View allAll Photos Tagged Computerized

See more photos of this, and the Wikipedia article.

 

Details, quoting from Smithsonian National Air and Space Museum | Boeing B-29 Superfortress "Enola Gay":

 

Boeing's B-29 Superfortress was the most sophisticated propeller-driven bomber of World War II and the first bomber to house its crew in pressurized compartments. Although designed to fight in the European theater, the B-29 found its niche on the other side of the globe. In the Pacific, B-29s delivered a variety of aerial weapons: conventional bombs, incendiary bombs, mines, and two nuclear weapons.

 

On August 6, 1945, this Martin-built B-29-45-MO dropped the first atomic weapon used in combat on Hiroshima, Japan. Three days later, Bockscar (on display at the U.S. Air Force Museum near Dayton, Ohio) dropped a second atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. A third B-29, The Great Artiste, flew as an observation aircraft on both missions.

 

Transferred from the United States Air Force.

 

Manufacturer:

Boeing Aircraft Co.

Martin Co., Omaha, Nebr.

 

Date:

1945

 

Country of Origin:

United States of America

 

Dimensions:

Overall: 900 x 3020cm, 32580kg, 4300cm (29ft 6 5/16in. x 99ft 1in., 71825.9lb., 141ft 15/16in.)

 

Materials:

Polished overall aluminum finish

 

Physical Description:

Four-engine heavy bomber with semi-monoqoque fuselage and high-aspect ratio wings. Polished aluminum finish overall, standard late-World War II Army Air Forces insignia on wings and aft fuselage and serial number on vertical fin; 509th Composite Group markings painted in black; "Enola Gay" in black, block letters on lower left nose.

 

Long Description:

Boeing's B-29 Superfortress was the most sophisticated, propeller-driven, bomber to fly during World War II, and the first bomber to house its crew in pressurized compartments. Boeing installed very advanced armament, propulsion, and avionics systems into the Superfortress. During the war in the Pacific Theater, the B-29 delivered the first nuclear weapons used in combat. On August 6, 1945, Colonel Paul W. Tibbets, Jr., in command of the Superfortress Enola Gay, dropped a highly enriched uranium, explosion-type, "gun-fired," atomic bomb on Hiroshima, Japan. Three days later, Major Charles W. Sweeney piloted the B-29 Bockscar and dropped a highly enriched plutonium, implosion-type atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. On August 14, 1945, the Japanese accepted Allied terms for unconditional surrender.

 

In the late 1930s, U. S. Army Air Corps leaders recognized the need for very long-range bombers that exceeded the performance of the B-17 Flying Fortress. Several years of preliminary studies paralleled a continuous fight against those who saw limited utility in developing such an expensive and unproven aircraft but the Air Corps issued a requirement for the new bomber in February 1940. It described an airplane that could carry a maximum bomb load of 909 kg (2,000 lb) at a speed of 644 kph (400 mph) a distance of at least 8,050 km (5,000 miles). Boeing, Consolidated, Douglas, and Lockheed responded with design proposals. The Army was impressed with the Boeing design and issued a contract for two flyable prototypes in September 1940. In April 1941, the Army issued another contract for 250 aircraft plus spare parts equivalent to another 25 bombers, eight months before Pearl Harbor and nearly a year-and-a-half before the first Superfortress would fly.

 

Among the design's innovations was a long, narrow, high-aspect ratio wing equipped with large Fowler-type flaps. This wing design allowed the B-29 to fly very fast at high altitudes but maintained comfortable handling characteristics during takeoff and landing. More revolutionary was the size and sophistication of the pressurized sections of the fuselage: the flight deck forward of the wing, the gunner's compartment aft of the wing, and the tail gunner's station. For the crew, flying at extreme altitudes became much more comfortable as pressure and temperature could be regulated. To protect the Superfortress, Boeing designed a remote-controlled, defensive weapons system. Engineers placed five gun turrets on the fuselage: a turret above and behind the cockpit that housed two .50 caliber machine guns (four guns in later versions), and another turret aft near the vertical tail equipped with two machine guns; plus two more turrets beneath the fuselage, each equipped with two .50 caliber guns. One of these turrets fired from behind the nose gear and the other hung further back near the tail. Another two .50 caliber machine guns and a 20-mm cannon (in early versions of the B-29) were fitted in the tail beneath the rudder. Gunners operated these turrets by remote control--a true innovation. They aimed the guns using computerized sights, and each gunner could take control of two or more turrets to concentrate firepower on a single target.

 

Boeing also equipped the B-29 with advanced radar equipment and avionics. Depending on the type of mission, a B-29 carried the AN/APQ-13 or AN/APQ-7 Eagle radar system to aid bombing and navigation. These systems were accurate enough to permit bombing through cloud layers that completely obscured the target. The B-29B was equipped with the AN/APG-15B airborne radar gun sighting system mounted in the tail, insuring accurate defense against enemy fighters attacking at night. B-29s also routinely carried as many as twenty different types of radios and navigation devices.

 

The first XB-29 took off at Boeing Field in Seattle on September 21, 1942. By the end of the year the second aircraft was ready for flight. Fourteen service-test YB-29s followed as production began to accelerate. Building this advanced bomber required massive logistics. Boeing built new B-29 plants at Renton, Washington, and Wichita, Kansas, while Bell built a new plant at Marietta, Georgia, and Martin built one in Omaha, Nebraska. Both Curtiss-Wright and the Dodge automobile company vastly expanded their manufacturing capacity to build the bomber's powerful and complex Curtiss-Wright R-3350 turbo supercharged engines. The program required thousands of sub-contractors but with extraordinary effort, it all came together, despite major teething problems. By April 1944, the first operational B-29s of the newly formed 20th Air Force began to touch down on dusty airfields in India. By May, 130 B-29s were operational. In June, 1944, less than two years after the initial flight of the XB-29, the U. S. Army Air Forces (AAF) flew its first B-29 combat mission against targets in Bangkok, Thailand. This mission (longest of the war to date) called for 100 B-29s but only 80 reached the target area. The AAF lost no aircraft to enemy action but bombing results were mediocre. The first bombing mission against the Japanese main islands since Lt. Col. "Jimmy" Doolittle's raid against Tokyo in April 1942, occurred on June 15, again with poor results. This was also the first mission launched from airbases in China.

 

With the fall of Saipan, Tinian, and Guam in the Mariana Islands chain in August 1944, the AAF acquired airbases that lay several hundred miles closer to mainland Japan. Late in 1944, the AAF moved the XXI Bomber Command, flying B-29s, to the Marianas and the unit began bombing Japan in December. However, they employed high-altitude, precision, bombing tactics that yielded poor results. The high altitude winds were so strong that bombing computers could not compensate and the weather was so poor that rarely was visual target acquisition possible at high altitudes. In March 1945, Major General Curtis E. LeMay ordered the group to abandon these tactics and strike instead at night, from low altitude, using incendiary bombs. These firebombing raids, carried out by hundreds of B-29s, devastated much of Japan's industrial and economic infrastructure. Yet Japan fought on. Late in 1944, AAF leaders selected the Martin assembly line to produce a squadron of B-29s codenamed SILVERPLATE. Martin modified these Superfortresses by removing all gun turrets except for the tail position, removing armor plate, installing Curtiss electric propellers, and modifying the bomb bay to accommodate either the "Fat Man" or "Little Boy" versions of the atomic bomb. The AAF assigned 15 Silverplate ships to the 509th Composite Group commanded by Colonel Paul Tibbets. As the Group Commander, Tibbets had no specific aircraft assigned to him as did the mission pilots. He was entitled to fly any aircraft at any time. He named the B-29 that he flew on 6 August Enola Gay after his mother. In the early morning hours, just prior to the August 6th mission, Tibbets had a young Army Air Forces maintenance man, Private Nelson Miller, paint the name just under the pilot's window.

 

Enola Gay is a model B-29-45-MO, serial number 44-86292. The AAF accepted this aircraft on June 14, 1945, from the Martin plant at Omaha (Located at what is today Offut AFB near Bellevue), Nebraska. After the war, Army Air Forces crews flew the airplane during the Operation Crossroads atomic test program in the Pacific, although it dropped no nuclear devices during these tests, and then delivered it to Davis-Monthan Army Airfield, Arizona, for storage. Later, the U. S. Air Force flew the bomber to Park Ridge, Illinois, then transferred it to the Smithsonian Institution on July 4, 1949. Although in Smithsonian custody, the aircraft remained stored at Pyote Air Force Base, Texas, between January 1952 and December 1953. The airplane's last flight ended on December 2 when the Enola Gay touched down at Andrews Air Force Base, Maryland. The bomber remained at Andrews in outdoor storage until August 1960. By then, concerned about the bomber deteriorating outdoors, the Smithsonian sent collections staff to disassemble the Superfortress and move it indoors to the Paul E. Garber Facility in Suitland, Maryland.

 

The staff at Garber began working to preserve and restore Enola Gay in December 1984. This was the largest restoration project ever undertaken at the National Air and Space Museum and the specialists anticipated the work would require from seven to nine years to complete. The project actually lasted nearly two decades and, when completed, had taken approximately 300,000 work-hours to complete. The B-29 is now displayed at the National Air and Space Museum, Steven F. Udvar-Hazy Center.

the Mamiya ZE (some were also designated ZE Quartz) was introduced in July 1980. It has a metal, quartz-controlled, focal-plane shutter and a center-weighted photo diode. An aperture-priority AE, exposure can be corrected ± two stops, and a previously-metered exposure can be locked in "AEL" position. The bayonet-mount lenses (E or EF series) have gold electronic contacts. It is interesting to note the body of the Mamiya ZE had only three electrical contacts, while the interchangeable lenses introduced with the camera had ten. They were already potentially capable of transmitting information about aperture requirements, shutter speed, and more, to subsequent generations of cameras beyond the ZE. A sophisticated central processor was incorporated into the ZE series, an indicator of the changing direction of cameras, from simple mechanical devices, to small, computerized machinery.

 

- I fell in love with this amazing camera,from the first moment i picked her up,and after developing the first roll. sometimes im finding myself staring at her just standing there on the shelf......she's a true beauty,and takes some seriously amazing pictures.

 

 

Ford Escort (MkIII) RS1600i (1984-90) Engine 1597 cc S4 OC 115PS

 

Registration Number YWX 88- - (last 2 digits unclear)

FORD EUROPE ALBUM

 

www.flickr.com/photos/45676495@N05/sets/72157623665118181...

 

The Mark III Escort was developed under the code name Erika, and launched in 1980, unlike the Mark II the new car was more than a reskin of the previous generation Escort. The Mark III was a departure from the two previous models, the biggest changes being the adoption of front-wheel drive, and the new hatchback body. The car used Ford's contemporary design language of the period with the black louvred radiator grille and straked rear lamp clusters, as well as introducing the aerodynamic bustle-back; bootlid stump. Sales in the United Kingdom increased, and by 1982 it had overtaken the ageing Cortina as the nation's best-selling car, beginning an eight-year run as Britain's best selling car.

 

New were the overhead camshaft CVH engines in 1.3 L and 1.6 L formats, with the older Ford Kent-based Valencia engine from the Fiesta powering the 1.1 L. From launch, the car was available in base (Popular), L, GL, Ghia and XR3 trim.

 

A convertible version, made by coachbuilder Karmann, appeared the same year as the five-door estate (1983). It was the first drop-top car produced by Ford Europe since the Corsair of the 1960s. The Escort Cabriolet was initially available in both XR3i and Ghia specification, but the Ghia variant was later dropped.

 

To compete with Volkswagen's Golf GTI, a hot hatch version of the Mark III was developed – the XR3. Initially this featured a tuned version of the 1.6 L CVH engine of 96bhp

fitted with a twin-choke Weber carburettor, uprated suspension and numerous cosmetic alterations.

 

The car lacked the five speed transmission and fuel injection of its Volkswagen rival a situation addressed in October 1982 for the 1983 model year with the arrival of the XR3i with 105bhp eight months behind the limited edition (8,659 examples), racetrack-influenced RS 1600i. The Cologne-developed RS received a more powerful engine with 115 PS (85 kW), thanks to computerized ignition and a modified head as well as the fuel injection

 

Diolch am 83,664,099 o olygfeydd anhygoel, mae pob un yn 90cael ei werthfawrogi'n fawr.

 

Thanks for 83,664,099 amazing views, every one is greatly appreciated.

 

Shot 25.07.2021 at Beaumanor Hall, Woodhouse, Leic. 148-079

 

LEMOORE, California (June 5, 2019) The first Marine Fighter Attack Squadron (VMFA) 314 "Black Knights" Lockheed Martin F-35C Lightning II aircraft from Naval Air Station (NAS) Lemoore flown by CAPT Tommy Beau Locke from Strike Fighter Squadron (VFA) 125 "Rough Raiders" flies in formation over the Sierra's with the VFMA-314 squadron F/A-18A++, flown by LtCol Cedar Hinton aircraft "passing the lead" as part of the F/A-18 Sundown with the Black Knights.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

T-98K Косилка MBT (Косилка - Kosilka - Cutter)

 

--------------------

 

A high tech medium tank.

 

The Косилка MBT is the newest installation in the UT armoury. Developed by the famous IC, this MBT is to be used among various members of the KWA and others around the globe. Designed to be a multirole platform.

 

It is armed with a 3-barreled mounted minigun (Mолния), a main gun, and a twin missile system (1 ATGM, 1 SAM, reloadable from hatch).

 

As with most UT tanks, it features a three-tier protection system.

 

The first tier is the composite armour. It consists of basic armour shell with an insert of alternating layers of aluminum and plastics and a controlled deformation section.

 

The second tier is the Kontakt-5 ERA (explosive reactive armor). It severely reduces the blow from kinetic projectiles. They are in the form of blocks on the turret and body or as ERA plates underneath steel outer covering. It results in much better protection than simple steel armour as featured on many other non-UT tanks.

 

The third tier is a Shtora countermeasures suite. This system includes two IR "dazzlers" on the front of the turret in the shape of blocks, four Laser warning receivers, two 3D6 aerosol grenade discharging systems and a computerized control system. The Shtora-1 warns the tank's crew when the tank has been 'painted' by a weapon-guidance laser and automatically activates the aerosol grenade launchers, effectively jamming the incoming missile. The aerosol grenades are used to mask the tank from laser rangefinders and designators as well as the optics of other weapons systems.

 

For passive guidance rocket systems, IR dazzlers create a blinding field of infrared light, "blinding" the rocket as it's IR isn't visible anymore.

 

The Arena active countermeasures suite consist of a computer, incoming projectile warning sensors, and shrapnel launchers all around the tank hull. It detects an incoming projectile, and sends out a stream of shrapnel to meet the incoming projectile. It destroys the projectile while leaving the armour intact.

 

Over time, seperate systems are upgraded. Tracks to hover, machineguns to laser weapons, stealth armour, railgun main cannon.

 

Powered by a hybrid diesel/electric engine. Fast, has good suspension, and is able to submerge completely into water without leaks. Employs an autoloader.

 

It has it's own air search radar, allowing it to use SAMs standalone. 3 kilometer range.

  

The tanks are also fitted with nuclear, biological and chemical (NBC) protection equipment. It includes a mine disabling kit. The EMT-7 electromagnetic-counter mine system is installed: the EMT-7 emits an electromagnetic pulse to disable magnetic mines and disrupt electronics before the tank reaches them. The Nakidka signature reduction suite is also equipped. Nakidka is designed to reduce the probabilities of an object to be detected by Infrared, Thermal, Radar-Thermal, and Radar bands.

 

All tanks are installed with night vision and infrared cameras, with direct feed into screens inside the tank.

 

--------------------

 

Cost: 6,000 GC Credits (7,200 GC Credits - Tier 1)

 

--------------------

 

Credits:

Shark - Inspiration

Domoappo - Rotary Machinegun

Magnus - Workspace

 

--------------------

 

Import Code (Use with credit to above persons):

pastebin.com/QnnvTy45

Three small pieces, of similar design and fabric..... original designs...and all figments of my imagination...nothing more.

Machine stitched,...not computerized.... and no handwork.

Saudi Arabia was interested in acquiring the F-15E for its air force, but the aircraft was deemed too sensitive for export. As an alternative, Saudi Arabia requested the delivery of 24 F-15Fs, which were similar to the F-15E but without the second crew member and without some of the more advanced avionics deemed too sensitive for export. However, in 1993, the Royal Saudi Air Force was given permission to purchase 72 slightly downgraded versions of the F-15E Strike Eagle, initially designated F-15XP but now known as F-15S. The F-15S has an APG-70S radar that is "detuned" from the capabilities of the APG-63 of the F-15C/D and does not have the ability to do computerized ground mapping. It has only 60 percent of the bandwidth of the APG-63 and is limited to only 16 rather than 32 channels. The AWG-27 programmable armament control set was reprogrammed to prevent the carriage of certain weapons systems, and the hands-off automatic terrain following mode was deleted from the ASW-51 autopilot. A ring laser gyro INS was provided, but the military-grade GPS system was eliminated, although the Saudis have added a commercial-grade GPS system.

 

Some sensitive ECM systems are replaced with older equipment or are deleted altogether. The nuclear weapon wiring fitted to USAF F-15Es was deleted. Some initial reports indicated that the F-15S would not be provided with the ability to carry conformal fuel tanks and their associated weapons pylons, but this turned out not to be the case. Saudi Arabia received 48 downgraded versions of the Martin Marietta LANTIRN system known as AAQ-19 Sharpshooter, as well as the AAQ-20 Pathfinder, which is a simplified version of the AAQ-13 Nav-Pod. The AAQ-20 is not compatible with the AGM-65 Maverick air-to-ground missile and has some air-to-air features deleted.

 

In this image, an F-15S (F-15S-59-MC, serial number 93-0913 reserialed to 9225) from the 6 Squadron, Wing 5 stationed at King Khalid AB near Khamis Mushait flies over the western Arabian desert. A total of 72 were placed on order under Peace Sun IX. The first example took off on its maiden flight on 19 June 1995. Production was planned at a rate of one per month, with the 72nd and last F-15S being delivered in 1999. A new variant, the F-15SA (Saudi Advanced), is under development and will have a new fly-by-wire flight control system and the APG-63(v)3 active electronically scanned array (AESA) radar, digital electronic warfare systems (DEWS), and infrared search and track (IRST) systems. It will also have a redesigned cockpit, once intended for the F-15SE Silent Eagle.

LEMOORE, California (June 5, 2019) The first Marine Fighter Attack Squadron (VMFA) 314 "Black Knights" Lockheed Martin F-35C Lightning II aircraft from Naval Air Station (NAS) Lemoore flown by CAPT Tommy Beau Locke from Strike Fighter Squadron (VFA) 125 "Rough Raiders" flies in formation over the Sierra's with the VFMA-314 squadron F/A-18A++, flown by LtCol Cedar Hinton aircraft "passing the lead" as part of the F/A-18 Sundown with the Black Knights.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

Wow, the familiar ferris wheel had a new look this year with constantly changing computerized patterns...every second it was a new view...and I took quite a few!!!

The said we never loved you,

those with condescending eyes,

who press their fingers together over polished desks,

and smile benignly under framed degrees,

who tap their pipes and collect their fees.

 

Where were they the day you came?

Did they hear as I gave birth,

or watch as I put you to my breast,

weeping in sweet relief that you were safe?

 

Yet they said we were cold,

and did not care for you,

oh little girls with baby curls,

and velvet skin,

and eyes so blue,

that gazed in rapture after things we could not see,

and issued racking sob for things we could not know.

 

Those with MDs and PhDs,

looked politely over their glasses and smiled,

they sent their bills in computerized window notes,

and pronounced we did not love,

and when bad times came they sat in paneled offices,

and wrote hard words in confidential files.

 

They did not see the daisies or daffodils,

you plucked with smiling zeal,

little hand held up for us to see,

or hear while riding sister piggyback,

you enthusiastic squeals of glee.

 

They drove new cars and went on holidays,

and played sophisticated mind games,

while we who did not love,

knelt down to you and held your limbs,

and fought your fright,

and stifled inward cries and tried not to hear,

as tormented screams wrenched days and hearts,

and twisted sweet features into a mask of fear.

 

One afternoon your Dad held you to him,

and felt your blood soak to his skin,

feeling his tears go with it.

How could they know of the pleasure and pain,

they were not there.

They never watched you run along the beach,

or heard your laughter in the waves and rain,

or knew the blessed peace in watching you sleep.

 

Still...

those with letters after their names.

are due respect my daughter,

and we should give it.

 

Well...

They said we never loved you dear,

God knows and you,

and they can go to hell.

