View allAll Photos Tagged Efficiently

The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.

 

The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).

 

The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.

 

History

 

The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.

 

The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.

 

BMW Vision EfficientDynamics (2009)

 

BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).

 

According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.

 

The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.

 

The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.

 

BMW i8 Concept (2011)

 

BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.

 

The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.

 

This concept car was featured in the film Mission: Impossible – Ghost Protocol.

 

BMW i8 Concept Spyder (2012)

 

The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.

 

The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.

 

The designer of the BMW i8 Concept Spyder was Richard Kim.

 

BMW i8 coupe prototype (2013)

 

The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.

 

The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.

 

The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.

 

The vehicle was unveiled in BMW Group's Miramas test track in France.

 

Production version

 

The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.

 

The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).

 

Range and fuel economy[edit]

The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).

 

The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.

 

The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.

 

[Text from Wikipedia]

 

en.wikipedia.org/wiki/BMW_i8

 

This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.

First workdays of new CASE IH OPTUM 300 CVX with ELHO Scorpio 550 picker.

 

You can follow us:

Facebook - DYNASTYphotography

Lukaskralphoto Instagram

my personal Instagram

YouTube Channel

Man Lion's City 12 Efficient Hybrid n°34 - ligne 1

RTTB / Optymo - Belfort

Efficient Line

 

NTI and JJV Transport

Truck

 

Truck Manufacture: MAN Truck & Bus PH

MAN Truck Shell Oil Company

Model: MAN TGS 26.360

Chassis: 6x4

 

Shot Location: Balintawak

Irizar i6s Efficient Integral de Vialco

There was a good selection of visiting coaches on 16th March 2025, when Wembley Stadium hosted its first showpiece final of the season, with Liverpool meeting Newcastle United in the EFL Cup (Carabao Cup). One such vehicle pictured transporting supporters to the game was AA23 ALS, a smart Scania K360CB4/Irizar i6S Efficient Treinta coach new to Al's Coaches, Birkenhead, Merseyside in July 2023. The Treinta is a limited-edition and a celebration of the 30-year partnership between Scania and Irizar, with only 30 vehicles being produced.

 

Want to find out more? Join The PSV Circle - Details at www.psvcircle.org.uk

 

Copyright © P.J. Cook, all rights reserved. It is an offence to copy, use or post this image anywhere else without my permission.

New energy efficient LED lighting illuminates the Sault Ste. Marie International Bridge: red, white, and blue for the American arched spans and red and white for the Canadian arched span. View from Lake Superior State University.

 

The International Bridge- -a 4.5 kilometer / 2.8 mile long metal Cantilever (suspended deck) Warren Through Truss two lane bridge with a two span arch over the American Soo Locks and a single span arch over the Canadian Sault Canal. It was designed by the New York architectural firm of Steinman, Boynton, Gronquist and London; the bridge opened October 1962. The bridge spans the St. Marys River and connects Sault Ste. Marie Michigan to Sault Ste. Marie Ontario.

I was sitting right on the curb for this one.

I wanted a panning image of cyclists in China, I shot a few before this one, but the background wasn't so good.

I saw this gentleman a block away, as he got closer, the bus was catching up to him. He saw me taking his photograph and looked down at me just as the bus passed behind.

 

ISO200 | 1/20s | f22 @ 12mm (18mm equivalent)

 

© 2013 Paul Chan - Canada. Photos are copyrighted. All rights reserved. Pictures can not be used without explicit permission by the creator.

  

Irizar i6s Efficient Integral de Socitransa cubriendo la ruta N1138 de Flixbus: Lisboa-Madrid-Milán.

Efficient street shooting today with my highly discreet Coca Cola Can Camera.

A lighter, more fuel-efficient version bus, the MetroDecker, will be built in Leeds by Optare, now part of the Hinduja Group. This is the first double-decker bus produced by Optare since HInduja took over and the only one in their current product range. Optare is looking to expand in the UK as double-deckers make up 40pc of the bus market.To maximise fuel-efficiency, the bus will weigh in at less than 10 tonnes and feature an optimised Mercedes engine, “Ecolife” gearbox and a system that turns off the engine when the vehicle stops moving. Enrico Vassallo, chief executive at Optare, describing the vehicle said: “We have worked hard to assess and evaluate every part of the vehicle to ensure it is as efficient as possible; consolidating parts, reducing complexity and removing duplication.”

 

The new double-decker, which has been designed and built to comply with Transport for London standards , will go on sale to bus operators in the third quarter of this 2014. Optare aims to have the first vehicle delivered to a customer by the early 2015 at the latest. Optare’s target is rosell roughly 100 buses in the next 18 months. The company is also looking to sell the bus globally.

 

The Hinduja Group has invested heavily in Optare since taking a majority stake in 2012, consolidating all production in a new facility in Leeds. Around 90pc of Optare’s supply chain is based in Britain, with 2,000 jobs created either directly or indirectly by the company

 

The MetroDecker, which the Hinduja Group has classed as a “critical product”, is the second in the series of releases specifically developed for the London market - the first being the single-decker MetroCity bus.

“We have been in an investment cycle from Hinduja and this bus represents the end of the first cycle of reorganisation and the renewal of the company,” Mr Vassallo said. “The company is now able to get back in to the [double-decker] market and try to be successful there again.”

  

Volvo B13R 6X2 Irizar i6s Efficient de Aisa.

Some background:

Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.

 

The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.

 

In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.

 

Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.

 

The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.

 

At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.

  

General characteristics:

Accommodation: pilot only, in standard cockpit in main body

Overall Height: 18.2 meters

Overall Length: 7.6 meters

Overall Width: 12.6 meters

Max Weight: 39.8 metric tons

 

Powerplant & propulsion:

1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,

driving 2x main booster Thrusters and 12x vernier thrusters

 

Performance:

unknown

 

Armament:

None

 

Special Equipment and Features:

Standard all-frequency radar antenna

Standard laser long-range sensor

Ectromelia infrared, visible light and ultraviolet frequency sensor cluster

ECM/ECCM suite

  

The kit and its assembly:

I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.

 

The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).

 

I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!

 

But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.

 

Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.

 

However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.

  

Painting and markings:

Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.

 

Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.

 

The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.

 

The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?

 

Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.

  

A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D

 

Jellyfish, also known sea jellies, are the medusa-phase of certain gelatinous members of the subphylum Medusozoa, which is a major part of the phylum Cnidaria.

 

Jellyfish are mainly free-swimming marine animals with umbrella-shaped bells and trailing tentacles, although a few are anchored to the seabed by stalks rather than being mobile. The bell can pulsate to provide propulsion for highly efficient locomotion. The tentacles are armed with stinging cells and may be used to capture prey and defend against predators. Jellyfish have a complex life cycle. The medusa is normally the sexual phase, which produces planula larvae; these then disperse widely and enter a sedentary polyp phase, before reaching sexual maturity.

 

Jellyfish are found all over the world, from surface waters to the deep sea. Scyphozoans (the "true jellyfish") are exclusively marine, but some hydrozoans with a similar appearance live in freshwater. Large, often colorful, jellyfish are common in coastal zones worldwide. The medusae of most species are fast-growing, and mature within a few months then die soon after breeding, but the polyp stage, attached to the seabed, may be much more long-lived. Jellyfish have been in existence for at least 500 million years, and possibly 700 million years or more, making them the oldest multi-organ animal group.

 

Jellyfish are eaten by humans in certain cultures. They are considered a delicacy in some Asian countries, where species in the Rhizostomeae order are pressed and salted to remove excess water. Australian researchers have described them as a "perfect food": sustainable and protein-rich but relatively low in food energy.

 

They are also used in research, where the green fluorescent protein used by some species to cause bioluminescence has been adapted as a fluorescent marker for genes inserted into other cells or organisms.

 

The stinging cells used by jellyfish to subdue their prey can injure humans. Thousands of swimmers worldwide are stung every year, with effects ranging from mild discomfort to serious injury or even death. When conditions are favourable, jellyfish can form vast swarms, which can be responsible for damage to fishing gear by filling fishing nets, and sometimes clog the cooling systems of power and desalination plants which draw their water from the sea.

  

Names

The name jellyfish, in use since 1796, has traditionally been applied to medusae and all similar animals including the comb jellies (ctenophores, another phylum). The term jellies or sea jellies is more recent, having been introduced by public aquaria in an effort to avoid use of the word "fish" with its modern connotation of an animal with a backbone, though shellfish, cuttlefish and starfish are not vertebrates either. In scientific literature, "jelly" and "jellyfish" have been used interchangeably. Many sources refer to only scyphozoans as "true jellyfish".

 

A group of jellyfish is called a "smack" or a "smuck".

 

Definition

The term jellyfish broadly corresponds to medusae, that is, a life-cycle stage in the Medusozoa. The American evolutionary biologist Paulyn Cartwright gives the following general definition:

 

Typically, medusozoan cnidarians have a pelagic, predatory jellyfish stage in their life cycle; staurozoans are the exceptions [as they are stalked].

 

The Merriam-Webster dictionary defines jellyfish as follows:

 

A free-swimming marine coelenterate that is the sexually reproducing form of a hydrozoan or scyphozoan and has a nearly transparent saucer-shaped body and extensible marginal tentacles studded with stinging cells.

 

Given that jellyfish is a common name, its mapping to biological groups is inexact. Some authorities have called the comb jellies and certain salps jellyfish, though other authorities state that neither of these are jellyfish, which they consider should be limited to certain groups within the medusozoa.

 

The non-medusozoan clades called jellyfish by some but not all authorities (both agreeing and disagreeing citations are given in each case) are indicated with on the following cladogram of the animal kingdom:

 

Jellyfish are not a clade, as they include most of the Medusozoa, barring some of the Hydrozoa. The medusozoan groups included by authorities are indicated on the following phylogenetic tree by the presence of citations. Names of included jellyfish, in English where possible, are shown in boldface; the presence of a named and cited example indicates that at least that species within its group has been called a jellyfish.

 

Taxonomy

The subphylum Medusozoa includes all cnidarians with a medusa stage in their life cycle. The basic cycle is egg, planula larva, polyp, medusa, with the medusa being the sexual stage. The polyp stage is sometimes secondarily lost. The subphylum include the major taxa, Scyphozoa (large jellyfish), Cubozoa (box jellyfish) and Hydrozoa (small jellyfish), and excludes Anthozoa (corals and sea anemones). This suggests that the medusa form evolved after the polyps. Medusozoans have tetramerous symmetry, with parts in fours or multiples of four.

 

The four major classes of medusozoan Cnidaria are:

Scyphozoa are sometimes called true jellyfish, though they are no more truly jellyfish than the others listed here. They have tetra-radial symmetry. Most have tentacles around the outer margin of the bowl-shaped bell, and long, oral arms around the mouth in the center of the subumbrella.

Cubozoa (box jellyfish) have a (rounded) box-shaped bell, and their velarium assists them to swim more quickly. Box jellyfish may be related more closely to scyphozoan jellyfish than either are to the Hydrozoa.

Hydrozoa medusae also have tetra-radial symmetry, nearly always have a velum (diaphragm used in swimming) attached just inside the bell margin, do not have oral arms, but a much smaller central stalk-like structure, the manubrium, with terminal mouth opening, and are distinguished by the absence of cells in the mesoglea. Hydrozoa show great diversity of lifestyle; some species maintain the polyp form for their entire life and do not form medusae at all (such as Hydra, which is hence not considered a jellyfish), and a few are entirely medusal and have no polyp form.

Staurozoa (stalked jellyfish) are characterized by a medusa form that is generally sessile, oriented upside down and with a stalk emerging from the apex of the "calyx" (bell), which attaches to the substrate. At least some Staurozoa also have a polyp form that alternates with the medusoid portion of the life cycle. Until recently, Staurozoa were classified within the Scyphozoa.

There are over 200 species of Scyphozoa, about 50 species of Staurozoa, about 50 species of Cubozoa, and the Hydrozoa includes about 1000–1500 species that produce medusae, but many more species that do not.

 

Fossil history

Since jellyfish have no hard parts, fossils are rare. The oldest unambiguous fossil of a free-swimming medusa is Burgessomedusa from the mid Cambrian Burgess Shale of Canada, which is likely either a stem group of box jellyfish (Cubozoa) or Acraspeda (the clade including Staurozoa, Cubozoa, and Scyphozoa). Other claimed records from the Cambrian of China and Utah in the United States are uncertain, and possibly represent ctenophores instead.

 

Anatomy

The main feature of a true jellyfish is the umbrella-shaped bell. This is a hollow structure consisting of a mass of transparent jelly-like matter known as mesoglea, which forms the hydrostatic skeleton of the animal. 95% or more of the mesogloea consists of water, but it also contains collagen and other fibrous proteins, as well as wandering amoebocytes which can engulf debris and bacteria. The mesogloea is bordered by the epidermis on the outside and the gastrodermis on the inside. The edge of the bell is often divided into rounded lobes known as lappets, which allow the bell to flex. In the gaps or niches between the lappets are dangling rudimentary sense organs known as rhopalia, and the margin of the bell often bears tentacles.

