View allAll Photos Tagged Computerized

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The T-54 and T-55 tanks were a series of Soviet main battle tanks introduced in the years following the Second World War. The first T-54 prototype was completed at Nizhny Tagil by the end of 1945. Initial production ramp up settled for 1947 at Nizhny Tagil, and 1948 for Kharkiv were halted and curtailed as many problems were uncovered; the T-34-85 still accounted for 88 percent of production through the 1950s.The T-54 eventually became the main tank for armored units of the Soviet Army, armies of the Warsaw Pact countries, and many others. T-54s and T-55s have been involved in many of the world's armed conflicts since the later part of the 20th century.

 

The T-54/55 series eventually became the most-produced tank in history. Estimated production numbers for the series range from 86,000 to 100,000. They were replaced by the T-62, T-64, T-72, T-80 and T-90 tanks in the Soviet and Russian armies but remain in use by up to 50 other armies worldwide, some having received sophisticated retrofitting.

The T-54/55 tanks were mechanically simple and robust, very simple to operate compared to Western tanks, and did not require a high level of training or education in their crew members. The T-54/55 was a relatively small main battle tank, presenting a smaller target for its opponents to hit. The tanks had good mobility thanks to their relatively light weight (which permitted easy transport by rail or flatbed truck and allowed crossing of lighter bridges), wide tracks (which gave lower ground pressure and hence good mobility on soft ground), a good cold-weather start-up system and a snorkel that allowed river crossings.

 

By the standards of the 1950s, the T-54 was an excellent tank combining lethal firepower, excellent armor protection and good reliability while remaining a significantly smaller and lighter tank than its NATO contemporaries—the US M48 Patton tank and the British Centurion tank. The 100 mm D-10T tank gun of the T-54 and the T-55 was also more powerful than its Western counterparts at that time (the M48 Patton initially carried a 90 mm tank gun and the Centurion Mk. 3 carried the 20-pounder (84 mm) tank gun). This advantage lasted until the T-54 began to be countered by newer Western developments like the M60 main battle tank and upgraded Centurions and M48 Pattons using the 105 mm rifled Royal Ordnance L7 or M68 gun. Due to the lack of a sub-caliber round for the 100 mm gun, and the tank's simple fire-control system, the T-54/55 was forced to rely on HEAT shaped-charge ammunition to engage tanks at long range well into the 1960s, despite the relative inaccuracy of this ammunition at long ranges. The Soviets considered this acceptable for a potential European conflict, until the development of composite armor began reducing the effectiveness of HEAT warheads and sabot rounds were developed for the D-10T gun.

 

T-54/55 tanks also had their drawbacks. Small size was achieved at the expense of interior space and ergonomics, which caused practical difficulties, as it constrained the physical movements of the crew and slowed operation of controls and equipment. This was a common trait of most Soviet tanks and hence height limits were set for certain tank crew positions in the Soviet Army.

The low turret profile of the tanks prevented them from depressing their main guns by more than 5° since the breech would strike the ceiling when fired, which limited the ability to cover terrain by fire from a hull-down position on a reverse slope – a tactical flaw that became apparent (and costly) during the Arab-Israeli the Six-Day War. As in most tanks of that generation, the internal ammunition supply was not shielded, increasing the risk that any enemy penetration of the fighting compartment could cause a catastrophic secondary explosion. The original T-54 lacked NBC protection, a revolving turret floor (which complicated the crew's operations), and early models lacked gun stabilization. All of these problems were corrected in the otherwise largely identical T-55 tank.

Together, the T-54/55 tanks have been manufactured in the tens of thousands, and many still remain in reserve, or even in front-line use among lower-technology fighting forces. Abundance and age together make these tanks cheap and easy to purchase. While the T-54/55 is not a match for a modern main battle tank, armor and ammunition upgrades could dramatically improve the old vehicle's performance to the point that it cannot be dismissed on the battlefield.

 

During the Cold War, Soviet tanks never directly faced their NATO adversaries in combat in Europe, but it became involved in many other local conflicts. For instance, the Israeli army fought against it during the Six-Day War in 1967, and many Egyptian and Syrian T-54/55s were captured. Their numbers were so great that they were repaired, modernized and even put into IDF service or exported - around 200 T-54s, T-55s and PT-76s fell into Israeli hands at that time. T-54s and T-55s were modernized to Tiran 4 or 5 standard prior to the Yom Kippur War, some outfitted with a NATO-compatible Sharir (Royal Ordnance L7) 105 mm gun and other Western equipment and weapons.

 

During the Yom Kippur War in 1973, Israel captured additional T-54s and T-55s, and these new vehicles led to the Ti-51 MBT (also known as “Tiran 51”)and some minor variants. This time the modifications were more thorough and included fitting an American Detroit Diesel engine, new semi-automatic hydromechanical transmission equipped with a torque converter and new air cleaners. Blazer explosive reactive armor was added to the hull and turret, a Cadillac-Gage-Textron gun stabilization system was integrated as well as an EL-OP Matador computerized fire control system. Further changes included a new low-profile commander's cupola, IR detectors, Image-intensifier night vision equipment for the commander, gunner and driver, Spectronix fire detection and suppression system, new turret basket, extensive external stowage, modernized driver's station including replacement of tillers by a steering wheel, new final drives, new all-internal fuel system and improved suspension. Basically, the T-54/55 hull was filled with new equipment, creating an almost new and different MBT! Some of these tanks were also outfitted with a detachable dozer blade and designated Ti-51Sh.

 

A small series of the captured Yom Kippur War tanks was furthermore re-built as so-called Ti-52s during 1974 and 1975. This program was focused on recycling T-54 and T-55 hulls that had damaged turrets or main weapons. The upgrade centered around an American 90 mm M41 cannon with a T-shaped blast deflector as new main armament, a weapon that was available in abundance after the IDF’s gun uprating of its M48 Patton tanks to the bigger L7 gun. For the Ti-52 a new, welded turret was devised, tailored to the M41 gun and its M87 mount. It was longer but narrower than the original T-54/55 turtle shell turret, but kept its low profile, and it featured prominent storage boxes at the sides and at the back that made it look outwardly bigger than it actually was. The turret had a 360° manual and electric-hydraulic traverse, (24°/sec) and the gun could be depressed to -9° and elevated to +19°. 60 rounds were carried (Fifteen in the turret, the rest in the hull). Beyond standard HE and AP ammunition types, a special HVAP round with a muzzle velocity of 3,750 ft/s (1,140 m/s) was available, too, with a maximum penetration of 15 in (380 mm) of vertical armor at 30 ft and still 9½ in (241 mm) at 2.000 yards. This was complemented by a coaxial heavy Browning .50 cal (12.7 mm) machine gun with 500 rounds (plus 500 more in reserve), a weapon that has proven to be useful and effective in asymmetric warfare. An additional .30 AA machine gun on a swivel mount and with 5.000 rounds in store was placed on the turret roof, next to the commander cupola.

The main automotive upgrade was the replacement of the original V12-W-55 engine with 560 hp with the proven American Detroit Diesel 8V-71T developing 609 hp that had already been used for other Tiran conversions. With a slightly better power/weaight ration than the original T-55 (the lighter turret and engine saved around 2 tons), performanca and handling of the Ti-52 were improved.

Other modifications included a laser rangefinder placed over the barrel, thermal/night sights for the gunner and commander, a computerized FCS, new radio equipment, complete NBC protection lining and anti-RPG rubber side skirts that also suppressed dust clouds while on the move as well as German-made smoke dischargers.

 

These upgraded vehicles entered service in 1975. With the conversion and different systems came a new role: The Ti-52s went from being an MBT to a tank destroyer and scout/reconnaissance vehicle. The Ti-52 was an ‘ambush predator’ and would use its small size, low profile and good maneuverability to outflank the enemy, engage, and then withdraw along pre-arranged lanes of engagement. The Ti-52 was unofficially nicknamed “עקרב/Ak'rav” (Scorpion) and became a successful conversion, but by the end of the Cold War in the early 1990s, the tank (just like the other Israeli Tiran versions as well as the original T-54/55 family) had become obsolete. Its gun simply did not have the penetrative power to combat modern armored fighting vehicles. Nevertheless, the tank served the Israeli Army well for 15 years, and it was used in combat during the 1982 Lebanon War, where it proved to be highly effective if its tactical strengths of speed and low profile could be exploited. In direct open-field confrontation it turned out to be vulnerable, esp. to dedicated anti-tank weapons of the time (AT-3 Sagger and RPG-7).

 

All Tirans of various versions were withdrawn from active IDF service at the end of the 1980s. Some were sold and some were converted into Achzarit APCs. However, some Tirans are still in possession of the Israeli Army, possibly in reserve or in storage. The Israeli Army had 488 Tirans in 1990, 300 in 1995, 200 in 2000, 2001 and 2002 and still 261 in 2006 and 2008.

  

Specifications:

Crew: Four (commander, gunner, loader, driver)

Weight: 34 tonnes (37.5 ST)

Length: 8,42 m (27 ft 7 in) with gun forward

6,37 m (20ft 10 1/2 in) hull only

Width: 3.53 m (11 ft 6 3/4 in) with side skirts

3.37 m (11 ft 1 in) hull only

Height: 2.73 m (9 ft)

Ground clearance: 0.425 m (16.73 in)

Suspension: Torsion bar

Fuel capacity: 580 l internal, plus 320 l external and 400 l in two jettisonable rear drums

 

Armor:

16 – 120 mm (0.63 – 4.72 in)

 

Performance:

Maximum road speed: 54 km/h (33.5 mph)

Off-road speed: 38 km/h (24 mph)

Operational range: 500 km on road

Up to 715 km with two 200-liter auxiliary fuel tanks

Power/weight: 17.9 hp (12.9 kW)/tonne

 

Engine:

1× American Detroit Diesel 8V-71T with 609 hp (438 kW)

 

Transmission:

Mechanical [synchromesh], 5 forward, 1 reverse gears

 

Armament:

1× 90mm M41/T139 gun with 60 rounds

1x coaxial .50 cal (12.7 mm) machine gun with a total of 1.000 rounds

1x .30 AA machine gun on a swivel mount with a total of 5.000 rounds

2x4 smoke grenade launchers

 

The kit and its assembly:

This is actually the second submissiion to the "Captured!" group build at whatifmodellers.com in November 2020, but since my first project stalled (waiting for parts that I ordered while building) I started this second tank and it made very quick progress.

 

Thsi what-if model has a concrete background: Israel captured during the Six Day War and the Yom Kippur conflict a lot of various Arabian tanks, including T-54/55s, PT-76s and T-62. Their numbers were so huge that many were converted on a serial basis and adopted into Israeli service or exported. So, this one became one of those modified T-55s with a new turret/gun, ERA and anti-RPG rubber side skirts. Inspiration was a little the Austrian "Kürassier" tank hunter, and the idea that many surplus 90 mm guns from upgraded M48 Patton tanks must have been available. So, why not combine everything into a dedicated IDF tank hunter?

 

The basis is a Trumpeter kit which went together well, just some PSR was necessary around the rear. I omitted the extra fuel drums (Israel is a rather small country...) and added some ERA plates to the front glacis plate. The biggest change is a different turret and mudguards, which come from an upgraded, late Danish M41 Walker Bulldog conversion set from S&S Models. It consists of a resin turret and many white metal parts, including the gun and the mantlet, the side skirts and some other stuff. The set is actually intended for a diecast M41 (Amercom/Altaya, Hobbymaster or Warmaster) as basis, but the parts were easy to integrate into the T-55 hull. The turret ring is a little smaller, so that a few spacers hold the new turret in place. The turret itself was taken OOB (including the smoke grenade dischargers), I just added the light machine gun and the swivel mount on the roof. IIRC, they are leftover pieces from an Italeri Merkava (very suitable!). The white metal mantlet and the resin turret were "bridged" with a woven dust cover, made from tissue paper dipped in white glue.

 

Themudguards are white metal pieces and needed some tailoring to fit at the front. They are actually a little too short for the T-55 hull, but taken "as is" they offered a nice opening for the drive sprocket wheels at the rear, and I settled for this simple solution.

  

Painting and markings:

Painting was done with paints from the rattle can - I chose a "Sinai Grey" livery for operations in the Southern regions (in the North, IDF tanks tend to be painted olive drab). After the base coat in two very similar shades of dark sand /RAL 7008 and 8000) the model received a black ink washing and dry-brushing with khaki drill (Humbrol 72) and later some light grey (Revell 75); the camouflage nets in the storage baskets were painted in olive drab (Humbrol 155) for some contrast.

The markings/decals come from a generic IDF markings set from Peddinghaus Decals. The Israeli marking system entered service after 1960 and it is still used today by the IDF, even if the meanings of some symbols are still unknown or unclear.

The white stripes on the cannon barrel identify which battalion the tank belongs to. If the tank belongs to the 1st Battalion, it only has one stripe on the barrel, if it is the 2nd Battalion, it has two stripes, and so on.

The company the tank belongs to is determined by a white Chevron, a white ‘V’ shaped symbol painted on the sides of the vehicle sometimes with a black outline. If the M-50 belonged to the 1st Company, the Chevron was pointing downwards, if the tank belonged to the 2nd Company, the ‘V’ was pointing forward. If the Chevron was pointed upwards, the vehicle belonged to the 3rd Company, and, if it pointed backward it belonged to the 4th Company.

The company identification markings have different sizes according to the space a tank has on its sides. The M48 Patton had these symbols painted on the turret and were quite big, while the Centurion had them painted on the side skirts. The Shermans had little space on the sides, and therefore, the company identification markings were painted on the side boxes, or in some cases, on the sides of the gun mantlet.

The platoon identification markings are written on the turrets and are divided in two: a number from 1 to 4 and one of the first four letters of the Hebrew alphabet: א (Aleph), ב (bet), ג (gimel) and ד (dalet ). The Arabic number, from 1 to 4, indicates the platoon to which a tank belongs to and the letter, the tank number inside each platoon. Tank number 1 of the 1st Platoon would have painted on the turret the symbol ‘1א’, tank number 2 of 3rd Platoon would have painted on the turret the symbol ‘3ב’, and so on. The platoon’s command tank only has the number without the letter, or in rare cases, the platoon commander has א, i.e. the first tank of the platoon.

 

Once painting and decals were done, the kit received an overall coat with matt acrylic varnish and final assembly started - namely the attempt to mount the wheels and tracks inside/thorugh the mudguards. Fiddly affair, but it worked better than expected, and as a final step I dusted the model with sand-grey mineral artist pigments.

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The T-54 and T-55 tanks were a series of Soviet main battle tanks introduced in the years following the Second World War. The first T-54 prototype was completed at Nizhny Tagil by the end of 1945. Initial production ramp up settled for 1947 at Nizhny Tagil, and 1948 for Kharkiv were halted and curtailed as many problems were uncovered; the T-34-85 still accounted for 88 percent of production through the 1950s.The T-54 eventually became the main tank for armored units of the Soviet Army, armies of the Warsaw Pact countries, and many others. T-54s and T-55s have been involved in many of the world's armed conflicts since the later part of the 20th century.

 

The T-54/55 series eventually became the most-produced tank in history. Estimated production numbers for the series range from 86,000 to 100,000. They were replaced by the T-62, T-64, T-72, T-80 and T-90 tanks in the Soviet and Russian armies but remain in use by up to 50 other armies worldwide, some having received sophisticated retrofitting.

The T-54/55 tanks were mechanically simple and robust, very simple to operate compared to Western tanks, and did not require a high level of training or education in their crew members. The T-54/55 was a relatively small main battle tank, presenting a smaller target for its opponents to hit. The tanks had good mobility thanks to their relatively light weight (which permitted easy transport by rail or flatbed truck and allowed crossing of lighter bridges), wide tracks (which gave lower ground pressure and hence good mobility on soft ground), a good cold-weather start-up system and a snorkel that allowed river crossings.

 

By the standards of the 1950s, the T-54 was an excellent tank combining lethal firepower, excellent armor protection and good reliability while remaining a significantly smaller and lighter tank than its NATO contemporaries—the US M48 Patton tank and the British Centurion tank. The 100 mm D-10T tank gun of the T-54 and the T-55 was also more powerful than its Western counterparts at that time (the M48 Patton initially carried a 90 mm tank gun and the Centurion Mk. 3 carried the 20-pounder (84 mm) tank gun). This advantage lasted until the T-54 began to be countered by newer Western developments like the M60 main battle tank and upgraded Centurions and M48 Pattons using the 105 mm rifled Royal Ordnance L7 or M68 gun. Due to the lack of a sub-caliber round for the 100 mm gun, and the tank's simple fire-control system, the T-54/55 was forced to rely on HEAT shaped-charge ammunition to engage tanks at long range well into the 1960s, despite the relative inaccuracy of this ammunition at long ranges. The Soviets considered this acceptable for a potential European conflict, until the development of composite armor began reducing the effectiveness of HEAT warheads and sabot rounds were developed for the D-10T gun.

 

T-54/55 tanks also had their drawbacks. Small size was achieved at the expense of interior space and ergonomics, which caused practical difficulties, as it constrained the physical movements of the crew and slowed operation of controls and equipment. This was a common trait of most Soviet tanks and hence height limits were set for certain tank crew positions in the Soviet Army.

The low turret profile of the tanks prevented them from depressing their main guns by more than 5° since the breech would strike the ceiling when fired, which limited the ability to cover terrain by fire from a hull-down position on a reverse slope – a tactical flaw that became apparent (and costly) during the Arab-Israeli the Six-Day War. As in most tanks of that generation, the internal ammunition supply was not shielded, increasing the risk that any enemy penetration of the fighting compartment could cause a catastrophic secondary explosion. The original T-54 lacked NBC protection, a revolving turret floor (which complicated the crew's operations), and early models lacked gun stabilization. All of these problems were corrected in the otherwise largely identical T-55 tank.

Together, the T-54/55 tanks have been manufactured in the tens of thousands, and many still remain in reserve, or even in front-line use among lower-technology fighting forces. Abundance and age together make these tanks cheap and easy to purchase. While the T-54/55 is not a match for a modern main battle tank, armor and ammunition upgrades could dramatically improve the old vehicle's performance to the point that it cannot be dismissed on the battlefield.

 

During the Cold War, Soviet tanks never directly faced their NATO adversaries in combat in Europe, but it became involved in many other local conflicts. For instance, the Israeli army fought against it during the Six-Day War in 1967, and many Egyptian and Syrian T-54/55s were captured. Their numbers were so great that they were repaired, modernized and even put into IDF service or exported - around 200 T-54s, T-55s and PT-76s fell into Israeli hands at that time. T-54s and T-55s were modernized to Tiran 4 or 5 standard prior to the Yom Kippur War, some outfitted with a NATO-compatible Sharir (Royal Ordnance L7) 105 mm gun and other Western equipment and weapons.

 

During the Yom Kippur War in 1973, Israel captured additional T-54s and T-55s, and these new vehicles led to the Ti-51 MBT (also known as “Tiran 51”)and some minor variants. This time the modifications were more thorough and included fitting an American Detroit Diesel engine, new semi-automatic hydromechanical transmission equipped with a torque converter and new air cleaners. Blazer explosive reactive armor was added to the hull and turret, a Cadillac-Gage-Textron gun stabilization system was integrated as well as an EL-OP Matador computerized fire control system. Further changes included a new low-profile commander's cupola, IR detectors, Image-intensifier night vision equipment for the commander, gunner and driver, Spectronix fire detection and suppression system, new turret basket, extensive external stowage, modernized driver's station including replacement of tillers by a steering wheel, new final drives, new all-internal fuel system and improved suspension. Basically, the T-54/55 hull was filled with new equipment, creating an almost new and different MBT! Some of these tanks were also outfitted with a detachable dozer blade and designated Ti-51Sh.

 

A small series of the captured Yom Kippur War tanks was furthermore re-built as so-called Ti-52s during 1974 and 1975. This program was focused on recycling T-54 and T-55 hulls that had damaged turrets or main weapons. The upgrade centered around an American 90 mm M41 cannon with a T-shaped blast deflector as new main armament, a weapon that was available in abundance after the IDF’s gun uprating of its M48 Patton tanks to the bigger L7 gun. For the Ti-52 a new, welded turret was devised, tailored to the M41 gun and its M87 mount. It was longer but narrower than the original T-54/55 turtle shell turret, but kept its low profile, and it featured prominent storage boxes at the sides and at the back that made it look outwardly bigger than it actually was. The turret had a 360° manual and electric-hydraulic traverse, (24°/sec) and the gun could be depressed to -9° and elevated to +19°. 60 rounds were carried (Fifteen in the turret, the rest in the hull). Beyond standard HE and AP ammunition types, a special HVAP round with a muzzle velocity of 3,750 ft/s (1,140 m/s) was available, too, with a maximum penetration of 15 in (380 mm) of vertical armor at 30 ft and still 9½ in (241 mm) at 2.000 yards. This was complemented by a coaxial heavy Browning .50 cal (12.7 mm) machine gun with 500 rounds (plus 500 more in reserve), a weapon that has proven to be useful and effective in asymmetric warfare. An additional .30 AA machine gun on a swivel mount and with 5.000 rounds in store was placed on the turret roof, next to the commander cupola.

