View allAll Photos Tagged Convex
Light mauve-pink shell with slight flattened spiral ribs. Sharp uneroded spire retaining smooth apical protoconch and some imbrication on earl whorls. Whorls moderately convex with shallow sutures, deeper near apex. Menai Strait, Wales. February 2013.
SPECIES DESCRIPTION PART B BELOW
Key id. features: flic.kr/p/oErLAb
SPECIES DESCRIPTION PART A at flic.kr/p/oEkeZW
Sets of OTHER SPECIES:
www.flickr.com/photos/56388191@N08/collections/
Habits and ecology
Commonest carnivorous prosobranch on rocky shores in Britain and Ireland. Usually most numerous between MHWN (75% time exposed to air) and MLWN, but up to MHWS if sheltered crevices, and to 20 metres depth in some places. Lives on shores ranging from extremely wave-exposed (Ballantine scale grade1) to extremely sheltered (grade 8), adjusting its low tide behaviour thus: on exposed shores shelters in crevices during storms and active in calm weather, even bright sun; on sheltered shores active at night and in daytime cloudy weather, sheltering in crevices and under rocks from sun. Lower limit of salinity tolerance varies with locality, in Britain usually down to 20 or 25 p.p.t. ; can survive short periods of lower salinity, but not where it is norm. Temperature limits (isotherms of neighbouring oceanic water) up to 19°C in summer, down to 0°C in winter; wider extremes on shore, upper lethal temperature 35°C. Some Swedish populations retreat to sublittoral to avoid winter ice on shore, and in Arctic Russia they retreat under stones on the lower shore. Abundance governed by prey availability; often >10/m² on semi-exposed (grade 4) shores where Semibalanus balanoides (barnacle) abundant, but few on extremely sheltered shores where dense weed-cover inhibits barnacle establishment apart from on occasional steep surfaces 40Nl flic.kr/p/oFfbtQ .
Respiratory water drawn in on left side through inhalent siphon by beat of cilia on robust ctenidium in the mantle cavity. Siphon and pallial channel allow water to be inhaled away from contamination of food, and, with osphradium at inner end of channel, to test water quality and the scents of prey and mates.
Locomotion by ditaxic retrograde waves on centrally divided sole of foot. Slow moving shambling gait. Sedentary as sessile prey usually abundant and unable to flee. Travels about 10cm in a tidal cycle, with days immobile while digests meals. No planktonic stage; dispersal relies on slow crawling; consequent low gene exchange contributes to local differences in appearance and behaviour; chromosome number of races varies.
Eats, in order of usual preference (Crothers, 1985):
Semibalanus balanoides (barnacle) flic.kr/s/aHsjzKXTEt (Flickr album);
Mytilus edulis (mussel, usually under 40mm long) 39a flic.kr/p/DAskNz ;
Elminius modestus (barnacle) flic.kr/s/aHsjyVXcr4 (Flickr album);
and less than full-grown Perforatus perforatus (barnacle) flic.kr/s/aHsjzsQKto (Flickr album).
Adults usually ignore small barnacle species such as Chthamalus flic.kr/s/aHsjzknk9h & flic.kr/s/aHsjzon3f1 (Flickr albums) [Some sources contradict Crothers; cause may be geographical variation in genetics or habit, or frequent misidentification by humans of barnacle spp. - examination of tergoscutal flaps required flic.kr/s/aHsjDCN2nY Flickr album].
When preferred-prey reduced or absent, feed on Patella spp. 40aNl flic.kr/p/CmkBu4 , Littorina spp. or other mollusca. Juveniles up to 8mm high eat tiny Mytilus, Spirorbis (worm) and, in Arctic Russia (Matveeva, 1955), Onoba aculeus (gastropod) in preference to barnacles. In extreme S.W. England, where S. balanoides is rare or absent (settlement and survival vary greatly with weather from year to year, Lewis, 1964, pp.250-251), Mytilus edulis is most frequent prey 39bNl flic.kr/p/DAshoD , and Patella spp. 40aNl flic.kr/p/CmkBu4 ,Littorina spp. and Gibbula spp. are frequently attacked (Crothers, 1985). Switching to Patella also occurs in areas, such as North Wales and Orkney, where S. balanoides breeds and survives consistently. In Guernsey 31 of 100 vacant Patella shells examined from sheltered shore (Ballantine scale 6-7; near-continuous fucoid cover) had completed Nucella-boreholes (Flint, 2001), suggesting high rate of predation, especially as Patella less than 35mm long can be forced off without boring. On sheltered shores sweep of dense fucoids often hinders settlement of barnacles 40Nl flic.kr/p/oFfbtQ , so reducing favoured prey and causing switch to Mytilus. But no Mytilus observed on this Guernsey shore so Patella the next best thing available. On a very exposed Guernsey shore (Ballantine scale 2; no fucoid cover, barnacles abundant) only 2 of 99 examined vacant Patella shells had completed Nucella-boreholes (Flint, 2001), suggesting less switching to Patella where plentiful barnacles. Oyster spat eaten in Essex. When a prey species exhausted, often delayed transfer, even to 'preferred' species, from what locally accustomed to while learns how to handle new prey.
Adults force way between opercular valves of barnacles with proboscis. Paralysing narcotic and digestive enzymes from salivary glands 22Nl flic.kr/p/oGy5Jx injected to liquefy flesh that is ingested through proboscis. Only small shells of M. edulis can be forced apart 39aNl flic.kr/p/DAskNz , and small N. lapillus cannot force way into barnacles. In these cases, and on other large prey, N. lapillus bores neat hole through shell 40bNI flic.kr/p/DbrK5H by alternating rasping by radula with application by accessory boring organ of enzymes and acid that soften conchiolin and lime in prey’s shell. Angle of radula constantly changed to give smooth round hole; straight rasp-marks show that no rotary action involved 40bNl flic.kr/p/DbrK5H . Diameter of hole constant; rim not bevelled and no raised boss at base of unfinished hole 40cNI flic.kr/p/CRBdSm (bevel and boss found in unfinished holes made by Euspira spp. mainly in bivalves) . On limpets, Nucella usually bore into pedal-retractor muscle 40dNl flic.kr/p/Cmkt7H , or central area enclosed by it 40eNl flic.kr/p/E8iHfS , where radula can reach nutritious viscera; of 73 vacant bored shells in Guernsey only 7% of holes were into viscera-free periphery distal of the muscle, though periphery was 52% of area of shells (Flint, 2001). Boring and feeding take between a day and over a week, depending on temperature and size of prey, followed by resting in sheltered position for day or two after barnacle meal to about five days after a mussel. Boring causes much wear on anterior teeth of radula. Liquid diet results in small amounts of small faecal pellets. Neighbours of assaulted Mytilus can counter-attack by attaching byssus threads to attacker and tightening them to pull it off victim and turn it over so foot is unable to grip substrate to escape 41Nl flic.kr/p/oFaR7o . This may be targeted, rather than accidental, as non-predatory Littorina littorea on mussel beds rarely so ensnared. N. lapillus seem aware of risk as small mussels without close neighbours preferred to dense beds, and boring usually near posterior adductor muscle away from mussel’s foot and byssus 41aMe flic.kr/p/oFmGPh . Possible alternative explanation: Littorina littorea more active than N. lapillus so moves and snaps attached byssus threads before numerous and set enough to restrain it. Many free N. lapillus have snapped byssus threads on shell from when moved in time to escape 26Nl flic.kr/p/ooiQC7 .
Consumption of N. lapillus by humans discouraged by acrid smell and taste, but several known predators; list in Crothers (1985) p. 302. Main enemies are Carcina maenas and Necora puber (crabs) and Larus spp. (gulls), and it is one of the hosts parasitized in sequence with Cerastoderma edule and Larus spp. by Parorchis acanthus (trematode worm). Thick shell can sustain considerable abrasion/erosion, but Polydora worms, initially commensal, may eventually cause its decay with multiple borings 1Nl flic.kr/p/oErLAb .
Variations in shell colour have been attributed to diet (barnacles :white, Mytilus : dark), but environmental selection and genetics seem more likely. Colour of individual’s new growth can change in response to impact of move from shore to aquarium; can confuse laboratory colour: diet experiment results. Populations with large proportions of coloured and banded shells are most frequent in S. Wales and S.W. England, including, but not only, the area where Mytilus consumption predominates. In most populations, old specimens are predominately plain whitish or greyish as outer pattern-bearing layer is eroded away 4Nl flic.kr/p/oGiAZH .
Variations in shell shape, size, strength and sculpture are related to combinations of environmental pressures and genetic factors. Adults from sheltered shores, when compared with those from neighbouring exposed shores, on average, have longer spires, smaller apertures, and stronger shells 42Nl flic.kr/p/oF7Nct . These features help resist attack of crabs (common on sheltered shores) by giving space to withdraw into spire, less space for crabs to insert their chelae and harder-to-crack shells (in N. Wales, average force of 580 Newtons to break adult shells on very sheltered shores, 240N on exposed shores). The small aperture also reduces evaporation and the risk of desiccation during low water, and imbrication is more common as there is less erosion to wear it away where there is little wave action. Adults from exposed sites have shorter spires, larger apertures and weaker shells. Here crabs are scarce, and frequent spray reduces the risk of desiccation so the weaker shell and larger aperture are less of a risk, and the larger foot accommodated gives a firmer grip against wave impact. Withdrawal from crabs is less important than the more compact wave-resistant shape formed by the small spire. The exposure related shell differences hold within local areas, but genetic differences affect absolute measurements. In both Pembroke (S. Wales) and the Great Orme (N. Wales) the above relationships hold locally, but on shores of equal exposure (high or low) the Pembroke shells are shorter spired than the Great Orme shells. It seems that the gene pool available in Pembroke lacks the genes needed for very long spires and the pool at the Orme lack those needed for very short spires. This difference is found round Britain; those in the North Sea, north coast of Scotland, Severn Estuary, Liverpool Bay and Kent to Portland being like those on the Orme, and elsewhere shells are like those in Pembroke (map on p.337 in Crothers, 1985).
Breeding occurs all year with a peak in winter or spring (April-May in Yorkshire when water 9°C). Thirty or more congregate in a pool or sheltered crevice for females to be repeatedly inseminated by the males’ long recurved penes, interspersed with periods of laying. An egg capsule passes from the female’s oviduct, along a temporary groove in the foot, to the sole which manoeuvres it into the ventral pedal gland just in front of the centre of the sole. The capsule is held with the plugged opening innermost and the base protruding while the gland squeezes and moulds the capsule into a smooth stalked vase-shape 8-10mm high, 2-4mm wide with a longitudinal seam down two sides. The base of the stalk is pressed into a disc and cemented onto the substrate 43Nl flic.kr/p/oFom7e . When foot and gland are lifted off, the conchiolin walls of the capsule harden on contact with sea water. Capsules usually yellow, sometimes mauve or brownish. Female can produce about ten capsules in 24 hours; a breeding congregation may deposit hundreds together. Central mass of capsule made of about 600 agglutinated “nurse” eggs that cease developing at early stage. Ten to thirty unarrested eggs hatch into non-planktonic veliger larvae; small velum with no food-collecting groove; larvae attach to central mass with sucking lips to feed. Temperature controls development time within capsule; four months on S. coast England, five months in Yorkshire, seven months in the White Sea. No free-swimming veliger stage; young emerge from the unplugged apical opening of capsule as crawling snails with globular, smooth, glossy shell (protoconch) of 2½ whorls about 1mm high. Hatching success varies; about 100% of capsules continuously immersed in sea water, about 25% if in cleft or rock pool that receives freshwater run off, 0% to about 60% if at MLWN and dry out at low tide. Hatchlings often shelter in empty barnacle shells. Growth, March-October; rate varies, slower in north than south, in England usually 10-16mm high at 1yr old, 12-26mm at 2yrs, growth usually ceases (but shell thickens) in third year at shell height 20-30mm (more on sheltered shores), but may continue for those castrated by parasites. Some live to over 6yrs old, but mortality heavy before thick shell and mouth bosses develop; about 10% of each cohort survive to 1 year old, 5% to 2yrs, 1.25% to 3yrs.
Reproduction of N. lapillus was greatly reduced in parts of Britain and Europe by imposex where females develop male features including penes that block oviducts and prevent escape of ova. In Plymouth, 5% of females affected in 1970, 67% in 1985; some populations near marinas entirely destroyed. Recognised c.1970, caused by tributyltin in anti-fouling paints on shipping and other marine structures. Tributyltin paint banned on small boats 1987 (UK) and 1991 (EU). Worldwide total ban agreed 2008, ratified by countries accounting for 80% of world shipping by 2012. Recovery of some populations slow; imposex still prevalent where much international shipping. Many other spp. affected world wide; N. lapillus very sensitive to minute amounts so used as indicator sp. for imposex incidence.
Primary function of hypobranchial gland of gastropods generally thought to be trapping in mucus of particles from inhalent water before reach ctenidium, and transporting particles out of mantle cavity. In N. lapillus additional suggested functions of hypobranchial gland have included attraction of mates by scent, and acrid smell/taste to discourage predators. When exposed to light and air, white hypobranchial mucus turns yellow 36Nl flic.kr/p/ooMch1 and, eventually, purple 44Nl flic.kr/p/ooUnjZ . Exact sequence varies; may include green, reddish, blue and brown 45Nl flic.kr/p/oH9duz & 46Nl flic.kr/p/ooTXqN and sometimes changes little from yellow. Similar mucus from Mediterranean Murex used in Ancient Roman times to dye emperors’ robes purple. Reports of small scale use of N. lapillus to dye cloth in Ireland in 17th Century and, perhaps, Anglo-Saxon England. Several vernacular names derive from ‘purple’. Crushed egg capsules can produce same colours, so probably contain same chemicals; may be cause of capsule colour varying from yellow to mauve or brown.
Distribution and status
White Sea to Gibraltar, not Baltic (low salinity), absent or scarce in Denmark, Germany and Netherlands (soft substrate) . GBIF map www.gbif.org/species/5193449 . Common on hard substrate all around Ireland and Britain, avoiding low salinity of inner estuaries. Apparently absent or scarce in Lincolnshire and Suffolk (soft substrate); many records exist around Ireland and E. Scotland (McKay & Smith, 1979) that have not been entered on NBN. U.K. map NBN species.nbnatlas.org/species/NBNSYS0000188539
Some local gaps difficult to explain; some perhaps due to imposex near international ports where tributyltin still present.
Images of Nucella lapillus by other Flickr users:
flic.kr/p/fjaKrE (Arctic Russia)
flic.kr/p/i7Pmg8 (Germany)
flic.kr/p/oBGyCv & flic.kr/p/bqcXVF (Atlantic France)
flic.kr/p/noKnKa (Galicia, N.W. Spain. Various colours, incl. black)
flic.kr/p/aq43TK & flic.kr/p/d9Rfpw (Massachusetts, USA)
flic.kr/p/9f2nxA (New Brunswick, Canada. Various colour forms)
Acknowledgements
For help and advice about anatomy I would like to thank Dr Gregorio Bigatti, Dr Alfredo Castro-Vazquez, Dr Sami Ibidli, Dr Ivan Nekhaev and Dr Yu I Kantor. Many thanks to Dr Jan Light for the loan of specimens, to Dominic Flint for access to data in his unpublished study and to Paul Challinor and Neil Ward for use of their images. Special thanks for correspondence and patient help are due to Dr Alexandra Richter. Any remaining inaccuracies are attributable to me.
Links and references
The most used sources for this account were Crothers (1985) and Fretter & Graham (1962). Fretter & Graham (1994) contains updated information, but lacks the systematic index of the 1962 edition that enables the finding of N. lapillus details scattered through 800 pages.
Andrews, E.B. & Thorogood, K.E. 2005. An ultrastructural study of the gland of Leiblein of muricid and nassariid neogastropods in relation to function, with a discussion on its homologies to other caenogastropods. J. Mollus. Stud. 71: 269-300. Malacological Society, London. Free pdf at: mollus.oxfordjournals.org/content/71/3/269.full.pdf
Ballantine, W.J. 1961. A biologically-defined exposure scale for comparative description of rocky shores. Field studies 1(3): 1-19. Free pdf at: fsj.field-studies-council.org/media/344345/vol1.3_17.pdf
[Ballantine, pp.16- 18, recognised that his use of indicator species lists was area specific. See Zettler, 2013 for further consideration of this topic.]
Biggam, C.P. 2006. Knowledge of whelk dyes and pigments in Anglo-Saxon England. Anglo-Saxon England 35: 23- 55. Abstract at: journals.cambridge.org/action/displayIssue?iid=1182236
Caldwell, M. Marine pollution and sexual confusion in dog whelks. Free pdf of University College of London poster about imposex, but note that illustrations of “Dog whelks” (N. lapillus) are of Buccinum undatum. www.ucl.ac.uk/~ucbpmbc/downloads/poster.pdf
Carefoot, T. 2016 (date viewed by IFS) A snail's odyssey; learn about whelks and relatives. [Web-page with detailed information on shell boring by Nucella]
www.asnailsodyssey.com/LEARNABOUT/WHELK/whelFeed.php
Crisp, M., Fine structure of some Prosobranch osphradia. Marine Biology 22: 231-242 Abstract at link.springer.com/article/10.1007%2FBF00389177#page-2
Crothers, J.H. 1985. Dog whelks: an introduction to the biology of Nucella lapillus. Field Studies, 6, 291-360. Free pdf at
fsj.field-studies-council.org/media/342851/vol6.2_171_col...
Flint, D. 2001. Unpublished study of Nucella predation on Patella spp. in Guernsey.
Forbes, E. & Hanley S. 1849-53. A history of the British mollusca and their shells. vol. 3 (1853), van Voorst, London. (As Purpura lapillus; Free pdf at archive.org/details/historyofbritish03forb Use slide at base of page to select pp.379-387.)
Fretter, V. and Graham, A. 1962. British prosobranch molluscs. Ray Society, London.
Fretter, V. and Graham, A. 1994. British prosobranch molluscs. Revised and updated edition. Ray Society, London.
Graham, A. 1988. Prosobranch and pyramidellid gastropods. Linnean Society of London.
Hughes, R.N. and Dunkin, S. de B. 1984. Behavioural components of prey selection by dogwhelks, Nucella lapillus (L.), feeding on mussels, Mytilus edulis L., in the laboratory. J. Exp. Mar. Biol. Ecol. 77(1-2) : 45-68. Abstract at www.sciencedirect.com/science/article/pii/0022098184900509
Jeffreys, J.G. 1862-69. British conchology. vol. 4 (1867). Van Voorst, London. (As Purpura lapillus; Free pdf at archive.org/details/britishconcholog04jeffr . Use slide at base of page to select pp.275-289.)
McKay, D.W. & Smith, S.M. 1979 Marine mollusca of east Scotland Royal Scottish Museum, Edinburgh.
Lewis, J.R. 1964. The ecology of rocky shores. London, Hodder & Stoughton.
Mallon, P. & Manga, N. 2007. The use of imposex in Nucella lapillus to assess tributyltin pollution in Carlingford Lough. J.E.H.R. vol.6 issue 2
www.cieh.org/jehr/imposex_nucella_lapillus.html
Matveeva T.A. 1955. Biology of Purpura lapillus (L.) on West Murman. In: Kamshilov M.M., ed. Trudy Murmanskoy Biologicheskoy Stanysii, 2: 48-61 [In Russian].
Medeiros, R., Serpa L. , Brito, C., De Wolf H. , Jordaens, K. , Winnepenninckx, B. & Backeljau T. 1998. Radular myoglobin and protein variation within and among some littorinid species (Mollusca: Gastropoda). Hydrobiologia 378: 43-51.
Richter, A., Amor, M.J. & Durfort, M. 2010. The anatomy and ultrastructure of the gland of Leiblein of Bolinus brandis and Coralliophila meyendorfii, two neogastropod species with different ecology and feeding strategies. Poster for Soc. for Environmental Biology, annual meeting, Prague 2010.
Santillo, D., Johnston, P. & Langston, W.J. 2001. Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex. European Environment Agency, environmental issue report 22, part 13.
13. Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex
Sarramégna, R. 1965. Poisonous gastropods of the Conidae family found in New Caledonia. Technical paper 144, S. Pacific Commission, New Caledonia.
www.spc.int/DigitalLibrary/Doc/FAME/Reports/Sarramegna_65...
European Environment Agency. Several articles on imposex and its effects on various species. glossary.eea.europa.eu//terminology/sitesearch?term=imposex
Yonge, C.M. and Thompson, T.E. 1976. Living marine molluscs. Collins, London.
Zettler, M.L. et al. 2013. On the myths of indicator species: issues and further consideration in the use of static concepts for ecological applications Plos One Vol 8, Issue 10 [Ref. is not specific to N. lapillus, see note under Ballantine, above.] Free pdf at
www.ncbi.nlm.nih.gov/pmc/articles/PMC3797757/pdf/pone.007...
Current taxonomy: World Register of Marine Species (WoRMS)
www.marinespecies.org/aphia.php?p=taxdetails&id=140403
Glossary
abapertural = away from aperture.
acinous salivary gland = compound gland of many small rounded sacs that secrete enzymes for external predigestion/ liquefaction of prey.
adapertural = towards aperture.
adapical = towards the apex of the shell.
afferent = carrying towards. (e.g. of vessel carrying blood, see efferent.)
aperture = mouth of gastropod shell; outlet for head and foot.
