View allAll Photos Tagged Computerized
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Seeking a domestic aircraft manufacturer, the Brazilian government made several investments in this area during the 1940s and '50s, but it was not until 1969 that Empresa Brasileira de Aeronáutica (EMBRAER) was created as a government-owned corporation. Born from a Brazilian government plan and having been state-run from the beginning, EMBRAER began a privatization process alongside many other state-controlled companies during the government of Fernando Henrique Cardoso. This privatization effort saw EMBRAER sold on December 7, 1994, and helped it avoid a looming bankruptcy.
The company's first product was a turboprop transport, the EMBRAER EMB 110 Bandeirante. In the course of years, both civil and military aircraft were developed, the focus shifted more and more to airliners, but the military work was never abandoned. The company continued to win government contracts, which included the EMB 314/T-27 Tucano trainer or the EMB 324/A-29 ground attack aircraft.
The EMB 320 was a bigger aircraft, though, and conceived in the early 2000s, when, with renewed economic stability, the Brazilian Air Force (Força Aérea Brasileira, FAB) underwent an extensive renewal of its inventory through several acquisition programs. The most ambitious of which was the acquisition of 36 new front-line interceptor aircraft to replace its aging Mirage III, known as the “F-X Project”.
In parallel, a supplement to the relatively new AMX fighter bomber (designated A-1 in Brazil) was needed, too, and this program ran under the handle “A-X Project”. While the F-X program was postponed several times until 2005, the A-X program made, thanks to its smaller budget needs, quick progress and resulted in the EMB 320 'Libélula' (Hornet), a dedicated ground attack, COIN and observation/FAC aircraft which would fill the gap between the AMX jets and various helicopters, e. g. the Mi-35M4 attack helicopter.
The EMB 320 was a straightforward design: a mid-wing two-turboprop-engined all-metal monoplane with retractable landing gear. Conceptually it was very similar to the Argentinian FMA IA-58 Pucara, but more sophisticated and with more compact dimensions. The aircraft was designed to operate from forward bases, in high temperature and humidity conditions in extremely rugged terrain. Repairs could be made with ordinary tools, and no ground equipment was required to start the engines.
The EMB 320 had a tandem cockpit arrangement; the crew of two were seated under an extensively glazed canopy on Martin-Baker Mk 6AP6A zero/zero ejection seats and were provided with dual controls. The pilot sat in front, while the rear seat would, if the mission called for it, be occupied by an observer, WSO or a flight teacher for training purposes. Armor plating was fitted to protect the crew and engines from hostile ground fire.
The retractable tricycle landing gear, with a double nose wheel and twin main wheels retracting into the engine nacelles, was fitted with low pressure tires to suit operations on rough ground and unprepared air strips, while the undercarriage legs were tall to give good clearance for underslung weapon loads. The undercarriage, flaps and brakes are operated hydraulically, with no pneumatic systems.
Through powerful high lift devices the EMB 320 could perform short takeoffs and landings, even on aircraft carriers and large deck amphibious assault ships without using catapults or arresting wires. Additionally, three JATO rockets could be fitted under the fuselage to allow extra-short take-off.
The aircraft was powered by a pair of Garrett T76-G turboprops, 1,040 hp (775.5 kW) each, driving sets of contra-rotating, three-bladed Hamilton-Standard propellers which were also capable of being used as air brakes. The engines were modified for operating on soy-derived bio-jet fuel. Alternatively the engines would operate on high-octane automobile fuel with only a slight loss of power, too.
Fuel was fed from two fuselage tanks of combined capacity of 800 l (180 imp gal; 210 US gal) and two self-sealing tanks of 460 l (100 imp gal; 120 US gal) in the wings.
The “Libélula”, quickly christened this way due to its slender fuselage, straight wings and the large cockpit glazing, was highly maneuverable at low altitude, had a low heat signature and incorporated 4th generation avionics and weapons system to deliver precision guided munitions at all weather conditions, day and night.
Armament consisted of two fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots and a total of nine external weapon hardpoints; these included a pair of launch rails at the wingtips for AIM-9 Sidewinder AAMs (or ECM pods), four underwing pylons outside of the propeller radius and three underfuselage hardpoints. Chaff/flare dispensers in the tail section provided passive safety. The EMB 320 could carry more than 3.5 tons of external munitions, and loiter for three or more hours.
Avionics included:
● MIL-STD-1553 standards
● NVG ANVIS-9 (Night Vision)
● CCIP / CCRP / CCIL / DTOS / LCOS / SSLC (Computerized Attack Modes)
● R&S{RT} M3AR VHF/UHF airborne transceiver (two-way encrypted Data Link provision)
● HUD / HOTAS
● HMD with UFCP(Up Front Control Panel)
● Laser INS with GPS Navigational System
● CMFD (Colored Multi-Function Display) liquid crystal active matrix
● Integrated Radio Communication and Navigation
● Video Camera/Recorder
● Automatic Pilot with embedded mission planning capability
● Stormscope WX-1000E (Airborne weather mapping system)
● Laser Range Finder
● WiPak Support – (Wi-Fi integration for Paveway bombs)
● Training and Operation Support System (TOSS)
The prototype made its maiden flight on 2nd of April 2000. In August 2001, the Brazilian Air Force awarded EMBRAER a contract for 52 A-27 Libélula aircraft with options for a further 23, acquired from a contract estimated to be worth around $320 USD millions. The first aircraft was delivered in December 2003. By September 2007, 50 aircraft had entered service. The 75th, and last, aircraft was delivered to the FAB in June 2012.
While the Libélula has not been used in foreign conflicts the aircraft already fired in anger: One of the main missions of the aircraft was and is border patrol under the SIVAM program, and this resulted in several incidents in which weapons were fired.
On 3 June 2009, two BAF A-27A Libélulas, guided by an EMBRAER E-99, intercepted a Cessna U206G engaged in drug trafficking activities. Inbound from Bolivia, the Cessna was intercepted in the region of Alta Floresta d'Oeste and, after exhausting all procedures, one of the Moscarsos fired a warning shot from its 30mm cannons, after which the aircraft followed the Libélulas to Cacoal airport.
This incident was the first use of powers granted under the Shoot-Down Act, which was enacted in October 2004 in order to legislate for the downing of illegal flights. A total of 176 kg of pure cocaine base paste, enough to produce almost a ton of cocaine, was discovered on board the Cessna; the aircraft's two occupants attempted a ground escape before being arrested by Federal Police in Pimenta Bueno.
On 5 August 2011, Brazil started “Operation Ágata”, part of a major "Frontiers Strategic Plan" launched by President Dilma Rousseff in June, with almost 30 continuous days of rigorous military activity in the region of Brazil’s border with Colombia. It mobilized 35 aircraft and more than 3,000 military personnel of the Brazilian Army, Brazilian Navy and Brazilian Air Force surveillance against drug trafficking, illegal mining and logging, and trafficking of wild animals.
A-29s of 1°/3º Aviation Group (GAv), Squadron Scorpion, as well as six A-27A’s from 4°/3° GAv launched a strike upon an illicit airstrip, deploying eight 230 kg (500 lb) computer-guided Mk 82 bombs to render the airstrip unusable.
Multiple EMB 320 were assigned for night operations, locating remote jungle airstrips used by drug smuggling gangs along the border, and were typically guarded by several E-99 aircraft. The Libélulas also located targets for the A-29 Super Tucanos, allowing them to bomb the airstrips with an extremely high level of accuracy, making use of night-vision systems and computer systems calculating the impact points of munitions.
General characteristics
Crew: 2
Length (w/o pitot): 41 ft 10 in (12.76 m)
Wingspan: 40 ft 9 1/2 in (12.45 m)
Height: 13 ft 6 2/3 in (4.14 m)
Wing area: 203.4 ft² (18.9 m²)
Empty weight: 8.920 lb (4.050 kg)
Max. take-off weight: 16.630 lb (7.550 kg)
Powerplant:
2× Garrett T76-G410/411 turboprops, 1,040 hp (775.5 kW) each
Performance:
Maximum speed: 307 mph (267 kn, 495 km/h)
Range: 1.860 mi (1.620 nmi, 3.000 km)
Service ceiling: 30.160 ft (9.150 m)
Rate of climb: 2.966 ft/min (15 m/s)
Armament:
2× fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots with 200 RPG
9× external hardpoints for an ordnance load of 8.000 lb (3.630 kg), including smart weapons (e. g. Paveway GBUs, AGM-65B,C or D Maverick, AGM-114 Hellfire), iron bombs, cluster bombs, napalm tanks, unguided rocket pods and AIM-9 Sidewinder AAMs as well as drop tanks.