The main automotive upgrade was the replacement of the original V12-W-55 engine with 560 hp with the proven American Detroit Diesel 8V-71T developing 609 hp that had already been used for other Tiran conversions. With a slightly better power/weaight ration than the original T-55 (the lighter turret and engine saved around 2 tons), performanca and handling of the Ti-52 were improved.

Other modifications included a laser rangefinder placed over the barrel, thermal/night sights for the gunner and commander, a computerized FCS, new radio equipment, complete NBC protection lining and anti-RPG rubber side skirts that also suppressed dust clouds while on the move as well as German-made smoke dischargers.

 

These upgraded vehicles entered service in 1975. With the conversion and different systems came a new role: The Ti-52s went from being an MBT to a tank destroyer and scout/reconnaissance vehicle. The Ti-52 was an ‘ambush predator’ and would use its small size, low profile and good maneuverability to outflank the enemy, engage, and then withdraw along pre-arranged lanes of engagement. The Ti-52 was unofficially nicknamed “עקרב/Ak'rav” (Scorpion) and became a successful conversion, but by the end of the Cold War in the early 1990s, the tank (just like the other Israeli Tiran versions as well as the original T-54/55 family) had become obsolete. Its gun simply did not have the penetrative power to combat modern armored fighting vehicles. Nevertheless, the tank served the Israeli Army well for 15 years, and it was used in combat during the 1982 Lebanon War, where it proved to be highly effective if its tactical strengths of speed and low profile could be exploited. In direct open-field confrontation it turned out to be vulnerable, esp. to dedicated anti-tank weapons of the time (AT-3 Sagger and RPG-7).

 

All Tirans of various versions were withdrawn from active IDF service at the end of the 1980s. Some were sold and some were converted into Achzarit APCs. However, some Tirans are still in possession of the Israeli Army, possibly in reserve or in storage. The Israeli Army had 488 Tirans in 1990, 300 in 1995, 200 in 2000, 2001 and 2002 and still 261 in 2006 and 2008.

  

Specifications:

Crew: Four (commander, gunner, loader, driver)

Weight: 34 tonnes (37.5 ST)

Length: 8,42 m (27 ft 7 in) with gun forward

6,37 m (20ft 10 1/2 in) hull only

Width: 3.53 m (11 ft 6 3/4 in) with side skirts

3.37 m (11 ft 1 in) hull only

Height: 2.73 m (9 ft)

Ground clearance: 0.425 m (16.73 in)

Suspension: Torsion bar

Fuel capacity: 580 l internal, plus 320 l external and 400 l in two jettisonable rear drums

 

Armor:

16 – 120 mm (0.63 – 4.72 in)

 

Performance:

Maximum road speed: 54 km/h (33.5 mph)

Off-road speed: 38 km/h (24 mph)

Operational range: 500 km on road

Up to 715 km with two 200-liter auxiliary fuel tanks

Power/weight: 17.9 hp (12.9 kW)/tonne

 

Engine:

1× American Detroit Diesel 8V-71T with 609 hp (438 kW)

 

Transmission:

Mechanical [synchromesh], 5 forward, 1 reverse gears

 

Armament:

1× 90mm M41/T139 gun with 60 rounds

1x coaxial .50 cal (12.7 mm) machine gun with a total of 1.000 rounds

1x .30 AA machine gun on a swivel mount with a total of 5.000 rounds

2x4 smoke grenade launchers

 

The kit and its assembly:

This is actually the second submissiion to the "Captured!" group build at whatifmodellers.com in November 2020, but since my first project stalled (waiting for parts that I ordered while building) I started this second tank and it made very quick progress.

 

Thsi what-if model has a concrete background: Israel captured during the Six Day War and the Yom Kippur conflict a lot of various Arabian tanks, including T-54/55s, PT-76s and T-62. Their numbers were so huge that many were converted on a serial basis and adopted into Israeli service or exported. So, this one became one of those modified T-55s with a new turret/gun, ERA and anti-RPG rubber side skirts. Inspiration was a little the Austrian "Kürassier" tank hunter, and the idea that many surplus 90 mm guns from upgraded M48 Patton tanks must have been available. So, why not combine everything into a dedicated IDF tank hunter?

 

The basis is a Trumpeter kit which went together well, just some PSR was necessary around the rear. I omitted the extra fuel drums (Israel is a rather small country...) and added some ERA plates to the front glacis plate. The biggest change is a different turret and mudguards, which come from an upgraded, late Danish M41 Walker Bulldog conversion set from S&S Models. It consists of a resin turret and many white metal parts, including the gun and the mantlet, the side skirts and some other stuff. The set is actually intended for a diecast M41 (Amercom/Altaya, Hobbymaster or Warmaster) as basis, but the parts were easy to integrate into the T-55 hull. The turret ring is a little smaller, so that a few spacers hold the new turret in place. The turret itself was taken OOB (including the smoke grenade dischargers), I just added the light machine gun and the swivel mount on the roof. IIRC, they are leftover pieces from an Italeri Merkava (very suitable!). The white metal mantlet and the resin turret were "bridged" with a woven dust cover, made from tissue paper dipped in white glue.

 

Themudguards are white metal pieces and needed some tailoring to fit at the front. They are actually a little too short for the T-55 hull, but taken "as is" they offered a nice opening for the drive sprocket wheels at the rear, and I settled for this simple solution.

  

Painting and markings:

Painting was done with paints from the rattle can - I chose a "Sinai Grey" livery for operations in the Southern regions (in the North, IDF tanks tend to be painted olive drab). After the base coat in two very similar shades of dark sand /RAL 7008 and 8000) the model received a black ink washing and dry-brushing with khaki drill (Humbrol 72) and later some light grey (Revell 75); the camouflage nets in the storage baskets were painted in olive drab (Humbrol 155) for some contrast.

The markings/decals come from a generic IDF markings set from Peddinghaus Decals. The Israeli marking system entered service after 1960 and it is still used today by the IDF, even if the meanings of some symbols are still unknown or unclear.

The white stripes on the cannon barrel identify which battalion the tank belongs to. If the tank belongs to the 1st Battalion, it only has one stripe on the barrel, if it is the 2nd Battalion, it has two stripes, and so on.

The company the tank belongs to is determined by a white Chevron, a white ‘V’ shaped symbol painted on the sides of the vehicle sometimes with a black outline. If the M-50 belonged to the 1st Company, the Chevron was pointing downwards, if the tank belonged to the 2nd Company, the ‘V’ was pointing forward. If the Chevron was pointed upwards, the vehicle belonged to the 3rd Company, and, if it pointed backward it belonged to the 4th Company.

The company identification markings have different sizes according to the space a tank has on its sides. The M48 Patton had these symbols painted on the turret and were quite big, while the Centurion had them painted on the side skirts. The Shermans had little space on the sides, and therefore, the company identification markings were painted on the side boxes, or in some cases, on the sides of the gun mantlet.

The platoon identification markings are written on the turrets and are divided in two: a number from 1 to 4 and one of the first four letters of the Hebrew alphabet: א (Aleph), ב (bet), ג (gimel) and ד (dalet ). The Arabic number, from 1 to 4, indicates the platoon to which a tank belongs to and the letter, the tank number inside each platoon. Tank number 1 of the 1st Platoon would have painted on the turret the symbol ‘1א’, tank number 2 of 3rd Platoon would have painted on the turret the symbol ‘3ב’, and so on. The platoon’s command tank only has the number without the letter, or in rare cases, the platoon commander has א, i.e. the first tank of the platoon.

 

Once painting and decals were done, the kit received an overall coat with matt acrylic varnish and final assembly started - namely the attempt to mount the wheels and tracks inside/thorugh the mudguards. Fiddly affair, but it worked better than expected, and as a final step I dusted the model with sand-grey mineral artist pigments.

Audi Q7

As chic as it is spacious, few three-row vehicles can easily top the Q7 when it comes to mixing style with energy. The sole powertrain is really a supercharged 3. 0-liter V-6 creating 333 hp. An eight-speed computerized and all-wheel drive are usually standard.

Audi Q7

An optional oxygen...

i2.wp.com/www.autocars.asia/wp-content/uploads/2015/11/Au...

www.autocars.asia/audi-q7/

Sagrada Família or Basílica i Temple Expiatori de la Sagrada Família (Catalan) or Basílica de la Sagrada Familia (Spanish) or Basilica of the Holy Family, is a large still largely unfinished church building in the Eixample district of Barcelona, Catalonia, Spain. Designed by the Catalan architect Antoni Gaudí (1852–1926), his work on Sagrada Família is part of a UNESCO World Heritage Site. On 7 November 2010, Pope Benedict XVI consecrated the church and proclaimed it a minor basilica. On 19 March 1882, construction of the Sagrada Família began under architect Francisco de Paula del Villar. In 1883, when Villar resigned, Gaudí took over as chief architect, transforming the project with his architectural and engineering style, combining Gothic and curvilinear Art Nouveau forms. Gaudí devoted the remainder of his life to the project, and he is buried in the crypt. At the time of his death in 1926, less than a quarter of the project was complete. Relying solely on private donations, the Sagrada Família's construction progressed slowly and was interrupted by the Spanish Civil War. In July 1936, revolutionaries set fire to the crypt and broke their way into the workshop, partially destroying Gaudí's original plans, drawings and plaster models, which led to 16 years of work to piece together the fragments of the master model. Construction resumed to intermittent progress in the 1950s. Advancements in technologies such as computer aided design and computerized numerical control (CNC) have since enabled faster progress and construction passed the midpoint in 2010. However, some of the project's greatest challenges remain, including the construction of ten more spires, each symbolizing an important Biblical figure in the New Testament. It was anticipated that the building would be completed by 2026, the centenary of Gaudí's death, but this has now been delayed due to the COVID-19 pandemic. The basilica has a long history of splitting opinion among the residents of Barcelona: over the initial possibility it might compete with Barcelona's Cathedral, over Gaudí's design itself, over the possibility that work after Gaudí's death disregarded his design, and the 2007 proposal to build a tunnel nearby as part of Spain's high-speed rail link to France, possibly disturbing its stability. Describing the Sagrada Família, art critic Rainer Zerbst said "it is probably impossible to find a church building anything like it in the entire history of art", and Paul Goldberger describes it as "the most extraordinary personal interpretation of Gothic architecture since the Middle Ages". The basilica is not the cathedral church of the Archdiocese of Barcelona, as that title belongs to the Cathedral of the Holy Cross and Saint Eulalia (Barcelona Cathedral). The Basílica de la Sagrada Família was the inspiration of a bookseller, Josep Maria Bocabella, founder of Asociación Espiritual de Devotos de San José (Spiritual Association of Devotees of St. Joseph). After a visit to the Vatican in 1872, Bocabella returned from Italy with the intention of building a church inspired by the basilica at Loreto. The apse crypt of the church, funded by donations, was begun 19 March 1882, on the festival of St. Joseph, to the design of the architect Francisco de Paula del Villar, whose plan was for a Gothic revival church of a standard form. The apse crypt was completed before Villar's resignation on 18 March 1883, when Antoni Gaudí assumed responsibility for its design, which he changed radically. Gaudi began work on the church in 1883 but was not appointed Architect Director until 1884. On the subject of the extremely long construction period, Gaudí is said to have remarked: "My client is not in a hurry." When Gaudí died in 1926, the basilica was between 15 and 25 percent complete. After Gaudí's death, work continued under the direction of his main disciple Domènec Sugrañes i Gras until interrupted by the Spanish Civil War in 1936. Parts of the unfinished basilica and Gaudí's models and workshop were destroyed during the war by Catalan anarchists. The present design is based on reconstructed versions of the plans that were burned in a fire as well as on modern adaptations. Since 1940, the architects Francesc Quintana, Isidre Puig Boada, Lluís Bonet i Gari and Francesc Cardoner have carried on the work. The illumination was designed by Carles Buïgas. The director until 2012 was the son of Lluís Bonet, Jordi Bonet i Armengol. He has been introducing computers into the design and construction process since the 1980s. In 2012, Barcelona-born Jordi Faulí i Oller took over as architect of the project. Mark Burry of New Zealand serves as Executive Architect and Researcher. Sculptures by J. Busquets, Etsuro Sotoo and the controversial Josep Maria Subirachs decorate the fantastical façades. The central nave vaulting was completed in 2000 and the main tasks since then have been the construction of the transept vaults and apse. As of 2006, work concentrated on the crossing and supporting structure for the main steeple of Jesus Christ as well as the southern enclosure of the central nave, which will become the Glory façade. The church shares its site with the Sagrada Família Schools building, a school originally designed by Gaudí in 1909 for the children of the construction workers. Relocated in 2002 from the eastern corner of the site to the southern corner, the building now houses an exhibition. Chief architect Jordi Faulí announced in October 2015 that construction was 70 percent complete and had entered its final phase of raising six immense steeples. The steeples and most of the church's structure are to be completed by 2026, the centennial of Gaudí's death; as of a 2017 estimate, decorative elements should be complete by 2030 or 2032. Visitor entrance fees of €15 to €20 finance the annual construction budget of €25 million. Computer-aided design technology has been used to accelerate construction of the building. Current technology allows stone to be shaped off-site by a CNC milling machine, whereas in the 20th century the stone was carved by hand. In 2008, some renowned Catalan architects advocated halting construction to respect Gaudí's original designs, which, although they were not exhaustive and were partially destroyed, have been partially reconstructed in recent years. In 2018, the stone type needed for the construction was found in a quarry in Brinscall, near Chorley, England. The main nave was covered and an organ installed in mid-2010, allowing the still-unfinished building to be used for liturgies. The church was consecrated by Pope Benedict XVI on 7 November 2010 in front of a congregation of 6,500 people. A further 50,000 people followed the consecration Mass from outside the basilica, where more than 100 bishops and 300 priests were on hand to distribute Holy Communion. Gaudí's original design calls for a total of eighteen spires, representing in ascending order of height the Twelve Apostles, the Virgin Mary, the four Evangelists and, tallest of all, Jesus Christ. Nine spires have been built as of 2021, corresponding to four apostles at the Nativity façade and four apostles at the Passion façade and the Virgin Mary spire. According to the 2005 "Works Report" of the project's official website, drawings signed by Gaudí and recently found in the Municipal Archives, indicate that the spire of the Virgin was in fact intended by Gaudí to be shorter than those of the evangelists. The spire height will follow Gaudí's intention, which according to the report will work with the existing foundation. The Evangelists' spires will be surmounted by sculptures of their traditional symbols: a winged bull (Saint Luke), a winged man (Saint Matthew), an eagle (Saint John), and a winged lion (Saint Mark). The central spire of Jesus Christ is to be surmounted by a giant cross; its total height (172.5 meters (566 ft)) will be less than that of Montjuïc hill in Barcelona, as Gaudí believed that his creation should not surpass God's. The lower spires are surmounted by communion hosts with sheaves of wheat and chalices with bunches of grapes, representing the Eucharist. Plans call for tubular bells to be placed within the spires, driven by the force of the wind, and driving sound down into the interior of the church. Gaudí performed acoustic studies to achieve the appropriate acoustic results inside the temple. However, only one bell is currently in place.

The completion of the spires will make Sagrada Família the tallest church building in the world—11 meters taller than the current record-holder, Ulm Minster, which is 161.5 meters (530 ft) at its highest point. The Church will have three grand façades: the Nativity façade to the East, the Passion façade to the West, and the Glory façade to the South (yet to be completed). The Nativity Façade was built before work was interrupted in 1935 and bears the most direct Gaudí influence. In 2010 an organ was installed in the chancel by the Blancafort Orgueners de Montserrat organ builders. The instrument has 26 stops (1,492 pipes) on two manuals and a pedalboard. To overcome the unique acoustical challenges posed by the church's architecture and vast size, several additional organs will be installed at various points within the building. These instruments will be playable separately (from their own individual consoles) and simultaneously (from a single mobile console), yielding an organ of some 8,000 pipes when completed. Together with six other Gaudí buildings in Barcelona, part of la Sagrada Família is a UNESCO World Heritage Site, as testifying "to Gaudí's exceptional creative contribution to the development of architecture and building technology", "having represented el Modernisme of Catalonia" and "anticipated and influenced many of the forms and techniques that were relevant to the development of modern construction in the 20th century". The inscription only includes the Crypt and the Nativity Façade.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The T-54 and T-55 tanks were a series of Soviet main battle tanks introduced in the years following the Second World War. The first T-54 prototype was completed at Nizhny Tagil by the end of 1945. Initial production ramp up settled for 1947 at Nizhny Tagil, and 1948 for Kharkiv were halted and curtailed as many problems were uncovered; the T-34-85 still accounted for 88 percent of production through the 1950s.The T-54 eventually became the main tank for armored units of the Soviet Army, armies of the Warsaw Pact countries, and many others. T-54s and T-55s have been involved in many of the world's armed conflicts since the later part of the 20th century.

 

The T-54/55 series eventually became the most-produced tank in history. Estimated production numbers for the series range from 86,000 to 100,000. They were replaced by the T-62, T-64, T-72, T-80 and T-90 tanks in the Soviet and Russian armies but remain in use by up to 50 other armies worldwide, some having received sophisticated retrofitting.

The T-54/55 tanks were mechanically simple and robust, very simple to operate compared to Western tanks, and did not require a high level of training or education in their crew members. The T-54/55 was a relatively small main battle tank, presenting a smaller target for its opponents to hit. The tanks had good mobility thanks to their relatively light weight (which permitted easy transport by rail or flatbed truck and allowed crossing of lighter bridges), wide tracks (which gave lower ground pressure and hence good mobility on soft ground), a good cold-weather start-up system and a snorkel that allowed river crossings.

 

By the standards of the 1950s, the T-54 was an excellent tank combining lethal firepower, excellent armor protection and good reliability while remaining a significantly smaller and lighter tank than its NATO contemporaries—the US M48 Patton tank and the British Centurion tank. The 100 mm D-10T tank gun of the T-54 and the T-55 was also more powerful than its Western counterparts at that time (the M48 Patton initially carried a 90 mm tank gun and the Centurion Mk. 3 carried the 20-pounder (84 mm) tank gun). This advantage lasted until the T-54 began to be countered by newer Western developments like the M60 main battle tank and upgraded Centurions and M48 Pattons using the 105 mm rifled Royal Ordnance L7 or M68 gun. Due to the lack of a sub-caliber round for the 100 mm gun, and the tank's simple fire-control system, the T-54/55 was forced to rely on HEAT shaped-charge ammunition to engage tanks at long range well into the 1960s, despite the relative inaccuracy of this ammunition at long ranges. The Soviets considered this acceptable for a potential European conflict, until the development of composite armor began reducing the effectiveness of HEAT warheads and sabot rounds were developed for the D-10T gun.

 

T-54/55 tanks also had their drawbacks. Small size was achieved at the expense of interior space and ergonomics, which caused practical difficulties, as it constrained the physical movements of the crew and slowed operation of controls and equipment. This was a common trait of most Soviet tanks and hence height limits were set for certain tank crew positions in the Soviet Army.

The low turret profile of the tanks prevented them from depressing their main guns by more than 5° since the breech would strike the ceiling when fired, which limited the ability to cover terrain by fire from a hull-down position on a reverse slope – a tactical flaw that became apparent (and costly) during the Arab-Israeli the Six-Day War. As in most tanks of that generation, the internal ammunition supply was not shielded, increasing the risk that any enemy penetration of the fighting compartment could cause a catastrophic secondary explosion. The original T-54 lacked NBC protection, a revolving turret floor (which complicated the crew's operations), and early models lacked gun stabilization. All of these problems were corrected in the otherwise largely identical T-55 tank.

Together, the T-54/55 tanks have been manufactured in the tens of thousands, and many still remain in reserve, or even in front-line use among lower-technology fighting forces. Abundance and age together make these tanks cheap and easy to purchase. While the T-54/55 is not a match for a modern main battle tank, armor and ammunition upgrades could dramatically improve the old vehicle's performance to the point that it cannot be dismissed on the battlefield.

 

During the Cold War, Soviet tanks never directly faced their NATO adversaries in combat in Europe, but it became involved in many other local conflicts. For instance, the Israeli army fought against it during the Six-Day War in 1967, and many Egyptian and Syrian T-54/55s were captured. Their numbers were so great that they were repaired, modernized and even put into IDF service or exported - around 200 T-54s, T-55s and PT-76s fell into Israeli hands at that time. T-54s and T-55s were modernized to Tiran 4 or 5 standard prior to the Yom Kippur War, some outfitted with a NATO-compatible Sharir (Royal Ordnance L7) 105 mm gun and other Western equipment and weapons.

