View allAll Photos Tagged Computerized
The Type 10 (TK-X) is an advanced fourth-generation main battle tank (MBT) manufactured by Mitsubishi Heavy Industries, for the Japan Ground Self Defence Force (JGSDF). The Type 10 will replace the old Type 74 MBT's that are in service in the JGSDF since 1991. Main armament of the Type 10 MBT consists of a 120mm L44 smooth-bore gun. On each side of the turret is fitted a bank of electrically operated smoke grenade launchers that are coupled to the warning laser system. The hull and the turret are of all-welded steel amour including nano-crystal steel and fourth generation of modular ceramic composite armor which provides protection against rocket propelled grenade (RPG) rounds, HEAT projectiles, and anti-tank missiles. The add-on armour modules can be easily removed and installed to add/remove protection levels. The Type 10 MBT is powered by a water-cooled, four-stroke, eight-cylinder diesel engines producing 1200 hp. The Type 10 is also fitted with an Hydropneumatic Active Suspension which allows the driver to lower and raised the overall height of the vehicle to suit the tactical situation. The suspension can be also adjusted on the left or right and front or rear. The Type 10 MBT can run at a maximum speed of 70 km/h. Standard equipment of the Type 10 MBT includes automated fire suppression systems, NBC (Nuclear, Bacteriological and Chemical) protection, C4I (command, control, communications, computers, and intelligence) system, night-vision cameras and laser warning systems. The C4I system allows the tank to communicate and share information with other tanks in the GSDF network. The intelligence C4I system also enables the MBT to work together with the troops in the infantry's outdoor computer network, Regiment Command Control System (ReCS) during integrated combat operations.The Type 10 MBT is also fitted with a computerized fire-control system (FCS) that enable the vehicle to engage stationary and moving targets while the vehicle is stopped or moving. The Type 10 MBT is fitted with a digital battlefield management system (BMS) that provides increased situational awareness by displaying the required information.
Another project from the worst part of my viewing location. Why can't all the good ones be straight overhead!
The Lagoon Nebula:
#8 of Charles Messier's "not comet" list,the Lagoon Nebula is a cloud of ionized hydrogen estimated to be 4000-6000 light years from earth. It can be seen with the naked eye as a gray/green patch in the constellation of Sagittarius.The center or core is illuminated by a hot,massive bluish star with an output one million times that of our own sun, most of which is ultraviolet radiation. Almost in the center of the photo can be seen NGC 6530, an open cluster of young stars formed from material within the nebula
Orion ED102T CF Triplet Apochromatic Refractor Telescope.-RGB
Orion ST-80T "guide scope"-Ha
Orion Sirius German-equatorial Computerized Goto Mount
Images aquired using APT
Guided with Starshoot Autoguider and 50mm guide scope
Aligned and stacked with Nebulosity
Post-process with StarTools GIMP & Windows Live Photo
29 total frames: (3hrs 25min) with an equal # of dark frames
Ha-5x300 5x600 3x900 iso 800 Canon T3(modified) with Astronomik Ha clip-in filter
RGB-5x60 6x300 5x600 iso 800 Canon T3i no filters
sites.google.com/site/astrochuck123
*****Check out my "terrestrial" pictures on:
P&W Extra 3905 enters the Amtrak Northeast Corridor in Groton, CT as it passes Tower 119 which used to guard Groton Interlocking back before everything was computerized.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
{ Most recent edits : 12 January 2017 }
For background, please see Wikipedia's pages on :
Great Filter
Wow! signal
Technological singularity
Search for extraterrestrial intelligence
If you care to, please also see the pages linked beneath my ugliest self-portrait to date, though i like it, as i feel these are also relevant .
In the multi-hypothetical case that wide-spread, (and decisive), computerized election fraud, (being generally), in favor of right wing candidates, (also hypothetically, including Donald Trump), is onging in the United States of America --- it would be my further hypothesis that this country may be approaching the "event horizon" of permanent, right-wing, one-party rule .
Under such a scenario, (if the above would, overall, be true), i expect the right wing to make a high priority of consolidating effective control over the Judicial Branch of the United States Government, and over the Military High Command ; that these would complement their hold, (as i see it), over the Legislative Branch and coming hold, (as i see it, and should circumstances proceed according to script), over the Executive Branch . To use a military analogy, if they were to achieve these things, (and if the above scenarios would be, essentially, correct), they would have emplaced "cannon" on all the major hilltops of federal power .
Continuing the above scenarios, (in the assumption they would be, overall, correct) : With increasingly sophisticated surveillance and artificial-intelligence technologies at their disposal, the alliance of people and organizations holding such federal high ground, (as well as, reportedly, considerable accumulated wealth), could gain effective control over the socio-economic middle and, (by degrees), low grounds as well --- particularly if cautious and/or right-wing-sympathetic press outlets were not to treat these issue(s) seriously ----- particularly also if cautious and/or right-wing-sympathetic religious leaders stressed a doubling-down on God, without an activist, (Dr. King-ian), parallel commitment to, (as i believe so critical), transparent election practices .
Rightly or wrongly, i see computerized election systems running trade-secret software on trade-secret hardware, which record the vote in a manner invisible to the voter, (but purport to show the voter how our ballot will be recorded on a confirmation screen), for counting in a manner invisible to the public, (but which purport to tell the truth to the public), as, at least potentially, playgrounds for insider fraud . If such would indeed be the case, (and as what is being determined is the character of, and control over, the United States of America), i imagine these playgrounds would attract some very powerful players . I see no reason to expect that these would be limited to Americans seeking advantage over other Americans, and considerable reason to expect that these would, ultimately, include foreign-sponsored attempts to seek control over America .