  

Anatomy of a scyphozoan jellyfish

On the underside of the bell is the manubrium, a stalk-like structure hanging down from the centre, with the mouth, which also functions as the anus, at its tip. There are often four oral arms connected to the manubrium, streaming away into the water below. The mouth opens into the gastrovascular cavity, where digestion takes place and nutrients are absorbed. This is subdivided by four thick septa into a central stomach and four gastric pockets. The four pairs of gonads are attached to the septa, and close to them four septal funnels open to the exterior, perhaps supplying good oxygenation to the gonads. Near the free edges of the septa, gastric filaments extend into the gastric cavity; these are armed with nematocysts and enzyme-producing cells and play a role in subduing and digesting the prey. In some scyphozoans, the gastric cavity is joined to radial canals which branch extensively and may join a marginal ring canal. Cilia in these canals circulate the fluid in a regular direction.

  

Discharge mechanism of a nematocyst

The box jellyfish is largely similar in structure. It has a squarish, box-like bell. A short pedalium or stalk hangs from each of the four lower corners. One or more long, slender tentacles are attached to each pedalium. The rim of the bell is folded inwards to form a shelf known as a velarium which restricts the bell's aperture and creates a powerful jet when the bell pulsates, allowing box jellyfish to swim faster than true jellyfish. Hydrozoans are also similar, usually with just four tentacles at the edge of the bell, although many hydrozoans are colonial and may not have a free-living medusal stage. In some species, a non-detachable bud known as a gonophore is formed that contains a gonad but is missing many other medusal features such as tentacles and rhopalia. Stalked jellyfish are attached to a solid surface by a basal disk, and resemble a polyp, the oral end of which has partially developed into a medusa with tentacle-bearing lobes and a central manubrium with four-sided mouth.

 

Most jellyfish do not have specialized systems for osmoregulation, respiration and circulation, and do not have a central nervous system. Nematocysts, which deliver the sting, are located mostly on the tentacles; true jellyfish also have them around the mouth and stomach. Jellyfish do not need a respiratory system because sufficient oxygen diffuses through the epidermis. They have limited control over their movement, but can navigate with the pulsations of the bell-like body; some species are active swimmers most of the time, while others largely drift. The rhopalia contain rudimentary sense organs which are able to detect light, water-borne vibrations, odour and orientation. A loose network of nerves called a "nerve net" is located in the epidermis. Although traditionally thought not to have a central nervous system, nerve net concentration and ganglion-like structures could be considered to constitute one in most species. A jellyfish detects stimuli, and transmits impulses both throughout the nerve net and around a circular nerve ring, to other nerve cells. The rhopalial ganglia contain pacemaker neurones which control swimming rate and direction.

 

In many species of jellyfish, the rhopalia include ocelli, light-sensitive organs able to tell light from dark. These are generally pigment spot ocelli, which have some of their cells pigmented. The rhopalia are suspended on stalks with heavy crystals at one end, acting like gyroscopes to orient the eyes skyward. Certain jellyfish look upward at the mangrove canopy while making a daily migration from mangrove swamps into the open lagoon, where they feed, and back again.

 

Box jellyfish have more advanced vision than the other groups. Each individual has 24 eyes, two of which are capable of seeing colour, and four parallel information processing areas that act in competition, supposedly making them one of the few kinds of animal to have a 360-degree view of its environment.

 

Box jellyfish eye

The study of jellyfish eye evolution is an intermediary to a better understanding of how visual systems evolved on Earth. Jellyfish exhibit immense variation in visual systems ranging from photoreceptive cell patches seen in simple photoreceptive systems to more derived complex eyes seen in box jellyfish. Major topics of jellyfish visual system research (with an emphasis on box jellyfish) include: the evolution of jellyfish vision from simple to complex visual systems), the eye morphology and molecular structures of box jellyfish (including comparisons to vertebrate eyes), and various uses of vision including task-guided behaviors and niche specialization.

 

Evolution

Experimental evidence for photosensitivity and photoreception in cnidarians antecedes the mid 1900s, and a rich body of research has since covered evolution of visual systems in jellyfish. Jellyfish visual systems range from simple photoreceptive cells to complex image-forming eyes. More ancestral visual systems incorporate extraocular vision (vision without eyes) that encompass numerous receptors dedicated to single-function behaviors. More derived visual systems comprise perception that is capable of multiple task-guided behaviors.

 

Although they lack a true brain, cnidarian jellyfish have a "ring" nervous system that plays a significant role in motor and sensory activity. This net of nerves is responsible for muscle contraction and movement and culminates the emergence of photosensitive structures. Across Cnidaria, there is large variation in the systems that underlie photosensitivity. Photosensitive structures range from non-specialized groups of cells, to more "conventional" eyes similar to those of vertebrates. The general evolutionary steps to develop complex vision include (from more ancestral to more derived states): non-directional photoreception, directional photoreception, low-resolution vision, and high-resolution vision. Increased habitat and task complexity has favored the high-resolution visual systems common in derived cnidarians such as box jellyfish.

 

Basal visual systems observed in various cnidarians exhibit photosensitivity representative of a single task or behavior. Extraocular photoreception (a form of non-directional photoreception), is the most basic form of light sensitivity and guides a variety of behaviors among cnidarians. It can function to regulate circadian rhythm (as seen in eyeless hydrozoans) and other light-guided behaviors responsive to the intensity and spectrum of light. Extraocular photoreception can function additionally in positive phototaxis (in planula larvae of hydrozoans), as well as in avoiding harmful amounts of UV radiation via negative phototaxis. Directional photoreception (the ability to perceive direction of incoming light) allows for more complex phototactic responses to light, and likely evolved by means of membrane stacking. The resulting behavioral responses can range from guided spawning events timed by moonlight to shadow responses for potential predator avoidance. Light-guided behaviors are observed in numerous scyphozoans including the common moon jelly, Aurelia aurita, which migrates in response to changes in ambient light and solar position even though they lack proper eyes.

 

The low-resolution visual system of box jellyfish is more derived than directional photoreception, and thus box jellyfish vision represents the most basic form of true vision in which multiple directional photoreceptors combine to create the first imaging and spatial resolution. This is different from the high-resolution vision that is observed in camera or compound eyes of vertebrates and cephalopods that rely on focusing optics. Critically, the visual systems of box jellyfish are responsible for guiding multiple tasks or behaviors in contrast to less derived visual systems in other jellyfish that guide single behavioral functions. These behaviors include phototaxis based on sunlight (positive) or shadows (negative), obstacle avoidance, and control of swim-pulse rate.

 

Box jellyfish possess "proper eyes" (similar to vertebrates) that allow them to inhabit environments that lesser derived medusae cannot. In fact, they are considered the only class in the clade Medusozoa that have behaviors necessitating spatial resolution and genuine vision. However, the lens in their eyes are more functionally similar to cup-eyes exhibited in low-resolution organisms, and have very little to no focusing capability. The lack of the ability to focus is due to the focal length exceeding the distance to the retina, thus generating unfocused images and limiting spatial resolution. The visual system is still sufficient for box jellyfish to produce an image to help with tasks such as object avoidance.

 

Utility as a model organism

Box jellyfish eyes are a visual system that is sophisticated in numerous ways. These intricacies include the considerable variation within the morphology of box jellyfishes' eyes (including their task/behavior specification), and the molecular makeup of their eyes including: photoreceptors, opsins, lenses, and synapses. The comparison of these attributes to more derived visual systems can allow for a further understanding of how the evolution of more derived visual systems may have occurred, and puts into perspective how box jellyfish can play the role as an evolutionary/developmental model for all visual systems.

 

Characteristics

Box jellyfish visual systems are both diverse and complex, comprising multiple photosystems. There is likely considerable variation in visual properties between species of box jellyfish given the significant inter-species morphological and physiological variation. Eyes tend to differ in size and shape, along with number of receptors (including opsins), and physiology across species of box jellyfish.

 

Box jellyfish have a series of intricate lensed eyes that are similar to those of more derived multicellular organisms such as vertebrates. Their 24 eyes fit into four different morphological categories. These categories consist of two large, morphologically different medial eyes (a lower and upper lensed eye) containing spherical lenses, a lateral pair of pigment slit eyes, and a lateral pair of pigment pit eyes. The eyes are situated on rhopalia (small sensory structures) which serve sensory functions of the box jellyfish and arise from the cavities of the exumbrella (the surface of the body) on the side of the bells of the jellyfish. The two large eyes are located on the mid-line of the club and are considered complex because they contain lenses. The four remaining eyes lie laterally on either side of each rhopalia and are considered simple. The simple eyes are observed as small invaginated cups of epithelium that have developed pigmentation. The larger of the complex eyes contains a cellular cornea created by a mono ciliated epithelium, cellular lens, homogenous capsule to the lens, vitreous body with prismatic elements, and a retina of pigmented cells. The smaller of the complex eyes is said to be slightly less complex given that it lacks a capsule but otherwise contains the same structure as the larger eye.

 

Box jellyfish have multiple photosystems that comprise different sets of eyes. Evidence includes immunocytochemical and molecular data that show photopigment differences among the different morphological eye types, and physiological experiments done on box jellyfish to suggest behavioral differences among photosystems. Each individual eye type constitutes photosystems that work collectively to control visually guided behaviors.

 

Box jellyfish eyes primarily use c-PRCs (ciliary photoreceptor cells) similar to that of vertebrate eyes. These cells undergo phototransduction cascades (process of light absorption by photoreceptors) that are triggered by c-opsins. Available opsin sequences suggest that there are two types of opsins possessed by all cnidarians including an ancient phylogenetic opsin, and a sister ciliary opsin to the c-opsins group. Box jellyfish could have both ciliary and cnidops (cnidarian opsins), which is something not previously believed to appear in the same retina. Nevertheless, it is not entirely evident whether cnidarians possess multiple opsins that are capable of having distinctive spectral sensitivities.

 

Comparison with other organisms

Comparative research on genetic and molecular makeup of box jellyfishes' eyes versus more derived eyes seen in vertebrates and cephalopods focuses on: lenses and crystallin composition, synapses, and Pax genes and their implied evidence for shared primordial (ancestral) genes in eye evolution.

 

Box jellyfish eyes are said to be an evolutionary/developmental model of all eyes based on their evolutionary recruitment of crystallins and Pax genes. Research done on box jellyfish including Tripedalia cystophora has suggested that they possess a single Pax gene, PaxB. PaxB functions by binding to crystallin promoters and activating them. PaxB in situ hybridization resulted in PaxB expression in the lens, retina, and statocysts. These results and the rejection of the prior hypothesis that Pax6 was an ancestral Pax gene in eyes has led to the conclusion that PaxB was a primordial gene in eye evolution, and that the eyes of all organisms likely share a common ancestor.

 

The lens structure of box jellyfish appears very similar to those of other organisms, but the crystallins are distinct in both function and appearance. Weak reactions were seen within the sera and there were very weak sequence similarities within the crystallins among vertebrate and invertebrate lenses. This is likely due to differences in lower molecular weight proteins and the subsequent lack of immunological reactions with antisera that other organisms' lenses exhibit.

 

All four of the visual systems of box jellyfish species investigated with detail (Carybdea marsupialis, Chiropsalmus quadrumanus, Tamoya haplonema and Tripedalia cystophora) have invaginated synapses, but only in the upper and lower lensed eyes. Different densities were found between the upper and lower lenses, and between species. Four types of chemical synapses have been discovered within the rhopalia which could help in understanding neural organization including: clear unidirectional, dense-core unidirectional, clear bidirectional, and clear and dense-core bidirectional. The synapses of the lensed eyes could be useful as markers to learn more about the neural circuit in box jellyfish retinal areas.

 

Evolution as a response to natural stimuli

The primary adaptive responses to environmental variation observed in box jellyfish eyes include pupillary constriction speeds in response to light environments, as well as photoreceptor tuning and lens adaptations to better respond to shifts between light environments and darkness. Interestingly, some box jellyfish species' eyes appear to have evolved more focused vision in response to their habitat.

 

Pupillary contraction appears to have evolved in response to variation in the light environment across ecological niches across three species of box jellyfish (Chironex fleckeri, Chiropsella bronzie, and Carukia barnesi). Behavioral studies suggest that faster pupil contraction rates allow for greater object avoidance, and in fact, species with more complex habitats exhibit faster rates. Ch. bronzie inhabit shallow beach fronts that have low visibility and very few obstacles, thus, faster pupil contraction in response to objects in their environment is not important. Ca. barnesi and Ch. fleckeri are found in more three-dimensionally complex environments like mangroves with an abundance of natural obstacles, where faster pupil contraction is more adaptive. Behavioral studies support the idea that faster pupillary contraction rates assist with obstacle avoidance as well as depth adjustments in response to differing light intensities.