 

During the Yom Kippur War in 1973, Israel captured additional T-54s and T-55s, and these new vehicles led to the Ti-51 MBT (also known as “Tiran 51”)and some minor variants. This time the modifications were more thorough and included fitting an American Detroit Diesel engine, new semi-automatic hydromechanical transmission equipped with a torque converter and new air cleaners. Blazer explosive reactive armor was added to the hull and turret, a Cadillac-Gage-Textron gun stabilization system was integrated as well as an EL-OP Matador computerized fire control system. Further changes included a new low-profile commander's cupola, IR detectors, Image-intensifier night vision equipment for the commander, gunner and driver, Spectronix fire detection and suppression system, new turret basket, extensive external stowage, modernized driver's station including replacement of tillers by a steering wheel, new final drives, new all-internal fuel system and improved suspension. Basically, the T-54/55 hull was filled with new equipment, creating an almost new and different MBT! Some of these tanks were also outfitted with a detachable dozer blade and designated Ti-51Sh.

 

A small series of the captured Yom Kippur War tanks was furthermore re-built as so-called Ti-52s during 1974 and 1975. This program was focused on recycling T-54 and T-55 hulls that had damaged turrets or main weapons. The upgrade centered around an American 90 mm M41 cannon with a T-shaped blast deflector as new main armament, a weapon that was available in abundance after the IDF’s gun uprating of its M48 Patton tanks to the bigger L7 gun. For the Ti-52 a new, welded turret was devised, tailored to the M41 gun and its M87 mount. It was longer but narrower than the original T-54/55 turtle shell turret, but kept its low profile, and it featured prominent storage boxes at the sides and at the back that made it look outwardly bigger than it actually was. The turret had a 360° manual and electric-hydraulic traverse, (24°/sec) and the gun could be depressed to -9° and elevated to +19°. 60 rounds were carried (Fifteen in the turret, the rest in the hull). Beyond standard HE and AP ammunition types, a special HVAP round with a muzzle velocity of 3,750 ft/s (1,140 m/s) was available, too, with a maximum penetration of 15 in (380 mm) of vertical armor at 30 ft and still 9½ in (241 mm) at 2.000 yards. This was complemented by a coaxial heavy Browning .50 cal (12.7 mm) machine gun with 500 rounds (plus 500 more in reserve), a weapon that has proven to be useful and effective in asymmetric warfare. An additional .30 AA machine gun on a swivel mount and with 5.000 rounds in store was placed on the turret roof, next to the commander cupola.

The main automotive upgrade was the replacement of the original V12-W-55 engine with 560 hp with the proven American Detroit Diesel 8V-71T developing 609 hp that had already been used for other Tiran conversions. With a slightly better power/weaight ration than the original T-55 (the lighter turret and engine saved around 2 tons), performanca and handling of the Ti-52 were improved.

Other modifications included a laser rangefinder placed over the barrel, thermal/night sights for the gunner and commander, a computerized FCS, new radio equipment, complete NBC protection lining and anti-RPG rubber side skirts that also suppressed dust clouds while on the move as well as German-made smoke dischargers.

 

These upgraded vehicles entered service in 1975. With the conversion and different systems came a new role: The Ti-52s went from being an MBT to a tank destroyer and scout/reconnaissance vehicle. The Ti-52 was an ‘ambush predator’ and would use its small size, low profile and good maneuverability to outflank the enemy, engage, and then withdraw along pre-arranged lanes of engagement. The Ti-52 was unofficially nicknamed “עקרב/Ak'rav” (Scorpion) and became a successful conversion, but by the end of the Cold War in the early 1990s, the tank (just like the other Israeli Tiran versions as well as the original T-54/55 family) had become obsolete. Its gun simply did not have the penetrative power to combat modern armored fighting vehicles. Nevertheless, the tank served the Israeli Army well for 15 years, and it was used in combat during the 1982 Lebanon War, where it proved to be highly effective if its tactical strengths of speed and low profile could be exploited. In direct open-field confrontation it turned out to be vulnerable, esp. to dedicated anti-tank weapons of the time (AT-3 Sagger and RPG-7).

 

All Tirans of various versions were withdrawn from active IDF service at the end of the 1980s. Some were sold and some were converted into Achzarit APCs. However, some Tirans are still in possession of the Israeli Army, possibly in reserve or in storage. The Israeli Army had 488 Tirans in 1990, 300 in 1995, 200 in 2000, 2001 and 2002 and still 261 in 2006 and 2008.

  

Specifications:

Crew: Four (commander, gunner, loader, driver)

Weight: 34 tonnes (37.5 ST)

Length: 8,42 m (27 ft 7 in) with gun forward

6,37 m (20ft 10 1/2 in) hull only

Width: 3.53 m (11 ft 6 3/4 in) with side skirts

3.37 m (11 ft 1 in) hull only

Height: 2.73 m (9 ft)

Ground clearance: 0.425 m (16.73 in)

Suspension: Torsion bar

Fuel capacity: 580 l internal, plus 320 l external and 400 l in two jettisonable rear drums

 

Armor:

16 – 120 mm (0.63 – 4.72 in)

 

Performance:

Maximum road speed: 54 km/h (33.5 mph)

Off-road speed: 38 km/h (24 mph)

Operational range: 500 km on road

Up to 715 km with two 200-liter auxiliary fuel tanks

Power/weight: 17.9 hp (12.9 kW)/tonne

 

Engine:

1× American Detroit Diesel 8V-71T with 609 hp (438 kW)

 

Transmission:

Mechanical [synchromesh], 5 forward, 1 reverse gears

 

Armament:

1× 90mm M41/T139 gun with 60 rounds

1x coaxial .50 cal (12.7 mm) machine gun with a total of 1.000 rounds

1x .30 AA machine gun on a swivel mount with a total of 5.000 rounds

2x4 smoke grenade launchers

 

The kit and its assembly:

This is actually the second submissiion to the "Captured!" group build at whatifmodellers.com in November 2020, but since my first project stalled (waiting for parts that I ordered while building) I started this second tank and it made very quick progress.

 

Thsi what-if model has a concrete background: Israel captured during the Six Day War and the Yom Kippur conflict a lot of various Arabian tanks, including T-54/55s, PT-76s and T-62. Their numbers were so huge that many were converted on a serial basis and adopted into Israeli service or exported. So, this one became one of those modified T-55s with a new turret/gun, ERA and anti-RPG rubber side skirts. Inspiration was a little the Austrian "Kürassier" tank hunter, and the idea that many surplus 90 mm guns from upgraded M48 Patton tanks must have been available. So, why not combine everything into a dedicated IDF tank hunter?

 

The basis is a Trumpeter kit which went together well, just some PSR was necessary around the rear. I omitted the extra fuel drums (Israel is a rather small country...) and added some ERA plates to the front glacis plate. The biggest change is a different turret and mudguards, which come from an upgraded, late Danish M41 Walker Bulldog conversion set from S&S Models. It consists of a resin turret and many white metal parts, including the gun and the mantlet, the side skirts and some other stuff. The set is actually intended for a diecast M41 (Amercom/Altaya, Hobbymaster or Warmaster) as basis, but the parts were easy to integrate into the T-55 hull. The turret ring is a little smaller, so that a few spacers hold the new turret in place. The turret itself was taken OOB (including the smoke grenade dischargers), I just added the light machine gun and the swivel mount on the roof. IIRC, they are leftover pieces from an Italeri Merkava (very suitable!). The white metal mantlet and the resin turret were "bridged" with a woven dust cover, made from tissue paper dipped in white glue.

 

Themudguards are white metal pieces and needed some tailoring to fit at the front. They are actually a little too short for the T-55 hull, but taken "as is" they offered a nice opening for the drive sprocket wheels at the rear, and I settled for this simple solution.

  

Painting and markings:

Painting was done with paints from the rattle can - I chose a "Sinai Grey" livery for operations in the Southern regions (in the North, IDF tanks tend to be painted olive drab). After the base coat in two very similar shades of dark sand /RAL 7008 and 8000) the model received a black ink washing and dry-brushing with khaki drill (Humbrol 72) and later some light grey (Revell 75); the camouflage nets in the storage baskets were painted in olive drab (Humbrol 155) for some contrast.

The markings/decals come from a generic IDF markings set from Peddinghaus Decals. The Israeli marking system entered service after 1960 and it is still used today by the IDF, even if the meanings of some symbols are still unknown or unclear.

The white stripes on the cannon barrel identify which battalion the tank belongs to. If the tank belongs to the 1st Battalion, it only has one stripe on the barrel, if it is the 2nd Battalion, it has two stripes, and so on.

The company the tank belongs to is determined by a white Chevron, a white ‘V’ shaped symbol painted on the sides of the vehicle sometimes with a black outline. If the M-50 belonged to the 1st Company, the Chevron was pointing downwards, if the tank belonged to the 2nd Company, the ‘V’ was pointing forward. If the Chevron was pointed upwards, the vehicle belonged to the 3rd Company, and, if it pointed backward it belonged to the 4th Company.

The company identification markings have different sizes according to the space a tank has on its sides. The M48 Patton had these symbols painted on the turret and were quite big, while the Centurion had them painted on the side skirts. The Shermans had little space on the sides, and therefore, the company identification markings were painted on the side boxes, or in some cases, on the sides of the gun mantlet.

The platoon identification markings are written on the turrets and are divided in two: a number from 1 to 4 and one of the first four letters of the Hebrew alphabet: א (Aleph), ב (bet), ג (gimel) and ד (dalet ). The Arabic number, from 1 to 4, indicates the platoon to which a tank belongs to and the letter, the tank number inside each platoon. Tank number 1 of the 1st Platoon would have painted on the turret the symbol ‘1א’, tank number 2 of 3rd Platoon would have painted on the turret the symbol ‘3ב’, and so on. The platoon’s command tank only has the number without the letter, or in rare cases, the platoon commander has א, i.e. the first tank of the platoon.

 

Once painting and decals were done, the kit received an overall coat with matt acrylic varnish and final assembly started - namely the attempt to mount the wheels and tracks inside/thorugh the mudguards. Fiddly affair, but it worked better than expected, and as a final step I dusted the model with sand-grey mineral artist pigments.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The ZSU-37-6 (“ZSU” stands for Zenitnaya Samokhodnaya Ustanovka / Зенитная Самоходная Установка = "anti-aircraft self-propelled mount"), also known as Object 511 during its development phase and later also as “ZSU-37-6 / Лена”, was a prototype for a lightly armored Soviet self-propelled, radar guided anti-aircraft weapon system that was to replace the cannon-armed ZSU-23-4 “Shilka” SPAAG.

The development of the "Shilka" began in 1957 and the vehicle was brought into service in 1965. The ZSU-23-4 was intended for AA defense of military facilities, troops, and mechanized columns on the march. The ZSU-23-4 combined a proven radar system, the non-amphibious chassis based on the GM-575 tracked vehicle, and four 23 mm autocannons. This delivered a highly effective combination of mobility with heavy firepower and considerable accuracy, outclassing all NATO anti-aircraft guns at the time. The system was widely fielded throughout the Warsaw Pact and among other pro-Soviet states. Around 2,500 ZSU-23-4s, of the total 6,500 produced, were exported to 23 countries.

 

The development of a potential successor started in 1970. At the request of the Soviet Ministry of Defense, the KBP Instrument Design Bureau in Tula started work on a new mobile anti-aircraft system as a replacement for the 23mm ZSU-23-4. The project was undertaken to improve on the observed shortcomings of the ZSU-23-4 (short range and no early warning) and to counter new ground attack aircraft in development, such as the A-10 Thunderbolt II, which was designed to be highly resistant to 23 mm cannons.

 

KBP studies demonstrated that a cannon of at least 30 mm caliber was necessary to counter these threats, and that a bigger caliber weapon would offer some more benefits. Firstly, to destroy a given target, such a weapon would only require from a third to a half of the number of shells that the ZSU-23-4’s 23 mm cannon would need. Secondly, comparison tests revealed that firing with an identical mass of 30 mm projectiles instead of 23 mm ammunition at a MiG-17 (or similarly at NATO's Hawker Hunter or Fiat G.91…) flying at 300 m/s would result in a 1.5 times greater kill probability. An increase in the maximum engagement altitude from 2,000 to 4,000 m and higher effectiveness when engaging lightly armored ground targets were also cited as potential benefits.

 

The initial requirements set for the new mobile weapon system were to achieve twice the performance in terms of the ZSU-23-4’s range, altitude and combat effectiveness. Additionally, the system should have a reaction time, from target acquisition to firing, no greater than 10 seconds, so that enemy helicopters that “popped up” from behind covers and launched fire-and-forget weapons at tanks or similar targets could be engaged effectively.

From these specifications KBP developed two schools of thought that proposed different concepts and respective vehicle prototypes: One design team followed the idea of an anti-aircraft complex with mixed cannon and missile armament, which made it effective against both low and high-flying targets but sacrificed short-range firepower. The alternative proposed by another team was a weapon carrier armed only with a heavy gatling-type gun, tailored to counter targets flying at low altitudes, esp. helicopters, filling a similar niche as the ZSU-23-4 and leaving medium to high altitude targets to specialized anti-aircraft missiles. The latter became soon known as “Object 511”.

 

Object 511 was based on the tracked and only lightly armored GM-577 chassis, produced by Minsk Tractor Works (MTZ). It featured six road wheels on each side, a drive sprocket at the rear and three return rollers. The chassis was primarily chosen because it was already in use for other anti-aircraft systems like the 2K11 “Krug” complex and could be taken more or less “off the rack”. A new feature was a hydropneumatic suspension, which was chosen in order to stabilize the chassis as firing platform and also to cope with the considerably higher all-up weight of the vehicle (27 tons vs. the ZSU-23-4’s 19 tons). Other standard equipment of Object 511 included heating, ventilation, navigational equipment, night vision aids, a 1V116 intercom and an external communications system with an R-173 receiver.

 

The hull was - as the entire vehicle - protected from small arms fire (7,62mm) and shell splinters, but not heavily armored. An NBC protection system was integrated into the chassis, as well as an automatic fire suppression system and an automatic gear change. The main engine bay, initially with a 2V-06-2 water-cooled multi-fuel diesel engine with 450 hp (331 kW) was in the rear. It was later replaced by a more powerful variant of the same engine with 510 hp (380 kW).

The driver sat in the front on the left side, with a small gas turbine APU to his right to operate the radar and hydraulic systems independently from the main engine.

Between these hull segments, the chassis carried a horseshoe-shaped turret with full 360° rotation. It was relatively large and covered more than the half of the hull’s roof, because it held the SPAAGs main armament and ammunition supply, the search and tracking radar equipment as well as a crew of two: the commander with a cupola on the right side and the gunner/radar operator on the left side, with the cannon installation and its feeding system between them. In fact, it was so large that Object 511’s engine bay was only accessible when the turret was rotated 90° to the side – unacceptable for an in-service vehicle (which would probably have been based on a bigger chassis), but accepted for the prototype which was rather focused on the turret and its complex weapon and radar systems.

 

Object 511’s centerpiece was the newly-developed Gryazev-Shipunov GSh-6-37 cannon, a heavy and experimental six-barreled 37mm gatling gun. This air-cooled weapon with electrical ignition was an upscaled version of the naval AO-18 30mm gun, which was part of an automated air defense system for ships, the AK-630 CIWS complex. Unlike most modern American rotary cannons, the GSh-6-37 was gas-operated rather than hydraulically driven, allowing it to "spin up" to maximum rate of fire more quickly. This resulted in more rounds and therefore weight of fire to be placed on target in a short burst, reduced reaction time and allowed hits even in a very small enemy engagement window.

 

The GSh-6-37 itself weighed around 524 kg (1.154 lb), the whole system, including the feed system and a full magazine, weighed 7,493 pounds (3,401 kg). The weapon had a total length of 5.01 m (16’ 7“), its barrels were 2.81 m (9’ 2½”) long. In Object 511’s turret it had an elevation between +80° and -11°, moving at 60°/sec, and a full turret rotation only took 3 seconds. Rate of fire was 4,500 rounds per minute, even though up to 5.500 RPM were theoretically possible and could be cleared with an emergency setting. However, the weapon would typically only fire short bursts of roundabout 50 rounds each, or longer bursts of 1-2 (maximum) seconds to save ammunition and to avoid overheating and damage – initially only to the barrels, but later also to avoid collateral damage from weapon operation itself (see below). Against ground targets and for prolonged, safe fire, the rate of fire could alternatively be limited to 150 RPM.

The GSh-6-37 fired 1.09 kg shells (each 338mm long) at 1,070 m/s (3.500 ft/s), developing a muzzle energy of 624,000 joules. This resulted in an effective range of 6,000 m (19.650 ft) against aerial and 7,000 m (23.0000 ft) against ground targets. Maximum firing range was past 7,160 m (23,490 ft), with the projectiles self-destructing beyond that distance. In a 1 sec. burst, the weapon delivered an impressive weight of fire of almost 100 kg.

The GSh-6-37 was belt-fed, with a closed-circuit magazine to avoid spilling casings all around and hurting friendly troops in the SPAAG’s vicinity. Typical types of ammunition were OFZT (proximity-fused incendiary fragmentation) and BZT (armor-piercing tracer, able to penetrate more than 60 mm of 30° sloped steel armor at 1.000 m/3.275’ distance). Since there was only a single ammunition supply that could not be switched, these rounds were normally loaded in 3:1 ratio—three OFZT, then one BZT, every 10th BZT round marked with a tracer. Especially the fragmentation rounds dealt extensive collateral damage, as the sheer numbers of fragments from detonating shells was sufficient to damage aircraft flying within a 200-meter radius from the impact center. This, coupled with the high density of fire, created a very effective obstacle for aerial targets and ensured a high hit probability even upon a casual and hurried attack.

 

The gun was placed in the turret front’s center, held by a massive mount with hydraulic dampers. The internal ammunition supply in the back of the turret comprised a total of 1.600 rounds, but an additional 800 rounds could be added in an external reserve feed bin, attached to the back of the turret and connected to the internal belt magazine loop through a pair of ports in the turret’s rear, normally used to reload the GSh-6-37.

 

A rotating, electronically scanned E-band (10 kW power) target acquisition radar array was mounted on the rear top of the turret that, when combined with the turret front mounted J-band (150 kW power) mono-pulse tracking radar, its dish antenna hidden under a fiberglass fairing to the right of the main weapon, formed the 1RL144 (NATO: Hot Shot) pulse-Doppler 3D radar system. Alongside, the 1A26 digital computer, a laser rangefinder co-axial to the GSh-6-37, and the 1G30 angle measurement system formed the 1A27 targeting complex.

Object 511’s target acquisition offered a 360-degree field of view, a detection range of around 18 km and could detect targets flying as low as 15 m. The array could be folded down and stowed when in transit, lying flat on the turret’s roof. The tracking radar had a range of 16 km, and a C/D-band IFF system was also fitted. The radar system was highly protected against various types of interference and was able to work properly even if there were mountains on the horizon, regardless of the background. The system made it possible to fire the GSh-6-37 on the move, against targets with a maximum target speed of up to 500 m/s, and it had an impressive reaction time of only 6-8 seconds.

Thanks to its computerized fire control system, the 1A27 was highly automated and reduced the SPAAG’s crew to only three men, making a dedicated radar operator (as on the ZSU-23-4) superfluous and saving internal space in the large but still rather cramped turret.

 

Development of Object 511 and its systems were kicked-off in 1972 but immediately slowed down with the introduction of the 9K33 “Osa” missile system, which seemed to fill the same requirement but with greater missile performance. However, after some considerable debate it was felt that a purely missile-based system would not be as effective at dealing with very low flying attack helicopters attacking at short range with no warning, as had been proven so successful in the 1973 Arab-Israeli War. Since the reaction time of a gun system was around 8–10 seconds, compared to approximately 30 seconds for a missile-based system, development of Object 511 was restarted in 1973.

 

A fully functional prototype, now officially dubbed “ZSU-37-6“ to reflect its role and armament and christened “Лена” (Lena, after the Russian river in Siberia), was completed in 1975 at the Ulyanovsk Mechanical Factory, but it took until 1976 that the capricious weapon and the 1A27 radar system had been successfully integrated and made work. System testing and trials were conducted between September 1977 and December 1978 on the Donguzskiy range, where the vehicle was detected by American spy satellites and erroneously identified as a self-propelled artillery system with a fully rotating turret (similar to the American M109), as a potential successor for the SAU-122/2S1 Gvozdika or SAU-152/2S3 Akatsiya SPGs that had been introduced ten years earlier, with a lighter weapon of 100-120mm caliber and an autoloader in the large turret.

 

The tests at Donguzskiy yielded mixed results. While the 1A27 surveillance and acquisition radar complex turned out to be quite effective, the GSh-6-37 remained a constant source of problems. The gun was highly unreliable and afforded a high level of maintenance. Furthermore, it had a massive recoil of 6.250 kp/61 kN when fired (the American 30 mm GAU-8 Avenger “only” had a recoil of 4.082 kp/40 kN). As a result, targets acquired by the 1A27 system were frequently lost after a single burst of fire, so that they had to be tracked anew before the next shot could be placed.

To make matters even words, the GSh-6-37 was noted for its high and often uncomfortable vibration and extreme noise, internally and externally. Pressure shock waves from the gun muzzles made the presence of unprotected personnel in the weapon’s proximity hazardous. The GSh-6-37’s massive vibrations shook the whole vehicle and led to numerous radio and radar system failures, tearing or jamming of maintenance doors and access hatches and the cracking of optical sensors. The effects were so severe that the gun’s impact led after six months to fatigue cracks in the gun mount, the welded turret hull, fuel tanks and other systems. One spectacular and fateful showcase of the gun’s detrimental powers was a transmission failure during a field test/maneuver in summer 1978 – which unfortunately included top military brass spectators and other VIPs, who were consequently not convinced of the ZSU-37-6 and its weapon.