I see it as essential to the health of representative democracy in the United States, (if not the world), that computerized election systems such i describe above are replaced, (nation-wide), with all-human election processes, (such as i described in recent posts) . A large part of what concerns me about the administration of a President-apparent Donald Trump is the potential right-wing capture of Federal "high ground" as described 3 paragraphs previous . If my suspicions about elections in this country are (basically) correct, i see such a capture as bringing with it closure of all effective routes to achieve such a replacement .
Rightly or wrongly, (and if the above scenarios are essentially correct), i see the world, human civilization, simultaneously approaching the "event horizon" of one expression of the Great Filter, (in no small part due to the loss of representative democracy in the United States), while also receding from the event horizon of another expression of the Great Filter . If only people in positions of power and/or influence were to discuss this openly . Because i feel there is much to be considered :
Effective consolidation of control over the world's governments, (and nuclear arsenals), into the hands of a single, politically competent and sound-minded individual, (not an easy task, but one which the vulnerabilities innate in "careless", {my word}, attention to election processes within advanced representative-democracies could be exploited to facilitiate, {or so i believe}), could, (at least), reduce the probability that World War III will become the Human expression of the Great Filter --- but perhaps only for as long as the "benevolent (?) dictator" remained alive and well, (and, perhaps also, unobvious) . With stakes that high, a succession could prove extraordinarly attractive to those of ruthless ambition, (not that this would be alien to the character of the dictator himself or herself) . I think that the problem with many autocratic successions has been that the character attributes a dictator values in his or her Numero Dos, often, do not serve that person well when and if they become, (or try to compete to become), El Numero Uno . And, conversely, that the character attributes that make an effective dictator can be destabilizing in the hands of a ranking subordinate . Thus, in order to more fully reduce the risk of civilization-destroying nuclear war, (perhaps during a succession struggle), a leader in the chain, while the consolidation of power was still firmly in hand, would have to effect global nuclear disarmament to below the threshold of annihilation, (while keeping a reserve force to back his or her authority) . This could, potentially, be a very difficult manuever to pull off without triggering the very holocaust he or she would hope to avoid . And yet, multiple truly space-faring nations, if led by biological beings, could be expected to eventually destroy their home planet in a war amongst eachother . . .
Unfortunately, (in my opinion), such a consolidation of effective control, particularly to the extent it may be accomlished by the effective toppling of representative democracies world-wide, steers the world directly toward, (and perhaps through), the event horizon of a Global Winnowing expression of the Great Filter . It is not difficult to imagine --- given the impunity with which the authorities and the wealthy can act, (and add to their power over the ruled and the poor), in the absence of meaningful representative democracy --- that society can trap itself in an endless rat-race . What is difficult to fully comprehend is how completely technology will change the picture . Jobs, livelihoods, stand to be shed from advanced, (and human-capital), economies in stunning numbers during this century . The first two paragraphs of Wikipedia's page on "Technological singularity", currently hold, (as of a 2012 survey), that runaway advancement cybernetic intelligence will take flight, (in the median view of experts), around 2040 . We are engineering our own obsolescence . We are dealing ourselves out of our livelihoods in an environment where right-wing candidates are, (often and in my opinion), doing strangely better than expected at the polls . And, (in at least some cases), our political, press, and religious leaders do not seem to have their eyes firmly focussed upon the constitutionality, (or lack thereof), of election practices in many, (perhaps decisively many), parts this country . This seems to me an object example of the principle that parchment barriers cannot stand without people to hold them up .
Pursuing such a dystopia further, (and perhaps beyond the point of rationality), i imagine it possible that a post 2040 world, if fully captured by its powerful and their associated wealthy, may for some generations spiral into being a world totally mute to the external universe . Without any effective controls upon ambition save for other powerful and wealthy people, i expect that poor people will be created and, (largely), exterminated in successive waves by advancing automation . I expect that survival will, increasingly, depend upon being among the 1% of the 1% of the 1%, (in terms of power, wealth and/or beauty), ad infinitum, until no biological humans may remain . Only the machinery . A mitigating factor would be the benevolence of the world's dictators, (in succession), and of the world's wealthy and powerful below them . I accept that the wealthy and powerful can at times mean well ; but i also believe that such a milieu would evolve in directions which will not reward altruism to nearly the extent it would self-interest . I note also for every truly benevolent person in power, there exists the possibility of a truly malevolent one . Unless there is a way to engineer an incorruptible, benevolent, permanent cybernetic dictator --- a worthy but tall order in which blind faith in secretive corporate methodologies is not recommended --- to perserve and protect the lives as many people as the land will support, this seems to be a very dangerous course for the world to be on . Even if, to those blessed to be at the top, for a while, it will resemble an endless party ; (though an increasingly spookily empty one) .
And then there is Global Warming . I see this as among those factors most likely to bring World War III, (one possible expression of the Great Filter) . I see it also as among those most likely to bring violent conflict within and between nations, which (in my opinion) could move human civilization closer to world-wide authoritarianism and thus toward a Great Winnowing expression of the Great Filter .
IMG_8349
For additional background, please see a Quixotic Idea .
I see the situation as, (potentially), desperate ; but not as unremittingly dark . It is possible that the needle can be threaded, in my opinion .
Ultimately, to do so, humanity must establish an equitable alliance, (and division of labor), with the artificial intelligence we will be developing within this century . I imagine such intelligence would be ideally suited to working in outer-space, (and other hostile environments), while terrrestrial work should remain --- to a large extent --- in human hands, (to protect our livelihoods) . I believe, (and hope), that a consolidation of global power based upon real, well-informed, and wealth-redistributive representative democracy will have a better chance of threading the needle than one based upon autocracy, plutocracy and trans-national corporations .
