dr. Wijayasinghe.

 

Every year in Canada over 1,300 women are diagnosed with cervical cancer and almost 400 women will die annually of this disease. While the Pap Test itself is a short procedure, it can invoke a great deal of anxiety in women. Some women are afraid of the speculum, the plastic or metal tool used for the Pap Test, and avoid seeing their doctor.

 

“Art and social media are some the best tools to promote healthy life choices. By starting a conversation about rarely discussed health topics we can increase awareness and help women make active choices to support their well-being,” added Dr. Wijayasinghe.

 

All proceeds raised from Reframe the Pap will go towards the Immigrant Women’s Health Center (IWHC) in Toronto, a sexual health clinic serving immigrant, refugee and marginalized women across the City of Toronto.

 

More About Reframing the Pap Smear Here

 

Art Bar: The Art Bar (named after a weekly figure drawing class ongoing since 1957) is our storefront room with large windows facing Queen Street West. It is an intimate space for parties, meetings, conferences or exhibitions.

 

Photos by: Laynna Meyler

cargocollective.com/laynnameyler

Reframing the Pap Smear – Opening Reception

 

Monday, January 9, 2012

Venue: Art Bar

Visual Arts

 

Don’t fear the smear! Women’s health doctor demystifies the speculum as a tool to embrace, not avoid.

 

Reframe the Pap – the creation of women’s health doctor Sheila Wijayasinghe – looks at images of the speculum, the medical tool used in Pap tests to normalize the instrument by placing it in various familiar surroundings – with the view that women should be equally comfortable with regular pap testing as they would be with everyday objects.

 

“Pap testing is a women’s best defense against cervical cancer. Women should embrace the speculum as a tool of positivity and not fear the smear,” says Dr. Wijayasinghe.

 

Every year in Canada over 1,300 women are diagnosed with cervical cancer and almost 400 women will die annually of this disease. While the Pap Test itself is a short procedure, it can invoke a great deal of anxiety in women. Some women are afraid of the speculum, the plastic or metal tool used for the Pap Test, and avoid seeing their doctor.

 

“Art and social media are some the best tools to promote healthy life choices. By starting a conversation about rarely discussed health topics we can increase awareness and help women make active choices to support their well-being,” added Dr. Wijayasinghe.

 

All proceeds raised from Reframe the Pap will go towards the Immigrant Women’s Health Center (IWHC) in Toronto, a sexual health clinic serving immigrant, refugee and marginalized women across the City of Toronto.

 

More About Reframing the Pap Smear Here

 

Art Bar: The Art Bar (named after a weekly figure drawing class ongoing since 1957) is our storefront room with large windows facing Queen Street West. It is an intimate space for parties, meetings, conferences or exhibitions.

 

Photos by: Laynna Meyler

cargocollective.com/laynnameyler

1 2 ••• 21 22 24 26 27 ••• 79 80