 

The GSh-6-37’s persisting vibration and recoil problems, as well as its general unreliability if it was not immaculately serviced, could not be satisfactorily overcome during the 2 years of state acceptance trials. Furthermore, the large and heavy turret severely hampered Object 511’s off-road performance and handling, due to the high center of gravity and the relatively small chassis, so that the weapon system’s full field potential could not be explored. Had it found its way into a serial production vehicle, it would certainly have been based on a bigger and heavier chassis, e.g. from an MBT. Other novel features tested with Object 511, e.g. the hydropneumatic suspension and the automated 1A27 fire control system, proved to be more successful.

 

However, the troublesome GSh-6-37 temporarily attained new interest in 1979 through the Soviet Union’s engagement in Afghanistan, because it became quickly clear that conventional battle tanks, with long-barreled, large caliber guns and a very limited lift angle were not suited against small targets in mountainous regions and for combat in confined areas like narrow valleys or settlements. The GSh-6-37 appeared as a promising alternative weapon, and plans were made to mount it in a more strongly armored turret onto a T-72 chassis. A wooden mockup turret was built, but the project was not proceeded further with. Nevertheless, the concept of an armored support vehicle with high firepower and alternative armament would persist and lead, in the course of the following years, to a number of prototypes that eventually spawned the BMPT "Terminator" Tank Support Fighting Vehicle.

 

More tests and attempts to cope with the gun mount continued on a limited basis through 1979, but in late 1980 trials and development of Object 511 and the GSh-6-37 were stopped altogether: the 2K22 “Tunguska” SPAAG with mixed armament, developed in parallel, was preferred and officially accepted into service. In its original form, the 2K22 was armed with four 9M311 (NATO: SA-19 “Grison”) short-range missiles in the ready-to-fire position and two 2A38 30mm autocannons, using the same 1A27 radar system as Object 511. The Tunguska entered into limited service from 1984, when the first batteries, now armed with eight missiles, were delivered to the army, and gradually replaced the ZSU-23-4.

 

Having become obsolete, the sole Object 511 prototype was retired in 1981 and mothballed. It is today part of the Military Technical Museum collection at Ivanovskaya, near Moscow, even though not part of the public exhibition and in a rather derelict state, waiting for restoration and eventual display.

  

Specifications:

Crew: Three (commander, gunner, driver)

Weight: about 26,000 kg (57,300 lb)

Length: 7.78 m (25 ft 5 1/2 in) with gun facing forward

6.55 m (21 ft 5 1/2 in) hull only

Width: 3.25 m (10 ft 8 in)

Height: 3.88 m (12 ft 9 in) overall,

2.66 m (8 8 1/2 ft) with search radar stowed

Suspension: Hydropneumatic

Ground clearance: 17–57 cm

Fuel capacity: 760 l (200 US gal, 170 imp gal)

 

Armor:

Unknown, but probably not more than 15 mm (0.6”)

 

Performance:

Speed: 65 km/h (40 mph) maximum on the road

Climbing ability: 0.7 m (2.3')

Maximum climb gradient: 30°

Trench crossing ability: 2.5 m (8.2')

Fording depth: 1.0 m (3.3')

Operational range: 500 km (310 mi)

Power/weight: 24 hp/t

 

Engine:

1× 2V-06-2S water-cooled multi-fuel diesel engine with 510 hp (380 kW)

1× auxiliary DGChM-1 single-shaft gas turbine engine with 70 hp at 6,000 rpm,

connected with a direct-current generator

 

Transmission:

Hydromechanical

 

Armament:

1× GSh-6-37 six-barreled 37mm (1.5 in) Gatling gun with 1.600 rounds,

plus 800 more in an optional, external auxiliary magazine

  

The kit and its assembly:

This fictional SPAAG was intended as a submission to the “Prototypes” group build at whatifmodellers.com in August 2020. Inspiration came from a Trumpeter 1:72 2P25/SA-6 launch platform which I had recently acquired with a kit lot – primarily because of the chassis, which would lend itself for a conversion into “something else”.

 

The idea to build an anti-aircraft tank with a gatling gun came when I did research for my recent YA-14 build and its armament. When checking the American GAU-8 cannon from the A-10 I found that there had been plans to use this weapon for a short-range SPAAG (as a replacement for the US Army’s M163), and there had been plans for even heavier weapons in this role. For instance, there had been the T249 “Vigilante” prototype: This experimental system consisted of a 37 mm T250 six-barrel Gatling gun, mounted on a lengthened M113 armored personnel carrier platform, even though with a very limited ammunition supply, good only for 5 sec. of fire – it was just a conceptual test bed. But: why not create a Soviet counterpart? Even more so, since there is/was the real-world GSh-6-30 gatling gun as a potential weapon, which had, beyond use in the MiG-27, also been used in naval defense systems. Why not use/create an uprated/bigger version, too?

 

From this idea, things evolved in a straightforward fashion. The Trumpeter 2P25 chassis and hull were basically taken OOB, just the front was modified for a single driver position. However, the upper hull had to be changed in order to accept the new, large turret instead of the triple SA-6 launch array.

 

The new turret is a parts combination: The basis comes from a Revell 1:72 M109 howitzer kit, the 155 mm barrel was replaced with a QuickBoost 1:48 resin GSh-6-30 gun for a MiG-27, and a co-axial laser rangefinder (a piece of styrene) was added on a separate mount. Unfortunately, the Revell kit does not feature a movable gun barrel, so I decided to implant a functional joint, so that the model’s weapon could be displayed in raised and low position – primarily for the “action pictures”. The mechanism was scratched from styrene tubes and a piece of foamed plastic as a “brake” that holds the weapon in place and blocks the view into the turret from the front when the weapon is raised high up. The hinge was placed behind the OOB gun mantle, which was cut into two pieces and now works as in real life.

Further mods include the dish antenna for the tracking radar (a former tank wheel), placed on a disc-shaped pedestal onto the turret front’s right side, and the retractable rotating search radar antenna, scratched from various bits and pieces and mounted onto the rear of the turret – its roof had to be cleaned up to make suitable space next to the commander’s cupola.

 

Another challenge was the adaptation of the new turret to the hull, because the original SA-6 launch array has only a relatively small turret ring, and it is placed relatively far ahead on the hull. The new, massive turret had to be mounted further backwards, and the raised engine cowling on the back of the hull did not make things easier.

As a consequence, I had to move the SA-6 launcher ring bearing backwards, through a major surgical intervention in the hull roof (a square section was cut out, shortened, reversed and glued back again into the opening). In order to save the M109’s turret ring for later, I gave it a completely new turret floor and transplanted the small adapter ring from the SA-6 launch array to it. Another problem arose from the bulged engine cover: it had to be replaced with something flat, otherwise the turret would not have fitted. I was lucky to find a suitable donor in the spares box, from a Leopard 1 kit. More complex mods than expected, and thankfully most of the uglier changes are hidden under the huge turret. However, Object 511 looks pretty conclusive and menacing with everything in place, and the weapon is now movable in two axis’. The only flaw is a relatively wide gap between the turret and the hull, due to a step between the combat and engine section and the relatively narrow turret ring.

  

Painting and markings:

AFAIK, most Soviet tank prototypes in the Seventies/Eighties received a simple, uniform olive green livery, but ,while authentic, I found this to look rather boring. Since my “Object 511” would have taken part in military maneuvers, I decided to give it an Eighties Soviet Army three-tone camouflage, which was introduced during the late Eighties. It consisted of a relatively bright olive green, a light and cold bluish grey and black-grey, applied in large patches.

This scheme was also adapted by the late GDR’s Volksarmee (called “Verzerrungsanstrich” = “Distortion scheme”) and maybe – even though I am not certain – this special paint scheme might only have been used by Soviet troops based on GDR soil? However, it’s pretty unique and looks good, so I adapted it for the model.

 

Based upon visual guesstimates from real life pictures and some background info concerning NVA tank paint schemes, the basic colors became Humbrol 86 (Light Olive Green; RAL 6003), Revell 57 (Grey; RAL 7000) and Revell 06 (Tar Black; RAL 9021). Each vehicle had an individual paint scheme, in this case it was based on a real world NVA lorry.

 

On top of the basic colors, a washing with a mix of red brown and black acrylic paint was applied, and immediately dried with a soft cotton cloth so that it only remained in recesses and around edges, simulating dirt and dust. Some additional post-shading with lighter/brighter versions of the basic tones followed.

Decals came next – the Red Stars were a rather dramatic addition and came from the Trumpeter kit’s OOB sheet. The white “511” code on the flanks was created with white 3 mm letters from TL Modellbau.

 

The model received a light overall dry brushing treatment with light grey (Revell 75). As a finishing touch I added some branches as additional camouflage. These are bits of dried moss (collected on the local street), colorized with simple watercolors and attached with white glue. Finally, everything was sealed and stabilized with a coat of acrylic matt varnish and some pigments (a greyish-brown mix of various artist mineral pigments) were dusted into the running gear and onto the lower hull surfaces with a soft brush.

  

An effective kitbashing, and while mounting the different turret to the hull looks simple, the integration of unrelated hull and turret so that they actually fit and “work” was a rather fiddly task, and it’s effectively not obvious at all (which is good but “hides” the labour pains related to the mods). However, the result looks IMHO good, like a beefed-up ZSU-23-4 “Schilka”, just what this fictional tank model is supposed to depict.

Based out of Byron, California and flying the L-39, the Patriot Jet Team is a big hit no matter where they go. They use a computerized system for their red, white, and blue smoke generators to add to their precision.

 

The team is sponsored by Fry's Electronics and Hot Line Construction...two of the team members are former US Air Force Thunderbirds.

 

Camera: Canon EOS 40D

Lens: Canon 400mm f/5.6L

Exposure: 1/1600 Second @ f/8.0 ISO200 EV -2/3

 

This image is © Douglas Bawden Photography, please do not use without prior permission.

 

Enjoy my photos and please feel free to comment. The only thing that I ask is no large, flashy graphics in the comments.

 

Visit My Website - Visit My Blog

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

Here is my latest marble machine. It is called Mr. Marbles because the bowtie reminds me of Mr. Peanut. This machine is made from Maple, Cherry, and Zebrawood for the bowtie, however each one I make will have a different species of wood for the bowtie to give them each a bit of uniqueness. Every part has been made by hand, no cnc milling or computerized design was used.

 

Here is the youtube video:

www.youtube.com/watch?v=GBG3hctA3P8&feature=youtu.be

 

Enjoy!

Former meatpacking plant that is now a haunted house.

Located at 1102 W. Grant Rd., Tucson, AZ

The actual mural has faded over time. This is my

attempt at computerized restoration.

This is a model from the near future with a computerized ammo, temperature, and range readout and a different ammo box.

Enjoy!

Port of Itajai

Vessel Berthed (Navio Atracado)

 

Vessel's Details (Detalhes do Navio)

Ship Type (tipo): Cargo - Hazard A (Major) - Full Container

Year Built (ano de construção): 2008

Length x Breadth (Comprimento x Largura): 261 m X 32 m

DeadWeight (Tonelagem Bruta): 53500 t

Speed recorded (Max / Average) (Velocidade - máx /média): 22.6 / 18.7 knots

Call Sign: A8OT3

IMO: 9362449, MMSI: 636091502

 

Shipbuilder Name (Construtor): Hyundai Samho Heavy Industries

Owner/Agent (Proprietário/Agente): MPC Munchmeyer Petersen Steamship GmbH & Co KG

Flag (Bandeira): Liberia

 

Berth (Berço): Portonave

A.T.B. (Atracação): Jan 11,2010

 

.

 

The Port of Itajai is a Brazilian port located in the City of Itajai, in the State of Santa Catarina, south Brazil.

 

This is the second largest port of Brazil in handling containers. It acts as export port and most of the Santa Catarina´s production passes through it.

 

The port of Itajai has over 15,000 m2 of covered area to warehouse products and 38,000 m2 of open area to warehouse containers. The users of the Itajai Port have at their disposal over 70 equipments to assist loadings and unloadings of 1 to 37 tons.

 

The port follows international safety standards. The operational units are fully computerized.

 

In 2010, the Port of Itajai handled a total of 954.38 thousand TEUs (Twenty-foot Equivalent Unit – international unit equivalent to a 20-foot container). Over 1.25 thousand vessels called at the Port of Itajai, including cargo and passenger vessels.

Here is some info about the fabric from her website: The fabric is an exclusive Lee Andersen fabric design. It is made by the only company of its type remaining in America. The process begins by combining fluffy tufts of fiber to match Lee’s original painting colors. The fibers for each color are then twisted into yarn like ‘roving’ and wound into giant barrels. The yarns are then guided to each stitch placement by an amazing computerized knitting machine. It ‘reads’ Lee’s painting and knits thousands of precise stitches to create a soft wearable version of her original art. The garment itself is also sewn in Lee’s studio in America.

Port of Itajai

Vessel leaving the harbor (saindo do porto)

 

Vessel's Details (Detalhes do Navio)

Ship Type (tipo): Cargo - Hazard D (Recognizable)

Year Built (ano de construção): 1987

Length x Breadth (Comprimento x Largura): 195 m X 28 m

DeadWeight (Tonelagem Bruta): 24362 t

Speed recorded (Max / Average) (Velocidade - máx /média): 15.6 / 14.8 knots

Call Sign: HPNP

IMO: 8310530, MMSI: 352288000

 

Shipbuilder Name (Construtor): Astilleros y Fabricas Navales del Estado S.A.,

 

Ensenada/Mexico

Owner/Agent (Proprietário/Agente): Mediterranean Shipping Co. S.A., Geneva/Switzerland

Flag (Bandeira): Panama

 

E.T.D. (Previsão de saída): Jan 11,2010

 

.

 

The Port of Itajai is a Brazilian port located in the City of Itajai, in the State of Santa Catarina, south Brazil.

 

This is the second largest port of Brazil in handling containers. It acts as export port and most of the Santa Catarina´s production passes through it.

 

The port of Itajai has over 15,000 m2 of covered area to warehouse products and 38,000 m2 of open area to warehouse containers. The users of the Itajai Port have at their disposal over 70 equipments to assist loadings and unloadings of 1 to 37 tons.

 

The port follows international safety standards. The operational units are fully computerized.

 

In 2010, the Port of Itajai handled a total of 954.38 thousand TEUs (Twenty-foot Equivalent Unit – international unit equivalent to a 20-foot container). Over 1.25 thousand vessels called at the Port of Itajai, including cargo and passenger vessels.

The sign is on the south side of the building. Another ghost sign adorns the north facade.

 

The building at 623 S. Wabash Ave. was constructed in 1895 and designed by Solon S. Beman or the Studebaker Brothers Carriage Company of Fort Wayne, Indiana as its Chicago regional office and warehouse facility. It was later owned by the Brunswick Company, makers of wood furnishings and built-in furniture for libraries, universities and a variety of public commercial and governmental facilities. The building was acquired by Columbia College in 1983 and now houses classrooms, academic offices, a computerized newsroom, sciences laboratories, art studios, stage and costume design workshops and two public gallery spaces.

Port of Itajai

Vessel Berthed (Navio Atracado)

 

Vessel's Details (Detalhes do Navio)

Ship Type (tipo): Cargo - Full Container

Year Built (ano de construção): 1996

Length x Breadth (Comprimento x Largura): 242 m X 32 m

DeadWeight (Tonelagem Bruta): 42966 t

Speed recorded (Max / Average) (Velocidade - máx /média): 21.7 / 21.1 knots

Call Sign: 3EDK7

IMO: 9123166, MMSI: 371602000

 

Shipbuilder Name (Construtor): Samsung Heavy Industries Ulsan / South Korea

Owner/Agent (Proprietário/Agente): Mediterranean Shipping Co. S.A., Geneva/Switzerland

Flag (Bandeira): Panama

 

Berth (Berço): Portonave

A.T.B. (Atracação): Jan 11,2010

 

.

 

The Port of Itajai is a Brazilian port located in the City of Itajai, in the State of Santa Catarina, south Brazil.

 

This is the second largest port of Brazil in handling containers. It acts as export port and most of the Santa Catarina´s production passes through it.

 

The port of Itajai has over 15,000 m2 of covered area to warehouse products and 38,000 m2 of open area to warehouse containers. The users of the Itajai Port have at their disposal over 70 equipments to assist loadings and unloadings of 1 to 37 tons.

 

The port follows international safety standards. The operational units are fully computerized.

 

In 2010, the Port of Itajai handled a total of 954.38 thousand TEUs (Twenty-foot Equivalent Unit – international unit equivalent to a 20-foot container). Over 1.25 thousand vessels called at the Port of Itajai, including cargo and passenger vessels.

Bangladesh Railway (BR) started its journey in this portion of the sub-continent 142 years ago. Historically Bangladesh owned the Railway network, which was a part of the sub-continent. BR has recently introduced train related information using IVR (Interactive Voice Response) system through Mobile Phone and has taken initiative for computerization of pay roll, asset management, accounting, inventory control etc. which are the steps towards the implementation of Digital Bangladesh.

 

In Bangladesh, due to the huge population in the country, an inadequate number of seats on the local trains, and punishing poverty, some people are forced to borrow a ride now and then. Some are so poor that they cant buy ticket even. They ride on the roof top as well as between the carriages of Train or seat in floor between two carriages, canteen, beside door area every where.

 

--------------------------------------------------------------------------------------------------------------------------------------

All rights reserved. Do not use any of the images in this stream without my permission.

Contact me at ashikmasud@gmail.com | Facebook | Twitter

Atlanta, GA / April 2015

 

Photographed for The Marshall Project & The Atlantic.

 

How a computerized assessment can help determine the fate of men who’ve been accused of sexually abusing children.

Computerized alternate reality and technologically enhanced responses.

 

My newest Tron creation. Man has it been a while since I made figure for Tron. :D

 

Also new vid: www.youtube.com/watch?v=pXB138Y5fP0

Boeing's B-29 Superfortress was the most sophisticated, propeller-driven, bomber to fly during World War II, and the first bomber to house its crew in pressurized compartments. Boeing installed very advanced armament, propulsion, and avionics systems into the Superfortress. During the war in the Pacific Theater, the B-29 delivered the first nuclear weapons used in combat. On August 6, 1945, Colonel Paul W. Tibbets, Jr., in command of the Superfortress Enola Gay, dropped a highly enriched uranium, explosion-type, "gun-fired," atomic bomb on Hiroshima, Japan. Three days later, Major Charles W. Sweeney piloted the B-29 Bockscar and dropped a highly enriched plutonium, implosion-type atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. On August 14, 1945, the Japanese accepted Allied terms for unconditional surrender.

 

In the late 1930s, U. S. Army Air Corps leaders recognized the need for very long-range bombers that exceeded the performance of the B-17 Flying Fortress. Several years of preliminary studies paralleled a continuous fight against those who saw limited utility in developing such an expensive and unproven aircraft but the Air Corps issued a requirement for the new bomber in February 1940. It described an airplane that could carry a maximum bomb load of 909 kg (2,000 lb) at a speed of 644 kph (400 mph) a distance of at least 8,050 km (5,000 miles). Boeing, Consolidated, Douglas, and Lockheed responded with design proposals. The Army was impressed with the Boeing design and issued a contract for two flyable prototypes in September 1940. In April 1941, the Army issued another contract for 250 aircraft plus spare parts equivalent to another 25 bombers, eight months before Pearl Harbor and nearly a year-and-a-half before the first Superfortress would fly.

 

Among the design's innovations was a long, narrow, high-aspect ratio wing equipped with large Fowler-type flaps. This wing design allowed the B-29 to cruise at high speeds at high altitudes but maintained comfortable handling characteristics during slower airspeeds necessary during takeoff and landing. More revolutionary was the size and sophistication of the pressurized sections of the fuselage: the flight deck forward of the wing, the gunner's compartment aft of the wing, and the tail gunner's station. For the crew, flying at altitudes above 18,000 feet became much more comfortable as pressure and temperature could be regulated in the crew work areas. To protect the Superfortress, Boeing designed a remote-controlled, defensive weapons system. Engineers placed five gun turrets on the fuselage: a turret above and behind the cockpit that housed two .50 caliber machine guns (four guns in later versions), and another turret aft near the vertical tail equipped with two machine guns; plus two more turrets beneath the fuselage, each equipped with two .50 caliber guns. One of these turrets fired from behind the nose gear and the other hung further back near the tail. Another two .50 caliber machine guns and a 20-mm cannon (in early versions of the B-29) were fitted in the tail beneath the rudder. Gunners operated these turrets by remote control--a true innovation. They aimed the guns using computerized sights, and each gunner could take control of two or more turrets to concentrate firepower on a single target.