Ballantine scale = biologically-defined wave exposure scale (see references).
bipectinate = feather-like, with narrow filaments either side of central stalk.
capsule gland = secretes fibrous wall of capsule containing ova.
cephalic = (adj.) of or on the head.
chelae = (singular chela) pincers of crabs and other crustacea.
cilia = (pl.) vibrating linear extensions of membrane used in feeding or locomotion. (“cilium” singular).
ciliated = (adj.) coated with cilia.
columella = solid or hollow axial “little column” around which gastropod shell spirals; hidden inside shell, except on final whorl next to lower part of inner lip of aperture where hollow ones may end in an umbilicus or siphonal canal.
columellar = (adj.) of or near central axis of spiral gastropod.
columellar lip = lower (abapical) part of inner lip of aperture.
columellar muscle = attaches body, including opercular disc, to columella of shell; contraction of muscle withdraws body within shell, and pulls operculum to seal aperture.
commensal = (adj.) obtaining nutrients, shelter, support, or locomotion from a host species, without causing it significant detriment.
conchiolin = horny flexible protein that forms the matrix for the deposition of calcium carbonate to create a mollusc’s shell.
ctenidium = comb-like molluscan gill; usually an axis with a row of filaments either side.
ditaxic = (of locomotion waves on foot) double series of waves, out of phase with each other, one series on each side of central furrow on sole.
direct = (of locomotion waves on foot) waves travel from posterior to anterior.
efferent = carrying away from. (e.g. of vessel carrying blood from ctenidium).
fasciole = (see siphonal fasciole)
gland of Leiblein = secretes enzymes for internal digestion.
height = (of gastropod shells) distance from apex of spire to base of aperture.
hypobranchial gland = thickened, sometimes puckered, tissue on roof of mantle cavity of many gastropods. Emits mucous to trap particles from
inhalent water before it reaches ctenidium. Often other biologically active compounds produced. Gland occurs also in some bivalves and cephalopods (ink sac).
imbricate = shell sculpture of growth-line ornament overlapping like roof tiles.
MHWN = mean high water neap tide level (mean level reached by weakest high tides for a few days every fortnight).
MHWS = mean high water spring tide level (mean level reached by highest tides for a few days every fortnight; Pelvetia zone on rocky coasts).
MLWN = mean low water neap tide level (mean level reached by weakest low tides for a few days every fortnight. i.e. those that fall the least).
mantle = sheet of tissue that secretes the shell and forms a cavity for the gill in most marine molluscs.
mesopodium = middle section of gastropod foot. (see propodium & metapodium).
metapodium = rear section of gastropod foot. (see mesopodium & propodium).
myoglobin – red oxygen-binding protein in muscle tissue; often in buccal-mass muscles of gastropods. Similar to red haemoglobin in vertebrate blood, but green haemocyanin is usual oxygen-carrier in mollusc blood. See www.researchgate.net/publication/251227038_Radular_myoglo...
N = (See Newton).
Newton = (abbreviation N) force exerted by Earth’s gravity on approx. 100g.
odontophore = cartilaginous “tongue” that supports and protracts /retracts the radula.
opercular = (adj.) of the operculum.
opercular disc = part of foot attached to inner face of operculum.
opercular lobe = extension of opercular disc round edge of part of operculum.
operculum = plate of horny conchiolin, rarely calcareous, used to close shell aperture.
osphradium = chemo-receptor organ in molluscs that tests inhalent water flow approaching ctenidium (gill) for “smell” of food, prey, predators, mates and/or water quality.
penes = (plural of penis) male copulatory organs.
periostracum = thin horny layer of chitinous material often coating shells.
plankton = animals and plants that drift in pelagic zone (main body of water).
propodium = front section of gastropod foot. (Cf. mesopodium & metapodium).
prosobranchia = 20th Century term for subclass of Gastropoda that included most marine snails with ctenidia. Now distributed between several subclasses. See note at www.marinespecies.org/aphia.php?p=taxdetails&id=102
rectal gland = (a.k.a. anal gland) Function uncertain, perhaps produces substances that supplement the excretory activity of the kidney.
retrograde = (of locomotion waves on foot) waves travel from anterior to posterior.
sessile = (of organism) fixed in one place, e.g. barnacles.
siphon = extension of mantle to form a channel for inhalent respiratory water current.
siphonal canal = grooved or tubular extension of outer lip of the shell aperture on some snails to support the siphon.
siphonal fasciole = raised rib along columellar side of siphonal canal, bearing curved growth lines formed by successive positions of canal end.
sperm ingesting gland = (in female Nucella lapillus) group of dark brown blind-ended tubules at posterior of capsule gland where excess sperm unrequired by female are trapped, engulfed by cells and digested.
suture = groove or line where whorls of gastropod shell adjoin.
vas deferens = tube carrying sperm to male’s penis.
veliger = shelled larva of marine gastropod or bivalve mollusc which swims by beating cilia of a velum (bilobed flap).
Wind surfing, round path, circle, ring, orbit, artist's imp. The designing path came from, accidently, wind surfing over the equator, which is a,''''looping'''', all the way down to a concave / convex ? looping. ORBITes Strai.
Mass on the move by wind, in a most economic way, is going nowhere; but fast :: :: the line sailed forwards is the same line in the opposite direction. Half wind opens a looping flat to the wind. Like shown.
The sailing course: half wind. And, then came this picture; a looping. In a looping we end up in, A, again, without tacking. Or, in other words: No, VMG, Velocity Made Good. VMG is, 0 >> we sail half wind, and, so, we are sailing fast. We are wind surfing.
De zeilkoers voor Speelboten is half wind. Het ontwerpproces liep via windsurfers naar Orbites strai. Stel dat we over de evenaar surfen, en dat de aarde voor even overwaterd zou zijn, dan kunnen we een rondje maken over de aarde.
In de half windse koers wordt geen terreinwinst tegen de wind in geboekt. Ofwel, de heenweg is precies tegengesteld aan de terugweg. Het beginpunt, A, is tevens de eindbestemming, B. Spelen gaat om snelheid, en niet om ergens te komen. Windsurfen is spelen. Snelheid, v, in, m / s, werkt kwadratisch door in de formule voor energie, welke is, E_kin = 1 / 2 M v^2, in J.
Backwards is the same route as is forwarded and we have plenty of Energy > < start - finish is, A, and, B, at the same time. No, B. Spinning is, namely, without going somewhere.
Voordat de rat-race begon was zeilen gebaseerd op half wind. Gelukkig ontstond er na de tweede wereld oorlog een periode van vrede en vrije tijd, waarin windsurfen en catamaranzeilen werden ontdekt. De half windse koers kwam terug in de zielwereld en hiermee, de absolute snelheid. Een kenmerk van windsurfen is de harde wind en zoals is aangehaald, de koers. Half winds zeilen leidt tot Orbites strai. Verder wordt er wat aangerommeld met verhaaltjes in het Engels. Kijk plaatjes, en scroll door. Het gaat uiteindelijk om de Orbites strai. En dat volgt vanzelf. De show is zo opgebouwd dat plaatjes kijken meer voorstelt. Er wordt een voorbeeld gegeven van de Vikingen. Deze boten voeren ook half wind en de Vikingen voeren pas uit als de wind gunstig was. Vikingschepen, die windsurfen. De looping, zoals te zien is, zou ook gevuld kunnen zijn met Vikingschepen. Met een beetje fantasie leidt half winds zeilen, het windsurfen dus, tot een ring met bladen. Orbites strai.
Before the rat-race began, and, in, freedom, after the second world war, we were speeding as fast as possible, half wind, and, with the waves. See picture before this one. Or, in other words, we only wind surf when the conditions are just right. So, a great deal of windsurfing, near -, and at places we live, is waiting. The Vikings are the biggest example. They work and party on land, until the wind is good to sail away in the half winds course. According to some stories, from sailors, the Vikings sailed in only two weeks, to Greenland. The Viking ships do wind surf. Half wind sailing is leading to surfing. The looping, as is drawn, might as well be filled with, Viking ships, sailing half wind. The roundness in the creation and in humanity. Wind surfing is, perfect; of course it is. So, humans wind-surf the big wobbly Blue loop- , over the Pacific we can go on for miles, without tacking. But, eventually, we must tack, cuz, in reality the earth is not completely covered with water; as is assumed in some examples, to point out the roundness of earth. Spailboats and Orbites strai work for energy, mainly, near the poles and at sea. Wind-energy and oil. Question ; oil, for wind? And, oil for wind surf robots to replace oil?
Yes. oil made more wind, so, more wind is storm. and yes, oil is plastic storm surfers.
The paths of the windsurfers and kitesurfers are perpendicular to the wind.
These blades of wind surfers are in the same position as wind- mill-blades! This says all. Sailing, without capsizing, on the half wind sailing course, with machines, is called: Spailing / Windsurfing with Spailboats + equippement for making elkectricity and upon, hydrogen, known, as, LH2. Spailing, to drive turbines, is a mix between kite surfing and wind surfing. The wing is positioned as a kite, while the control over the wing is like the wind surfer. Wind - and kite surfers ride the waves parallel with the pipelines, respectively parallel with crests of the waves. ''''everything'''' former driven by oil, gas, coals and nuclear power can be driven by, LH2, made by, notably, the result of the first mentioned three; the ever increasing wind power of this planet. Wind, more and more tending to storms, because of the warmer planet, is, making the paths between the waves at sea wider, and, so the sea gets saver, as wind increases! No matter how high the wind, the paths stay clear. Only this, when going, ''''flat''', to the wind, which then captures wind surfing and surfing, at the same time. Surfing, as well as wind -, and, kite surfing go in / along the paths: half wind, flat to the wind. This is the axiom making wind surfing perfect; of course.
Wind surfing in the science books. Half wind wind surfing. that is something. acing with half wind r wind surf machines, in storms, over a rail might reach, 1000 km / hr; thousand km/hr. This is high speed and the machines can be much heavier than a human, so, we have energy, in optima forma. Mass in motion is energy. Whenever this comes from burning fuels to make the axis spin or, from wind-surfing, Spailing. Mass in motion is kinetic energy.
Why stability for speed sailing, Spailing? The, at the time state of the art, Philips' "Let's make things better" crashed and broke in half. It hit a wave and broke in half. My question to you is: what is the reason in the first place that sailing ships hit waves head on? Or, by giving the answer indirectly: why do wind - and kite surfers never penetrate waves head on, if they do not want to, where as sailing boats have to? Wind - and kite surfers ride the waves, and when a wave is hit head on, just before the jump, they use the wave as a ramp, to kick start the flying! Sailing boats have to get somewhere. point, B. The dogma to be broken, because, when we do not have to go some where, we do not have to enter the waves, at all! It is not possible for a sailing ship to race in the half wind course in high seas, with, automatically, massive waves. Waves are headed, every time, until the storm is over. Wind surfers are never eaten by a wave, because he / she can, even, sail from the half-winds course to, the lower courses. When sailing boats do this, they capsize, and worse, they will be catapulted. Sailing is dangerous, wind surfing is relatively safe, because of the higher speed with respect to the wave motion and, of course, the stability< no capsizing, no catapulting. Later on, I will call the ocean, in high winds, "freeways" for the wind surfers, because wind surfers ride the waves, so possible parallel with the waves, and go only over a wave, when the crest is not broken.
Wind surfers can make the most out of the sea. sailing boats can not. The problem with sailing boats is the capsizing and therefore sailing crafts, can not, sail on the half wind course in high seas and this is, why sailing boats can not sail parallel with waves. While the purpose of wind surfing is, making speed. The wings pull in high winds. The purpose of Spailing is making speed, to drive turbines. If the sea says: "this is your course", then we listen. The sea gives us the hills, for the Spailboats to ride. No use in not listening to the sea, because penetrating waves is dangerous on open seas with high winds. Where sailing was to go some where, there is sailing now for the fun.
There where wind surfing was just for fun, there is wind surfing now for the production of all the energy needed in the world. In other words, it is time to say goodbye to sailing, and to say hello to Spailing. To start: now we have motors in ships, and motors out do sails, since 1800 AD. So, no need to sail anymore. Sailing around the world is for fun and for prestige. Sailing in regatta's is also for the fun. Wind surfing was invented for fun, but turned out to be needed, for the usage of even high winds too; for the production of energy. For the purpose of gaining energy on sea, we do not ever need to penetrate a wave. For gaining energy, we need to wind surf. Getting no where is, the way to go, for speed, and for energy.
The future science with wind surfing.
all about the absolute speed of both. Sailing is competing with eachother, wind surfing is out off this world, until now. No rules. High speed.
Met benutting van wind en zon is het energie probleem opgelost. Aan de vraag naar energie kan makkelijk tot in het oneindige worden voldaan. Vloeibare waterstof maakt de wind en de zon mobiel.
Genoeg waterstof. Geen andere middelen meer nodig.
Genoeg waterstof, genoeg schoon water, genoeg eten.
Genoeg waterstof, de olie komt vrij om mee te bouwen, zodat de staal fabricage kan afknijpen en de kap van de tropische oerbossen kan stoppen.
Genoeg water en genoeg energie garanderen irrigatie, met bossen en kwekerijen als gevolg.
Stabiel zeilen, levert een horizontale normaal. Met als gevolg dat we nu, naast het wiel ook een ring hebben in de aandrijving. Een vliegwiel, is wat anders dan een as.
De nieuwe wereld is klaar voor gebruik. Dus, loop ff om, en kom dan terug. Zeilboten zijn niet normaal en kernenergie ook niet.
Er is vloeibare waterstof om de energie van de aarde, wind en zon, te vervoeren. Er was al genoeg, maar door onze levensstijl maakten we nog meer wind en zon. Industrie maakte een smerige rookpot van de wereld. We wisten niet hoe snel we aan de natuurmensen uit moesten leggen dat het niet goed is om in harmonie met de aarde te leven. Roofbouw, jongens, dat is het helemaal. En, trouwens, ze zien er sterk uit, goede arbeiders, maar, het zijn mensen, en hebben dus een ziel. Geen probleem volgens Engeland en Holland. Er werd gewoon gedacht, geredeneerd eigenlijk vanuit een standpunt, dat Afrikanen prima slaven zijn. Ik verzin het niet, helaas, ik rapporteer en gebruik het om niet nog eens dit te laten gebeuren, met nu de aarde en ons als inzet. Spailen is conform de feiten. Nu is kern energie onze volgende slaaf. Na de slaven kwamen eerst nog de kolen, de olie en het gas. Niet voor ons, maar voor de rijken. U werkt zich kapot, en dan is er na twintig of dertig jaar hard werken nog steeds crisis? Gedurende mijn bewuste leven, dat begon eind jaren zeventig, want ik ben geboren in 1969, moet er bezuinigd worden. En altijd maar stemmen op het CDA, om die broekriem aan te halen. Tja, mensen, als U werkt, dan denkt het systeem aan de volgende zet om in het zadel te blijven. Een auto weg doen, of een minnares, of een tweede huis, ben je helemaal gek? Of net zoveel gaan verdienen als Jan Modaal. Grapje. De volgende konijnen uit de hoge hoed zijn dan het fascisme en nationalisme. En ja hoor, hele volksstammen lopen blind in de val. Keurig, denkt meneer Rechts, in Wassenaar: "Ze zijn weer even koest, want voor je het weet komen ze erachter dat ze het hier moeten zoeken." En, zulk een gedrag past niet bij de "Prinsen van Oranje".
Met normaal doen met wind is er werk voor iedereen, alleen, dan is er werk voor iedereen, zonder energie centrales, en dus, zonder het monopolie dat de rijken zo graag willen behouden! De voorwaarde voor het Paradijs, is dat de wetten nageleefd moeten worden, in elk geval de mechanische, in geval van een TU.
Wind surf tuigages worden net als de zeilboot tuigages verbonden aan de voeten van de tuigages met de rompen. Terwijl kites aan draden hangen, en draden hebben de overbrenging tussen de lift en de zwaarden in het water genormaliseerd. Spailen is stabiel zeilen, met de controle van een wind surfer of zeilboot, met als doel energie op te wekken. Ik wil geen derde wereld oorlog en ook geen radio actief grondwater voor mijn kinderen. Daarom is het niet eerlijk dat de TU zich per definitie boven het volk op stelt. En daarom heb ik volste vertrouwen in Zijne Majesteit de Koning der Nederlanden en Antillen, om naast de TU-Delft, ook Engeland terecht te wijzen. Het is niet leuk dat Iran nu een Kernbom heeft, Engeland, als je dat maar weet. En TU Delft, het is niet leuk dat U de wereld naar de afgrond brengt. Niet werken aan de zaak is verraad. Lenin. Het systeem moet overstag. Dan is Holland weer de door het volk gekozen vrij staat. En, de Prins van Oranje was de enige Prins van de wereld die door het volk is gekozen, dat U weet. Dat ik dit weet. Reken : 2 4 8 16 .. WOIII is 1 miljard doden. om olie.
Alle lessen spannen samen. We hebben geen tijd te verliezen. Gelukkig kregen we voetbal, om ons met ogen dicht naar de verdoemenis te laten gaan. Ik heb ook expres getest tijdens de WK in 2010, om aan te tonen dat het redden van de wereld niet belangrijker is dan een voetbal wedstrijd. De pers had geen zin om te komen kijken, want er was voetbal. Spelen en vooruitzien kan ik aardig als wereld kampioen. Een heel jaar mee praten over de belangrijkheid van een dergelijke uitvinding en de publiciteit daar omtrent, en als er getest wordt, dan even niet.
Het was ook zo dat precies tijdens het WK2010 de wind gunstig was om te testen, zodat er van echte opzet geen spraken was; het kwam zo uit dat de WK2010 in de weg stond. De Windriaan werkt. Als Holland nu waterstof geeft, dan is de wereld gered. Wind surfen is als een kar die van een berg rijdt. Tja, op deze manier kan ik mijzelf nuanceren, want ik ben zeer onder de indruk van Ockels en van Kuik. Zo rekende Ockels ter plekke uit zijn hoofd sommetjes uit, waar ik nu nog aan denk. Vandaar dat ik volledig vertrouw op de klasse van de TUDelft, als ze maar normaal doet. Zo dat is eruit. Voor de lezers. Ockels heeft uitgelegd hoe een zeilboot werkt, en dat is wat overdreven voor de vaste bemanning van een wereldkampioen, die juist door het super gevaarlijke half winds racen in de olympische driehoeks banen en long distance races, het kapseizende moment eruit haalde om wel veilig te kunnen racen. Iets dat ik al deed met wind surfen. Zeilen was mooi, wind surfen is het paradijs. Vergelijkbaar met fietsen.
Wind surfen met vleugels die als kite staan opgesteld, met monoliete controle, dat was de boodschap. We kunnen maximaal snel. Als de wind toeneemt, dan neemt daarmee ook de snelheid van de compositie toe. “Wind surfen begint, als zeilen met zeilboten stopt.” Dit was de boodschap. Uit respect liet ik Ockels uit praten, maar daarna was er geen wederhoor. Ik kwam om te vertellen dat het moment eruit kan worden gehaald, en dat dan de compositie stabiel is, zoals een, en daar gaan we weer: De Piramide. En daarom zeg ik. Onze Piramides zijn raketten en zeilboten. Waanzinnig, en niet echt. Ik bedoel: Heel, Afrika, lag te creperen voor een bouwwerk dat helemaal nergens op slaat. Het enige wat normaal is, aan een, Piramide, is, de, Piramide, zelf. Mechanisch is het een normaal ding. Maar, met dezelfde inspanning en kracht van het volk kan ook een maatschappij worden voort gebracht en, daarom een post voor waterstof. Die post omvat dan, dus, wind - en, zonnen-energie. Er is / zijn genoeg, E, en, W, en, M. Absoluut. Geen andere middelen, als olie en gas zijn meer nodig. Qua constructie is bouwen als een piramide normaal. Waterstof is nieuwe kracht.
Bouwen, dat moet normaal, dus waren Piramides misschien nodig zijn geweest. Eerst stabiliteit, en dan zo groot mogelijk.
Een maatschappij die Piramides bouwt, krijgt spanningen. Er is genoeg werk om een maatschappij op te richten, maar door de ongelijke inkomsten verdeling moet het ene deel veel meer uren werken dan een ander deel, en zelfs is werkloosheid als gevolg uitbuiting van de werkenden. Ieder de helft, dat zou kunnen, maar dan moet er twee keer zo veel loon en ondersteuning plaats vinden.
De jonge ontevredenen vechten zichzelf stuk tegen elkaar, want vroeger konden de koningshuizen even snel een oorlogje laten uitvechten om zo de jonge mannen kwijt te raken. De koningshuizen hokten met elkaar, en hadden een probleem met de altijd dreigende opstand, en dus werd er heel diplomatiek een oorlog voorgesteld. Een win-win situatie voor de heersers. Na een oorlog is men immers blij met een dode mus. Kijk, dat is mijn strijd, om nu dat oeroude machtsblok neer te sabelen, die ons verdeelt om zelf te blijven heersen..