 

Light/dark adaptation via pupillary light reflexes is an additional form of an evolutionary response to the light environment. This relates to the pupil's response to shifts between light intensity (generally from sunlight to darkness). In the process of light/dark adaptation, the upper and lower lens eyes of different box jellyfish species vary in specific function. The lower lens-eyes contain pigmented photoreceptors and long pigment cells with dark pigments that migrate on light/dark adaptation, while the upper-lens eyes play a concentrated role in light direction and phototaxis given that they face upward towards the water surface (towards the sun or moon). The upper lens of Ch. bronzie does not exhibit any considerable optical power while Tr. cystophora (a box jellyfish species that tends to live in mangroves) does. The ability to use light to visually guide behavior is not of as much importance to Ch. bronzie as it is to species in more obstacle-filled environments. Differences in visually guided behavior serve as evidence that species that share the same number and structure of eyes can exhibit differences in how they control behavior.

 

Largest and smallest

Jellyfish range from about one millimeter in bell height and diameter, to nearly 2 metres (6+1⁄2 ft) in bell height and diameter; the tentacles and mouth parts usually extend beyond this bell dimension.

 

The smallest jellyfish are the peculiar creeping jellyfish in the genera Staurocladia and Eleutheria, which have bell disks from 0.5 millimetres (1⁄32 in) to a few millimeters in diameter, with short tentacles that extend out beyond this, which these jellyfish use to move across the surface of seaweed or the bottoms of rocky pools; many of these tiny creeping jellyfish cannot be seen in the field without a hand lens or microscope. They can reproduce asexually by fission (splitting in half). Other very small jellyfish, which have bells about one millimeter, are the hydromedusae of many species that have just been released from their parent polyps; some of these live only a few minutes before shedding their gametes in the plankton and then dying, while others will grow in the plankton for weeks or months. The hydromedusae Cladonema radiatum and Cladonema californicum are also very small, living for months, yet never growing beyond a few mm in bell height and diameter.

 

The lion's mane jellyfish, Cyanea capillata, was long-cited as the largest jellyfish, and arguably the longest animal in the world, with fine, thread-like tentacles that may extend up to 36.5 m (119 ft 9 in) long (though most are nowhere near that large). They have a moderately painful, but rarely fatal, sting. The increasingly common giant Nomura's jellyfish, Nemopilema nomurai, found in some, but not all years in the waters of Japan, Korea and China in summer and autumn is another candidate for "largest jellyfish", in terms of diameter and weight, since the largest Nomura's jellyfish in late autumn can reach 2 m (6 ft 7 in) in bell (body) diameter and about 200 kg (440 lb) in weight, with average specimens frequently reaching 0.9 m (2 ft 11 in) in bell diameter and about 150 kg (330 lb) in weight. The large bell mass of the giant Nomura's jellyfish can dwarf a diver and is nearly always much greater than the Lion's Mane, whose bell diameter can reach 1 m (3 ft 3 in).

 

The rarely encountered deep-sea jellyfish Stygiomedusa gigantea is another candidate for "largest jellyfish", with its thick, massive bell up to 100 cm (3 ft 3 in) wide, and four thick, "strap-like" oral arms extending up to 6 m (19+1⁄2 ft) in length, very different from the typical fine, threadlike tentacles that rim the umbrella of more-typical-looking jellyfish, including the Lion's Mane.

 

Desmonema glaciale, which lives in the Antarctic region, can reach a very large size (several meters). Purple-striped jelly (Chrysaora colorata) can also be extremely long (up to 15 feet).

 

Life history and behavior

Life cycle

Jellyfish have a complex life cycle which includes both sexual and asexual phases, with the medusa being the sexual stage in most instances. Sperm fertilize eggs, which develop into larval planulae, become polyps, bud into ephyrae and then transform into adult medusae. In some species certain stages may be skipped.

 

Upon reaching adult size, jellyfish spawn regularly if there is a sufficient supply of food. In most species, spawning is controlled by light, with all individuals spawning at about the same time of day; in many instances this is at dawn or dusk. Jellyfish are usually either male or female (with occasional hermaphrodites). In most cases, adults release sperm and eggs into the surrounding water, where the unprotected eggs are fertilized and develop into larvae. In a few species, the sperm swim into the female's mouth, fertilizing the eggs within her body, where they remain during early development stages. In moon jellies, the eggs lodge in pits on the oral arms, which form a temporary brood chamber for the developing planula larvae.

 

The planula is a small larva covered with cilia. When sufficiently developed, it settles onto a firm surface and develops into a polyp. The polyp generally consists of a small stalk topped by a mouth that is ringed by upward-facing tentacles. The polyps resemble those of closely related anthozoans, such as sea anemones and corals. The jellyfish polyp may be sessile, living on the bottom, boat hulls or other substrates, or it may be free-floating or attached to tiny bits of free-living plankton or rarely, fish or other invertebrates. Polyps may be solitary or colonial. Most polyps are only millimetres in diameter and feed continuously. The polyp stage may last for years.

 

After an interval and stimulated by seasonal or hormonal changes, the polyp may begin reproducing asexually by budding and, in the Scyphozoa, is called a segmenting polyp, or a scyphistoma. Budding produces more scyphistomae and also ephyrae. Budding sites vary by species; from the tentacle bulbs, the manubrium (above the mouth), or the gonads of hydromedusae. In a process known as strobilation, the polyp's tentacles are reabsorbed and the body starts to narrow, forming transverse constrictions, in several places near the upper extremity of the polyp. These deepen as the constriction sites migrate down the body, and separate segments known as ephyra detach. These are free-swimming precursors of the adult medusa stage, which is the life stage that is typically identified as a jellyfish. The ephyrae, usually only a millimeter or two across initially, swim away from the polyp and grow. Limnomedusae polyps can asexually produce a creeping frustule larval form, which crawls away before developing into another polyp. A few species can produce new medusae by budding directly from the medusan stage. Some hydromedusae reproduce by fission.

 

Lifespan

Little is known of the life histories of many jellyfish as the places on the seabed where the benthic forms of those species live have not been found. However, an asexually reproducing strobila form can sometimes live for several years, producing new medusae (ephyra larvae) each year.

 

An unusual species, Turritopsis dohrnii, formerly classified as Turritopsis nutricula, might be effectively immortal because of its ability under certain circumstances to transform from medusa back to the polyp stage, thereby escaping the death that typically awaits medusae post-reproduction if they have not otherwise been eaten by some other organism. So far this reversal has been observed only in the laboratory.

 

Locomotion

Jellyfish locomotion is highly efficient. Muscles in the jellylike bell contract, setting up a start vortex and propelling the animal. When the contraction ends, the bell recoils elastically, creating a stop vortex with no extra energy input.

Using the moon jelly Aurelia aurita as an example, jellyfish have been shown to be the most energy-efficient swimmers of all animals. They move through the water by radially expanding and contracting their bell-shaped bodies to push water behind them. They pause between the contraction and expansion phases to create two vortex rings. Muscles are used for the contraction of the body, which creates the first vortex and pushes the animal forward, but the mesoglea is so elastic that the expansion is powered exclusively by relaxing the bell, which releases the energy stored from the contraction. Meanwhile, the second vortex ring starts to spin faster, sucking water into the bell and pushing against the centre of the body, giving a secondary and "free" boost forward. The mechanism, called passive energy recapture, only works in relatively small jellyfish moving at low speeds, allowing the animal to travel 30 percent farther on each swimming cycle. Jellyfish achieved a 48 percent lower cost of transport (food and oxygen intake versus energy spent in movement) than other animals in similar studies. One reason for this is that most of the gelatinous tissue of the bell is inactive, using no energy during swimming.

 

Ecology

Diet

Jellyfish are, like other cnidarians, generally carnivorous (or parasitic), feeding on planktonic organisms, crustaceans, small fish, fish eggs and larvae, and other jellyfish, ingesting food and voiding undigested waste through the mouth. They hunt passively using their tentacles as drift lines, or sink through the water with their tentacles spread widely; the tentacles, which contain nematocysts to stun or kill the prey, may then flex to help bring it to the mouth. Their swimming technique also helps them to capture prey; when their bell expands it sucks in water which brings more potential prey within reach of the tentacles.

 

A few species such as Aglaura hemistoma are omnivorous, feeding on microplankton which is a mixture of zooplankton and phytoplankton (microscopic plants) such as dinoflagellates. Others harbour mutualistic algae (Zooxanthellae) in their tissues; the spotted jellyfish (Mastigias papua) is typical of these, deriving part of its nutrition from the products of photosynthesis, and part from captured zooplankton. The upside-down jellyfish (Cassiopea andromeda) also has a symbiotic relationship with microalgae, but captures tiny animals to supplement their diet. This is done by releasing tiny balls of living cells composed of mesoglea. These use cilia to drive them through water and stinging cells which stun the prey. The blobs also seems to have digestive capabilities.

 

Predation

Other species of jellyfish are among the most common and important jellyfish predators. Sea anemones may eat jellyfish that drift into their range. Other predators include tunas, sharks, swordfish, sea turtles and penguins. Jellyfish washed up on the beach are consumed by foxes, other terrestrial mammals and birds. In general however, few animals prey on jellyfish; they can broadly be considered to be top predators in the food chain. Once jellyfish have become dominant in an ecosystem, for example through overfishing which removes predators of jellyfish larvae, there may be no obvious way for the previous balance to be restored: they eat fish eggs and juvenile fish, and compete with fish for food, preventing fish stocks from recovering.

 

Symbiosis

Some small fish are immune to the stings of the jellyfish and live among the tentacles, serving as bait in a fish trap; they are safe from potential predators and are able to share the fish caught by the jellyfish. The cannonball jellyfish has a symbiotic relationship with ten different species of fish, and with the longnose spider crab, which lives inside the bell, sharing the jellyfish's food and nibbling its tissues.

 

Main article: Jellyfish bloom

Jellyfish form large masses or blooms in certain environmental conditions of ocean currents, nutrients, sunshine, temperature, season, prey availability, reduced predation and oxygen concentration. Currents collect jellyfish together, especially in years with unusually high populations. Jellyfish can detect marine currents and swim against the current to congregate in blooms. Jellyfish are better able to survive in nutrient-rich, oxygen-poor water than competitors, and thus can feast on plankton without competition. Jellyfish may also benefit from saltier waters, as saltier waters contain more iodine, which is necessary for polyps to turn into jellyfish. Rising sea temperatures caused by climate change may also contribute to jellyfish blooms, because many species of jellyfish are able to survive in warmer waters. Increased nutrients from agricultural or urban runoff with nutrients including nitrogen and phosphorus compounds increase the growth of phytoplankton, causing eutrophication and algal blooms. When the phytoplankton die, they may create dead zones, so-called because they are hypoxic (low in oxygen). This in turn kills fish and other animals, but not jellyfish, allowing them to bloom. Jellyfish populations may be expanding globally as a result of land runoff and overfishing of their natural predators. Jellyfish are well placed to benefit from disturbance of marine ecosystems. They reproduce rapidly; they prey upon many species, while few species prey on them; and they feed via touch rather than visually, so they can feed effectively at night and in turbid waters. It may be difficult for fish stocks to re-establish themselves in marine ecosystems once they have become dominated by jellyfish, because jellyfish feed on plankton, which includes fish eggs and larvae.

 

As suspected at the turn of this century, jellyfish blooms are increasing in frequency. Between 2013 and 2020 the Mediterranean Science Commission monitored on a weekly basis the frequency of such outbreaks in coastal waters from Morocco to the Black Sea, revealing a relatively high frequency of these blooms nearly all year round, with peaks observed from March to July and often again in the autumn. The blooms are caused by different jellyfish species, depending on their localisation within the Basin: one observes a clear dominance of Pelagia noctiluca and Velella velella outbreaks in the western Mediterranean, of Rhizostoma pulmo and Rhopilema nomadica outbreaks in the eastern Mediterranean, and of Aurelia aurita and Mnemiopsis leidyi outbreaks in the Black Sea.

 

Some jellyfish populations that have shown clear increases in the past few decades are invasive species, newly arrived from other habitats: examples include the Black Sea, Caspian Sea, Baltic Sea, central and eastern Mediterranean, Hawaii, and tropical and subtropical parts of the West Atlantic (including the Caribbean, Gulf of Mexico and Brazil).

 

Jellyfish blooms can have significant impact on community structure. Some carnivorous jellyfish species prey on zooplankton while others graze on primary producers. Reductions in zooplankton and ichthyoplankton due to a jellyfish bloom can ripple through the trophic levels. High-density jellyfish populations can outcompete other predators and reduce fish recruitment. Increased grazing on primary producers by jellyfish can also interrupt energy transfer to higher trophic levels.