 

Boeing also equipped the B-29 with advanced radar equipment and avionics. Depending on the type of mission, a B-29 carried the AN/APQ-13 or AN/APQ-7 Eagle radar system to aid bombing and navigation. These systems were accurate enough to enable relatively accurate bombing through cloud layers that completely obscured the target. The B-29B was equipped with the AN/APG-15B airborne radar gun sighting system mounted in the tail to assist in providing accurate defense against enemy fighters attacking at night. B-29s also routinely carried as many as twenty different types of radios and navigation devices.

 

The first XB-29 took off at Boeing Field in Seattle on September 21, 1942. By the end of the year the second aircraft was ready for flight. Fourteen service-test YB-29s followed as production began to accelerate. Building this advanced bomber required massive logistics. Boeing built new B-29 plants at Renton, Washington, and Wichita, Kansas, while Bell built a new plant at Marietta, Georgia, and Martin built one in Omaha, Nebraska. Both Curtiss-Wright and the Dodge automobile company vastly expanded their manufacturing capacity to build the bomber's powerful and complex Curtiss-Wright R-3350 turbo supercharged engines. The program required thousands of sub-contractors but with extraordinary effort, it all came together, despite major teething problems. By April 1944, the first operational B-29s of the newly formed 20th Air Force began to touch down on dusty airfields in India. By May, 130 B-29s were operational. In June, 1944, less than two years after the initial flight of the XB-29, the U. S. Army Air Forces (AAF) flew its first B-29 combat mission against targets in Bangkok, Thailand. This mission (longest of the war to date) called for 100 B-29s but only 80 reached the target area. The AAF lost no aircraft to enemy action but bombing results were mediocre. The first bombing mission against the Japanese main islands since Lt. Col. "Jimmy" Doolittle's raid against Tokyo in April 1942, occurred on June 15, again with poor results. This was also the first mission launched from airbases in China.

 

With the fall of Saipan, Tinian, and Guam in the Mariana Islands chain in August 1944, the AAF acquired airbases that lay several hundred miles closer to mainland Japan. Late in 1944, the AAF moved the XXI Bomber Command, flying B-29s, to the Marianas and the unit began bombing Japan in December. However, they employed high-altitude, precision, bombing tactics that yielded poor results. The high altitude winds were so strong that bombing computers could not compensate and the weather was so poor that rarely was visual target acquisition possible at high altitudes. In March 1945, Major General Curtis E. LeMay ordered the group to abandon these tactics and strike instead at night, from low altitude, using incendiary bombs. These firebombing raids, carried out by hundreds of B-29s, devastated much of Japan's industrial and economic infrastructure. Yet Japan fought on. Late in 1944, AAF leaders selected the Martin assembly line to produce a squadron of B-29s codenamed SILVERPLATE. Martin modified these Superfortresses by removing all gun turrets except for the tail position, removing armor plate, installing Curtiss electric propellers, and modifying the bomb bay to accommodate either the "Fat Man" or "Little Boy" versions of the atomic bomb. The AAF assigned 15 Silverplate ships to the 509th Composite Group commanded by Colonel Paul Tibbets. As the Group Commander, Tibbets had no specific aircraft assigned to him as did the mission pilots. He was entitled to fly any aircraft at any time. He named the B-29 that he flew on 6 August Enola Gay after his mother. In the early morning hours, just prior to the August 6th mission, Tibbets had a young Army Air Forces maintenance man, Private Nelson Miller, paint the name just under the pilot's window.

 

Enola Gay is a model B-29-45-MO, serial number 44-86292. The AAF accepted this aircraft on June 14, 1945, from the Martin plant at Omaha (Located at what is today Offut AFB near Bellevue), Nebraska. After the war, Army Air Forces crews flew the airplane during the Operation Crossroads atomic test program in the Pacific, although it dropped no nuclear devices during these tests, and then delivered it to Davis-Monthan Army Airfield, Arizona, for storage. Later, the U. S. Air Force flew the bomber to Park Ridge, Illinois, then transferred it to the Smithsonian Institution on July 4, 1949. Although in Smithsonian custody, the aircraft remained stored at Pyote Air Force Base, Texas, between January 1952 and December 1953. The airplane's last flight ended on December 2 when the Enola Gay touched down at Andrews Air Force Base, Maryland. The bomber remained at Andrews in outdoor storage until August 1960. By then, concerned about the bomber deteriorating outdoors, the Smithsonian sent collections staff to disassemble the Superfortress and move it indoors to the Paul E. Garber Facility in Suitland, Maryland.

 

The staff at Garber began working to preserve and restore Enola Gay in December 1984. This was the largest restoration project ever undertaken at the National Air and Space Museum and the specialists anticipated the work would require from seven to nine years to complete. The project actually lasted nearly two decades and, when completed, had taken approximately 300,000 work-hours to complete. The B-29 is now displayed at the National Air and Space Museum, Steven F. Udvar-Hazy Center.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".

 

The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.

 

But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.

 

Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.

Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.

 

Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.

The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.

The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.

 

The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.

 

AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.

 

Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.

 

The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.

 

Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.

 

Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.

 

While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.

 

USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.

 

The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.

 

Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.

 

International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.

  

General F-24A characteristics:

Crew: 1 pilot

Length: 47 ft 4 in (14.4 m)

Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)

Height: 13 ft 10 in (4.20 m)

Wing area: 36.55 m² (392 ft²)

Empty weight: 13.150 lb (5.090 kg)

Loaded weight: 15.480 lb (6.830 kg)

Max. take-off weight: 27.530 lb (12.500 kg)

 

Powerplant:

1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner

 

Performance

Maximum speed: Mach 2+

Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks

Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks

Service ceiling: 55,000 ft (16,800 m)

Rate of climb: 52,800 ft/min (255 m/s)

Wing loading: 70.0 lb/ft² (342 kg/m²)

Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)

 

Armament

1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG

Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.

  

The kit and its assembly:

A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.

 

As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.

I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.

 

Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):

● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear

● Fin and nose cone from an Italeri F-16A

● Inner wings from a (vintage) Hasegawa MiG-21F

● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)

 

The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.

 

The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?

 

Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.

 

The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.

 

For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.

 

All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.

 

Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.

 

The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.

  

Painting and markings:

At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.

 

A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).

 

“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.

 

The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.

 

Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.

  

Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.

When the traditional ferris wheel lights gave way to computerized light displays a few years back, I realized it brought up a dilemma...the colors and patterns change every second and with every shot, so when you shoot a couple of dozen photos, how do you pick out the best, when they are all cool in their own way...LOL Here's just one of my picks from the other night!

Tomé esta foto en una tienda donde hay mucha clientela maya de Guatemala, en el distrito de Fruitvale de Oakland, CA. Es buen lugar para ver la última moda en trajes típicos. Me pareció que esta mujer no hablaba mucho español, pero me dejó tomar su foto.

Su corte (falda) tiene franjas rojas en el urdimbre, un estilo nuevo, y ha hecho diseños geográficos nuevos en el corte y en el huipil. Todo cambia con estos trajes y el cambio es constante.

 

Tiene ropa tejida por ella misma en telares de cintura, menos la faja, que es computarizada, tristemente, y el rebozo, que fue tejido industrialmente, y luego una persona trenzó los flecos a mano. Lleva su bebé en el rebozo, y su celular en la faja, como siempre.

 

I took this picture in a store in Fruitvale, Oakland, CA, where there is lots of Guatemalan Maya clientele. She didn’t appear to speak much Spanish but she let me take her picture.

 

She has the same backstrap woven clothing as the others from this town, except the computerized belt :( unfortunately, and her shawl, which was industrially woven, then someone braided the fringe by hand. She carries her baby in that shawl and her cell phone in her belt, like all Maya women.

 

Santiago Chimaltenango, Huehuetenango, GUATEMALA (Mam) in Oakland, CA

Orion ED102T CF Triplet Apochromatic Refractor Telescope.

Orion Sirius German-equatorial Computerized Goto Mount

 

Images aquired using APT

Guided with Starshoot Autoguider and 50mm guide scope

Aligned and stacked with Nebulosity

Post-process with StarTools GIMP & Windows Live Photo

 

21 total frames: (2hrs 25min)

8x600 iso 800 Canon T3(modified) with Astronomik 12nm Ha clip-in filter w/Orion ST-80T

13x300 iso 800 Canon T3i no filters w/Orion ED 102mm

 

sites.google.com/site/astrochuck123

 

*****Check out my "terrestrial" pictures on:

www.flickr.com/photos/78400750@N07/

 

When Reggie Jackson wanted a Gasser-era 1941 Willys, he went to his old friend Roy Brizio to cook up some retro magic recalling the days when names like Stone, Woods and Cook, Big John Mazmanian K.S. Pittman and Ohio George Montgomery ruled the quarter mile. Based on a 2 by 4 inch box frame, this superb creation has been updated with a coil-over suspension in place of the traditional leaf units. The drive train comprises a 6-71 supercharged 426 Hemi with a computerized four port Hilborn injector for maximum driveability; a Chevrolet Turbo 400 automatic cranks power back to a Ford 9-inch rear. Tradition also dictated the use of a straight front axle and original magnesium Halibrands, backed in this case by modern Wilwood 4-wheel disc brakes. The steel body is fitted with fiberglas rear fenders and a one piece Outlaw Performance front end, and the interior sports the perfect combination of lightweight padded buckets, a Moon gas pedal and full chrome roll cage. Cloaked in stunning Candy Red, this perfectly rendered old school Willys looks set to blast back in time down the old Fremont drag strip.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".

 

The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.

 

But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.

 

Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.

Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.

 

Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.

The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.

The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.

 

The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.

 

AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.

 

Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.

 

The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.

 

Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.

 

Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.

 

While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.

 

USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.

 

The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.

 

Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.

 

International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.

  

General F-24A characteristics:

Crew: 1 pilot

Length: 47 ft 4 in (14.4 m)

Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)

Height: 13 ft 10 in (4.20 m)

Wing area: 36.55 m² (392 ft²)

Empty weight: 13.150 lb (5.090 kg)

Loaded weight: 15.480 lb (6.830 kg)

Max. take-off weight: 27.530 lb (12.500 kg)

 

Powerplant

1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner

 

Performance

Maximum speed: Mach 2+

Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks

Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks

Service ceiling: 55,000 ft (16,800 m)

Rate of climb: 52,800 ft/min (255 m/s)

Wing loading: 70.0 lb/ft² (342 kg/m²)

Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)

 

Armament

1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG

Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.

  

The kit and its assembly:

A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.

 

As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.

I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.

 

Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):

● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear

● Fin and nose cone from an Italeri F-16A

● Inner wings from a (vintage) Hasegawa MiG-21F

● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)

 

The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.

 

The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?

 

Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.

 

The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.

 

For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.

 

All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.

 

Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.

 

The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.

  

Painting and markings:

At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.

 

A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).

 

“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.

 

The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.

 

Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.

  

Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.

a mixed Freight Rake...

PF-1 side MG of IZZATNAGAR..

at distance see-computerized reservation center and beautiful Night Lights..

and a tiny FOB ..and distance view towards nainitaal side.

An early generation automatic bowling scorer, the Brunswick AS 80, from the 1980s. These were installed by the Playdrome in Cherry Hill, NJ soon after it took over the Super Bowl. The console was much larger then, today it is just a keyboard in a pedestal. The large overhead display is now a flat screen display.

Boeing's B-29 Superfortress was the most sophisticated, propeller-driven, bomber to fly during World War II, and the first bomber to house its crew in pressurized compartments. Boeing installed very advanced armament, propulsion, and avionics systems into the Superfortress. During the war in the Pacific Theater, the B-29 delivered the first nuclear weapons used in combat. On August 6, 1945, Colonel Paul W. Tibbets, Jr., in command of the Superfortress Enola Gay, dropped a highly enriched uranium, explosion-type, "gun-fired," atomic bomb on Hiroshima, Japan. Three days later, Major Charles W. Sweeney piloted the B-29 Bockscar and dropped a highly enriched plutonium, implosion-type atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. On August 14, 1945, the Japanese accepted Allied terms for unconditional surrender.

 

In the late 1930s, U. S. Army Air Corps leaders recognized the need for very long-range bombers that exceeded the performance of the B-17 Flying Fortress. Several years of preliminary studies paralleled a continuous fight against those who saw limited utility in developing such an expensive and unproven aircraft but the Air Corps issued a requirement for the new bomber in February 1940. It described an airplane that could carry a maximum bomb load of 909 kg (2,000 lb) at a speed of 644 kph (400 mph) a distance of at least 8,050 km (5,000 miles). Boeing, Consolidated, Douglas, and Lockheed responded with design proposals. The Army was impressed with the Boeing design and issued a contract for two flyable prototypes in September 1940. In April 1941, the Army issued another contract for 250 aircraft plus spare parts equivalent to another 25 bombers, eight months before Pearl Harbor and nearly a year-and-a-half before the first Superfortress would fly.

 

Among the design's innovations was a long, narrow, high-aspect ratio wing equipped with large Fowler-type flaps. This wing design allowed the B-29 to cruise at high speeds at high altitudes but maintained comfortable handling characteristics during slower airspeeds necessary during takeoff and landing. More revolutionary was the size and sophistication of the pressurized sections of the fuselage: the flight deck forward of the wing, the gunner's compartment aft of the wing, and the tail gunner's station. For the crew, flying at altitudes above 18,000 feet became much more comfortable as pressure and temperature could be regulated in the crew work areas. To protect the Superfortress, Boeing designed a remote-controlled, defensive weapons system. Engineers placed five gun turrets on the fuselage: a turret above and behind the cockpit that housed two .50 caliber machine guns (four guns in later versions), and another turret aft near the vertical tail equipped with two machine guns; plus two more turrets beneath the fuselage, each equipped with two .50 caliber guns. One of these turrets fired from behind the nose gear and the other hung further back near the tail. Another two .50 caliber machine guns and a 20-mm cannon (in early versions of the B-29) were fitted in the tail beneath the rudder. Gunners operated these turrets by remote control--a true innovation. They aimed the guns using computerized sights, and each gunner could take control of two or more turrets to concentrate firepower on a single target.

 

Boeing also equipped the B-29 with advanced radar equipment and avionics. Depending on the type of mission, a B-29 carried the AN/APQ-13 or AN/APQ-7 Eagle radar system to aid bombing and navigation. These systems were accurate enough to enable relatively accurate bombing through cloud layers that completely obscured the target. The B-29B was equipped with the AN/APG-15B airborne radar gun sighting system mounted in the tail to assist in providing accurate defense against enemy fighters attacking at night. B-29s also routinely carried as many as twenty different types of radios and navigation devices.

 

The first XB-29 took off at Boeing Field in Seattle on September 21, 1942. By the end of the year the second aircraft was ready for flight. Fourteen service-test YB-29s followed as production began to accelerate. Building this advanced bomber required massive logistics. Boeing built new B-29 plants at Renton, Washington, and Wichita, Kansas, while Bell built a new plant at Marietta, Georgia, and Martin built one in Omaha, Nebraska. Both Curtiss-Wright and the Dodge automobile company vastly expanded their manufacturing capacity to build the bomber's powerful and complex Curtiss-Wright R-3350 turbo supercharged engines. The program required thousands of sub-contractors but with extraordinary effort, it all came together, despite major teething problems. By April 1944, the first operational B-29s of the newly formed 20th Air Force began to touch down on dusty airfields in India. By May, 130 B-29s were operational. In June, 1944, less than two years after the initial flight of the XB-29, the U. S. Army Air Forces (AAF) flew its first B-29 combat mission against targets in Bangkok, Thailand. This mission (longest of the war to date) called for 100 B-29s but only 80 reached the target area. The AAF lost no aircraft to enemy action but bombing results were mediocre. The first bombing mission against the Japanese main islands since Lt. Col. "Jimmy" Doolittle's raid against Tokyo in April 1942, occurred on June 15, again with poor results. This was also the first mission launched from airbases in China.

 

With the fall of Saipan, Tinian, and Guam in the Mariana Islands chain in August 1944, the AAF acquired airbases that lay several hundred miles closer to mainland Japan. Late in 1944, the AAF moved the XXI Bomber Command, flying B-29s, to the Marianas and the unit began bombing Japan in December. However, they employed high-altitude, precision, bombing tactics that yielded poor results. The high altitude winds were so strong that bombing computers could not compensate and the weather was so poor that rarely was visual target acquisition possible at high altitudes. In March 1945, Major General Curtis E. LeMay ordered the group to abandon these tactics and strike instead at night, from low altitude, using incendiary bombs. These firebombing raids, carried out by hundreds of B-29s, devastated much of Japan's industrial and economic infrastructure. Yet Japan fought on. Late in 1944, AAF leaders selected the Martin assembly line to produce a squadron of B-29s codenamed SILVERPLATE. Martin modified these Superfortresses by removing all gun turrets except for the tail position, removing armor plate, installing Curtiss electric propellers, and modifying the bomb bay to accommodate either the "Fat Man" or "Little Boy" versions of the atomic bomb. The AAF assigned 15 Silverplate ships to the 509th Composite Group commanded by Colonel Paul Tibbets. As the Group Commander, Tibbets had no specific aircraft assigned to him as did the mission pilots. He was entitled to fly any aircraft at any time. He named the B-29 that he flew on 6 August Enola Gay after his mother. In the early morning hours, just prior to the August 6th mission, Tibbets had a young Army Air Forces maintenance man, Private Nelson Miller, paint the name just under the pilot's window.

 

Enola Gay is a model B-29-45-MO, serial number 44-86292. The AAF accepted this aircraft on June 14, 1945, from the Martin plant at Omaha (Located at what is today Offut AFB near Bellevue), Nebraska. After the war, Army Air Forces crews flew the airplane during the Operation Crossroads atomic test program in the Pacific, although it dropped no nuclear devices during these tests, and then delivered it to Davis-Monthan Army Airfield, Arizona, for storage. Later, the U. S. Air Force flew the bomber to Park Ridge, Illinois, then transferred it to the Smithsonian Institution on July 4, 1949. Although in Smithsonian custody, the aircraft remained stored at Pyote Air Force Base, Texas, between January 1952 and December 1953. The airplane's last flight ended on December 2 when the Enola Gay touched down at Andrews Air Force Base, Maryland. The bomber remained at Andrews in outdoor storage until August 1960. By then, concerned about the bomber deteriorating outdoors, the Smithsonian sent collections staff to disassemble the Superfortress and move it indoors to the Paul E. Garber Facility in Suitland, Maryland.

 

The staff at Garber began working to preserve and restore Enola Gay in December 1984. This was the largest restoration project ever undertaken at the National Air and Space Museum and the specialists anticipated the work would require from seven to nine years to complete. The project actually lasted nearly two decades and, when completed, had taken approximately 300,000 work-hours to complete. The B-29 is now displayed at the National Air and Space Museum, Steven F. Udvar-Hazy Center.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".

 

The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.

 

But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.

 

Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.

Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.

 

Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.

The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.

The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.

 

The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.

 

AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.

 

Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.

 

The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.

 

Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.

 

Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.

 

While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.

 

USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.

 

The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.

 

Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.

 

International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.

  

General F-24A characteristics:

Crew: 1 pilot

Length: 47 ft 4 in (14.4 m)

Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)

Height: 13 ft 10 in (4.20 m)

Wing area: 36.55 m² (392 ft²)

Empty weight: 13.150 lb (5.090 kg)

Loaded weight: 15.480 lb (6.830 kg)

Max. take-off weight: 27.530 lb (12.500 kg)

 

Powerplant

1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner

 

Performance

Maximum speed: Mach 2+

Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks

Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks

Service ceiling: 55,000 ft (16,800 m)

Rate of climb: 52,800 ft/min (255 m/s)

Wing loading: 70.0 lb/ft² (342 kg/m²)

Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)

 

Armament

1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG

Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.

  

The kit and its assembly:

A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.

 

As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.

I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.

 

Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):

● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear

● Fin and nose cone from an Italeri F-16A

● Inner wings from a (vintage) Hasegawa MiG-21F

● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)

 

The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.

 

The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?

 

Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.

 

The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.

 

For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.

 

All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.

 

Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.

 

The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.

  

Painting and markings:

At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.

 

A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).

 

“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.

 

The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.

 

Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.

  

Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.

A strange anomaly - the natural and the unnatural, the real and the unreal - the original and the copy. Like Artificial Intelligence - an imitation of reality.

 

Just saw this passing by. Nothing staged here. I suppose the wind just blew this ribbon around. But I find it interesting. I thought the contrast is dramatic. Oh well.

 

Anyway, ... AI?

 

So how exactly does AI work?

 

To put it simply, AI works by combining large data sets with intuitive processing algorithms. AI can manipulate these algorithms by learning behavior patterns within the data set. It's important to understand that AI is not just one algorithm.

 

AI automates repetitive learning and discovery through data.

Instead of automating manual tasks, AI performs frequent, high-volume, computerized tasks. And it does so reliably and without fatigue. Of course, humans are still essential to set up the system and ask the right questions.

  

AirTrain JFK is a 13 km (8.1 mile) rapid transit system in New York City that connects John F. Kennedy International Airport (JFK) to the city's subway and commuter trains. It is operated by the Port Authority of New York and New Jersey, which also operates the airport and AirTrain Newark.