The kit and its assembly:
This whif model is a remake of an idea I had/did many years ago from the remains of an Airfix OV-10D Bronco: converting it into a "normal" aircraft. While one could argue that this is not really exciting, I found this project pretty challenging as I wanted to make the result as plausible as possible, not just glue some leftover parts together (what I did years ago). And doing so turned a simple idea into major surgery and sculpting – or, how flickr fellow user Franclab called it, “it makes the Bronco look like the whif and the Libélula the real aircraft”.
The basis was a NiB OV-10A Bronco from Academy, a very good kit with a nice cockpit and lots or ordnance. Great value for the money. Design benchmark for what I had in mind was the FMA IA-58 Pucara, as it was designed for the exact same job as my EMB 320 - but details would differ.
The rear of the Bronco's central cabin was cut off and mated with the rear fuselage of a Matchbox Bf 110, which has a similar diameter - but the intersection between the square front of the Bronco and the oval Bf 110 fuselage was tricky (= requiring lots of putty work).
When these basic elements were fitted together, I finally decided to raise the spine. The mated fuselage parts would have had worked, but since the original high wings were missing, the EMB 320 would have had a distinctive and pointless hunchback - actually, with a rotor added, it could have become a helicopter, too!
Well, I went for the big solution, also in order to make the fuselage seam less obvious, and the whole upper rear fuselage was sculpted from 2C and NC putty. In the same process the tail was integrated into the fuselage. As a drawback, this shifted the kit's CG so far back that the lead load in the nose could not keep the front wheel down. Well, it's the price to pay for a better overall look.
The twin fins come from a 1:100 A-10, leftover from a Revell SnapFit kit, while the horizontal stabilizers were taken from the OV-10A, but had to be re-engraved in order to make the flap geometry plausible.
The wings were taken OOB and, relative to the Bronco, placed in a lower position, their original attachment point on top of the fuselage was faired over. The original plan had been to place them completely low, right where the OV-10's wing stubs would be located. But due to the engine nacelles under the wings I finally set them at mid height - otherwise, ground clearance and/or landing gear length had become a big issue - and the thing still looks stalky!
Moving the nacelles into a different (higher) wing position would have been an option, too, but that was IMHO too complicated. Since the EMD 320 would not have storage space behind the cockpit, a wing spar right through the fuselage would not be implausible. As a side effect I had to close the complete belly gap under the Bronco fuselage, again with 2C putty.
The Bronco’s tail booms were cut off and pointed end covers added, so that classic engine nacelles which also carry the main landing gear were created. The engine exhausts were relocated towards the nacelle’s end, and the propeller attachment modified, so that the propeller could turn freely on a metal axis and the overall look would be changed.
The cockpit tub was taken OOB, but armored seats from an Italeri AH-1 were used (with added headrests), as well as two crew figures, which come IIRC from a Hasegawa RA-5C Vigilante.
A new nose section with a sensor turret was built from scratch. It consists of parts from an AH-64 attack helicopter, mated with some styrene sheets for appropriate length. The shape was sculpted from massive material, and the result looks mean and menacing. The pitots were made from scratch, as well as the radar warning sensors on the hull.
The landing gear was improvised. The front strut actually belongs to a 1:200 Concorde(!) from Revell, the respective front wheels belong to an ESCI Ka-34 helicopter. For the main landing gear I used the struts from the Bronco kit, but the twin wheels are donations from the scrap box: these come from two Italeri Hawker Hawk kits.
The ordnance was puzzled together from the scrap box, too, as well as from Hasegawa Weapon sets. As the aircraft was supposed to have taken part in the real world “Operation Ágata”, I decided to add four light Paveway gliding bombs. Two Sidewinders and a pair of M260 rocket launchers (for seven 2.75"/70mm target marking missiles with phosphorous warheads) complete the full load.
The wing pylons come from two Italeri Tornados, those under the fuselage belong to a Matchbox Viggen and an Italeri Kfir.
As a final note: originally I wanted to call the aircraft “Moscardo” (= Hornet), but when it took shape its overall lines and potential agility made the dragonfly (Libélula in Portuguese) a much more appropriate namesake. So it goes... ^^
Painting and markings:
The reason why this turned out to be a Brazilian aircraft is the fact that I have been wanting to use the current FAB paint scheme for some time - it's basically made up from only two colors, FS 34092 (Dark Green) and FS 36176 (“F-15 Gray”, used on USAF F-15Es), paired with low-viz markings. Looks strange at first glance, like a poor man's Europe One/Lizard scheme, but over a typical rain forest scenery, low altitude and with hazy clouds around it is VERY effective, check the beauty pics which are based on BAF press releases. And it simply looks cool.
The pattern is based on current BAF F-5E fighters, the markings come from an FCM decal sheet and actually belong to a BAF Mirage 2000. 4º/3º GAv of the Brazilian Air Force is fictional, though, and some warning stencils were taken from the Academy kit.
The cockpit interior was painted in Dark Gull Gray (Humbrol 140), the landing gear wells in a yellow zinc chromate primer (Humbrol 225, Mid Stone) while the landing gear struts remained blank Aluminum, The outer wheel disks are white, while the inside is red - a detail I incorporated from some USN aircraft.
Painting was not spectacular - since the cockpit has a lot of glass to offer, I painted the windscreen with translucent light blue, and the observer on the rear seat received a similar sun blocker in deep blue. Translucent paint (yellow and black) was also used on the optical sensors at the nose turret as well as for position lights, all on a silver base.
The model was only slightly weathered thorough a black ink wash and some dry-brushing with Humbrol 140 and Testors 2076 (RLM 62) in order to emphasize panels - some panel lines were also painted onto the fuselage with thinned black ink, as the "new" rear body is devoid of any detail and difficult to engrave.
I was told, that in a couple of weeks the historic signal bridge will itself be history. In our computerized age there's no space for mechanical things anymore. The only regular freight train with 233 233 passed the bridge as I looked on today.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
Crawdad Network - First Chapter of Deming's Out of the Crisis
A CRA Network generated by Crawdad Text Analysis System 2.0. W. Edwards Deming was one of the key gurus of the quality movement in the 80s and 90s. Note the top triangle of "quality", "cost", and "productivity"... how "management" is linked to "good quality" not directly but through "production"... and the greater importance of "improvement" versus "control".
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Seeking a domestic aircraft manufacturer, the Brazilian government made several investments in this area during the 1940s and '50s, but it was not until 1969 that Empresa Brasileira de Aeronáutica (EMBRAER) was created as a government-owned corporation. Born from a Brazilian government plan and having been state-run from the beginning, EMBRAER began a privatization process alongside many other state-controlled companies during the government of Fernando Henrique Cardoso. This privatization effort saw EMBRAER sold on December 7, 1994, and helped it avoid a looming bankruptcy.
The company's first product was a turboprop transport, the EMBRAER EMB 110 Bandeirante. In the course of years, both civil and military aircraft were developed, the focus shifted more and more to airliners, but the military work was never abandoned. The company continued to win government contracts, which included the EMB 314/T-27 Tucano trainer or the EMB 324/A-29 ground attack aircraft.
The EMB 320 was a bigger aircraft, though, and conceived in the early 2000s, when, with renewed economic stability, the Brazilian Air Force (Força Aérea Brasileira, FAB) underwent an extensive renewal of its inventory through several acquisition programs. The most ambitious of which was the acquisition of 36 new front-line interceptor aircraft to replace its aging Mirage III, known as the “F-X Project”.
In parallel, a supplement to the relatively new AMX fighter bomber (designated A-1 in Brazil) was needed, too, and this program ran under the handle “A-X Project”. While the F-X program was postponed several times until 2005, the A-X program made, thanks to its smaller budget needs, quick progress and resulted in the EMB 320 'Libélula' (Hornet), a dedicated ground attack, COIN and observation/FAC aircraft which would fill the gap between the AMX jets and various helicopters, e. g. the Mi-35M4 attack helicopter.