 

During blooms, jellyfish significantly alter the nutrient availability in their environment. Blooms require large amounts of available organic nutrients in the water column to grow, limiting availability for other organisms. Some jellyfish have a symbiotic relationship with single-celled dinoflagellates, allowing them to assimilate inorganic carbon, phosphorus, and nitrogen creating competition for phytoplankton. Their large biomass makes them an important source of dissolved and particulate organic matter for microbial communities through excretion, mucus production, and decomposition. The microbes break down the organic matter into inorganic ammonium and phosphate. However, the low carbon availability shifts the process from production to respiration creating low oxygen areas making the dissolved inorganic nitrogen and phosphorus largely unavailable for primary production.

 

These blooms have very real impacts on industries. Jellyfish can outcompete fish by utilizing open niches in over-fished fisheries. Catch of jellyfish can strain fishing gear and lead to expenses relating to damaged gear. Power plants have been shut down due to jellyfish blocking the flow of cooling water. Blooms have also been harmful for tourism, causing a rise in stings and sometimes the closure of beaches.

 

Jellyfish form a component of jelly-falls, events where gelatinous zooplankton fall to the seafloor, providing food for the benthic organisms there. In temperate and subpolar regions, jelly-falls usually follow immediately after a bloom.

 

Habitats

Most jellyfish are marine animals, although a few hydromedusae inhabit freshwater. The best known freshwater example is the cosmopolitan hydrozoan jellyfish, Craspedacusta sowerbii. It is less than an inch (2.5 cm) in diameter, colorless and does not sting. Some jellyfish populations have become restricted to coastal saltwater lakes, such as Jellyfish Lake in Palau. Jellyfish Lake is a marine lake where millions of golden jellyfish (Mastigias spp.) migrate horizontally across the lake daily.

 

Although most jellyfish live well off the ocean floor and form part of the plankton, a few species are closely associated with the bottom for much of their lives and can be considered benthic. The upside-down jellyfish in the genus Cassiopea typically lie on the bottom of shallow lagoons where they sometimes pulsate gently with their umbrella top facing down. Even some deep-sea species of hydromedusae and scyphomedusae are usually collected on or near the bottom. All of the stauromedusae are found attached to either seaweed or rocky or other firm material on the bottom.

 

Some species explicitly adapt to tidal flux. In Roscoe Bay, jellyfish ride the current at ebb tide until they hit a gravel bar, and then descend below the current. They remain in still waters until the tide rises, ascending and allowing it to sweep them back into the bay. They also actively avoid fresh water from mountain snowmelt, diving until they find enough salt.

  

Parasites

Jellyfish are hosts to a wide variety of parasitic organisms. They act as intermediate hosts of endoparasitic helminths, with the infection being transferred to the definitive host fish after predation. Some digenean trematodes, especially species in the family Lepocreadiidae, use jellyfish as their second intermediate hosts. Fish become infected by the trematodes when they feed on infected jellyfish.

 

Relation to humans

Jellyfish have long been eaten in some parts of the world. Fisheries have begun harvesting the American cannonball jellyfish, Stomolophus meleagris, along the southern Atlantic coast of the United States and in the Gulf of Mexico for export to Asia.

 

Jellyfish are also harvested for their collagen, which is being investigated for use in a variety of applications including the treatment of rheumatoid arthritis.

 

Aquaculture and fisheries of other species often suffer severe losses – and so losses of productivity – due to jellyfish.

 

Products

Main article: Jellyfish as food

In some countries, including China, Japan, and Korea, jellyfish are a delicacy. The jellyfish is dried to prevent spoiling. Only some 12 species of scyphozoan jellyfish belonging to the order Rhizostomeae are harvested for food, mostly in southeast Asia. Rhizostomes, especially Rhopilema esculentum in China (海蜇 hǎizhé, 'sea stingers') and Stomolophus meleagris (cannonball jellyfish) in the United States, are favored because of their larger and more rigid bodies and because their toxins are harmless to humans.

 

Traditional processing methods, carried out by a jellyfish master, involve a 20- to 40-day multi-phase procedure in which, after removing the gonads and mucous membranes, the umbrella and oral arms are treated with a mixture of table salt and alum, and compressed. Processing makes the jellyfish drier and more acidic, producing a crisp texture. Jellyfish prepared this way retain 7–10% of their original weight, and the processed product consists of approximately 94% water and 6% protein. Freshly processed jellyfish has a white, creamy color and turns yellow or brown during prolonged storage.

 

In China, processed jellyfish are desalted by soaking in water overnight and eaten cooked or raw. The dish is often served shredded with a dressing of oil, soy sauce, vinegar and sugar, or as a salad with vegetables. In Japan, cured jellyfish are rinsed, cut into strips and served with vinegar as an appetizer. Desalted, ready-to-eat products are also available.

 

Biotechnology

The hydromedusa Aequorea victoria was the source of green fluorescent protein, studied for its role in bioluminescence and later for use as a marker in genetic engineering.

Pliny the Elder reported in his Natural History that the slime of the jellyfish "Pulmo marinus" produced light when rubbed on a walking stick.

 

In 1961, Osamu Shimomura extracted green fluorescent protein (GFP) and another bioluminescent protein, called aequorin, from the large and abundant hydromedusa Aequorea victoria, while studying photoproteins that cause bioluminescence in this species. Three decades later, Douglas Prasher sequenced and cloned the gene for GFP. Martin Chalfie figured out how to use GFP as a fluorescent marker of genes inserted into other cells or organisms. Roger Tsien later chemically manipulated GFP to produce other fluorescent colors to use as markers. In 2008, Shimomura, Chalfie and Tsien won the Nobel Prize in Chemistry for their work with GFP. Man-made GFP became widely used as a fluorescent tag to show which cells or tissues express specific genes. The genetic engineering technique fuses the gene of interest to the GFP gene. The fused DNA is then put into a cell, to generate either a cell line or (via IVF techniques) an entire animal bearing the gene. In the cell or animal, the artificial gene turns on in the same tissues and the same time as the normal gene, making a fusion of the normal protein with GFP attached to the end, illuminating the animal or cell reveals what tissues express that protein—or at what stage of development. The fluorescence shows where the gene is expressed.

 

Aquarium display

Jellyfish are displayed in many public aquariums. Often the tank's background is blue and the animals are illuminated by side light, increasing the contrast between the animal and the background. In natural conditions, many jellies are so transparent that they are nearly invisible. Jellyfish are not adapted to closed spaces. They depend on currents to transport them from place to place. Professional exhibits as in the Monterey Bay Aquarium feature precise water flows, typically in circular tanks to avoid trapping specimens in corners. The outflow is spread out over a large surface area and the inflow enters as a sheet of water in front of the outflow, so the jellyfish do not get sucked into it. As of 2009, jellyfish were becoming popular in home aquariums, where they require similar equipment.

 

Stings

Jellyfish are armed with nematocysts, a type of specialized stinging cell. Contact with a jellyfish tentacle can trigger millions of nematocysts to pierce the skin and inject venom, but only some species' venom causes an adverse reaction in humans. In a study published in Communications Biology, researchers found a jellyfish species called Cassiopea xamachana which when triggered will release tiny balls of cells that swim around the jellyfish stinging everything in their path. Researchers described these as "self-propelling microscopic grenades" and named them cassiosomes.

 

The effects of stings range from mild discomfort to extreme pain and death. Most jellyfish stings are not deadly, but stings of some box jellyfish (Irukandji jellyfish), such as the sea wasp, can be deadly. Stings may cause anaphylaxis (a form of shock), which can be fatal. Jellyfish kill 20 to 40 people a year in the Philippines alone. In 2006 the Spanish Red Cross treated 19,000 stung swimmers along the Costa Brava.

 

Vinegar (3–10% aqueous acetic acid) may help with box jellyfish stings but not the stings of the Portuguese man o' war. Clearing the area of jelly and tentacles reduces nematocyst firing. Scraping the affected skin, such as with the edge of a credit card, may remove remaining nematocysts. Once the skin has been cleaned of nematocysts, hydrocortisone cream applied locally reduces pain and inflammation. Antihistamines may help to control itching. Immunobased antivenins are used for serious box jellyfish stings.

 

In Elba Island and Corsica dittrichia viscosa is now used by residents and tourists to heal stings from jellyfish, bees and wasps pressing fresh leaves on the skin with quick results.

 

Mechanical issues

Jellyfish in large quantities can fill and split fishing nets and crush captured fish. They can clog cooling equipment, having disabled power stations in several countries; jellyfish caused a cascading blackout in the Philippines in 1999, as well as damaging the Diablo Canyon Power Plant in California in 2008. They can also stop desalination plants and ships' engines.

Copyright © John G. Lidstone, all rights reserved.

It is an offence under law if you remove my copyright marking, or post this image anywhere else without my express written permission.

 

Turning light into power, solar arrays are a must-have for the vast majority of satellites.

 

With solar arrays sized according to the power needs of the mission, there might be thousands of individual solar cells crammed onto a typical satellite.

 

The design seen here is a thin version of the European 3G30 triple-junction gallium arsenide solar cell. Produced by Azur Space Solar Power, it is one of the most efficient in the world.

 

It was 60 years ago this month that the first practical solar (or ‘photovoltaic’ cell) was demonstrated at Bell Labs in New Jersey, USA. This new invention’s very first practical use was in powering early satellites, and solar cells remain pivotal to the space industry to this day.

 

But photovoltaic electricity generation is also on the way to becoming a major terrestrial energy source, projected to supply close to 3% of global electricity demand by 2020.

 

This bright future will be the focus of the European Photovoltaic Solar Energy Conference and Exhibition in Amsterdam, the Netherlands, this September.

 

Thousands of experts will discuss the progress of photovoltaic technology across – as well as off – the planet.

 

Historically, the space industry has helped to drive advances in photovoltaics. For instance, the gallium arsenide cells powering today’s satellites are more than twice as efficient as those installed on domestic rooftops.

 

With such successes in mind, ESA has begun an initiative devoted to the synergies between space and energy technology called Space for Energy, with solar energy a major element.

 

Meanwhile, next week sees the ESA-organised European Space Power Conference in Noordwijkerhout, the Netherlands, covering all aspects of electrical power for space missions, including batteries, power components and nuclear power.

 

Credit: Azur Space Solar Power

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

AUMSVILLE, Ore. – Father-son farmers Steve and Daniel Keudell are seeing tremendous energy and water savings on their 1,600-acre vegetable farm, thanks to energy-efficient linear irrigation systems installed with financial assistance from USDA’s Natural Resources Conservation Service (NRCS). NRCS is helping farmers in Marion County convert to low-pressure, efficient irrigation systems, as part of a strategic groundwater conservation initiative in the Stayton-Sublimity Restricted Groundwater Priority Area. The new linear irrigation systems are up to 30 percent more efficient than other systems typically used in the area (such as big guns), and they save significant water and energy. Over time, these water savings reduce the strain on the groundwater priority area and allow the aquifer to stabilize. NRCS photo by Tracy Robillard, June 2015.

TOKS №NCT 290

Built: 2024

 

Estonia, Tallinn, Uus-Sadama tänav

Irizar i6s Efficient integral de Hife cubriendo la línea Cambrils-Bilbao.

Moonta.

The original occupants of the land around Moonta were the Narrunga people who lived across Yorke Peninsula. Once white settlements appeared in the Copper Triangle towns a group of interdenominational zealots formed a committee in 1867 to set up a mission for Aboriginal people. A year later the group was granted 600 acres of land by the government for the establishment of Point Pearce Aboriginal Mission near Port Victoria. The first superintendent of the Mission was the Reverend Julius Kuhn. White settlement really began in the district in 1861 when Walter Watson Hughes of the Wallaroo run began mining operations at Wallaroo Mines. Patrick Ryan, one of his shepherds had discovered copper ore in a wombat burrow the year before. At that time in the 1860s copper was binging as much as £87 per ton so Walter Hughes became a wealthy man quickly. He developed the mine with capital from Elder Smith and Company and his fellow company directors. The first miners in the Copper Triangle were Cornish miners moving down from Burra. The majority of settlers though came directly as sponsored immigrants from Cornwall. In 1865 some 43% of all immigrants to SA came from Cornwall. This direct migration continued especially after the closure of some big mines in Cornwall in 1866. Mining began at Moonta about the same time as mining at Wallaroo Mines (1861.) Hughes was the major investor in both the Wallaroo Mining Company and the Moonta Mining Company. The smelters for the district were located at Wallaroo. The Moonta Mines were the richest in the whole district and in its first year of operations the Moonta Mines made a profit of £101,000.