Genormaliseerde windmolens en zeilboten kunnen, per definitie, sterk genoeg gemaakt worden. Hiermee is alle wind op aarde te gebruiken. Energie van een zich voort bewegende massa is massa maal snelheid in kwadraat gedeeld door twee. Moment is kracht maal arm. Ongelooflijk toch eigenlijk, dat de TU in Delft, deze wetten niet accepteert, het volk vervolgens rustig voor liegt en dan zegt dat er kernenergie nodig is, Hey?
De TU, als scheidsrechter, bepaalt dat er kernenergie komt, omdat het lichaam zelf nog met windmolens en zeilboten bezig is, en die hobby niet wil opgeven.
Het zal een tijd duren tot dit valt. En dan zal U opveren. Wat? De mechanische wetten aan de basis van een technische universiteit worden nu door die zelfde universiteit weerlegd, om door te gaan met onzin, wind molens en zeilboten. Eerst, als er zeilboten gaan varen dan moeten het ook onderzeeërs zijn, in verband met calamiteiten. Prachtig, eigenlijk, dat die boot van de TU Delft zinkt in een haven en dan total loss is! Al tien jaar geleden was het mij duidelijk, dat, als er gezeild moet worden in harde wind, de zeilboot uitgerust moet zijn als onderzeeër; net zoals piloten in gevecht vliegtuigen een parachute dragen, in geval een calamiteit. Harde wind bestaat niet, getuige het feit dat zeilboten die energie moeten opwekken geen onderzeeërs zijn. Het niet erkennen van de harde wind, hoge zee en de gevaren tijdens harde wind zal de tijd ons afleren. Bouwen is goddelijk. Bouwen is normaal, letterlijk. Er is echt geen arm tussen het eigen gewicht en de fundering. BOUWKUNST STABILITEIT. Er is geen moment tussen eigen gewicht en fundering. Kitesurfen is normaal zeilen. De lift kracht door het draadje naar de kite kan geen eens een moment overbrengen op de kitesurfer. Normaal. Een touw kan geen moment verdragen. De constructie neemt het touw waar en jast de lift door zwaarden. Er is stabiliteit, en er zijn snelheid en massa. Energie, kinetisch. Nabij de polen en cyclonen. Vloeibare waterstof is een geschikte manier om die energie te brengen naar waar we wonen. Naast de wind, kan nu ook mbv de vloeibare waterstof de zon worden benut. 3 / 5 is water. Er is genoeg water op aarde om de waterstof te maken. Door eerst het normaal hanteren van zeilen en vleugels kan al worden over gegaan op, alleen maar, waterstof en is het energie probleem eerst opgelost. Vloeibare waterstof is natuurlijk een schone schakel binnen een schone energie en is doorslag gevend. Waterstof is als onzichtbaar geld. Want ook, als er waterstof is, dan zijn er geen gas, olie en kernenergie meer nodig. En, als er geen olie verbrand hoeft te worden, dan hebben we een prima bouw materiaal: de super composieten. Dan kan de staal afknijpen en de kap van de oerbossen kan stoppen.
Door de berging van het water daalt de zee spiegel. Dus, voedsel voor de armen, leidt tot daling van de zeespiegel. Want, water, kan gemaakt worden met waterstof uit zeewater. De energie voor de waterzuivering is dan dus de waterstof. Ofwel, mijn strijd gaat over het redden van de aarde, omdat het kan, en zo is. Een Piramide is wel normaal als bouwwerk, maar niet normaal als symbool natuurlijk. Mozes moest ook weg lopen, van dat symbool, en dat wil ik ook, dat U en jullie weglopen en zeggen, TU, ga zo door, maar nu met normale zeilende composities. Ofwel, ze voetballen bij wijzen van spreken erg goed, maar nu moeten ze de goede kant uit spelen, want ze scoren enorm, alleen, in het verkeerde doel. Er is niets mis met de TU, als ze maar leren en nu, instantaan, overstag gaan.
De beste boot en de beste Windriaan volgen na behandeling door de TU en bedrijfsleven. En dient / moet zelfs, gesteund ( te ) worden door de regering, en als dat niet lukt, dan is er nog ZIjne Koning der Nederlanden en Antillen. Het zal U niet vreemd klinken dat die zet als aller laatste redmiddel komt kijken, en, in dit vrije land zal ik zelf eerst alle zeilen bijzetten om mijn doel te bereiken. Ik opper alleen, dat ik alle vertrouwen heb in juist die steun, als het er echt op aan komt. Sterker, als Zijne Koning der Nederlanden en de paradijselijke eilanden ziet het gaat om een soort van wiel, een heel normaal iets dus, dat de aarde gaat redden, tegenover een slede, de windmolens en de zeilboten en de, Mars-reizen, dan zal ik zelf niet eens nodig zijn in het proces dat Zijne Koning der Nederlanden en wereld, in feite, met alle energie voor de wereld, gaat voeren met de de professoren van de, TU Delft, ten einde de hantering van zeilen en bladen in wind gedreven machines te verwezenlijken.
Bladen, die niet kunnen wijken, kunnen ook draaien. Omdat de koers plat op de wind is, is de verticaal opgestelde ronde baan ook plat op de wind. Windriaan molens staan zo net zo plat opgesteld op de wind, zoals dat gewone wind molens plat op de wind staan. Windriaan molens kunnen niet stuk en draaien in wind kracht 12 bft door.
Met benutting van 1 mega km^2 windrijke plekken [twee keer oppervlakte Frankrijk] is de wereld wijde energie vraag in te vullen. Er staan 10 stuks Windriaan turbines voor hurricanes per km^2 en dat maakt dat we, 10 miljoen, ORBITes strai's, nodig hebben, om, de energie behoefte, van de wereld, te stillen. 1 miljoen wordt ook in gerelateerde sites 10 miljoen.
Op zee kunnen we 100.000 Spailboaten laten varen. Deze Spailboaten zijn tot 6 kilometer lang.. mooiste tekening. insecten met wielen.
Daarnaast hebben we Waterstof-carriers nodig.
Vloot en molens moeten worden gemaakt en bediend. Anders worden kern-energie en de schatten van de aarde onze slaven. Het kan allemaal dus veel beter ; zonder slaven maar, met, wind en, water. Windsurfen is leuk om te doen. skateboarden ook. skiën ook. Spelen is leuk. Het geeft energie.
Energie, is er genoeg. Terug rekenen. Normale zaken, wind surfen.
Hoeveel windsurfmachines hebben we nodig, dat is een normale vraag. Waterstof is ons geld.
Golven, wind en zon, zijn als de helling die een wiel laat rollen. Nu is het zaak dat er aan zo'n wiel een as, naar een turbine, loopt.
Draaiing, spinning, energie.
Een Spailboat wordt eindeloos voortgetrokken en surft, en alleen al deze samenloop, is zo normaal als het wiel.
Golf surfen, in de halve windse koers is automatisch de richting in waarin ook gewindsurft wordt.
Halve windse opstelling, zonder omslaan, is de stoommachine in het kwadraat.
Er is veel wind, en er komt nog meer.
Er zijn mooie deiningen en golf patronen op zee, te benutten door wind surfers.
Een wiel, van een berg.
Maakt het dan uit of ik het wiel, of de berg, geef, als aanvulling op een van beiden?
Stabiel zeilen is als de vondst van het heden. Alles was er al, sinds de komst van het staal in de 19e eeuw en de composieten van nu.
Het duurde echter tot de wind- en kitesurfers er werk van gingen maken.
energy. wind using is a passive reaction, as is using waves and, this is the opposite of making axis spin by means of using fossil fuels. from motion by wind and waves is, LH2, made. from spinning as the result of the going on with the mass leads to all plastic, [history in a few lines..} ]all driven by storm, sun and maybe fusion, that needs by the way LH2 too. wind surfing is dancing, storm surfing, as well on land, by ORBITes strai, en spailcrafts on water, on the grave of the age of pollution, the thick atmosphere and the thereby made wind and bad weather, the gifts of tomorrow, storms and waves. how many energy do we want? global warming made more wind. energy is obtained, just wind surfing. mass in motion. the technique for wind surfing is the same as war fare techniques. as there are the wings, the shooting and the high speed of the vessel / vehicle. the coordination in the handling is what it is all about. plastic for in wind on earth is converting the wind's energy into spinning from where electricity is made and where upon hydrogen is made with the marine water as base. the energy is moulded into hydrogen. energy stored as hydrogen-LH2.
Earth is Ering Spailing is windsurfing with energy gaining machines generators h2
Een monetaire energie bron is op te zetten met vloeibare waterstof. Er is genoeg in omloop te brengen, met benutting van de wind en de zon. Als het verwisseld wordt, dan kost het niets. Gebruik en hergebruik leveen gewoon geen vervuiling op. Renteloosheid.....Normalisaties op mechanisch vlak, zoals het wiel en de boot en de raket, de piramide en de kerken, worden gebruikt. Het is normaal dat harde wind tot hoge snelheid leidt, via de normalisatie tussen actie en reactie, en het is normaal dat we straks van wind en zon gebruik gaan maken met vloeibare waterstof als intermediair tussen bronnen en gebruik. En, water, daar is ook genoeg van, om waterstof uit te extraheren. Er is dus schier eindeloze energie. De mechanische wetten en de omstandigheden op aarde zijn perfect.
Wind en zon en waterstof kunnen ons eindeloos drijven; zonder vervuiling, kaalslag et cetera.
Alle energie is wind en zon. Energie mobiel. Vloeibare waterstof maakt het mogelijk om van ver gelegen bronnen gebruik te maken, ook de zon.
Er is, 500.000 vierkante kilometer, nodig, en, een vloot van, 100.000 Spailboten, om de wind om te zetten.
De zon in de woestijnen kampte met het zelfde oorspronkelijke probleem: Hoe krijgen we de energie mobiel?
Uitgaande van schone verbrandingsmiddelen, was het al zover dat de karren en de boten om de waterstof te vervoeren ook groot kunnen zijn. Karren van carbon fibers in combinatie met vlas / hennip en snel groeiende houtsoorten en motoren die water produceren, zijn van U.
Het wiel en de boot, zouden die überhaupt zijn gevonden zonder bomen?
Spailen is wind surfen met een speciale boot met de normalisatie van de lift van de kite door de bovenbouw waaraan de vleugel hangt. wind. 12+ bft, dus de maximale wind, kan worden benut, door de vliegende schotels. en de zee wordt groter.
De controle is monoliet ten opzichte van het voorlijk van de vleugel, voor kite, met behulp van de bovenbouw.
De bovenbouw, waaraan de vleugel hangt, is een gevolg van naar het antwoord toe rekenen. De vleugel staat zo opgesteld tov de romp dat er een stabiele compositie is bewerkstelligd.
Spailboaten en Windriaan turbines zijn stabiel, terwijl er overbrenging is tussen lift en water, of rails, of in geval van een Windriaan; de ring in de verticaal opgestelde ronde baan. De pannenkoek van een molen is een verticaal staande pannenkoek, plat op de wind.
Stabiliteit ontstaat wanneer, “de arm”, weg is gehaald tussen lift en zwaard. Een kite oefent geen moment uit op de dragende tuigage. Er is geen momentum meer, ofwel, er is geen kapseizend moment meer want, de kracht is genormaliseerd door de draadjes. Een kracht door een draadje werkt als een lijnvector, en niet als een moment / Torque, T, in Nm. Als deze vector wordt geblokt met een precies dezelfde vector, maar dan tegengesteld gericht, dan is de overbrenging normaal.
Een oplijning, zoals die heerst bij een kite, die dan hangt aan draden, en een massieve controle over de dan veraf gelegen kites, leiden tot een stabiele wind gedreven zeilende compositie.
U ziet de oceaan, de woestijnen en, de arctische zones, Vuureiland en de Kapen, en U ziet dan energie. Die energie kan worden omgezet in vloeibare waterstof.
De krukas werd door iemand uit het gewone volk uitgevonden, maar werd niet erkend en ook niet toegepast in de tijd dat de uitvinder leefde. De krukas maakte een lijn beweging van een draaiende beweging en fundeerde de zogenaamde drie fasen, leidende tot de basis van elektriciteit.
Nu kan via een normalisatie op het mechanische vlak de energievraag worden ingevuld. We kunnen werk maken van energie. Een vloot en windriaans voor hurricanes voorzien in werk en energie. Werk voor ons allen, energie voor ons en voor een groot deel van de wereld.
Onze piloten zijn onze jeugd, onze arbeiders, iedereen.
Wind molens waaien nu niet meer stuk, maar draaien alleen maar sneller, en windsurfboten kunnen heerlijk windsurfen in wind kracht tien bft. Energie opwekkend.
Er is straks een vloot, die moet worden bestuurd. Werk voor tien duizenden. Jonge piloten leiden zichzelf heden op, via computer spelletjes.
Er is twee keer Frankrijk nodig, qua oppervlak, op wind rijke plekken, volgens eerste berekeningen.
In werkelijkheid zal een gerichte benutting van stormen tot hoge intensiteit leiden, met kleinere oppervlakten tot gevolg. Een week windkracht 12 bft is evenveel als een half jaar windkracht twee.
We kunnen nu terug rekenen vanuit de wereld wijde vraag naar energie. Wij hebben de normale verhouding met de wind en de zon. Hoeveel zij willen, is wat wij leveren. Als ik zo vrij mag zijn.
Zelfs met benutting van zelfs maar een fractie van de wind kracht en zon kracht is deze vraag in te vullen.
Absoluut levert een week windkracht elf over een gebied van twee keer Frankrijk genoeg waterstof om de wereld een jaar te laten draaien.
Harde wind, veel energie. Waar gaan we heen? Naar plekken met veel wind en veel zon. Op zee en in de woestijnen.
De energie kan eindeloos worden benut. Water wordt gebruikt, en ook schoon gemaakt, en via irrigatie daalt de zeespiegel.
Moment is kracht maal arm. Een wet van Newton.
Bouwwerken moeten altijd aan de stabiliteits eisen voldoen. Hieruit volgt dat wind molens en zeilboten geen bouwwerken zijn, maar dromen.
Als er een moment is, dan is er een arm. M = kracht maal arm, in Nm.
Als er geen arm is, als de krachten oplijnen, dan is de overbrenging genormaliseerd.
Uw onderdaan heeft na het wiel en de boot zo'n vondst te overhandigen.
Hysafe en Keezerengineering, keezerengineering.nl, met natuurlijk de heer Marcel Keezer als leidende, ontwikkelen vloeibare waterstof, LH2. en, het ongelooflijke is eigenlijk waar gemaakt. energie in een potje.
spreektaal. energie in een potje? ja, toevallig is dit wel degelijk HET kunst-stukje van de moderne wetenschap, en is rocket science pur sang. dit impliceert namelijk dat er met met grote hoeveelheden energie gesmeerd kan worden. en dat, kon nog nooit eerder. de huidige elektrische accu's kunnen dat niet namelijk. neem maar even Uw auto accu, en de massa, ervan. U tilt zich een breuk en het ding levert, let wel, 24 Volt. en is leeg na een uur. dat is werkelijk geen vergelijk met [ vloeibare en veilige - ] waterstof. LH2, is revolutionair. Keezer.
waterstof is namelijk zo veilig als wat, watt?, als het maar koeler blijft dan minus, 250 graden Celsius. De heer Keezer, feitelijk een soort superman aangaande deze materie, knippert niet eens met de ogen als deze lage temperatuur wordt besproken. en zegt dan vervolgens dat minus, 260, graden, Celsius, makkelijk haalbaar is. Indium, enzo. ook benadrukt hij dat het zogenaamde raam, window, waarin, LH2, zou ontploffen, zeer klein is. en dat bovendien dit raam heel makkelijk is te vermijden. hoe dit allemaal precies in elkaar steekt gaat compleet boven mijn pet. het, LH2, is dan ook niet voor niets rocket science. neemt niet weg dat ik al in, 1997, werd geattendeerd, door Professor Marcel Donze, op de werkzaamheden van Hysafe, onder leiding van de heer Dahoe, en waar toen Keezer werkzaam was. ik ben eigenlijk in de afgelopen vijftien jaar naar waterstof toe gegroeid. ik noemde waterstof wel steeds, omdat ''''mijn''' professor Donze dat telkens benadrukte, kijk zegt hij, mijn vrind Dahoe heeft het binnen een paar jaar voor elkaar. dit was dus rond,1997, en , 1998. Donze, zegt, waterstof is de handel, goed luisteren en niet eigenwijs zijn. in de afgelopen jaren noemde ik wel waterstof, maar ik geloofde er geen barst van. iedereen weet dat waterstof een bom is. zelf had ik meer vertrouwen in stikstof-accu's. eigenlijk kreeg ik hierin gelijk, want veel hybride auto's gebruiken dergelijke accu's. dit komt weer doordat ik vijzels moest gaan gebruiken voor op de Spailboten. dus, ik moest naar werkplaatsen om met specialisten te praten, zoals Marco Snijders in Egmond aan Zee. Marco Snijders legde mij alles uit. dat wil ik wel steeds bedrukken in deze. ik liep constant tegen muren op, maar, de uitzonderingen op deze regel vergoedden alles. mensen als prof. Marcel Donze, prof. Van Tooren, ir HenkJan van der Pol en Marco Snijders nemen alle tijd. Marco Snijders legde uit dat de vijzels werken op oliedruk, en tot hier kunnen U en ik het volgen. vervolgens werd het iets lastiger, omdat het olie-circuit op druk wordt gebracht via een stikstof-tankje, met ertussen een membraan. Marco was destijds bezig de restauratie van een ingewikkelde veegmachine, met allemaal armen waaraan slurfen en staal bezems hingen, waarbij naast deze hydraulische armen, ook de wielen worden aangedreven met hydrauliek. maw, zelfs kan er op oliedruk in de rondte worden gedraaid. voor de Spailboat precies wat nodig is. voor de wielen onder veegmachine moesten er dan wel zogenaamde planetairs in, en hier haakte ik af. dat een vijzel kan drukken en trekken, op olie druk, ja dat kan ik nog begrijpen, maar hoe oliedruk een geforceerd rondje laat maken, oei. in de Spailboat wordt dit geforceerd draaien van een krans, item, 33, genoemd, minimaal twee maal, in de mastmanipulator, item, 3. met hierbij gelijk de notitie dat alles wat U ziet werkelijk kan. realisme in de techniek kenmerkt de dromer.zie www.flickr.com/photos/spailboatspeedsailcrafts/show ww.flickr.com/photos/windriaan/show en .. www.flickr.com/photos/windriaanspailboatspeedsailcrafts/show , echter, daar gaat het nu even niet over. het ging over die stikstof en de tank waarin dat zit. de veegmachine lag op het moment dat ik aanklopte helemaal open en alle onderdelen waren duidelijk te zien. dat kwam even mooi uit. duidelijk was de stikstof-tank te zien en de hoge-druk slangen. Dus, stikstof kan mooi druk herbergen. zo, dacht ik, dan maken we stikstof daar waar het waait en dan persen we druktanks vol met de stikstof. vervolgens brengen we dat naar huis. deze kennis deelde ik dan tijdens het jaarlijkse gesprek met Prof. Donze. en de reactie van Donze was kenmerkend voor de spirit van de man. als er iemand vuur kan spuwen uit de ogen dan is hij het wel. Nee, nee, nee, ''''we'''' gaan niet met energie slepen. WATERSTOF is onze handel. ik moet eerst uitzoeken hoeveel kuub waterstof gelijk staat aan een vat olie. en ja, dat is dan ongeveer, een, tot, tien kuub. aan de ander kant is er een accu van een paar kuub nodig met geperste stikstof om aan dat vat olie gelijk te zijn. onzinnig dus, om met stikstof-tanks te gaan slepen. maar toch, een stikstof accu werd later wel toegepast in hybride auto's, dus, die tel ik wel. het is dan wel zo, dat er tijdens remmen van de auto weer druk wordt gemaakt. zodat het wel een accu is, maar ook eentje die dan steeds weer opnieuw wordt opgeladen. dat had ik niet. maar toch.. tel de zegeningen, en, het gebruik van de stikstof-accu was er duidelijk eentje. ik zat op de goede weg. we spreken 2005. en in 2009 werden stikstof-accu's toegepast in hybride auto's.
Na een gesprek met Keezer was ik in een klap overtuigd van waterstof. de kruks, zo zei hij, is het vacuüm. te verstaan, absoluut vacuüm. want, zonder moleculen, in het luchtledige dus, kan er geen warmte overdracht plaats vinden. dus, LH2 is mogelijk als er vacuüm kan worden gewaarborgd. hierdoor is waterstof te hanteren. Het gaat, ten slotte, om, de behandeling van energie. Eerst werd de wind ENERGIE hanteerbaar / behandelbaar en daarna de opslag van, ENERGIE : >> > LH2, is, zelfs veiliger dan de huidige, LPG. ir Keezer. Dan volgt: De op afgelegen plekken gemaakte energie kan worden omgezet naar vloeibare waterstof. Nu is het mogelijk om terug te rekenen, vanaf onze arbeids capaciteit. We kunnen een, X, aantal leveren, aan de hand van ons arbeidsvermogen. 1, een, miljoen werklozen kunnen aan het werk, en dan nog is werk over voor andere landen. We kunnen zelfs kiezen voor markt beheersing en controle, met een win-win situatie voor iedereen. Bouwen, dat kan alleen als de boel eerst stabiel is.