But i acknowledge that the jet-streams which i believe guide (cosmic and terrestrial) history through their structuring of the outcomes of quantum-mechanical events, (and thus, by extension, those macroscopic ones which outwardly seem governed by chance), are pulling toward whatever outcome they would be pulling toward . I had imagined a more favorable one than seems to be upcoming, and this perturbs me . But and also, as i believe that surface conditions can influence the course and strength of atmospheric jet streams, i wonder to what extent human free will can influence the course and strength of historical jet streams .
"Some burning idea" territory :
It is difficult for me not to become enthusiastic when i think of sub-surface colonies on the moon, (built and maintained by cybernetic machines and humans, working together, and populated by both), which would run on solar electricity and generate artificial gravity by placing (human) crew cabins on circular rail tracks some hundreds of meters in diameter . Such technology could be ironed out there, (days from resupply and rescue), before being expanded to Mars, Mercury and the Asteroid Belt . To protect humans, (and cybernetic control systems), from radiation, (and most small drifting objects), during journeys to these inner-solar-system objectives, craft could be built on the moon which encased crew and control quarters in many meters of lunar brick held in place by a mortar of lunar metal . This also would provide additional stability for rotation-based artificial gravity environments, (ballasting the wobble which would result as the crew moved around), though some form of moving counterweight system would probably also be required . Such craft could be launched from the moon using solar-electricity powered rail guns . Water could be sourced from Mars ; a low-gravity, (.376 g), thin atmosphere, (.006 atm), environment where we could work out those and other additional details .
With the resources available in inner solar-system, outer solar system missions could be contemplated . Great parabolic mirrors to reflect sunlight to solar panels could be built, in part, from water ice --- once one was far enough from the sun for this to be structurally stable . Water ice could also be used as an additional jacket around the space-craft to absorb impacts from drifting objects . On these longer journeys, more control could be given over to cybernetic intelligences which would be optimized for deliberative thought-processes ; (once again, i see this as a worthy but challenging endeavor) . A journey to the as yet unlocated and unnamed Planet Nine, (please see Wikipedia's page), might take a hundred years . During this, the details of multi-generational space-travel could be worked out . Additionally, it may be worth a try in outer-solar system contexts to set up laser stations which would beam power to passing, (or departing), spacecraft having receivers optimized to convert the laser's frequency to electricity .
Ultimately, the goal would be to place human beings on Earth II, (III, IV, V, VI, and so on), which a sufficiently large and accurate space-telescope should be able to locate .
But first, the goal is to get through the next hundred years without getting caught in some expression of the Great Filter . Rightly or wrongly, i find it dangerously naive to assume that President-elect-apparent Donald Trump won a majority (or plurality) of the expressed intent of the voters for every electoral vote his camp claims, particularly those of Pennsylvania and Florida . I believe his elevation to President-apparent would be a grave mistake without taking the necessary time for the Supreme Court, (as it stood on election day), and a qualified Military Court Martial to, simultaneously, consider the Contitutionality of American election practices as they stood on election day ; and if these were found to be Unconstitutional, what remedial action should be taken . I would have no objection --- i would welcome --- the establishment of a provisional government by the Military while this process was ongoing .
And i do not consider such a statement seditionist, as a review of the military oaths, (of office and of enlistment), shows that all United States service members vow
... "that I will support and defend the Constitution of the United States against all enemies, foreign and domestic; that I will bear true faith and allegiance to the same" ... .
This, in my opinion, gives the American Military interest and standing in determining the matter of whether an election was conducted Constitutionally, (and thus, by extension, whether the President-elect-apparent is legitimately so) . Particularly if the United States Supreme Court either refuses to consider the matter, or deadlocks when doing so .
A wrecking yard (Australian, New Zealand, and Canadian English), scrapyard (Irish and British English) or junkyard (American English) is the location of a business in dismantling where wrecked or decommissioned vehicles are brought, their usable parts are sold for use in operating vehicles, while the unusable metal parts, known as scrap metal parts, are sold to metal-recycling companies.
Other terms include wreck yard, wrecker's yard, salvage yard, breakers yard, dismantler and scrapheap. In the United Kingdom, car salvage yards are known as car breakers, while motorcycle salvage yards are known as bike breakers. In Australia, they are often referred to as 'Wreckers'.
The most common type of wreck yards are automobile wreck yards, but junkyards for motorcycles, bicycles, small airplanes and boats exist too.
Many salvage yards operate on a local level—when an automobile is severely damaged, has malfunctioned beyond repair, or not worth the repair, the owner may sell it to a junkyard; in some cases—as when the car has become disabled in a place where derelict cars are not allowed to be left—the car owner will pay the wrecker to haul the car away.
Salvage yards also buy most of the wrecked, derelict and abandoned vehicles that are sold at auction from police impound storage lots,and often buy vehicles from insurance tow yards as well.
The salvage yard will usually tow the vehicle from the location of its purchase to the yard, but occasionally vehicles are driven in. At the salvage yard the automobiles are typically arranged in rows, often stacked on top of one another.
Some yards keep inventories in their offices, as to the usable parts in each car, as well as the car's location in the yard. Many yards have computerized inventory systems. About 75% of any given vehicle can be recycled and used for other goods.
In recent years it is becoming increasingly common to use satellite part finder services to contact multiple salvage yards from a single source.
In the 20th century these were call centres that charged a premium rate for calls and compiled a facsimile that was sent to various salvage yards so they could respond directly if the part was in stock. Many of these are now Web-based with requests for parts being e-mailed instantly.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some Background:
The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.