BF-4 Flt 508 Mr. Peter Wilson and BF-5 Flt 370 Sqn Ldr Andy Adgell fly from HMS Queen Elizabeth on 27 Sep 2018

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

Two Lockheed Martin F-35B Lightning II fighter jets have successfully landed on board HMS Queen Elizabeth for the first time, laying the foundations for the next 50 years of fixed wing aviation in support of the UK’s Carrier Strike Capability.

 

Royal Navy Commander, Nathan Gray, 41, made history by being the first to land on board HMS Queen Elizabeth, carefully maneuvering his stealth jet onto the thermal coated deck. He was followed by Squadron Leader Andy Edgell, RAF, both of whom are test pilots, operating with the Integrated Test Force (ITF) based at Naval Air Station Patuxent River, Maryland.

 

Shortly afterwards, once a deck inspection has been conducted and the all-clear given, Cmdr Gray became the first pilot to take off using the ship’s ski-ramp.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

 

This is not a real battle, you can see this on the uniforms yellow-blue instead of the full-colored suits worn by Federation troops...

 

This is a fully digitalized process of sorting out good shooters from bad ones...

 

...digital cheating is often discovered but is often not a problem since when the actually enlist and show up in person it will be revealed quite fast who hasn´t got the real skill...

 

Skeletons are by far the most popular training program opponent to the aspiring troopers, that is because it is really cool to see the simulated skeleton´s bones splinter in all directions when hit...

  

We are your ancient family. We come from the star system The Pleiades. We know ourselves as The Pleiadians and we, eons ago, millions of years ago, were your relatives.

 

When your Earth sphere, Terra, was being formed, there were many who expressed an interest to be pioneers and to go to a new area to learn to experience, to formulate, to create. That was the opportunity and many of our dearly beloved Pleiadians signed on.

 

The Pleiadian culture is ancient. [It] was seeded from another universe, a universe of love, a universe that moved back to All That Is. The Pleiadians seeded the Pleiadian star system within this universe before the Earth’s sphere transfer became available. We formed a tremendous society. We operate with love. We operate with ideas and ideals that you are totally unfamiliar with.

 

Our technology in your terms would be somewhat similar. We are, in your terms, computerized. We like that term because it represents an overall picture of our abilities. The picture actually only represents one per cent of what we are capable of doing. However, from your point of view, think of us as a computerized society. We are collective energy. We are not of your dimension.

 

The star system of the Pleiades has seven stars, six of which we believe, you may see from the naked eye. There are many planets and we are millions upon millions of miles from your system though we have transportation that can bring us here very quickly. We have many modes of transportation.

 

Mostly we come in starships. Often mother ships. The mother ships are gigantic, one of your miles, housing thousands. [They are] elongated, one of our fashions, [and] would take, in your terms, days to transport itself here. We have disc ships which can be here quickly, within portions of your day.

 

We have difficulty at times translating your time system, your hours, your minutes, into what is relative to our system, perhaps less than one quarter of your day. We are an advanced civilization. Our technology is ancient because it is coming from another universe that has evolved back to First Cause.

 

We chose not to evolve back to First Cause but to go on out of love, to assist the growth of this universe. We were allowed to bring that knowing with us because our technological development is totally in line with the First Cause and we would never operate in any fashion that did not support the love and development of humanity of all creatures in all of this universe. So we were allowed to be here. We were welcomed.

 

We are the ambassadors, in this star area, this universe, from another universe. We are working with many, not just with Terra, the Earth. We are working in other solar systems, with other planetary creatures, with other creations.

 

This universe is a vast and new experiment. Different options, we like that word, are being attempted here. Free will reigns in this universe. On Terra you think you have free will but you do not really understand what free will is. Free will encompasses the complete idea that whatever it is that you are wanting you may have. And your sole point in choosing to partake in the planetary system within this universe that has free will was so that you may do whatever it is that you wish.

 

Terra was formed with specific intents in mind. It was formed to be a center for this solar system, a trade center, a launching pad for ideas. Much like, as different portions of your globe have developed, and different port cities, or areas came into fashion and represented trends, cultural advancements, exchanges of ideas at different points in time, and then fell by the wayside.

 

The ideal of Terra’s role would be the jewel within the universe for its beauty physically to the eye, and this physical beauty would be beheld not just in one dimension but in many dimensions. That it would be a center of tremendous beauty, of tremendous exchange, of freedom, of ideas and beauty and love and peoples, humanities, creatures from all of this universe and star system ideally would have come here and exchanged what it is they had, as goods would be exchanged in the marketplace, with others.

 

Now, as you know, that has not taken place. Fortunately that is changing. Unfortunately, eons in your past, events occurred that were not anticipated, for when one deals with free will one never knows. There are no expectations with free will, just intentions and hopes. And even intentions sometimes may be transmuted.

 

Now, that was the original intention. Then eons ago, millions of years ago, there was a disruptive force that became quite pronounced in this area of creation, experimenting as it would be, with another form of being. This experimenting was not evil, it was just another point of view. We speak in very neutral terms so as not to lay blame or prejudice on anyone.

 

This disruptive force effected Terra greatly. It threw the cosmic forces, the hierarchies into vast confusion. And it has been all these eons, these millions of years that this has been attempted to be righted.

 

Now, through the last thousands of years we have been assisting the higher spiritual forces, those from the First Cause. Our assistance we freely gave because original family members came to this experiment of Terra and then when those disruptive energies became prevalent and changed the intent of what Terra would be we lost contact with our family members. It was very sad for us, for we had never anticipated this loss.

 

Being that we as Pleiadians are highly evolved and of great knowing and great connectedness with the First Cause, we knew that this was a temporary loss of family members, though temporary in our terms was millions of years. And though the initial shock was felt literally throughout the universe and universes, we formulated a plan and knew that there would be a time when we would be reunited.

 

We are your family members who lost contact with you eons ago. We have come to retrieve you. We have come to reestablish contact, to assist you, so that you can now reunite with us, liberate yourselves and choose to come back to the Pleiades or to stay here on Terra and raise the vibration and allow Terra to become what it was originally planned to become, the international exchange, intergalactic international trade exchange center for the universe.

 

Now, as you may well know, that upon looking at your planet you can shake your head and say, goodness, we have ventured far from our original goal. And, indeed, that is true, you have. However, at this time events are manifesting on your planet that are about to change all of that.

 

It was known eons ago that there would be a point where the energies would be ripe for contact, for adjustments, for receiving energy for realignment. It was hoped that that juncture would be reached through the opening of the free will bodies, by their own choice, through love.

 

That is not the case. You have reached critical times. It began peaking 30, 40 years ago, and the activities that have been occurring on this sphere have been of grave concern to all within your universe. The lack of love for humanity, for one another on this planet. Separations of self from self. The missing of the message that you are all one, that you are all connected, that what one does affects the other.

 

Know that there are many millions on the planet out of the billions, who are awakened, who are moving toward the enlightenment, moving towards the acknowledgement of the First Creator, in whatever minuscule way they can conceive of this vast entity.

 

What is happening on your planet at this time is that the energy of the First Creator, is being presented to the planet as a whole. When we say “as a whole”, there are no groupings that would be select over others. The opportunities exist for everyone. It is the individual humanity’s choice to acknowledge the opportunity that presents itself.

 

[The awakened ones will be] assigned, so to speak, to awaken someone. First Creator energy is now being made available to the planet, on a vast level, vast. It’s encircling the sphere. Light frequency is bombarding your planet, though only those who know how to use this energy can feel it. It is as if an invisible force is in your lives and if you are not aware of this invisible force, you will not see it.

 

Now, if the awakeners approach the awakenees with love, with intent of service, with intent of changing the planetary potential, the planetary history, and also are willing to bond unconditionally with the awakenee, it will be successful. In most cases, those that need now to be awakened are working about this in their dream state and they are in a state of confusion in their waking world and so they are welcoming something that will give them greater power and direction.

 

The awakenees will need guidance for a short amount of time because of the energy that is available [but] the knowings will happen very quickly, then they, too, [will awaken and empower others]. The more members, the greater members of humanity that are in knowing, the easier the times ahead will be.

 

We are working, sitting at the edges of our seats. When we say “our”, we mean our beings, the star individuals, the star families, the spirit guides, the ascended masters, the callers from the great cause, the First Cause. There are many here. The skies, the atmospheres are full, so to speak, of who we are keeping Terra in force, keeping it alive and vibrant, glowing, and also respecting your free will at the same time.

 

That is why we say the awakenings are so important at this time. They are of prime concern. Individual awakenings. Word of mouth. It is the best way of accomplishing what it is that needs to be accomplished. Word of mouth. Books are fine. Tapings are fine. But one individual loving another individual liberates, frees. And that individual goes off and creates and effects many others. That is how the process will occur, as we see it.

 

We stated earlier that Terra is a free will district along with the entire universe, however, there is a code of honor that exists along with free will. And that code of honor represents the respect for life. All of life. The respect, and the commitment to no violation of life. The honoring of life is paramount, and allowing that life.

 

Now, millions upon millions of years ago when the disruptive forces came in and changed all of that, free will was granted still and we stepped back, and saw and watched, and knew that there would be a time when all of this would come to an apex, as it would be said when the changes could be made.

 

Disruptive forces have come again. This time they will not succeed. However, the energy is of great influence on the planet at this time because of the technological development and the extent of this technological influence throughout the planet.

 

We ask that each person individually speak to another. At this point very powerful individuals are being awakened. Those individuals who effect other people, who influence other people are those that are awakening at this time, and are being awakened by those who made agreements, contracts eons ago to perform this service. We see that there will be changes geographically, great changes. Because the changes represent the most benevolent way of realignment. If there were to be great destructions, and there will be some destructions along the lines of warrings, if that were to be the prevalent case upon the entire sphere, it would effect the cosmos so greatly, that in this case it cannot be allowed.

 

The changes that will happen on the surface of Terra are not definite. They will not be definite until they occur, until energy peaks. The energy will be peaking partially through what’s happening on the globe, also through planetary and cosmic influences. The closer you may move towards the misuse of the technology, then of course, Mother Earth, a living, viable, breathing entity, would shift itself rather than destroy itself.

 

[The] shifts will be of a healing nature, much as the ill person may experience the tremendous fevers and burn and sweat and shake and then heal themselves. If Mother Earth did not shift herself and the misuse of technology would be [a] prevalent paradigm, do you know what would occur? It would be the destruction of the universe.

 

We do not wish to be annihilated and misuse of your technology on your planet could annihilate a universe. Contemplate on what we are speaking for it is profound.

 

Many of you are looking for blacks and whites and the universe exists in gray areas. It is not the way you think it is. There is life teeming everywhere that you cannot see. There are many dimensions, there are many forms of beings. What happens in your dimension would affect us all because the building blocks of the universe, of the cosmos are connected. The atoms, the elements are all one. They are universal. Universal tools, so to speak. And through the misuse of one, in one segmented area, it would effect many others. So that is why we say, we are tuning Mother Earth to this knowing. Mother Earth knows this potential happening and would shift herself when the time and the danger becomes great.

 

Understand that all of these changes are contingent upon the awakenings. If the awakenings happen very quickly and those within the governments, within the arms industries, those within the publishing, communicative areas, television, newspaper, movies, [if] those influential people on the planet are awakened quickly, all could shift. Mother Earth will do whatever is necessary to realign for her own survival.

 

We are saying that if your intention is to step into the times ahead with joy, and experience, and be a partaker, a conscious partaker of the movement that the planet is selecting, then clearly think of what it is that you want, intend it, plan on it, and then trust that the part of the body located in the solar plexus will guide you along with the heart, to be where it is you need to be. If you are clear in your plannings, if you count on it, if you state it matter of factly, step into the knowing, not the thinking, but the knowing beyond all shadow of a doubt that you will be here in joy, in harmony, in happiness, in creativity, and in greater rejoicing of building the world, the civilization that you all desire, then so shall you be.

 

Now, think of that for a few moments and choose what it is you want. Examine your hearts about what it is you are wanting. Throw by the wayside those things that are not important to you and put your energy, your thoughts, your hearts, into what it is that is most important. And do not, under any circumstances, be afraid of making a change, for change is going to occur whether you select it or not. So, by consciously selecting a change, whether it be a move, or what have you, [it] may be your method, your means, of moving into the times ahead.

 

Do not resist change. Flow. It may come in the area of relationships, the breakings up or the coming togethers. It may come in the area of employment or a lack of. It may come in the area of sudden abundance presenting itself to you or lack of. All these events will motivate you towards something. We ask that you go inside, trust the feelings. Trust yourself. One of the most beneficial endeavors that you will be involved with is forming the extended families. With a networking of thirty to fifty people it will be very powerful. We also wish to speak of the availability of outside communication that is waiting to speak with many of you, that is speaking with each and every one of you though you do not acknowledge it. Vast numbers are willing to help.

 

We ask you to examine your hearts, relinquish your fears, move towards what it is that will be most important. We suggest, and we will assist in these endeavors, that through your dream states you dare to dream of possibilities that seem outlandish. Awakened ones and those becoming awakened are being fed information through the dream state from the vast numbers and given so called ideas. Instigated information. Potentialities of abilities that are far beyond what is available now on the planet. And these will be fun things. These will be joyful things. These will be loving things, healing things, successful things. Play with your dream states and when one of these crazy ideas comes to you, grasp onto it like a hot air balloon and ride it for a while over the topography of yourself and see where it will take you.

 

We ask you to approach these times with an open mind, a creative mind, a loving mind, to move into the self. To trust the self. Open the heart. To connect with humanity, to awaken the others. To be gentle with who you are. For your difficulties you will lay down as they are old clothes that you will no longer fit into or wear. Your aches, longings and difficulties can all be laid to rest as you move into this great new garment of being.

 

Many will be petrified of moving into this time for much must be relinquished. Much must be changed and given up. However, we are saying that if the Earth itself did not change in its seasons, it would be pretty dreary indeed. And so fall needs to come and the winter set to rest so that in spring there may be regrowth, revitalization and awakenings. This is what you’ll be experiencing.

 

We have committed to guide you on this time. There are many who are here loving you, assisting you, doing whatever is necessary. Open your hearts. Open your eyes to what is coming. Do not be afraid. Know that you are surrounded by love and energy greater than at this point you can fathom. So great it is beyond your knowing, though a part of you knows that greatness and brings it to yourself.

 

We trust that what we have said empowers you, enlightens you, guides you to who you need to be. Move forward. Move in love. Feel the connectedness of all that is.

 

Look into the eyes of fellow humanity and see yourselves for you are there. Bless each one with the knowing that you have and your awakenings will be greater than you ever imagined.

 

goldenageofgaia.com/disclosure/who-are-the-extraterrestri...

ROMA ARCHEOLOGICA & RESTAURO ARCHITETTURA: 'Roma - Una bellissima passeggiata nel Foro Romano, ricostruito in 3D.': Prof. Arch. Gilbert J. Gorski & Prof. James E. Packer, 'The Roman Forum: A Reconstruction and Architectural Guide', Cambridge University Press (2015 [Forthcoming]), pp. 1-474; 60 b/w illus. 247 colour illus. Foto: Cambridge University Press (05|2015).

 

"...Thus, while millions of casual tourists visit the site [of the Roman Forum] each year, most carry away only vague ideas of how the shattered ruins before them actually appeared in antiquity; and relevant literature in English usually provides little more." (...) "Since our new, restored model of the Forum is three dimensional, we were able to document the site in a realistic manner." (...) "With these digital materials and our texts, we anticipate that future visitors to the Forum will find the site more comprehensible – and, we hope, far more rewarding – than has ever previously been the case."

 

-- Prof. Arch. Gilbert J. Gorski & Prof. James E. Packer [2012-13] in: PREFACE, xv & xviii, Prof. Arch. Gilbert J. Gorski & Prof. James E. Packer, 'The Roman Forum: A Reconstruction and Architectural Guide', Cambridge University Press (2015 [Forthcoming]), pp. 1-474; 60 b/w illus. 247 colour illus.

 

The Roman Forum was in many ways the heart of the Roman Empire. Today, the Forum exists in a fragmentary state, having been destroyed and plundered by barbarians, aristocrats, citizens and priests over the past two millennia. Enough remains, however, for archaeologists to reconstruct its spectacular buildings and monuments. This richly illustrated volume provides an architectural history of the central section of the Roman Forum during the Empire (31 BCE–476 CE), from the Temple of Julius Caesar to the monuments on the slope of the Capitoline hill. Bringing together state-of-the-art technology in architectural illustration and the expertise of a prominent Roman archaeologist, this book offers a unique reconstruction of the Forum, providing architectural history, a summary of each building's excavation and research, scaled digital plans, elevations, and reconstructed aerial images that not only shed light on the Forum's history but vividly bring it to life. With this book, scholars, students, architects and artists will be able to visualize for the first time since antiquity the character, design and appearance of the famous heart of ancient Rome.

 

- With over 300 illustrations, the majority of them in color, this is the most complete and visually striking treatment of the Forum to date.

 

- Authored by an expert team of illustrator and Roman archaeologist.

 

- The reconstructions of every monument in the Forum constitute the handsomest, most complete, most attractive series of Forum images ever done.

 

Table of Contents

 

Part I. Architecture in the Roman Forum during the Empire: A Brief History:

1. The Augustan Reconstruction

2. From the Tiberius to Phocas (14–608 CE)

Part II. The Monuments:

3. The Temple of Antoninus and Faustina

4. The Temple of Caesar (Aedes divi Iuli)

5. The Basilica Aemilia

6. The Curia

7. The Arch of Septimius Severus

8. The West Rostra

9. The Temple of Concord

10. The Temple of Vespasian

11. The Tabularium

12. Portico of the Dei Consentes

13. The Temple of Saturn

14. The Basilica Julia

15. The Arch of Tiberius

16. The Schola Xanthi

17. The Diocletianic Honorary Columns

18. The Temple of Castor and Pollux

19. The Parthian Arch of Augustus

20. The Temple of Vesta

Part III. Conclusions.

 

Look Inside

 

- Index (PDF = 159 KB)

- Marketing Excerpt (PDF = 16615 KB)

- Copyright Information Page (PDF = 136 KB)

- Front Matter (PDF = 30244 KB)

- Table of Contents (PDF = 144 KB)

 

Authors

 

Gilbert J. Gorski, University of Notre Dame, Indiana -

 

Gilbert J. Gorski is a licensed architect and the project designer for numerous buildings including the World Headquarters for the McDonald's Corporation in Oak Brook, IL, and the Oceanarium, a major addition to the John G. Shedd Aquarium in Chicago. In 1987 he was designated the Burnham Fellow by the Chicago Architectural Club and was awarded an associate fellowship to the American Academy in Rome. Since 1989 Gorski has headed his own firm specializing in design and illustration. His drawings and paintings have been included in numerous publications and exhibits on architecture and illustration. He was twice awarded the Hugh Ferriss Memorial Prize, the nation's highest singular honor in architectural illustration, by the American Society of Architectural Illustrators. He is also the recipient of an Institute Honor for Collaborative Achievement, awarded by the American Institute of Architects. He presently is an associate professor at the University of Notre Dame and holds the James A. and Louise F. Nolen Chair in Architecture.

 

James E. Packer, Northwestern University, Illinois -

 

James E. Packer is Emeritus Professor of Classics at Northwestern University. He is the author of the three-volume The Forum of Trajan in Rome (1997); of numerous articles in journals, including the American Journal of Archaeology, the Journal of Roman Archaeology, the Bullettino della Commissione Archeologica Comunale di Roma, the Maryland Historian, Natural History, Croniche Pompeiane, Technology and Culture, Curator, Inland Architect, Archeo, and Archaeology; and of articles in collections, including the Lexicon Topographicum Urbis Romae (1993–2000). He is the recipient of many grants, including those from the Samuel H. Kress Foundation, the Getty Grant Program, the National Endowment for the Humanities, and the Andrew W. Mellon Foundation. He has excavated at Pompeii, in the Forum of Trajan (Rome), and in the Theater of Pompey (Rome). 'The Forum of Trajan' exhibition at the opening of the new Getty Museum in Los Angeles (1997) was based on Packer's work.

 

FOTO | TEXT | FONTE | SOURCE:

 

- Prof. Arch. Gilbert J. Gorski & Prof. James E. Packer, 'The Roman Forum: A Reconstruction and Architectural Guide', Cambridge University Press (2015 [Forthcoming]), pp. 1-474; 60 b/w illus. 247 colour illus.

 

www.cambridge.org/je/academic/subjects/archaeology/classi...