 

One of the first shafts sunk at Moonta was the Ryan shaft, after Watson’s shepherd. From 1864 the mine superintendent was Henry Hancock and consequently the second shaft was named the Hancock shaft. Hancock was the one who made sure the mines operated efficiently. His “reign” lasted until 1898. He also had advanced social welfare ideas for the times and he established a school of mines for the boys and a library for the miners. By 1876 under Hancock’s expert management the mine had produced £1,000,000 in dividends. Upon his retirement in 1898 Hancock’s son took over management of the Moonta mines which had been amalgamated with the Wallaroo mines into one company in 1890. Mining operations at Moonta were complex and some shafts exceeded 700 metres in depth. This created problems with water (and heat for the miners) so large pump houses were required such as the Hughes Engine House which still stands, albeit in ruins. The Moonta mine lasted for over sixty years and Cornish miners influenced the style of buildings in the town and the design of pump and engines houses as they were all the same as those in Cornwall. Some engines were made in Cornish foundries but others were made by James Martin‘s large foundry in Gawler. After World War One the price of copper fell dramatically and the mines became financially unviable and closed in 1923. Their heyday had been between 1900 and 1910 when much of the mining equipment had been replaced and modernised and prices were good, but a disastrous underground fire in 1904 in Taylor’s shaft began a slow decline in returns for the mine investors.

 

The Copper Triangle towns of Moonta-Wallaroo- Kadina had 12,000 people by 1890, representing about 10% of Adelaide’s population which was only 130,000. Consequently government services for the area were given priority and by 1878 the Triangle had a daily rail connecting service to Adelaide via Port Wakefield, Balaklava and Hamley Bridge. Apart from their mining skills the Cornish brought with them their religious faith hence the numerous Methodist chapels and churches in the area. All three branches of Methodism were well represented- Bible Christian Methodists, Primitive Methodists and Wesleyan Methodists. The 1891 census showed that 80% of the residents of the Moonta district were Methodists. Not surprisingly the Moonta Methodist Circuit (like a synod) had more church members than the big circuits in Adelaide such as Pirie Street, Norwood or Kent Town. The old Methodist Church at Moonta Mines was built in 1865 and with its gallery it can hold 1,250 worshippers. It seldom gets 50 worshippers these days! At one stage there were 14 Methodist churches in Moonta with a further 10 in Wallaroo/Kadina. As the Cornish used to say “Methodist churches are as common as currents in a cake.” The pulpits of the churches provided good training ground for public speaking as lay preachers were often used in these churches. One such trainee was John Verran who was Premier of SA between 1910-12. He once remarked “he was a MP because he was a PM” i.e Primitive Methodist!

 

The miners built their own cottages on the mining lands so many were poorly built and did not last but some still remain. In 1878 the very large Moonta Mines School opened as a model school. It soon had an enrolment of 1,000 children, although it was built to accommodate 800. Today the old school is the town museum. The biggest problem facing the Cornish miners was a lack of water. There are no rivers on Yorke Peninsula. Rainwater was gathered from puddles in roads and from roofs and in 1863, in just one week, 110 deaths were registered during a typhoid outbreak. The Moonta cemetery has many sad tales to tell and it is well worth a visit. Reticulated water was not piped to the town until 1890 when the pipeline from Beetaloo Reservoir reached the town and ended the summer typhoid outbreaks. Moonta was declared a town in 1863; the local Council was instituted in 1872; and by 1873 the town had 80 businesses, five hotels, numerous churches, its own newspaper, four banks and an Institute. A horse tramway connected the suburbs of Moonta Mines, Moonta and Moonta Bay. Other “suburban” areas of Moonta were Yelta, North Yelta, Cross Roads and Hamley Flat. When the mines closed in 1923 many left the town and it had a population of just over 1,000 people in 1980. Today it has a population of just over 4,000 people.

Moonta Historical Walk. See map on previous page.

1. Moonta Area School, Blanche Terrace. Selina Hancock first started a licensed school on this site, with 41 children, in 1865. After the passing of the compulsory school act of 1875, a school building was erected by the Colonial Architect in 1877, at a cost of £6,400– a large sum for those days. The local builders were Rossiter and Davies and almost immediately the school had an enrolment of 800 – a solid number of students! The school was extended further in 1903. The original school had six classrooms plus three other large rooms (65’ by 24’), one for boys and one for girls and another for infants. Until 1978 this was the Moonta Primary School.

2. St Francis of Assisi Roman Catholic Church, Blanche Terrace. This simple Gothic style limestone building was completed in 1869. Priests from Kadina serviced this church. Four buttresses support each side. The modern additions on the sides of the building unfortunately detract from its general appearance.

3. The Masonic Temple, Blanche Terrace. This magnificent Italian style building was completed in 1875. It has cement dressings and fine fretwork quoins. It is believed to be the oldest purpose built Masonic Temple still used for that purpose in Australia. The first lodge meetings were held in Moonta in July 1868 as lodges were strongly supported by the Cornish miners. The interior was especially fine and described in 1899 as having ornate ceilings, with chocolate, gold and salmon coloured scrolls painted on the walls. It has a fine tile floor and wooden benches and fittings. The building was fitted out in 1899 with gas hanging lamps. Like most Masonic Temples it has half windows only. The side and rear parts of the building are like a medieval crenulated castle. A good limestone garden wall surrounds the whole complex.

4. All Saints Anglican Church, corner of Blanche Terrace & Milne Terrace. This limestone church with brick quoins has a fine hammer and beam ceiling inside. The bell was made of local copper in 1874, whilst the church itself dates from 1873. The bell was donated by the Wallaroo Smelter Company. It stands in a separate wooden bell structure on the west side of the church. Unfortunately the original slate roof was replaced with asbestos imitation slate in 1973. The stone is local and the bricks were made at the Woods Brickyard at Moonta Mines. It is commonly regarded as the Anglican “cathedral” church of Yorke Peninsula. Note the fine triangular stone windows above the larger Gothic windows. Stone was left near the doorway for the addition of a stone porch that has not happened yet! The adjoining church hall was built in 1903.

5. School of Mines, Ellen Street on cnr of Robert Street. This important building was built in two stages, the southern half being built in 1866 as a Baptist Chapel (with a manse next door). In 1891 it became the School of Mines, the first school outside Adelaide for the training of adults and youths in trades and bookwork. The northern half of the School of Mines was built in 1903 to match the southern half. It is a fine limestone building in the Gothic style with a pediment to the roofline. When the School of Mines opened in 1891 it started with 33 students and a government grant of £200 per annum. The first subjects taught were Mine Surveying, Mechanical Drawing and Mathematics. By 1896 there were 100 students enrolled and by 1898 this had grown to 275 students. New subjects were added to the curriculum such as Sheet Metalwork, Plumbing, Carpentry, Bookkeeping and Metallurgy. Scholarships were made available to underground mine workers and early in the 20th century the government grant increased to £1000 per annum. There is a stable block next to the building.

6. Bible Christian Church, Cnr Henry and Robert Streets. This imposing and distinctive old church dating from 1873 was built for the Bible Christians. It was built by Nettle and Thor. In 1913 it was sold to the Church of Christ but it has been unused for religious services for many years and is now almost derelict. It is a Romanesque style church with a grand arched central doorway with three small Romanesque arched windows above. It is one of the most distinctive buildings in Moonta. Made of local stone, it has a fine finial on top of the gable façade. As with most Romanesque style buildings it has relatively small windows and this gives an impression of mass and solidness. Note the fretwork dividing the windows. The triple arched rounded windows above the doors are typical of this style of building.

7. The Uniting Church, Robert Street facing Queen’s Square. This former Wesleyan Methodist Church is a grand building reflecting the prominence of Methodism amongst the Cornish miners of Moonta. £4,000 was raised to build this church in 1873. Its Gothic style is offset with some fine Mintaro slate steps and a slate roof. The pulpit, large enough to hold four speakers, is a decorative example made of imported Bath stone from England. Delabole Slate Yards in Willunga carved it. The main window facing the street and square displays stone tracery dividing the stained glass panels. The church has seven buttresses and the symmetry of the façade is emphasised by four stone spires. It is a fine example of a Gothic style church designed by architect Roland Rees. The church was placed alongside the town square to indicate its importance to the town. Mining company officials and the first Mayor of Moonta, Mr Drew worshipped here. He laid the foundation stone on October 6th 1873. The adjoining hall was built in 1866.

8. Polly Bennet’s Shop, Robert Street facing Queen’s Square. This interesting little shop was a fashionable milliner’s shop. The wealthiest of the Methodist ladies purchased their hats here to wear to the Sunday services. The shop was built between 1864 and 1874. It is a nondescript little building only of historical interest because of its links to the premier Moonta Methodist congregation.

9. Queen’s Square. This attractive town square was named after Queen Victoria. It was planted and laid out in 1897 – (the 25th anniversary of the town) and in the centre a fountain commemorates the work of Charles Drew. The pretty cast iron three tiered fountain was erected in 1893. A rotunda for bands and concerts was also erected in 1893, but pulled down in 1947. However a modern replica was later erected. Some of the trees planted in 1897 include Moreton Bay Figs, Tamarisks and Norfolk Island Pines. Until 1945 the square was fenced.

10. Moonta Town Hall, George Street facing the Square. This prominent structure was built in 1885 as the fourth local institute, using volunteer labour. Mrs Corpe, wife of the then chairman of the Institute committee and a major Moonta mines investor, laid the foundation stone and the Governor of South Australia, Sir W. C. F. Robinson opened the building. Thomas Smeaton of Adelaide designed it. The grand design reflects the prosperity of the times for Moonta. It has a three storey clock tower with French metal roof, classical half round windows, and the ground level window sills have the original metal spikes on them to stop loitering! The clock tower was added in 1907 and the new clock faces were fitted in 1963. Around 1907 the Institute became the Town Hall. In 1928 some internal remodelling saw the introduction of a cinema room and Art Deco entrance leadlight doors. Outside the Town Hall is a cast iron drinking fountain erected in 1890 to commemorate the arrival of reservoir water from Beetaloo Dam.

11. Shop – formerly an Institute Building at 55 George Street. This quaint building was the third Institute erected in Moonta. It dates from 1870. The land was donated by David Bowers for the Institute. It is a classical designed building with Greek triangular pediments above the two doors and a rounded arch over the central window. It has had many uses in latter years. The current veranda ruins the classical appearance of the building and it must be seen from across the street to appreciate its architecture. Note the round louvred roof vent.

12. Former Bank of South Australia, 46 George Street. Built in 1864, this was the first bank in Moonta. It later became the Union Bank. The arched porch is very distinctive and the quoins around the windows and corners give the building an attractive frontage. The Moonta Mining Company banked here.

13. Prince of Wales Hotel, George and Ellen Streets. This pug, limestone and plaster building is one of the oldest in Moonta, dating from 1863, which was the year the town was laid out. The first meetings of the Moonta Council were held here and the first licensee of the hotel was Mr Weekes. The hotel lost its licence in 1911. It has been an antique shop for many years. It is one of the few partly pug buildings left in Moonta as opposed to Moonta Mines which has many pug buildings. Its large 160,000 gallon rain water tank was used by many townspeople in times of drought.

14. Old Union Bank, Ellen Street. This grand façade dates from 1865 when it was opened as the Bank of South Australia, later becoming the Union Bank in 1892 and trading as a bank until 1943. The façade is noted for its classical arches, symmetry and balustrades along the parapet roof. This is the finest commercial building in Moonta. A fine photograph of the building and Ellen Street in 1874 appears on the cover of Philip Payton’s, Pictorial History of Australia’s Little Cornwall, Rigby, Adelaide, 1978. Note the wooden louvred rounded window on the southern wall, the bricked up one, and the five half rounded windows of grand proportions and two half rounded doors on the front. Note the fine scrollwork around the windows. You can still faintly see “Union Bank” on the front parapet.

15. Cornwall Hotel, Cnr Ellen and Ryan Streets. This old public house was licensed and erected in 1865 with the upper storey added in 1890. The wood worked veranda clearly dates the upstairs to this time. There are four stables for coaches at the rear. It is a solid limestone building with cement rendered quoins.

16. Post Office, Ryan Street opposite Cornwall Hotel. This typical Georgian style Post Office was built in 1866, one of the early buildings of Moonta. The bull-nosed veranda was added in 1909 destroying the Georgian appearance of the building. Note the fine semi-circular small paned windows - half rounded and rectangular. This complex included the postmaster’s residence. A similar style police station next door was demolished in the 1960’s.

17. Druid’s Hall, Ryan Street. This small gothic building was erected as an Anglican schoolroom in 1866 and taken over by the Druids in 1902. Its simple façade with a gable, scrolls and Gothic arched windows is quite pleasing.

18. Royal Hotel, Cnr Ryan Street and Blanche Terrace. Dating from 1865 this is one of the three original hotels of Moonta. Originally it was called the Globe. After fire damage it was extensively rebuilt in 1885. The upper storey is an unusual mixture of half rounded windows with rectangular doors! The Ryan Street façade has a beautiful Art Nouveau style leadlight semi-circular window.