The EMB 320 was a straightforward design: a mid-wing two-turboprop-engined all-metal monoplane with retractable landing gear. Conceptually it was very similar to the Argentinian FMA IA-58 Pucara, but more sophisticated and with more compact dimensions. The aircraft was designed to operate from forward bases, in high temperature and humidity conditions in extremely rugged terrain. Repairs could be made with ordinary tools, and no ground equipment was required to start the engines.
The EMB 320 had a tandem cockpit arrangement; the crew of two were seated under an extensively glazed canopy on Martin-Baker Mk 6AP6A zero/zero ejection seats and were provided with dual controls. The pilot sat in front, while the rear seat would, if the mission called for it, be occupied by an observer, WSO or a flight teacher for training purposes. Armor plating was fitted to protect the crew and engines from hostile ground fire.
The retractable tricycle landing gear, with a double nose wheel and twin main wheels retracting into the engine nacelles, was fitted with low pressure tires to suit operations on rough ground and unprepared air strips, while the undercarriage legs were tall to give good clearance for underslung weapon loads. The undercarriage, flaps and brakes are operated hydraulically, with no pneumatic systems.
Through powerful high lift devices the EMB 320 could perform short takeoffs and landings, even on aircraft carriers and large deck amphibious assault ships without using catapults or arresting wires. Additionally, three JATO rockets could be fitted under the fuselage to allow extra-short take-off.
The aircraft was powered by a pair of Garrett T76-G turboprops, 1,040 hp (775.5 kW) each, driving sets of contra-rotating, three-bladed Hamilton-Standard propellers which were also capable of being used as air brakes. The engines were modified for operating on soy-derived bio-jet fuel. Alternatively the engines would operate on high-octane automobile fuel with only a slight loss of power, too.
Fuel was fed from two fuselage tanks of combined capacity of 800 l (180 imp gal; 210 US gal) and two self-sealing tanks of 460 l (100 imp gal; 120 US gal) in the wings.
The “Libélula”, quickly christened this way due to its slender fuselage, straight wings and the large cockpit glazing, was highly maneuverable at low altitude, had a low heat signature and incorporated 4th generation avionics and weapons system to deliver precision guided munitions at all weather conditions, day and night.
Armament consisted of two fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots and a total of nine external weapon hardpoints; these included a pair of launch rails at the wingtips for AIM-9 Sidewinder AAMs (or ECM pods), four underwing pylons outside of the propeller radius and three underfuselage hardpoints. Chaff/flare dispensers in the tail section provided passive safety. The EMB 320 could carry more than 3.5 tons of external munitions, and loiter for three or more hours.
Avionics included:
● MIL-STD-1553 standards
● NVG ANVIS-9 (Night Vision)
● CCIP / CCRP / CCIL / DTOS / LCOS / SSLC (Computerized Attack Modes)
● R&S{RT} M3AR VHF/UHF airborne transceiver (two-way encrypted Data Link provision)
● HUD / HOTAS
● HMD with UFCP(Up Front Control Panel)
● Laser INS with GPS Navigational System
● CMFD (Colored Multi-Function Display) liquid crystal active matrix
● Integrated Radio Communication and Navigation
● Video Camera/Recorder
● Automatic Pilot with embedded mission planning capability
● Stormscope WX-1000E (Airborne weather mapping system)
● Laser Range Finder
● WiPak Support – (Wi-Fi integration for Paveway bombs)
● Training and Operation Support System (TOSS)
The prototype made its maiden flight on 2nd of April 2000. In August 2001, the Brazilian Air Force awarded EMBRAER a contract for 52 A-27 Libélula aircraft with options for a further 23, acquired from a contract estimated to be worth around $320 USD millions. The first aircraft was delivered in December 2003. By September 2007, 50 aircraft had entered service. The 75th, and last, aircraft was delivered to the FAB in June 2012.
While the Libélula has not been used in foreign conflicts the aircraft already fired in anger: One of the main missions of the aircraft was and is border patrol under the SIVAM program, and this resulted in several incidents in which weapons were fired.
On 3 June 2009, two BAF A-27A Libélulas, guided by an EMBRAER E-99, intercepted a Cessna U206G engaged in drug trafficking activities. Inbound from Bolivia, the Cessna was intercepted in the region of Alta Floresta d'Oeste and, after exhausting all procedures, one of the Moscarsos fired a warning shot from its 30mm cannons, after which the aircraft followed the Libélulas to Cacoal airport.
This incident was the first use of powers granted under the Shoot-Down Act, which was enacted in October 2004 in order to legislate for the downing of illegal flights. A total of 176 kg of pure cocaine base paste, enough to produce almost a ton of cocaine, was discovered on board the Cessna; the aircraft's two occupants attempted a ground escape before being arrested by Federal Police in Pimenta Bueno.
On 5 August 2011, Brazil started “Operation Ágata”, part of a major "Frontiers Strategic Plan" launched by President Dilma Rousseff in June, with almost 30 continuous days of rigorous military activity in the region of Brazil’s border with Colombia. It mobilized 35 aircraft and more than 3,000 military personnel of the Brazilian Army, Brazilian Navy and Brazilian Air Force surveillance against drug trafficking, illegal mining and logging, and trafficking of wild animals.
A-29s of 1°/3º Aviation Group (GAv), Squadron Scorpion, as well as six A-27A’s from 4°/3° GAv launched a strike upon an illicit airstrip, deploying eight 230 kg (500 lb) computer-guided Mk 82 bombs to render the airstrip unusable.
Multiple EMB 320 were assigned for night operations, locating remote jungle airstrips used by drug smuggling gangs along the border, and were typically guarded by several E-99 aircraft. The Libélulas also located targets for the A-29 Super Tucanos, allowing them to bomb the airstrips with an extremely high level of accuracy, making use of night-vision systems and computer systems calculating the impact points of munitions.
General characteristics
Crew: 2
Length (w/o pitot): 41 ft 10 in (12.76 m)
Wingspan: 40 ft 9 1/2 in (12.45 m)
Height: 13 ft 6 2/3 in (4.14 m)
Wing area: 203.4 ft² (18.9 m²)
Empty weight: 8.920 lb (4.050 kg)
Max. take-off weight: 16.630 lb (7.550 kg)
Powerplant:
2× Garrett T76-G410/411 turboprops, 1,040 hp (775.5 kW) each
Performance:
Maximum speed: 307 mph (267 kn, 495 km/h)
Range: 1.860 mi (1.620 nmi, 3.000 km)
Service ceiling: 30.160 ft (9.150 m)
Rate of climb: 2.966 ft/min (15 m/s)
Armament:
2× fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots with 200 RPG
9× external hardpoints for an ordnance load of 8.000 lb (3.630 kg), including smart weapons (e. g. Paveway GBUs, AGM-65B,C or D Maverick, AGM-114 Hellfire), iron bombs, cluster bombs, napalm tanks, unguided rocket pods and AIM-9 Sidewinder AAMs as well as drop tanks.
The kit and its assembly:
This whif model is a remake of an idea I had/did many years ago from the remains of an Airfix OV-10D Bronco: converting it into a "normal" aircraft. While one could argue that this is not really exciting, I found this project pretty challenging as I wanted to make the result as plausible as possible, not just glue some leftover parts together (what I did years ago). And doing so turned a simple idea into major surgery and sculpting – or, how flickr fellow user Franclab called it, “it makes the Bronco look like the whif and the Libélula the real aircraft”.
The basis was a NiB OV-10A Bronco from Academy, a very good kit with a nice cockpit and lots or ordnance. Great value for the money. Design benchmark for what I had in mind was the FMA IA-58 Pucara, as it was designed for the exact same job as my EMB 320 - but details would differ.
The rear of the Bronco's central cabin was cut off and mated with the rear fuselage of a Matchbox Bf 110, which has a similar diameter - but the intersection between the square front of the Bronco and the oval Bf 110 fuselage was tricky (= requiring lots of putty work).
When these basic elements were fitted together, I finally decided to raise the spine. The mated fuselage parts would have had worked, but since the original high wings were missing, the EMB 320 would have had a distinctive and pointless hunchback - actually, with a rotor added, it could have become a helicopter, too!
