View allAll Photos Tagged Neuron
By activating multiple fluorescent proteins in neurons, neuroscientists at Harvard University are imaging the brain and nervous system as never before, rendering their cells in a riotous spray of colors dubbed a "Brainbow";
Brainbow allows researchers to tag neurons with roughly 90 distinct colors, a huge leap over the mere handful of shades possible with current fluorescent labeling. By permitting visual resolution of individual brightly colored neurons, this increase should greatly help scientists in charting the circuitry of the brain and nervous system.
Revised logo for the Brain Rehabilitation Research Center, located in Gainesville, Florida. At the center, scientists conduct research to discover new or improved forms of neurorehabilitation for impairments caused by stroke, incomplete spinal cord injury, or other neurological problems.
[continua dalle foto precendenti]
allora il flickeriano-mezzo-neurone, che ha deciso di contribuire affinché la mia anima vada in Paradiso senza passare dal Purgatorio, e, anzi lotta perché io sia direttamente fatta santa, mi fa:
- ma te perché non usi una reflex?
io, che sono buona, non lo mando direttamente all'Inferno (anche se così avremmo buone possibilità di smettere di sentirci, ma vabbè...) e gli rispondo, con tutta la calma possibile:
- vedi, io non uso la reflex perchè non ho una reflex.
io ho due compattine.
una, ormai famosa su Flickr, che si chiama Zoran, ma è una storia lunga e non vorrei tediarti;
la seconda si chiama Fujina, ed è quella che uso di più, adesso, perchè la Zoran è un po' malaticcia, da quella volta che ha preso un'onda sulla faccia e io non sono riuscita a salvarla in tempo, neanche pulendola con amore col maglione di lana.
ah, ti capitasse che un'ondata ti prende la compattina, non usare la maglia di lana, e non cercare neanche di asciugarla con il fon ( o phon): non funziona.
comunque, a parte questo "parco-macchine", avrei voglia di comperarmi la numero tre.
sai, flickeriano-mezzo-neurone, ci sto lavorando sopra.
ho letto un miliardo di pagine, consultato link, adesso so un sacco di cose che prima non sapevo neanche esistessero.
chessoio:
cose tipo ISO, pixel, rumore;
ho scoperto che esistono le compattone anche dette bridge;
che se in una macchina ci sono cento milioni di pixel ma un'apertura piccola è come cercare di fare entrare me in una taglia 42:
praticamente un casino, i pixel ti sbottano da tutte le parti, come la mia ciccia, e viene fuori il "rumore" (nel mio caso i rotolini);
ho scoperto anche che ci sono compattone che pesano come le reflex, però hanno tutto:
tele, zoom ottico, cento milioni di pixel e se vai nella modality "casalinga" trovi anche l'opzione "tagliatelle" e "frittura mista".
nel senso che ci puoi anche impastare le uova e cucinare il pesce, con le compattone, ma hanno sempre quel ca**o di rumore, e non si sa come toglierlo.
che poi non è vero, c'è un programma che toglie il "rumore", però poi non ho capito come si usa, ma vabbè.
vedi, flickeriano-mezzo-neurone, io prima prendevo le fotocamere così, a intuito.
tipo:
"caruccia questa, fa pendant con la la mia borsetta e posso anche abbinarla con gli anfibi e il poncho"
da quando ho cominciato a leggere e studiare le macchine fotografiche mi sembra di sapere un sacco di cose teoriche, (a parte quella cosa f.1/8 o roba simile, che non ho bn capito a cosa serva...).