19. Moonta Railway Station and Information Centre. A display of old photographs and a number of books are available for reading here etc. The building is a typical Art Nouveau style station that was built in a number of South Australian country towns. Although there was a horse tramway between Wallaroo and Moonta as early as 1866 the government did not acquire the line until 1878. It was then converted to a 3’6” rail gauge track in 1891 with the first train arriving from Wallaroo in 1892. This line was converted to the usual South Australian 5’3’’ gauge at the time when the station was built in 1914. The building cost £2,000. The last passenger train to Adelaide ran in 1969 and the line closed in 1979.

20. Moonta Cemetery. Just 5 minutes’ walk from the Anglican Church is the cemetery established in 1866 just 5 years after mining began. The first recorded burial was for the infant son of the licensee of the Cornwall Hotel (then known as the Globe). There is a fine Gothic style gatehouse and a limestone wall complete with broken glass atop, surrounding the cemetery which was completed in 1874. The cemetery bell was erected in 1896 from local copper and cast in Adelaide by Horwood and Company. The bell called mourners to funerals. A small area of the cemetery was allocated for Jewish burials in 1875. It is located along the eastern wall (ie on your left when standing at the gatehouse) opposite the old original toilet block, which is on the right hand wall of the cemetery. The “new” section of the cemetery begins immediately beyond the Jewish section. The “new” section was opened in 1897! The area to the left of the main entrance is for unmarked children’s graves. There is a small memorial to them all. As noted previously typhoid and other epidemics caused by lack of freshwater caused many childhood deaths. This area also has an unusual wooden “headstone” dating from 1865 for Samuel Jones, which predates the opening of the cemetery! The cemetery has about 9,000 burials in it. In the 19th century over a quarter of all deaths recorded were of people 21 years or younger.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The "Entwicklung" tank series (= "development"), more commonly known as the E-Series, was a late-World War II attempt by Germany to produce a standardized series of tank designs. There were to be six standard designs in different weight classes, from which several specialized variants were to be developed. This intended to reverse the trend of extremely complex tank designs that had resulted in poor production rates and mechanical unreliability.

 

The E-series designs were simpler, cheaper to produce and more efficient than their predecessors; however, their design offered only modest improvements in armor and firepower over the designs they were intended to replace, such as the Jagdpanzer 38(t), Panther Ausf. G or Tiger II. However, the resulting high degree of standardization of German armored vehicles would also have made logistics and maintenance easier. Indeed, nearly all E-series vehicles — up through and including the E-75 — were intended to use what were essentially the Tiger II's 80 cm (31½ in) diameter, steel-rimmed road wheels for their suspension, meant to overlap each other (as on the later production Tiger I-E and Panther designs that also used them), even though in a highly simplified fashion. For instance, while the E-50/75’s running gear resembled outwardly the Tiger II’s, the latter’s torsion bar suspension, which necessitated a complex hull with many openings, was replaced by very compact conical spring coil packages that each held a pair of interleaved road wheels – with the benefit that all suspension elements remained outside of the hull. This considerably simplified production and saved time as well as scarce material.

 

Focus of initial chassis and combat vehicle development was the E-50/75 Standardpanzer, designed by Adler. These were two mostly identical vehicles and only differed in armor thickness, overall weight and running gear design to cope with the different weights. While the E-50 was the standardized replacement for the medium PzKpfw. V “Panther” and the last operational PzKpfw. VI “Tiger”, with an operational weight of around 50 tons, the E-75 was intended to become the standard heavy tank in the 70 ton class, as a replacement for the Tiger II battle tank and the Jagdtiger SPG. They were to share many components, including the same Maybach HL 234 engine with up to 900 hp output and the drivetrain, as well as running gear elements and almost all peripheral equipment. Both E-50 and E-75 were built on the same production lines for ease of manufacture.

 

This universal tank chassis would, beyond the primary use for battle tanks, also become the basis for a wide range of specialized support vehicles like self-propelled artillery, assault guns, tank hunters and anti-aircraft weapon carriers, which would gradually replace and standardize the great variety of former support vehicles, dramatically optimizing maintenance and logistics.

The E-50/75 SPAAG sub-family itself was quite diversified and comprised a wide range of vehicles that mainly carried different turrets with the respective weaponry as well as air space surveillance, targeting and command equipment. The range of armament included not only guns of various calibers for short, medium and long range in armored and mostly fully enclosed turrets, there were furthermore armored launch ramps for anti-aircraft missiles, including the guided “Rheintochter”, “Wasserfall” or “Enzian” SAMs as well as batteries with unguided “Taifun” anti-aircraft missiles.

 

Among this new vehicle family, the heaviest gun that was carried in a fully enclosed turret was the Rheinmetall 8.8 cm Flak 41. This was an improved version of the powerful pre-war 8.8 cm Flak 36/37 that was also developed into an anti-tank gun and became the main armament for Germany’s heavy battle tanks like the Tiger I: the 8.8 cm PaK 43 and KwK 43, respectively.

The 8.8 cm Flak 41 was a mobile field weapon on a new pedestal mounting that lowered its silhouette, and it used a longer barrel and a longer 88 mm cartridge with an increased propellant load. The shells had a weight of 9.4-kilogram (20 lb) and achieved a muzzle velocity of 1,000 m/s (3,280 ft/s), giving the gun an effective ceiling of 11,300 meters (37,100 ft) and a maximum of 14,700 meters (48,200 ft). The barrel initially consisted of three sections and had a length of 74 calibers but was then redesigned to a simpler dual-section barrel with a length of 72 calibers, for easier manufacture. Improvements in reloading raised the manual firing rate, with 20 to 25 rounds a minute being quoted. The Flak 41 could also be used against ground targets and was able to penetrate about 200 mm (7.9 inches) of armor at 1,000 m (3,280 feet), allowing it to defeat the armor of any contemporary tank from a relatively safe distance. Because of the high cost and complexity of this weapon, however, Rheinmetall manufactured relatively few of them, 556 in all. 399 were fielded, the rest went into SPAAG production.

 

The new pedestal mounting made it easy to adapt the weapon to a vehicle, so that this formidable weapon was immediately earmarked to be combined with a tank chassis to improve its mobility. Since an SPAAG would not need the massive frontal armor of a battle tank, the hull from the lighter E-50 was used (which still had a maximum armor thickness of 60mm at the front at 30°, which was effectively 120 mm vs. the E-75’s 185 mm), but instead of the E-50 MBT’s running gear with six steel wheels per side, the Flak 41 SPAAG used the heavier E-75’s running gear with eight wheels per side and wider tracks, effectively creating a hybrid E-50/75 chassis. This measure was taken to better distribute the vehicle’s overall weight and stabilize the it while moving and firing. In this form the new vehicle received the designation Sd.Kfz. 192/3, also known as “Einheits-Flakpanzer E-50 (88 mm)” or “E-50-41” for short.

 

The Flak 41 was integrated into Rheinmetall’s standardized SPAAG turret that could carry a wide range of automatic anti-aircraft weapons. It was a spacious, boxy design, optimized for maximum internal space than for effective armor protection, resulting in almost vertical side walls and a high silhouette. However, the level of armor was sufficient to protect the crew and the equipment inside from 20 mm gun shells – the typical armament of Allied fighter bombers of the time like the Hawker Typhoon and Tempest.

 

A heavy-duty hydraulic gun mount with a reinforced recoil system allowed an elevation of the Flak 41 between +83° and -3°. As a novel feature the weapon received a semi-automatic loading mechanism. This was the attempt to increase the gun’s excellent manual rate of fire even further, and it mimicked the magazine clips of the smaller 37 mm Flak 37 that contained seven rounds for short, continuous bursts of fire. A belt feed for truly continuous fire had been envisioned, but not possible with the long and heavy 88 mm rounds within the turret and chassis limits. A mechanical magazine solution, e. g. a drum with several rounds, was impossible, too. The most practical solution was a spiral-shaped magazine, driven by simple gravitation and directly attached to the Flak 41’s breech. This feeding could – beyond an initial round already in the barrel – hold up to three more rounds, and upon firing and expelling the empty case, a fresh round automatically fell into place. The rounds from the magazine could be fired in a fully automatic mode in a short burst with a rate of 50-55 RPM. The magazine itself had to be filled manually, though, and the gun could alternatively be fed directly, too, so that different types of ammunition could be prepared and the gunner could switch between them on short notice.

 

To accommodate the weapon’s longer ammunition (the Flak 41’s cartridge was 855 mm long) and a crew of four (commander, gunner and two loaders), the standard Rheinmetall Flak turret had to be extended at the rear. Anti-aircraft aiming was done visually, a stereoscopic rangefinder with a span of 200 cm (78¾ in) was integrated above the gun mount. A secondary ZF.20 scope for ground targets was available, too. Two more crewmen, the driver and a radio operator, sat in the hull in front of the turret, similar to the E-50/75 battle tank’s layout. The radio operator on the right side also acted as a third loader for the ammunition supply stored in the hull’s front.

 

Initially, no secondary defensive armament was provided since the new SPAAGs were to be operated in specialized anti-aircraft units, the so-called Fla-Züge, in which the SPAAGs’ protection would be taken over by supporting infantry and other dedicated vehicles. However, initial field experience quickly revealed this weak spot in the vehicle’s close-range defense: due to material and personnel shortages the Fla-Züge units could hardly be equipped with everything they needed to operate as planned, so that they were in most cases just an underserved mix of SPAAGs, occasionally augmented by a command vehicle and rarely with the protection these specialized vehicles needed. Most of the time the units’ vehicles had to operate independently and were therefore left to their own devices. As a solution, a commander cupola was soon added to the Sd. Kfz.192/3’s turret that not only improved the field of view around the vehicle to assess the tactical situation and detect approaching infantrymen that tried to attach mines or throw Molotov cocktails, it also featured a remote-controlled MG 42 that could be aimed and fired by the commander from the inside. However, to re-supply the ammunition, the cupola hatch had to be opened and someone had to leave the turret’s cover and manually insert a new box of rounds. Furthermore, a 100 mm grenade launcher, a so-called “Nahverteidigungswaffe”, was mounted into the opposite side of the turret roof, too. It fired SMi 35 leaping mines for close defense against approaching infantry. This made the cramped turret interior even more cluttered, but significantly improved the vehicle’s survivability, especially in a confined, urban combat environment. Updated vehicles reached the frontline units in late 1945 and were immediately thrown into service.

 

Despite being a powerful weapon, several operational problems with the Sd.Kfz. 192/3 became soon apparent. The complex Flak 41 and its feeding mechanism needed constant proper maintenance and service – otherwise it easily jammed. Spent shell casing also frequently jammed the gun. The high silhouette was an innate tactical problem, but this had already been accepted during the design phase of Rheinmetall’s SPAAG standard turret. However, the tall turret was the source of an additional conceptual weakness of the Sd.Kfz. 192/3: the sheer weight of the large turret with the heavy gun frequently caused imbalances that overstressed the turret bearing and its electric drive (which had been taken over from the E-50/75 battle tanks), resulting in a jammed turret — especially when either fully loaded or when the ammunition supply was depleted. Due to the large and heavy turret, the vehicle’s center of gravity was relatively high, too, so that its off-road handling was limited. Even on paved roads the early Sd.Kfz. 192/3s tended to porpoise in tight corners and upon braking. Stiffer coil springs, introduced during the running production and retrofitted through field kits to existing vehicles, countered this flaw, even though these kits were rare due to material shortages. Sometimes the harder coil springs were distributed between two vehicles, only replacing the suspension on the front and rear pair of wheels.

A different tactical problem was the limited ammunition supply for the Flak 41. While 57 rounds were sufficient for a comparable battle tank, the semi-automatic Flak 41‘s theoretical high rate of fire meant that the Sd.Kfz. 192/3 quickly depleted this supply and could only keep up fire and its position for a very limited period, or it had to save ammunition to a point that its deployment became pointless. After spending its ammunition, the vehicle had to retreat to a safe second line position to re-supply, and this was, due to the vehicle’s limited mobility, size and the heavy and bulky rounds, a risky undertaking and meant tedious manual labor with poor protection for the supply crews. The resulting supply logistics to keep the Sd.Kfz. 192/3 operational and effective were demanding.

 

Nevertheless, despite these shortcoming, the Sd.Kfz. 192/3 greatly improved the heavy Flak units’ mobility and firepower, and the weapon’s effectiveness was high against both air and ground targets. Until mid-1946, a total of around forty Sd.Kfz. 192/3 were built and put into service, primarily with units that defended vital production sites in Western Germany and Saxonia.

 

At the time of the Sd.Kfz. 192/3’s introduction, anti-aircraft aiming was already augmented by mobile radar systems like the “Würzburg” device or special command vehicles like the Sd.Kfz. 282 “Basilisk” which combined an autonomous radar system with a powerful visual rangefinder and an integrated analogue range calculator, the Kommandogerät 40. However, fire control development had continued, and at least one Sd.Kfz. 192/3 was used in late 1946 during trials to fully automatize gun aiming and firing remotely through electric drives through “slaving” a turret to an external director. This was a modified Sd.Kfz. 282/1 that successfully controlled the Sd.Kfz. 192/3 via cable from an elevated location 50 m away from the SPAAG’s firing position. The objective of these trials was to connect several anti-aircraft weapons to a single command unit with improved sensors and high accuracy under any weather condition for concentrated and more effective fire and an improved first shot hit probability.