Een wiel, de boot. De Spailing. Speel, Spail.
Harde wind, hoge snelheid. Actie is reactie.
E = Massa maal snelheid in het kwadraat gedeeld door twee.
Er is genoeg energie.
www.flickr.com/photos/windriaan/show
www.flickr.com/photos/windriaanspailboatspeedsailcrafts/show
www.flickr.com/photos/spailboatspeedsailcrafts/show
Rollen langs een baan met spailtreinen kan met centrisch belaste assen. Dit is wederom een normalisatie. Normaal belaste assen is nieuw, omdat de assen van wind gedreven werktuigen, molens, niet normaal worden belast.
Spailtreinen en een banen stelsel over een oppervlakte op plekken waar het vaak waait leveren per Kg materiaal, of per Euro, zo'n, 100, tot, 10.000 keer zoveel op als de opbrengst van de wind turbines die we kennen. Even, voor de jonge lezers: Wind- en kitesurfen beginnen, als die oude "zakken" op hun zeilboten van het water moeten.
Echter, als uitvinder van mechanisch windsurfen, het spel zogezegd, ben ik zeker niet het beste team. Het beste team zal toch echt bestaan uit de, TUDelft, en, Fokker / Stork, samen met bv Philips. Een, Spailboat, en een Windriaan zijn zogezegd onze, Space shuttles of, Airbus 380.
Ik ben niet zo arrogant dat ik de boot moet maken. De boot volgt eerst uit het door mij eerder ten gronde gerichte systeem. Prof Ockels en van Kuik zijn vak mensen, alleen, op dit moment hebben ze nog niet door dat het ook normaal kan. Letterlijk, wel te verstaan. Dat is geen mening, maar een feit.
Als wetenschapper heb ik geen mening, maar constateer een feit. Zeilboten vallen om. Wind turbines waaien kapot. Het systeem zit op het verkeerde spoor. Als de TU Delft de windmolens / wind turbines en de zeilboten laat gaan, en de Spailboaten en de Windriaan turbines voor hurricanes oppakt en uitwerkt, dan is alles weer recht.
Iedereen zal begrijpen een solist niet geschikt is om een miljarden project te leiden. maar, ik ben er wel klaar voor. een miljarden project is werk voor de professionals. Die professionals zijn bv Ockels en van Kuik, en feitelijk kunnen deze heren niets doen aan het feit dat ze op Hawaï het windsurfen uitvonden, dat een soort wiel is, qua impact.
Normaal afglijden van golven gaat in de race koers. En wind surfers kunnen alleen racen. Wind surfen is als een kar die van een berg rijdt. Tja, op deze manier kan ik mijzelf nuanceren, want ik ben zeer onder de indruk van Ockels en van Kuik. Zo rekende Ockels ter plekke uit zijn hoofd sommetjes uit, waar ik nu nog aan denk. Vandaar dat ik volledig vertrouw op de klasse van de TUDelft, als ze maar normaal doet. Zo dat is eruit. Voor de lezers. Ockels heeft uitgelegd hoe een zeilboot werkt, en dat is wat overdreven. Uit respect liet ik Ockels uit praten, maar daarna was er geen wederhoor. Ik kwam om te vertellen dat het moment eruit kan worden gehaald, en dat dan de compositie stabiel is, zoals , en daar gaan we weer:
De Piramide. En daarom zijn onze Piramides zijn raketten en zeilboten. Waanzinnig, en niet echt. Ik bedoel: Heel Afrika lag te creperen voor een bouwwerk dat helemaal nergens op slaat. Het enige dat normaal is aan een Piramide, is de Piramide zelf. De actie kracht loopt door de reactie kracht, en dat kunnen we van een zeilboot en een windmolen niet zeggen, omdat er bij beiden armen tussen zitten, die per definitie momenten veroorzaken.
Leidende tot deze tien jaar durende strijd. Mijn strijd. Oei...Voor de jonge lezers, mijn strijd gaat over het redden van de aarde. Ik heb bewezen / wezenlijk aangetoond, met de Windriaan, dat zelfs orkaan kracht is om te zetten in energie. Die energie wordt omgezet in waterstof, de vloeibare vorm, welke veilig is, en er is genoeg water op aarde, zodat we met het geld van de ruimte exploitatie onze aarde kunnen redden.
Adult shell is a fairly tall, sharply pointed cone; width about 45% of height. Juveniles are more squat and taper more sharply; W/H about 55%.
Body-whorl convex. Spire-whorls have almost straight-sided profile on adult (1); slightly concave on juvenile (2).
Height 27.6 mm, Dorset, April 2012 and juvenile (at larger scale) height 5.6 mm, west Anglesey, Wales, May, 2016.
Full SPECIES DESCRIPTION BELOW
PDF available at: www.researchgate.net/publication/378125315_Tritia_reticul...
Sets of OTHER SPECIES:
www.flickr.com/photos/56388191@N08/collections/
Tritia reticulata (Linnaeus, 1758)
Synonyms: Buccinum reticulatum Linnaeus, 1758; Hinia reticulata (Linnaeus, 1758); Nassarius reticulatus (Linnaeus, 1758); Nassa reticulata (Linnaeus, 1758).
Current taxonomy: World Register of Marine Species (WoRMS)
www.marinespecies.org/aphia.php?p=taxdetails&id=876821
Vernacular: Netted dog whelk (English); Chwalcen rwyllog (Welsh); Gevlochten fuikhoren (Dutch); Netzreusenschnecke (German); Nasse réticulée (French); Dværgkonk (Danish); Κοφίνι (Greek).
GLOSSARY below.
Shell description.
The shell of T. reticulata grows to a maximum of 30 mm high and 14 mm wide. The shell wall is solid, opaque and matt. The body whorl is convex but the spire whorls are almost flat and the spire profile is almost straight sided 1Tr flic.kr/p/2hF1X7i . Juveniles may have a slightly concave spire profile 2Tr flic.kr/p/2hF31A1 . The sutures are shallow, but are sometimes emphasised by each whorl being raised slightly higher than the preceding whorl 1Tr flic.kr/p/2hF1X7i . The spire is a variably slender, sharply pointed cone with adult width varying from 45% to 55% of height 1Tr flic.kr/p/2hF1X7i . Juvenile spires taper more sharply with width/height about 55%, or more 2Tr flic.kr/p/2hF31A1 . Adult body whorl height is 60% to 70% of shell height 3Tr flic.kr/p/2hF31sa . The shell has a sculpture of broad spiral ridges, narrower spiral grooves, and sigmoid costae about as wide as the intervening gaps. In Britain, the adult body whorl has 15 to 23 costae (pers. obs. IFS, 2019) or 15 to 20 (Jeffreys, 1867). In Ria de Vigo, north-west Spain, 16 to 23 costae were recorded by Rolan and Luque (1994). Juveniles may have more costae. Rarely, the final costa is sufficiently thickened to form a slight labial varix 4Tr flic.kr/p/2hEYddy. The exterior rim of the aperture is usually thin, smooth and white without periostracum 5Tr flic.kr/p/2hEYcRG & 6Tr flic.kr/p/2hEYcJx . The intersection of costae and spiral ridges creates rectangular bosses in a reticulate arrangement 7Tr flic.kr/p/2hEYcFB . There is a deep spiral gutter at the base of the shell. Below the gutter, the neck of the siphonal canal has 4 or 5 grooves on its exterior when not eroded 7Tr flic.kr/p/2hEYcFB . The protoconch has a diameter of about 1 mm and is smooth and white 8Tr flic.kr/p/2hF2ZuP with a little more than 2 whorls (Sanjuan, 1997). In Ria de Vigo, Sanjuan (1997) found this to differentiate it from T. nitida with a little less than two complete whorls, but some in Britain seem to have 1.8 whorls on the protoconch 9Tr flic.kr/p/2hF2Ztr . In the Ria de Vigo, Sanjuan (1997) found the protoconch to persist on most live T. reticulata and to be incomplete on most T. nitida. This applied generally also to British material examined by IFS, the apical whorls being frequently broken off on T. nitida and often persisting to form a fine point, even when worn, on T. reticulata10Tr flic.kr/p/2hEYcvS . When live and uneroded, the exterior of the shell is covered by a brown periostracum apart from the protoconch and the rim of the outer (palatal) lip 5Tr flic.kr/p/2hEYcRG . On worn shells the periostracum persists longest in the shelter of the grooves between the costae and spiral ridges 11Tr flic.kr/p/2hF1VBE .
The height of the oval aperture is about 45% of the shell height 3Tr flic.kr/p/2hF31sa . The palatal (outer) lip meets the parietal (upper, inner) lip at about 90º (not always discernible) but immediately curves strongly abapically so the aperture is pointed adapically12Tr flic.kr/p/2hF2Zpi . Sometimes there is a small anal sinus. At the base of the shell, the distal end of the short, oblique, widely-open siphonal canal meets the palatal lip at a slightly-acute or right angle when viewed end-on13Tr flic.kr/p/2hF1VqY & 14Tr flic.kr/p/2hF2Z9U . The short, straight, white, exposed columella forms one side of the canal. The siphonal canal of earlier stages remains as a deep groove on the columella concealed within the spire for its entire length to the apex of the shell 15Tr flic.kr/p/2hF2Z4P . The substantial, opaque, glossy white, semicircular parietal lip spreads extensively over the body whorl 12Tr flic.kr/p/2hF2Zpi . It may be stained by epizooic growth16Tr flic.kr/p/2hF1V5C . The porcelaneous (when live or recently dead) white aperture interior rapidly thickens away from the thin palatal rim and, on adults, forms a rib with 6 to 10 unevenly sized palatal teeth. The one or two near the middle are often the most prominent 12Tr flic.kr/p/2hF2Zpi . Frequently there are up to six less conspicuous columellar/parietal teeth 17Tr flic.kr/p/2hF2YUR . The external ground colour of the shell is brownish when the periostracum is intact, but opaque, matt whitish/buff when the periostracum is eroded 7Tr flic.kr/p/2hEYcFB . Exposed shell may be stained by epizoic growth 16Tr flic.kr/p/2hF1V5C . Spire whorls may have a brown or purple-brown subsutural line, and the body whorl may have a similar line on its periphery and another above the spiral gutter18Tr flic.kr/p/2hEYbT4 . The small, oval, translucent, horn-coloured operculum19Tr flic.kr/p/2hEYbQP has a distal (outer) surface of conchiolin with concentric growth rings round a peripheral nucleus. The proximal (inner) surface has a matt surface where the opercular disc attaches to it, with concentric lines running transversely to exterior growth lines. The unattached part of the proximal surface is of varnish without growth lines.
Body description
The ground colour of most parts of the body is usually light sienna or yellowish 11Tr flic.kr/p/2hF1VBE or, on juveniles, whitish20Tr flic.kr/p/2hEYbJr , heavily marked with small white and brown/black marks. It is uncertain whether grey bodies are confined to T. nitida, as stated by Jeffreys (1867). The rectangular head is dorsoventrally flattened with a long, slender, tapering cephalic tentacle on each anterior corner 21Tr flic.kr/p/2hF1ULS . There is a small, black eye on the swollen base of each tentacle. There is no external snout between the tentacles, but the ventral surface of the head has a slit opening (pseudo-mouth) 22Tr flic.kr/p/2hF2Yvu of a sac containing the retracted, long, unmottled, pleurembolic 23Tr flic.kr/p/2hF2Yqz proboscis 24Tr flic.kr/p/2hF1Uv1 & 25Tr flic.kr/p/2hF1UkX . The radula, buccal mass and the true mouth are in the distal end of the proboscis. The rachiglossan radula has in each row of colourless, transparent teeth a wide, central, rachidian tooth with many small cusps (points) flanked on either side by a longer marginal tooth 26Tr flic.kr/p/2hF2Y4Y . The yellow mantle lacks mottling at the anterior of the mantle cavity 16Tr flic.kr/p/2hF1V5C , but it has much dark pigment further back 27Tr flic.kr/p/2hF1Ueu . The mantle on the left extends as contractile, densely mottled, respiratory siphon through, and often far beyond, the siphonal canal of the shell 28Tr flic.kr/p/2hEYb29 . The mantle can extend widely onto the body whorl exterior to deposit the wide, glossy white parietal lip 16Tr flic.kr/p/2hF1V5C . Within the mantle cavity, behind the right tentacle, males have a large, curved, buff-white penis with only a few dark marks basally 29Tr flic.kr/p/2hEYaXB & 30Tr flic.kr/p/2hEYaTo . Also in the mantle cavity (dissection required) there are a large, yellow-brown, pinnate ctenidium and a large, pinnate, red-brown osphradium resembling a ctenidium in structure 31Tr flic.kr/p/2hF2XMA .
The large, broad, ovoid foot 32Tr flic.kr/p/2hEYaPF is truncate at the anterior with angulated corners (propodial tentacles) that can be varied from bluntly rounded 33Tr flic.kr/p/2hF1TLq to recurved and sharply pointed 34Tr flic.kr/p/2hEYaAu . The anterior and corners of the foot are deeply bilaminate 35Tr flic.kr/p/2hF1Tv5 with the anterior pedal mucus gland within. In life, the bilaminate groove is often concealed by the upper lamina overhanging it. The posterior of the foot narrows to a blunt point with a pair of small metapodial tentacles dorsally 5Tr flic.kr/p/2hEYcRG . The foot can transform to a variety of shapes, and twist abruptly to different positions 36Tr flic.kr/p/2hF2nse . Dorsally the foot is coloured as most of the body 32Tr flic.kr/p/2hEYaPF but on the sole white marks are usually limited to near the edge 6Tr flic.kr/p/2hEYcJx .
The dissected female in images 27Tr flic.kr/p/2hF1Ueu (mantle intact) , 24Tr flic.kr/p/2hF1Uv1 (mantle cut and opened to right, but remaining on part of the mantle cavity) and 25Tr flic.kr/p/2hF1UkX (body wall opened) , shows the following features:
1: sole of foot. 2: dorsum of foot. 3: cephalic tentacle.
4: operculum. 5: mantle edge. 6: unblotched mantle.
7: darkly blotched mantle. 8: respiratory inhalent siphon.
9: osphradium for testing inhalent water. 10: ctenidium (gill).
11: hypobranchial gland, secretes mucus to trap particles from inhalent water.
12: kidney. 13: digestive gland. 14: stomach. 15: ovary.
16: auricle of heart. 17: ventricle of heart.
18: proboscis sheath seen through translucent body wall.
19: proboscis with sheath removed. 20: ova.
Key identification features
Identification should be made using a combination of features as some elements may vary.
Tritia reticulata
1) Maximum height 30 mm.
2) Spire variably slender, flat-sided, sharply pointed cone with almost flat whorls on spire and shallow suture 1Tr flic.kr/p/2hF1X7i (Body whorl convex). Juveniles are more squat, taper more sharply and may have a slightly concave-sided spire 2Tr flic.kr/p/2hF31A1.
3) Smooth protoconch, c.1 mm diameter, usually persists to form a fine, sharp apex 8Tr flic.kr/p/2hF2ZuP , even when worn10Tr flic.kr/p/2hEYcvS .
4) Costae (axial ribs) intersect with spiral ridges to create reticulate arrangement of squarish bosses 7Tr flic.kr/p/2hEYcFB . In Britain, number of costae on body whorl is 15 to 23 (pers. obs. IFS), (15 to 20 in Jeffreys, 1867) and, in Ria de Vigo, Spain, 16 to 23 (Rolan and Luque, 1994).
5) Only very rarely, is the final costa sufficiently thickened to form a slight labial varix 4Tr flic.kr/p/2hEYddy .
6) Teeth within the outer (palatal) lip are unevenly sized, one or two near middle often most prominent 12Tr flic.kr/p/2hF2Zpi . The inner (columellar and parietal) lip is “more or less tuberculated” (Jeffreys, 1867), but teeth/small ribs may be absent, especially on young ones.
7) When live and unworn, a brown periostracum covers the shell except the protoconch and white rim of outer (palatal) lip 5Tr flic.kr/p/2hEYcRG . When the periostracum is removed, the shell exterior is matt whitish/buff 7Tr flic.kr/p/2hEYcFB , unless stained by epizooic growth or other matter16Tr flic.kr/p/2hF1V5C . Interior is glossy white 3Tr flic.kr/p/2hF31sa .
8) Semicircular, glossy, opaque, white parietal lip covers large part of body whorl 12Tr flic.kr/p/2hF2Zpi ; may be stained by epizooic growth or other matter16Tr flic.kr/p/2hF1V5C .
9) White columella and siphonal canal. No dark spot within canal 3Tr flic.kr/p/2hF31sa .
10) Siphonal canal meets palatal lip at slightly-acute or right angle when viewed end-on 13Tr flic.kr/p/2hF1VqY . Beachworn specimens may have angle worn to obtuse and resemble T. nitida 37Tr flic.kr/p/2hF69i4 .
11) 4 to 5 grooves on columellar neck of siphonal canal 7Tr flic.kr/p/2hEYcFB [Often worn away, so use 4 or 5 to confirm T. reticulata; but those with 3, fewer or none may be either T. nitida or worn T. reticulata11Tr flic.kr/p/2hF1VBE & 38Tr flic.kr/p/2hF559d .]
12) Body flesh light sienna/yellowish 11Tr flic.kr/p/2hF1VBE (juveniles, whitish 20Tr flic.kr/p/2hEYbJr ), heavily marked with small blotches of white and brown/black. Uncertain whether grey body only on T. nitida.
13) Egg capsules like a flat, circular brandy bottle that broadens with age 39Tr flic.kr/p/2hF68jk . Mean height 4.07 mm, width 3.25 mm, W/H 80% including neck (Rolan & Luque, 1994).
14) Sandy sediment sublittorally, and LWS on rocky shores with areas of sand, all round Britain and Ireland.
Similar species
Tritia nitida (Jeffreys, 1867)
WoRMS accepts T. nitida as a valid species; supported by chromotology (Collyer, 1961), comparative morphology (Rolan & Luque, 1994), allozymes (Sanjuan et al., 1997) and DNA (Couceiro et al., 2012); further detail in Smith (2019). Populations vary geographically, so some features may not match those below. They are marked (J) for Thames, Orwell and Roach estuaries in S.E. England in Jeffreys (1867); (B) for a sample of 220 in 2019 from Blackwater estuary in S.E. England; (S) for Ria de Vigo, N.W. Spain in Sanjuan et al. (1997); (R) for Ria de Vigo in Rolan and Luque (1994) and (P) for northern Adriatic Italy and Croatia (J. Prkić, 2019, pers. comm. September 2019). So use a combination of features when making an identification.
1) Maximum height 25 mm (J), exceptionally (2% of strandline sample) 26 to 30 mm (B) 46Tr flic.kr/p/2hF659n , 30 mm in Galicia, Spain (Trigo et al., 2018) and 40 mm in the Italian Adriatic (P) 47Tr flic.kr/p/2hF64Ld .
2) Adult T. nitida spire-whorls convex in Essex 46Tr flic.kr/p/2hF659n & 48Tr flic.kr/p/2hF2hwY . Jeffreys (1867), stated “whorls flattened; - - suture deeper [than on T. reticulata]”. Compared to gastropods generally, the gentle convexity of the whorls on Essex T. nitida could be said to be flattish, but they are more convex than on T. reticulata, resulting in the deeper suture Jeffreys mentions. In the Adriatic, T. nitida whorls vary from convex to nearly flat 50Tr flic.kr/p/2hF63Tw .
3) Smooth protoconch is frequently worn/broken off to give a blunt apex 48Tr flic.kr/p/2hF2hwY but it appears to persist more on Mediterranean T. nitida 50Tr flic.kr/p/2hF63Tw .
4) In Britain, number of costae on body whorl is 10 to 14 B 56Tr flic.kr/p/2puu5Fz , [10 to 12,J]
In southern Europe T. nitida varies more widely, 11 to 19 (R), 9 to 18 (P) 56Tr flic.kr/p/2puu5Fz, and overlaps with T. reticulata when 15 or more costae.
5) Labial varix on almost all shells over 15 mm high (J, B, P) and additional varix on body whorl occasionally in Britain (J) 51Tr flic.kr/p/2hF63vn , and frequently in Adriatic (P) 50Tr flic.kr/p/2hF63Tw . In Britain the varix is usually less pronounced than on T. incrassata; sometimes little more than slightly thickened costae, and lost or inconspicuous on some beachworn strandline shells 52Tr flic.kr/p/2hF62Ww . Adriatic specimens can have very prominent varices 53Tr flic.kr/p/2hF62Mi & 54Tr flic.kr/p/2hF2fMW .
6) Teeth within the outer (palatal) lip quite evenly sized 55Tr flic.kr/p/2hF4XZE , sometimes one a bit higher. “inner [columellar/parietal] lip - - - never tuberculated” (J), but some Adriatic T. nitida have tubercles/teeth on the inner lip 55Tr flic.kr/p/2hF4XZE .