in compenso non ho ancora capito:
a) come ca**o abbia fatto a fare fotografie fino adesso con le mie compattine, perché la Zoran, per esempio, non viene neanche catalogata: ho una fotocamera fantasma;
b) come ca**o abbia fatto a vivere fino a ora senza un tele, un grandangolo e un aggeggio con meno di un miliardo mi pixel;
però ho capito che:
a) le reflex sono costose, se non sono costose sono ciofeche, i kit sono ciofeche, e comunque io sono troppo ignorante per una reflex;
b) mi piacerebbe una compattona ma pesa 7 etti e allora mi tocca anche cambiare tutto il mio parco-borse, perchè non ne ho di così capienti da portarmi dietro 7 etti di macchina E tutto il resto;
c) secondo me cascherò nel solito ingranaggio e comprerò una fotocamera carina, con i fiorellini applicati sopra;
d) chissà a cosa serve quell' f.1/8 o f1.8 o cose così...
e tu, flickeriano-mezzo-neurone, che fotocamera hai?
Waterfall image, taken with 4 x 5 camera and then aged in Adobe Photoshop, Middle - single neuron hand coloured - scanning electron micrograph and 3D space ship rendered in Swift 3D
H. 30 ; L.40 cm
Avec encadrement H.40 ; L.50 cm
Acrylique brillante
Paris, 2012
> Original en vente: flic.kr/p/sNaXaX
> Estampe numérotée avec passe-partout: flic.kr/p/2kUjZ6P
> Impression grand format: flic.kr/p/2kU7mRc
=> impression encadrée: flic.kr/p/XkYpM7
> Dessous de verre: flic.kr/p/2kTJFZh
> Dessous de plat: flic.kr/p/2kTL7xh
> Set de table: flic.kr/p/2kTUzZ9
> Petits cadres noirs: flic.kr/p/2kTWgNL
> Cadres acrylique profondeur: flic.kr/p/2kTUN4u
> Sac imperméable: flic.kr/p/2kDKZo5
> Sac de courses: flic.kr/p/2j1i1wM
Envoyer un e.mail à info@emotionsyn.com
© Alicia LEFEBVRE ADAGP PARIS 2021
Les œuvres présentées sur le site sont protégées par les lois sur la Propriété Littéraire et Artistique. Toute reproduction ou représentation des textes et images présents sur le site, hors consultation individuelle et privée, doit faire l’objet d’une autorisation préalable de l’Adagp:
ADAGP - 11, rue Duguay Trouin - 75006 Paris - France
Site web: www.emotionsyn.com
Voir les classeurs d'album photo FlickR organisés: www.flickr.com/photos/emotionsyn/collections
Sur cette image de neurone mutant d’hippocampe de rat, obtenue en microscopie confocale après 7 jours en culture (in vitro), on observe les détails des compartiments du neurone permettant la transmission d'une information au sein du cerveau. En magenta, on peut distinguer les dendrites (ramifications) du neurone qui recueillent de l’information et en cyan la partie proximale des axones, une extension normalement unique du neurone, qui propage l'information depuis le corps jusqu'aux terminaisons nerveuses (ou synapses). Ici, le rat auquel appartient ce neurone est muté pour le gène Prickle 2 qui ne s'exprime pas. Cette mutation conduit à la genèse anoemale de 4 axones au lieu d'un seul.
Cette image est extraite d'un travail mené par une équipe de chercheurs de l'Inserm qui cherche à mieux comprendre les troubles du développement neurologique (TND). Ces troubles entrainent des pathologies telles que les troubles du spectre autistique (TSA) ou l'épilepsie. Les résultats de leurs recherches rapportent que lorsque la protéine Prickle 2 est défectueuse, différents compartiments du neurone sont affectés ce qui entraîne une mauvaise transmission d'information. Ces défauts peuvent avoir des conséquences sur l’efficacité des approches thérapeutiques actuellement proposées pour les TND. Les avoir repérés et avoir identifié cette protéine défectueuse est un pas de plus vers la mise au point de thérapies plus efficaces.
© Ana Dorrego-Rivas et Mireille Montcouquiol /Inserm.licence CC-BY-NC 4.0 international
Source : The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling, ScienceAdvances, 9 septembre 2022
A neurotrophin-induced signaling endosome (green) is transported by a specialized dynein motor (red) along the microtubules of a hippocampal neuron. (JCB 181(6) TOC2).