  

Specifications:

Crew: Six (commander, gunner, two loaders, radio operator, driver)

Weight: 64 tonnes (71 short tons)

Length: 7.27 m (23 ft 10 ¾ in) (hull only)

9.57 m (31 ft 4 ½ in) with gun forward

Width: 3.88 m (12 ft 9 in)

Height 3.46 m (11 ft 4 in)

3.81 m (12 ft 6 in) with commander cupola

Ground clearance: 495 to 510 mm (1 ft 7.5 in to 1 ft 8.1 in)

Suspension: Conical spring

Fuel capacity: 720 liters (160 imp gal; 190 US gal)

 

Armor:

30 – 60 mm (1.2 – 2.4 in)

 

Performance:

Speed

- Maximum, road: 44 km/h (27.3 mph)

- Sustained, road: 38 km/h (24 mph)

- Cross country: 15 to 20 km/h (9.3 to 12.4 mph)

Operational range: 160 km (99 miles)

Power/weight: 14 PS/tonne (12.5 hp/ton)

 

Engine:

V-12 Maybach HL 234 gasoline engine with 900 PS (885 hp/650 kW)

 

Transmission:

ZF AK 7-200 with 7 forward 1 reverse gears

Armament:

1× 8,8 cm Flak 41 L/72 anti-aircraft cannon with 57 rounds in turret and hull

1× 7.92 mm Maschinengewehr 42 with 2.400 rounds, remote-controlled on the commander cupola

  

The kit and its assembly:

This fictional German SPAAG never existed, not even on the drawing boards. But I wondered, after ModelCollect had released an E-100 SPAAG with a twin 88mm gun some years ago, why there was no lighter vehicle with the powerful 88 mm Flak in a closed turret? There were plans to mount this weapon onto a tracked chassis in real life, but it would have been only lightly armored. Then I recently came across a whiffy aftermarket resin turret with a single 88 mm Flak, based on the Tiger II’s Porsche turret, and I liked the idea – even though the rather MBT-esque aftermarket turret looked rather dubious and too small for my taste – esp. the potential angle of the AA weapon appeared insufficient. From this basis the idea was born to create a personal interpretation of a Flak 41 in a fully enclosed turret on a tank chassis.

 

The basis became the Trumpeter 1:72 E-75 kit of the twin 55 mm Flak with its boxy turret. While I initially considered a totally different turret shape, I eventually settled on a generic design that would have been used for a variety of weapons. This appeared more realistic to me and so I stuck to the Rheinmetall AA turret. However, due to the heavy weapon its certainly massive mount and bulky recoil system as well as the long rounds and a crew of four, I decided to enlarge the Rheinmetall turret. The turret was cut into a front and rear half and an 8 mm wide plug, made from 1.5 mm styrene sheet, was implanted and PSRed. To keep the turret rotatable, the rear extension had to be raised, so that the “oriel” could move over the air intake fairings on the engine cover.

Due to the longer roof, some details were modified there. The most obvious addition is a commander cupola on the left, taken from an early Panzer IV, together with a MG 42 and a small shield on a swing arm, inspired by the remote-controlled installation on some Jagdpanzer 38(t) Hetzer. A stereoscopic rangefinder was added to the turret flanks and a periscope added to one of the loader’s hatches. A cover for a ventilator was added on the right side of the roof, together with a cover for a vertical grenade launcher underneath.

 

Using the original turret as base, the model’s movable mount for the twin 55 mm guns was retained and the rear extension would also become a good visual balance for the new main weapon. The armor at barrels’ base was cut off and a 1:72 Flak 41, taken from a Zvezda field gun kit, was glued to it, together with parts of the field gun’s recoil system and styrene bits to blend the new gun into the rest of the turret.

 

The E-75 chassis was taken OOB, since it would be a standardized vehicle basis. Outwardly the hull did not bear recognizable differences to the lighter E-50, which it is supposed to represent, just with more wheels to better cope with the bulky and heavy new turret.

 

Thankfully, this Trumpeter kit’s vinyl tracks were molded in black – sometimes they come in a sandy beige, and it’s a PITA to paint them! As another bonus, Trumpeter’s running gear on the 1:72 E-50/75 model is of a more sturdy and simpler construction than the one on the alternative ModelCollect kit(s), making the assembly and esp. the mounting of the tracks much easier. The Trumpeter kit is simpler than the comparable ModelCollect models with the E-50/75 basis, but the result is visually quite similar.

  

Painting and markings:

The paint scheme uses once more typical German late WWII "Hinterhalt" camouflage colors, namely Dark Yellow, Olive Green and Red Brown. This time, however, to adapt the livery to the boxy hull and the huge turret, the pattern ended up as a kind of a splinter scheme – inspired by a real Panzer V Panther from the Eastern Front in 1943.

The basic colors became Humbrol 57 (Buff) for the RAL 7028 Dunkelgelb, in this case as a rather pale (stretched?) shade, plus large areas of brown (RAL 8017, I used this time Humbrol 98 for a darker and less reddish shade) and Humbrol 86 for the green (RAL 6003), which appears quite pale in contrast to the dark brown. The camouflage was applied over an overall coat of sand brown as a primer coat, with the intention of letting this uniform basis shine through here and there. The distribution of the darker colors is quite unique, concentrating the brown on the vehicle’s edges and the green only to the flanks of hull and turret. However, the pattern works well on the huge E-50/75, and I can imagine that it might have worked well in an urban environment, breaking up the tank’s outlines.

As a match for the upper hull the wheels were painted uniformly in the same standard colors –without any pattern, because this would be very eye-catching while on the move. The many delicate tools on the tank’s hull are molded, and instead of trying to paint them I tried something else: I rubbed over them with graphite, and this worked very well, leaving them with a dark metallic shine. Just some wooden handles were then painted with a reddish brown.

 

Decals/marking came next, everything was procured from the scrap box. The Balkenkreuze came from a Hasegawa Sd.Kfz. 234/2 “Puma”, the tactical code from a TL-Modellbau sheet and the small unit badges on front and back from an UM Models Bergehetzer. A dry brushing treatment with light grey followed, highlighting surface details and edges, and after painting some details and adding some rust marks with watercolors followed a coat of matt varnish.

 

The tracks were painted with a cloudy mix of dark grey, red brown and iron acrylic paints, and mounted after hull and running gear had been assembled. The antennae, made from heated spure material, were mounted to the turret and, finally, the tank’s lower areas were dusted with a greyish-brown mineral pigment mix, simulating dust and mud residue.

  

This project was realized in just two days, made easy through the Trumpeter kit’s simple construction. Most work went into the extended turret and the different main weapon, but all parts mostly fell into place – and the result looks IMHO quite believable. In fact, the E-50/75 with a Flak 41 reminds a bit of the Italian Otomatic 76 mm SPAAG from the late Eighties?

 

Seen laying over between duties in Chipping Norton is PC73 PUL, an Irizar i6S Efficient Integra new to Pulham, Bourton-on-the-Water, Gloucestershire in January 2024.

 

Want to find out more? Join The PSV Circle - Details at www.psvcircle.org.uk

 

Copyright © P.J. Cook, all rights reserved. It is an offence to copy, use or post this image anywhere else without my permission.

And I feel guilty that I am not a fan!

 

ODC: energy efficient

Commentary.

 

This view on the B.826 from Fort Augustus to Whitebridge

is from 400 metres at the Suidhe Viewpoint.

The rollercoaster, but straight road through the pine forest

is, not surprisingly, one of General Wade’s military roads,

to provide a quick and efficient transit of troops

to quell the Jacobite Uprising in the 18th. Century.

Loch Ness is sunk deep in the valley to the top left.

The mast on Tom Bailgeann (middle background)

stands over 500 metres above the area on the south side of Loch Ness, a tract of land including over 50 square miles of commercial pine forest.

On the southern shores of Loch Ness, my own grandfather cut and processed timber, from these very slopes, 70-90 years ago.

Top right is Loch Mhor, a narrow, shallow lake running parallel to the main road.

Hidden in the forested hills to the left is the impressive Foyers Gorge.

Below the aforementioned highest visible peak, is Loch Duntelchaig, one of several reservoirs supplying water to Inverness and the population around the Moray Firth.

To the right or south-east of this image are “the Grey Mountains,” or Monadhliath, that separate Lochaber from the Cairngorm Massif.

An area of lochs, rivers, gorges, waterfalls and forest……

it is relatively unknown and very much under-estimated.

 

Some background:

Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.

 

The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.

 

In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.

 

Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.

 

The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.

 

At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.

  

General characteristics:

Accommodation: pilot only, in standard cockpit in main body

Overall Height: 18.2 meters

Overall Length: 7.6 meters

Overall Width: 12.6 meters

Max Weight: 39.8 metric tons

 

Powerplant & propulsion:

1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,

driving 2x main booster Thrusters and 12x vernier thrusters

 

Performance:

unknown

 

Armament:

None

 

Special Equipment and Features:

Standard all-frequency radar antenna

Standard laser long-range sensor

Ectromelia infrared, visible light and ultraviolet frequency sensor cluster

ECM/ECCM suite

  

The kit and its assembly:

I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.

 

The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).

 

I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!

 

But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.

 

Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.

 

However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.

  

Painting and markings:

Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.

 

Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.

 

The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.

 

The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?

 

Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.

  

A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D

 

Some background:

Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.

 

The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.

 

In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.

 

Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.

 

The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.

 

At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.

  

General characteristics:

Accommodation: pilot only, in standard cockpit in main body

Overall Height: 18.2 meters

Overall Length: 7.6 meters

Overall Width: 12.6 meters

Max Weight: 39.8 metric tons

 

Powerplant & propulsion:

1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,

driving 2x main booster Thrusters and 12x vernier thrusters

 

Performance:

unknown

 

Armament:

None

 

Special Equipment and Features:

Standard all-frequency radar antenna

Standard laser long-range sensor

Ectromelia infrared, visible light and ultraviolet frequency sensor cluster

ECM/ECCM suite

  

The kit and its assembly:

I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.

 

The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).

 

I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!

 

But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.

 

Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.

 

However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.

  

Painting and markings:

Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.

 

Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.

 

The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.

 

The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?

 

Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.

  

A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D

 

With no mess or disorganised containers, the new East Midlands Gateway rail terminal makes for a pleasing sight. On 16/04/20, ex-EWS, now DB livery 66002 arrives with its train of containers having worked the 4M79 intermodal Felixstowe South. Taken near the entrance to EMG from near the cycle path.

Irizar i6s Efficient Integral de Avanza Movilidad Guipuzkoa.

Sony A7RII Fine Art Zion National Park Autumn Winter Subway Hike! Dr. Elliot McGucken Fine Art Landscape Photography!

 

facebook.com/mcgucken

instagram.com/elliotmcgucken

instagram.com/45surf

 

An important thing to remember is that even though pixel sizes keep getting smaller and smaller, the technology is advancing, so the smaller pixels are more efficient at collecting light. For instance, the Sony A7rII is back-illuminated which allows more photons to hit the sensor. Semiconductor technology is always advancing, so the brilliant engineers are always improving the signal/noise ratio. Far higher pixel counts, as well as better dynamic ranger, are thus not only possible, but the future!

 

Yes I have a Ph.D. in physics! I worked on phototranistors and photodiodes as well as an artificial retina for the blind. :)

 

You can read more about my own physics theory (dx4/dt=ic) here: herosodysseyphysics.wordpress.com/

 

And follow me on instagram! @45surf

instagram.com/45surf

 

Facebook!

www.facebook.com/elliot.mcgucken

 

Dr. Elliot McGucken Fine Art Photography!

 

I love shooting fine art landscapes and fine art nature photography! :) I live for it!

 

Feel free to ask me any questions! Always love sharing tech talk and insights! :)

 

And all the best on Your Epic Hero's Odyssey!

 

The new Lightroom rocks!

 

Beautiful magnificent clouds!

 

View your artistic mission into photography as an epic odyssey of heroic poetry! Take it from Homer in Homer's Odyssey: "Tell me, O muse, of that ingenious hero who travelled far and wide after he had sacked the famous town of Troy. Many cities did he visit, and many were the nations with whose manners and customs he was acquainted; moreover he suffered much by sea while trying to save his own life and bring his men safely home; but do what he might he could not save his men, for they perished through their own sheer folly in eating the cattle of the Sun-god Hyperion; so the god prevented them from ever reaching home. Tell me, too, about all these things, O daughter of Jove, from whatsoever source you may know them. " --Samuel Butler Translation of Homer's Odyssey

 

All the best on your Epic Hero's Odyssey from Johnny Ranger McCoy!