The initial production model, the F-94A, entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 radar, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.
The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. Its Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a roomier cockpit and the canopy received a bow frame in the center between the two crew members. A new Instrument Landing System (ILS) was fitted, too, which made operations at night and/or in bad weather much safer. However, this new variant’s punch with just four machine guns remained weak, and, to improve the load of fire, wing-mounted pods with two additional pairs of 0.5” machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were nevertheless built.
The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm since aircraft technology had already developed at a fast pace – supersonic performance had already become standard. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48. This was a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the proposed new variant was exclusively armed with unguided air-to-air missiles.
Tests were positive and eventually the F-94C was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time. It still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft, though.
The F-94C's introduction and the availability of the more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and to Air National Guards. By 1955 most of them had already been phased out of USAF service, and some of these relatively young surplus machines were subsequently exported or handed over to friendly nations, too. When sent to the ANG, the F-94As were modified by Lockheed to F-94B standards and then returned to the ANG as B models. They primarily replaced outdated F-80C Shooting Stars and F-51D/H Mustangs.
At that time the USAF was looking for a tactical reconnaissance aircraft, a more effective successor for the RF-80A which had shown its worth and weaknesses during the Korea War. For instance, the plane could not fly at low altitude long enough to perform suitable visual reconnaissance, and its camera equipment was still based on WWII standards. Lockheed saw the opportunity to fill this operational gap with conversions of existing F-94A/B airframes, which had, in most cases, only had clocked few flying hours, primarily at high altitudes where Soviet bombers were expected to lurk, and still a lot of airframe life to offer. This led to another private venture, the RF-94B, auspiciously christened “Stargazer”.
The RF-94B was based on the F-94B interceptor with its J33 engine and the original unswept tail. The F-94B’s wings were retained but received a different leading-edge profile to better cope with operations at low altitude. The interceptor’s nose with the radome and the machine guns underneath was replaced by a new all-metal nose cone, which was more than 3 feet longer than the former radar nose, with windows for several sets of cameras; the wedge-shaped nose cone quickly earned the aircraft the unofficial nickname “Crocodile”.
One camera was looking ahead into flight direction and could be mounted at different angled downward (but not moved during flight), followed by two oblique cameras, looking to the left and the right, and a vertical camera as well as a long-range camera focussed on the horizon, which was behind a round window at port side. An additional, spacious compartment in front of the landing gear well held an innovative Tri-Metrogen horizon-to-horizon view system that consisted of three synchronized cameras. Coupled with a computerized control system based on light, speed, and altitude, it adjusted camera settings to produce pictures with greater delineation.
All cameras could be triggered individually by pilot or a dedicated observer/camera systems operator in the 2nd seat. Talking into a wire recorder, the crew could describe ground movements that might not have appeared in still pictures. A vertical view finder with a periscopic presentation on the cockpit panel was added for the pilot to enhance visual reconnaissance and target identification directly under the aircraft. Using magnesium flares carried under its wings in flash-ejector cartridges, the RF-94B was furthermore able to fly night missions.
The RF-94B was supposed to operate unarmed, but it could still carry a pair of 1.000 lb bombs under its wings or, thanks to added plumbings, an extra pair of drop tanks for ferry flights. The F-94A/B’s machine gun pods as well as the F-94C’s unguided missile launchers could be mounted to the wings, too, making it a viable attack aircraft in a secondary role.
The USAF was highly interested in this update proposal for the outdated interceptors (almost 500 F-94A/Bs had been built) and ordered 100 RF-94B conversions with an option for 100 more – just when a severe (and superior) competitor entered the stage after a lot of development troubles: Republic’s RF-84F Thunderflash reconnaissance version. The first YRF-84F had already been completed in February 1952 and it had an overall slightly better performance than the RF-94B. However, it offered more internal space for reconnaissance systems and was able to carry up to fifteen cameras with the support of many automatized systems, so that it was a single seater. Being largely identical to the F-84F and sharing its technical and logistical infrastructures, the USAF decided on short notice to change its procurement decision and rather adopt the more modern and promising Thunderflash as its standard tactical reconnaissance aircraft. The RF-94B conversion order was reduced to the initial 100 aircraft, and to avoid operational complexity these aircraft were exclusively delivered to Air National Guardss that had experience with the F-94A/B to replace their obsolete RF-80As.
Gradual replacement lasted until 1958, and while the RF-94B’s performance was overall better than the RF-80A’s, it was still disappointing and not the expected tactical intelligence gathering leap forward. The airframe did not cope well with constant low-level operations, and the aircraft’s marginal speed and handling did not ensure its survivability. However, unlike the RF-84F, which suffered from frequent engine problems, the Stargazers’ J33 made them highly reliable platforms – even though the complex Tri-Metrogen device turned out to be capricious, so that it was soon replaced with up to three standard cameras.
For better handling and less drag esp. at low altitude, the F-94B’s large Fletcher type wingtip tanks were frequently replaced with smaller ones with about half capacity. It also became common practice to operate the RF-94Bs with only a crew of one, and from 1960 on the RF-94B was, thanks to its second seat, more and more used as a trainer before pilots mounted more potent reconnaissance aircraft like the RF-101 Voodoo, which eventually replaced the RF-94B in ANG service. The last RF-94B was phased out in 1968, and, unlike the RF-84F, it was not operated by any foreign air force.