 

________________________________________________

 

s.v.,

 

-- ROMA ARCHEOLOGICA & RESTAURO ARCHITETTURA: “Un marmo sopra l’altro così rialzeremo le colonne del Foro di Traiano”, LA REPUBBLICA (15|04|2015). The Forum of Trajan, comments by prof. James E. Packer | FACEBOOK (15|04|2015).

 

wp.me/pPRv6-2Y1

 

________

 

“…Imperial Rome appears to be a golden, semi-mythical city filled with splendid monuments whose ruins still regularly attract hordes of annual visitors. Yet these tourists see only battered walls,fragmentary pavements, broken columns and piles of marble fragments mutely recalling past grandeur but giving little reliable information on the layout and visual or propagandistic effects of the originally elaborately decorated buildings. (…) Consequently, most visitors to Roman sites still rely either on simplified guide books or on ‘local’ professional guides who may or may not give their audience accurate (if limited and strictly verbal) information about the sites visited.”

 

Prof. James E. Packer, Digitalizing Roman Imperial architecture in the early 21st century: purposes, data, failures and prospects. JRAS 61 (2006), pg. 309 & 312 [of pages 309-320].

 

…His [Prof. Packer’s] interest in the monument [of the Forum of Trajan] was sparked in 1972,[1] while he was preparing to guide some Northwestern University [Illinois, USA] alumni on a tour of Rome, little had been published about the forum, he found. This did not surprise him. He had just finished his dissertation of the archaeological records of Ostia, the ancient port of Rome, and “it was extraordinary how much little had been done on Ostia,” [2] he says. “So it was not surprising that the same situation existed in Rome.” In fact, all of the Imperial Forums were “kind of forgotten” – collapsed, buried and hard to get into, he says.’ In a sense, Dr. Packer’s had been preparing for much of his life to play a role in the uncovering a key part of Roman history. “Ever since I was a child, I have been fascinated by Roman buildings,” he says. “I wanted to have something to do with them, but for a long time I wasn’t sure what.” As a boy, he made three-dimensional models of such buildings as the Forum of Pompeii, the Pantheon at Ostia, and the Round Temple of Baalbek in Lebanon. Growing up in Williamsburg, Virginia he was impressed by the town’s architecture. “My mother said, ‘if you like neo-classical architecture, wait until you see the real thing.’” Certainly the Forum of Trajan bore her out.’[2] & [4].

 

Notes: 1,2,3, & 4 in, see: ROMA ARCHEOLOGICA & RESTAURO ARCHITETTURA: Prof. James. E. Packer, (ed. it.), Il Foro di Traiano a Roma. Breve studio dei monumenti (Roma 2001). “[Prof. Packer] Passeggiata virtuale nel Foro Romano [e Traiano],” LA STAMPA (02|01|1998), p. 17.

 

wp.me/pPRv6-2Ut & www.flickr.com/photos/imperial_fora_of_rome/5189852726/

 

— ROME ARCHAEOLOGY & RESTAURO ARCHITETTURA: THE ROMAN FORUM – Prof. James E. Packer & Prof. Arch. Gilbert J. Gorski, “The Roman Forum: A Reconstruction and Architectural Guide,” Cambridge University Press (forthcoming [2014]), Pp. 550. Foto: Prof. James E. Packer, scholars and students visiting the Forum of Trajan in Oct. 2013.

 

wp.me/pPRv6-1Tz

 

— ROMA ARCHEOLOGIA e RESTAURO ARCHITETTURA: Prof. James E. Packer, Il Foro di Traiano. Breve studio dei monumenti | Prof. Packer, una lezione affascinante in inglese sul Foro di Traiano Roma (10|2013). [ENGLISH] VIDEO YOUTUBE [1:00:13].

 

wp.me/pPRv6-2pu

 

— ROMA ARCHEOLOGIA & RESTAURO ARCHITETTURA: Prof. James Packer,”Digitizing Imperial Rome: A computerized Approach to the Architectural History of the Roman Imperial Forum.” James Packer, Professor Emeritus Northwestern University (2010).

 

wp.me/pPRv6-8F

 

— ROMA ARCHEOLOGICA & RESTAURO ARCHITETTURA: PROF. ANDREA CARANDINI, “IMAGO URBIS – Lazio , Roma e Suburbio,” LA SAPIENZA UNIVERSITA` DI ROMA | Arcus S.p.a | SSBAR (2015). Review of “ATLANTE DI ROMA ANTICA, Vol. I & II (2013),” by: T. P. Wiseman & J. E. Packer (2013).

 

wp.me/pPRv6-2NG

 

— ROMA ARCHEOLOGICA & RESTAURO ARCHITETTURA: Roma – I Fori Imperiali (1995-2008). The Forum of Trajan. Excavations & Related Studies (1998-2008). Prof. James. E. Packer, (ed. it.), Il Foro di Traiano a Roma. Breve studio dei monumenti (Roma 2001). [04|2008].

 

www.flickr.com/photos/imperial_fora_of_rome/2517676103/

 

— ROMA ARCHEOLOGIA e RESTUARO ARCHITETTURA: James E. Packer, Report from Rome: The Imperial Fora, a Retrospective [Relazione da Roma: I Fori Imperiali, una Retrospettiva]. AJA 101, April 1997, [PDF] 307-330. *

wp.me/pPRv6-2oq

 

______

 

Note: A very special thank you to both Prof. James E. Packer and Prof. Arch. Kevin Sarring, they were kind enough to meet with me here in Washington DC in late October 2009, prof. Packer more then generously shared with me the outline of his preliminary work for the current book: ‘The Roman Forum: A Reconstruction and Architectural Guide (2015); M. G. Conde [05|2015]

______

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".

 

The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.

 

But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.

 

Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.

Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.

 

Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.

The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.

The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.

 

The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.

 

AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.

 

Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.

 

The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.

 

Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.

 

Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.

 

While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.

 

USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.

 

The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.

 

Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.

 

International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.

  

General F-24A characteristics:

Crew: 1 pilot

Length: 47 ft 4 in (14.4 m)

Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)

Height: 13 ft 10 in (4.20 m)

Wing area: 36.55 m² (392 ft²)

Empty weight: 13.150 lb (5.090 kg)

Loaded weight: 15.480 lb (6.830 kg)

Max. take-off weight: 27.530 lb (12.500 kg)

 

Powerplant

1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner

 

Performance

Maximum speed: Mach 2+

Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks

Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks

Service ceiling: 55,000 ft (16,800 m)

Rate of climb: 52,800 ft/min (255 m/s)

Wing loading: 70.0 lb/ft² (342 kg/m²)

Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)

 

Armament

1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG

Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.

  

The kit and its assembly:

A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.

 

As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.

I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.

 

Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):

● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear

● Fin and nose cone from an Italeri F-16A

● Inner wings from a (vintage) Hasegawa MiG-21F

● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)

 

The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.

 

The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?

 

Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.

 

The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.

 

For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.

 

All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.

 

Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.

 

The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.

  

Painting and markings:

At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.

 

A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).

 

“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.

 

The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.

 

Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.

  

Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.

The video above is short, black and white, silent, 16 mm film that has been digitalized.

 

It shows the inside the offices of the Amalgamated Association of Street, Electric Railway and Motor Coach Employees of America Division 689 at 900 F Street NW circa 1958.

 

The offices of the union, now known as Amalgamated Transit Union (ATU) Local 689, were located in the Washington Loan & Trust Company building almost since inception of the union in 1917 until around 1970. The site is currently occupied by a Marriott Courtyard Hotel.

 

The film shows the door from the hallway into the union offices and shows a streetcar passing by the exterior of the building.

 

It shows union President Walter J. Bierwagen reading the union’s newspaper answering a phone at his desk.

 

Next it shows Bierwagen meeting four men: Bernard Cushman (right), a union consultant from the Labor Bureau of the Middle West; an unidentified man (center) and another (left) at what appears to be negotiations or a meeting of the Transit Employees Health & Welfare trust.

 

A chart outlining health and welfare bullet points stands behind the group and Bierwagen rises to explain the chart.

 

The Labor Bureau continues to assist the union today in contract negotiations and grievance arbitration.

 

In the next scene, Bierwagen and Cushman read copies of the union newspaper being prepared for mailing to union members.

 

A clerical worker is also shown addressing the union newspaper for mailing to members. She is using an electro-mechanical Addressograph multigraph graphotype machine.

 

Before addressing, she used what is essentially a heavy-duty typewriter to transfer the member’s name, address, phone number and date of enrollment in the union onto a metal plate.

 

The plates were then set into a feeder that delivered them to where they stamped each newspaper placed on a tray. The stamping process was activated by foot pedals.

 

This system of keeping track of members and addressing union correspondence was used up until the 1980s when the process was finally computerized.

 

The local was a pioneering organization in health care in the Washington, D.C. area turning Group Health Association (GHA) into a powerful cooperatively-run preventive health care service from the 1960s-80s. The union negotiated to add 9,000 members and dependents to the group in 1958 and used its health and welfare fund to renovate a building in Langley Park, MD in 1959 to provide the first GHA service in Prince George's County.

 

For more information and related images, see

 

Original 16 mm film by Amalgamated Transit Union Local 689. Video produced by Washington Area Spark.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some Background:

On 23 January 1992, the Lithuanian Minister of Defense signed an order establishing the staff for the Aviation Base of the Aviation Service. But an actual base in the Šiauliai airport territory (Barysiai airfield) was not established until March, when according to the ordinance of the Government of Lithuanian Republic, all the infrastructure, buildings, territory and 24 An-2 aircraft were passed from ”Lithuanian Airlines" to the Aviation Service of the Ministry of Defense in January 1992.

 

On 12 June 1992, the first time after regaining the independence of Lithuania, An-2 aircraft, marked with the double cross of Vytis on its wings – the distinguishing sign of Lithuanian Air Force – took off from Barysiai airfield. This date is considered to be the Aviation Base foundation date. In February 1993 four L-39C Albatros aircraft were brought from Kyrgyzstan.

 

After 1 March 1993 Aviation Service was reformed to the Lithuanian Air Force and Aviation Base was renamed the First Aviation Base of the Lithuanian Air Force. In January 1994 Lithuania officially applied for NATO membership, and the country also looked out for a relatively cheap multi-purpose fighter that would fulfill both air space defence and attack tasks, the latter primarily against potential targets at sea (e. g. fast hoovercraft landing ships operated by the Russian Baltic Fleet).

 

After evaluating several options, the Lithuanian Air Force settled for a surprising aircraft: the venerable MiG-21! After the demise of the Soviet Union, several international companies started to offer conversion and upgrade programs for the widely used tactical fighter, about 5.000 specimen had been built to date. One of the first companies to enter the market was Israel Aircraft Industries: IAI's Lahav Division of (IAI) had developed the so-called MiG-21 2000 upgraded fighter and ground attack version, based on the MiG-21bis and the export MiG-21MF fighter aircraft.

 

The MiG-21 2000 upgrade provided modifications to the cockpit configuration, avionics architecture and weapons systems, enabling the MiG-21 2000 to compete with Western developed fighters like the F-16 and to make the transition to Western standards. The aircraft's original systems and components were retained wherever mission effectiveness was not compromised.

IAI Lahav augmented the original weapons system by introducing an EL/M-2032 radar, developed by IAI Elta Electronic Industries, based in Ashdod. The radar, which uses a low sidelobe planar array antenna and pulse Doppler beam sharpening, provides all-altitude, all-aspect look-up / look-down and shoot-down capability, as well as beyond-visual-range capability. In order to make the radar compatible with Western ordnance, a new armament interface and control unit were added, too, which enabled computerized control and release of weapons, including third and fourth-generation air-to-air missiles and precision-guided munitions of Western and Eastern provenance.

 

This system also gave the pilot the ability to use blind attack as well as continuously computed impact point (CCIP) and dive-toss bombing techniques. CCIP bombing involves the deployment of air-to-ground weapons, using the HUD to indicate the impact point for release of the weapons. Dive-toss bombing involves the release of air-to-ground weapons at the end of a steep dive manoeuver towards the target.

 

The MiG-21 2000 cockpit featured a new pilot-friendly layout that overcame the shortcomings of the original cockpit layout, which was crowded and lacked most of the desired man-machine interface characteristics. It incorporated a head-up display (HUD), eye-level multifunction color displays, hands on throttle and stick control (HOTAS), solid-state charge coupled device (CCD) camera, videotape recorder, and a one-piece windshield.

 

The MiG-21 2000 could be equipped with a display and sight helmet (DASH) system, supplied by Elbit of Haifa, which enabled the pilot to aim the weapons simply by looking at the target. The system worked by measuring the pilot's line of sight relative to the aircraft, and transferred the information to the aircraft's sensors, avionics and weapon systems. The helmet displayed vital information, such as the missile line of sight, missile status, flight information and warning data, on the visor. The DASH helmet allowed the pilot to fly head-up and off-boresight and assisted the pilot to detect, identify and shoot earlier.

 

IAI Lahav's upgrade package could be tailored to meet the customer's specific operational and budgetary requirements - the Lithuanian package included the radar, cockpit and also the DASH update and was rumored to cost around 4 Mio. USD per aircraft, and Lithuania was, together with Romania (where 110 MiG-21 were to be updated), lead customer.

 

As conversion basis, Lithuania purchased fifteen MiG-21 airframes for an unknown sum from the Ukraine, which had inherited a considerable MiG-21 fleet after the demise of the Soviet Union but did not (want to) operate it. The deal included thirteen airworthy MiG-21bis fighters and two MiG-21U trainers with few flying hours on the clocks, and - stripped off any military equipment - the small fleet was gradually transferred as disassembled kits via air ferry in Antonov Airlines An-124 transporters to Aerostar in Romania for conversion, starting in early 1996.

 

The first batch of Lithuanian MiG-21 2000, three fighters and one trainer, arrived in mid-1997 from Bacau on their own power and with civil Ukrainian registrations, and the Lithuanian Air Force’s fighter squadron, the Naikintuvu Eskadra, became ready for service in February 1998.

The rest of the country’s small MiG-21 fleet was delivered in the course of the same year, and these aircraft were semi-officially christened "Globėjas" (Guardian). Since the late Nineties, the Globėjas fighters provide the backbone of Lithuania's air defenses, with aircraft holding Quick Reaction Alert. QRA missions – so-called Alpha Scrambles – have constantly been on the rise thanks to the Russia’s increased aggression towards NATO. The MiG’s have regularly launched to intercept and shadow Russian Air Force Il-20 intelligence gathering aircraft over the Baltic Sea, as well as Tu-16 and Tu-95 patrols and even some Sukhoi Su-27s.

 

Lithuanian pilots use “hit and run” style tactics to deal with air threats, due to the limited range and endurance of their mounts - but this is of little concern due to the country's relatively small size and the defensive nature of the machines' tasks. While the Globėjas lack a beyond-visual range missile, although they could carry one, they have the ability to carry a range of different short-range air-to-air missiles like the Israeli Python III, which Lithuania procured from Rafael in Haifa as primary air-to-air missile.

 

After Lithuania joined NATO organization in 2004, its (alongside Latvia's and Estonia's) air space has been protected by NATO. NATO members provide usually 4 fighter aircraft, based in Lithuania, to police the Baltic States’ airspace, where they support the Lithuanian MiG-21 fleet. The duties rotate between NATO members (which started in March 2004 with Belgium Air Force F-16s) and most NATO members that operate fighters have made temporary deployments to Lithuania.

 

The Lithuanian Globėjas were also in regular demand as a simulated threat, and have gone up against US F-16s, F-15s, F/A-18s and A-10s, as well as the many different European fighter types that frequently rotate into the small country, including the Eurofighter, German F-4F Phantom IIs or French Mirage 2000.

 

Anyway, the Globėjas' airframes sooner or later reached their flying hour limits, and will be phased out towards 2020. As a replacement Lithuania will begin taking delivery of its first batch of ex-Portuguese F-16s in 2016, while the Baltic States are considering in the near future to protect their airspace on their own.

  

General characteristics:

Crew: 1

Length: 14.5 [126] m (47 ft 7 in)

Wingspan: 7.154 m (23 ft 6 in)

Height: 4 m (13 ft 6 in)

Wing area: 23.0 m² (247.3 ft²)

Empty weight: 5,846 kg (12,880 lb)

Gross weight: 8,825 kg (19,425 lb)

 

Powerplant:

1× Tumansky R25-300, rated at 40.21 kN (9,040 lbf) thrust dry

and 69.62 kN (15,650 lbf) with afterburner

 

Performance:

Maximum speed: 2,175 km/h (1,351.48 mph)

Maximum speed: Mach 2.0

Landing speed: 350 km/h (190 kts)

Range: (internal fuel) 1,210 km (751 miles)

Service ceiling: 17,800 m (58,400 ft)

Rate of climb: 225 m/s (44,280 ft/min)

 

Armament:

1x internal 23 mm GSh-23 cannon

5x hardpoints for a wide range of guided and unguided ordnance of up to 3.310 lb (1.500 kg).

 

In QRA configuration the Lithuanian MiG-21 typically carry two or four Rafal Python III short

range air-to-air missiles and an 800l drop tank on the centerline pylon.

Against ground targets, unguided bombs of up to 1.100 lb (500kg) caliber or unguided rockets

can be carried; alternatively, a Rafael LITENING laser designation pod and three

Griffin Mk. 82 LGBs or a single Mk. 84 LGB can be carried, or optically guided weapons like up

to four AGM-65 Maverick or a single GBU-8.

  

The kit and its assembly:

This kit is the entry for the 2016 "One Week Group Build" at whatifmodelers.com, which ran from 29th of April until 8th May (so, actually nine days...). I had this project earmarked for the recent "Cold War" GB, but it fell outside of the build's time horizon. But despite the dubious kit as basis, I tackled the build since I had anything else already at hand.

 

The basis is the MiG-21-93 demonstrator kit from Ukrainian manufacturer Condor, one of the many reincarnations of the venerable KP MiG-21bis, but with some updates. You get, for instance, engraved, very fine panel lines, some typical details were added like the wraparound windscreen (wrong shape, though) and the radar warning fairing on the fin as well as an extra sprue with modern Russian ordnance – apparently from some other kit!

On the downside, there's overall mediocre fit due to the molds' age, some dubious details (anything appears softened or blurred…) or the simple lack thereof (e. g. there’s no ventral gun fairing at all). But there’s nothing that could not be mended, and after all this is just a whiffy version.

 

Since there was only one week time to build the thing and make beauty pics, the whole project remained close to OOB status, even though a lot of detail changes or additions were made in order to convert the Russian MiG-21-93 into an earlier but similar Israeli MiG-21 2000 derivative.

 

These mods include:

- A Martin Baker ejection seat, with wire trigger handles

- HUD made from clear styrene

- Lowered flaps

- An added jet pipe/interior for the otherwise bleak exhaust (parts from a Kangnam Yak-38)

- Hydraulic pipes on the landing gear, made from very thin wire

- Some more/different blade antennae

- Measuring vanes on the pitot boom

- Different GSh-23 gun fairing, from an Academy MiG-23

- Thinner blast deflector plates under the anti-surge doors

- A pair of Python III AAMs, plus respective launch rails

- Different centerline drop tank, from an F-5E

- Scratched chaff/flare dispensers under the rear fuselage (as carried by the MiG-21 2000 demonstrator)

 

Building the model went straightforward, but it took some putty work to fill some seams, dents and holes all around the kit. Biggest issue was a hole in front of the cockpit screen, where simply not enough styrene had been injected into the mould!

  

Painting and markings:

The Lithuanian Air Force as operator for this build was chosen because it would not only fit into the real world timeline (even though I doubt that there would have been any budget for this aircraft at that time, even if MiG-21s had not been upgraded at all...) and because the potential livery would be very simple: contemporary L-39 trainers, C-27L Spartan as well as some L-410 and Mi-8 transporters carry a uniform, dull grey livery. Why not apply it on an air superiority fighter, too?

 

Finding an appropriate tone was not easy, though. Some sources claim the grey tone to be FS 36306, others refer to FS 36270 or "close to Blue/Grey FS35237", but IMHO none of the cited Federal Standard tones works well. Real world Lithuanian aircraft appear pretty dark and dull, and the color also features a greenish, slate grey hue - it's a unique color indeed.

 

After some trials (and also wishing to avoid mixing) I settled for Humbrol 111 (German Field Grey, a.k.a. Uniform Grey) as basic tone. It's a rather dark choice, but I wanted some good contrast to the national markings. A full wraparound livery appeared a little too dark and boring, so I added light blue wing undersurfaces (Humbrol 115). The kit received a light black in wash and some panel shading, primarily in order to add some life to the otherwise uniform surface.