Well, I went for the big solution, also in order to make the fuselage seam less obvious, and the whole upper rear fuselage was sculpted from 2C and NC putty. In the same process the tail was integrated into the fuselage. As a drawback, this shifted the kit's CG so far back that the lead load in the nose could not keep the front wheel down. Well, it's the price to pay for a better overall look.
The twin fins come from a 1:100 A-10, leftover from a Revell SnapFit kit, while the horizontal stabilizers were taken from the OV-10A, but had to be re-engraved in order to make the flap geometry plausible.
The wings were taken OOB and, relative to the Bronco, placed in a lower position, their original attachment point on top of the fuselage was faired over. The original plan had been to place them completely low, right where the OV-10's wing stubs would be located. But due to the engine nacelles under the wings I finally set them at mid height - otherwise, ground clearance and/or landing gear length had become a big issue - and the thing still looks stalky!
Moving the nacelles into a different (higher) wing position would have been an option, too, but that was IMHO too complicated. Since the EMD 320 would not have storage space behind the cockpit, a wing spar right through the fuselage would not be implausible. As a side effect I had to close the complete belly gap under the Bronco fuselage, again with 2C putty.
The Bronco’s tail booms were cut off and pointed end covers added, so that classic engine nacelles which also carry the main landing gear were created. The engine exhausts were relocated towards the nacelle’s end, and the propeller attachment modified, so that the propeller could turn freely on a metal axis and the overall look would be changed.
The cockpit tub was taken OOB, but armored seats from an Italeri AH-1 were used (with added headrests), as well as two crew figures, which come IIRC from a Hasegawa RA-5C Vigilante.
A new nose section with a sensor turret was built from scratch. It consists of parts from an AH-64 attack helicopter, mated with some styrene sheets for appropriate length. The shape was sculpted from massive material, and the result looks mean and menacing. The pitots were made from scratch, as well as the radar warning sensors on the hull.
The landing gear was improvised. The front strut actually belongs to a 1:200 Concorde(!) from Revell, the respective front wheels belong to an ESCI Ka-34 helicopter. For the main landing gear I used the struts from the Bronco kit, but the twin wheels are donations from the scrap box: these come from two Italeri Hawker Hawk kits.
The ordnance was puzzled together from the scrap box, too, as well as from Hasegawa Weapon sets. As the aircraft was supposed to have taken part in the real world “Operation Ágata”, I decided to add four light Paveway gliding bombs. Two Sidewinders and a pair of M260 rocket launchers (for seven 2.75"/70mm target marking missiles with phosphorous warheads) complete the full load.
The wing pylons come from two Italeri Tornados, those under the fuselage belong to a Matchbox Viggen and an Italeri Kfir.
As a final note: originally I wanted to call the aircraft “Moscardo” (= Hornet), but when it took shape its overall lines and potential agility made the dragonfly (Libélula in Portuguese) a much more appropriate namesake. So it goes... ^^
Painting and markings:
The reason why this turned out to be a Brazilian aircraft is the fact that I have been wanting to use the current FAB paint scheme for some time - it's basically made up from only two colors, FS 34092 (Dark Green) and FS 36176 (“F-15 Gray”, used on USAF F-15Es), paired with low-viz markings. Looks strange at first glance, like a poor man's Europe One/Lizard scheme, but over a typical rain forest scenery, low altitude and with hazy clouds around it is VERY effective, check the beauty pics which are based on BAF press releases. And it simply looks cool.
The pattern is based on current BAF F-5E fighters, the markings come from an FCM decal sheet and actually belong to a BAF Mirage 2000. 4º/3º GAv of the Brazilian Air Force is fictional, though, and some warning stencils were taken from the Academy kit.
The cockpit interior was painted in Dark Gull Gray (Humbrol 140), the landing gear wells in a yellow zinc chromate primer (Humbrol 225, Mid Stone) while the landing gear struts remained blank Aluminum, The outer wheel disks are white, while the inside is red - a detail I incorporated from some USN aircraft.
Painting was not spectacular - since the cockpit has a lot of glass to offer, I painted the windscreen with translucent light blue, and the observer on the rear seat received a similar sun blocker in deep blue. Translucent paint (yellow and black) was also used on the optical sensors at the nose turret as well as for position lights, all on a silver base.
The model was only slightly weathered thorough a black ink wash and some dry-brushing with Humbrol 140 and Testors 2076 (RLM 62) in order to emphasize panels - some panel lines were also painted onto the fuselage with thinned black ink, as the "new" rear body is devoid of any detail and difficult to engrave.
East-German postcard by VEB Progress Filmvertrieb, Berlin, no. 2621, 1966. retail price: 0,20 MDN. Photo: publicity still for An Inspector Calls (Guy Hamilton, 1954) with Eileen Moore.
Yesterday, 8 May, director, actor and writer Bryan Forbes died. He was one of the leading figures of British post-war cinema. Among his best films are Whistle Down the Wind (1961) and The Whisperers (1967). His Hollywood films include the horror classic The Stepford Wives (1974). In later life he turned to the writing of books, both fiction and memoirs. Forbes was 86.
Bryan Forbes was born as John Theobald Clarke into a working-class home in West Ham, in east London in 1926. His cultural horizons were extended when he was evacuated during the second world war to the Truro home of Canon Gotto, a cultivated cleric with an enormous library and presence in local cultural life. Another mentor was the BBC radio producer Lionel Gamlin, who made him question master of the Junior Brains Trust. Though he got to the Royal Academy of Dramatic Art at 17, he thought he was seen as too short and too ‘working-class’ to play the bland upper-class juvenile leads then popular. He did not complete his studies, but started to play in repertory theatre. He had just taken over a part in Terence Rattigan's Flare Path when he was called up for second world war service, first in the Intelligence Corps and then the Combined Services Entertainment Unit. He finished military service in 1948, and continued acting. He was obliged to change his name by British Equity to avoid confusion with the adolescent actor John Clark and so he adopted Bryan Forbes as his stage name. He made his screen acting debut in the thriller The Small Back Room (Michael Powell, Emeric Pressburger, 1948) starring David Farrar. A published collection of short stories, Truth Lies Sleeping (1951), pointed to his promise as a writer, but his initial course was to continue acting, and take supporting film roles when possible. In the early 1950s, he went to Hollywood with Irish actress Constance Smith who was briefly his first wife. He languished there while she worked. It was not long before he returned to Britain and undertook the rewriting of scripts as well as acting. He appeared on the stage and played numerous supporting roles in British films including the romantic comedy The Million Pound Note (Ronald Neame, 1954) starring Gregory Peck, the mystery An Inspector Calls (Guy Hamilton, 1954) featuring Alastair Sim, and the war drama The Colditz Story (Guy Hamilton, 1955) alongside John Mills. He met his second wife, Nanette Newman, while playing a man being run over by a train. They got married in 1955. The turning point for him in cinema was the formation of the independent company Beaver Films with his friend Richard Attenborough in 1958. For the screenplay of their first production, The Angry Silence (Guy Green, 1960), Forbes received an Oscar nomination and a Bafta award. Craig Butler at AllMovie: “Controversial upon its release and still likely to cause a good bit of discussion, The Angry Silence is a small gem of a film. It's not a great film; it is at times a bit sloppy in its construction, it wears its heart on its sleeve at times when it should be focusing on dramatic intent, and there's more than a hint of manipulation to it. But there's also a real power to it”.