General characteristics:
Crew: 2 (but frequently operated by a single pilot)
Length: 43 ft 4 3/4 in (13.25 m)
Wingspan (with tip tanks): 40 ft 9 1/2 in (12.45 m)
Height: 12 ft. 2 (3.73 m)
Wing area: 234' 8" sq ft (29.11 m²)
Empty weight: 10,064 lb (4,570 kg)
Loaded weight: 15,330 lb (6,960 kg)
Max. takeoff weight: 24,184 lb (10,970 kg)
Powerplant:
1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust,
5,400 lbf (24 kN) with water injection and 6,000 lbf (26.6 kN) thrust with afterburner
Performance:
Maximum speed: 630 mph (1,014 km/h) at height and in level flight
Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks
Ferry range: 1,457 mi (1,275 nmi, 2,345 km)
Service ceiling: 42,750 ft (14,000 m)
Rate of climb: 6,858 ft/min (34.9 m/s)
Wing loading: 57.4 lb/ft² (384 kg/m²)
Thrust/weight: 0.48
Armament:
No internal guns; 2x 165 US Gallon (1,204 liter) drop tanks on the wing tips and…
2x underwing hardpoints for two additional 165 US Gallon (1,204 liter) ferry tanks
or bombs of up to 1.000 lb (454 kg) caliber each, plus…
2x optional (rarely fitted) pods on the wings’ leading edges with either a pair of 0.5" (12.7 mm)
machine guns or twelve 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets each
The kit and its assembly:
This project was originally earmarked as a submission for the 2021 “Reconnaissance & Surveillance” group build at whatifmodellers.com, in the form of a Heller F-94B with a new nose section. The inspiration behind this build was the real-world EF-94C (s/n 50-963): a solitary conversion with a bulbous camera nose. However, the EF-94C was not a reconnaissance aircraft but rather a chase plane/camera ship for the Air Research and Development Command, hence its unusual designation with the suffix “E”, standing for “Exempt” instead of the more appropriate “R” for a dedicated recce aircraft. There also was another EF-94C, but this was a totally different kind of aircraft: an ejection seat testbed.
I had a surplus Heller F-94B kit in The Stash™ and it was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit.
The biggest change was the new camera nose, and it was scratched from an unlikely donor part: it consists of a Matchbox B-17G tail gunner station, slimmed down by the gunner station glazing's width at the seam in the middle, and this "sandwich" was furthermore turned upside down. Getting the transitional sections right took lots of PSR, though, and I added some styrene profiles to integrate the new nose into the rest of the hull. It was unintentional, but the new nose profile reminds a lot of a RF-101 recce Voodoo, and there's, with the straight wings, a very F-89ish look to the aircraft now? There's also something F2H-2ish about the outlines?
The large original wing tip tanks were cut off and replaced with smaller alternatives from a Hasegawa A-37. Because it was easy to realize on this kit I lowered the flaps, together with open ventral air brakes. The cockpit was taken OOB, I just modified the work station on the rear seat and replaced the rubber sight protector for the WSO with two screens for a camera operator. Finally, the one-piece cockpit glazing was cut into two parts to present the model with an open canopy.
Painting and markings:
This was a tough decision: either an NMF finish (the natural first choice), an overall light grey anti-corrosive coat of paint, both with relatively colorful unit markings, or camouflage. The USAF’s earlier RF-80As carried a unique scheme in olive drab/neutral grey with a medium waterline, but that would look rather vintage on the F-94. I decided that some tactical camouflage would make most sense on this kind of aircraft and eventually settled for the USAF’s SEA scheme with reduced tactical markings, which – after some field tests and improvisations in Vietnam – became standardized and was officially introduced to USAF aircraft around 1965 as well as to ANG units.
Even though I had already built a camouflaged F-94 some time ago (a Hellenic aircraft in worn SEA colors), I settled for this route. The basic colors (FS 30219, 34227, 34279 and 36622) all came from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the paint scheme of the USAF’s probably only T-33 in SEA colors: a trainer based on Iceland during the Seventies and available as a markings option in one of the Special Hobby 1:32 T-33 kits. The low waterline received a wavy shape, inspired by an early ANG RF-101 in SEA camouflage I came across in a book. The new SEA scheme was apparently applied with a lot of enthusiasm and properness when it was brand new, but this quickly vaned. As an extra, the wing tip tanks received black anti-glare sections on their inner faces and a black anti-glare panel was added in front of the windscreen - a decal from a T-33 aftermarket sheet. Beyond a black ink wash the model received some subtle panel post-shading, but rather to emphasize surface details than for serious weathering.
The cockpit became very dark grey (Revell 06) while the landing gear wells were kept in zinc chromate green primer (Humbrol 80, Grass Green), with bright red (Humbrol 60, Matt Red) cover interiors and struts and wheels in aluminum (Humbrol 56). The interior of the flaps and the ventral air brakes became red, too.
The decals/markings came from a Special Hobby 1:72 F-86H; there’s a dedicated ANG boxing of the kit that comes with an optional camouflaged aircraft of the NY ANG, the least unit to operate the “Sabre Hog” during the Seventies. Since this 138th TFS formerly operated the F-94A/B, it was a perfect option for the RF-94B! I just used a different Bu. No. code on the fin, taken from a PrintScale A/T-37 set, and most stencils were perocured from the scrap box.
After a final light treatment with graphite around the afterburner for a more metallic shine of the iron metallic (Revell 97) underneath, the kit was sealed with a coat of matt acrylic varnish (Italeri).
A camouflaged F-94 is an unusual sight, but it works very well. The new/longer nose considerably changes the aircraft's profile, and even though the change is massive, the "Crocodile" looks surprisingly plausible, if not believable! And, despite the long nose, the aircraft looks pretty sleek, especially in the air.
DISCLAIMER
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Northrop Grumman-IAI F-24 is the latest reincarnation of the USAF "Lightweight Fighter Program" which dates back to the 1950ies and started with the development of Northrop's F-5 "Freedom Fighter".