 

Details were painted according to real world MiG-21 pics: the cockpit became classic teal with light grey instrument panels, plus OOB decals for the dashboard and side consoles. The landing gear struts were painted in a light, metallic grey (Humbrol 127 + 56) while the wells were painted in an odd primer color, a mix of Aluminum, Sand and Olive Drab. Parts of the covers were painted with Humbrol 144 (Blue Grey), seen on a modernized real world MiG-21. The wheel discs became bright green.

 

IAI's MiG-21 2000 demonstrator from 1993 had a black radome (as well as later Romanian LanceR Cs), so I adapted this detail for my build. Other typical di-electric fairings on a MiG-21's hull were painted in slightly darker camouflage colors, while the fin's leading edge became dark grey.

The blast deflector plates received yellow and black warning stripes, and some potentially dangerous parts for the ground crews like the pointed anti-flutter booms were painted red. The Python IIIs were simply painted all-white, mounted on grey launch rails - a harsh contrast to the dull rest of the aircraft.

 

Main markings come from a Blue Rider Publishing aftermarket sheet for modern Lithuanian aircraft. This set also includes the small Air Force crests, which I put on the nose, as well as the typical, blue tactical codes.

The stencils come from the scrap box, the small Lithuanian flag stripes on the tail rudder were created from single decal stripes, a personal addition inspired by Lithuanian C-27J transporters. They add some more color to the otherwise murky Baltic MiG fighter.

The silver ring around the air intake as well as the stripes at the flaps and the rudder were created with simple decal stripes instead of paint.

 

Finally, after I added some graphite soot around the jet exhaust and some panle lines with a pencil (e .g. the blow-in doors and airbrake outlines), the kit was sealed with hardly thinned Revell matt acrylic varnish, trying to create a really dull finish.

  

A tough build, despite being mostly OOB, but the details took their toll. This Baltic MiG does not look flashy, but, with IAI's real world MiG-21 2000 as well as the LanceR conversion for Romania in the Nineties, this one is pretty plausible. And with the simple paint scheme, the MiG-21 looks even pretty chic!

A Lockheed Martin F-35A Lightning II taxis during a combat exercise at Hill Air Force Base, Utah, May 1, 2019. The active duty 388th Fighter Wing and Reserve 419th FW, along with F-16 Fighting Falcon units from Holloman AFB, N.M. and Kunsan Air Base, South Korea, conducted an integrated combat exercise where maintainers were tasked to continually provide ready aircraft and pilots to take off in waves to simulate a large force engagement with enemy aircraft.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

From the underground steel cage fight matches at Silent Sam's, Kevin 11 prepares for combat!

 

I can't change back... I'm stuck like this. LOOK AT WHAT YOU'VE DONE!

– Kevin 11 to Four Arms

 

Appearance

 

In Kevin's pre-amalgam stage, he could fully transform from alien to alien form (with no Omnitrix symbol), or transform parts of his body into those of a different alien form. This included:

 

All of:

 

Ripjaws

Four Arms

Heatblast

Stinkfly

Upgrade

Diamondhead

 

Heatblast's body with the heads of:

 

Stinkfly

Diamondhead

Upgrade

Kevin

 

After he became an amalgam, Kevin 11 mostly resembled a reddish-pink version of Four Arms but with an upper left arm belonging to Heatblast, an upper right arm belonging to Diamondhead, and lower arms belonging to Wildmutt. He also had Stinkfly's wings, XLR8's tail, Ghostfreak's eye track on his chest, and an upper back resembling Upgrade's.

 

His head consisted of Kevin's hair and ears, two left eyes belonging to Four Arms, a right eye belonging to Grey Matter, and Ripjaws' lure, teeth, mouth/jaw interior, and gills. He wore Kevin's cargo shorts.

 

In a dream in Perfect Day, Kevin 11's Piscciss Volann teeth were exposed throughout the episode.

 

In an Ultimate Alien flashback, Kevin 11 looks the same, except he wears jean shorts and all of his eyes are green. His Upgrade pattern on his back is also different, and does not cover his neck.

 

Personality

 

As absorbing too much energy causes Kevin to lose his sanity, Kevin's sociopathic tendencies became more accentuated in this form. Since compared to his somewhat collected and laid-back demeanor before he transformed, Kevin 11 displays a lack of restraint and lucidity in many ways.

 

Kevin 11 is notably much quicker to anger and more confrontational, as demonstrated with his interactions with Ben Tennyson, Technorg, and his fellow inmates in the Null Void Incarcecon.

 

Kevin 11's lack of lucidity also shines through his tendency to quickly blame people other than himself, as demonstrated when he blames Ben for their situation fighting in the Megacruiser, not entirely knowing why he did so in the first place. He also loved fighting so much that he would fight battles whenever he could while on the Megacruiser.

 

However, even in this form, Kevin 11 still demonstrated a vulnerable, yet somewhat innocent side, as he ultimately realized that he needed help and so turned to Kwarrel. He was finally able to let go of the anger brought on by this transformation, thus making it easier for him to turn back to normal.

 

A dream world version of Kevin 11 was more beastly and primitive than the original, acting more or less animalistic.

 

History

 

After Kevin was defeated by the Omnitrix's feedback pulse in Kevin 11, he discovered that he had absorbed a sufficient amount of its energy to be able to access the DNA available to Ben, if he just concentrated hard enough. He first used this to set his hand alight with Heatblast's fire. However, Kevin became stuck as an alien, able to change between alien forms, but only able to access his human form for a short time, putting him in a situation opposite to Ben himself.

 

Blaming Ben for his condition, he swore revenge by going on crime sprees in different cities while as an alien to frame Ben as a criminal. He was Wildmutt in Tallahassee, Florida; Ripjaws in Chicago, Illinois; and Ghostfreak in Barstow, California. During this spree, the Special Extraterrestrial Containment Team attempted to stop him, and he crossed paths with Lieutenant Steel.

 

In Framed, Kevin's spree continued into San Francisco as Four Arms, where he met back up with the Tennysons. After rampaging, Kevin hid near his crime scene, and waited for Ben to come investigate after seeing him on the news.

 

He led Ben away and into the local mint, where he started terrorizing some guards and Gwen as Heatblast. After Ben stopped him as Diamondhead, Kevin pinned him down and revealed himself and what happened to him, stalling until SECT and Lieutenant Steel could arrive. As they ambushed the building, Kevin turned into Stinkfly and flew away, allowing Diamondhead to be mistaken for him. Kevin would later terrorize a cable car full of people as Upgrade, ripping out the brakes and letting it roll down a hill and into a bay, whilst subduing Ben as Wildmutt.

 

After flying away as Stinkfly, he would later wreak havoc on the Golden Gate Bridge, shooting cables loose as Diamondhead. He defeated Steel once he arrived to stop him, but before he could finish him off, Ben arrived as Four Arms. The two started fighting, with Kevin switching to Heatblast and Stinkfly, although he eventually turned back to human. As Four Arms towered over the defenseless Kevin, he spared him, telling him he was never worth it.

 

This enraged Kevin. He concentrated and started transforming his body. The rage of an untrained Osmosian combined with all the DNA he absorbed caused his powers to spiral out of control, causing him to mutate into a hulking amalgam of all of the ten Omnitrix aliens, which Kevin would later dub "Kevin 11" (due to having all of the powers of all ten Omnitrix aliens plus his own). He attempted to change back, but was seemingly stuck this way.

 

He lashed out at Four Arms, immediately overpowering him, and could only be defeated by Steel managing to call his men to fire a bazooka at him. Kevin 11 fell into the water below the bridge, but survived and eventually resurfaced.

 

In Grudge Match, Kevin 11 attacked Ben at a wind mill to get revenge, topping over the Rust Bucket and incapacitating Max and Gwen. As the two fought, they were beamed abord the Megacruiser by Slix Vigma; abducted and forced to fight in his gladiator games.

 

During their battles, Ben helped Kevin 11 to realize the advantages of his mutated form. Because Kevin 11 was an amalgam of aliens, he could mix and match their powers to make up for their reduced potency. Although forced to work together, Kevin 11's only goal was killing Ben.

 

After Ben and Kevin 11 succeeded in escaping, Kevin 11 attacked Ben and trapped him against the wall with Stinkfly's goo before moving in with Diamondhead's spear hand, gloating that no matter what alien Ben transformed into, he knew every one of them. Little did he know that Ben unlocked Cannonbolt, whom he transformed into just as Kevin 11 was about to murder him before getting into an escape pod.

 

Kevin 11 nearly barged into the pod when he was stopped by Technorg, whom Ben had spared and he declared a life debt to. After Technorg helped Cannonbolt escape, he turned his attention to Kevin (who had called him a lap dog just as he was about to kill Ben). The two were transported to a different galaxy at the end of the episode while locked in combat. Kevin defeated Technorg and took control of the Megacruiser.

 

In Back With a Vengeance, Kevin 11 teamed up with Vilgax to defeat Ben, and eventually managed to remove the Omnitrix with Vilgax's help while in the Null Void. However, he betrayed Vilgax in an attempt to leave both Ben and Vilgax in the Null Void and use the Omnitrix to take over the world, only for Ben to escape alongside Gwen, trick him into giving a fake watch, and leave him and Vilgax trapped instead. Kevin spent the rest of the show in the Null Void.

 

In Perfect Day, Kevin 11 appeared as a "tough hall monitor" in a dream, confronting the Tennysons in human form before willingly transforming. He chased the Tennysons towards the library, though they were able to lose him when Ben answers every question in a computerized test with 'C', allowing a passage out of the library to open. Kevin 11 is later seen flaking Enoch alongside SixSix only to be blown back when Ben transforms into Ultra Ben. Kevin 11 charged at the "Ultra Tennysons" only to be defeated by Ultra Ben.

 

In ...Nor Iron Bars a Cage, it was revealed how Kevin changed back to normal from Kevin 11. When he became a Null Void prisoner, he met another prisoner named Kwarrel, who he soon looked to as a mentor. Kwarrel taught Kevin 11 how to control his anger and powers. Soon enough, he had learned he could do much more than merely absorb and manipulate energy, he found out that he could do the same thing with matter itself.

 

Powers and Abilities

 

Amalgamation

 

Diss me all you want. I'm still 10 times better than you! I've got all your powers, plus my own! I'm Kevin 11!

– Kevin to Diamondhead.

 

Overall, Kevin 11 had access to the abilities of the first 10 aliens Ben ever turned into. In his pre-amalgam stage, he could fully transform into one of the aliens, or transform parts of his body into those of a different alien. He could also transform back to Human, but he lost both abilities once he became an amalgamation.

 

Being part-Pyronite, Kevin 11 shared many of the same powers as Heatblast, such as pyrokinesis.

 

Being part-Vulpimancer, Kevin 11 shared many of the same powers as Wildmutt, such as enhanced smelling.

 

Being part-Petrosapien, Kevin 11 shared many of the same powers as Diamondhead, such as firing crystal shard projectiles and morphing his arm into weapons. He could also generate crystals on other parts of his body, such as on his back.

 

Being part-Kineceleran, Kevin 11 shared many of the same powers as XLR8, such as enhanced speed, agility and reflexes.[4] His tail was also prehensile, as he was able to use it to grab on to Diamondhead's leg after being pushed off a cable car.

 

Being part-Tetramand, Kevin 11 shared many of the same powers as Four Arms, such as enhanced strength.

 

Being part-Lepidopterran, Kevin 11 shared many of the same powers as Stinkfly, such as slime spit, Kevin 11 also has Stinkfly's wings, which gives him high speed flight.

 

Being part-Piscciss Volann, Kevin 11 shared many of the same powers as Ripjaws, such as an expandable mouth with steel-bending jaws and sharp teeth,[4] as well as a glowing lure.

 

Thanks to several of Ben's aliens, Kevin 11 had enhanced durability.

 

Kevin 11 could combine Heatblast's flames with Stinkfly's slime to form an explosive attack.

 

Kevin 11 could combine XLR8's speed, Four Arms' strength and Diamondhead's durability into "one mean punch".

 

Weaknesses

 

Comparatively Weaker Abilities

 

Too bad each one of those is only a tenth as powerful as mine!

– Diamondhead to Kevin 11

 

Overall, as an amalgam, Kevin 11's powers were not as strong as those of Ben's aliens, because they only had one-tenth of their original strength.

 

Kevin 11 was vulnerable to electricity, such as that generated by shock collars.

 

Before turning into his amalgam stage, Kevin 11 could only stay in his human form for a short time, and could also accidentally revert back into his human form.

 

⋅•⋅⋅•⋅⋅•⋅⊰⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅∙∘☽༓☾∘∙•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅•⋅⋅⋅•⋅⋅⊰⋅•⋅⋅•⋅⋅•⋅⋅•⋅

 

A year of the shows and performers of the Bijou Planks Theater.

 

Ben 10

Sumo Slammers

Kevin 11

2006, Bandai

Notre-Dame de Paris (French: [nɔtʁ(ə) dam də paʁi] ⓘ; meaning "Our Lady of Paris"), referred to simply as Notre-Dame,[a] is a medieval Catholic cathedral on the Île de la Cité (an island in the Seine River), in the 4th arrondissement of Paris, France. The cathedral, dedicated to the Virgin Mary, is considered one of the finest examples of French Gothic architecture. Several attributes set it apart from the earlier Romanesque style, particularly its pioneering use of the rib vault and flying buttress, its enormous and colourful rose windows, and the naturalism and abundance of its sculptural decoration.[5] Notre-Dame also stands out for its three pipe organs (one historic) and its immense church bells.[6]

 

Built during medieval France, construction of the cathedral began in 1163 under Bishop Maurice de Sully and was largely completed by 1260, though it was modified in succeeding centuries. In the 1790s, during the French Revolution, Notre-Dame suffered extensive desecration; much of its religious imagery was damaged or destroyed. In the 19th century, the coronation of Napoleon and the funerals of many of the French Republic's presidents took place at the cathedral. The 1831 publication of Victor Hugo's novel Notre-Dame de Paris (in English: The Hunchback of Notre-Dame) inspired interest which led to restoration between 1844 and 1864, supervised by Eugène Viollet-le-Duc. On 26 August 1944, the Liberation of Paris from German occupation was celebrated in Notre-Dame with the singing of the Magnificat. Beginning in 1963, the cathedral's façade was cleaned of soot and grime. Another cleaning and restoration project was carried out between 1991 and 2000.[7]

 

The cathedral is a widely recognized symbol of the city of Paris and the French nation. In 1805, it was awarded honorary status as a minor basilica. As the cathedral of the archdiocese of Paris, Notre-Dame contains the cathedra of the archbishop of Paris (currently Laurent Ulrich). In the early 21st century, approximately 12 million people visited Notre-Dame annually, making it the most visited monument in Paris.[8] The cathedral is renowned for its Lent sermons, a tradition founded in the 1830s by the Dominican Jean-Baptiste Henri Lacordaire. These sermons have increasingly been given by leading public figures or government-employed academics.

 

Over time, the cathedral has gradually been stripped of many decorations and artworks. However, the cathedral still contains Gothic, Baroque, and 19th-century sculptures, 17th- and early 18th-century altarpieces, and some of the most important relics in Christendom – including the Crown of Thorns, and a sliver and nail from the True Cross.

 

On 15 April 2019, while Notre-Dame was undergoing renovation and restoration, its roof caught fire and burned for 15 hours. The cathedral sustained serious damage. The flèche (the timber spirelet over the crossing) was destroyed, as was most of the lead-covered wooden roof above the stone vaulted ceiling.[9] This contaminated the site and nearby environment with lead.[10] Restoration proposals suggested modernizing the cathedral, but the French National Assembly rejected them, enacting a law in July 2019 that required the restoration preserve the cathedral's "historic, artistic and architectural interest".[11] The task of stabilizing the building against potential collapse was completed in November 2020.[12] The cathedral is expected to reopen on 8 December 2024; the date was confirmed by President Macron.

 

Key dates

4th century – Cathedral of Saint Étienne, dedicated to Saint Stephen, built just west of present cathedral.[14]

1163 – Bishop Maurice de Sully begins construction of new cathedral.[14]

1182 or 1185 – Choir completed, clerestory with two levels: upper level of upright windows with pointed arches, still without tracery, lower level of small rose windows.

c. 1200 – Construction of nave, with flying buttresses, completed.

c. 1210–1220 – Construction of towers begins.

c. 1210–1220 – Two new traverses join towers with nave. West rose window complete in 1220.

After 1220 – New flying buttresses added to choir walls, remodeling of the clerestories: pointed arched windows are enlarged downward, replacing the triforia, and get tracery.

1235–1245 – Chapels constructed between buttresses of nave and choir.

1250–1260 – North transept lengthened by Jean de Chelles to provide more light. North rose window constructed.[15]

1270 – South transept and rose window completed by Pierre de Montreuil.[16]

1699 – Beginning of major redecoration of interior in Louis XIV style by Hardouin Mansart and Robert de Cotte.[17]

1725–1727 – South rose window, poorly built, is reconstructed. Later entirely rebuilt in 1854.

1790 – In the French Revolution the Revolutionary Paris Commune removes all bronze, lead, and precious metals from the cathedral to be melted down.[16]

1793 – The cathedral is converted into a Temple of Reason and then Temple of the Supreme Being.

1801–1802 – With the Concordat of 1801, Napoleon restores the use of the cathedral (though not ownership) to the Catholic Church.

1804 – On 2 December, Napoleon crowns himself Emperor at Notre-Dame.

1805 – The cathedral is conceded the honor of minor basilica by Pope Pius VII, making it the first minor basilica outside of Italy.[18]

1844–1864 – Major restoration by Jean-Baptiste Lassus and Eugène Viollet-le-Duc with additions in the spirit of the original Gothic style.[19]

1871 – In final days of the Paris Commune, Communards attempt unsuccessfully to burn the cathedral.

1944 – On 26 August, General Charles de Gaulle celebrates the Liberation of Paris with a special Mass at Notre-Dame.

1949 – On 26 April, the Archbishop of Paris, Emmanuel Célestin Suhard, crowns the venerated image of Our Lady of Guadalupe in the name of Pope Pius XII.

1963 – Culture Minister André Malraux orders the cleaning of the cathedral façade of centuries of grime and soot.

2019 – On 15 April, a fire destroys a large part of the roof and the flèche.

2021 – Reconstruction begins two years after the fire that destroyed a large part of the roof and the flèche.

2024 - Expected reopening of the Cathedral to occur on 8 December.

 

It is believed that before the arrival of Christianity in France, a Gallo-Roman temple dedicated to Jupiter stood on the site of Notre-Dame. Evidence for this includes the Pillar of the Boatmen, discovered beneath the cathedral in 1710. In the 4th or 5th century, a large early Christian church, the Cathedral of Saint Étienne, was built on the site, close to the royal palace.[14] The entrance was situated about 40 metres (130 ft) west of the present west front of Notre-Dame, and the apse was located about where the west façade is today. It was roughly half the size of the later Notre-Dame, 70 metres (230 ft) long—and separated into nave and four aisles by marble columns, then decorated with mosaics.[7][20]

 

The last church before the cathedral of Notre-Dame was a Romanesque remodeling of Saint-Étienne that, although enlarged and remodeled, was found to be unfit for the growing population of Paris.[21][b] A baptistery, the Church of Saint-John-le-Rond, built about 452, was located on the north side of the west front of Notre-Dame until the work of Jacques-Germain Soufflot in the 18th century.[23]

 

In 1160, the Bishop of Paris, Maurice de Sully,[23] decided to build a new and much larger church. He summarily demolished the earlier cathedral and recycled its materials.[21] Sully decided that the new church should be built in the Gothic style, which had been inaugurated at the royal abbey of Saint Denis in the late 1130s.

 

The chronicler Jean de Saint-Victor [fr] recorded in the Memorial Historiarum that the construction of Notre-Dame began between 24 March and 25 April 1163 with the laying of the cornerstone in the presence of King Louis VII and Pope Alexander III.[24][25] Four phases of construction took place under bishops Maurice de Sully and Eudes de Sully (not related to Maurice), according to masters whose names have been lost. Analysis of vault stones that fell in the 2019 fire shows that they were quarried in Vexin, a county northwest of Paris, and presumably brought up the Seine by ferry.