 

About 11% of all travelers arriving at or departing from JFK use the computer-operated AirTrain, according to its operator, the Port Authority. Daily paid ridership on the system has been steadily rising. Ridership increased from 7,700 per day in June 2004 to nearly 11,300 per day in June 2006. The growing popularity of AirTrain also reflects a passenger boom at JFK airport. The number of people passing through the airport jumped from 31.7 million in 2003 to an estimated 41 million in 2006.

 

John F. Kennedy International Airport Planners have long desired a rail connection to JFK airport, which suffers from traffic congestion on its access roads. Efforts to build a rail system moved in fits and starts over decades. Early plans took the line not only to JFK but north from Jamaica to La Guardia Airport, linking to the IRT Flushing Line. Construction began in 1998 for completion in 2002, but was delayed by the derailment of a test train on September 27, 2002, killing 23-year-old operator Kelvin DeBorgh, Jr. The system finally opened after over a year's delay on December 17, 2003.

 

The $1.9 billion AirTrain has become a success that defied critics who feared the project could become a boondoggle because of Queens residents' vocal complaints, the death of a worker during a test run, early problems with the doors and delays leading up to its December 2003 launch.

 

The AirTrain project was financed using federal Passenger Facility Charge revenue (collected as a $3 fee on each outbound flight ticket), which can only be used for airport-related improvements. Several airlines challenged the use of the PFC funds for this project, but lost in court. The State of New York paid for major renovations at Jamaica Station, in part to facilitate AirTrain connections. The project does not receive subsidies from the state or city for its operating costs, which is one of the reasons cited for its relatively high fare.

 

AirTrain JFK uses the same Advanced Rapid Transit (formerly Intermediate Capacity Transit System) technology from Bombardier as the SkyTrain in Vancouver, Canada and the Putra LRT in Kuala Lumpur, Malaysia. It draws power from a third rail, and a linear induction motor pushes magnetically against an aluminum strip in the center of the track. The computerized trains are automated and operate without conductors.

 

John F. Kennedy International Airport (IATA: JFK, ICAO: KJFK, FAA LID: JFK) is busiest international air passenger gateway to the United States, handling more international traffic than any other airport in North America and the leading freight gateway to the country by value of shipments. Originally known as Idelwild Airport, after the Idlewild golf course it displaced when construction started in 1943, it was renamed Major General Alexander E. Anderson Airport that same yaer, and then to New York International Airport, Anderson Field in 1948. The airport was renamed after John F. Kennedy, the 35th President of the United States, in 1964. Over ninety airlines operate out of JFK, and it currenly serves as the base of operations for JetBlue Airways and a international gateway hub for American Airlines and Delta Air Lines. In the past, it has been a hub for Eastern Air Lines, National Airlines, Pan American World Airways (Pan Am) and Trans World Airlines (TWA).

 

These little Gnomes are the cutest I've seen in a long while. The simple graphic style and their enthusiasm for numbers makes them even more adorable!

 

Detail of a multiplication card set No. 8122 designed to be used with "Charlie The Lovable Teaching Robot." Copyright 1980, Educational Insights. I found the box of cards for 50 cents at a thrift store. Apparently, Charlie was the forerunner to the Leapster-style children's computerized learning machines.

Boeing's B-29 Superfortress was the most sophisticated propeller-driven bomber of World War II and the first bomber to house its crew in pressurized compartments. Although designed to fight in the European theater, the B-29 found its niche on the other side of the globe. In the Pacific, B-29s delivered a variety of aerial weapons: conventional bombs, incendiary bombs, mines, and two nuclear weapons.

 

On August 6, 1945, this Martin-built B-29-45-MO dropped the first atomic weapon used in combat on Hiroshima, Japan. Three days later, Bockscar (on display at the U.S. Air Force Museum near Dayton, Ohio) dropped a second atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. A third B-29, The Great Artiste, flew as an observation aircraft on both missions.

   

Transferred from the United States Air Force.

   

Manufacturer: Boeing Aircraft Co.

Martin Co., Omaha, Nebr.

   

Date: 1945

   

Country of Origin: United States of America

   

Dimensions:

Overall: 900 x 3020cm, 32580kg, 4300cm (29ft 6 5/16in. x 99ft 1in., 71825.9lb., 141ft 15/16in.)

   

Materials:

Polished overall aluminum finish

   

Physical Description:

Four-engine heavy bomber with semi-monoqoque fuselage and high-aspect ratio wings. Polished aluminum finish overall, standard late-World War II Army Air Forces insignia on wings and aft fuselage and serial number on vertical fin; 509th Composite Group markings painted in black; "Enola Gay" in black, block letters on lower left nose.

 

Boeing's B-29 Superfortress was the most sophisticated, propeller-driven, bomber to fly during World War II, and the first bomber to house its crew in pressurized compartments. Boeing installed very advanced armament, propulsion, and avionics systems into the Superfortress. During the war in the Pacific Theater, the B-29 delivered the first nuclear weapons used in combat. On August 6, 1945, Colonel Paul W. Tibbets, Jr., in command of the Superfortress Enola Gay, dropped a highly enriched uranium, explosion-type, "gun-fired," atomic bomb on Hiroshima, Japan. Three days later, Major Charles W. Sweeney piloted the B-29 Bockscar and dropped a highly enriched plutonium, implosion-type atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. On August 14, 1945, the Japanese accepted Allied terms for unconditional surrender.

 

In the late 1930s, U. S. Army Air Corps leaders recognized the need for very long-range bombers that exceeded the performance of the B-17 Flying Fortress. Several years of preliminary studies paralleled a continuous fight against those who saw limited utility in developing such an expensive and unproven aircraft but the Air Corps issued a requirement for the new bomber in February 1940. It described an airplane that could carry a maximum bomb load of 909 kg (2,000 lb) at a speed of 644 kph (400 mph) a distance of at least 8,050 km (5,000 miles). Boeing, Consolidated, Douglas, and Lockheed responded with design proposals. The Army was impressed with the Boeing design and issued a contract for two flyable prototypes in September 1940. In April 1941, the Army issued another contract for 250 aircraft plus spare parts equivalent to another 25 bombers, eight months before Pearl Harbor and nearly a year-and-a-half before the first Superfortress would fly.

 

Among the design's innovations was a long, narrow, high-aspect ratio wing equipped with large Fowler-type flaps. This wing design allowed the B-29 to cruise at high speeds at high altitudes but maintained comfortable handling characteristics during slower airspeeds necessary during takeoff and landing. More revolutionary was the size and sophistication of the pressurized sections of the fuselage: the flight deck forward of the wing, the gunner's compartment aft of the wing, and the tail gunner's station. For the crew, flying at altitudes above 18,000 feet became much more comfortable as pressure and temperature could be regulated in the crew work areas. To protect the Superfortress, Boeing designed a remote-controlled, defensive weapons system. Engineers placed five gun turrets on the fuselage: a turret above and behind the cockpit that housed two .50 caliber machine guns (four guns in later versions), and another turret aft near the vertical tail equipped with two machine guns; plus two more turrets beneath the fuselage, each equipped with two .50 caliber guns. One of these turrets fired from behind the nose gear and the other hung further back near the tail. Another two .50 caliber machine guns and a 20-mm cannon (in early versions of the B-29) were fitted in the tail beneath the rudder. Gunners operated these turrets by remote control--a true innovation. They aimed the guns using computerized sights, and each gunner could take control of two or more turrets to concentrate firepower on a single target.

 

Boeing also equipped the B-29 with advanced radar equipment and avionics. Depending on the type of mission, a B-29 carried the AN/APQ-13 or AN/APQ-7 Eagle radar system to aid bombing and navigation. These systems were accurate enough to enable relatively accurate bombing through cloud layers that completely obscured the target. The B-29B was equipped with the AN/APG-15B airborne radar gun sighting system mounted in the tail to assist in providing accurate defense against enemy fighters attacking at night. B-29s also routinely carried as many as twenty different types of radios and navigation devices.

 

The first XB-29 took off at Boeing Field in Seattle on September 21, 1942. By the end of the year the second aircraft was ready for flight. Fourteen service-test YB-29s followed as production began to accelerate. Building this advanced bomber required massive logistics. Boeing built new B-29 plants at Renton, Washington, and Wichita, Kansas, while Bell built a new plant at Marietta, Georgia, and Martin built one in Omaha, Nebraska. Both Curtiss-Wright and the Dodge automobile company vastly expanded their manufacturing capacity to build the bomber's powerful and complex Curtiss-Wright R-3350 turbo supercharged engines. The program required thousands of sub-contractors but with extraordinary effort, it all came together, despite major teething problems. By April 1944, the first operational B-29s of the newly formed 20th Air Force began to touch down on dusty airfields in India. By May, 130 B-29s were operational. In June, 1944, less than two years after the initial flight of the XB-29, the U. S. Army Air Forces (AAF) flew its first B-29 combat mission against targets in Bangkok, Thailand. This mission (longest of the war to date) called for 100 B-29s but only 80 reached the target area. The AAF lost no aircraft to enemy action but bombing results were mediocre. The first bombing mission against the Japanese main islands since Lt. Col. "Jimmy" Doolittle's raid against Tokyo in April 1942, occurred on June 15, again with poor results. This was also the first mission launched from airbases in China.

 

With the fall of Saipan, Tinian, and Guam in the Mariana Islands chain in August 1944, the AAF acquired airbases that lay several hundred miles closer to mainland Japan. Late in 1944, the AAF moved the XXI Bomber Command, flying B-29s, to the Marianas and the unit began bombing Japan in December. However, they employed high-altitude, precision, bombing tactics that yielded poor results. The high altitude winds were so strong that bombing computers could not compensate and the weather was so poor that rarely was visual target acquisition possible at high altitudes. In March 1945, Major General Curtis E. LeMay ordered the group to abandon these tactics and strike instead at night, from low altitude, using incendiary bombs. These firebombing raids, carried out by hundreds of B-29s, devastated much of Japan's industrial and economic infrastructure. Yet Japan fought on. Late in 1944, AAF leaders selected the Martin assembly line to produce a squadron of B-29s codenamed SILVERPLATE. Martin modified these Superfortresses by removing all gun turrets except for the tail position, removing armor plate, installing Curtiss electric propellers, and modifying the bomb bay to accommodate either the "Fat Man" or "Little Boy" versions of the atomic bomb. The AAF assigned 15 Silverplate ships to the 509th Composite Group commanded by Colonel Paul Tibbets. As the Group Commander, Tibbets had no specific aircraft assigned to him as did the mission pilots. He was entitled to fly any aircraft at any time. He named the B-29 that he flew on 6 August Enola Gay after his mother. In the early morning hours, just prior to the August 6th mission, Tibbets had a young Army Air Forces maintenance man, Private Nelson Miller, paint the name just under the pilot's window.

 

Enola Gay is a model B-29-45-MO, serial number 44-86292. The AAF accepted this aircraft on June 14, 1945, from the Martin plant at Omaha (Located at what is today Offut AFB near Bellevue), Nebraska. After the war, Army Air Forces crews flew the airplane during the Operation Crossroads atomic test program in the Pacific, although it dropped no nuclear devices during these tests, and then delivered it to Davis-Monthan Army Airfield, Arizona, for storage. Later, the U. S. Air Force flew the bomber to Park Ridge, Illinois, then transferred it to the Smithsonian Institution on July 4, 1949. Although in Smithsonian custody, the aircraft remained stored at Pyote Air Force Base, Texas, between January 1952 and December 1953. The airplane's last flight ended on December 2 when the Enola Gay touched down at Andrews Air Force Base, Maryland. The bomber remained at Andrews in outdoor storage until August 1960. By then, concerned about the bomber deteriorating outdoors, the Smithsonian sent collections staff to disassemble the Superfortress and move it indoors to the Paul E. Garber Facility in Suitland, Maryland.

 

The staff at Garber began working to preserve and restore Enola Gay in December 1984. This was the largest restoration project ever undertaken at the National Air and Space Museum and the specialists anticipated the work would require from seven to nine years to complete. The project actually lasted nearly two decades and, when completed, had taken approximately 300,000 work-hours to complete. The B-29 is now displayed at the National Air and Space Museum, Steven F. Udvar-Hazy Center.

 

Smithsonian National Air and Space Museum, Steven F. Udvar-Hazy Center, Virginia

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

Seeking a domestic aircraft manufacturer, the Brazilian government made several investments in this area during the 1940s and '50s, but it was not until 1969 that Empresa Brasileira de Aeronáutica (EMBRAER) was created as a government-owned corporation. Born from a Brazilian government plan and having been state-run from the beginning, EMBRAER began a privatization process alongside many other state-controlled companies during the government of Fernando Henrique Cardoso. This privatization effort saw EMBRAER sold on December 7, 1994, and helped it avoid a looming bankruptcy.

 

The company's first product was a turboprop transport, the EMBRAER EMB 110 Bandeirante. In the course of years, both civil and military aircraft were developed, the focus shifted more and more to airliners, but the military work was never abandoned. The company continued to win government contracts, which included the EMB 314/T-27 Tucano trainer or the EMB 324/A-29 ground attack aircraft.

 

The EMB 320 was a bigger aircraft, though, and conceived in the early 2000s, when, with renewed economic stability, the Brazilian Air Force (Força Aérea Brasileira, FAB) underwent an extensive renewal of its inventory through several acquisition programs. The most ambitious of which was the acquisition of 36 new front-line interceptor aircraft to replace its aging Mirage III, known as the “F-X Project”.

 

In parallel, a supplement to the relatively new AMX fighter bomber (designated A-1 in Brazil) was needed, too, and this program ran under the handle “A-X Project”. While the F-X program was postponed several times until 2005, the A-X program made, thanks to its smaller budget needs, quick progress and resulted in the EMB 320 'Libélula' (Hornet), a dedicated ground attack, COIN and observation/FAC aircraft which would fill the gap between the AMX jets and various helicopters, e. g. the Mi-35M4 attack helicopter.

 

The EMB 320 was a straightforward design: a mid-wing two-turboprop-engined all-metal monoplane with retractable landing gear. Conceptually it was very similar to the Argentinian FMA IA-58 Pucara, but more sophisticated and with more compact dimensions. The aircraft was designed to operate from forward bases, in high temperature and humidity conditions in extremely rugged terrain. Repairs could be made with ordinary tools, and no ground equipment was required to start the engines.

 

The EMB 320 had a tandem cockpit arrangement; the crew of two were seated under an extensively glazed canopy on Martin-Baker Mk 6AP6A zero/zero ejection seats and were provided with dual controls. The pilot sat in front, while the rear seat would, if the mission called for it, be occupied by an observer, WSO or a flight teacher for training purposes. Armor plating was fitted to protect the crew and engines from hostile ground fire.

 

The retractable tricycle landing gear, with a double nose wheel and twin main wheels retracting into the engine nacelles, was fitted with low pressure tires to suit operations on rough ground and unprepared air strips, while the undercarriage legs were tall to give good clearance for underslung weapon loads. The undercarriage, flaps and brakes are operated hydraulically, with no pneumatic systems.

Through powerful high lift devices the EMB 320 could perform short takeoffs and landings, even on aircraft carriers and large deck amphibious assault ships without using catapults or arresting wires. Additionally, three JATO rockets could be fitted under the fuselage to allow extra-short take-off.

 

The aircraft was powered by a pair of Garrett T76-G turboprops, 1,040 hp (775.5 kW) each, driving sets of contra-rotating, three-bladed Hamilton-Standard propellers which were also capable of being used as air brakes. The engines were modified for operating on soy-derived bio-jet fuel. Alternatively the engines would operate on high-octane automobile fuel with only a slight loss of power, too.

Fuel was fed from two fuselage tanks of combined capacity of 800 l (180 imp gal; 210 US gal) and two self-sealing tanks of 460 l (100 imp gal; 120 US gal) in the wings.

 

The “Libélula”, quickly christened this way due to its slender fuselage, straight wings and the large cockpit glazing, was highly maneuverable at low altitude, had a low heat signature and incorporated 4th generation avionics and weapons system to deliver precision guided munitions at all weather conditions, day and night.

 

Armament consisted of two fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots and a total of nine external weapon hardpoints; these included a pair of launch rails at the wingtips for AIM-9 Sidewinder AAMs (or ECM pods), four underwing pylons outside of the propeller radius and three underfuselage hardpoints. Chaff/flare dispensers in the tail section provided passive safety. The EMB 320 could carry more than 3.5 tons of external munitions, and loiter for three or more hours.

 

Avionics included:

● MIL-STD-1553 standards

● NVG ANVIS-9 (Night Vision)

● CCIP / CCRP / CCIL / DTOS / LCOS / SSLC (Computerized Attack Modes)

● R&S{RT} M3AR VHF/UHF airborne transceiver (two-way encrypted Data Link provision)

● HUD / HOTAS

● HMD with UFCP(Up Front Control Panel)

● Laser INS with GPS Navigational System

● CMFD (Colored Multi-Function Display) liquid crystal active matrix

● Integrated Radio Communication and Navigation

● Video Camera/Recorder

● Automatic Pilot with embedded mission planning capability

● Stormscope WX-1000E (Airborne weather mapping system)

● Laser Range Finder

● WiPak Support – (Wi-Fi integration for Paveway bombs)

● Training and Operation Support System (TOSS)

The prototype made its maiden flight on 2nd of April 2000. In August 2001, the Brazilian Air Force awarded EMBRAER a contract for 52 A-27 Libélula aircraft with options for a further 23, acquired from a contract estimated to be worth around $320 USD millions. The first aircraft was delivered in December 2003. By September 2007, 50 aircraft had entered service. The 75th, and last, aircraft was delivered to the FAB in June 2012.

 

While the Libélula has not been used in foreign conflicts the aircraft already fired in anger: One of the main missions of the aircraft was and is border patrol under the SIVAM program, and this resulted in several incidents in which weapons were fired.

 

On 3 June 2009, two BAF A-27A Libélulas, guided by an EMBRAER E-99, intercepted a Cessna U206G engaged in drug trafficking activities. Inbound from Bolivia, the Cessna was intercepted in the region of Alta Floresta d'Oeste and, after exhausting all procedures, one of the Moscarsos fired a warning shot from its 30mm cannons, after which the aircraft followed the Libélulas to Cacoal airport.

This incident was the first use of powers granted under the Shoot-Down Act, which was enacted in October 2004 in order to legislate for the downing of illegal flights. A total of 176 kg of pure cocaine base paste, enough to produce almost a ton of cocaine, was discovered on board the Cessna; the aircraft's two occupants attempted a ground escape before being arrested by Federal Police in Pimenta Bueno.

 

On 5 August 2011, Brazil started “Operation Ágata”, part of a major "Frontiers Strategic Plan" launched by President Dilma Rousseff in June, with almost 30 continuous days of rigorous military activity in the region of Brazil’s border with Colombia. It mobilized 35 aircraft and more than 3,000 military personnel of the Brazilian Army, Brazilian Navy and Brazilian Air Force surveillance against drug trafficking, illegal mining and logging, and trafficking of wild animals.

 

A-29s of 1°/3º Aviation Group (GAv), Squadron Scorpion, as well as six A-27A’s from 4°/3° GAv launched a strike upon an illicit airstrip, deploying eight 230 kg (500 lb) computer-guided Mk 82 bombs to render the airstrip unusable.

Multiple EMB 320 were assigned for night operations, locating remote jungle airstrips used by drug smuggling gangs along the border, and were typically guarded by several E-99 aircraft. The Libélulas also located targets for the A-29 Super Tucanos, allowing them to bomb the airstrips with an extremely high level of accuracy, making use of night-vision systems and computer systems calculating the impact points of munitions.

  

General characteristics

Crew: 2

Length (w/o pitot): 41 ft 10 in (12.76 m)

Wingspan: 40 ft 9 1/2 in (12.45 m)

Height: 13 ft 6 2/3 in (4.14 m)

Wing area: 203.4 ft² (18.9 m²)

Empty weight: 8.920 lb (4.050 kg)

Max. take-off weight: 16.630 lb (7.550 kg)

 

Powerplant:

2× Garrett T76-G410/411 turboprops, 1,040 hp (775.5 kW) each

 

Performance:

Maximum speed: 307 mph (267 kn, 495 km/h)

Range: 1.860 mi (1.620 nmi, 3.000 km)

Service ceiling: 30.160 ft (9.150 m)

Rate of climb: 2.966 ft/min (15 m/s)

 

Armament:

2× fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots with 200 RPG

9× external hardpoints for an ordnance load of 8.000 lb (3.630 kg), including smart weapons (e. g. Paveway GBUs, AGM-65B,C or D Maverick, AGM-114 Hellfire), iron bombs, cluster bombs, napalm tanks, unguided rocket pods and AIM-9 Sidewinder AAMs as well as drop tanks.

  

The kit and its assembly:

This whif model is a remake of an idea I had/did many years ago from the remains of an Airfix OV-10D Bronco: converting it into a "normal" aircraft. While one could argue that this is not really exciting, I found this project pretty challenging as I wanted to make the result as plausible as possible, not just glue some leftover parts together (what I did years ago). And doing so turned a simple idea into major surgery and sculpting – or, how flickr fellow user Franclab called it, “it makes the Bronco look like the whif and the Libélula the real aircraft”.