This image is available to the public to copy, distribute, or display under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license.
Reference: Ha et al. (2008) J. Cell Biol. 181:1027-1039.
Published on: June 16, 2008.
Doi: 10.1083/jcb.200803150.
Read the full article at:
a close up (width of photo = roughly .0001m) of young neurons born recently in the adult mouse brain. the blue is NeuN, a protein found only in neurons (and is therefore good for identifying them) and the red/pink is doublecortin, a protein found only in young neurons. doublecortin is needed for neuronal processes to be able to grow and contact other neurons. when the neurons mature and have formed all their connections they no longer need doublecortin. you can see that all the neurons but those at the left-most edge are therefore mature.
“Every neural network we looked at, we would find a dedicated neuron for Donald Trump. That was the only person who had always had a dedicated neuron.” — Chris Olah, Anthropic’s head of mechanistic interpretability (trying to make sense of these neural nets after they have been trained), from the Lex Fridman podcast
This is a purely emergent phenomenon, not designed in, and it’s part of a broader resonant homology across neural networks, biological and artificial.
Chris: “This, actually, is indeed a really remarkable and exciting thing, where the same elements, the same features and circuits, form again and again. You can look at every vision model, and you’ll find curve detectors, and you’ll find high-low-frequency detectors. And in fact, there’s some reason to think that the same things form across biological neural networks and artificial neural networks. So, a famous example is vision models in the early layers. They have Gabor [edge-detecting] filters, and Gabor filters are something that neuroscientists are interested in and have thought a lot about. We find curve detectors in these models. Curve detectors are also found in monkeys. We discover these high-low-frequency detectors, and then some follow-up work went and discovered them in rats or mice. So, they were found first in artificial neural networks and then found in biological neural networks.” — from the Lex Fridman pod, and it’s quite interesting from this point onward
This field of study has fascinated me from my first exposure to neural networks in 1989 (when I started a PhD in EE to study them). How fascinating that artificial neural nets recapitulate some of the developmental processes and resulting structures seen in our sensory cortex!
But the biological analogy also carries over to the problem of interpretability. The complex artifacts created by an iterative algorithm — whether brain or LLM — are inherently inscrutable. I first wrote about this in the MIT Tech Review in 2006, concluding: “If we artificially evolve a smart AI, it will be an alien intelligence defined by its sensory interfaces, and understanding its inner workings may require as much effort as we are now expending to explain the human brain.”
So, I respect the difficulty of Mechinterp, and the appeal, unweaving the beauty of transcendence.
Chris concludes: “Biology has these simple rules, and it gives rise to all the life and ecosystems that we see around us. All the beauty of nature, that all just comes from evolution and from something very simple in evolution. And similarly, I think that neural networks build, create enormous complexity and beauty inside and structure inside themselves that people generally don’t look at and don’t try to understand because it’s hard to understand. But I think that there is an incredibly rich structure to be discovered inside neural networks, a lot of very deep beauty if we’re just willing to take the time to go and see it and understand it.”
#Neuron #Softech LLC is the best #php #application #development company providing quality PHP #web development solutions. We can fulfill your complete PHP needs. For more : www.neuronsoftsols.com/php-web-development.php
This group exhibition, including work by Catherine Richards, Michael Snow, Scott Rogers, Thomson & Craighead and Simon Pope, draws on ideas of scientific experimentation, media processing, and time delay. Each work acts to slow down our senses of perception, causing within us an awareness of both time passing and our experience of it. The title refers to that fact that we often watch other people interact with responsive art, and mirror their behaviour, consciously or not.