 

The first phase began with the construction of the choir and its two ambulatories. According to Robert of Torigni, the choir was completed in 1177 and the high altar consecrated on 19 May 1182 by Cardinal Henri de Château-Marçay, the Papal legate in Paris, and Maurice de Sully.[28][failed verification] The second phase, from 1182 to 1190, concerned the construction of the four sections of the nave behind the choir and its aisles to the height of the clerestories. It began after the completion of the choir but ended before the final allotted section of the nave was finished. Beginning in 1190, the bases of the façade were put in place, and the first traverses were completed.[7] Heraclius of Caesarea called for the Third Crusade in 1185 from the still-incomplete cathedral.

 

Louis IX deposited the relics of the passion of Christ, which included the Crown of thorns, a nail from the Cross and a sliver of the Cross, which he had purchased at great expense from the Latin Emperor Baldwin II, in the cathedral during the construction of the Sainte-Chapelle. An under-shirt, believed to have belonged to Louis, was added to the collection of relics at some time after his death.

 

Transepts were added at the choir, where the altar was located, in order to bring more light into the centre of the church. The use of simpler four-part rather than six-part rib vaults meant that the roofs were stronger and could be higher. After Bishop Maurice de Sully's death in 1196, his successor, Eudes de Sully oversaw the completion of the transepts, and continued work on the nave, which was nearing completion at the time of his death in 1208. By this time, the western façade was already largely built, though it was not completed until around the mid-1240s. Between 1225 and 1250 the upper gallery of the nave was constructed, along with the two towers on the west façade.

 

Another significant change came in the mid-13th century, when the transepts were remodelled in the latest Rayonnant style; in the late 1240s Jean de Chelles added a gabled portal to the north transept topped by a spectacular rose window. Shortly afterward (from 1258) Pierre de Montreuil executed a similar scheme on the southern transept. Both these transept portals were richly embellished with sculpture; the south portal depicts scenes from the lives of Saint Stephen and of various local saints, while the north portal featured the infancy of Christ and the story of Theophilus in the tympanum, with a highly influential statue of the Virgin and Child in the trumeau.[30][29] Master builders Pierre de Chelles, Jean Ravy [fr], Jean le Bouteiller, and Raymond du Temple [fr] succeeded de Chelles and de Montreuil and then each other in the construction of the cathedral. Ravy completed de Chelles's rood screen and chevet chapels, then began the 15-metre (49 ft) flying buttresses of the choir. Jean le Bouteiller, Ravy's nephew, succeeded him in 1344 and was himself replaced on his death in 1363 by his deputy, Raymond du Temple.

 

Philip the Fair opened the first Estates General in the cathedral in 1302.

 

An important innovation in the 13th century was the introduction of the flying buttress. Before the buttresses, all of the weight of the roof pressed outward and down to the walls, and the abutments supporting them. With the flying buttress, the weight was carried by the ribs of the vault entirely outside the structure to a series of counter-supports, which were topped with stone pinnacles which gave them greater weight. The buttresses meant that the walls could be higher and thinner, and could have larger windows. The date of the first buttresses is not known with precision beyond an installation date in the 13th century. Art historian Andrew Tallon, however, has argued, based on detailed laser scans of the entire structure, that the buttresses were part of the original design. According to Tallon, the scans indicate that "the upper part of the building has not moved one smidgen in 800 years,"[31] whereas if they were added later some movement from prior to their addition would be expected. Tallon thus concluded that flying buttresses were present from the outset.[31] The first buttresses were replaced by larger and stronger ones in the 14th century; these had a reach of fifteen metres (50') between the walls and counter-supports.[7]

 

John of Jandun recognized the cathedral as one of Paris's three most important buildings [prominent structures] in his 1323 Treatise on the Praises of Paris:

 

That most glorious church of the most glorious Virgin Mary, mother of God, deservedly shines out, like the sun among stars. And although some speakers, by their own free judgment, because [they are] able to see only a few things easily, may say that some other is more beautiful, I believe, however, respectfully, that, if they attend more diligently to the whole and the parts, they will quickly retract this opinion. Where indeed, I ask, would they find two towers of such magnificence and perfection, so high, so large, so strong, clothed round about with such multiple varieties of ornaments? Where, I ask, would they find such a multipartite arrangement of so many lateral vaults, above and below? Where, I ask, would they find such light-filled amenities as the many surrounding chapels? Furthermore, let them tell me in what church I may see such a large cross, of which one arm separates the choir from the nave. Finally, I would willingly learn where [there are] two such circles, situated opposite each other in a straight line, which on account of their appearance are given the name of the fourth vowel [O]; among which smaller orbs and circles, with wondrous artifice, so that some arranged circularly, others angularly, surround windows ruddy with precious colours and beautiful with the most subtle figures of the pictures. In fact, I believe that this church offers the carefully discerning such cause for admiration that its inspection can scarcely sate the soul.

 

— Jean de Jandun, Tractatus de laudibus Parisius

 

On 16 December 1431, the boy-king Henry VI of England was crowned king of France in Notre-Dame, aged ten, the traditional coronation church of Reims Cathedral being under French control.[33]

 

During the Renaissance, the Gothic style fell out of style, and the internal pillars and walls of Notre-Dame were covered with tapestries.[34]

 

In 1548, rioting Huguenots damaged some of the statues of Notre-Dame, considering them idolatrous.[35]

 

The fountain [fr] in Notre-Dame's parvis was added in 1625 to provide nearby Parisians with running water.[36]

 

Since 1449, the Parisian goldsmith guild had made regular donations to the cathedral chapter. In 1630, the guild began donating a large altarpiece every year on the first of May. These works came to be known as the grands mays.[37] The subject matter was restricted to episodes from the Acts of the Apostles. The prestigious commission was awarded to the most prominent painters and, after 1648, members of the Académie Royale.

 

Seventy-six paintings had been donated by 1708, when the custom was discontinued for financial reasons. Those works were confiscated in 1793 and the majority were subsequently dispersed among regional museums in France. Those that remained in the cathedral were removed or relocated within the building by the 19th-century restorers.

 

Today, thirteen of the grands mays hang in Notre-Dame although these paintings suffered water damage during the fire of 2019 and were removed for conservation.

 

An altarpiece depicting the Visitation, painted by Jean Jouvenet in 1707, was also located in the cathedral.

 

The canon Antoine de La Porte commissioned for Louis XIV six paintings depicting the life of the Virgin Mary for the choir. At this same time, Charles de La Fosse painted his Adoration of the Magi, now in the Louvre.[38] Louis Antoine de Noailles, archbishop of Paris, extensively modified the roof of Notre-Dame in 1726, renovating its framing and removing the gargoyles with lead gutters. Noailles also strengthened the buttresses, galleries, terraces, and vaults.[39] In 1756, the cathedral's canons decided that its interior was too dark. The medieval stained glass windows, except the rosettes, were removed and replaced with plain, white glass panes.[34] Lastly, Jacques-Germain Soufflot was tasked with the modification of the portals at the front of the cathedral to allow processions to enter more easily.

 

After the French Revolution in 1789, Notre-Dame and the rest of the church's property in France was seized and made public property.[40] The cathedral was rededicated in 1793 to the Cult of Reason, and then to the Cult of the Supreme Being in 1794.[41] During this time, many of the treasures of the cathedral were either destroyed or plundered. The twenty-eight statues of biblical kings located at the west façade, mistaken for statues of French kings, were beheaded.[7][42] Many of the heads were found during a 1977 excavation nearby, and are on display at the Musée de Cluny. For a time the Goddess of Liberty replaced the Virgin Mary on several altars.[43] The cathedral's great bells escaped being melted down. All of the other large statues on the façade, with the exception of the statue of the Virgin Mary on the portal of the cloister, were destroyed.[7] The cathedral came to be used as a warehouse for the storage of food and other non-religious purposes.[35]

 

With the Concordat of 1801, Napoleon Bonaparte restored Notre-Dame to the Catholic Church, though this was only finalized on 18 April 1802. Napoleon also named Paris's new bishop, Jean-Baptiste de Belloy, who restored the cathedral's interior. Charles Percier and Pierre-François-Léonard Fontaine made quasi-Gothic modifications to Notre-Dame for the coronation of Napoleon as Emperor of the French within the cathedral. The building's exterior was whitewashed and the interior decorated in Neoclassical style, then in vogue.

 

In the decades after the Napoleonic Wars, Notre-Dame fell into such a state of disrepair that Paris officials considered its demolition. Victor Hugo, who admired the cathedral, wrote the novel Notre-Dame de Paris (published in English as The Hunchback of Notre-Dame) in 1831 to save Notre-Dame. The book was an enormous success, raising awareness of the cathedral's decaying state.[7] The same year as Hugo's novel was published, however, anti-Legitimists plundered Notre-Dame's sacristy.[45] In 1844 King Louis Philippe ordered that the church be restored.[7]

 

The architect who had hitherto been in charge of Notre-Dame's maintenance, Étienne-Hippolyte Godde, was dismissed. In his stead, Jean-Baptiste Lassus and Eugène Viollet-le-Duc, who had distinguished themselves with the restoration of the nearby Sainte-Chapelle, were appointed in 1844. The next year, Viollet-le-Duc submitted a budget of 3,888,500 francs, which was reduced to 2,650,000 francs, for the restoration of Notre-Dame and the construction of a new sacristy building. This budget was exhausted in 1850, and work stopped as Viollet-le-Duc made proposals for more money. In totality, the restoration cost over 12 million francs. Supervising a large team of sculptors, glass makers and other craftsmen, and working from drawings or engravings, Viollet-le-Duc remade or added decorations if he felt they were in the spirit of the original style. One of the latter items was a taller and more ornate flèche, to replace the original 13th-century flèche, which had been removed in 1786.[46] The decoration of the restoration included a bronze roof statue of Saint Thomas that resembles Viollet-le-Duc, as well as the sculpture of mythical creatures on the Galerie des Chimères.[35]

 

The construction of the sacristy was especially financially costly. To secure a firm foundation, it was necessary for Viollet-le-Duc's labourers to dig 9 metres (30 ft). Master glassworkers meticulously copied styles of the 13th century, as written about by art historians Antoine Lusson and Adolphe Napoléon Didron.[47]

 

During the Paris Commune of March through May 1871, the cathedral and other churches were closed, and some two hundred priests and the Archbishop of Paris were taken as hostages. In May, during the Semaine sanglante of "Bloody Week", as the army recaptured the city, the Communards targeted the cathedral, along with the Tuileries Palace and other landmarks, for destruction; the Communards piled the furniture together in order to burn the cathedral. The arson was halted when the Communard government realised that the fire would also destroy the neighbouring Hôtel-Dieu hospital, filled with hundreds of patients

 

During the liberation of Paris in August 1944, the cathedral suffered some minor damage from stray bullets. Some of the medieval glass was damaged, and was replaced by glass with modern abstract designs. On 26 August, a special Mass was held in the cathedral to celebrate the liberation of Paris from the Germans; it was attended by General Charles De Gaulle and General Philippe Leclerc.

 

In 1963, on the initiative of culture minister André Malraux and to mark the 800th anniversary of the cathedral, the façade was cleaned of the centuries of soot and grime, restoring it to its original off-white colour.[49]

 

On 19 January 1969, vandals placed a North Vietnamese flag at the top the flèche, and sabotaged the stairway leading to it. The flag was cut from the flèche by Paris Fire Brigade Sergeant Raymond Belle in a daring helicopter mission, the first of its kind in France.[50][51][52]

 

The Requiem Mass of Charles de Gaulle was held in Notre-Dame on 12 November 1970.[53] The next year, on 26 June 1971, Philippe Petit walked across a tight-rope strung between Notre-Dame's two bell towers entertaining spectators.[54]

 

After the Magnificat of 30 May 1980, Pope John Paul II celebrated Mass on the parvis of the cathedral.[55]

 

The Requiem Mass of François Mitterrand was held at the cathedral, as with past French heads of state, on 11 January 1996.[56]

 

The stone masonry of the cathedral's exterior had deteriorated in the 19th and 20th century due to increased air pollution in Paris, which accelerated erosion of decorations and discoloured the stone. By the late 1980s, several gargoyles and turrets had also fallen or become too loose to safely remain in place.[57] A decade-long renovation programme began in 1991 and replaced much of the exterior, with care given to retain the authentic architectural elements of the cathedral, including rigorous inspection of new limestone blocks.[57][58] A discreet system of electrical wires, not visible from below, was also installed on the roof to deter pigeons.[59] The cathedral's pipe organ was upgraded with a computerized system to control the mechanical connections to the pipes.[60] The west face was cleaned and restored in time for millennium celebrations in December 1999.

 

The Requiem Mass of Cardinal Jean-Marie Lustiger, former archbishop of Paris and Jewish convert to Catholicism, was held in Notre-Dame on 10 August 2007.[62]

 

The set of four 19th-century bells at the top of the northern towers at Notre-Dame were melted down and recast into new bronze bells in 2013, to celebrate the building's 850th anniversary. They were designed to recreate the sound of the cathedral's original bells from the 17th century.[63][64] Despite the 1990s renovation, the cathedral had continued to show signs of deterioration that prompted the national government to propose a new renovation program in the late 2010s.[65][66] The entire renovation was estimated to cost €100 million, which the archbishop of Paris planned to raise through funds from the national government and private donations.[67] A €6 million renovation of the cathedral's flèche began in late 2018 and continued into the following year, requiring the temporary removal of copper statues on the roof and other decorative elements days before the April 2019 fire.[68][69]

 

Notre-Dame began a year-long celebration of the 850th anniversary of the laying of the first building block for the cathedral on 12 December 2012.[70] During that anniversary year, on 21 May 2013, Dominique Venner, a historian and white nationalist, placed a letter on the church altar and shot himself, dying instantly. Around 1,500 visitors were evacuated from the cathedral.[71]

 

French police arrested two people on 8 September 2016 after a car containing seven gasoline canisters was found near Notre-Dame.[72]

 

On 10 February 2017, French police arrested four persons in Montpellier already known by authorities to have ties to radical Islamist organizations on charges of plotting to travel to Paris and attack the cathedral.[73] Later that year, on 6 June, visitors were shut inside Notre-Dame cathedral in Paris after a man with a hammer attacked a police officer outside.

 

Paris is the capital and most populous city of France. With an official estimated population of 2,102,650 residents as of 1 January 2023[2] in an area of more than 105 km2 (41 sq mi) Paris is the fourth-most populated city in the European Union and the 30th most densely populated city in the world in 2022. Since the 17th century, Paris has been one of the world's major centres of finance, diplomacy, commerce, culture, fashion, and gastronomy. For its leading role in the arts and sciences, as well as its early and extensive system of street lighting, in the 19th century, it became known as the City of Light.

 

The City of Paris is the centre of the Île-de-France region, or Paris Region, with an official estimated population of 12,271,794 inhabitants on 1 January 2023, or about 19% of the population of France, The Paris Region had a GDP of €765 billion (US$1.064 trillion, PPP) in 2021, the highest in the European Union. According to the Economist Intelligence Unit Worldwide Cost of Living Survey, in 2022, Paris was the city with the ninth-highest cost of living in the world.

 

Paris is a major railway, highway, and air-transport hub served by two international airports: Charles de Gaulle Airport (the third-busiest airport in Europe) and Orly Airport. Opened in 1900, the city's subway system, the Paris Métro, serves 5.23 million passengers daily; it is the second-busiest metro system in Europe after the Moscow Metro. Gare du Nord is the 24th-busiest railway station in the world and the busiest outside Japan, with 262 million passengers in 2015. Paris has one of the most sustainable transportation systems and is one of the only two cities in the world that received the Sustainable Transport Award twice.

 

Paris is especially known for its museums and architectural landmarks: the Louvre received 8.9. million visitors in 2023, on track for keeping its position as the most-visited art museum in the world. The Musée d'Orsay, Musée Marmottan Monet and Musée de l'Orangerie are noted for their collections of French Impressionist art. The Pompidou Centre Musée National d'Art Moderne, Musée Rodin and Musée Picasso are noted for their collections of modern and contemporary art. The historical district along the Seine in the city centre has been classified as a UNESCO World Heritage Site since 1991.

 

Paris hosts several United Nations organizations including UNESCO, and other international organizations such as the OECD, the OECD Development Centre, the International Bureau of Weights and Measures, the International Energy Agency, the International Federation for Human Rights, along with European bodies such as the European Space Agency, the European Banking Authority and the European Securities and Markets Authority. The football club Paris Saint-Germain and the rugby union club Stade Français are based in Paris. The 80,000-seat Stade de France, built for the 1998 FIFA World Cup, is located just north of Paris in the neighbouring commune of Saint-Denis. Paris hosts the annual French Open Grand Slam tennis tournament on the red clay of Roland Garros. The city hosted the Olympic Games in 1900 and 1924, and will host the 2024 Summer Olympics. The 1938 and 1998 FIFA World Cups, the 2019 FIFA Women's World Cup, the 2007 Rugby World Cup, as well as the 1960, 1984 and 2016 UEFA European Championships were also held in the city. Every July, the Tour de France bicycle race finishes on the Avenue des Champs-Élysées in Paris.

 

The Parisii, a sub-tribe of the Celtic Senones, inhabited the Paris area from around the middle of the 3rd century BC. One of the area's major north–south trade routes crossed the Seine on the île de la Cité, which gradually became an important trading centre. The Parisii traded with many river towns (some as far away as the Iberian Peninsula) and minted their own coins.

 

The Romans conquered the Paris Basin in 52 BC and began their settlement on Paris's Left Bank. The Roman town was originally called Lutetia (more fully, Lutetia Parisiorum, "Lutetia of the Parisii", modern French Lutèce). It became a prosperous city with a forum, baths, temples, theatres, and an amphitheatre.

 

By the end of the Western Roman Empire, the town was known as Parisius, a Latin name that would later become Paris in French. Christianity was introduced in the middle of the 3rd century AD by Saint Denis, the first Bishop of Paris: according to legend, when he refused to renounce his faith before the Roman occupiers, he was beheaded on the hill which became known as Mons Martyrum (Latin "Hill of Martyrs"), later "Montmartre", from where he walked headless to the north of the city; the place where he fell and was buried became an important religious shrine, the Basilica of Saint-Denis, and many French kings are buried there.

 

Clovis the Frank, the first king of the Merovingian dynasty, made the city his capital from 508. As the Frankish domination of Gaul began, there was a gradual immigration by the Franks to Paris and the Parisian Francien dialects were born. Fortification of the Île de la Cité failed to avert sacking by Vikings in 845, but Paris's strategic importance—with its bridges preventing ships from passing—was established by successful defence in the Siege of Paris (885–886), for which the then Count of Paris (comte de Paris), Odo of France, was elected king of West Francia. From the Capetian dynasty that began with the 987 election of Hugh Capet, Count of Paris and Duke of the Franks (duc des Francs), as king of a unified West Francia, Paris gradually became the largest and most prosperous city in France.

 

By the end of the 12th century, Paris had become the political, economic, religious, and cultural capital of France.[36] The Palais de la Cité, the royal residence, was located at the western end of the Île de la Cité. In 1163, during the reign of Louis VII, Maurice de Sully, bishop of Paris, undertook the construction of the Notre Dame Cathedral at its eastern extremity.

 

After the marshland between the river Seine and its slower 'dead arm' to its north was filled in from around the 10th century, Paris's cultural centre began to move to the Right Bank. In 1137, a new city marketplace (today's Les Halles) replaced the two smaller ones on the Île de la Cité and Place de Grève (Place de l'Hôtel de Ville). The latter location housed the headquarters of Paris's river trade corporation, an organisation that later became, unofficially (although formally in later years), Paris's first municipal government.

 

In the late 12th century, Philip Augustus extended the Louvre fortress to defend the city against river invasions from the west, gave the city its first walls between 1190 and 1215, rebuilt its bridges to either side of its central island, and paved its main thoroughfares. In 1190, he transformed Paris's former cathedral school into a student-teacher corporation that would become the University of Paris and would draw students from all of Europe.

 

With 200,000 inhabitants in 1328, Paris, then already the capital of France, was the most populous city of Europe. By comparison, London in 1300 had 80,000 inhabitants. By the early fourteenth century, so much filth had collected inside urban Europe that French and Italian cities were naming streets after human waste. In medieval Paris, several street names were inspired by merde, the French word for "shit".

 

During the Hundred Years' War, Paris was occupied by England-friendly Burgundian forces from 1418, before being occupied outright by the English when Henry V of England entered the French capital in 1420; in spite of a 1429 effort by Joan of Arc to liberate the city, it would remain under English occupation until 1436.