 

The basis was a NiB OV-10A Bronco from Academy, a very good kit with a nice cockpit and lots or ordnance. Great value for the money. Design benchmark for what I had in mind was the FMA IA-58 Pucara, as it was designed for the exact same job as my EMB 320 - but details would differ.

 

The rear of the Bronco's central cabin was cut off and mated with the rear fuselage of a Matchbox Bf 110, which has a similar diameter - but the intersection between the square front of the Bronco and the oval Bf 110 fuselage was tricky (= requiring lots of putty work).

When these basic elements were fitted together, I finally decided to raise the spine. The mated fuselage parts would have had worked, but since the original high wings were missing, the EMB 320 would have had a distinctive and pointless hunchback - actually, with a rotor added, it could have become a helicopter, too!

Well, I went for the big solution, also in order to make the fuselage seam less obvious, and the whole upper rear fuselage was sculpted from 2C and NC putty. In the same process the tail was integrated into the fuselage. As a drawback, this shifted the kit's CG so far back that the lead load in the nose could not keep the front wheel down. Well, it's the price to pay for a better overall look.

 

The twin fins come from a 1:100 A-10, leftover from a Revell SnapFit kit, while the horizontal stabilizers were taken from the OV-10A, but had to be re-engraved in order to make the flap geometry plausible.

 

The wings were taken OOB and, relative to the Bronco, placed in a lower position, their original attachment point on top of the fuselage was faired over. The original plan had been to place them completely low, right where the OV-10's wing stubs would be located. But due to the engine nacelles under the wings I finally set them at mid height - otherwise, ground clearance and/or landing gear length had become a big issue - and the thing still looks stalky!

Moving the nacelles into a different (higher) wing position would have been an option, too, but that was IMHO too complicated. Since the EMD 320 would not have storage space behind the cockpit, a wing spar right through the fuselage would not be implausible. As a side effect I had to close the complete belly gap under the Bronco fuselage, again with 2C putty.

 

The Bronco’s tail booms were cut off and pointed end covers added, so that classic engine nacelles which also carry the main landing gear were created. The engine exhausts were relocated towards the nacelle’s end, and the propeller attachment modified, so that the propeller could turn freely on a metal axis and the overall look would be changed.

 

The cockpit tub was taken OOB, but armored seats from an Italeri AH-1 were used (with added headrests), as well as two crew figures, which come IIRC from a Hasegawa RA-5C Vigilante.

 

A new nose section with a sensor turret was built from scratch. It consists of parts from an AH-64 attack helicopter, mated with some styrene sheets for appropriate length. The shape was sculpted from massive material, and the result looks mean and menacing. The pitots were made from scratch, as well as the radar warning sensors on the hull.

 

The landing gear was improvised. The front strut actually belongs to a 1:200 Concorde(!) from Revell, the respective front wheels belong to an ESCI Ka-34 helicopter. For the main landing gear I used the struts from the Bronco kit, but the twin wheels are donations from the scrap box: these come from two Italeri Hawker Hawk kits.

 

The ordnance was puzzled together from the scrap box, too, as well as from Hasegawa Weapon sets. As the aircraft was supposed to have taken part in the real world “Operation Ágata”, I decided to add four light Paveway gliding bombs. Two Sidewinders and a pair of M260 rocket launchers (for seven 2.75"/70mm target marking missiles with phosphorous warheads) complete the full load.

The wing pylons come from two Italeri Tornados, those under the fuselage belong to a Matchbox Viggen and an Italeri Kfir.

 

As a final note: originally I wanted to call the aircraft “Moscardo” (= Hornet), but when it took shape its overall lines and potential agility made the dragonfly (Libélula in Portuguese) a much more appropriate namesake. So it goes... ^^

  

Painting and markings:

The reason why this turned out to be a Brazilian aircraft is the fact that I have been wanting to use the current FAB paint scheme for some time - it's basically made up from only two colors, FS 34092 (Dark Green) and FS 36176 (“F-15 Gray”, used on USAF F-15Es), paired with low-viz markings. Looks strange at first glance, like a poor man's Europe One/Lizard scheme, but over a typical rain forest scenery, low altitude and with hazy clouds around it is VERY effective, check the beauty pics which are based on BAF press releases. And it simply looks cool.

 

The pattern is based on current BAF F-5E fighters, the markings come from an FCM decal sheet and actually belong to a BAF Mirage 2000. 4º/3º GAv of the Brazilian Air Force is fictional, though, and some warning stencils were taken from the Academy kit.

 

The cockpit interior was painted in Dark Gull Gray (Humbrol 140), the landing gear wells in a yellow zinc chromate primer (Humbrol 225, Mid Stone) while the landing gear struts remained blank Aluminum, The outer wheel disks are white, while the inside is red - a detail I incorporated from some USN aircraft.

 

Painting was not spectacular - since the cockpit has a lot of glass to offer, I painted the windscreen with translucent light blue, and the observer on the rear seat received a similar sun blocker in deep blue. Translucent paint (yellow and black) was also used on the optical sensors at the nose turret as well as for position lights, all on a silver base.

 

The model was only slightly weathered thorough a black ink wash and some dry-brushing with Humbrol 140 and Testors 2076 (RLM 62) in order to emphasize panels - some panel lines were also painted onto the fuselage with thinned black ink, as the "new" rear body is devoid of any detail and difficult to engrave.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

Seeking a domestic aircraft manufacturer, the Brazilian government made several investments in this area during the 1940s and '50s, but it was not until 1969 that Empresa Brasileira de Aeronáutica (EMBRAER) was created as a government-owned corporation. Born from a Brazilian government plan and having been state-run from the beginning, EMBRAER began a privatization process alongside many other state-controlled companies during the government of Fernando Henrique Cardoso. This privatization effort saw EMBRAER sold on December 7, 1994, and helped it avoid a looming bankruptcy.

 

The company's first product was a turboprop transport, the EMBRAER EMB 110 Bandeirante. In the course of years, both civil and military aircraft were developed, the focus shifted more and more to airliners, but the military work was never abandoned. The company continued to win government contracts, which included the EMB 314/T-27 Tucano trainer or the EMB 324/A-29 ground attack aircraft.

 

The EMB 320 was a bigger aircraft, though, and conceived in the early 2000s, when, with renewed economic stability, the Brazilian Air Force (Força Aérea Brasileira, FAB) underwent an extensive renewal of its inventory through several acquisition programs. The most ambitious of which was the acquisition of 36 new front-line interceptor aircraft to replace its aging Mirage III, known as the “F-X Project”.

 

In parallel, a supplement to the relatively new AMX fighter bomber (designated A-1 in Brazil) was needed, too, and this program ran under the handle “A-X Project”. While the F-X program was postponed several times until 2005, the A-X program made, thanks to its smaller budget needs, quick progress and resulted in the EMB 320 'Libélula' (Hornet), a dedicated ground attack, COIN and observation/FAC aircraft which would fill the gap between the AMX jets and various helicopters, e. g. the Mi-35M4 attack helicopter.

 

The EMB 320 was a straightforward design: a mid-wing two-turboprop-engined all-metal monoplane with retractable landing gear. Conceptually it was very similar to the Argentinian FMA IA-58 Pucara, but more sophisticated and with more compact dimensions. The aircraft was designed to operate from forward bases, in high temperature and humidity conditions in extremely rugged terrain. Repairs could be made with ordinary tools, and no ground equipment was required to start the engines.

 

The EMB 320 had a tandem cockpit arrangement; the crew of two were seated under an extensively glazed canopy on Martin-Baker Mk 6AP6A zero/zero ejection seats and were provided with dual controls. The pilot sat in front, while the rear seat would, if the mission called for it, be occupied by an observer, WSO or a flight teacher for training purposes. Armor plating was fitted to protect the crew and engines from hostile ground fire.

 

The retractable tricycle landing gear, with a double nose wheel and twin main wheels retracting into the engine nacelles, was fitted with low pressure tires to suit operations on rough ground and unprepared air strips, while the undercarriage legs were tall to give good clearance for underslung weapon loads. The undercarriage, flaps and brakes are operated hydraulically, with no pneumatic systems.

Through powerful high lift devices the EMB 320 could perform short takeoffs and landings, even on aircraft carriers and large deck amphibious assault ships without using catapults or arresting wires. Additionally, three JATO rockets could be fitted under the fuselage to allow extra-short take-off.

 

The aircraft was powered by a pair of Garrett T76-G turboprops, 1,040 hp (775.5 kW) each, driving sets of contra-rotating, three-bladed Hamilton-Standard propellers which were also capable of being used as air brakes. The engines were modified for operating on soy-derived bio-jet fuel. Alternatively the engines would operate on high-octane automobile fuel with only a slight loss of power, too.

Fuel was fed from two fuselage tanks of combined capacity of 800 l (180 imp gal; 210 US gal) and two self-sealing tanks of 460 l (100 imp gal; 120 US gal) in the wings.

 

The “Libélula”, quickly christened this way due to its slender fuselage, straight wings and the large cockpit glazing, was highly maneuverable at low altitude, had a low heat signature and incorporated 4th generation avionics and weapons system to deliver precision guided munitions at all weather conditions, day and night.

 

Armament consisted of two fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots and a total of nine external weapon hardpoints; these included a pair of launch rails at the wingtips for AIM-9 Sidewinder AAMs (or ECM pods), four underwing pylons outside of the propeller radius and three underfuselage hardpoints. Chaff/flare dispensers in the tail section provided passive safety. The EMB 320 could carry more than 3.5 tons of external munitions, and loiter for three or more hours.

 

Avionics included:

● MIL-STD-1553 standards

● NVG ANVIS-9 (Night Vision)

● CCIP / CCRP / CCIL / DTOS / LCOS / SSLC (Computerized Attack Modes)

● R&S{RT} M3AR VHF/UHF airborne transceiver (two-way encrypted Data Link provision)

● HUD / HOTAS

● HMD with UFCP(Up Front Control Panel)

● Laser INS with GPS Navigational System

● CMFD (Colored Multi-Function Display) liquid crystal active matrix

● Integrated Radio Communication and Navigation

● Video Camera/Recorder

● Automatic Pilot with embedded mission planning capability

● Stormscope WX-1000E (Airborne weather mapping system)

● Laser Range Finder

● WiPak Support – (Wi-Fi integration for Paveway bombs)

● Training and Operation Support System (TOSS)

The prototype made its maiden flight on 2nd of April 2000. In August 2001, the Brazilian Air Force awarded EMBRAER a contract for 52 A-27 Libélula aircraft with options for a further 23, acquired from a contract estimated to be worth around $320 USD millions. The first aircraft was delivered in December 2003. By September 2007, 50 aircraft had entered service. The 75th, and last, aircraft was delivered to the FAB in June 2012.

 

While the Libélula has not been used in foreign conflicts the aircraft already fired in anger: One of the main missions of the aircraft was and is border patrol under the SIVAM program, and this resulted in several incidents in which weapons were fired.

 

On 3 June 2009, two BAF A-27A Libélulas, guided by an EMBRAER E-99, intercepted a Cessna U206G engaged in drug trafficking activities. Inbound from Bolivia, the Cessna was intercepted in the region of Alta Floresta d'Oeste and, after exhausting all procedures, one of the Moscarsos fired a warning shot from its 30mm cannons, after which the aircraft followed the Libélulas to Cacoal airport.

This incident was the first use of powers granted under the Shoot-Down Act, which was enacted in October 2004 in order to legislate for the downing of illegal flights. A total of 176 kg of pure cocaine base paste, enough to produce almost a ton of cocaine, was discovered on board the Cessna; the aircraft's two occupants attempted a ground escape before being arrested by Federal Police in Pimenta Bueno.

 

On 5 August 2011, Brazil started “Operation Ágata”, part of a major "Frontiers Strategic Plan" launched by President Dilma Rousseff in June, with almost 30 continuous days of rigorous military activity in the region of Brazil’s border with Colombia. It mobilized 35 aircraft and more than 3,000 military personnel of the Brazilian Army, Brazilian Navy and Brazilian Air Force surveillance against drug trafficking, illegal mining and logging, and trafficking of wild animals.

 

A-29s of 1°/3º Aviation Group (GAv), Squadron Scorpion, as well as six A-27A’s from 4°/3° GAv launched a strike upon an illicit airstrip, deploying eight 230 kg (500 lb) computer-guided Mk 82 bombs to render the airstrip unusable.

Multiple EMB 320 were assigned for night operations, locating remote jungle airstrips used by drug smuggling gangs along the border, and were typically guarded by several E-99 aircraft. The Libélulas also located targets for the A-29 Super Tucanos, allowing them to bomb the airstrips with an extremely high level of accuracy, making use of night-vision systems and computer systems calculating the impact points of munitions.

  

General characteristics

Crew: 2

Length (w/o pitot): 41 ft 10 in (12.76 m)

Wingspan: 40 ft 9 1/2 in (12.45 m)

Height: 13 ft 6 2/3 in (4.14 m)

Wing area: 203.4 ft² (18.9 m²)

Empty weight: 8.920 lb (4.050 kg)

Max. take-off weight: 16.630 lb (7.550 kg)

 

Powerplant:

2× Garrett T76-G410/411 turboprops, 1,040 hp (775.5 kW) each

 

Performance:

Maximum speed: 307 mph (267 kn, 495 km/h)

Range: 1.860 mi (1.620 nmi, 3.000 km)

Service ceiling: 30.160 ft (9.150 m)

Rate of climb: 2.966 ft/min (15 m/s)

 

Armament:

2× fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots with 200 RPG

9× external hardpoints for an ordnance load of 8.000 lb (3.630 kg), including smart weapons (e. g. Paveway GBUs, AGM-65B,C or D Maverick, AGM-114 Hellfire), iron bombs, cluster bombs, napalm tanks, unguided rocket pods and AIM-9 Sidewinder AAMs as well as drop tanks.

  

The kit and its assembly:

This whif model is a remake of an idea I had/did many years ago from the remains of an Airfix OV-10D Bronco: converting it into a "normal" aircraft. While one could argue that this is not really exciting, I found this project pretty challenging as I wanted to make the result as plausible as possible, not just glue some leftover parts together (what I did years ago). And doing so turned a simple idea into major surgery and sculpting – or, how flickr fellow user Franclab called it, “it makes the Bronco look like the whif and the Libélula the real aircraft”.

 

The basis was a NiB OV-10A Bronco from Academy, a very good kit with a nice cockpit and lots or ordnance. Great value for the money. Design benchmark for what I had in mind was the FMA IA-58 Pucara, as it was designed for the exact same job as my EMB 320 - but details would differ.

 

The rear of the Bronco's central cabin was cut off and mated with the rear fuselage of a Matchbox Bf 110, which has a similar diameter - but the intersection between the square front of the Bronco and the oval Bf 110 fuselage was tricky (= requiring lots of putty work).

When these basic elements were fitted together, I finally decided to raise the spine. The mated fuselage parts would have had worked, but since the original high wings were missing, the EMB 320 would have had a distinctive and pointless hunchback - actually, with a rotor added, it could have become a helicopter, too!

Well, I went for the big solution, also in order to make the fuselage seam less obvious, and the whole upper rear fuselage was sculpted from 2C and NC putty. In the same process the tail was integrated into the fuselage. As a drawback, this shifted the kit's CG so far back that the lead load in the nose could not keep the front wheel down. Well, it's the price to pay for a better overall look.

 

The twin fins come from a 1:100 A-10, leftover from a Revell SnapFit kit, while the horizontal stabilizers were taken from the OV-10A, but had to be re-engraved in order to make the flap geometry plausible.

 

The wings were taken OOB and, relative to the Bronco, placed in a lower position, their original attachment point on top of the fuselage was faired over. The original plan had been to place them completely low, right where the OV-10's wing stubs would be located. But due to the engine nacelles under the wings I finally set them at mid height - otherwise, ground clearance and/or landing gear length had become a big issue - and the thing still looks stalky!

Moving the nacelles into a different (higher) wing position would have been an option, too, but that was IMHO too complicated. Since the EMD 320 would not have storage space behind the cockpit, a wing spar right through the fuselage would not be implausible. As a side effect I had to close the complete belly gap under the Bronco fuselage, again with 2C putty.

 

The Bronco’s tail booms were cut off and pointed end covers added, so that classic engine nacelles which also carry the main landing gear were created. The engine exhausts were relocated towards the nacelle’s end, and the propeller attachment modified, so that the propeller could turn freely on a metal axis and the overall look would be changed.

 

The cockpit tub was taken OOB, but armored seats from an Italeri AH-1 were used (with added headrests), as well as two crew figures, which come IIRC from a Hasegawa RA-5C Vigilante.

 

A new nose section with a sensor turret was built from scratch. It consists of parts from an AH-64 attack helicopter, mated with some styrene sheets for appropriate length. The shape was sculpted from massive material, and the result looks mean and menacing. The pitots were made from scratch, as well as the radar warning sensors on the hull.

 

The landing gear was improvised. The front strut actually belongs to a 1:200 Concorde(!) from Revell, the respective front wheels belong to an ESCI Ka-34 helicopter. For the main landing gear I used the struts from the Bronco kit, but the twin wheels are donations from the scrap box: these come from two Italeri Hawker Hawk kits.

 

The ordnance was puzzled together from the scrap box, too, as well as from Hasegawa Weapon sets. As the aircraft was supposed to have taken part in the real world “Operation Ágata”, I decided to add four light Paveway gliding bombs. Two Sidewinders and a pair of M260 rocket launchers (for seven 2.75"/70mm target marking missiles with phosphorous warheads) complete the full load.

The wing pylons come from two Italeri Tornados, those under the fuselage belong to a Matchbox Viggen and an Italeri Kfir.

 

As a final note: originally I wanted to call the aircraft “Moscardo” (= Hornet), but when it took shape its overall lines and potential agility made the dragonfly (Libélula in Portuguese) a much more appropriate namesake. So it goes... ^^

  

Painting and markings:

The reason why this turned out to be a Brazilian aircraft is the fact that I have been wanting to use the current FAB paint scheme for some time - it's basically made up from only two colors, FS 34092 (Dark Green) and FS 36176 (“F-15 Gray”, used on USAF F-15Es), paired with low-viz markings. Looks strange at first glance, like a poor man's Europe One/Lizard scheme, but over a typical rain forest scenery, low altitude and with hazy clouds around it is VERY effective, check the beauty pics which are based on BAF press releases. And it simply looks cool.

 

The pattern is based on current BAF F-5E fighters, the markings come from an FCM decal sheet and actually belong to a BAF Mirage 2000. 4º/3º GAv of the Brazilian Air Force is fictional, though, and some warning stencils were taken from the Academy kit.

 

The cockpit interior was painted in Dark Gull Gray (Humbrol 140), the landing gear wells in a yellow zinc chromate primer (Humbrol 225, Mid Stone) while the landing gear struts remained blank Aluminum, The outer wheel disks are white, while the inside is red - a detail I incorporated from some USN aircraft.

 

Painting was not spectacular - since the cockpit has a lot of glass to offer, I painted the windscreen with translucent light blue, and the observer on the rear seat received a similar sun blocker in deep blue. Translucent paint (yellow and black) was also used on the optical sensors at the nose turret as well as for position lights, all on a silver base.

 

The model was only slightly weathered thorough a black ink wash and some dry-brushing with Humbrol 140 and Testors 2076 (RLM 62) in order to emphasize panels - some panel lines were also painted onto the fuselage with thinned black ink, as the "new" rear body is devoid of any detail and difficult to engrave.

First astrophotographic project done in collaboration with another astrophotographer: Filippo Scopelliti.Filippo captured the luminance, while I used chrominance, hydrogen jets and I worked out the union of our two images.

The galaxy Cigar (or M 82) is a starburst galaxy located in Ursa Major, 12 million light years from us.

The "nearby" galaxy M 81 interacts with M 82 and causes hydrogen jets to escape from the central part.

 

Shooting data - Biasia:

19.02.2020Monte Baldo, Italy 45 ° 41 '52 "N - 10 ° 51' 32" EBortle class: 4/9

Average SQM: 20.99 mag./arc sec2

Sky-Watcher Italia Newton 200/1000 F5 reduced to 900 F4,5

Canon EOS 450D modified Baader

Coma corrector Sky-Watcher F5 reducer 0,90

Optolong filter L-ProHEQ5 Pro

9x50 finder guide telescope

ZWO ASI224 MC guide camera

62 x 180" ISO 80026 Dark22 Bias22 Flat

 

Shooting data - Scopelliti:

Volta Mantovana, Italy

Bortle class 5/9

Average SQM: 20.07 May / arc sec2

Computerized Dobsonian 600/2280 F3,8ZWO ASI294 MM

Coma Corrector TeleVue Paracorr Type 2

L Astronomik Filter

1500 x 1.5" Gain 400Dark

 

alessandrobiasia.wixsite.com/astrophotography

The Arboretum has an interactive map on their web site. This map is found at the Arborway Gate.

 

Pasting from Wikipedia: Arnold Arboretum:

 

• • • • •

 

The Arnold Arboretum of Harvard University is an arboretum located in the Jamaica Plain and Roslindale sections of Boston, Massachusetts. It was designed by Frederick Law Olmsted and is the second largest "link" in the Emerald Necklace.