7) “epidermis [periostracum] inconspicuous 57Tr flic.kr/p/2hF4XKw , or obscured by an earthy incrustation 58Tr flic.kr/p/2hF4XDK ” (Jeffreys, 1867). Shell exterior and interior 59Tr flic.kr/p/2hF4XvZ violaceous (R&S), purplish on yellowish white ground, raised sculpture yellowish white, and coloured lines 57Tr flic.kr/p/2hF4XKw brighter purple than on T. reticulata (J) but presence and intensity of purple varies greatly, often absent or, on beachworn shells, faded (B) 60Tr flic.kr/p/2hF4Xum .
8) In Britain, parietal lip translucent showing shell colour beneath (S & R) 48Tr flic.kr/p/2hF2hwY ; not as extensive, white or distinct as on T. reticulata, but strong and opaque on some T. nitida in Adriatic 53Tr flic.kr/p/2hF62Mi & 47Tr flic.kr/p/2hF64Ld . Sometimes eroded or stained on beachworn shells 48Tr flic.kr/p/2hF2hwY .
10) Siphonal canal meets palatal lip at obtuse angle when viewed end-on (R) 61Tr flic.kr/p/2hF4Xij . [Beachworn T. reticulata may have angle worn to obtuse and resemble T. nitida 52Tr flic.kr/p/2hF62Ww .]
11) Three grooves on columellar neck of siphonal canal 62Tr flic.kr/p/2hF61Ak but eroded from most strandline shells (75% B) and some live shells.
12)Jeffreys (1867) described the body of T. nitida as “greyish, with a slight tinge of purple, and closely speckled with flake-white”. This fits the Bretagne specimen at 63Tr flic.kr/p/2hF2ezL , presumably those from Essex where Jeffreys took his specimens, and some from the Adriatic 58Tr flic.kr/p/2hF4XDK , but some other Adriatic T. nitida have yellowish bodies 64Tr flic.kr/p/2hF61oB .The respiratory siphon is “almost always blackish” in Ria de Vigo (R) but both blackish and paler siphons occur on Adriatic T. nitida 58Tr flic.kr/p/2hF4XDK & 64Tr flic.kr/p/2hF61oB . The value of flesh and siphon colours for distinguishing T. nitida from T. reticulata elsewhere is uncertain.
13) T. nitida egg capsules are slenderly ovoid (R&S) with W/H 65% including neck 39Tr flic.kr/p/2hF68jk & 65Tr flic.kr/p/2hF4WFT . Mean height 2.65 mm, width 1.72mm (R) W/H 65%.
14) Sublittoral on muddy substrate in sheltered, variable salinity on Atlantic coasts (S & J). Scattered sites Spain to S. Sweden; more continuous distribution in Mediterranean beyond Barcelona and in Black Sea at variable, often high, salinity (S & R). In Britain and Ireland there are records from East Anglia, Essex, Southampton Water and Galway, and it probably exists in other sheltered waters.
Tritia incrassata (Strøm, 1768)
1) Maximum height 12 mm.
2) Squatter shell than T. reticulata, adult whorls convex 66Tr flic.kr/p/2hF61bC .
3) Strong, smooth protoconch has c.3 whorls, diameter 0.5 to 0.6 mm (Fretter & Graham, 1985), distinctly demarcated from teleoconch. Usually intact, or with only minor damage, when live.
4) Shell sculpture of transverse, oblong, rather than squarish, bosses 66Tr flic.kr/p/2hF61bC .
5) Pronounced, broad, labial varix; light brown when covered by periostracum 66Tr flic.kr/p/2hF61bC ; white, often with transverse red-brown bands when periostracum worn away 67Tr flic.kr/p/2hF4WmV .
7) Periostracum only retained in grooves of sculpture on live specimens 66Tr flic.kr/p/2hF61bC .
8) Semicircular, glossy, opaque, white parietal lip covers part of body whorl, less extensive than on T. reticulata 66Tr flic.kr/p/2hF61bC .
9) White columella and siphonal canal 66Tr flic.kr/p/2hF61bC , with distinct brown or black spot inside canal 67Tr flic.kr/p/2hF4WmV (often hidden in photographs by shadow, the siphon or the tilt of the pose).
13) Egg capsules small, 1.5 mm to 2 mm high, similar form to that of T. reticulata, but with longer neck, narrow stalk-base and laid in irregular clumps 68Tr flic.kr/p/2hF4WjR (image in Lebour, 1931, plymsea.ac.uk/id/eprint/697/ ).
14) Rocky shores all round Britain. Lower shore and sublittoral.
Tritia varicosa (W. Turton, 1825)
1) Maximum height 14 mm.
2) Squatter shell than T. reticulata, adult whorls convex 69Tr flic.kr/p/2hF4WhS .
3) Smooth protoconch has 2.25 whorls , diameter 750 to 950µ (Fretter & Graham, 1985), nearly as large as on the much larger shell of T. reticulata 70Tr flic.kr/p/2hF2djp .
4) Widely-spaced, narrow costae intersect with narrowly-spaced, narrow spiral ridges to form small, rounded bosses 69Tr flic.kr/p/2hF4WhS . All sculpture is well-raised on unweathered shells.
5) Pronounced labial varix on adult shells, and most have one or more additional varices on body-whorl or spire whorls. Varices usually white with transverse brown bands 69Tr flic.kr/p/2hF4WhS .
7) Shell glossy with no obvious periostracum when live.
9) Columellar lip orange-brown. Often orange-brown at entrance of siphonal canal, but no black or blackish brown further within canal 70Tr flic.kr/p/2hF2djp .
10) Viewed end on, rounded siphonal canal meets palatal lip at an acute angle 70Tr flic.kr/p/2hF2djp .
14) South and west coast of Britain to Shetland. Not Irish Sea. Sublittoral, 1 m to 200 m, sandy substrate; found on bait in crab pots.
Habits and ecology
T. reticulata lives in full marine salinity at LWS on shores with mixed hard and sandy substrate at spots where organic remains accumulate, and on sandy substrate to about 35 metres sublittorally. Large congregations may occur on carrion 40Tr flic.kr/p/2hF54pY . Reports of it in brackish water >16‰ on muddy substrate may be of unrecognized T. nitida, which also lives at high salinity in the Mediterranean. At low tide on shores, pools and runnels are favoured or shelter is taken under rocks or below wet sediment with the respiratory siphon protruding. The siphon tip may have photoreceptors as it withdraws when shadow falls on it.
Sublittorally, it remains hidden in the surface layer of sediment with its inhalent siphon tip protruding for much of the time, emerging promptly when carrion or faeces are sensed by its large osphradium and gliding rapidly to it on its broad foot lubricated with mucus from the anterior pedal gland. Many assemble like vultures 49Tr flic.kr/p/2hF4Znp and push their proboscises, 150% length of shell at full extension, deep into carrion while holding their long siphons away from it to inhale uncontaminated water 40Tr flic.kr/p/2hF54pY . The sucker-like tip enables the proboscis to retain feeding position while the radula rasps 25Tr flic.kr/p/2hF1UkX . The faeces are oval pellets.
The strong shells of adults resist crab attack, but many beached, thin, juvenile shells have broken lips which may indicate successful crab predation 41Tr flic.kr/p/2hF67jp . Predatory Euspira spp. may bore the shells of juvenile T. reticulata near the apex where thinnest, but below the persistent protoconch 42Tr flic.kr/p/2hF52J3 &15Tr flic.kr/p/2hF2Z4P . When starfish attack, T. reticulata reacts immediately to first touch by vigorously twisting and turning its body and shell in different directions to confuse the attacker 36Tr flic.kr/p/2hF2nse .
It breeds from March to August at Plymouth, and from April to August further east in the English Channel (Fretter & Graham, 1985). The female inspects potential ovipositing sites of rock, shell, Zostera or alga; with the tip of her siphon, and may clean the surface with its radula before laying capsules containing 50 to 350 orange-pink 43Tr flic.kr/p/2hF66ey or white 44Tr flic.kr/p/2hF2jaH ova in each. The capsule passes along a temporary groove in the foot to the female ventral pedal gland 36Tr flic.kr/p/2hF2nse which grips it and forms it into a flattened, brandy-bottle shape with a circular chamber, flat on one face and slightly convex on the other. The small base is secured in position on a large disc of cement. The mean capsule size, including apical neck, is 4.07 mm high and 3.25 mm width W/H 80% (Rolan & Luque, 1994). The capsule and fluid around the ova are transparent colourless. Initially, ova fill less than half of the capsule but by the end of one to two months’ development the capsule has broadened c.20% and ova have grown to fill it 39Tr flic.kr/p/2hF68jk . Capsules are often laid in rows like books on a shelf all leaning at c.50° 43Tr flic.kr/p/2hF66ey . Hatched, free-swimming veligers escape through the now unplugged apical neck of the capsule. Veligers have a transparent, smooth shell of 1.5 whorls, c. 300µ long. The bilobed velum has a marginal brown line, and the sole is red-brown. After two to three 3 months in the plankton (mainly June to September, with a few January to March, at Plymouth), it metamorphoses to a three whorled, c.750µ, shell with siphonal canal (Fretter & Graham, 1985; may include data of T. nitida).
Distribution and status
T. reticulata sensu stricto lives along Atlantic coasts from Norway to Morocco and into the Mediterranean only as far east as Oran, Algeria and 23km north-east of Barcelona, being replaced further east and into the Black Sea by T. nitida (Rolan and Luque, 1994). Images of T. reticulata sensu stricto on iNaturalist at www.inaturalist.org/observations/168276172 show that it occurs further east to near Marseille, France. The Norwegian marine gastropod list by Høisæter (2009) omits T. reticulata sensu stricto, but images from Norway by E. Svensen show that it is present 45Tr flic.kr/p/2hF52h1 & 40Tr flic.kr/p/2hF54pY . The GBIF map www.gbif.org/species/5727892 for T. reticulata should be regarded as showing distribution of an aggregate with T. nitida. T. reticulata is common all round Britain and Ireland, except scarce or absent from Fife to Caithness, and there are few records from Suffolk, Lincolnshire and Cumbria. Those in sheltered muddy estuaries need careful examination as T. nitida occurs commonly in Essex, in Southampton Water and Galway, and probably in other sheltered waters. U.K. interactive map NBN (aggregated with T. nitida) records.nbnatlas.org/occurrences/search?q=lsid:NHMSYS0021...
Acknowledgements
I am indebted to Philippe Boissel, Carlos Fernández-Cid, Joe FitzGibbon, Aleksander Golemaj, Alen Petani, Bas van der Sanden, Erling Svensen, Mark Thomas, Pero Ugarković, Stefan Verheyen and Neil Ward for use of their informative images, to Miquel Pontes for providing vital literature, and to Julia Nunn, Jakov Prkić and Vollrath Wiese for information and advice. Special thanks are due to my co-author, Simon Taylor, for undertaking shore visits and supplying specimens for this account, and to Jakov Prkić for taking many images specifically for this account.
Links and references
Chaster, G.W., Knight, G.A.F., Melvill, J.C. and Hoyle, W.E. 1901. List of British marine mollusca and brachiopoda. Manchester, Conchological Society of Great Britain and Ireland. archive.org/details/listofbritishmol00chas/page/n21/mode/2up
Collins, K.S., Edie, S.M., Gao, T., Bieler, R. and Jablonski, D. 2019. Spatial filters of function and phylogeny determine morphological disparity with latitude. PLoSONE 14 (8): e0221490. doi.org/10.1371/journal.pone.0221490
Collyer, D.M. 1961. Differences revealed by paper partition chromatography between the gastropod Nassarius reticulatus (L.) and specimens believed to be N. nitida (Jeffreys). J. Mar. Biol. Ass. 41(3): 683 to 693.
plymsea.ac.uk/id/eprint/2150/1/Differences_revealed_by_pa...
Couceiro, L., López, L., Sotka, E.E., Ruiz, J.M. & Barreiro, R. 2012. Molecular data delineate cryptic Nassarius species and characterize spatial genetic structure of N. nitidus. J. Mar. Biol. Ass. 92(5): 1175 to 1182. www.researchgate.net/publication/230846249_Molecular_data...
Diz, P., Jorissen F. J., Reichart, G. J., Poulain, C., Dehairs, F., Leorri E. and Paulet, Y.-M.
Interpretation of benthic foraminiferal stable isotopes in subtidal estuarine environments. Biogeosciences, 6, 2549–2560, 2009 www.biogeosciences.net/6/2549/2009/
Forbes, E. & Hanley S. 1849-53. A history of the British mollusca and their shells. vol. 3 (1853), London, van Voorst. (As Nassa reticulata) archive.org/stream/historyofbritish03forbe#page/388/mode/...
Fretter, V. and Graham, A. 1985. The prosobranch molluscs of Britain and Denmark. Part 8 – Neogastropoda. Suppl. 15, J. Moll. Stud.
Graham, A. 1988. Molluscs: prosobranch and pyramidellid gastropods. Synopses of the British Fauna (New Series) no.2 (Second edition). Leiden, E.J.Brill/Dr. W. Backhuys. 662 pages.
Hayward, P.J. & Ryland, J.S. (eds.) 1995. Handbook of the marine fauna of North-West Europe. Oxford University Press.
Høisæter, T. (2009). Distribution of marine, benthic, shell bearing gastropods along the Norwegian coast. Fauna Norvegica, 28: 5-106. doi.org/10.5324/fn.v28i0.563
Jeffreys, J.G. 1862-69. British conchology. vol. 4 (1867). London, van Voorst. (As Nassa reticulata) p346 in pdf archive.org/stream/britishconcholog04jeffr#page/346/mode/2up .
Original description of T. nitida (as Nassa nitida) on p349 at archive.org/stream/britishconcholog04jeffr#page/348/mode/2up
Lebour, M. V. 1931. The larval stages of Nassarius reticulatus and Nassarius incrassatus. J. Mar. Biol. Ass., 17 (3). 797-818. plymsea.ac.uk/id/eprint/697/
Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised edition], vol. 1: 824 pp. Laurentius Salvius: Holmiae. www.biodiversitylibrary.org/page/726886#page/762/mode/1up entry 411 p. 740
Marshall, J. T. 1895. Alterations in ‘British Conchology’. J. Conch. 8: 24 to 41.
www.biodiversitylibrary.org/item/99811#page/60/mode/1up [p38 as Nassa nitida]
McKay, D.W. & Smith, S.M. 1979. Marine Mollusca of East Scotland. Edinburgh, Royal Scottish Museum.
McClelland, H. 1926. General index of all families, genera, species and varieties described and noted in the Journal of Conchology vols. I – XVI, 1874 to 1922. Proceedings of the Malacological Society of London vols. I – XV, 1893 to 1923. The Conchologist vols I – II, 1891 to 1893, continued as the Journal of Malacology vols. III – XII, 1894 to 1905. Birmingham, Birbeck and sons.
McMillan, N.F. 1968. British shells. London, F.Warn.
Rolan, E. and Luque, A.A. 1994. Nassarius reticulatus (Linnaeus, 1758) and Nassarius nitidus (Jeffreys, 1867) (Gastropoda, Nassariidae), dos especies válidas de los mares de
Europa. Iberus, 12 (2): 59-76. www.biodiversitylibrary.org/part/98444
Sanjuan, A., Pérez-Losada, M. & Rolan, E. 1997. Allozyme evidence for cryptic speciation in sympatric populations of Nassarius spp. (Mollusca: Gastropoda). J. Mar. Biol. Ass. 77(3): 773 to 784.
Smith, I.F. 2019. Differentiation of Tritia reticulata (Jeffreys, 1867) from Tritia reticulata (Linnaeus, 1758). Mollusc World Issue 51. Expanded pdf version at www.researchgate.net/publication/336441072_Recognition_of...
Trigo, J.E.; Diaz Agras, G.J.; Garcia Alvarez, O.L.; Guerra, A.; Moreira, J.; Pérez, J.; Rolán, E.; Troncoso, J.S,; Urgorri, V.. 2018. Guia de los Moluscos Marinos de Galicia. Servicio de Publicacións da Universidade de Vigo.
Turton, W. 1825. Description of some new British shells. Zoological Journal, 2: 361-367. [Fist description of Tritia varicosa as Tritonia varicosa]. www.biodiversitylibrary.org/page/2255625#page/431/mode/1up
Yonge, C.M. and Thompson, T.E. 1976. Living marine molluscs. Collins, London. [Fig. 52G shows Danish egg capsules of T. nitida labelled as Nassarius reticulatus.]
Glossary
acrembolic = (of proboscis) introversible/eversible like finger of glove.
adapical = towards the apex of the shell.
anal sinus = notch in adapical angle of aperture; route of rectum/anus to exterior of shell.
aperture = mouth of gastropod shell; outlet for head and foot.
bilaminate = (adj.) formed of two layers.
cephalic = (adj.) of or on the head.
cilia = (pl.) vibrating linear extensions of membrane used in locomotion..
ciliated = (adj.) coated with cilia.
coll. = (or “in coll.”, abbreviation of “in collectionem”) in the collection of (named person or institution; c.f. leg.).
columella = axis of gastropod shell spiral, exposed on final whorl by aperture.
columellar = (adj.) of or near central axis of spiral gastropod.
columellar lip = lower (abapical) part of inner lip of aperture.
costa = (pl. costae) axial rib crossing shell whorl at about right-angles to any spiral striae.
costal = (adj.) of, or arranged like, costae.
ctenidium = comb-like molluscan gill; usually an axis with filaments either side.
cusp = raised point or prominence on crown of a tooth.
distal = away from centre of body or from point of attachment.
dorsoventrally flattened = as if pressed flat from above.
ELWS = extreme low water spring tide (usually near March and September equinoxes).
height = (of gastropod shells) distance from apex of spire to base of aperture.
hypobranchial gland = thickened, sometimes puckered, tissue on roof of mantle cavity of many gastropods. Secretes mucus to trap and consolidate particles from inhalent water. Often other biologically active compounds produced.
labial varix = especially strong or broad costa (rib) along edge of outer lip of aperture.
leg. = (abbreviation of legit) collected/ found by (c.f. coll.)
LWS = low water spring tide, two periods of a few days each month when tide falls lowest.
mantle = sheet of tissue that secretes shell and forms a cavity for the gill in most marine molluscs.
metapodial = (adj.) of the hind part of the foot.
odontophore = tongue-like structure of cartilage supporting radula.
opercular = (adj.) of the operculum.
operculum = plate of horny conchiolin, rarely calcareous, used to close shell aperture.
osphradium = organ for testing water for pollutant, prey or predator chemicals and/or for particles.
periphery = ‘equator’ of gastropod body whorl, sometimes with a keel or coloured band.
periostracum = thin horny layer of chitinous material often coating shells.
pers. comm. = personal communication by face-to-face conversation, telephone, letter or email.
plankton = animals and plants that drift in pelagic zone (main body of water).
pleurembolic proboscis = basal part (only) of proboscis inverts to form a sac for rest of proboscis to be retracted into without inversion. (c.f. acrembolic).
porcelaneous = resembling vitreous glazed ceramic material.
protoconch = apical whorls produced during embryonic and larval stages; different in form from other whorls forming teleoconch.
proximal = towards the centre of the body or point of attachment.
rachidian = (adj.) median/middle tooth in each row of teeth on radula.
rachiglossan = (adj.) of radula with a many-cusped, rachidian tooth, and single marginal tooth at each side.
radula = chitinous ribbon of teeth; extended on odontophore to rasp food.
sigmoid = curved in two directions like letter ‘S’ but often with shallower curvature.
subsutural = close below the suture when shell positioned with apex uppermost.
sutural = (adj.) of or close to a suture.
suture = groove or line where whorls of gastropod shell adjoin.
teleoconch = entire gastropod shell, apart from apical protoconch.
varix = (see labial)
veliger = shelled larva of marine mollusc; swims by waving cilia on velum (bilobed flap).
Zen Magnets - Neodymium Magnetic Balls (@Varies)
These builds were derived using a truncated 12-ball triangle (tips of triangle removed).
Soccer ball Truncated Icosahedron (@240) formed from 20x truncated 12-ball triangles.
Triangle-Ring Subunit
(@012) - pinch 3xball sides together to form a 6xball triangle on inside, 6xball ring on outside
Convex Regular Icosahedron - formed from 20xTriangle-Ring subunits (using Triangle side to form 20xfaces)
(@240) - 5xTriangle-Rings top)+(5xTriangle-Rings top middle)+(5xTriangle-Rings bottom middle)+(5xTriangle-Rings bottom)
Extended Convex Regular Icosahedron (480) formed by adding/stacking additional Triangle-Ring Subunits on each Triangle-Rings aligned on each face Ring side to Ring side and Triangle side facing out.
Nº 24B.
Peugeot 403 Berline (1955-1966).
Blue, chrome convex hubs with repro black tyres (originally with white tyres).
Escala 1/43.
Dinky Toys.
Made in France by Meccano.
"Issued in june 1956 as 24 b, the Dinky 403 has been renumbered 521 in 1959 and deleted in 1961."
More info:
www.talkmodeltoys.com/discus/messages/27668/33411.html?11...
patrick.miniatures.free.fr/peugeot/peugeot 403.htm
---------------------------------------------------------------------------------------
LES 403 DINKY TOYS
"C'est au salon de l'automobile d'octobre 1955 que le public, sans cesse plus nombreux, découvre le nouveau modèle phare de Peugeot : la 403.