 

In the late 16th-century French Wars of Religion, Paris was a stronghold of the Catholic League, the organisers of 24 August 1572 St. Bartholomew's Day massacre in which thousands of French Protestants were killed. The conflicts ended when pretender to the throne Henry IV, after converting to Catholicism to gain entry to the capital, entered the city in 1594 to claim the crown of France. This king made several improvements to the capital during his reign: he completed the construction of Paris's first uncovered, sidewalk-lined bridge, the Pont Neuf, built a Louvre extension connecting it to the Tuileries Palace, and created the first Paris residential square, the Place Royale, now Place des Vosges. In spite of Henry IV's efforts to improve city circulation, the narrowness of Paris's streets was a contributing factor in his assassination near Les Halles marketplace in 1610.

 

During the 17th century, Cardinal Richelieu, chief minister of Louis XIII, was determined to make Paris the most beautiful city in Europe. He built five new bridges, a new chapel for the College of Sorbonne, and a palace for himself, the Palais-Cardinal. After Richelieu's death in 1642, it was renamed the Palais-Royal.

 

Due to the Parisian uprisings during the Fronde civil war, Louis XIV moved his court to a new palace, Versailles, in 1682. Although no longer the capital of France, arts and sciences in the city flourished with the Comédie-Française, the Academy of Painting, and the French Academy of Sciences. To demonstrate that the city was safe from attack, the king had the city walls demolished and replaced with tree-lined boulevards that would become the Grands Boulevards. Other marks of his reign were the Collège des Quatre-Nations, the Place Vendôme, the Place des Victoires, and Les Invalides.

 

18th and 19th centuries

Empire, and Haussmann's renovation of Paris

Paris grew in population from about 400,000 in 1640, to 650,000 in 1780. A new boulevard named the Champs-Élysées extended the city west to Étoile, while the working-class neighbourhood of the Faubourg Saint-Antoine on the eastern side of the city grew increasingly crowded with poor migrant workers from other regions of France.

 

Paris was the centre of an explosion of philosophic and scientific activity, known as the Age of Enlightenment. Diderot and d'Alembert published their Encyclopédie in 1751, and the Montgolfier Brothers launched the first manned flight in a hot air balloon on 21 November 1783. Paris was the financial capital of continental Europe, and the primary European centre of book publishing, fashion and the manufacture of fine furniture and luxury goods.

 

In the summer of 1789, Paris became the centre stage of the French Revolution. On 14 July, a mob seized the arsenal at the Invalides, acquiring thousands of guns, and stormed the Bastille, which was a principal symbol of royal authority. The first independent Paris Commune, or city council, met in the Hôtel de Ville and elected a Mayor, the astronomer Jean Sylvain Bailly, on 15 July.

 

Louis XVI and the royal family were brought to Paris and incarcerated in the Tuileries Palace. In 1793, as the revolution turned increasingly radical, the king, queen and mayor were beheaded by guillotine in the Reign of Terror, along with more than 16,000 others throughout France. The property of the aristocracy and the church was nationalised, and the city's churches were closed, sold or demolished. A succession of revolutionary factions ruled Paris until 9 November 1799 (coup d'état du 18 brumaire), when Napoleon Bonaparte seized power as First Consul.

 

The population of Paris had dropped by 100,000 during the Revolution, but after 1799 it surged with 160,000 new residents, reaching 660,000 by 1815. Napoleon replaced the elected government of Paris with a prefect that reported directly to him. He began erecting monuments to military glory, including the Arc de Triomphe, and improved the neglected infrastructure of the city with new fountains, the Canal de l'Ourcq, Père Lachaise Cemetery and the city's first metal bridge, the Pont des Arts.

  

The Eiffel Tower, under construction in November 1888, startled Parisians—and the world—with its modernity.

During the Restoration, the bridges and squares of Paris were returned to their pre-Revolution names; the July Revolution in 1830 (commemorated by the July Column on the Place de la Bastille) brought to power a constitutional monarch, Louis Philippe I. The first railway line to Paris opened in 1837, beginning a new period of massive migration from the provinces to the city. In 1848, Louis-Philippe was overthrown by a popular uprising in the streets of Paris. His successor, Napoleon III, alongside the newly appointed prefect of the Seine, Georges-Eugène Haussmann, launched a huge public works project to build wide new boulevards, a new opera house, a central market, new aqueducts, sewers and parks, including the Bois de Boulogne and Bois de Vincennes. In 1860, Napoleon III annexed the surrounding towns and created eight new arrondissements, expanding Paris to its current limits.

 

During the Franco-Prussian War (1870–1871), Paris was besieged by the Prussian Army. Following several months of blockade, hunger, and then bombardment by the Prussians, the city was forced to surrender on 28 January 1871. After seizing power in Paris on 28 March, a revolutionary government known as the Paris Commune held power for two months, before being harshly suppressed by the French army during the "Bloody Week" at the end of May 1871.

 

In the late 19th century, Paris hosted two major international expositions: the 1889 Universal Exposition, which featured the new Eiffel Tower, was held to mark the centennial of the French Revolution; and the 1900 Universal Exposition gave Paris the Pont Alexandre III, the Grand Palais, the Petit Palais and the first Paris Métro line. Paris became the laboratory of Naturalism (Émile Zola) and Symbolism (Charles Baudelaire and Paul Verlaine), and of Impressionism in art (Courbet, Manet, Monet, Renoir).

 

20th and 21st centuries

World War, Paris between the Wars (1919–1939), Paris in World War II, and History of Paris (1946–2000)

By 1901, the population of Paris had grown to about 2,715,000. At the beginning of the century, artists from around the world including Pablo Picasso, Modigliani, and Henri Matisse made Paris their home. It was the birthplace of Fauvism, Cubism and abstract art, and authors such as Marcel Proust were exploring new approaches to literature.

 

During the First World War, Paris sometimes found itself on the front line; 600 to 1,000 Paris taxis played a small but highly important symbolic role in transporting 6,000 soldiers to the front line at the First Battle of the Marne. The city was also bombed by Zeppelins and shelled by German long-range guns. In the years after the war, known as Les Années Folles, Paris continued to be a mecca for writers, musicians and artists from around the world, including Ernest Hemingway, Igor Stravinsky, James Joyce, Josephine Baker, Eva Kotchever, Henry Miller, Anaïs Nin, Sidney Bechet and Salvador Dalí.

 

In the years after the peace conference, the city was also home to growing numbers of students and activists from French colonies and other Asian and African countries, who later became leaders of their countries, such as Ho Chi Minh, Zhou Enlai and Léopold Sédar Senghor.

  

General Charles de Gaulle on the Champs-Élysées celebrating the liberation of Paris, 26 August 1944

On 14 June 1940, the German army marched into Paris, which had been declared an "open city". On 16–17 July 1942, following German orders, the French police and gendarmes arrested 12,884 Jews, including 4,115 children, and confined them during five days at the Vel d'Hiv (Vélodrome d'Hiver), from which they were transported by train to the extermination camp at Auschwitz. None of the children came back. On 25 August 1944, the city was liberated by the French 2nd Armoured Division and the 4th Infantry Division of the United States Army. General Charles de Gaulle led a huge and emotional crowd down the Champs Élysées towards Notre Dame de Paris, and made a rousing speech from the Hôtel de Ville.

 

In the 1950s and the 1960s, Paris became one front of the Algerian War for independence; in August 1961, the pro-independence FLN targeted and killed 11 Paris policemen, leading to the imposition of a curfew on Muslims of Algeria (who, at that time, were French citizens). On 17 October 1961, an unauthorised but peaceful protest demonstration of Algerians against the curfew led to violent confrontations between the police and demonstrators, in which at least 40 people were killed. The anti-independence Organisation armée secrète (OAS) carried out a series of bombings in Paris throughout 1961 and 1962.

 

In May 1968, protesting students occupied the Sorbonne and put up barricades in the Latin Quarter. Thousands of Parisian blue-collar workers joined the students, and the movement grew into a two-week general strike. Supporters of the government won the June elections by a large majority. The May 1968 events in France resulted in the break-up of the University of Paris into 13 independent campuses. In 1975, the National Assembly changed the status of Paris to that of other French cities and, on 25 March 1977, Jacques Chirac became the first elected mayor of Paris since 1793. The Tour Maine-Montparnasse, the tallest building in the city at 57 storeys and 210 m (689 ft) high, was built between 1969 and 1973. It was highly controversial, and it remains the only building in the centre of the city over 32 storeys high. The population of Paris dropped from 2,850,000 in 1954 to 2,152,000 in 1990, as middle-class families moved to the suburbs. A suburban railway network, the RER (Réseau Express Régional), was built to complement the Métro; the Périphérique expressway encircling the city, was completed in 1973.

 

Most of the postwar presidents of the Fifth Republic wanted to leave their own monuments in Paris; President Georges Pompidou started the Centre Georges Pompidou (1977), Valéry Giscard d'Estaing began the Musée d'Orsay (1986); President François Mitterrand had the Opéra Bastille built (1985–1989), the new site of the Bibliothèque nationale de France (1996), the Arche de la Défense (1985–1989) in La Défense, as well as the Louvre Pyramid with its underground courtyard (1983–1989); Jacques Chirac (2006), the Musée du quai Branly.

 

In the early 21st century, the population of Paris began to increase slowly again, as more young people moved into the city. It reached 2.25 million in 2011. In March 2001, Bertrand Delanoë became the first socialist mayor. He was re-elected in March 2008. In 2007, in an effort to reduce car traffic, he introduced the Vélib', a system which rents bicycles. Bertrand Delanoë also transformed a section of the highway along the Left Bank of the Seine into an urban promenade and park, the Promenade des Berges de la Seine, which he inaugurated in June 2013.

 

In 2007, President Nicolas Sarkozy launched the Grand Paris project, to integrate Paris more closely with the towns in the region around it. After many modifications, the new area, named the Metropolis of Grand Paris, with a population of 6.7 million, was created on 1 January 2016. In 2011, the City of Paris and the national government approved the plans for the Grand Paris Express, totalling 205 km (127 mi) of automated metro lines to connect Paris, the innermost three departments around Paris, airports and high-speed rail (TGV) stations, at an estimated cost of €35 billion.The system is scheduled to be completed by 2030.

 

In January 2015, Al-Qaeda in the Arabian Peninsula claimed attacks across the Paris region. 1.5 million people marched in Paris in a show of solidarity against terrorism and in support of freedom of speech. In November of the same year, terrorist attacks, claimed by ISIL, killed 130 people and injured more than 350.

 

On 22 April 2016, the Paris Agreement was signed by 196 nations of the United Nations Framework Convention on Climate Change in an aim to limit the effects of climate change below 2 °C.

 

In modern North American agriculture the harvesting equipment has become very reliant on technology. On this swather just outside of Sexsmith Alberta the function of many of the moving parts as well as the status of the engine is displayed on an easily accessible control panel for the farmer. The downside is that whenever something electronic goes wrong the dealer must be called out with their diagnostic laptop to make repairs.

Yes, I can do domestic chores. This is my new computerized sewing machine and I had fun this first day I started playing seamstress.

A seamstress is a woman who sews for a living.

Sewing is the craft of fastening or attaching objects using stitches made with a needle and thread. Sewing is one of the oldest of the textile arts, arising in the Paleolithic era. Before the discovery of spinning yarn or weaving fabric, archaeologists believe Stone Age people across Europe and Asia sewed fur and skin clothing using bone, antler or ivory needles and "thread" made of various animal body parts including sinew, catgut, and veins. Although usually associated with clothing and household linens, sewing is used in a variety of crafts and industries, including shoemaking, upholstery, sailmaking, bookbinding and the manufacturing of some kinds of sporting goods. Sewing is the fundamental process underlying a variety of textile arts and crafts, including embroidery, tapestry, quilting, appliqué and patchwork.

For thousands of years, all sewing was done by hand. The invention of the sewing machine in the 19th century and the rise of computerization in the later 20th century led to mass production of sewn objects, but hand sewing is still practiced around the world. Fine hand sewing is a characteristic of high-quality tailoring, haute couture fashion, and custom dressmaking, and is pursued by both textile artists and hobbyists as a means of creative expression.-Wikipedia

The same bridge, from roughly the same angle, can be seen from a distance as well.

 

The Arboretum has an interactive map on their web site. This map is found at the Arborway Gate.

 

Pasting from Wikipedia: Arnold Arboretum:

 

• • • • •

 

The Arnold Arboretum of Harvard University is an arboretum located in the Jamaica Plain and Roslindale sections of Boston, Massachusetts. It was designed by Frederick Law Olmsted and is the second largest "link" in the Emerald Necklace.

 

History

 

The Arboretum was founded in 1872 when the President and Fellows of Harvard College became trustees of a portion of the estate of James Arnold (1781–1868).

 

In 1842, Benjamin Bussey (1757–1842), a prosperous Boston merchant and scientific farmer, donated his country estate Woodland Hill and a part of his fortune to Harvard University "for instruction in agriculture, horticulture, and related subjects". Bussey had inherited land from fellow patriot Eleazer Weld in 1800 and further enlarged his large estate between 1806 and 1837 by acquiring and consolidating various farms that had been established as early as the seventeenth century. Harvard used this land for the creation of the Bussey Institute, which was dedicated to agricultural experimentation. The first Bussey Institute building was completed in 1871 and served as headquarters for an undergraduate school of agriculture.

 

Sixteen years after Bussey's death, James Arnold, a New Bedford, Massachusetts whaling merchant, specified that a portion of his estate was to be used for "...the promotion of Agricultural, or Horticultural improvements". In 1872, when the trustees of the will of James Arnold transferred his estate to Harvard University, Arnold’s gift was combined with 120 acres (0.49 km2) of the former Bussey estate to create the Arnold Arboretum. In the deed of trust between the Arnold trustees and the College, income from Arnold’s legacy was to be used for establishing, developing and maintaining an arboretum to be known as the Arnold Arboretum which "shall contain, as far as practicable, all the trees [and] shrubs ... either indigenous or exotic, which can be raised in the open air of West Roxbury". The historical mission of the Arnold Arboretum is to increase knowledge of woody plants through research and to disseminate this knowledge through education.

 

Charles Sprague Sargent was appointed director and Arnold Professor of Botany shortly after the establishment of the institution in 1872.[2] Together with landscape architect Frederick Law Olmsted he developed the road and pathway system and delineated the collection areas by family and genus, following the then current and widely accepted classification system of Bentham and Hooker. The Hunnewell building was designed by architect Alexander Wadsworth Longfellow, Jr. in 1892 and constructed with funds donated by H. H. Hunnewell in 1903. From 1946 to 1950 the landscape architect Beatrix Farrand was the landscape design consultant for the Arboretum. Her early training in the 1890s included time with Charles Sprague Sargent and chief propagator and superintendent Jackson Thornton Johnson.[3] Today the Arboretum occupies 265 acres (107 hectares) of land divided between four parcels, viz. the main Arboretum and the Peters Hill, Weld-Walter and South Street tracts. The collections, however, are located primarily in the main Arboretum and on the Peters Hill tract. The Arboretum remains one of the finest examples of a landscape designed by Frederick Law Olmsted and it is a Frederick Law Olmsted National Historic Site) and a National Historic Landmark.

 

Robert E. Cook is the seventh and current Director of the Arnold Arboretum. He is also the Director of the Harvard University Herbaria located in Cambridge, Massachusetts.

 

Status

 

The Arboretum is privately endowed as a department of Harvard University. The land, however, was deeded to the City of Boston in 1882 and incorporated into the so-called "Emerald Necklace". Under the agreement with the City, Harvard University was given a thousand-year lease on the property, and the University, as trustee, is directly responsible for the development, maintenance, and operation of the Arboretum; the City retains responsibility for water fountains, benches, roads, boundaries, and policing. The annual operating budget of $7,350,644 (fiscal year 2003) is largely derived from endowment, which is also managed by the University, and all Arboretum staff are University employees. Other income is obtained through granting agencies and contributors.

 

Location

 

The main Arborway gate is located on Route 203 a few hundred yards south of its junction with the Jamaicaway. Public transportation to the Arboretum is available on the MBTA Orange Line to its terminus at Forest Hills Station and by bus (#39) to the Monument in Jamaica Plain. The Arboretum is within easy walking distance from either of these points.

 

Hours

 

The grounds are open free of charge to the public from sunrise to sunset 365 days of the year. The Visitor's Center in the Hunnewell Building, 125 Arborway, is open Monday through Friday 9 a.m.–4 p.m.; Saturdays 10 a.m.–4 p.m.; Sundays 12 p.m.–4 PM. The Visitor’s Center is closed on holidays. The Library, located in the Hunnewell Building, is open Monday through Saturday, 10 a.m.–4 p.m.. The Library is closed on Sundays and holidays. Stacks are closed and the collection does not circulate.

 

Area

 

Two hundred and sixty-five acres (107 hectares) in the Jamaica Plain and Roslindale sections of Boston, Massachusetts, located at 42°19′N 71°5′W / 42.317°N 71.083°W / 42.317; -71.083, with altitudes ranging from 46 feet (15 m) in the meadow across the drive from the Hunnewell Building to 240 feet (79 m) at the top of Peters Hill.

 

Climate

 

Average yearly rainfall is 43.63 inches (1,102 mm); average snowfall, 40.2 inches (102 centimeters). Monthly mean temperature is 51.5 °F (10.8 °C); July's mean temperature is 73.5 °F (23 °C); January's is 29.6 °F (-1.3 °C). The Arboretum is located in USDA hardiness zone 6 (0 to −10 °F, −18 to −23 °C).

 

Collections (as of September 14, 2007)

 

At present, the living collections include 15,441 individual plants (including nursery holdings) belonging to 10,216 accessions representing 4,099 taxa; with particular emphasis on the ligneous species of North America and eastern Asia. Historic collections include the plant introductions from eastern Asia made by Charles Sprague Sargent, Ernest Henry Wilson, William Purdom, Joseph Hers, and Joseph Rock. Recent introductions from Asia have resulted from the 1977 Arnold Arboretum Expedition to Japan and Korea, the 1980 Sino-American Botanical Expedition to western Hubei Province, and more recent expeditions to China and Taiwan.

 

Comprehensive collections are maintained and augmented for most genera, and genera that have received particular emphasis include: Acer, Fagus, Carya, Forsythia, Taxodium, Pinus, Metasequoia, Lonicera, Magnolia, Malus, Quercus, Rhododendron, Syringa, Paulownia, Albizia, Ilex, Gleditsia and Tsuga. Other comprehensive collections include the Bradley Collection of Rosaceous Plants, the collection of conifers and dwarf conifers, and the Larz Anderson Bonsai Collection. Approximately 500 accessions are processed annually.

 

Collections policy

 

The mission of the Arnold Arboretum is to increase our knowledge of the evolution and biology of woody plants. Historically, this research has investigated the global distribution and evolutionary history of trees, shrubs and vines, with particular emphasis on the disjunct species of East Asia and North America. Today this work continues through molecular studies of the evolution and biogeography of the floras of temperate Asia, North America and Europe.

 

Research activities include molecular studies of gene evolution, investigations of plant-water relations, and the monitoring of plant phenology, vegetation succession, nutrient cycling and other factors that inform studies of environmental change. Applied work in horticulture uses the collections for studies in plant propagation, plant introduction, and environmental management. This diversity of scientific investigation is founded in a continuing commitment to acquire, grow, and document the recognized species and infraspecific taxa of ligneous plants of the Northern Hemisphere that are able to withstand the climate of the Arboretum’s 265-acre (1.07 km2) Jamaica Plain/Roslindale site.

 

As a primary resource for research in plant biology, the Arboretum’s living collections are actively developed, curated, and managed to support scientific investigation and study. To this end, acquisition policies place priority on obtaining plants that are genetically representative of documented wild populations. For each taxon, the Arnold Arboretum aspires to grow multiple accessions of known wild provenance in order to represent significant variation that may occur across the geographic range of the species. Accessions of garden or cultivated provenance are also acquired as governed by the collections policies herein.

 

For all specimens, full documentation of both provenance and history within the collection is a critical priority. Curatorial procedures provide for complete and accurate records for each accession, and document original provenance, locations in the collections, and changes in botanical identity. Herbarium specimens, DNA materials, and digital images are gathered for the collection and maintained in Arboretum data systems and the herbarium at the Roslindale site.