The 1st generation F-5 became very successful in the export market and saw a long line of development, including the much more powerful F-5E "Tiger II" and the F-20 Tigershark (initially called F-5G). Northrop had high hopes for the F-20 in the international market; however, policy changes following Ronald Reagan's election meant the F-20 had to compete for sales against aircraft like the F-16, the USAF's latest fighter design (which was politically favored). The F-20 development program was eventually abandoned in 1986 after three prototypes had been built and a fourth partially completed.
But this was not the end for Northrop’s Lightweight Fighter. In the early 1980s, two X-29As experimental aircraft were built by Grumman from two existing Northrop F-5A Freedom Fighter airframes. The Grumman X-29 was a testbed for forward-swept wings, canard control surfaces, and other novel aircraft technologies. The aerodynamic instability of this arrangement increased agility but required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, also reducing the weight. The NASA test program continued from 1984 to 1991 and the X-29s flew 242 times, gathering valuable data and breaking ground for new aerodynamic technologies of 4th and 5th generation fighters.
Even though no service aircraft directly evolved from the X-29, its innovative FBW system as well as the new material technologies also opened the door for an updated F-20 far beyond the 1990ies. It became clear that ever expensive and complex aircraft could not be the answer to modern, asymmetrical warfare in remote corners of the world, with exploding development costs and just a limited number of aircraft in service that could not generate true economies of scale, esp. when their state-of-the-art design would not permit any export.
Anyway, a global market for simpler fighter aircraft was there, as 1st generation F-16s as well as the worldwide, aging F-5E fleet and types of Soviet/Russian origin like the MiG-29 provided the need for a modern, yet light and economical jet fighter. Contemporary types like the Indian HAL Tejas, the Swedish Saab Gripen, the French Dassault Rafale and the Pakistani/Chinese FC-1/JF-17 ”Thunder” proved this trend among 4th - 4.5th generation fighter aircraft.
Northrop Grumman (Northrop bought Grumman in 1994) initiated studies and basic design work on a respective New Lightweight Fighter (NLF) as a private venture in 1995. Work on the NLF started at a slow pace, as the company was busy with re-structuring.
The idea of an updated lightweight fighter was fueled by another source, too: Israel. In 1998 IAI started looking in the USA for a development partner for a new, light fighter that would replace its obsolete Kfir fleet and partly relieve its F-16 and F-15 fleet from interception tasks. The domestic project for that role, the IAI Lavi, had been stillborn, but lots of its avionics and research were still at hand and waited for an airframe for completion.
The new aircraft for the IAF was to be superior to the MiG-29, at least on par with the F-16C/D, but easier to maintain, smaller and overall cheaper. Since the performance profiles appeared to be similar to what Northrop Grumman was developing under the NLF label, the US company eventually teamed up with IAI in 2000 and both started the mutual project "Namer" (=נמר, “Tiger” in Hebrew), which eventually lead to the F-24 I for the IAF which kept its project name for service and to the USAF’s F-24A “Tigershark”.
The F-24, as the NLF, was based on the F-20 airframe, but outwardly showed only little family heritage, onle the forward fuselage around the cockpit reminds of the original F-5 design . Many aerodynamic details, e. g. the air intakes and air ducts, were taken over from the X-29, though, as the experimental aircraft and its components had been developed for extreme maneuvers and extra high agility. Nevertheless, the X-29's forward-swept wing was considered to be too exotic and fragile for a true service aircraft, but the F-24 was to feature an Active Aeroelastic Wing (AAW) system.
AAW Technology integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This system was initially tested on the X-29 and later on the X-53 research aircraft, a modified F-18, until 2006.
Both USAF and IAF versions feature this state-of-the-art aerodynamic technology, but it is uncertain if other customers will receive it. While details concerning the F-24's system have not been published yet, it is assumed that its AAW is so effective that canard foreplanes could be omitted without sacrificing lift and maneuverability, and that drag is effectively minimized as the wing profile can be adjusted according to the aircraft’s speed, altitude, payload and mission – much like a VG wing, but without its clumsy and heavy swiveling mechanism which has to bear high g forces. As a result, the F-24 is, compared to the F-20, which could carry an external payload of about 3.5 tons, rumored to be able to carry up to 5 tons of ordnance.
The delta wing shape proved to be a perfect choice for the required surface and flap actuators inside of the wings, and it would also offer a very good compromise between lift and drag for a wide range of performance. Anyway, there was one price to pay: in order to keep the wing profile thin and simple, the F-24’s landing gear retracts into the lower fuselage, leaving the aircraft with a relatively narrow track.
Another major design factor for the outstanding performance of this rather small aircraft was weight reduction and structural integrity – combined with simplicity, ruggedness and a modular construction which would allow later upgrades. Instead of “going big” and expensive, the new F-24 was to create its performance through dedicated loss of weight, which was in some part also a compensation for the AAW system in the wings and its periphery.
Weight was saved wherever possible, e .g. a newly developed, lightweight M199A1 gatling gun. This 20mm cannon is a three-barreled, heavily modified version of the already “stripped” M61A2 gun in the USAF’s current F-18E and F-22. One of the novel features is a pneumatic drive instead of the traditional electric mechanism, what not only saves weight but also improves trigger response. The new gun weighs only a mere 65kg (the six-barreled M61A2 weighs 92kg, the original M61A1 112 kg), but still reaches a burst rate of fire of 1.800 RPM (about 800 RPM under cyclic fire, standard practice is to fire the cannon in 30 to 50-round bursts, though) and a muzzle velocity of 1.050 metres per second (3,450 ft/s) with a PGU-28/B round.