La sortie de la 403 donne à l'époque un sacré coup de vieux à la 203. Pour répondre à la concurrence sans cesse plus mordante de l'Aronde, le constructeur franc-comtois dévoile cette berline à l'esthétique aussi sage.
Son moteur de 1500 cm3 développant 58 chevaux ne fait pas d'elle un foudre de guerre, mais qu'importe, Peugeot mise sur sa robustesse et sa fiabilité qui permettent de fidéliser sa clientèle. Malgré la sortie de ce nouveau modèle, Peugeot décide de poursuivre la production de la 203.
Encore une fois dans un temps record, Bobigny comble les voeux des jeunes amateurs en sortant la reproduction de la 403. La berline mesure 104 millimètres.
La carrosserie finement moulée en Zamak, possède un plancher en tôle, riveté, maintenant en place les essieux aux roues convexes chromés et chaussées de pneumatiques blancs.
La référence 24B, commercialisée en boîte individuelle jaune illustrée, est , dans premier temps disponible en bleu et noir.
De nouvelles teintes, gris clair et jaune paille, font rapidement leur apparition pour le plus grand bonheur des collectionneurs."
(...)
Source: www.aquitaine33.com/dinky/403/403.htm
-----------------------------------------------------------------------------------------------
Peugeot 403
From Wikipedia, the free encyclopedia
"The Peugeot 403 is a car produced by French automobile manufacturer Peugeot between May 1955 and October 1966.
A total of 1,214,121 of all types, including commercial models, were produced, making it the first Peugeot to break through the one million barrier."
"The 403 made its debut in saloon body style on 20 April 1955 at the Trocadéro Palace in Paris.
For several months before it was launched numerous 403s, their badges removed, were circulating on the local roads near the manufacturer's PSA Sochaux factory, (...)"
"Styled by Pininfarina, the 403 featured ponton, three-box styling incorporating, except on the most basic models, an opening roof panel.
The collaboration with Pininfarina marked the start of a partnership which would see the Italian designer producing designs for Peugeot, including those many mainstream volume models, for more than fifty years.
Regarding the 403 itself there were persistent rumours that the design was one originally intended for a replacement Fiat 1900 which had been rejected when Turin had decided to defer replacement of the Fiat for another four years.
Unusual in Europe at the time, but appreciated by customers, was the way that the rear doors opened wide - to a full 90 degrees. Also unusual were the windows in the rear doors that opened fully into the door frame to the point where they disappeared, (...)"
"Superseded by the Peugeot 404 in 1960, the 403 remained in production as a budget alternative until 1966."
(...)
Peugeot 403
Manufacturer
Peugeot SA
Production
1955–1966
1,014,111 cars
Assembly
France
Australia
Argentina
New Zealand (Motor Holdings)
Class
Large family car (D)
Body style
4-door sedan
5-door estate
2-door convertible (1956-1961)
2-door pickup
3-door van
Engine
1290 cc TM5 I4
1468 cc TN3 I4
1816 cc TMD85/XDP85 diesel I4
Successor
Peugeot 404
Nº 24B.
Peugeot 403 Berline (1955-1966).
Grey, chrome convex hubs with repro black tyres (originally with white tyres).
Escala 1/43.
Dinky Toys.
Made in France by Meccano.
"Issued in june 1956 as 24 b, the Dinky 403 has been renumbered 521 in 1959 and deleted in 1961."
More info:
www.talkmodeltoys.com/discus/messages/27668/33411.html?11...
patrick.miniatures.free.fr/peugeot/peugeot 403.htm
---------------------------------------------------------------------------------------
LES 403 DINKY TOYS
"C'est au salon de l'automobile d'octobre 1955 que le public, sans cesse plus nombreux, découvre le nouveau modèle phare de Peugeot : la 403.
La sortie de la 403 donne à l'époque un sacré coup de vieux à la 203. Pour répondre à la concurrence sans cesse plus mordante de l'Aronde, le constructeur franc-comtois dévoile cette berline à l'esthétique aussi sage.
Son moteur de 1500 cm3 développant 58 chevaux ne fait pas d'elle un foudre de guerre, mais qu'importe, Peugeot mise sur sa robustesse et sa fiabilité qui permettent de fidéliser sa clientèle. Malgré la sortie de ce nouveau modèle, Peugeot décide de poursuivre la production de la 203.
Encore une fois dans un temps record, Bobigny comble les voeux des jeunes amateurs en sortant la reproduction de la 403. La berline mesure 104 millimètres.
La carrosserie finement moulée en Zamak, possède un plancher en tôle, riveté, maintenant en place les essieux aux roues convexes chromés et chaussées de pneumatiques blancs.
La référence 24B, commercialisée en boîte individuelle jaune illustrée, est , dans premier temps disponible en bleu et noir.
De nouvelles teintes, gris clair et jaune paille, font rapidement leur apparition pour le plus grand bonheur des collectionneurs."
(...)
Source: www.aquitaine33.com/dinky/403/403.htm
-----------------------------------------------------------------------------------------------
Peugeot 403
From Wikipedia, the free encyclopedia
"The Peugeot 403 is a car produced by French automobile manufacturer Peugeot between May 1955 and October 1966.
A total of 1,214,121 of all types, including commercial models, were produced, making it the first Peugeot to break through the one million barrier."
"The 403 made its debut in saloon body style on 20 April 1955 at the Trocadéro Palace in Paris.
For several months before it was launched numerous 403s, their badges removed, were circulating on the local roads near the manufacturer's PSA Sochaux factory, (...)"
"Styled by Pininfarina, the 403 featured ponton, three-box styling incorporating, except on the most basic models, an opening roof panel.
The collaboration with Pininfarina marked the start of a partnership which would see the Italian designer producing designs for Peugeot, including those many mainstream volume models, for more than fifty years.
Regarding the 403 itself there were persistent rumours that the design was one originally intended for a replacement Fiat 1900 which had been rejected when Turin had decided to defer replacement of the Fiat for another four years.
Unusual in Europe at the time, but appreciated by customers, was the way that the rear doors opened wide - to a full 90 degrees. Also unusual were the windows in the rear doors that opened fully into the door frame to the point where they disappeared, (...)"
"Superseded by the Peugeot 404 in 1960, the 403 remained in production as a budget alternative until 1966."
(...)
Peugeot 403
Manufacturer
Peugeot SA
Production
1955–1966
1,014,111 cars
Assembly
France
Australia
Argentina
New Zealand (Motor Holdings)
Class
Large family car (D)
Body style
4-door sedan
5-door estate
2-door convertible (1956-1961)
2-door pickup
3-door van
Engine
1290 cc TM5 I4
1468 cc TN3 I4
1816 cc TMD85/XDP85 diesel I4
Successor
Peugeot 404
I was reading this thread on Stobist and they mentioned Light Sabers. Granted mine are not as cool and the plastic eats up a bunch of light but I also have about $16 in both of them instead of $130 each. The light is pretty even. I bought the tubes at the Scrap Exchange and sawed then in half with a table saw. I painted one half black and lined the inside with aluminum tape. In the opposite end of the tube as the flash I used a 3" convex mirror. I taped them back together with gaffers tape. On the back I mounted an extra piece of aluminum I had to velcro it to the light stand. I used them outside and it was nice not to worry about the wind knocking them over.
concave-convex mirror :) @ hyde Park...
IT IS NOT an edited picture. I just the shot as it is. The left side is the concave reflection, and the right, the convex one :)...
At least, curious...
P.S.: Thanks a lot for the good opinions and compliments for the "HOPE" picture. I'm very glad that you like it!!! :) Its a pleasure for me, to read so many positive posts!! thank you!!
I picked this up at an Estate sale 10 years or more ago. It is very heavy; I like mirror and this one is among my favorites.
Less developed one on left has squatter profile.
Whorls convex without angulation, except sub-sutural sloping bevel (1).
Costae absent from bevel (2).
Bevel conspicuous on thin translucent specimen (3) as it is thicker.
Weak labial varix (4) set well back from thin palatal lip.
Bevel broader where unites with labial varix (5).
Periphery of body-whorl without angulation on juveniles (6 & 7).
H. 1.3 mm, 1.6 mm and 1.6 mm, Brighton, England, November 1997.
Leg. coll. J.M. Light.
Full SPECIES DESCRIPTION BELOW
Sets of OTHER SPECIES: www.flickr.com/photos/56388191@N08/collections/
Pusillina inconspicua (Alder, 1844)
Full SPECIES DESCRIPTION BELOW
Sets of OTHER SPECIES: www.flickr.com/photos/56388191@N08/collections/
Synonyms: Rissoa inconspicua Alder, 1844 [in Forbes & Hanley and in Jeffreys]; Turboella densa Nordsieck, 1972; Turboella diversa Nordsieck, 1972;
Current taxonomy: World Register of Marine Species (WoRMS) www.marinespecies.org/aphia.php?p=taxdetails&id=141334
Meaning of name: Pusillina = (Latin) very small.
inconspicua = (Latin) inconspicuous.
Vernacular: tyndskallet tangsnegl (Danish); dwerg-drijfhoren (Dutch); mindre bandtångsnäcka (Swedish);
GLOSSARY below.
Preface
“ a confusing 'species' and it is not easy to be convinced that not a species complex is involved here. - - - samples [from all along Norwegian coast] document a high degree of local and geographical variability.” (Høisaeter, 2009.)
“Rissoa inconspicua is perhaps one of the most variable of the genus, - - Alder's original delineation of it combines characters that are not often found together in such high development; hence, despite its correctness, few specimens would be positively determined by comparison with it.” (Forbes & Hanley, 1853.)
Shell description
P. inconspicua is a polymorphic species, varying greatly from site to site and within a single site both on a single date and seasonally 00Pi flic.kr/p/2pN2Cyc . More than one species may be involved. The maximum height of adults varies locally from 1.3 mm to 3 mm. The profile of adults varies from squat dwarf (spire 23%, body whorl 77% of shell-height) to fairly tall (spire 40%, body whorl 60% of shell-height) 01Pi flic.kr/p/wNFGTS . Juveniles usually have lower profile than adults 02Pi flic.kr/p/wwNmaW . The shells are thin and very fragile. The whorls are clearly defined by the suture, and distinctly convex without angulation except for narrow sloping bevel below the suture 02Pi flic.kr/p/wwNmaW . The bevel is conspicuous on thin translucent specimens as it is thicker than the rest of the shell. Sometimes the bevel is broader where it acts as extension of a labial varix. The periphery of the body whorl is well rounded on adults and juveniles. The sculpture varies; Alder (1844) stated, “upper whorls smooth; the penultimate [adapical] half of the last whorls generally marked with numerous very delicate and faint ribs or plicae [costae], about thirty in number, the bases of which are crossed on the body whorl by a few faint spiral striae, giving that part a reticulated appearance. The whole of the markings are very delicate and sometimes entirely wanting.” Only a small minority distinctly display all features illustrated 03Pi flic.kr/p/wNFGy3 and described by Alder. For example there was only one costate specimen among 359 from three Norwegian sites (Høisaeter, 2009). Graham (1988) stated “nearly always numerous fine costae”, but a very small minority of hundreds of shells examined by IFS had them. A great number of merging forms result from kaleidoscopic combinations of Alder's shell-features, but a single form often predominates at individual sites. But Warén (1996) considered it “unusually constant in its shell morphology, from northern Norway to the Mediterranean”. Sculpture variations include distinct, fine, numerous costae (9-15 on apertural view of body whorl) 04Pi flic.kr/p/wwNkpY ; no costae 05Pi flic.kr/p/wM6kuY ; square-reticulation created by spiral striae crossing distinct costae 06Pi flic.kr/p/wwNhrA ; and weak reticulation created by spiral striae crossing barely visible costae 07Pi flic.kr/p/wPVxPz . Costae, when present, do not cross the sub-sutural bevel or basal half of the body whorl 02Pi flic.kr/p/wwNmaW , 04Pi flic.kr/p/wwNkpY & 06Pi flic.kr/p/wwNhrA .
The embryonic and larval protoconch forms the three apical whorls. It always lacks costae, is usually the same ground colour as the rest of the shell and has a tiny purple, occasionally yellow, apical spot confined to the single embryonic whorl, not extending onto the two larval whorls of the protoconch. The apical spot may be distinct 08Pi flic.kr/p/vSoFej , faint, very minute 09Pi flic.kr/p/wwNiwu or absent 10Pi flic.kr/p/wwVxU4 . On shells bearing brown markings the white protoconch contrasts distinctly with the rest of the shell 11Pi flic.kr/p/wwVxZe & 12Pi flic.kr/p/wPpVUa .
The ground colour of the shell is whitish, sometimes with patches of light horn-colour 04Pi flic.kr/p/wwNkpY ; more 08Pi flic.kr/p/vSoFej or less 05Pi flic.kr/p/wM6kuY translucent; with axial streaks of brown varying from strongly 11Pi flic.kr/p/wwVxZe to very weakly 05Pi flic.kr/p/wM6kuY developed or, very often, missing 13Pi flic.kr/p/wPVw1e . Some live specimens have a layer which comes off if a shell is rotted out in water; compare 09Pi flic.kr/p/wwNiwu with 10Pi flic.kr/p/wwVxU4 . Many mature adults have a broad white labial varix set back from outer lip of the aperture. Usually it is not very thick and is most discernible on shells which are brown-streaked 11Pi flic.kr/p/wwVxZe or thin and almost transparent 08Pi flic.kr/p/vSoFej . The varix is missing from juveniles and from adults at some sites 10Pi flic.kr/p/wwVxU4 & 13Pi flic.kr/p/wPVw1e . The aperture height is 35% to 50% of shell height. The shape varies but many are “ straight at the pillar, [columellar lip] and slightly angulated at the base beneath it” Alder (1844) 01Pi flic.kr/p/wNFGTS & 03Pi flic.kr/p/wNFGy3 . The parietal lip is a thin glaze on the body whorl and the peristome is not distinctly continuous there 01Pi flic.kr/p/wNFGTS . The aperture rim is usually white and occasionally has slight brown marks. The curved outer (palatal) lip, has a thin edge even on mature specimens with a labial varix 06Pi flic.kr/p/wwNhrA as the varix is rarely thick and usually set back from the edge. The columellar lip is slightly reflected, usually leaving an umbilical groove between it and body whorl 01Pi flic.kr/p/wNFGTS & 03Pi flic.kr/p/wNFGy3 . Internally, the aperture is translucent white showing any brown exterior marks 01Pi flic.kr/p/wNFGTS .
Body description
Caveat: most live images in this account are from single site in North Wales. It is possible that soft-parts at other sites may vary. For example, Høisaeter (2009) found the dark head pattern at one site to be much faded at two other sites.
The flesh is translucent whitish with some opaque blotches of yellow or white. The snout is deeply bifid 14Pi flic.kr/p/wPpV8R and often has a broad medial blackish or brown-umber band which extends onto the head and body 14Pi flic.kr/p/wPpV8R . The band was found on all live specimens examined/photographed from the main Welsh site. It was more faded on a specimen from another site, but this may be because it was a juvenile 15Pi flic.kr/p/2pNkwwx . Often, there are a few opaque white or yellow marks on the snout 16Pi flic.kr/p/wPpUYn . When the pale-yellow salivary glands and buccal mass are retracted, the snout is translucent whitish and the head is yellow 16Pi flic.kr/p/wPpUYn . When glands and buccal mass are pushed forwards, the snout is yellow and the head is translucent whitish 17Pi flic.kr/p/vSoCDu .
The cephalic tentacles are translucent white with two parallel irregular rows of substantial, opaque-white, hyphen-like marks in each tentacle 18Pi flic.kr/p/wNFBVf ; in lateral view one row may conceal the other 10Pi flic.kr/p/wwVxU4 . A slight swelling at the base of the tentacle 19Pi flic.kr/p/wwNcPj bears a large black eye with a dorsally-enclosing, semi-circular, opaque-yellow mark 10Pi flic.kr/p/wwVxU4 . The dorsal surface of the foot is translucent whitish with a broad, dark, transverse band anterior of the mid-point 16Pi flic.kr/p/wPpUYn . There are two dark-purple or black longitudinal lines on each side; one dorso-lateral and one on the periphery of the foot (Alder, 1844) 03Pi flic.kr/p/wNFGy3 ; they are often faint and partial 20Pi flic.kr/p/wM6ghj & 16Pi flic.kr/p/wPpUYn or imperceptible at some sites. The peripheral line often extends forwards well beyond the transverse band on the dorsal surface 21Pi flic.kr/p/wPVuEt . The anterior quarter of the foot has a whitish, heart-shaped, anterior pedal mucous gland 22Pi flic.kr/p/wM6g43 ; sometimes with blackish/grey surface blotch 23Pi flic.kr/p/wwNdfj & 16Pi flic.kr/p/wPpUYn . The posterior half of the foot has an opaque-white posterior pedal gland visible laterally 16Pi flic.kr/p/wPpUYn . The constriction in the foot shows as a lateral crease when the foot is contracted 10Pi flic.kr/p/wwVxU4 ; it facilitates transverse folding of the narrow foot 16Pi flic.kr/p/wPpUYn . When extended, the anterior of the sole is expanded; its bilaminate edge has within it the outlet of the heart-shaped anterior pedal mucous-gland 21Pi flic.kr/p/wPVuEt . Most of the posterior two-thirds of the sole is occupied by the opaque-white posterior pedal mucous-gland with a central pore 21Pi flic.kr/p/wPVuEt . The operculum is translucent horn-coloured. The opercular lobe is blackish or brownish at the anterior only 10Pi flic.kr/p/wwVxU4 The projecting posterior of the lobe is whitish 20Pi flic.kr/p/wM6ghj & 16Pi flic.kr/p/wPpUYn and sometimes difficult to discern against the similarly coloured foot 21Pi flic.kr/p/wPVuEt . A very long, translucent-white, finger-like metapodial tentacle is usually held clear of the foot-surface and extends from the opercular disc to well beyond the posterior of the foot 24Pi flic.kr/p/wwNd4h .
The mantle is greyish-white or yellowish-white 21Pi flic.kr/p/wPVuEt with a long, translucent pallial tentacle protruding beyond the shell 19Pi flic.kr/p/wwNcPj & 21Pi flic.kr/p/wPVuEt from adapical angle of shell-aperture 10Pi flic.kr/p/wwVxU4 .
A dissected ctenidium had short stout whitish filaments 25Pi flic.kr/p/wM6fa9 ; live specimens show it through the translucent shell as a row of yellow 26Pi flic.kr/p/wM6f1m or whitish 18Pi flic.kr/p/wNFBVf marks. The whitish penis with a blunt rounded tip and no filament is attached behind the right tentacle on males. It is very long and may extend back into the mantle cavity or protrude from the shell 27Pi flic.kr/p/wM6ePE .
Key identification features
The shell feature key in Waren (1996) states that identification of Rissoa and Pusillina shells should not be attempted without access to rich material, especially at brackish sites where variation, corrosion and encrustation are frequent (Waren, 1996).
Pusillina inconspicua
1) Tiny purple apical spot confined to single embryonic whorl on the protoconch 08Pi flic.kr/p/vSoFej ; diagnostic when present, but absent from some.
2) Two parallel rows of opaque white, hyphen-like marks in each translucent white cephalic tentacle 18Pi flic.kr/p/wNFBVf ; in lateral view one row may conceal other 10Pi flic.kr/p/wwVxU4 .
3) If present, 9-15 closely-spaced, fine costae (axial ribs) on apertural view of body whorl 30Pi flic.kr/p/vSxcVH . Many populations have few or no costate individuals.
4) Maximum height 3 mm, usually less. When shells with equal numbers of whorls are compared, P. inconspicua is shorter than R. parva and P. sarsii 29Pi flic.kr/p/wM6eG5 .
5) Long, whitish penis has a blunt rounded tip and no filament 27Pi flic.kr/p/wM6ePE .
6) On equal-sized specimens, the foot is wider than on R. parva 30Pi flic.kr/p/wwNbDo .
7) Opaque white posterior pedal gland stops well-short of edge of sole.
8) Snout often has broad medial blackish or brown-umber band
19Pi flic.kr/p/wwNcPj which extends onto head and body 14Pi flic.kr/p/wPpV8R .
9) Columellar lip slightly reflected, usually leaving an umbilical groove between it and body whorl 01Pi flic.kr/p/wNFGTS & 03Pi flic.kr/p/wNFGy3 .
10) Periphery of body whorl well-rounded on both adults and juveniles 02Pi flic.kr/p/wwNmaW .
11) Two dark longitudinal lines; one dorso-lateral and one on the periphery of the foot 03Pi flic.kr/p/wNFGy3 which extend forward well beyond dark transverse band 21Pi flic.kr/p/wPVuEt . Lines sometimes faint or absent.
12) Northern Norway to Mediterranean, widespread in Britain. Not Baltic; records in Danish Kattegat are probably misidentified P. sarsii (Lovén, 1846) (Rasmussen, 1973).