 

Research

 

Research on plant pathology and integrated pest management for maintenance of the living collections is constantly ongoing. Herbarium-based research focuses on the systematics and biodiversity of both temperate and tropical Asian forests, as well as the ecology and potential for sustainable use of their resources. The Arboretum's education programs offer school groups and the general public a wide range of lectures, courses, and walks focusing on the ecology and cultivation of plants. Its quarterly magazine, Arnoldia, provides in-depth information on horticulture, botany, and garden history. Current Research Initiatives

 

Plant Records

 

Plant records are maintained on a computerized database, BG-BASE 6.8 (BG-Base Inc.), which was initiated in 1985 at the request of the Arnold Arboretum and the Threatened Plants Unit (TPU) of the World Conservation Monitoring Centre (WCMC). A computerized mapping program (based on AutoCAD (Autodesk)) is linked to BG-BASE, and each accession is recorded on a series of maps at a scale of 1-inch (25 mm) to 20 feet (1:240) or 1-inch (25 mm) to 10 feet (1:120). A computer-driven embosser generates records labels. All accessioned plants in the collections are labeled with accession number, botanical name, and cultivar name (when appropriate), source information, common name, and map location. Trunk and/or display labels are also hung on many accessions and include botanical and common names and nativity. Stake labels are used to identify plants located in the Leventritt Garden and Chinese Path.

 

Grounds Maintenance

 

The grounds staff consists of the superintendent and assistant superintendent, three arborists, and ten horticultural technologists. A service garage is adjacent to the Hunnewell Building, where offices and locker rooms are located. During the summer months ten horticultural interns supplement the grounds staff. A wide array of vehicles and modern equipment, including an aerial lift truck and a John Deere backhoe and front loader, are used in grounds maintenance. Permanent grounds staff, excluding the superintendents, are members of AFL/CIO Local 615, Service Employees International Union (SEIU).

 

Nursery and Greenhouse Facilities

 

The Dana Greenhouses, located at 1050 Centre Street (with a mailing address of 125 Arborway), were completed in 1962. They comprise four service greenhouses totaling 3,744 square feet (348 m²), the headhouse with offices, cold rooms, storage areas, and a classroom. Staffing at the greenhouse includes the manager of greenhouses and nurseries, the plant propagator, two assistants, and, during the summer months, two horticultural interns. Adjacent to the greenhouse is a shade house of 3,150 square feet (293 m²), a 12,600 cubic foot (357 m³) cold storage facility, and three irrigated, inground nurseries totaling approximately one and one-half acres (6,000 m²). Also located in the greenhouse complex is the bonsai pavilion, where the Larz Anderson Bonsai Collection is displayed from the middle of April to the end of October. During the winter months the bonsai are held in the cold storage unit at temperatures slightly above freezing.

 

Isabella Welles Hunnewell Internship Program

 

The living collections department of the Arnold Arboretum offers a paid summer internship program [2] that combines hands-on training in horticulture with educational courses. Intern trainees will be accepted for 12- to 24-week appointments. Ten interns will work with the grounds maintenance department and two in the Dana Greenhouses.

 

As part of the training program, interns participate in mandatory instructional sessions and field trips in order to develop a broader sense of the Arboretum’s horticultural practices as well as those of other institutions. Sessions and field trips are led by Arnold staff members and embrace an open question and answer format encouraging all to participate. Interns often bring experience and knowledge that everyone, including staff, benefits from. It is a competitive-free learning environment.

 

Horticultural Apprenticeship

 

The Arboretum created the horticultural apprenticeship program in 1997 to provide hands-on experience in all aspects of the development, curation, and maintenance of the Arboretum's living collections to individuals interested in pursuing a career in an arboretum or botanical garden.

 

The Living Collections department of the Arnold Arboretum offers a summer internship program[4] that combines practical hands-on training in horticulture with educational courses. Fourteen Interns/Horticultural Trainees are accepted for twelve to twenty-four week appointments. Interns receive the majority of their training in one of three departments: Grounds Maintenance, Nursery and Greenhouse, or Plant Records.

 

Lilac Sunday

 

The second Sunday in May every year is "Lilac Sunday". This is the only day of the year that picnicing is allowed. In 2008, on the 100th anniversary of Lilac Sunday, the Arboretum website touted:

 

Of the thousands of flowering plants in the Arboretum, only one, the lilac, is singled out each year for a daylong celebration. On Lilac Sunday, garden enthusiasts from all over New England gather at the Arboretum to picnic, watch Morris dancing, and tour the lilac collection. On the day of the event, which takes place rain or shine, the Arboretum is open as usual from dawn to dusk.[5]

 

Associated Collections

 

The Arboretum's herbarium in Jamaica Plain holds specimens of cultivated plants that relate to the living collections (ca. 160,000). The Jamaica Plain herbarium, horticultural library, archives, and photographs are maintained in the Hunnewell building at 125 Arborway; however, the main portions of the herbarium and library collections are housed in Cambridge on the campus of Harvard University, at 22 Divinity Avenue.

 

Publications

 

The inventory of living collections is updated periodically and made available to sister botanical gardens and arboreta on request; it is also available on the Arboretum’s website (searchable inventory). Arnoldia, the quarterly magazine of the Arnold Arboretum, frequently publishes articles relating to the living collections. A Reunion of Trees[6] by Stephen A. Spongberg (curator emeritus) recounts the history of the introduction of many of the exotic species included in the Arobretum’s collections. New England Natives[7] written by horticultural research archivist Sheila Connor describes many of the trees and shrubs of the New England flora and the ways New Englanders have used them since prehistoric times. Science in the Pleasure Ground[8] by Ida Hay (former curatorial associate) constitutes an institutional biography of the Arboretum.

 

Institutional Collaborations

 

The Arboretum maintains an institutional membership in the American Public Garden Association (APGA) and the International Association of Botanical Gardens and Arboreta. Additionally, members of the staff are associated with many national and international botanical and horticultural organizations. The Arboretum is also a cooperating institution with the Center for Plant Conservation (CPC), and as an active member of the North American Plant Collections Consortium (NAPCC), it is committed to broadening and maintaining its holdings of: Acer, Carya, Fagus, Stewartia, Syringa, and Tsuga for the purposes of plant conservation, evaluation, and research. The Arboretum is also a member of the North American China Plant Exploration Consortium (NACPEC).

 

See also

 

Larz Anderson Bonsai Collection, donated by businessman and ambassador Larz Anderson

The Case Estates of the Arnold Arboretum

List of botanical gardens in the United States

North American Plant Collections Consortium

Adams-Nervine_Asylum

 

External links

 

Arnold Arboretum Official Website

Arnold Arboretum Visitor Information

Harvard University Herbaria

American Public Gardens Association (APGA)

Flora of China

Virtual Information Access (VIA) Catalog of visual resources at Harvard University.

Garden and Forest A Journal of Horticulture, Landscape Art, and Forestry (1888–1897)

Boston's Arnold Arboretum: A Place for Study and Recreation, a National Park Service Teaching with Historic Places (TwHP) lesson plan

The Emerald Necklace: Boston's Green Connection, a National Park Service Teaching with Historic Places (TwHP) lesson plan

Westland Sea King HAR3 XZ594 (cn WA860) Royal Air Force, Sea King Rescue Training Unit (SKTU), on the Thursday before RIAT 2015 at Fairford UK (FFD). (photo 4829-1).

 

The Westland WS-61 Sea King is a British license-built version of the American Sikorsky S-61 helicopter of the same name, built by Westland Helicopters. The aircraft differs considerably from the American version, with Rolls-Royce Gnome engines (derived from the US General Electric T58), British-made anti-submarine warfare systems and a fully computerized flight control system.

 

A dedicated search and rescue (SAR) version, the HAR3, was developed for the RAF Search and Rescue Force. The type entered service in 1978. Westland also manufactured SAR versions of the Sea King for the Royal Norwegian Air Force, the German Navy and the Belgian Air Force. On SAR variants, the cabin was enlarged by a stretch of the fuselage behind the door; another key feature, used for additional flotation in the unusual event of a water landing, inflatable buoyancy bags were housed inside the aircraft's sponsons. Upgrades and changes made to SAR Sea Kings include the addition of radar warning receivers, a cargo hook for the underslung carriage of goods, and the redesigning of the cockpit for compatibility with night vision goggles. As of 2006, up to 12 HAR3/3As were dispersed across the UK, a further two HAR3s were attached to the Falkland Islands, providing 24-hour rescue coverage.

 

Source: en.wikipedia.org/wiki/Westland_Sea_King

A section of the old

Bekeley Library Main Branch

which still remains after the complete overhaul / rebuilding & seismic upgrading, in which several extensive brand new wings were added -

This is what used to be the main lobby

The purpose of a power supply on a model railroad is to provide power to make the trains run, and if the layout is big enough and complex enough to require more than one power feed, the POLARITY is important. Otherwise, there will be short circuits, and the trains will not run. For the hundredth time, my layout is small enough and simple enough to run off of one DC power pack. Computerized Direct Digital Control would add complexity that I don’t need and expense that I cannot afford. Although my layout is big enough to give the illusion of visually separate scenes, I don’t have enough track space between the staging areas and the passing siding to allow more than one train in motion, so I simply alternate them. Besides, the tempo of operations on the single track Santa Fe line across northern New Mexico in the mid-1950’s was only five passenger trains and one through freight train a day each way plus a local freight that ran a few times a week.

 

I originally chose Kato Unitrack so I could quickly set up on my dinner table and run some trains and test various track arrangements without having to custom cut flex track and custom wire each track arrangement for my future layout. Once I built the layout, I have changed my passing sidings, industrial spurs, and staging yards several times by unsnapping, re-arranging, and popping the tracks back together. The Unitrack wiring system is simple “plug and play” with standard connectors and no soldering necessary.

 

When I first got started with Unitrack, I ordered a starter set that had an S-62F power feed track whose wiring cable ran to my Kato power pack. That worked fine for testing my brand new Super Chief in 2006. On longer track circuits the train ran slower further away from the power feed. I installed a second power feed track S-62F on the other side of the layout, and my train wouldn’t move. WTF? I checked for opens and found none, but the circuit breaker had popped. Both cables from the S-62F tracks connected to a 3 to 1 connector that snapped into the power pack. The connectors can only plug in the right way. Then I unplugged one of the power track feeds, and the train ran. I swapped power feeds, and the train ran but in the opposite direct. POLARITY PROBLEM! But how?

 

Most power feed tracks have big and unrealistic screw terminals for connecting both wires to the power pack. The sleek Kato S-62F track has a two wire cable that can run through a hole in the sub-roadbed or can be routed to an opening on either side of the track for temporary table top set-ups. These cable routing holes are near the end of the track, but the track can be snapped in either direction. When using only one S-62F power feed track, it doesn’t matter which direction the power feed track is placed in the small set-up, but if more than one is used, all the S-62F power feed holes must be oriented the same. I am not talking about whether the cables go left, right, or down but rather the location of the cable holes as you face the feeder track. Kato does not even mention it on the instructions that come with the track or in any of the booklets that come with track sets.

 

Here is how I standardize the polarity on my layout. Model manufactures for HO and N scales (and possibly others) have agreed that a POSITIVE voltage applied to the RIGHT rail and a NEGATIVE voltage to the LEFT will make an engine go FORWARD. Reversing circuits simply switch the polarity around to go backward. On many American layouts including mine, we arbitrarily decide that going RIGHT (as the viewer faces the layout) is EASTBOUND and going LEFT is WESTBOUND because many railfans in the Northern Hemisphere photograph east-west lines from the south side to allow the sun to illuminate the trains. I picked up that orientation when I was active in NTrak back in 1979-95. According to the General Code of Operating Rules followed by most American railroads, eastbound trains are superior to westbound trains of the same class. Therefore, the FORWARD setting on my Kato power pack is EASTBOUND, and the REVERSE setting is WESTBOUND. Given the fixed nature of the Kato Unitrack wiring plugs, in order to make the FORWARD setting propel the trains EASTBOUND, all the S-62F cable holes must be on the right as you face the track. I use two of these on my mainline and a third one on my portable test track. All of my staging tracks are reversing loops and powered by feeder UniJoiners which I’ll discuss later.

 

For clarity I unsnapped the feeder track from the track that holds an engine pointed Eastbound. Notice that the cable is on the RIGHT side as you view the track.

 

RF-84F Thunderflash is the reconnaissance version of Republic F-84F Thunderstreak. The main difference, inherited from the second YF-84F prototype, were the wing-root air intakes. These were not adopted for the fighter version due to loss of thrust. However, this arrangement permitted placement of cameras in the nose and the design was adopted for the The aircraft retained an armament of four machine guns and could carry up to fifteen cameras. Innovations included computerized controls which adjusted camera settings for light, speed, and altitude, a periscope to give the pilot better visualization of the target, and a voice recorder to let the pilot narrate his observations.

 

West German Air Force ordered 108 RF-4F aircrafts out of 715 totally built. They served in Aufklärungsgeschwader 51 (Reconnaissance Wing) and Aufklärungsgeschwader 52. In June 1965 West German Air Force began to replace Thunderflashes with RF-104G Starfighter reconnaissance version starting with AG51. On August 31th 1966 the very last RF-84F retired the Luftwaffe.

 

This particular Republic RF-84F-25-RE from West German Air Force with registration EB-344 served with the USAF 66th TRW at Sembach prior to be transferred to Luftwaffe with AG52. Now it is preserved at "Luftwaffenmuseum der Bundeswehr Berlin-Gatow".

 

Construction Number (C/N): 52-7346. Probably wears fake EB-344 markings.

packer blade is on top, and it rests on the partially retracted ejector blade. the two work in tandem to eject, in a computerized extend/retract sequence that keeps material from falling behind the blades. this can only be found on Amrep "Automated" units, aka ASLs.

Three Lockheed Martin F-35A-2B "Lightning II" "Joint Strike Fighter's", from the 63rd Fighter Squadron, and a General Dynamics (its aviation unit now part of Lockheed Martin) General Dynamics F-16 "Fighting Falcon", from the 309th Fighter Squadron, fly in formation alongside a Boeing KC-135 "Stratotanker", from the 161st Air Refueling Wing, during a refueling mission near Phoenix Aug. 27, 2019. Six F-35s from the 63rd FS competed in Exercise Panther Beast where the pilots tested their munition dropping accuracy.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

  

Improvements

 

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.

 

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.

 

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

 

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

 

Electro-hydrostatic actuators run by a power-by-wire flight-control system.

 

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.

 

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.

 

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

  

Costs

 

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

I appreciate vintage advertising. I must say I have never seen produce advertised at a pharmacy. Under the bounty of produce in this image is a bright red balance scale. i found this poster in the back corner of Ristramnn Chile Company, Mesilla. New Mexico. Maybe not so vintage— the text says “now computerized”.

The Olympus PEN-FT is the most advanced member of the PEN half-format family that flourished in the 1960s. The Pen-F is, all appearances to the contrary, an SLR, but its designers avoided the characteristic hump and bulk of other SLRs by using a Porro prism and fixing it sideways. This required some creative engineering of the shutter design, but the camera's designer, the ingenious Y. Maitani, came up with a brilliant solution there.

 

All film Pens use 35 mm film but the image only takes up half a frame and is exposed sideways, so if you hold the camera horizontally, the picture will be taken in the portrait mode.

 

Olympus offered a large line-up of high quality lenses, but in my opinion, the standard 38/f.1.8 Zuiko lens is also far and away the best choice. Almost always, I find that the field of view is exactly what I need. The lens is fast enough too. Come on. Who needs more aperture than f/1.8?

 

The FT offers off-the-prism (and thus, implicitly, through-the-lens) metering, which makes the viewfinder image a bit darker. Focusing still is a breeze, however, thanks to the microprism focusing screen. The light meter is not coupled - it indicates which f-stop to use, albeit using a proprietary numbering scheme.

 

The web abounds with detailed descriptions of the panoply of technology used in this camera, so I won't talk about that,

 

On a personal note - I find this camera a pure joy to use. There are no frills. It does what it's supposed to do, no more. So I'm not distracted and can concentrate on composing your picture, which is what I should be doing instead of fiddling with controls and menus.

 

You feel, hear and see that it's a brilliant piece of technology. A lot of complex engineering went into making it as simple as it is. Unlike modern computerized DSLRs which appear to be following the tenet that "if it was difficult to engineer it should also be difficult to use."

 

People react to it. Not like they'd react to a high-end DSLR or medium format behemoth. This camera doesn't elicit envy, it just pleases people with its looks. The reaction of the technician in the camera shop today was typical: A small gasp, followed by "Wow, that's a stunner. Let me hear the sound of her." That's right. He said "her", not "it". And then I fired her and his eyes lit up with joy and he went "Ahhhhhh ....yes!"

See what I mean? Everyone who sees her walks off with a smile on their face.

 

This is not a silent camera. But her sound is pure music to anyone who loves cameras. Granted, she has drawbacks.

 

Though she's rather heavy (which is good), the manufacturing quality isn't comparable to, say. a Leica. You see that when she twists and flexes slightly in your hands and you feel it most of all when you advance the film. That has a grindy feel to it.

 

But still. This baby was made in 1966, and I'd say she's in a very admirable state, given that she'll turn 50 next year.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".

 

The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.

 

But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.

 

Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.

Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.

 

Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.

The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.

The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.

 

The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.

 

AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.

 

Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.

 

The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.

 

Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.

 

Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.

 

While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.

 

USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.

 

The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.

 

Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.

 

International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.

  

General F-24A characteristics:

Crew: 1 pilot

Length: 47 ft 4 in (14.4 m)

Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)

Height: 13 ft 10 in (4.20 m)

Wing area: 36.55 m² (392 ft²)

Empty weight: 13.150 lb (5.090 kg)

Loaded weight: 15.480 lb (6.830 kg)

Max. take-off weight: 27.530 lb (12.500 kg)

 

Powerplant

1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner

 

Performance

Maximum speed: Mach 2+

Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks

Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks

Service ceiling: 55,000 ft (16,800 m)

Rate of climb: 52,800 ft/min (255 m/s)

Wing loading: 70.0 lb/ft² (342 kg/m²)

Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)

 

Armament

1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG

Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.

  

The kit and its assembly:

A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.

 

As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.

I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.

 

Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):

● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear

● Fin and nose cone from an Italeri F-16A

● Inner wings from a (vintage) Hasegawa MiG-21F

● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)

 

The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.

 

The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?

 

Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.

 

The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.

 

For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.

 

All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.

 

Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.

 

The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.

  

Painting and markings:

At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.

 

A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).

 

“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.

 

The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.

 

Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.

  

Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.

Landmark Accomplishments:

Longest highway tunnel in North America (13,300' or 2.5 miles).

Longest combined rail and highway use tunnel in North America.

First U.S. tunnel with jet turbine and portal fan ventilation.

First computerized regulation of both rail and highway traffic.

First tunnel designed for -40° F. and 150 mph winds.

Portal buildings designed to withstand avalanches

The position of titular organist ("head" or "chief" organist) at Notre-Dame is considered one of the most prestigious organist posts in France, along with the post of titular organist of Saint Sulpice in Paris, Cavaillé-Coll's largest instrument.

 

The organ has 7,374 pipes, with ca 900 classified as historical. It has 110 real stops, five 56-key manuals and a 32-key pedalboard. In December 1992, a two-year restoration of the organ was completed that fully computerized the organ under three LANs (Local Area Networks).

Three Lockheed Martin F-35A Lighting II "Joint Strike Fighter's", assigned to the 63rd Fighter Squadron at Luke Air Force Base, Ariz., fly in formation during a refueling mission Aug. 27, 2019, near Phoenix. A Boeing KC-135 Stratotanker, assigned to the Arizona Air National Guard, 161st Fueling Wing, refueled six F-35s. During a refueling mission, the boom operator extends the boom to make contact with the aircraft and once in contact, fuel is pumped through the boom to the aircraft.

  

LUKE AIR FORCE BASE, Ariz. --

From start to finish, many Airmen contribute to the success of an F-35A Lightning II strike mission.

 

Mission success depends on a smooth transition from every required task from building bombs to maintaining the jets to flying them. For a strike mission, the whole process starts with building the munitions.

 

“There’s a lot of prep work that goes into building a munition,” said Staff Sgt. Noah Dankocsik, 56th Equipment Maintenance Squadron conventional maintenance crew chief. “It requires reading through multiple steps in our technical data to properly putting it together. To build munitions, you have to put on tails and noses, and you have the bomb body itself to prepare.”

 

Once munitions are built they are put on a trailer and the Airmen from the line delivery section pull the trailers of bombs to the flightline to transfer to the weapons load crews. Weapons then take those bombs and load them onto the jets, Dankocsik said.

 

In addition to having the weapons loaded, F-35s are inspected and prepped for flight.

 

“Our crew chiefs perform Before Operation Servicing (BOS) inspections to ensure aircraft are serviced and ready for flight,” said Master Sgt. Micheal Whitehead, 63rd Aircraft Maintenance Unit (AMU) F-35 lead production superintendent. “Crew chiefs, avionics, weapons, Autonomic Logistics Information System expediters will then review aircraft forms and clear any discrepancies. The production superintendent will perform a forms review and a walk around of the aircraft, (prior to) releasing it for flight.”