During the 1960s, Bryan Forbes wrote and/or directed a string of notable British productions. He both wrote and took the part of one of the disaffected officers turning to crime in The League of Gentlemen (Basil Dearden, 1960) starring Jack Hawkins. His directorial debut was with Whistle Down the Wind (Bryan Forbes, 1961), about children (Among who Hayley Mills) who mistake a convict on the run (Alan Bates) for Jesus. Hal Erickson at AllMovie: “Though the material, based on a novel by Mary Hayley Bell (Hayley Mills's mother) could have been mawkish and obvious in other hands, Forbes handles the situation and the characters realistically; even the blatant New Testament symbolism is logically incorporated into the proceedings.” Forbes took a novel by Lynne Reid Banks as the basis for the L-Shaped Room (Bryan Forbes, 1962) starring Leslie Caron, and one by Kingsley Amis for Only Two Can Play (Sidney Gilliat, 1962) with Peter Sellers. He provided both the screenplay for and directed Seance on a Wet Afternoon (Bryan Forbes, 1964), concerning the sinister abduction of a child by a psychic (Kim Stanley). In 1965 he went to Hollywood to make King Rat (Bryan Forbes, 1965), a thoughtful study of British and American soldiers in a Japanese prisoner of war camp that concentrated more on character than gung-ho antics. It was a critical success and did well commercially – except in America. He followed this with the comedy The Wrong Box (Bryan Forbes, 1966) with Ralph Richardson and John Mills, The Whisperers (Bryan Forbes, 1967), with Edith Evans as a lonely old woman, and the caper film Deadfall (Bryan Forbes, 1968) starring Michael Caine. In 1969 Forbes accepted the offer of the impresario Bernard Delfont, then with EMI, to run Elstree Film Studios, which the company had taken over. This amounted virtually to an attempt to revive the ailing British film industry by instituting a traditional studio system with a whole ‘slate’ of films in play. However, some EMI executives raised difficulties over Forbes both heading the studio and directing his own film, The Raging Moon (Bryan Forbes, 1971), starring his wife Nanette Newman as a woman paralysed from the waist down finding love with Malcolm McDowell. One success of the venture was the production of The Railway Children (Lionel Jeffries, 1970), but most of the announced films were never made. Forbes, who had a three-year contract, left after two years.
During the 1970s, Bryan Forbes directed four more feature films. For The Stepford Wives (Bryan Forbes, 1974), William Goldman provided a screenplay from the surreal novel by Ira Levin. Nanette Newman played the figure who became the computerized fantasy of boorish men in a small American town. The Stepford Wives became a massive, runaway hit, earning four million dollars domestically. His next film, The Slipper and the Rose (Bryan Forbes, 1976) was a version of the Cinderella story. International Velvet (Bryan Forbes, 1978) was intended as a continuation of National Velvet (1944), starring Tatum O'Neal and with Nanette Newman in the same role as Elizabeth Taylor in the earlier film. In The Naked Face (Bryan Forbes, 1984), Roger Moore played a psychiatrist who gets caught up with the Chicago mafia. The latter three were unsuccessful, and The Naked Face was Forbes’ final film direction. His last film as an actor was the crime comedy Restless Natives (Michael Hoffman, 1985). His last screenwriting credit came with Attenborough's Chaplin (Richard Attenborough, 1992). When he returned to producing books, it was with wry fiction about the tribulations suffered by the creative spirit in showbiz, The Distant Laughter (1972) and The Rewrite Man (1983). Ned's Girl (1977) was a biography of Evans, and That Despicable Race (1980) concerned actors as a breed. Later novels were mostly about spies, though sometimes embraced comedy, as with Partly Cloudy (1995), about domestic disasters brought about by the clash of the generations during one traumatic weekend. Forbes was a founder of the Writers' Guild of Great Britain; with Attenborough he helped form Capital Radio, the London station launched in 1973; and he served as president of the National Youth Theatre. He was to write with incomparable irony about the bizarre workings of the film industry, as in his two volumes of autobiography, Notes for a Life (1974) and A Divided Life (1992). In 2004 he was made CBE for his services to the arts and the National Youth Theatre of Great Britain. Bryan Forbes was diagnosed with multiple sclerosis in 1975 but doctors later admitted the diagnosis was wrong. Following a long illness, Forbes died at his home in Virginia Water on 8 May 2013 at the age of 86. He is survived by his wife Nanette Newman and their two daughters, TV presenter Emma Forbes and journalist Sarah Standing.
Sources: Dennis Barker (The Guardian), Sanchez Manning (The Independent), Craig Butler (AllMovie), Hal Erickson (AllMovie), BBC, Wikipedia and IMDb.
Part of the BMT elevated structure from Broadway Junction (with 4 tracks) carries part of the Atlantic Avenue Station while jogging over a block to rest atop a freight line that has just emerged from a tunnel through the Terminal Moraine. The other 2 tracks were a block to the left -- these have been completely demolished recently. Other than the 2 tracks used by the Canarsie Line, the structure had not been used since the last segment of the Fulton Street Elevated closed in 1956.
This has not always been a "happy" neighborhood. The headquarters of "Murder Incorporated" were near here in Brownsville (to the right) and the movie "Goodfellas" was set in the East New York area (to the left). Even in the 1970s, it was not a good idea to wander into this neighborhood, either on foot or in a vehicle. After many years, still have far too many "up close and personal" memories of the area.
In the last 2 decades or so the surrounding area has largely recovered and is no longer a dangerous slum
"There are places I remember
All my life, though some have changed
Some forever not for better
Some have gone and some remain
All these places had their moments
With lovers and friends
I still can recall
Some are dead and some are living
In my life I've loved them all"
"in My Life" - the Beatles
Note: despite the "antique" apperance the 14th Street / Canarsie Line was the first to be updated to CTC (computerized train control). Several formerly "depressed" neighborhoods along the line are again considered "desirable" and passenger traffic has drastically increased in recent years.
Until 1924 there was a passenger station just inside the tunnel portal (out of view) at the right. A stairway led down from Atlantic Avenue.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
Staff Sgt. Emiliano Canales, 62nd Aircraft Maintenance Unit crew chief, marshals a Lockheed Martin F-35A Lightning II "Joint Strike Fighter" (sn 13-5068) (MSN AF-74) after landing Jan. 24, 2017, at Luke Air Force Base, Ariz. The 62nd AMU is integrating Airmen from the 61st AMU with Lockheed Martin maintenance personnel.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system.
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
packer blade is on top, and it rests on the partially retracted ejector blade. the two work in tandem to eject, in a computerized extend/retract sequence that keeps material from falling behind the blades. this can only be found on Amrep "Automated" units, aka ASLs.
“A computerized rendering illustrating the field of view for the Astronauts on the approach to the landing site for the NASA Apollo 17 Lunar mission.”
Cutting edge late-1972 visual graphics technology on display! The crater shadows do however look like they're by hand. 😉
Actually, the depiction, especially that of the elevated regions, is remarkably detailed and accurate when compared to mission photographs.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
61st Aircraft Maintenance Unit maintainers inspects an Lockheed Martin F-35A Lightning II "Joint Strike Fighter" (sn 11-5037) (MSN AF-48) prior to its taxi-out and takeoff July 18, 2018, at Luke Air Force Base, Ariz. Pilots and maintainers perform thorough pre-flight checks before each sortie.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system.
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.
The initial production model, the F-94A, entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 radar, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.
The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. Its Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a roomier cockpit and the canopy received a bow frame in the center between the two crew members. A new Instrument Landing System (ILS) was fitted, too, which made operations at night and/or in bad weather much safer. However, this new variant’s punch with just four machine guns remained weak, and, to improve the load of fire, wing-mounted pods with two additional pairs of 0.5” machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were nevertheless built.
The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm since aircraft technology had already developed at a fast pace – supersonic performance had already become standard. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48. This was a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the proposed new variant was exclusively armed with unguided air-to-air missiles.
Tests were positive and eventually the F-94C was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time. It still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft, though.
The F-94C's introduction and the availability of the more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and to Air National Guards. By 1955 most of them had already been phased out of USAF service, and some of these relatively young surplus machines were subsequently exported or handed over to friendly nations, too. When sent to the ANG, the F-94As were modified by Lockheed to F-94B standards and then returned to the ANG as B models. They primarily replaced outdated F-80C Shooting Stars and F-51D/H Mustangs.
At that time the USAF was looking for a tactical reconnaissance aircraft, a more effective successor for the RF-80A which had shown its worth and weaknesses during the Korea War. For instance, the plane could not fly at low altitude long enough to perform suitable visual reconnaissance, and its camera equipment was still based on WWII standards. Lockheed saw the opportunity to fill this operational gap with conversions of existing F-94A/B airframes, which had, in most cases, only had clocked few flying hours, primarily at high altitudes where Soviet bombers were expected to lurk, and still a lot of airframe life to offer. This led to another private venture, the RF-94B, auspiciously christened “Stargazer”.