Similar species
Pusillina sarsii (Lovén, 1846) 28Pi flic.kr/p/vSxcVH
31 Pi flic.kr/p/ynjxoQ & 32 Pi flic.kr/p/xzqyLG
WoRMS accepts P. sarsii as a valid species distinct from P. inconspicua, but several authors express varying degrees of doubt and of difficulty differentiating the two species at some sites. “- - neither the shape of the shell nor the sculpture have much diagnostic value.” (Høisaeter, 2009). “One possibility - - is that P. sarsi is a series of local populations of P. inconspicua, adapted to brackish water.” (Warén, 1996).
1) Protoconch (3 apical whorls) as rest of shell, sometimes dark bronze or faint lilac tinge, but not a purple spot confined to single apical embryonic whorl.
2) Two parallel rows of opaque white, hyphen-like marks in each translucent white cephalic tentacle (K. Jensen, 2015. pers. comm. 2 September); in lateral view one row may conceal other.
3) If present, 6-8 widely-spaced, rounded, shallow costae on apertural view of body whorl but many populations have few or no costate individuals.
4) Maximum height 4 mm. When shells with equal numbers of whorls are compared, P. sarsii is taller than P. inconspicua 29Pi flic.kr/p/wM6eG5 .
5) No filament on penis (Ponder, 1984).
6) Sole similar to P. inconspicua, except opening of posterior pedal gland is dark on (all?) P. sarsii.
7) Opaque white posterior pedal gland stops well-short of edge of sole.
8) Brown and white speckles on the head (Fretter & Graham,1978).
9) Columellar lip slightly reflected, usually leaving an umbilical groove between it and body whorl.
10) Periphery of body whorl rounded on both adults and young, not angulated.
11) Dark peripheral line on foot, when present, may extend forward well beyond proximity of dark, broad, dorsal, transverse band.
12) Norway, Britain, Bretagne, Skagerrak and Kattegat. As Rissoa albella (Lovén 1846) in Denmark (Rasmussen, 1973). NBN has a single possible record in North Sea from Caithness to Kent, species.nbnatlas.org/species/NHMSYS0021055536 (accessed 12 May 2024).
Rissoa parva (da Costa, 1778)
Brown falciform mark (comma) across labial varix on adults 33Pi flic.kr/p/2pQTBSW
; diagnostic when present, but absent from shells less than 2 mm high and from some larger shells.
1) Protoconch various colours, including lilac or purplish, but not confined to single tiny apical embryonic whorl 33Pi flic.kr/p/2pQTBSW & 29Pi flic.kr/p/wM6eG5 .
2) Cephalic tentacles have single medial opaque white line which is sometimes discontinuous 34Pi flic.kr/p/2pQTBPu or missing.
3) If present, 5-6 widely-spaced, often strongly-developed, costae on apertural view of body whorl 33Pi flic.kr/p/2pQTBSW .
4) Maximum height 5 mm.
5) Long, whitish penis, tapering to a filament at tip 35Pi flic.kr/p/2pQZZqa .
6) On equal-sized specimens, foot narrower than on P. inconspicua 30Pi flic.kr/p/wwNbDo .
7) Opaque white posterior pedal gland extends almost to edge of sole 30Pi flic.kr/p/wwNbDo .
8) Head/snout translucent whitish; sometimes has narrow blackish mark and/or a few opaque white marks 34Pi flic.kr/p/2pQTBPu .
9) Short columellar lip reflected onto body whorl, so no umbilical groove visible 33Pi flic.kr/p/2pQTBSW .
10) Periphery of body whorl rounded on adults, angulated on young (4 to 5 whorls).
11) Broad transverse dark band on body spreads onto periphery of sole, but does not extend forwards as a peripheral line 35Pi flic.kr/p/2pQZZqa .
12)
Pusillina radiata (R.A. Philippi, 1836)
The precise delimitation of R. radiata is not easy; it is not always separable from other taxa such as R. inconspicua and has remarkable local and geographical variability (Verduin, 1976). It has been suggested (H. Raven, 2023. pers. comm. 9 April) that the live specimens labelled P. inconspicua in this account are Pusillina radiata, a species not on the UK Species Inventory.
1) Apical purple (when present) may extend onto all three whorls of the protoconch 36Pi flic.kr/p/2pNx7hw
2) Cephalic tentacles translucent white with two parallel rows of, opaque white marks in each tentacle 37Pi flic.kr/p/2pNeuHF
3) If present, about 5 to 10 costae visible on apertural view of body whorl 36Pi flic.kr/p/2pNx7hw . About 6 to 11 in Atlantic Iberia (Verduin, 1976). Dark lines in grooves thinner than on P. inconspicua and often obliquely orientated (Verduin, 1976) 37Pi flic.kr/p/2pNeuHF.
4) Maximum height c. 5.3 mm in Mediterranean, 3.9 mm in Atlantic Iberia (Verduin, 1976).
5) No filament on penis (Ponder, 1984).
8) Snout and head often have a broad medial blackish or brown-umber band 38Pi flic.kr/p/2pNZsaR.
9) Columellar lip only slightly reflected, leaving a slight umbilical groove, or none, between it and body whorl (Verduin, 1976).
10) Whorls well-rounded and often sagging on Mediterranean specimens (Verduin, 1976) 37Pi flic.kr/p/2pNeuHF .
11) Two dark longitudinal lines, one dorso-lateral and one on the periphery of the foot, which extend forward well beyond dark transverse band 38Pi flic.kr/p/2pNZsaR . Lines sometimes faint or absent.
12) Black Sea, Mediterranean and Atlantic Iberia to Brittany (Verduin, 1976). Possibly Britain (H. Raven, 2023. pers. comm. 9 April) but not on UK Species Inventory.
Habits and ecology
P. inconspicua lives sublittorally to 100 m on fine red algae, muddy sand and sandy gravel. On shores it occurs at LWS on finely branching algae which filter and retain suspended sediment. It lives at full marine salinity down to 20‰ and survives short periods at 15‰. In more brackish sites such as Isefjord, Denmark (14‰ to 22‰) it is replaced by abundant P. sarsii which might be the brackish form of P. inconspicua (Warén, 1996). It often occurs with Rissoa parva, but not on more wave-exposed sites tolerated by that species. It is often abundant in sheltered algal and Zostera environments. Its varied shell-form might be a response to small variations in environment, as is the case for R. parva). It is most numerous when juvenile in late summer. It respires with a ctenidium of stout filaments 25Pi flic.kr/p/wM6fa9.
Locomotion is lubricated by mucus discharged from the anterior pedal mucous gland within the bilaminate anterior edge of the sole 21Pi flic.kr/p/wPVuEt . Turning is facilitated by transverse folding at a constriction in the anterior half of the foot 16Pi flic.kr/p/wPpUYn . The posterior pedal gland 21Pi flic.kr/p/wPVuEt secretes strong threads of mucus which harden on contact with sea water and are used to anchor the snail and act as climbing lines in its movement around algae. P. inconspicua feeds by grazing microphytes, such as diatoms, and algal fragments with its radula from the surface of filamentous algae growing on stones or, sometimes, on bodies of other creatures such as spider crabs (Hyas spp.). A yellow salivary gland on either side of the radula tube 17Pi flic.kr/p/vSoCDu secretes mucus to lubricate the action of the radula and to cement food particles together. It produces oval faecal pellets 16Pi flic.kr/p/wPpUYn & 25Pi flic.kr/p/wM6fa9 ; the colour varies orange-brown or green with its diet. In captivity, faeces were green when it was fed on spinach (Warén, 1996).
Reproduction: it is probably mature when the labial varix is developed, but some populations lack a varix. Fertilization is internal with a long penis 27Pi flic.kr/p/wM6ePE . Spawning is in August and September at Plymouth (Graham, 1988), but in North Wales it is probably in March or April when the population is adult as only juveniles were found in September. Spawning probably varies geographically and with weather as it is regulated by temperature; commencing when the water is 8 to 9ºC and peaking at 10 to 12ºC in laboratory conditions (Warén, 1996). Clear, hemispherical egg capsules are laid on Zostera, debris or shells of other individuals (Graham, 1988). The capsules, 0.35 to 0.65mm diameter, contain a mean each of 20 ova, with a range of 6 to 33. Planktonic veligers are about 0.14mm long when they hatch after four weeks at 8ºC rising to 12ºC over the period, or two weeks at 12 to 13ºC (Warén, 1996). Fretter and Pilkington (1970) illustrated the veliger, and stated “The purple [shell-]apex characteristic of the adult appears after metamorphosis (3 ¾ -whorls).”, but Warén (1996) differed and stated “ - - the veliger larvae can be recognised by the deep and conspicuous purple colour at the point of the spire. The protoconch of three whorls suggests a fairly long period in the plankton enabling wide dispersal and genetic intermixing, so inter-site variation of shell-form is probably the result of sensitivity to environmental variation rather than genetic isolation.
Predators: Pusillina and Rissoa species are the most numerous molluscs in many habitats and an important food source for fish and birds (Warén, 1996). Recently hatched Buccinum undatum were found on filamentous algae with P. inconspicua in Wales and, in captivity, preyed on them 39Pi flic.kr/p/wPpRQD .
Distribution and status
P. inconspicua occurs from Northern Norway to the Canary Islands, Azores and into the Mediterranean. It is probably replaced by P. sarsii in the Baltic but there is some confusion over the species there (Wiese & Janke, 2021). GBIF map www.gbif.org/species/5192276 . It is widespread around Britain and Ireland. It is commonest in south and west and scarce or absent at sites in the north-east Irish Sea and North Sea. U.K. map NBN species.nbnatlas.org/species/NBNSYS0000177600
Acknowledgements
I am indebted to Jan Light (formerly Marine Recorder of the Conchological Society of G.B. & Ireland) for the generous loan of hundreds of specimens collected and identified by her from thirteen sites in France, Channel Islands, south coast England, Ireland, North Wales and Scotland. The specimens are now at Amgueddfa Cymru - National Museum Wales.
I am most grateful to Kathe Jensen, Ivan Nekhaev, Jakov Prkić, Han Raven and Pero Ugarković for discussion and use of photographs. Any errors or omissions are attributable to me (IFS).
Links and references
Alder, J. 1844. Descriptions of some new British species of Rissoa and Odostomia. Ann. Mag. nat. Hist. 13 (series 1): 323-328 & plate viii preceding p. 323 . (Original description of species.) archive.org/details/annalsmagazineof13lond
Forbes, E. & Hanley S. 1849-53. A history of the British mollusca and their shells. vol. 3 (1853), London, van Voorst. Free pdf at archive.org/stream/historyofbritish03forbe#page/112/mode/2up
Use slide at base of page to select pp. 113 - 117 .
Fretter, V. and Graham, A. 1962. British prosobranch molluscs. London, Ray Society.
Fretter, V. and Graham, A. 1978. The prosobranch molluscs of Britain and Denmark. Part 4 Marine Rissoacea. J. Moll. Stud. Suppl. 6, 153-241.
Fretter, V. and Pilkington, M.C. 1970. Prosobranchia. Veliger larvae of Taenioglossa and Stenoglossa. Conseil international pour l'exploration de la mer. Fiches d'identification. Zooplankton, 129-132.
ices-library.figshare.com/articles/report/Prosobranchia_V...
Graham, A. 1988. Prosobranch and pyramidellid gastropods. London, Linnean Society, and Estuarine and Brackish-water Sciences Association.
Høisaeter, T. 2009. Distribution of marine, benthic, shell bearing gastropods along the Norwegian coast. Fauna Norvegica 28: 5-106 www.researchgate.net/publication/41758474_Distribution_of...
Jeffreys, J.G. 1862-69. British conchology. vol. 4 (1867). London, van Voorst. p.26. archive.org/details/britishconcholog04jeffr/page/26/mode/... .
Ponder, W.F. 1984. A review of the Genera of the Rissoidae (Mollusca: Mesogastropoda: Rissoacea). Rec. Aust. Mus. Suppl. 4: 1-221. P. inconspicua images on pp. 28 & 129. media.australian.museum/media/Uploads/Journals/16835/100_...
Rasmussen, E. 1973. Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia, 11, 1-495.
United Kingdom Species Inventory (UKSI), the comprehensive database of UK wildlife taxonomy and nomenclature curated by the Natural History Museum, London. www.gbif.org/dataset/dbaa27eb-29e7-4cbb-8eab-3f689cfce116
Verduin A. 1976. On the systematics of recent Rissoaof the subgenus Turboella Gray, 1847, from the Mediterranean and European Atlantic coasts. Basteria 40: 21-73. archive.org/details/basteria-40-021-073
Warén, A. 1996. Ecology and systematics of the north European species of Rissoa and Pusillina (Prosobranchia: Rissoidae). J. mar. biol. Ass. U.K. 76, 1013-1059. www.researchgate.net/publication/231850423_Ecology_and_sy...
Wiese, V. and Janke, K. 2021. Die Meeresschnecken und – muscheln Deutschlands Wiebelsheim, Quelle & Meyer.
Glossary
adapical = towards the apex of the shell.
aperture = mouth of gastropod shell; outlet for head and foot.
bifid = divided into two parts by a cleft.
cephalic = (adj.) of or on the head.
coll. = in the collection of (named person or institution, compare with legit).
columella = solid or hollow axial “little column” around which gastropod shell spirals; hidden inside shell, except on final whorl next to lower part of inner lip of aperture where hollow ones may end in an umbilicus or siphonal canal.
columellar = (adj.) of or near central axis of spiral gastropod.
columellar lip = lower (abapical) part of inner lip of aperture.
costa = strong rib running across a whorl of a gastropod shell at right angles to direction of coiling and any spiral striae.
costae = (pl.) strong axial ribs running across a whorl of a gastropod shell at approximately right-angles to direction of coiling and any spiral striae.
= = (adj.) of, or arranged like, costae.
costate = bearing costae.
diatom = microscopic aquatic alga with siliceous cell-walls.
ctenidium = comb-like molluscan gill; usually an axis with a row of filaments either side.
ELWS = extreme low water spring tide (usually near March and September equinoxes).
embryonic whorl = tiny, initial, apical whorl (sometimes a fraction more than one whorl) of gastropod; formed while embryo in ovum. It plus larval whorls comprise the protoconch. [Some sources confusingly call whole protoconch the embryonic whorls.]
falciform = sickle blade shape.
height = (of gastropod shells) distance from apex of spire to base of aperture.
labial varix = especially strong or broad costa (rib) along edge of outer lip of aperture. Sometimes other varices mark positions of previous prolonged pauses in growth.
larval whorls = whorls near apex of gastropod shell formed while a planktonic veliger larva. They plus initial apical embryonic whorl comprise the protoconch.
legit = (abbreviation; leg.) collected/ found by (compare with coll.)
mantle = sheet of tissue that secretes the shell and forms a cavity for the gill in most marine molluscs.
LWS = low water spring tide, two periods of a few days each month when tide falls lowest.
metapodium = hind part of the foot.
mucus = (noun) viscous, slippery substance secreted by various glands on molluscs.
mucous = (adj.) pertaining to mucus.
opercular = (adj.) of the operculum.
opercular disc = part of foot attached to operculum.
opercular lobe =extension of opercular disc beyond edge of operculum.
operculum = plate of horny conchiolin used to close shell aperture.
palatal lip = outer lip of gastropod aperture.
peristome = entire rim of aperture.
plankton = animals and plants that drift in pelagic zone (main body of water).
protoconch = apical whorls produced during embryonic and larval stages of gastropod; often different in form from other whorls (teleoconch).
umbilicus = cavity up axis of some gastropods, open as a hole or chink on base of shell, often sealed over.
stria = (pl. striae) very narrow spiral groove.
suture = groove or line where whorls of gastropod shell adjoin.
teleoconch = part of gastropod shell other than the apical embryonic & larval stage protoconch.
veliger = shelled larva of marine gastropod or bivalve mollusc which swims by beating cilia of a velum (bilobed flap).
Canon EOS R6 Mark II, Canon EF 24-105mm f/4L IS USM, processed in Lightroom.
Kunsthistorisches Museum Wien.
Wikipedia: "Self-portrait in a Convex Mirror (c. 1524) is a painting by the Italian late Renaissance artist Parmigianino. It is housed in the Kunsthistorisches Museum, Vienna, Austria.
The painting depicts the young artist (then twenty one) in the middle of a room, distorted by the use of a convex mirror. The hand in the foreground is greatly elongated and distorted by the mirror. The work was painted on a specially-prepared convex panel in order to mimic the curve of the mirror used."
de.wikipedia.org/wiki/Selbstporträt_im_konvexen_Spiegel
en.wikipedia.org/wiki/Self-portrait_in_a_Convex_Mirror
en.wikipedia.org/wiki/Parmigianino
it.wikipedia.org/wiki/Parmigianino
de.wikipedia.org/wiki/Kunsthistorisches_Museum_Wien
Hidden from the streets near Piazza Navona, the church of Sant Ivo rests at the end of an inner courtyard. It is part of the larger Palazzo Della Sapienza which was the seat the old university of Rome from the 15th century up until 1935. The church was designed by Borromini and the interior is a maze of undulating concave and convex shapes. It's simple design all in white is utterly breathtaking. You can clearly see the influence this may have exerted on today's modern architect, Santiago Calatrava. The church has rather erratic opening hours, but the courtyard is almost always viewable.
View On Black Larger for more detail.
In the narrow space separating the house where Jan and I live, and the church where I perform many of the tasks of my profession, waits a barbecue grill. See it, here in the security mirror?
Flickr no longer allows us to attach "notes," but you can spot the blue kettle top, just beyond the steps. It's between the realms of home and work that I momentarily relax.
Model: Double-Sided Convex Hexagonal Ring Solid
Designer: Tomoko Fuse
Units: 1:2 (30)
Diagram: Unit Polyhedron Origami (book)
Paper: Plisse Amethyst from PaperArts (Dallas, TX)
Built c. 1880.
"Ontario Cottage, 3 bay, ‘white’ brick flush quoins and segmental arches, 1/1 sash, panelled and glazed door with horizontal bead-edged and convex profile centre panel, (later entrance porch)." - info from the City of Guelph.
"Guelph (/ˈɡwɛlf/ GWELF; 2021 Canadian Census population 143,740) is a city in Southwestern Ontario, Canada. Known as The Royal City, it is roughly 22 km (14 mi) east of Kitchener and 70 km (43 mi) west of Downtown Toronto, at the intersection of Highway 6, Highway 7 and Wellington County Road 124. It is the seat of Wellington County, but is politically independent of it.
Guelph began as a settlement in the 1820s, established by John Galt, who was in Upper Canada as the first superintendent of the Canada Company. He based the headquarters, and his home, in the community. The area—much of which became Wellington County—was part of the Halton Block, a Crown reserve for the Six Nations Iroquois. Galt is generally considered Guelph's founder.
For many years, Guelph ranked at or near the bottom of Canada's crime severity list. However, the 2017 index showed a 15% increase from 2016. It had one of the country's lowest unemployment rates throughout the Great Recession. In late 2018, the Guelph Eramosa and Puslinch entity had an unemployment rate of 2.3%, which decreased to 1.9% by January 2019, the lowest of all Canadian cities. (The national rate at the time was 5.8%.) Much of this was attributed to its numerous manufacturing facilities, including Linamar." - info from Wikipedia.
Late June to early July, 2024 I did my 4th major cycling tour. I cycled from Ottawa to London, Ontario on a convoluted route that passed by Niagara Falls. During this journey I cycled 1,876.26 km and took 21,413 photos. As with my other tours a major focus was old architecture.
Find me on Instagram.
As per normal the family has wandered away.
Why is there a 3 x 1 gap behind the first row of Typhoo?
Quimper, ou Kemper en breton (le nom de Quimper-Corentin est parfois attesté en référence à saint Corentin, l'un des Sept Saints Fondateurs bretons) est une commune française, antique capitale de la Cornouaille, préfecture du département du Finistère et la région Bretagne.
Ses habitants sont appelés en français les Quimpérois et Quimpéroises et en breton Kemperad (masculin), Kemperadez (féminin), Kemperiz (pluriel) ou bien de façon traditionnelle Glazik (pluriel Glaziked)[2] (pour les Quimpérois ainsi que les habitant de la région, le Pays Glazik).
La ville, dont l'axe historique est la confluence du Steir, de l'Odet et du Jet, est, par la population, la deuxième ville de son département, après Brest. La mer y remonte la vallée encaissée de l'Odet et lui donne une position de port de fond d'estuaire qui explique son implantation et une partie de son rôle économique. C'est aussi un carrefour routier très ancien.
Le site est difficile, car établi dans des vallées étroites encaissées dans du Stéphanien carbonifère et surmontées d'assez fortes pentes de granulite et de schistes micacés. Les espaces plats et larges ne se trouvent qu'au confluent de petites rivières portées à de rapides débordements lors de pluies prolongées.
On peut déceler une migration étonnante des lieux principaux d'habitation, sans doute due à des contraintes géographiques (variations du niveau de la mer) ou économiques (voies sur les crêtes). Une autre particularité est la dissymétrie inhabituelle de la vallée principale: une rive nord convexe en pente et une rive sud concave montrant une hauteur de 60 mètres aux flancs abrupts.
Ce fait et le tracé de courbes et contre-courbes du petit fleuve Odet est du à des effondrements et soulèvements créant plusieurs failles à l'ère tertiaire auquel s'est ajouté un basculement Nord-Sud.