While the F-16 was and is still made from 80% aluminum alloys and only from 3% composites, the F-24 makes major use of carbon fiber and other lightweight materials, which make up about 40% of the aircraft’s structure, plus an increased share of Titanium and Magnesium alloys. As a consequence and through many other weight-saving measures like keeping stealth capabilities to a minimum (even though RAM was deliberately used and many details designed to have a natural low radar signature, resulting in modest radar cross-section (RCS) reductions), a single, relatively small engine, a fuel-efficient F404-GE-402 turbofan, is enough to make the F-24 a fast and very agile aircraft, coupled with a good range. The F-24’s thrust/weight ratio is considerably higher than 1, and later versions with a vectored thrust nozzle (see below) will take this level of agility even further – with the pilot becoming the limiting factor for the aircraft’s performance.
USAF and IAF F-24s are outfitted with Northrop Grumman's AN/APG-80 Active Electronically Scanned Array (AESA) radar, also used in the F-16 Block 60 aircraft. Other customers might only receive the AN/APG-68, making the F-24 comparable to the F-16C/D.
The first prototype, the YF-24, flew on 8th of March 2008, followed by two more aircraft plus a static airframe until summer 2010. In early 2011 the USAF placed an initial order of 101 aircraft (probably also to stir export sales – the earlier lightweight fighters from Northrop suffered from the fact that the manufacturer’s country would not use the aircraft in its own forces). These initial aircraft will replace older F-16 in the interceptor role, or free them for fighter bomber tasks. The USN and USMC also showed interest in the aircraft for their aggressor squadrons, for dissimilar air combat training. A two-seater, called the F-24B, is supposed to follow soon, too, and a later version for 2020 onwards, tentatively designated F-24C, is to feature an even stronger F404 engine and a 3D vectoring nozzle.
Israel is going to produce its own version domestically from late 2014 on, which will exclusively be used by the IAF. These aircraft will be outfitted with different avionics, built by Elta in Israel, and cater to national requirements which focus more on multi-purpose service, while the USAF focusses with its F-24A on aerial combat and interception tasks.
International interest for the F-24A is already there: in late 2013 Grumman stated that initial talks have been made with various countries, and potential export candidates from 2015 on are Taiwan, Singapore, Thailand, Finland, Norway, Australia and Japan.
General F-24A characteristics:
Crew: 1 pilot
Length: 47 ft 4 in (14.4 m)
Wingspan: 27 ft 11.9 in / 8.53 m; with wingtip missiles (26 ft 8 in/ 8.13 m; without wingtip missiles)
Height: 13 ft 10 in (4.20 m)
Wing area: 36.55 m² (392 ft²)
Empty weight: 13.150 lb (5.090 kg)
Loaded weight: 15.480 lb (6.830 kg)
Max. take-off weight: 27.530 lb (12.500 kg)
Powerplant
1× General Electric F404-GE-402 turbofan with a dry thrust of 11,000 lbf (48.9 kN) and 17,750 lbf (79.2 kN) with afterburner
Performance
Maximum speed: Mach 2
Combat radius: 300 nmi (345 mi, 556 km); for hi-lo-hi mission with 2 × 330 US gal (1,250 L) drop tanks
Ferry range: 1,490 nmi (1715 mi, 2759 km); with 3 × 330 US gal (1,250 L) drop tanks
Service ceiling: 55,000 ft (16,800 m)
Rate of climb: 52,800 ft/min (255 m/s)
Wing loading: 70.0 lb/ft² (342 kg/m²)
Thrust/weight: 1.09 (1.35 with loaded weight & 50% fuel)
Armament
1× 20 mm (0.787 in) M199A1 3-barreled Gatling cannon in the lower fuselage with 400 RPG
Eleven external hardpoints (two wingtip tails, six underwing hardpoints, three underfuselage hardpoints) and a total capacity of 11.000 lb (4.994 kg) of missiles (incl. AIM 9 Sidewinder and AIM 120 AMRAAM), bombs, rockets, ECM pods and drop tanks for extended range.
The kit and its assembly:
A spontaneous project. This major kitbash was inspired by fellow user nighthunter at whatifmodelers.com, who came up with a profile of a mashed-up US fighter, created “out of boredom”. The original idea was called F-21C, and it was to be a domestic successor to the IAI Kfirs which had been used by the US as aggressor aircraft in USN and USMC service for a few years.
As a weird(?) coincidence I had many of the necessary ingredients for this fictional aircraft in store, even though some parts and details were later changed. This model here is an interpretation of the original design. The idea was spun further, and the available parts that finally went into the model also had some influence on design and background.
I thank nighthunter for sharing the early ideas, inviting me to take the design to the hardware stage (sort of…) and adapting my feedback into new design sketches, too, which, in return, inspired the model building process.
Well, what went into this thing? To cook up a F-24 à la Dizzyfugu you just need (all in 1:72):
● Fuselage from a Hasegawa X-29, including the cockpit and the landing gear
● Fin and nose cone from an Italeri F-16A
● Inner wings from a (vintage) Hasegawa MiG-21F
● Outer wings from a F-4 (probably a J, Hasegawa or Fujimi)
The wing construction deviates from nighthunter’s original idea. The favorite ingredients would have been F-16XL or simple Mirage III wings, but I found the composite wing to be more attractive and “different”. The big F-16XL wings, despite their benefit of a unique shape, might also have created scale/size problems with a F-20 style fuselage? So I built hybrid wings: The MiG-21 landing gear wells were filled with putty and the F-4 outer wings simply glued onto the MiG inner wing sections, which were simply cut down in span. It sounds like an unlikely combo, but these parts fit together almost perfectly! In order to hide the F-4 origins I modified them to carry wingtip launch rails, though, which were also part of nighthunter’s original design.