Catherine Richards’ I was scared to death / I could have died of joy features glass replicas of the brain, which react to your presence with pulses of electromagnetic light. Scott Rogers’ Between Nonesuch Place juxtaposes an actual non-functioning glass object, a ‘self-flowing flask’ with its virtual working counterpart. Thomson & Craighead’s Flipped Clock is a modified digital clock display, where each individual digit is rotated by 180-degrees. Simon Pope’s Recall From Memory the Space of Another Gallery is an invitation for the visitor to recall experiences of being in other gallery spaces from memory. The seminal filmmaker Michael Snow’s WVLNT: Wavelength for those who don't have the time. Originally 45 minutes, Now 15! remixes his own seminal work Wavelength.
Credit
Curated by Sarah Cook. Supported by CRUMB and The University of Sunderland.
What's the role of an astrocyte in the human brain? New research at the University of California in San Diego suggests that the mysterious cells -- which link neurons in the human brain -- may be more important in understanding diseases such as Alzheimer's than once believed. In one study using a rat cortex, researchers observed how astrocytes were triggered and saw how calcium signals would rise and fall. The research could help scientists develop new drug treatments.
Source: UCSD
Via. FoxNews.com Eyepoppers
This group exhibition, including work by Catherine Richards, Michael Snow, Scott Rogers, Thomson & Craighead and Simon Pope, draws on ideas of scientific experimentation, media processing, and time delay. Each work acts to slow down our senses of perception, causing within us an awareness of both time passing and our experience of it. The title refers to that fact that we often watch other people interact with responsive art, and mirror their behaviour, consciously or not.
Catherine Richards’ I was scared to death / I could have died of joy features glass replicas of the brain, which react to your presence with pulses of electromagnetic light. Scott Rogers’ Between Nonesuch Place juxtaposes an actual non-functioning glass object, a ‘self-flowing flask’ with its virtual working counterpart. Thomson & Craighead’s Flipped Clock is a modified digital clock display, where each individual digit is rotated by 180-degrees. Simon Pope’s Recall From Memory the Space of Another Gallery is an invitation for the visitor to recall experiences of being in other gallery spaces from memory. The seminal filmmaker Michael Snow’s WVLNT: Wavelength for those who don't have the time. Originally 45 minutes, Now 15! remixes his own seminal work Wavelength.
Credit
Curated by Sarah Cook. Supported by CRUMB and The University of Sunderland.
…neuroni alla ricerca di una strada mai percorsa, / labirinti cerebrali specchiati, / tutto è come amplificato, bizzarro, / sono un proiettile impazzito nella fantasia cosmica….
...neurons in search for a never covered route, / cerebral labyrinths mirrored, / everything is somehow amplified, bizarre, / I am a bullet gone wild in the cosmic fantasy...
Encéphale. Les péricaryons des neurones moteurs de l’encéphale contenant les corps de Nissl
(flèches bleues) donnent à ces cellules un aspect moucheté. Les corps de Nissl sont des amas de réticulum endoplasmique granuleux. Les cercles entourent diverses cellules gliales (astrocytes, oligodendrocytes, microgliocytes)
non reconnaissables avec la méthode de coloration utilisée. Le noyau (X) des neurones est imposant, ovoide et plus ou moins en position centrale.
- Pour plus de détails ou précisions, voir « Atlas of Fish Histology » CRC Press, ou « Histologie illustrée du poisson » (QUAE) ou s'adresser à Franck Genten (fgenten@gmail.com)
--------------------------------------------------------------------------------------------
Encephalon. Motor neurons containing NISSL bodies
(blue arrows) give the neuronal cytoplasm a granular
appearance. NISSL bodies are large granules which
consist of rough endoplasmic reticulum (i.e. with ribosomes).
The circles show various glial cells (astrocytes,
oligodendrocytes or microglial cells) not distinguishable
with the trichrome stain. The nucleus (X) of the neuron is large, ovoid and centrally located in the cytoplasm.
- For more information or details, see « Atlas of Fish Histology » CRC Press, or « Histologie illustrée du poisson » (QUAE) or contact Franck Genten (fgenten@gmail.com)