The RF-94B was based on the F-94B interceptor with its J33 engine and the original unswept tail. The F-94B’s wings were retained but received a different leading-edge profile to better cope with operations at low altitude. The interceptor’s nose with the radome and the machine guns underneath was replaced by a new all-metal nose cone, which was more than 3 feet longer than the former radar nose, with windows for several sets of cameras; the wedge-shaped nose cone quickly earned the aircraft the unofficial nickname “Crocodile”.
One camera was looking ahead into flight direction and could be mounted at different angled downward (but not moved during flight), followed by two oblique cameras, looking to the left and the right, and a vertical camera as well as a long-range camera focussed on the horizon, which was behind a round window at port side. An additional, spacious compartment in front of the landing gear well held an innovative Tri-Metrogen horizon-to-horizon view system that consisted of three synchronized cameras. Coupled with a computerized control system based on light, speed, and altitude, it adjusted camera settings to produce pictures with greater delineation.
All cameras could be triggered individually by pilot or a dedicated observer/camera systems operator in the 2nd seat. Talking into a wire recorder, the crew could describe ground movements that might not have appeared in still pictures. A vertical view finder with a periscopic presentation on the cockpit panel was added for the pilot to enhance visual reconnaissance and target identification directly under the aircraft. Using magnesium flares carried under its wings in flash-ejector cartridges, the RF-94B was furthermore able to fly night missions.
The RF-94B was supposed to operate unarmed, but it could still carry a pair of 1.000 lb bombs under its wings or, thanks to added plumbings, an extra pair of drop tanks for ferry flights. The F-94A/B’s machine gun pods as well as the F-94C’s unguided missile launchers could be mounted to the wings, too, making it a viable attack aircraft in a secondary role.
The USAF was highly interested in this update proposal for the outdated interceptors (almost 500 F-94A/Bs had been built) and ordered 100 RF-94B conversions with an option for 100 more – just when a severe (and superior) competitor entered the stage after a lot of development troubles: Republic’s RF-84F Thunderflash reconnaissance version. The first YRF-84F had already been completed in February 1952 and it had an overall slightly better performance than the RF-94B. However, it offered more internal space for reconnaissance systems and was able to carry up to fifteen cameras with the support of many automatized systems, so that it was a single seater. Being largely identical to the F-84F and sharing its technical and logistical infrastructures, the USAF decided on short notice to change its procurement decision and rather adopt the more modern and promising Thunderflash as its standard tactical reconnaissance aircraft. The RF-94B conversion order was reduced to the initial 100 aircraft, and to avoid operational complexity these aircraft were exclusively delivered to Air National Guardss that had experience with the F-94A/B to replace their obsolete RF-80As.
Gradual replacement lasted until 1958, and while the RF-94B’s performance was overall better than the RF-80A’s, it was still disappointing and not the expected tactical intelligence gathering leap forward. The airframe did not cope well with constant low-level operations, and the aircraft’s marginal speed and handling did not ensure its survivability. However, unlike the RF-84F, which suffered from frequent engine problems, the Stargazers’ J33 made them highly reliable platforms – even though the complex Tri-Metrogen device turned out to be capricious, so that it was soon replaced with up to three standard cameras.
For better handling and less drag esp. at low altitude, the F-94B’s large Fletcher type wingtip tanks were frequently replaced with smaller ones with about half capacity. It also became common practice to operate the RF-94Bs with only a crew of one, and from 1960 on the RF-94B was, thanks to its second seat, more and more used as a trainer before pilots mounted more potent reconnaissance aircraft like the RF-101 Voodoo, which eventually replaced the RF-94B in ANG service. The last RF-94B was phased out in 1968, and, unlike the RF-84F, it was not operated by any foreign air force.
General characteristics:
Crew: 2 (but frequently operated by a single pilot)
Length: 43 ft 4 3/4 in (13.25 m)
Wingspan (with tip tanks): 40 ft 9 1/2 in (12.45 m)
Height: 12 ft. 2 (3.73 m)
Wing area: 234' 8" sq ft (29.11 m²)
Empty weight: 10,064 lb (4,570 kg)
Loaded weight: 15,330 lb (6,960 kg)
Max. takeoff weight: 24,184 lb (10,970 kg)
Powerplant:
1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust,
5,400 lbf (24 kN) with water injection and 6,000 lbf (26.6 kN) thrust with afterburner
Performance:
Maximum speed: 630 mph (1,014 km/h) at height and in level flight
Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks
Ferry range: 1,457 mi (1,275 nmi, 2,345 km)
Service ceiling: 42,750 ft (14,000 m)
Rate of climb: 6,858 ft/min (34.9 m/s)
Wing loading: 57.4 lb/ft² (384 kg/m²)
Thrust/weight: 0.48
Armament:
No internal guns; 2x 165 US Gallon (1,204 liter) drop tanks on the wing tips and…
2x underwing hardpoints for two additional 165 US Gallon (1,204 liter) ferry tanks
or bombs of up to 1.000 lb (454 kg) caliber each, plus…
2x optional (rarely fitted) pods on the wings’ leading edges with either a pair of 0.5" (12.7 mm)
machine guns or twelve 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets each
The kit and its assembly:
This project was originally earmarked as a submission for the 2021 “Reconnaissance & Surveillance” group build at whatifmodellers.com, in the form of a Heller F-94B with a new nose section. The inspiration behind this build was the real-world EF-94C (s/n 50-963): a solitary conversion with a bulbous camera nose. However, the EF-94C was not a reconnaissance aircraft but rather a chase plane/camera ship for the Air Research and Development Command, hence its unusual designation with the suffix “E”, standing for “Exempt” instead of the more appropriate “R” for a dedicated recce aircraft. There also was another EF-94C, but this was a totally different kind of aircraft: an ejection seat testbed.
I had a surplus Heller F-94B kit in The Stash™ and it was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit.
The biggest change was the new camera nose, and it was scratched from an unlikely donor part: it consists of a Matchbox B-17G tail gunner station, slimmed down by the gunner station glazing's width at the seam in the middle, and this "sandwich" was furthermore turned upside down. Getting the transitional sections right took lots of PSR, though, and I added some styrene profiles to integrate the new nose into the rest of the hull. It was unintentional, but the new nose profile reminds a lot of a RF-101 recce Voodoo, and there's, with the straight wings, a very F-89ish look to the aircraft now? There's also something F2H-2ish about the outlines?
The large original wing tip tanks were cut off and replaced with smaller alternatives from a Hasegawa A-37. Because it was easy to realize on this kit I lowered the flaps, together with open ventral air brakes. The cockpit was taken OOB, I just modified the work station on the rear seat and replaced the rubber sight protector for the WSO with two screens for a camera operator. Finally, the one-piece cockpit glazing was cut into two parts to present the model with an open canopy.
Painting and markings:
This was a tough decision: either an NMF finish (the natural first choice), an overall light grey anti-corrosive coat of paint, both with relatively colorful unit markings, or camouflage. The USAF’s earlier RF-80As carried a unique scheme in olive drab/neutral grey with a medium waterline, but that would look rather vintage on the F-94. I decided that some tactical camouflage would make most sense on this kind of aircraft and eventually settled for the USAF’s SEA scheme with reduced tactical markings, which – after some field tests and improvisations in Vietnam – became standardized and was officially introduced to USAF aircraft around 1965 as well as to ANG units.
Even though I had already built a camouflaged F-94 some time ago (a Hellenic aircraft in worn SEA colors), I settled for this route. The basic colors (FS 30219, 34227, 34279 and 36622) all came from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the paint scheme of the USAF’s probably only T-33 in SEA colors: a trainer based on Iceland during the Seventies and available as a markings option in one of the Special Hobby 1:32 T-33 kits. The low waterline received a wavy shape, inspired by an early ANG RF-101 in SEA camouflage I came across in a book. The new SEA scheme was apparently applied with a lot of enthusiasm and properness when it was brand new, but this quickly vaned. As an extra, the wing tip tanks received black anti-glare sections on their inner faces and a black anti-glare panel was added in front of the windscreen - a decal from a T-33 aftermarket sheet. Beyond a black ink wash the model received some subtle panel post-shading, but rather to emphasize surface details than for serious weathering.
The cockpit became very dark grey (Revell 06) while the landing gear wells were kept in zinc chromate green primer (Humbrol 80, Grass Green), with bright red (Humbrol 60, Matt Red) cover interiors and struts and wheels in aluminum (Humbrol 56). The interior of the flaps and the ventral air brakes became red, too.