Le nom Quimper correspond au breton moderne Kemper « confluent », la ville ayant été bâtie à la confluence du Steir, de l'Odet et du Jet. Ce terme kemper se retrouve dans le gallois moderne cymer « conjonction » et l'irlandais moderne comhar « coopération ». Le nom ancien de la ville était Quimper-Corentin et, à la Révolution française, elle a été rebaptisée Montagne-sur-Odet pour enfin devenir Quimper tout court.
C'est à Quimper-Corentin que Jean de La Fontaine place sa fable du Charretier embourbé. Aquilonia était, semble-t-il, le nom romain de Quimper.
Des silex retrouvés à Pluguffan, commune limitrophe sont datés de 6 000 ans.
Le Quimper préhistorique et antique a fait l'objet de recherches archéologiques intenses grâce à l'existence d'un service archéologique municipal. Des vestiges de fortifications (éperons barrés), d'habitats datant de l'Âge du fer, de forges et de sépultures ont été trouvés dans les anciennes communes d'Ergué-Armel et de Penhars avec une concentration sur le site du Braden. Une activité agricole florissante s'est alors développée.
Mais, la découverte en 2003 d'une agglomération gauloise à cheval sur le Steïr au Nord, près du village de Kergolvez, a apporté une confirmation de l'ancienneté de l'urbanisation, puisque les datations vont du IIe ou du Ier siècle av. J.-C. à un abandon daté vers 30 av. J.-C. Des traces d'artisanat ont été trouvées et des scories métalliques indiquent une activité métallurgique notable.
Dans les écrits de César et des historiens grecs, il apparaît que Quimper était inclus dans la cité gauloise des Osismes dont la capitale était Vorgium (Carhaix), mais n'indique le statut de la petite ville (bourgade?) dans l'organisation territoriale. Un sanctuaire couronnait alors le Frugy à Parc-ar-Groas.
Une agglomération gallo-romaine modeste (moins de 15 hectares) a été repérée dans le quartier de Locmaria. Elle comportait un forum et des thermes au centre d'un quadrillage de rues dont un élément significatif a été retrouvé en 2006 à proximité d'un probable port sur l'estuaire et d'une acropole située sur le sommet occidental du mont Frugy (anciennement Cnech Cuki). Une voie romaine la reliait à Vannes et d'autres à Brest, Carhaix et la pointe du Van.
La cité gallo-romaine semble avoir subsisté, mais sans laisser de traces historiques après le VIe, puisqu'une civitas aquilonia (la cité du Nord?) mentionnée dans un acte du XIe siècle par le nom d'un lieu de culte Sancta Maria in aquilonia civitate existait autour de l'église abbatiale de Locmaria comme semble le confirmer un autre acte de 1124 par lequel l'abbaye devient un prieuré de Saint-Sulpice de Rennes et, par là, sous la protection du comte de Bretagne Hoël Ier, qui était comte de Cornouaille avant son intronisation.
Vers la fin du IXe apparaît la mention d'un évêque de saint Corentin, premier évêque selon la tradition, pour l'un des ses successeurs. Le nom de Kemper ou de Quempercorentin apparaît à la fin du XIe siècle. On trouve ensuite les termes latins Confluentia et C(h)orisopitum que l'on croit être une cacographie de Curiosolitum (l'ancienne cité gauloise des Coriosolites, chef-lieu « Fanum Martis »/Corseul, prés de Dinan. On trouve à Locmaria quelques traces d'un culte de saint Tudy (voir à ce propos l'équivalence avec Saint Tugdual) et la mention d'un très ancien monastère qui aurait suivi les usages celtiques. Une pierre Maen Tudi existe en effet sur le minihi du prieuré de Locmaria. Mais rien encore de probant sur la préhistoire du siège épiscopal qui n'est pas donné comme d'origine ultramarine comme d'autres en Bretagne.
Une légende vivace fait de saint Corentin un protégé de Gradlon, roi de Cornouaille ayant échappé à la submersion de la ville d'Ys, à qui le prince aurait fait don de son château pour établir son palais épiscopal. Le proche entourage de la cathédrale était appelé autrefois "le Tour-du-Chastel".
Le Haut-Moyen Âge montre, de façon plus certaine, une confusion du pouvoir comtal et épiscopal sous un certain Binidic, fils de Budic de Châteaulin. Cette situation contestable est dénouée par l'attribution du Comté de Cornouaille à Alain Canhiart (ou Cainhart), fils de Binidic, et celle de l'évêché successivement à ses deux frères, Orscant et Binidic. Il en restera le fait que l'évêque gardera jusqu'en 1791 la possession de la ville fortifiée entre l'Odet, le Steïr et le Frout, le duc de Bretagne gardant le faubourg ouest connu sous le nom de la Terre-au-Duc.
Deux seigneuries se partagent l'essentiel du pouvoir économique (marchés, moulins, fours banaux, octrois, péages), celle de l'évêque en sa ville close de murailles entre l'Odet, le Steïr et le Frout et le prieuré bénédictin féminin de Locmaria qui contrôle les entrées et sorties maritimes, mais, dans ce qui reste, les possessions sont enchevêtrées et matières à d'innombrables querelles et procès.
En 1210, le duc est contraint de détruire la maison forte qu'il avait édifié sur le fief de l'évêque et seul l'arbitrage du pape permettra la construction, au confluent, d'un petit château en 1453, dont fort peu de traces subsistent. Dans le même état d'esprit, les évêques s'opposent à la levée des impôts par l'État ducal qui s'affirme. Choisis dans l'entourage ducal, ils doivent accepter l'impôt, mais refusent pourtant garnison et atelier monétaire.
En 1239, l'évêque Raynaud décide de reconstruire sur place la cathédrale romane (commencée en 1128?) et, malgré le fait que la construction ait duré 254 ans, le nouveau sanctuaire gothique, privé de flêches sur ses deux tours jusqu'en 1856, montre une homogénéité remarquable. Le chantier aura subi un arrêt prolongé aux XIVs, années noires pour la Cornouaille (guerre de Succession de Bretagne, épidémies).
Le vieux Quimper
La ville se développant, le duc de Bretagne, qui voit son pouvoir politique se renforcer et ne manque pas de l'exprimer par l'apposition de son blason sur les remparts et sur les églises, est amené à tenir compte des notables et à leur octroyer des privilèges pour favoriser l'économie locale et donc ses propres rentrées fiscales. Le mouvement s'amorce par un acte de Jean IV en 1387, mais, si des réunions du « corps de ville » sont attestées dans l'une des chapelles de la ville close, le Guéodet (d'un mot breton proche de "cité"), il n'a pas de traces de luttes pour ériger une « commune » en opposition avec l'autorité ducale ou épiscopale. Un procureur des bourgeois est nommé en vers 1430, mais ce n'est qu'en 1704 que la création d'un office de maire est décidée. Quimper est une ville dont les notables, nobles, chanoines ou commerçants se font construire des « hostels » à pan de bois et aux façades savamment sculptées en bois et en pierre et les terres rurales proches sont parsemées des manoirs nobles dont certains sont des résidence d'été comme celui de Lanniron à Locmaria pour l'évêque.
La ville attire des ordres religieux qui s'installent dans et hors de la ville close, les franciscains cordeliers étant mal acceptés et objets de saccages, malgré le renom de charité de Jean Discalceat, le "petit saint noir", mort en soignant les habitants de la peste en 1349. En 1490 éclate une insurrection paysanne appelée « La commune de Cornouaille » et décrite par le chanoine Jean Moreau : des milliers de paysans mal armés assiègent la ville, mais sont repoussés et massacrés.
La période des guerres de religion est plutôt agitée, car la ville, alliée de la Sainte-Ligue, se rend après avoir été assiégée en 1595 par l'armée royale commandée par le maréchal d'Aumont au nom d'Henri IV dont la conversion au catholicisme reste suspecte aux yeux de beaucoup. L'imprimerie n'est venue que vers 1525, mais son essor sera, comme partout, limité par la politique de contrôle absolu de Louis XIV qui ne fait autoriser qu'un imprimeur par ville placé sous la censure de l'évêque qui est son premier client. La maison la plus ancienne de Quimper, datée du début du XVe siècle, fût justement le siège de l'imprimerie diocésaine.
Quimper bénéficie de la réforme judiciaire de 1552 qui renforce son rôle en en faisant le siège d'un présidial dont le ressort coïncide grossièrement avec le territoire du futur département du Finistère, sauf Quimperlé subordonnée à Vannes.
Le XVIIIe siècle apporte à Quimper l'exploitation, qui durera peu, du charbon de la Terre-Noire à Penhars et surtout le développement de la faïencerie initiée dès 1708 par un entrepreneur provençal, Pierre Bousquet suivi du Rouennais Pierre Clément Caussy. Ne disposant pas de terre à faïence, ils l'importent soit de Fronsac (Bordeaux), soit de Rouen. Plus tard, l'argile gréseuse extraite à quelques km au Sud de Locmaria permettra de fabriquer du grès (à partir de 1775-80). La Révolution sera bien accueillie, mais les excès de la Gauche montagnarde et hébertiste en 1793 susciteront des oppositions telles que les Chouans seront près de contrôler toute la campagne environnante en 1799. Le « brûlis des Saints », le 11 et 12 décembre 1792, journées de pillage et de destruction des églises, marquera les esprits : la municipalité a laissé faire les extrémistes antireligieux avant de s'apercevoir que la Convention avait demandé d'éviter de tels excès.
La ville est fermement tenue en main par les adeptes du changement, alors même que, sous le Directoire, la Chouannerie est maîtresse, la nuit venue, de la campagne proche. En octobre 1800, l'évêque de Quimper, Yves Marie Audrein, est intercepté dans sa diligence dans une paroisse voisine, Kerfeunteun, et est assassiné par des chouans qui seront pris et exécutés quelque temps plus tard.
Le blocus continental mis en place par la Marine britannique en 1805 profite un temps au port de Quimper bien abrité au fond de sa ria et libre d'accès, car c'est surtout Brest qui est surveillée.
Au XIXe siècle, les fonctions administratives fuient Quimper, qui ne les réunira aux religieuses qu'à la fin du siècle, renforçant enfin le rôle de Quimper. L'augmentation lente de la population déborde peu à peu sur les communes voisines, car son territoire est exigu et les autres agglomérations très proches.
C'est aussi une ville garnison qui héberge le 118e régiment d'infanterie de ligne sous la 3e république (colonel Philippe Pétain au commandement en 1907).
L'arrivée du chemin de fer en 1863 prolongé ultérieurement jusqu'à Douarnenez et le développement du port pour l'exportation et l'importation de denrées agricoles augmente l'activité économique avec une accélération après 1880 du fait des progrès de la productivité agricole et d'une industrialisation réelle quoique modérée symbolisée par l'arrivée du gaz de houille produit et exploité par la compagnie Lebon qui installe des gazomètres sur le port.
Celui-ci reste actif malgré la limitation en largeur d'un chenal étroit et soumis aux marées. Le charbon, le sable et le vin sont parmi les importations emblématiques.
L'amélioration des communications permet les débuts du tourisme qui entraîne le développement des hôtels et des entreprises de transport. Quimper attire, par le charme de son site fluvial et de ses vieux quartiers et est une plaque tournante pour l'accès aux stations balnéaires dont le succès s'affirme (notamment Bénodet et les petits ports de pêche du Cap Sizun et du Pays Bigouden).
Les industries agro-alimentaires deviennent pour longtemps un des piliers économiques (conserves de poisson, de légume et de fruits, confitures). Le textile et la mécanique légère, ainsi que la production de faïence contribuent aussi à une expansion importante dans la première moitié du XXe siècle.
L'occupation allemande pèse sur une ville qui est le théâtre de hauts faits de la Résistance (première émission de radio clandestine vers la Grande-Bretagne, vol des dossiers du STO) et celle-ci sera assez forte pour harceler l'ennemi qui se retire à la nouvelle de l'arrivée des Alliés. La fusion de 4 communes pour former le Grand Quimper en 1960 favorise l'essor de la construction et des équipements pour faire de la ville une agglomération où les transports se développent par la création de voies nouvelles, de rocades, de ponts et par l'arrivée de liaisons rapides par avion (liaison vers Paris), par train (TGV) et par route (voie express vers Paris et Brest).
Vue sur la cathédrale depuis l'Odet
Si Brest est choisie en 1962 comme siège de l'Université de Bretagne occidentale (UBO), Quimper accueille finalement un IUT, un collège universitaire étendu en un pôle universitaire dépendant de l'UBO en 1998 et différentes formations supérieures, le tout concernant plus de 4 000 étudiants.
L'habitat collectif est implanté par planification nationale à Penhars et Ergué-Armel[3], tandis que les hauteurs se couvrent de milliers de pavillons aux murs blancs et aux toits d'ardoise sombres. De moins de 44 000 habitants avant 1960, Quimper passe à 64 700 en 2006, loin des 120 000 imaginés en 1970, mais continuant à accueillir quelques centaines de nouveaux habitants chaque année. De grandes zones industrielles à l'Est et à l'Ouest s'ajoutent à la zone centrale de l'Hippodrome.
En 2001 a été achevé un programme de rénovation du pavage complet dans la zone semi-piétonne, confortant l Le pôle agroalimentaire garde un socle d'activités solide à Kéradennec (centre Sud) et à Troyallac'h (sur la commune proche de Saint-Évarzec), malgré des baisses conjoncturelles et la construction immobilière reste florissante. La zone d'activité de Créac'h-Gwenn bénéficie d'une extension pour les entreprises et du renforcement des installations universitaires. L'équipe de basket-ball, UJAP, s'est hissée au niveau national, tandis qu'une véritable base nautique est installée sur l'Odet maritime.
Un réseau souterrain de 70 kilomètres a été créé pour accueillir une fibre optique qui offre un très haut débit de données, facteur d'attraction pour certaines entreprises. La desserte des zones rurales du Nord et de l'Ouest est assurée par un système radio dénommé Wimax.
Quimper est classée ville d'art et d'histoire.
* Cathédrale Saint-Corentin (style gothique - XIIIe-XIXe - flèches néo-gothiques de 77 m)
* Église prieurale de Locmaria, Quimper (style roman - XIe-XIIe)
* Église Saint-Mathieu (XIXe - style néo-gothique)
* Église de Kerfeunteun (style gothique tardif - XVIe)
* Chapelle de Ty Mamm Doue (Maison de la Mère de Dieu) à Kerfeunteun (XVIe-XVIIe)
* Ancienne chapelle du Collège jésuite (XVIIIe)
* Le Vieux Quimper (remparts, maisons anciennes, dont la Maison des cariatides, rue du Guéodet)
* Le Musée des Beaux-Arts (près de la cathédrale)
* Musée départemental breton (archéologie, ethnologie, mobilier et costumes anciens, estampes, faïences) dans l'ancien palais épiscopal
* Musée de la Faïence [2]
* Promenades du Mont Frugy : chemins dans une falaise boisée surplombant la ville
* Festival de Cornouaille (troisième semaine de juillet)
* Faïenceries HB-Henriot [3]
* Gorges du Stangala où coule le fleuve Odet (à 7 km N.E.)
* Gorges boisées de l'estuaire de l'Odet (visite en vedettes touristiques)
* Statues:
-la plus connue, œuvre en bronze d'Eugène Louis Lequesne datée de 1867, représente le docteur René Laënnec sur la place portant son nom, devant la mairie; [4] Le grand médecin, inventeur de l'auscultation médiate et du stéthoscope, est également figuré en buste sur un monument de pierre dû au ciseau du sculpteur René Quillivic, visible à l'hôpital qui porte aussi son nom, avenue Yves Thépot.
-Place La Tour d'Auvergne, se dressait avant la dernière guerre le monument érigé en 1908, à la mémoire du carhaisien La Tour d'Auvergne, "premier grenadier de l'Empire", né en 1743 , tué au combat d'Oberhausen en Allemagne le 27 juin 1800 et auteur de divers ouvrages sur la langue bretonne. Cette statue de bronze du sculpteur Philippe Joseph Henri Lemaire représentant sur pied d'estal de maçonnerie le héros expirant soutenu par une victoire ailée, occupait le centre de la place, qui sert maintenant de parking payant. Une statue de remplacement de granite, figurant le même personnage au garde à vous, œuvre du sculpteur Robert Michel, a été érigée après guerre, mais son emplacement en bordure de parking, entre deux platanes, ne la met pas en valeur.
-A l'angle nord-ouest de la même place se dresse le monument aux morts de la première guerre mondiale, représentant un fusilier marin en fonte. Il s'agit d'un monument érigé à l'origine sous l'égide du souvenir français en 1909 au cimetière Saint Marc. Ce n'est qu'en 1951 qu'il a été transféré sur son site actuel. Le personnage du fusilier marin, antérieur à 1914, ne représente donc pas, contrairement à ce qu'on dit parfois, un des glorieux marins de l'amiral Ronarc'h. Il s'agit en fait de la copie conforme de l'un des nombreux personnages de la base du monument inauguré au Mans en 1885 à la mémoire de la deuxième armée de la Loire défaite à proximité de cette ville par les prussiens après deux journées de résistance en janvier 1871. Le créateur du marin est le sculpteur ardennais Aristide Croisy.
-A proximité du pont Firmin se dresse le monument des filles de la mer, du sculpteur François Bazin, datant de 1935; il représente, au pied d'un menhir de granit, une sénane et une ouessantine sculptées dans la même roche, abimées à l'origine dans la contemplation des flots océaniques, et maintenant dans celle de la circulation automobile locale.
-Dans le petit espace en bordure de la rue René-Madec, le long du Stéir redécouvert, a été inaugurée il y a peu d'années une stèle surmontée d'un buste en bronze du résistant Jean Moulin, qui avait occupé dans les années 1930 les fonctions de sous-préfet de Chateaulin. Force est de constater que ce monument n'a rien qui attire l'attention des passants. Il en est de même pour la stèle au général de Gaulle, qui prononça son dernier grand discours public lors de son voyage à Quimper en 1969.
* La ville a été récompensée par quatre fleurs Image:Ville fleurie.svgImage:Ville fleurie.svgImage:Ville fleurie.svgImage:Ville fleurie.svg et la distinction Grand prix au palmarès 2007 du concours des villes et villages fleuris
Source wikipedia
After I took yesterday's pic I kept on thinking about those pinwheels and there was something... something fluttering in my mind... and finally I got it! These Yoshizawa pinwheels can be the concave convex (depending on point of view) of Oschene's and vice versa... so I folded again Yoshizawa pinwheels, I folded Oschene's pinwheel which he published with four and five sides (wow beautiful as usual! Makes a great cloister vault why don't try a groin one? Just take the other part of the cylinder...)... I also tried a triangular one, with Oschene's method, to completly compare them... I'm sure Oschene already folded it but not published since it has to be said that stability it is quite an optional with regular paper.... I drawn the CP by hand (by mouse to be correct)... so it not precise but more or less works with a sine curve... and that's all.... I'm not sure this will lead to something... probably to nothing but I could satisfy my curiosity to see them compared :-)))
Have a great day!!!
Upper pinwheels by Akira Yoshizawa in ISBN 4-916096-31-2
Lower pinwheels, on the left Oschene's pinwheel can be found here... triangular Oschene's style pinwheel... same method of th previous but triangular paper....
Have a great day!
This is a Creative Commons image, one you may use freely; however, in using on your web site, you need to recognize the work of the photographer by linking back to this photo. I’m always appreciative of your views and comments. Thank you!
[This is a series of six photos] The Sidney F. Miller House in Lynchburg, Virginia is part of the Federal Hill Historic District. It’s a fine example of a smaller Second Empire house with 8 rooms and 3 baths (currently—Jan 12, 2012) on the market for $156,000. Built in 1876, it’s a 2-story brick home with basement and tower. Total—3126 square feet
The characteristic mansard roof shows the distinctive shingling of the times, the square central tower showing a convex roof pattern and the sections to either side of the tower displaying the convex pattern. Throughout, the shingling is in bands—from top to bottom: rectangular, diamond, rectangular, fish-scale, rectangular. Tile is used at the edges of the four sides. Cresting (decorative ironwork) tops the tower with a large finial shaped item the highest point of the structure (perhaps a lightning rod). The tower’s mansard roof is supported by alternating single and double brackets. Small hooded, circular dormers project from each of the four sides of the tower. The front façade is asymmetrical with a porch on the left and a bay window on the right. The porch is small with prominent brackets supporting the porch roof. Instead of railings, the sections between the posts are open with a decorative design. The front bay window is large but has slender brackets supporting its roof. A sequence of single bracketing is used on the side of the structure. The entry porch is the most elaborately decorated portion of the house, the double-door entrance capped by a concave transom, the swelling mimicked in the woodwork above it and then ornamental woodwork. To each side of the doors are slender half-columns with decorated capitals; and on the out side of the columns are posts, each with a decorative wood motif. The overhanging entry porch roof is prominent, braced by two large grooved, bracket-like elements. The Federal Hill Historic District was listed on the National Register of Historic Place September 17, 1980 with NRHP ID# 80004310
Image gallery of homes in the Federal Hill Historic District
www.lynchburg.net/federalhill/fed_pic1.htm
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License