 

History

 

The Arboretum was founded in 1872 when the President and Fellows of Harvard College became trustees of a portion of the estate of James Arnold (1781–1868).

 

In 1842, Benjamin Bussey (1757–1842), a prosperous Boston merchant and scientific farmer, donated his country estate Woodland Hill and a part of his fortune to Harvard University "for instruction in agriculture, horticulture, and related subjects". Bussey had inherited land from fellow patriot Eleazer Weld in 1800 and further enlarged his large estate between 1806 and 1837 by acquiring and consolidating various farms that had been established as early as the seventeenth century. Harvard used this land for the creation of the Bussey Institute, which was dedicated to agricultural experimentation. The first Bussey Institute building was completed in 1871 and served as headquarters for an undergraduate school of agriculture.

 

Sixteen years after Bussey's death, James Arnold, a New Bedford, Massachusetts whaling merchant, specified that a portion of his estate was to be used for "...the promotion of Agricultural, or Horticultural improvements". In 1872, when the trustees of the will of James Arnold transferred his estate to Harvard University, Arnold’s gift was combined with 120 acres (0.49 km2) of the former Bussey estate to create the Arnold Arboretum. In the deed of trust between the Arnold trustees and the College, income from Arnold’s legacy was to be used for establishing, developing and maintaining an arboretum to be known as the Arnold Arboretum which "shall contain, as far as practicable, all the trees [and] shrubs ... either indigenous or exotic, which can be raised in the open air of West Roxbury". The historical mission of the Arnold Arboretum is to increase knowledge of woody plants through research and to disseminate this knowledge through education.

 

Charles Sprague Sargent was appointed director and Arnold Professor of Botany shortly after the establishment of the institution in 1872.[2] Together with landscape architect Frederick Law Olmsted he developed the road and pathway system and delineated the collection areas by family and genus, following the then current and widely accepted classification system of Bentham and Hooker. The Hunnewell building was designed by architect Alexander Wadsworth Longfellow, Jr. in 1892 and constructed with funds donated by H. H. Hunnewell in 1903. From 1946 to 1950 the landscape architect Beatrix Farrand was the landscape design consultant for the Arboretum. Her early training in the 1890s included time with Charles Sprague Sargent and chief propagator and superintendent Jackson Thornton Johnson.[3] Today the Arboretum occupies 265 acres (107 hectares) of land divided between four parcels, viz. the main Arboretum and the Peters Hill, Weld-Walter and South Street tracts. The collections, however, are located primarily in the main Arboretum and on the Peters Hill tract. The Arboretum remains one of the finest examples of a landscape designed by Frederick Law Olmsted and it is a Frederick Law Olmsted National Historic Site) and a National Historic Landmark.

 

Robert E. Cook is the seventh and current Director of the Arnold Arboretum. He is also the Director of the Harvard University Herbaria located in Cambridge, Massachusetts.

 

Status

 

The Arboretum is privately endowed as a department of Harvard University. The land, however, was deeded to the City of Boston in 1882 and incorporated into the so-called "Emerald Necklace". Under the agreement with the City, Harvard University was given a thousand-year lease on the property, and the University, as trustee, is directly responsible for the development, maintenance, and operation of the Arboretum; the City retains responsibility for water fountains, benches, roads, boundaries, and policing. The annual operating budget of $7,350,644 (fiscal year 2003) is largely derived from endowment, which is also managed by the University, and all Arboretum staff are University employees. Other income is obtained through granting agencies and contributors.

 

Location

 

The main Arborway gate is located on Route 203 a few hundred yards south of its junction with the Jamaicaway. Public transportation to the Arboretum is available on the MBTA Orange Line to its terminus at Forest Hills Station and by bus (#39) to the Monument in Jamaica Plain. The Arboretum is within easy walking distance from either of these points.

 

Hours

 

The grounds are open free of charge to the public from sunrise to sunset 365 days of the year. The Visitor's Center in the Hunnewell Building, 125 Arborway, is open Monday through Friday 9 a.m.–4 p.m.; Saturdays 10 a.m.–4 p.m.; Sundays 12 p.m.–4 PM. The Visitor’s Center is closed on holidays. The Library, located in the Hunnewell Building, is open Monday through Saturday, 10 a.m.–4 p.m.. The Library is closed on Sundays and holidays. Stacks are closed and the collection does not circulate.

 

Area

 

Two hundred and sixty-five acres (107 hectares) in the Jamaica Plain and Roslindale sections of Boston, Massachusetts, located at 42°19′N 71°5′W / 42.317°N 71.083°W / 42.317; -71.083, with altitudes ranging from 46 feet (15 m) in the meadow across the drive from the Hunnewell Building to 240 feet (79 m) at the top of Peters Hill.

 

Climate

 

Average yearly rainfall is 43.63 inches (1,102 mm); average snowfall, 40.2 inches (102 centimeters). Monthly mean temperature is 51.5 °F (10.8 °C); July's mean temperature is 73.5 °F (23 °C); January's is 29.6 °F (-1.3 °C). The Arboretum is located in USDA hardiness zone 6 (0 to −10 °F, −18 to −23 °C).

 

Collections (as of September 14, 2007)

 

At present, the living collections include 15,441 individual plants (including nursery holdings) belonging to 10,216 accessions representing 4,099 taxa; with particular emphasis on the ligneous species of North America and eastern Asia. Historic collections include the plant introductions from eastern Asia made by Charles Sprague Sargent, Ernest Henry Wilson, William Purdom, Joseph Hers, and Joseph Rock. Recent introductions from Asia have resulted from the 1977 Arnold Arboretum Expedition to Japan and Korea, the 1980 Sino-American Botanical Expedition to western Hubei Province, and more recent expeditions to China and Taiwan.

 

Comprehensive collections are maintained and augmented for most genera, and genera that have received particular emphasis include: Acer, Fagus, Carya, Forsythia, Taxodium, Pinus, Metasequoia, Lonicera, Magnolia, Malus, Quercus, Rhododendron, Syringa, Paulownia, Albizia, Ilex, Gleditsia and Tsuga. Other comprehensive collections include the Bradley Collection of Rosaceous Plants, the collection of conifers and dwarf conifers, and the Larz Anderson Bonsai Collection. Approximately 500 accessions are processed annually.

 

Collections policy

 

The mission of the Arnold Arboretum is to increase our knowledge of the evolution and biology of woody plants. Historically, this research has investigated the global distribution and evolutionary history of trees, shrubs and vines, with particular emphasis on the disjunct species of East Asia and North America. Today this work continues through molecular studies of the evolution and biogeography of the floras of temperate Asia, North America and Europe.

 

Research activities include molecular studies of gene evolution, investigations of plant-water relations, and the monitoring of plant phenology, vegetation succession, nutrient cycling and other factors that inform studies of environmental change. Applied work in horticulture uses the collections for studies in plant propagation, plant introduction, and environmental management. This diversity of scientific investigation is founded in a continuing commitment to acquire, grow, and document the recognized species and infraspecific taxa of ligneous plants of the Northern Hemisphere that are able to withstand the climate of the Arboretum’s 265-acre (1.07 km2) Jamaica Plain/Roslindale site.

 

As a primary resource for research in plant biology, the Arboretum’s living collections are actively developed, curated, and managed to support scientific investigation and study. To this end, acquisition policies place priority on obtaining plants that are genetically representative of documented wild populations. For each taxon, the Arnold Arboretum aspires to grow multiple accessions of known wild provenance in order to represent significant variation that may occur across the geographic range of the species. Accessions of garden or cultivated provenance are also acquired as governed by the collections policies herein.

 

For all specimens, full documentation of both provenance and history within the collection is a critical priority. Curatorial procedures provide for complete and accurate records for each accession, and document original provenance, locations in the collections, and changes in botanical identity. Herbarium specimens, DNA materials, and digital images are gathered for the collection and maintained in Arboretum data systems and the herbarium at the Roslindale site.

 

Research

 

Research on plant pathology and integrated pest management for maintenance of the living collections is constantly ongoing. Herbarium-based research focuses on the systematics and biodiversity of both temperate and tropical Asian forests, as well as the ecology and potential for sustainable use of their resources. The Arboretum's education programs offer school groups and the general public a wide range of lectures, courses, and walks focusing on the ecology and cultivation of plants. Its quarterly magazine, Arnoldia, provides in-depth information on horticulture, botany, and garden history. Current Research Initiatives

 

Plant Records

 

Plant records are maintained on a computerized database, BG-BASE 6.8 (BG-Base Inc.), which was initiated in 1985 at the request of the Arnold Arboretum and the Threatened Plants Unit (TPU) of the World Conservation Monitoring Centre (WCMC). A computerized mapping program (based on AutoCAD (Autodesk)) is linked to BG-BASE, and each accession is recorded on a series of maps at a scale of 1-inch (25 mm) to 20 feet (1:240) or 1-inch (25 mm) to 10 feet (1:120). A computer-driven embosser generates records labels. All accessioned plants in the collections are labeled with accession number, botanical name, and cultivar name (when appropriate), source information, common name, and map location. Trunk and/or display labels are also hung on many accessions and include botanical and common names and nativity. Stake labels are used to identify plants located in the Leventritt Garden and Chinese Path.

 

Grounds Maintenance

 

The grounds staff consists of the superintendent and assistant superintendent, three arborists, and ten horticultural technologists. A service garage is adjacent to the Hunnewell Building, where offices and locker rooms are located. During the summer months ten horticultural interns supplement the grounds staff. A wide array of vehicles and modern equipment, including an aerial lift truck and a John Deere backhoe and front loader, are used in grounds maintenance. Permanent grounds staff, excluding the superintendents, are members of AFL/CIO Local 615, Service Employees International Union (SEIU).

 

Nursery and Greenhouse Facilities

 

The Dana Greenhouses, located at 1050 Centre Street (with a mailing address of 125 Arborway), were completed in 1962. They comprise four service greenhouses totaling 3,744 square feet (348 m²), the headhouse with offices, cold rooms, storage areas, and a classroom. Staffing at the greenhouse includes the manager of greenhouses and nurseries, the plant propagator, two assistants, and, during the summer months, two horticultural interns. Adjacent to the greenhouse is a shade house of 3,150 square feet (293 m²), a 12,600 cubic foot (357 m³) cold storage facility, and three irrigated, inground nurseries totaling approximately one and one-half acres (6,000 m²). Also located in the greenhouse complex is the bonsai pavilion, where the Larz Anderson Bonsai Collection is displayed from the middle of April to the end of October. During the winter months the bonsai are held in the cold storage unit at temperatures slightly above freezing.

 

Isabella Welles Hunnewell Internship Program

 

The living collections department of the Arnold Arboretum offers a paid summer internship program [2] that combines hands-on training in horticulture with educational courses. Intern trainees will be accepted for 12- to 24-week appointments. Ten interns will work with the grounds maintenance department and two in the Dana Greenhouses.

 

As part of the training program, interns participate in mandatory instructional sessions and field trips in order to develop a broader sense of the Arboretum’s horticultural practices as well as those of other institutions. Sessions and field trips are led by Arnold staff members and embrace an open question and answer format encouraging all to participate. Interns often bring experience and knowledge that everyone, including staff, benefits from. It is a competitive-free learning environment.

 

Horticultural Apprenticeship

 

The Arboretum created the horticultural apprenticeship program in 1997 to provide hands-on experience in all aspects of the development, curation, and maintenance of the Arboretum's living collections to individuals interested in pursuing a career in an arboretum or botanical garden.

 

The Living Collections department of the Arnold Arboretum offers a summer internship program[4] that combines practical hands-on training in horticulture with educational courses. Fourteen Interns/Horticultural Trainees are accepted for twelve to twenty-four week appointments. Interns receive the majority of their training in one of three departments: Grounds Maintenance, Nursery and Greenhouse, or Plant Records.

 

Lilac Sunday

 

The second Sunday in May every year is "Lilac Sunday". This is the only day of the year that picnicing is allowed. In 2008, on the 100th anniversary of Lilac Sunday, the Arboretum website touted:

 

Of the thousands of flowering plants in the Arboretum, only one, the lilac, is singled out each year for a daylong celebration. On Lilac Sunday, garden enthusiasts from all over New England gather at the Arboretum to picnic, watch Morris dancing, and tour the lilac collection. On the day of the event, which takes place rain or shine, the Arboretum is open as usual from dawn to dusk.[5]

 

Associated Collections

 

The Arboretum's herbarium in Jamaica Plain holds specimens of cultivated plants that relate to the living collections (ca. 160,000). The Jamaica Plain herbarium, horticultural library, archives, and photographs are maintained in the Hunnewell building at 125 Arborway; however, the main portions of the herbarium and library collections are housed in Cambridge on the campus of Harvard University, at 22 Divinity Avenue.

 

Publications

 

The inventory of living collections is updated periodically and made available to sister botanical gardens and arboreta on request; it is also available on the Arboretum’s website (searchable inventory). Arnoldia, the quarterly magazine of the Arnold Arboretum, frequently publishes articles relating to the living collections. A Reunion of Trees[6] by Stephen A. Spongberg (curator emeritus) recounts the history of the introduction of many of the exotic species included in the Arobretum’s collections. New England Natives[7] written by horticultural research archivist Sheila Connor describes many of the trees and shrubs of the New England flora and the ways New Englanders have used them since prehistoric times. Science in the Pleasure Ground[8] by Ida Hay (former curatorial associate) constitutes an institutional biography of the Arboretum.

 

Institutional Collaborations

 

The Arboretum maintains an institutional membership in the American Public Garden Association (APGA) and the International Association of Botanical Gardens and Arboreta. Additionally, members of the staff are associated with many national and international botanical and horticultural organizations. The Arboretum is also a cooperating institution with the Center for Plant Conservation (CPC), and as an active member of the North American Plant Collections Consortium (NAPCC), it is committed to broadening and maintaining its holdings of: Acer, Carya, Fagus, Stewartia, Syringa, and Tsuga for the purposes of plant conservation, evaluation, and research. The Arboretum is also a member of the North American China Plant Exploration Consortium (NACPEC).

 

See also

 

Larz Anderson Bonsai Collection, donated by businessman and ambassador Larz Anderson

The Case Estates of the Arnold Arboretum

List of botanical gardens in the United States

North American Plant Collections Consortium

Adams-Nervine_Asylum

 

External links

 

Arnold Arboretum Official Website

Arnold Arboretum Visitor Information

Harvard University Herbaria

American Public Gardens Association (APGA)

Flora of China

Virtual Information Access (VIA) Catalog of visual resources at Harvard University.

Garden and Forest A Journal of Horticulture, Landscape Art, and Forestry (1888–1897)

Boston's Arnold Arboretum: A Place for Study and Recreation, a National Park Service Teaching with Historic Places (TwHP) lesson plan

The Emerald Necklace: Boston's Green Connection, a National Park Service Teaching with Historic Places (TwHP) lesson plan

Times Square NYC New Years Eve Midnight Ball Drop - New Years Day Celebration New York City USA 2020 - 2021

  

The Times Square Ball is a time ball located atop the One Times Square building in New York City, primarily utilized as part of New Year's Eve celebrations held in Times Square. Yearly at 11:59 p.m. EST on December 31, the ball is lowered 77 feet (23 m) down a specially designed flagpole, resting on the midnight to signal the start of the new year. The first ball drop in Times Square took place on December 31, 1907, and has been held annually since (except in 1942 and 1943 in observance of wartime blackouts). The ball's design has also been updated over the years to reflect new advances in technologies—its original design utilized 100 incandescent light bulbs, iron, and wood in its construction, while its current incarnation features a computerized LED lighting system and an outer surface consisting of triangle-shaped crystal panels. As of 2009, the ball is also displayed atop One Times Square year-round and is removed only for general maintenance.

 

The Ball is covered with a total of 2,688 Waterford Crystal triangles

 

"Gift of Happiness" Revealed as the 2021 Waterford Crystal Times Square New Year's Eve Ball Theme

Embrace Happiness in 2021

 

The Times Square ball drop is one of the best-known New Year's celebrations internationally, attended by at least one million spectators yearly, with an estimated global audience of at least 1 billion. The prevalence of the Times Square ball drop has also inspired other similar ball drops held locally in other cities and towns around the world.

 

“Dick Clark’s New Year’s Rockin’ Eve with Ryan Seacrest,”

Performers 2020 - 2021

6:00 pm event starts

celebration

Billy Porter

Kelly Osbourne

Jonathan Bennett

The USO Show Troupe

Cristina Lucas

Andra Day

Jimmie Allen

Gloria Gaynor - I Will Survive

Juanita Erb

Machine Gun Kelly

The Waffle Crew

Anitta - Paradinha - Brazil - Univision’s ¡Feliz 2021!

Cyndi Lauper - True Colors

Raúl de Molina

Pitbull - I Know You Want Me (Calle Ocho) - Cuba USA - Univision’s ¡Feliz 2021!

Jennifer Lopez JLo - Waiting for Tonight - The Bronx

Andra Day performs John Lennon’s Imagine

Mayor Bill de Blasio of New York City

The Waterford Crystal Times Square New Year’s Eve Ball

12:15 a.m. — End of Show

  

At the base of the One Times Square Building is a Walgreens store with a monitor stating Happy New Year 2021 Walgreens facing the MTA Subway exit -

Walgreens Boots Alliance Inc is listed on the NASDAQ as WBA - The NASDAQ is also located in Times Square NYC.

 

The closest Metropolitan Transportation Authority MTA Subway is Times Square – 42nd Street New York City Subway station - N R Q S 1 2 3 7 trains and A C E trains at 8th Avenue

 

The Chinese Lunar calendar follows a 12 year cycle and each of the 12 years is represented by 12 Animals which form the Chinese Zodiac. The 12 animals, are: Rat, Cow, Tiger, Rabbit, Dragon, Snake, Horse, Sheep, Monkey, Chicken, Dog, and the Pig.

2019 Pig

2020 Rat

2021 Ox

2022 Tiger

2023 Rabbit

2024 Dragon

2025 Snake

2026 Horse

2027 Sheep

2028 Monkey

2029 Rooster

2030 Dog

  

Photo

Apple iPhone 12 Pro Max smartphone photo

4x3

dimensions 4032 × 3024 resolution 72x72

JPEG image type

Rear lens

Phone held horizontal

Fourteenth generation of the iPhone

Released November 13, 2020

Phone sells for $1,099.00

 

Hashtag metadata:

#HappyNewYear #HappyNewYears #FelizAñoNuevo #FelizAnoNuevo #Feliz #AñoNuevo #AnoNuevo #TimesSquare #TimesSquareNYC #TimesSquareNYE #TimesSquareNY #TimesSquareNewYorkCity #TimesSquareNewYork #TSNYC #TSNYE #NY #NYC #NewYork #NewYorkCity #NewYearsEve #NYE #US #USA #Happy #NewYear #NewYears #December #Party #Celebration #Holiday #DickClark #RyanSeacrest #DickClarksNewYearsRockinEve #NewYearsRockinEve #FortySecondStreet #2020 #2021

 

Photos

Times Square, New York City, USA The United States of America, North America

12/31/2020 - 01/01/2021

The early gun turrets on the B-29 were Sperry retractable turrets with periscope sights. However, these did not perform well and General Electric was tasked with providing an alternate design. The GE system featured stationary, non-retractable turrets operated by remotely-situated gunners using computerized gunsights. There were five turret positions: upper-forward, upper-aft, lower-forward, lower-aft, and tail. Each turret contained two 0.50-inch machine guns with the tail position containing an additional 20-mm cannon M-2 Type B cannon with 100 rounds.

 

All guns except the tail gun were aimed and fired remotely by a set of gunners. There were four gunner sighting positions, one in the extreme nose operated by the bombardier, and three at the position in the waist where the rear pressurized compartment was located. The new remotely-operated armament system was first installed in the third XB-29. However, the new system required a lot more electrical power, necessitating the addition of several specially-designed generators.

 

In this image, a B-29 from the 25th Bombardment Squadron of the 40th Bombardment Group (Very Heavy), serial number 42-24888, flies the “Hump” over the Himalayas. Named “Smilin' Jack,” this Superfortress was stationed at Chakulia, India beginning in November 1944. From India, the 40th Bomb Group planned to fly missions against Japan from airfields in China. Known as Operation Matterhorn, this endeavour saw the creation of airfields in China and the transportation of all the supplies needed, fuel, bombs, and spares over the Hump (the name given to the Himalayas). The Hump route was so dangerous and difficult that each time a B-29 flew from India to China it was counted as a combat mission. For every one Superfortress combat mission, there needed to be six round-trip cargo missions of the Hump in modified cargo and tanker B-29s. After two years of planning, construction, and logistics, only approximately 800 tons of bombs were dropped by China-based B-29s on the Japanese home islands. After the capture of the Marianas in early 1945, most B-29s operating in India and China were transferred to the Pacific.

 

I reworked the fuselage shape and tapering to produce cleaner lines. I also took the opportunity to refine other aspects of the original design including the profile of the engine nacelles and the remotely-operated gun turrets.

1 2 ••• 14 15 17 19 20 ••• 79 80