The decals/markings came from a Special Hobby 1:72 F-86H; there’s a dedicated ANG boxing of the kit that comes with an optional camouflaged aircraft of the NY ANG, the least unit to operate the “Sabre Hog” during the Seventies. Since this 138th TFS formerly operated the F-94A/B, it was a perfect option for the RF-94B! I just used a different Bu. No. code on the fin, taken from a PrintScale A/T-37 set, and most stencils were perocured from the scrap box.
After a final light treatment with graphite around the afterburner for a more metallic shine of the iron metallic (Revell 97) underneath, the kit was sealed with a coat of matt acrylic varnish (Italeri).
A camouflaged F-94 is an unusual sight, but it works very well. The new/longer nose considerably changes the aircraft's profile, and even though the change is massive, the "Crocodile" looks surprisingly plausible, if not believable! And, despite the long nose, the aircraft looks pretty sleek, especially in the air.
Capt. Andrew “Dojo” Olson, Lockheed Martin F-35A Lightning II "Joint Strike Fighter" 'Demonstration Team' pilot and commander steps to an Lockheed Martin F-35A Lightning II "Joint Strike Fighter" before flying the team’s final certification flight during the Heritage Flight Training Course March 2, 2019, at Davis-Monthan Air Force Base, Ariz. Following a pre-flight brief and walkthrough of the full demonstration, Olson is ready to fly.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system.
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
packer blade is on top, and it rests on the partially retracted ejector blade. the two work in tandem to eject, in a computerized extend/retract sequence that keeps material from falling behind either blade. this can only be found on Amrep "Automated" units, aka ASLs.
If you can read the computerized notes on the last one, you will have a record of my day. My favorites are the colored ones, of course, but i did feel that I was painting more loosely on them and didn't get so picky....with details. By the last one, it was past 2 and I was worn out for the day!
I saw this picture that Rankin had done and he used these white balls. His is a lot better and a bit different. His was very stark white, so I put my own twist on it.
First day of classes went well, I'm not quite as nervous as I was. The teacher really made me feel more comfortable about learning to stick people with needles, lol. More classes tomorrow, Pharmacology and and Computerized Medical Office class. Sounds fun...lol
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
Ya'll know I don't do copyrighted characters except for when it's for family. I had to go 80's retro with the Optimus design -- the new computerized versions are NOT cake friendly! LOL
NS 5300 (built 2/1973) basks in the sun while sitting outside of Hershey's mainly computerized chocolate factory in Hershey, PA.
Original Caption: Fireman, left, and engineer in the cab of the Empire Builder passenger train as it heads west from Chicago to East Glacier Park Montana, and Seattle, Washington. Amtrak, since it assumed responsibility for most U.S. intercity rail passenger service in 1971 has been working to improve facilities and attract riders by using methods employed by the airlines such as computerized reservations, June 1974
U.S. National Archives’ Local Identifier: 412-DA-13634
Photographer: O'Rear, Charles, 1941-
Subjects:
Chicago (Illinois)
Environmental Protection Agency
Project DOCUMERICA
Persistent URL: research.archives.gov/description/556086
Repository: Still Picture Records Section, Special Media Archives Services Division (NWCS-S), National Archives at College Park, 8601 Adelphi Road, College Park, MD, 20740-6001.
For information about ordering reproductions of photographs held by the Still Picture Unit, visit: www.archives.gov/research/order/still-pictures.html
Reproductions may be ordered via an independent vendor. NARA maintains a list of vendors at www.archives.gov/research/order/vendors-photos-maps-dc.html
Access Restrictions: Unrestricted
Use Restrictions: Unrestricted
packer blade is on top, and it rests on the partially retracted ejector blade. the two work in tandem to eject, in a computerized extend/retract sequence that keeps material from falling behind the blades. this can only be found on Amrep "Automated" units, aka ASLs.
neat perspective; here you can see cylinders for each of the blades in Amrep's patented dual-blade design. packer blade is on top, and it rests on the partially retracted ejector blade. the two work in tandem to eject, in a computerized extend/retract sequence that keeps material from falling behind either blade. this can only be found on Amrep "Automated" units, aka ASLs.
2009 diesel hydraulic (biodiesel)
Marshfield Station, NH
Powered by a 600hp John Deere marine engine governed by a computerized operating system. Hydraulic pressure delivers a maximum of 30,000 ft-lbs. of torque to each of two drive cogs beneath the locomotive, pulling the train up the mountain. A redundant air brake system ensures positive braking and parking when needed, but in normal operations, hydraulic pressure is also used to bring the train back down to Marshfield Station.
The Cog also has 8 wooden coaches on its roster, No. 1 is shown here.
This 1928 Detroit neighborhood house was built to resemble a Japanese outdoor garden theater. The theater was opened by the Kunsky chain, and purchased by the Goldberg family in 1931 as part of their Community Theaters circuit.
The Motor City chapter of the American Theatre Organ Society took over operation of the Redford in 1974,and purchased the building in 1977. Since that time the all volunteer staff has run it as a classic films/rental/stage show/organ concert venue. Much of the original Japanese decor was altered in past decades, and the MCTOS have been working for many years to re-create what was lost.
Recently the theater has a new computerized light board and new historically accurate seats. Restoration is continuing as funds and time permit. The classic film series shows a different film every other weekend.
-- CinemaTreasures.org
Note: this photo was published in a June 1, 2010 Technologeek blog, with the same title as the caption that I used on this Flickr page. It was also published in an Aug 19, 2010 blog titled "21 Tips to Get You from Here to There Safely." And it was published in a Nov 3, 2010 blog titled "Virtual Experiences Help Brands Win Friends, Influence People."
Moving into 2011, the photo was published in a Jan 26, 2011 blog Cool Cheap Old Used Computer Part images, with the same title and detailed notes that I had written on this Flickr page. It was also published in an Oct 5, 2011 blog titled Tolle Computerized Bilder as well as a Jan 15, 2012 blog posting with the same title, both with the same caption and detailed notes that I had written on this Flickr page.
Moving into 2012, the photo was published in a May 25, 2012 blog titled "s 携帯電話を操作していたら噴水に転落!その危険はARメガネにも ⇒ 歩行中の携帯電話利用のマナー見直しを."
***************************************
Looking back on some old photos from 40-50 years ago, I was struck by how visible the differences were between the culture of then, versus the culture of now. In some cases, it was evident from the things people wore, or carried, or did, back then which they no longer do today. But sometimes it was the opposite: things that didn't exist back in the 1960s and 1970s have become a pervasive part of today's culture.
A good example is the cellphone: 20 years ago, it simply didn't exist. Even ten years ago, it was a relatively uncommon sight, and usually only on major streets of big cities. Today, of course, cell phones are everywhere, and everyone is using them in a variety of culture contexts.
However, I don't think this is a permanent phenomenon; after all, if you think back to the early 1980s, you probably would have seen a lot of people carrying Sony Walkmans, or "boom-box" portable radios -- all of which have disappeared...
If Moore's Law (which basically says that computers double in power every 18 months) holds up for another decade, then we'll have computerized gadgets approximately 100 times smaller, faster, cheaper, and better -- which means far better integration of music, camera, messaging, and phone, but also the possibility of the devices being so tiny that they're embedded into our eyeglasses, our earrings, or a tattoo on our forehead.
So the point of this album is to provide a frame of reference -- so that we can (hopefully) look back 10-20 years from now, and say, "Wasn't it really weird that we behaved in such bizarre ways while we interacted with those primitive devices?"
BF-4 Flt 509 Maj Michael Lippert and BF-5 Flt 371 Cdr Nathan Gray Test aboard HMS Queen Elizabeth on 28 Sep 2018
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".
The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.
But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.
Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.
Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.
Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.
The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.
The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.
The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.
AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.
Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.
The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.
Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.
Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.
While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.
USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.
The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.
Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.
International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.
General F-24A characteristics:
Crew: 1 pilot
Length: 47 ft 4 in (14.4 m)
Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)
Height: 13 ft 10 in (4.20 m)
Wing area: 36.55 m² (392 ft²)
Empty weight: 13.150 lb (5.090 kg)
Loaded weight: 15.480 lb (6.830 kg)
Max. take-off weight: 27.530 lb (12.500 kg)
Powerplant:
1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner
Performance
Maximum speed: Mach 2+
Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks
Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks
Service ceiling: 55,000 ft (16,800 m)
Rate of climb: 52,800 ft/min (255 m/s)
Wing loading: 70.0 lb/ft² (342 kg/m²)
Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)
Armament
1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG
Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.