 

Recently, all the cohesion and cooperation between these units came together Aug. 27 during the ‘Panther Beast’ 63rd Fighter Squadron competition.

Competing pilots flew 50 miles to acquire and destroy 6 to 12 targets over a 45-minute period in hopes of becoming the winners of ‘Panther Beast’, said Lt. Col. Curtis Dougherty, 63rd Fighter Squadron commander.

 

“After landing, the tape review will reveal the truth, and we’ll celebrate the victors at a fighter squadron and aircraft maintenance unit awards ceremony,” said Dougherty.

 

Airmen from multiple units worked together to build the munitions used, maintain the aircraft and fly the jets. Dougherty said it was their cooperation that made the competition possible.

 

“The work started weeks before weapons hit targets,” he said. “Our AMU has been hard at work loading aircraft with external pylons that we’ve never flown with before at Luke. Ammo has spent countless hours building more weapons than we’ve ever dropped in this squadron’s history. The pilots have spent that time planning: determining which targets and attacks will challenge the squadron’s instructors and ensuring everyone has the knowledge requisite to succeed. On the day of the mission, it all comes together.”

 

While the competition is a special event, maintenance, ammo and pilots work together to perform these tasks frequently. Dougherty said, it’s this synergy that allows our Air Force to be an effective fighting force.

 

“To succeed, we rely on the world’s finest maintenance professionals to care about the small details so that all of the critical aircraft systems work at their peak capability and weapons function the way they were intended,” he added. “We ask our pilots to prepare and brief with diligence to be ready to execute at the highest levels. The team environment and esprit de corps that extends across our aircraft maintenance unit and fighter squadron inspires the finest our Airmen have to offer.”

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

  

Improvements

 

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.

 

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.

 

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

 

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

 

Electro-hydrostatic actuators run by a power-by-wire flight-control system.

 

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.

 

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.

 

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

  

Costs

 

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

A wrecking yard (Australian, New Zealand, and Canadian English), scrapyard (Irish and British English) or junkyard (American English) is the location of a business in dismantling where wrecked or decommissioned vehicles are brought, their usable parts are sold for use in operating vehicles, while the unusable metal parts, known as scrap metal parts, are sold to metal-recycling companies.

 

Other terms include wreck yard, wrecker's yard, salvage yard, breakers yard, dismantler and scrapheap. In the United Kingdom, car salvage yards are known as car breakers, while motorcycle salvage yards are known as bike breakers. In Australia, they are often referred to as 'Wreckers'.

 

The most common type of wreck yards are automobile wreck yards, but junkyards for motorcycles, bicycles, small airplanes and boats exist too.

 

Many salvage yards operate on a local level—when an automobile is severely damaged, has malfunctioned beyond repair, or not worth the repair, the owner may sell it to a junkyard; in some cases—as when the car has become disabled in a place where derelict cars are not allowed to be left—the car owner will pay the wrecker to haul the car away.

 

Salvage yards also buy most of the wrecked, derelict and abandoned vehicles that are sold at auction from police impound storage lots,and often buy vehicles from insurance tow yards as well.

 

The salvage yard will usually tow the vehicle from the location of its purchase to the yard, but occasionally vehicles are driven in. At the salvage yard the automobiles are typically arranged in rows, often stacked on top of one another.

 

Some yards keep inventories in their offices, as to the usable parts in each car, as well as the car's location in the yard. Many yards have computerized inventory systems. About 75% of any given vehicle can be recycled and used for other goods.

 

In recent years it is becoming increasingly common to use satellite part finder services to contact multiple salvage yards from a single source.

 

In the 20th century these were call centres that charged a premium rate for calls and compiled a facsimile that was sent to various salvage yards so they could respond directly if the part was in stock. Many of these are now Web-based with requests for parts being e-mailed instantly.

The M60 Main Battle tank was developed in the late 1950s to counteract superior Soviet tanks. It entered service in 1960 as a replacement for the M48 medium tank, and was then upgraded or retrofitted almost continuously until 1987 when production ceased. The M60A3 was usually equipped with laser range finders, computerized fire-control systems, and thermal night sights. The crew of four could fire six to eight rounds a minute. The main armament was 105mm main gun and two mounted machine guns.

Lightning Integrated Technician team members taxi-in an Lockheed Martin F-35A Lightning II "Joint Strike Fighter" (sn 14-5095) (MSN AF-96) June 8, 2018, at Luke Air Force Base, Ariz. With the LIT team, multiple components of an aircraft undergoing maintenance can be worked on simultaneously.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

  

Improvements

 

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.

 

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.

 

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

 

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

 

Electro-hydrostatic actuators run by a power-by-wire flight-control system.

 

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.

 

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.

 

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

  

Costs

 

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

The Lockheed Martin F-35A Lightning II "Joint Strike Fighter" sits in a hangar loaded with dummy external munitions, Feb. 13, 2019 at Luke Air Force Base, Ariz. After completing the external pylon installation training, the weapons loading standardization crew, a team of three Airmen, became the first team at Luke to be certified on external GBU-12 bomb and AIM-9 missile loading.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

  

Improvements

 

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.

 

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.

 

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

 

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

 

Electro-hydrostatic actuators run by a power-by-wire flight-control system.

 

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.

 

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.

 

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

  

Costs

 

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

U.S. Air Force 1st Lt. David Moore, a Lockheed Martin F-35A "Lightning II" pilot from the 34th Fighter Squadron, climbs out of the cockpit after a flight from Hill Air Force Base, Utah, to Joint Base Pearl Harbor-Hickam, Hawaii, Oct. 30, 2017. A dozen F-35As and approximately 300 Airmen are on their way to Kadena Air Base, Japan, deployed under U.S. Pacific Command's (PACOM) Theater Security Package program, which has been in operation since 2004. This marks PACOM’s first operational tasking for the F-35A and builds upon the successful debut of the fifth-generation stealth fighter in the Indo-Asia-Pacific region at the Seoul International Aerospace & Defense Exhibition earlier this month.

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 "Lightning II" is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the "Joint Strike Fighter" (JSF) program over the competing Boeing X-32. The official "Lightning II" name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 "Raptor", intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 "Raptor", drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E "Strike Eagle" in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 "Raptor", and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

 

Improvements

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's "Super Hornet".

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

Electro-hydrostatic actuators run by a power-by-wire flight-control system.

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

 

Costs

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some Background:

The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.

 

The initial production model, the F-94A, entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 radar, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.

 

The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. Its Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a roomier cockpit and the canopy received a bow frame in the center between the two crew members. A new Instrument Landing System (ILS) was fitted, too, which made operations at night and/or in bad weather much safer. However, this new variant’s punch with just four machine guns remained weak, and, to improve the load of fire, wing-mounted pods with two additional pairs of 0.5” machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were nevertheless built.

 

The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm since aircraft technology had already developed at a fast pace – supersonic performance had already become standard. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48. This was a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the proposed new variant was exclusively armed with unguided air-to-air missiles.

Tests were positive and eventually the F-94C was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time. It still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft, though.

 

The F-94C's introduction and the availability of the more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and to Air National Guards. By 1955 most of them had already been phased out of USAF service, and some of these relatively young surplus machines were subsequently exported or handed over to friendly nations, too. When sent to the ANG, the F-94As were modified by Lockheed to F-94B standards and then returned to the ANG as B models. They primarily replaced outdated F-80C Shooting Stars and F-51D/H Mustangs.

 

At that time the USAF was looking for a tactical reconnaissance aircraft, a more effective successor for the RF-80A which had shown its worth and weaknesses during the Korea War. For instance, the plane could not fly at low altitude long enough to perform suitable visual reconnaissance, and its camera equipment was still based on WWII standards. Lockheed saw the opportunity to fill this operational gap with conversions of existing F-94A/B airframes, which had, in most cases, only had clocked few flying hours, primarily at high altitudes where Soviet bombers were expected to lurk, and still a lot of airframe life to offer. This led to another private venture, the RF-94B, auspiciously christened “Stargazer”.

 

The RF-94B was based on the F-94B interceptor with its J33 engine and the original unswept tail. The F-94B’s wings were retained but received a different leading-edge profile to better cope with operations at low altitude. The interceptor’s nose with the radome and the machine guns underneath was replaced by a new all-metal nose cone, which was more than 3 feet longer than the former radar nose, with windows for several sets of cameras; the wedge-shaped nose cone quickly earned the aircraft the unofficial nickname “Crocodile”.

One camera was looking ahead into flight direction and could be mounted at different angled downward (but not moved during flight), followed by two oblique cameras, looking to the left and the right, and a vertical camera as well as a long-range camera focussed on the horizon, which was behind a round window at port side. An additional, spacious compartment in front of the landing gear well held an innovative Tri-Metrogen horizon-to-horizon view system that consisted of three synchronized cameras. Coupled with a computerized control system based on light, speed, and altitude, it adjusted camera settings to produce pictures with greater delineation.

All cameras could be triggered individually by pilot or a dedicated observer/camera systems operator in the 2nd seat. Talking into a wire recorder, the crew could describe ground movements that might not have appeared in still pictures. A vertical view finder with a periscopic presentation on the cockpit panel was added for the pilot to enhance visual reconnaissance and target identification directly under the aircraft. Using magnesium flares carried under its wings in flash-ejector cartridges, the RF-94B was furthermore able to fly night missions.

The RF-94B was supposed to operate unarmed, but it could still carry a pair of 1.000 lb bombs under its wings or, thanks to added plumbings, an extra pair of drop tanks for ferry flights. The F-94A/B’s machine gun pods as well as the F-94C’s unguided missile launchers could be mounted to the wings, too, making it a viable attack aircraft in a secondary role.

 

The USAF was highly interested in this update proposal for the outdated interceptors (almost 500 F-94A/Bs had been built) and ordered 100 RF-94B conversions with an option for 100 more – just when a severe (and superior) competitor entered the stage after a lot of development troubles: Republic’s RF-84F Thunderflash reconnaissance version. The first YRF-84F had already been completed in February 1952 and it had an overall slightly better performance than the RF-94B. However, it offered more internal space for reconnaissance systems and was able to carry up to fifteen cameras with the support of many automatized systems, so that it was a single seater. Being largely identical to the F-84F and sharing its technical and logistical infrastructures, the USAF decided on short notice to change its procurement decision and rather adopt the more modern and promising Thunderflash as its standard tactical reconnaissance aircraft. The RF-94B conversion order was reduced to the initial 100 aircraft, and to avoid operational complexity these aircraft were exclusively delivered to Air National Guardss that had experience with the F-94A/B to replace their obsolete RF-80As.

 

Gradual replacement lasted until 1958, and while the RF-94B’s performance was overall better than the RF-80A’s, it was still disappointing and not the expected tactical intelligence gathering leap forward. The airframe did not cope well with constant low-level operations, and the aircraft’s marginal speed and handling did not ensure its survivability. However, unlike the RF-84F, which suffered from frequent engine problems, the Stargazers’ J33 made them highly reliable platforms – even though the complex Tri-Metrogen device turned out to be capricious, so that it was soon replaced with up to three standard cameras.

 

For better handling and less drag esp. at low altitude, the F-94B’s large Fletcher type wingtip tanks were frequently replaced with smaller ones with about half capacity. It also became common practice to operate the RF-94Bs with only a crew of one, and from 1960 on the RF-94B was, thanks to its second seat, more and more used as a trainer before pilots mounted more potent reconnaissance aircraft like the RF-101 Voodoo, which eventually replaced the RF-94B in ANG service. The last RF-94B was phased out in 1968, and, unlike the RF-84F, it was not operated by any foreign air force.

  

General characteristics:

Crew: 2 (but frequently operated by a single pilot)

Length: 43 ft 4 3/4 in (13.25 m)

Wingspan (with tip tanks): 40 ft 9 1/2 in (12.45 m)

Height: 12 ft. 2 (3.73 m)

Wing area: 234' 8" sq ft (29.11 m²)

Empty weight: 10,064 lb (4,570 kg)

Loaded weight: 15,330 lb (6,960 kg)

Max. takeoff weight: 24,184 lb (10,970 kg)

 

Powerplant:

1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust,

5,400 lbf (24 kN) with water injection and 6,000 lbf (26.6 kN) thrust with afterburner

 

Performance:

Maximum speed: 630 mph (1,014 km/h) at height and in level flight

Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks

Ferry range: 1,457 mi (1,275 nmi, 2,345 km)

Service ceiling: 42,750 ft (14,000 m)

Rate of climb: 6,858 ft/min (34.9 m/s)

Wing loading: 57.4 lb/ft² (384 kg/m²)

Thrust/weight: 0.48

 

Armament:

No internal guns; 2x 165 US Gallon (1,204 liter) drop tanks on the wing tips and…

2x underwing hardpoints for two additional 165 US Gallon (1,204 liter) ferry tanks

or bombs of up to 1.000 lb (454 kg) caliber each, plus…

2x optional (rarely fitted) pods on the wings’ leading edges with either a pair of 0.5" (12.7 mm)

machine guns or twelve 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets each

  

The kit and its assembly:

This project was originally earmarked as a submission for the 2021 “Reconnaissance & Surveillance” group build at whatifmodellers.com, in the form of a Heller F-94B with a new nose section. The inspiration behind this build was the real-world EF-94C (s/n 50-963): a solitary conversion with a bulbous camera nose. However, the EF-94C was not a reconnaissance aircraft but rather a chase plane/camera ship for the Air Research and Development Command, hence its unusual designation with the suffix “E”, standing for “Exempt” instead of the more appropriate “R” for a dedicated recce aircraft. There also was another EF-94C, but this was a totally different kind of aircraft: an ejection seat testbed.

 

I had a surplus Heller F-94B kit in The Stash™ and it was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit.

 

The biggest change was the new camera nose, and it was scratched from an unlikely donor part: it consists of a Matchbox B-17G tail gunner station, slimmed down by the gunner station glazing's width at the seam in the middle, and this "sandwich" was furthermore turned upside down. Getting the transitional sections right took lots of PSR, though, and I added some styrene profiles to integrate the new nose into the rest of the hull. It was unintentional, but the new nose profile reminds a lot of a RF-101 recce Voodoo, and there's, with the straight wings, a very F-89ish look to the aircraft now? There's also something F2H-2ish about the outlines?

 

The large original wing tip tanks were cut off and replaced with smaller alternatives from a Hasegawa A-37. Because it was easy to realize on this kit I lowered the flaps, together with open ventral air brakes. The cockpit was taken OOB, I just modified the work station on the rear seat and replaced the rubber sight protector for the WSO with two screens for a camera operator. Finally, the one-piece cockpit glazing was cut into two parts to present the model with an open canopy.

  

Painting and markings:

This was a tough decision: either an NMF finish (the natural first choice), an overall light grey anti-corrosive coat of paint, both with relatively colorful unit markings, or camouflage. The USAF’s earlier RF-80As carried a unique scheme in olive drab/neutral grey with a medium waterline, but that would look rather vintage on the F-94. I decided that some tactical camouflage would make most sense on this kind of aircraft and eventually settled for the USAF’s SEA scheme with reduced tactical markings, which – after some field tests and improvisations in Vietnam – became standardized and was officially introduced to USAF aircraft around 1965 as well as to ANG units.

 

Even though I had already built a camouflaged F-94 some time ago (a Hellenic aircraft in worn SEA colors), I settled for this route. The basic colors (FS 30219, 34227, 34279 and 36622) all came from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the paint scheme of the USAF’s probably only T-33 in SEA colors: a trainer based on Iceland during the Seventies and available as a markings option in one of the Special Hobby 1:32 T-33 kits. The low waterline received a wavy shape, inspired by an early ANG RF-101 in SEA camouflage I came across in a book. The new SEA scheme was apparently applied with a lot of enthusiasm and properness when it was brand new, but this quickly vaned. As an extra, the wing tip tanks received black anti-glare sections on their inner faces and a black anti-glare panel was added in front of the windscreen - a decal from a T-33 aftermarket sheet. Beyond a black ink wash the model received some subtle panel post-shading, but rather to emphasize surface details than for serious weathering.

 

The cockpit became very dark grey (Revell 06) while the landing gear wells were kept in zinc chromate green primer (Humbrol 80, Grass Green), with bright red (Humbrol 60, Matt Red) cover interiors and struts and wheels in aluminum (Humbrol 56). The interior of the flaps and the ventral air brakes became red, too.

 

The decals/markings came from a Special Hobby 1:72 F-86H; there’s a dedicated ANG boxing of the kit that comes with an optional camouflaged aircraft of the NY ANG, the least unit to operate the “Sabre Hog” during the Seventies. Since this 138th TFS formerly operated the F-94A/B, it was a perfect option for the RF-94B! I just used a different Bu. No. code on the fin, taken from a PrintScale A/T-37 set, and most stencils were perocured from the scrap box.

After a final light treatment with graphite around the afterburner for a more metallic shine of the iron metallic (Revell 97) underneath, the kit was sealed with a coat of matt acrylic varnish (Italeri).

  

A camouflaged F-94 is an unusual sight, but it works very well. The new/longer nose considerably changes the aircraft's profile, and even though the change is massive, the "Crocodile" looks surprisingly plausible, if not believable! And, despite the long nose, the aircraft looks pretty sleek, especially in the air.

taken for Our Daily Challenge - stopped action

 

I wanted to do a wave today but there wasn't enough wind to produce anything more than a gentle swell today so I tried for a fast enough speed to stop the water action of the fountains instead. The photo above and below depicts one of the Maids of the Mist, an icon of St. Joseph. Constance faces West and behind her, facing East is Hope.

 

The one that looks like a nozzle below is in the compass fountain in St. Joseph. Most of the time jets go straight up from the ground in the area of the compass but at selected times during the hour the ground jets stop and instead the nozzles (cannons) surrounding the compass all begin to spray into its center. It was actually too busy today to get good shots because it was so crowded. The best time is when there are just a dozen or so kids playing in it. I'll link a few I took last year so you can get a better idea of it.

 

Facts about the compass fountain:

1. Concrete inner splash pad is 150 ft. in diameter

2. Outer ring of the pad is 200 ft. in diameter

3. There are 28 varying height water jets

4. These water jets supply 785 gallons of water per minute

5. There are 5 computerized light shows available

6. There are 8 water cannons mounted on armillary spheres

7. Cannons are equipped with 1000 watt lights

8. These cannons spray water 35 ft. into the air

9. The cannons supply 2,560 gallons of water per minute

10. The water reservoir holds 10,860 gallons of recycled water

 

A Royal Australian Air Force Lockheed Martin F-35A Lightning II "Joint Strike Fighter" taxis at Luke Air Force Base, Ariz., Dec. 3, 2018. Two F-35s were preparing to take off and fly to Hawaii as part of their multi-day journey to Australia.

 

To RAF as A 36-009

  

From Wikipedia, the free encyclopedia

 

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.

 

The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.

 

The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.

 

As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".

 

The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.

 

The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.

 

Development

 

F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

 

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

 

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

  

Design

 

Overview

 

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.

 

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

 

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".

  

Improvements

 

Ostensible improvements over past-generation fighter aircraft include:

 

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.

 

Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.

 

High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.

 

The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.

 

Electro-hydrostatic actuators run by a power-by-wire flight-control system.

 

A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.

 

Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.

 

Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.

  

Costs

 

A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

Credit to VoodoKR for the technique behind making the wheels.

 

In 1999, Kongo Firearms Incorporated developed the Third-track Artillery Vehicle, a modular unit capable of carrying a wide variety of weapon loadouts, although it was designed specifically to carry artillery onto the battlefield.

The TAV is moderately armored, although it is mine-proof, and is also kitted out with KFI's Armored Vehicle Protection System, which fires a variety of smoke grenades and infra red screening rounds, as well as anti-personnel grenades.

Any artillery that the TAV happens to be carrying can be connected to the onboard computer, which requires only a single operator. For this reason, the minimum crew is 2; one driver and one artillery operator. However, the TAV can seat up to four, which allows for communications specialists, officers, and mechanics to also be present when and if the need arises.

The model shown here is fitted with the Python Multiple Launching Rocket System, which shoots up to 40 rockets at a time from the multiple barreled pod. Because of the computerized auto-loader, it has a relatively fast rate of fire, up to 2 rounds/second, and has a maximum range of 45 km. There is a wide variety of warheads available that can be mounted on the rockets, including but not limited to: incendiary, high explosive, submunition anti-personnel, biochemical, and vision-obscuring.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

1 2 ••• 9 10 12 14 15 ••• 79 80