 

Sony A7RII Fine Art Zion National Park Autumn Winter Subway Hike! Dr. Elliot McGucken Fine Art Landscape Photography! Sony A7R2 & Sony 16-35mm Vario-Tessar T FE F4 ZA OSS E-Mount Lens!

The Tinkertoys supporting their endless push for mechanical freedom and efficient allocation of resources, require resources themselves on the battlefront. The HL-LR (Heavy Lift-Long Range) Truck allows movement of oversized and overweight materials across fairly flat terrain to far away lands. On top of all that, the truck is articulated at two points to allow tight maneuvers through urban zones to deliver it's payload into the lap of combatants. On the downside it's slow movement and astronomically high weight limit it's usefulness in the theater. However the HL-LR has one last ace up it's sleeve of being a robot itself, capable of making decisions and plans on the fly. In fact the cab can be detached and the mission can be performed totally autonomously if necessary. However the companionship of Reapers is useful for defence, as the HL-LR is largely unable to defend itself. Bots have come to nickname the HL-LR "The Healer" for it's endless mission of supplying the front.

This particular example was modified for special ops and carries extra supplies and weapons for extended operations. It's crew also appears to have cosmetically modified it.

Youtube link if you want to watch it driving around and stuff:

www.youtube.com/watch?v=O1kcACciPtk

I pass Harry Lawson trucks on a regular basis on my travels, this beauty was parked at Seaton flats as I made my way down to Aberdeen Harbour,the driver agreed to me taking some photos, and had a chat about the company and what they do, a fine fellow indeed.

 

Harry Lawson Ltd. commenced operation in 1945 when the founders, Harry Lawson and his wife Dora, purchased a one vehicle business operating a daily carrier service between Dundee and Carnoustie. Their son Harry joined the company in 1961, at which time the fleet had increased to 12 vehicles. Harry continued to develop the business, taking over as Chief Executive in 1976 with Harry senior retiring by the end of the 70s. With marked determination to offer an efficient, high quality service and reliable road transport solutions, Harry soon built up an extensive portfolio of customers, including a number of blue chip accounts.

 

Despite now operating throughout the UK it was, however, the Company’s strong links with local enterprises which proved to be the catalyst in the Company’s move into tanker haulage. This niche was developed as Harry foresaw that the business would benefit from having a clear focus or speciality in the transport sector and whilst the business continues to operate both tanker haulage and general haulage, it is perhaps the tanker haulage sector for which it is best now known.

 

Harry Lawson Ltd., remains a family owned business operating from its base in Broughty Ferry and is now entering the third generation with Michael, Harry’s son, having joined in 2004. Today’s fleet comprises around 70 trucks and 150 trailers and the Company continues to take great pride in the presentation and cleanliness of its vehicles and the instantly recognisable two tone green livery is sure to be a familiar sight to many collectors and truck enthusiasts alike.

  

Harry Lawson Ltd. is a well established family transport business based in Broughty Ferry in the North East of Scotland,they have been in the general transport business for more than 70 years.

 

Specialising in providing bulk liquid, powder and general haulage transport services throughout the UK to a wide customer base in a range of markets.

 

Volvo FH series

 

Overview

ManufacturerVolvo Trucks

Production1993–present

AssemblyGothenburg, Sweden

Ghent, Belgium

 

Body and chassis

ClassHeavy truck

Body style COE

Day cab

Sleeper cab

Globetrotter High cab

Powertrain

 

Engine

Inline 6 turbodiesel intercooled

 

Volvo

D12A(12.1 L) 420 309kw 1993–1998

D12C (12.1 L) 420 309kw, 460 340kw 1998–2001

D12D (12.1 L) 420 309kw. 460 340kw 2001–2005

D12F (12,1 L) 420 309kw, 460 340kw 2004–2006 EGR

D13A,B,C(12.7 L)2005–present

D13K (12.9 L) 2012-present (Euro VI)

D16A,B(16.1 L)1993–2001

D16C,E,G(16.1 L)2006–present

Cummins

ISX600(14.91 L)1998–2006 (Australia)

  

Transmission

14 speed synchro manual

SR1900 (1993–1998)

SR(O)2400 (1993–1998)

VT2514(OD) (1998–present)

VT2814(OD) (2006–present)

VT(O)2214B (2012-present)

VT(O)2514B (2012-present)

VT(O)2814B (2012-present)

16 speed synchro manual (ZF)

ZT1816

12 speed semi-automatic (I-Shift)

V2512AT (2007–present)

V(O)2812AT (2007–present)

VO3112AT (2008–present)

AT2412D (2012-present)

AT(O)2612D (2012-present)

AT2812D (2012-present)

ATO3112D (2012-present)

ATO3512D (2012-present)

6 speed automatic (Powertronic)

VT1706PT

VT1906PT

 

Chronology

PredecessorF series

 

The Volvo FH is a heavy truck range produced by Swedish truck manufacturer Volvo Trucks. Introduced in late 1993 as FH12 and FH16, production still continues with the now the second generation of FH range model lineup.

 

FH stands for Forward control High entry, where numbers denominate engine capacity in litres. The FH range is one of the most successful truck series ever having sold more than 400,000 units worldwide.[1]

 

In September, 2012, Volvo Trucks re-launched the Volvo FH with significant technology upgrades

 

The new Volvo FH (2012–present)

 

The 2012 model of Volvo FH.

In September 2012, Volvo Trucks re-launched the Volvo FH with major technology upgrades, a new design and more.

 

The company also introduced the first of its Euro VI engines, the D13K which is available as an option on the new Volvo FH and compulsory for new trucks in Europe from January 2014. Other quotable new features is the I-torque driveline and the I-see fuel saving technology. With the new thirteen-litre engine, the name has changed to FH13.

 

AEB

Volvo Trucks have demonstrated the new AEB system for their FH series on YouTube. The truck did well and stopped only centimeters from the car ahead. The tractor trailer was fully loaded to 40 tons GCW when Volvo demonstrated the system.

 

The AEB system combines a radar and a camera that work together to identify and monitor vehicles in front. The system is designed to deal with both stationary and moving vehicles and can prevent a collision with a moving target at relative speeds of up to 70 km/h.

 

When the system detects a vehicle that the truck will hit at its current speed, the warning system activates a constant red light in the windscreen in order to bring the driver's attention back to the road.

We often take a workbook with us when we go to our favorite restaurant since their coloring page is always the same :) It helps us pass the time before our food shows up and makes me feel better that we got some academic stuff out of the way too. (T is in Kindergarten and thankfully doesn't get school homework yet, so we can still work with her on our own.)

West Coast Motors Irizar i6S Efficient Integral 12309 (YT23HYL) is seen here at Fort William Bus Station working the 915 to Uig.

Heading for Campbeltown on the second 926 of the day is Irizar i6s Efficient YT74 EFM (12423) of West Coast Motors.

I filled out an energy survey for our electric company and they sent me a box with all of these things to help be more energy efficient.

 

ODC - 6/24/2022 - Energy Efficient

Some background:

Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.

 

The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.

 

In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.

 

Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.

 

The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.

 

At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.

  

General characteristics:

Accommodation: pilot only, in standard cockpit in main body

Overall Height: 18.2 meters

Overall Length: 7.6 meters

Overall Width: 12.6 meters

Max Weight: 39.8 metric tons

 

Powerplant & propulsion:

1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,

driving 2x main booster Thrusters and 12x vernier thrusters

 

Performance:

unknown

 

Armament:

None

 

Special Equipment and Features:

Standard all-frequency radar antenna

Standard laser long-range sensor

Ectromelia infrared, visible light and ultraviolet frequency sensor cluster

ECM/ECCM suite

  

The kit and its assembly:

I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.

 

The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).

 

I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!

 

But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.

 

Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.

 

However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.

  

Painting and markings:

Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.

 

Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.

 

The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.

 

The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?

 

Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.

  

A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D

 

All Saints, North Runcton, Norfolk

 

It was a gloomy morning, and the parish of North Runcton was not about to lighten the mood. The church is one of East Anglia's few 18th Century rebuilds, and it is set beside a polite, pretty village green with houses for company. There is no reason on God's earth why the church can't be open during the day, except that this is part of the Middlewinch benefice of churches, for whom welcoming the stranger within the gate or giving hospitality to pilgrims thereby entertaining angels unawares is just something some bloke talked about in the Bible.

 

There isn't a keyholder notice, but there is one of those efficient lists of telephone numbers churches put up nowadays in case of a gas leak or an earthquake or the like, so John and I stood in the rain ringing them, one by one. Eventually a posh lady answered. Yes, she was the keyholder. No, she couldn't bring the key to the church, and the reason for this was quite extraordinary. It was because I was a man. They didn't bring the key to the church if a man rang unless they were accompanied by someone, and as she was on her own she couldn't do that. She suggested I ring another number, a man, the churchwarden.

 

His wife answered. She was much less pompous than the first keyholder, but her husband was out, he wouldn't be back till that evening, and no she couldn't bring the key to the church because...

 

The third keyholder was out, but in any case she was also a woman, so there probably wasn't much point in ringing her. In visits to more than 3,000 English churches over the last twenty years I have only been refused admittance to a church twice before. So, seething quietly inside, we shook the dust (well, mud) of North Runcton from our feet and headed on. By the time we reached the road to Grimston, the sun had come out.

 

Our route during the day took us northwards and then back down towards Downham Market in a long loop. By mid-afternoon we were approaching North Runcton again, so I gave the churchwarden another ring, just in case he'd returned home early. No such luck. I tried the keyholder who'd been out earlier - still out. So I made one final, desperate attempt to convince the first keyholder.

 

She didn't seem terribly happy that I'd rung back, and went through the same formulation as before as if she was reading it off of a card. So I suggested that we might come to her house and borrow the key. Well, she actually scoffed. She made it very clear that churches do NOT give out their keys to strangers whom they know nothing about. This was news to me, as not twenty minutes before a kind man at Roydon, who I'd never met before and who didn't know me from Adam, had entrusted me with the key to his church. Indeed, I've borrowed hundreds of keys over the years to see inside churches. But I didn't say any of this because she was beginning to make me feel very small indeed. I let her remind me of the moral of this tale, that I should have rung in advance before I'd set off (but where would I have found the number?), and then I ended the call.

 

Now, it may well be that North Runcton is a thriving parish, and this church is packed to the gunwales three times every Sunday. Perhaps they actually don't need to be open as an act of witness to strangers, pilgrims and those with a thirst for a sense of the spiritual. Indeed, perhaps they have no room to welcome the tax collectors and sinners who might respond to the sense of the numinous they'd find by wandering into this building on their own, on a weekday. Perhaps they actually do need to keep people out.

 

But I suspect that this isn't so. The great majority of Norfolk's medieval churches are open to visitors every day. The Church of England knows the power of an open church, knows that it is its greatest act of witness, and in any case works very hard in this county ministering to all its people, churchgoers or not. But there are still pockets of Norfolk where the buildings are kept locked from one end of the week to the next, where the risk of Faith that an open door represents is not taken.

 

Instead, such benefices open their churches only for the slightly smug activities of the Sunday club, while the graveyard is left to the pagan cult of the dead, the bereaved worshipping their recent ancestors with propitiatory flowers, unable to combine this with a prayer said inside a sacred building, increasingly unaware even that this might be an appropriate thing to do.

 

As the years go by, the congregation gets smaller, and older, and less welcoming to strangers, hanging on to the rituals that comfort them but which otherwise serve no community devotional purpose, and are no means for sharing the faith and love and life of the parish. The building is used less and less often, eventually being abandoned altogether by people who, no doubt, bemoan the decline and fall of their congregation and shake their heads gravely at the immorality of the young of today, their lack of respect and belief.

 

And yet, they have not even once taken the risk of letting themselves be found by us, the strangers wondering at the God-shaped hole within ourselves, surprising a hunger to be more serious, and gravitating with it to this ground.

 

I may well yet be told that the parish of North Runcton is not at all like this. But I expect that it probably is. I am in my fifties now, but when I come to places like North Runcton I feel that I will live to see the last days of the Church of England. I was briefly taken with an apocalyptic vision of the Diocese of Norwich, or anyone else with an interest in the survival of the good old CofE, hastening to places like this, pitchforks in hand, to drive out the current regime, to open the doors and windows of the church and let the air and light in.

About half of all plant species require help with pollination. The humble bee is nature’s most efficient pollinator and on call throughout the flowering season.

Desde Repsol apostamos por la innovación tecnológica como motor de nuevos sistemas energéticos más seguros, eficientes y sostenibles.

 

Más info en

www.repsol.com/es_es/corporacion/conocer-repsol/canal-tec...

 

Repsol is committed to technological innovation as a driver of newer, safer , more efficient and sustainable energy systems.

 

More info at

www.repsol.com/es_es/corporacion/conocer-repsol/canal- tec ..

 

1 2 3 4 6 ••• 79 80