The kit and its assembly:
A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.
As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.
I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.
Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):
● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear
● Fin and nose cone from an Italeri F-16A
● Inner wings from a (vintage) Hasegawa MiG-21F
● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)
The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.
The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?
Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.
The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.
For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.
All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.
Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.
The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.
Painting and markings:
At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.
A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).
“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.
The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.
Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.
Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.
Quite possibly the most famous airline in history, Pan American Airways—also known as Pan American World Airways, PAA or simply Pan Am—had its beginnings in geopolitics. A German owned airline in Colombia had expressed interest in flying to Panama in 1926, raising the specter of a German threat to the Panama Canal. At the time, German financed and owned airlines dominated South America’s airlines, and the United States wanted to change that. In June 1927, Juan Trippe, who already had built small airlines in the Northeast, formed the Aviation Corporation of the Americas, with significant backing from New York businessmen and the US government. ACA bought a small Key West, Florida-based airline that operated a Fairchild FC-2 floatplane, and this was reorganized as Pan American Airways—reflecting Trippe’s vision of a hemisphere-spanning airline. It flew its first air mail flight in October of that year to Havana, Cuba.
Trippe then set out to make his dream come true. Passenger service was added between Key West and Havana using land aircraft, and then Pan American began to steadily move south. Several South American airlines were bought out or set up by Pan American, Trippe taking advantage of Charles Lindbergh’s popularity by using the famous aviator to promote the airline. Worried that the US government’s enthusiastic backing of Trippe could lead to Pan American gaining a monopoly of domestic routes, the smaller domestic airlines of the United States secured an agreement that Pan American would limit itself only to international services—an agreement that would come back to haunt Pan American many decades later.
Trippe was not overly concerned, as his airline gained de facto control of international routes to the United States. Pan American did operate some land-based aircraft, but its most popular aircraft at the time were its huge seaplanes, aircraft like the Sikorsky S-38 series and eventually the mammoth Boeing 314. Trippe demanded and got highly trained and experienced crews from pilots to mechanics, further building Pan American’s reputation. Nor did he concentrate solely on Latin America: by 1939, Pan American had built an extensive Pacific route network with its flying boats, and was beginning transatlantic service.
World War II was a watershed for Pan American. The outbreak of war in the Pacific after the Japanese attack on Pearl Harbor in December 1941 caught several Clippers in the air; these then had to turn around and fly back to the United States via Africa, and several dozen Pan American employees at Guam and Wake Island were captured by the Japanese. Pan American’s seaplanes were nationalized, and its Boeing 314s were used as executive transports, including by President Franklin Roosevelt—the unofficial beginning of “Air Force One.” Pan American crews continued to fly these routes under military control, gaining extensive experience in long-distance travel that would serve it well once the war ended.
When the shooting finally ended in 1945, Trippe did not waste a moment. He retired the surviving seaplanes, guessing correctly that the day of the flying boat was over. The real money was to be made in flying land-based aircraft across the Atlantic to London, and the race was on between British airline companies, Pan American, and Trippe’s biggest rival, Trans-World Airlines, owned by the mercurial Howard Hughes. Though Hughes had a head start, having financed Lockheed to built the pressurized, long-range L-749 Constellation, Trippe undercut him by ordering the same aircraft and getting them into service faster. Trippe also cultivated links with Douglas aircraft, which provided DC-4s and DC-6s to Pan American for its South American routes, slicing travel times in half. To deal with a threat from Northwest Airlines, which had inaugurated an Alaska route to Asia, Trippe partnered with Boeing again to produce the Boeing 377 Stratocruiser. Though the 377 was slower than Northwest’s DC-6s and its transpacific route from Hawaii to the Philippines longer, the Stratocruiser was far more luxurious, with a lounge and sleeping compartments that were reminiscent of the Boeing 314 Clippers. Trippe topped out Pan American’s postwar expansion by inaugurating the first scheduled around-the-world flights for an American carrier in 1947. When the airline became officially known as Pan American World Airways in 1950, it was merely acknowledging a fact.
Trippe was not alone in reacting in alarm to BOAC’s launch of the first scheduled jet airliner service with deHavilland Comet 1s; once more, a partnership was reached with Boeing, making Pan American the launch customer for the Boeing 707. BOAC had beaten the Americans across the Atlantic with jets, but after the Comet was grounded due to two catastrophic crashes caused by design flaws, Pan American, for all intents and purposes, owned the transatlantic market with its combination of 707s and DC-8s. Before finally retiring from Pan American in 1968, Trippe made one last, huge contribution to air travel: he made his airline the launch customer for the first wide-body airliner, the Boeing 747. The 747 was Boeing’s failed contribution to a very heavy transport for the US Air Force, but Trippe saw potential in tripling the passenger payload of the 707. Moreover, the 747’s “hump”—built so the cockpit would sit above the passenger compartment to allow for more seating—allowed Pan American to reintroduce the lounge to its flights. The 747 joined Pan American in 1970.
Trippe’s retirement presaged the decline of Pan American. While the 747 was truly revolutionary, it would be some time before its potential was realized: in 1970, air travel was still seen as more of a luxurious adventure than a routine method of travel. Trippe invested a great deal into the 747, and Pan American would lose money on it until a decade after its first revenue flight. That aside, it certainly did not seem that Pan American was in any sort of trouble: besides the airline itself—the world’s largest by route network—the company owned interests in several dozen airlines around the world and a hotel chain; it pioneered computerized reservation services; it enjoyed a near-monopoly on flights between West Berlin and West Germany, thanks to postwar agreements that prevented West Germany’s flag carrier Lufthansa from flying to Berlin; and it was favored by the US government itself. In many ways, Pan American was the United States’ flag carrier airline, and was treated as such.
Nonetheless, by 1980 Pan American was starting to show cracks in its empire. Pan American’s biggest weakness was the fact that it lacked a domestic route network, and was barred from doing so by the agreements made in the 1930s. Pan American could not even fly dedicated transcontinental routes between New York and Los Angeles. The airline saw an opportunity in deregulation to change this, buying out National Airlines in 1980 and gaining control of its extensive routes across the United States; it would also subcontract with several small airlines on the East Coast to provide Pan Am Express services, and attempted to compete with Eastern on the very profitable New York-Washington shuttle service. This came at a price, however: Pan American was now operating nearly every American jet airliner design, with a corresponding increase in maintenance and fuel costs.
The airline’s new CEOs—which underwent heavy turnover in the 1980s—did recognize the problem and consolidated where it could, restructuring the airline; the 747s, which had nearly driven Pan American into bankruptcy in the mid-1970s, were now making the profits Trippe had dreamed of. To replace its older 707s and National’s DC-10s, Pan American turned to Airbus, ordering large numbers of A300s and A310s. Further cuts in the fleet and consolidation of aircraft occurred in 1984, when its entire Pacific route network was sold to United, and nearly every service not immediately associated with flying, such as hotels, were also sold off. Nonetheless, Pan American continued to lose money.
It was about to get worse. Pan American sold its bread-and-butter New York-Kennedy to London-Heathrow route to United. It had already lost its West Berlin monopoly when Germany reunified in the same year, as Lufthansa was now able to fly to Berlin. When a merger with Northwest failed, Pan American had no choice but to declare bankruptcy in January 1991.
It was hoped that the bankruptcy would only be temporary. Delta bought most of Pan American’s assets, though enough was left to keep the latter in business, including transatlantic routes and East Coast services. Pan American tried to go back to its routes, relaunching itself from Miami, but this failed as well—the airline was just too far in debt. Delta was losing money daily on its support of Pan American, and an attempted merger with TWA came to nothing. In December 1991, Pan American was grounded for good, ending the history of arguably the most famous and storied airline in aviation history. At least six attempts have been made to restart Pan American since, but none have succeeded for very long.
I thought I had found all of the considerable number of Pan Am aircraft Bary Poletto had in his collection, but this 707 was a surprise. It is in excellent condition. This is Pan Am's best known livery, dating from the 1970s.