The AAW technology detail mentioned in the background came in handy as it explains the complicated wing shape and the fact that the landing gear retracts into the fuselage, not into the wings, which would have been more plausible… Anyway, there’s still room for a simpler export version, with Mirage III or Kfir C.2/7 wings, and maybe canards?
Using the X-29 as basis also made fitting the new wings onto the area-ruled fuselage pretty easy, as I could use the wing root parts from the X-29 to bridge the gap. The original, forward-swept wings were just cut away, and the remains used as consoles for the new hybrid delta wings. Took some SERIOUS putty work, but the result is IMHO fine.
The bigger/square X-29 air intakes were taken over, and they change the look of the aircraft, making it look less F-5-ish than a true F-20 fuselage. For the same reason I kept the large fairing at the fin base, combining it with a bigger F-16 tail, though, as a counter-balance to the new, bigger wings. Again, the F-16 fin was/is part of nighthunter’s idea, so the model stays true to the original concept.
For the same reason I omitted the original X-29 nose, which is rather pointy, sports vanes and a large sensor boom. The F-16 nose was a plausible choice, as the AN/APG-80 is also carried by late Fighting Falcons, and its shape fits well, too.
All around the hull, some small details like radar warning sensors, pitots and air scoops were added. Not really necessary, but such thing add IMHO to the overall impression of such a fictional aircraft beyond the prototype stage.
Cockpit and landing gear were taken OOB, I just added a pilot figure and slightly modified the seat.
The ordnance was puzzled together from the scrap box, the AIM-9Ls come from the same F-4 kit which donated its outer wings, the AIM-120s come from an Italeri NATO weapons kit. The drop tanks belong to an F-16.
Painting and markings:
At first I considered an F-24I in IAF markings, or even a Japanese aircraft, but then reverted to one of nighthunter’s initial, simple ideas: an USAF aircraft in the “Hill II” paint scheme (F-16 style), made up from three shades of gray (FS 36118, 36270 and 36375) with low-viz markings and stencils. Dutch/Turkish NF-5A/Bs in the “Hill II” scheme were used as design benchmarks, too. It’s a simple livery, but on this delta wing aircraft it looks pretty interesting. I used enamels, what I had at hand: Humbrol 127 and 126, and Modelmaster's 1723.
A light black ink wash was applied, in order to em,phasize the engraved panel lines, in contrast to that, panels were manually highlighted through dry-brushed, lighter shades of gray (Humbrol 27, 166 and 167).
“Hill II” also adds to a generic, realistic touch for this whif. Doing an exotic air force thing is rather easy, but creating a convincing whif for a huge military machinery like the USAF’s takes more subtlety, I think.
The cockpit was painted in medium Gray (Dark Gull Grey, FS 36231, Humbrol 140), as well as the radome. The landing gear and the air intakes were painted white. The radome was painted with Revell 47 and dry-brushed with Humbrol 140.
Decals were puzzled together from various USAF aircraft, including sheets from an Airfix F-117, an Italeri F-15E and even an Academy OV-10D.
Tadah: a hardware tribute to an idea, born from boredom - and the aircraft does not look even bad at all? What I wanted to achieve was to make the F-24 neither look like a F-20, nor a Saab Gripen clone, as the latter comes close in overall shape, size and design.
181116-N-WF272-1053 SAN DIEGO (Nov. 16, 2018) Lt.j.g. Sarah Platt, assigned to the amphibious assault ship USS Bonhomme Richard (LHD 6), mans the lee helm during virtual reality ship handling training at the Navigation, Seamanship and Shiphandling Trainer (NSST), on board Naval Base San Diego. Bonhomme Richard collaborated with NSST personnel to sharpen their skills utilizing technological innovations in virtual reality. The NSST is a computerized bridge simulator that allows Sailors to practice ship handling, navigation and visual information skills in a controlled environment. Bonhomme Richard is in its homeport of San Diego. (U.S. Navy photo by Mass Communication Specialist 1st Class Diana Quinlan/Released)
Creature Comforts Pet Resort
2104 East 13th St., Tucson, AZ
Permanently closed.
The paint has faded considerably. Fortunately, I had access to a photograph from Jan. of 2010. I was then able to perform a computerized restoration.
In 1985 the X-29A on display became the world's first forward-swept aircraft to fly supersonically. The X-29A program explored cutting-edge aircraft design features, including forward-swept wings, advanced materials, a forward-mounted elevator (or canard) and a computerized flight control system. It was managed by the U.S. Air Force and funded by DARPA (Defense Advanced Research Projects Agency), the USAF and NASA.
The museum’s aircraft is the first of two X-29As built by Grumman, and it made its first flight in December 1984. The second X-29A first flew in 1989 and continued to perform test flights into the early 1990s. After successfully completing the test program, the X-29A on display was retired to the museum in late 1994.
National Museum of the US Air Force
Wright-Patterson AFB
Dayton, OH
Bangladesh Railway (BR) started its journey in this portion of the sub-continent 142 years ago. Historically Bangladesh owned the Railway network, which was a part of the sub-continent. BR has recently introduced train related information using IVR (Interactive Voice Response) system through Mobile Phone and has taken initiative for computerization of pay roll, asset management, accounting, inventory control etc. which are the steps towards the implementation of Digital Bangladesh.
In Bangladesh, due to the huge population in the country, an inadequate number of seats on the local trains, and punishing poverty, some people are forced to borrow a ride now and then. Some are so poor that they cant buy ticket even. They ride on the roof top as well as between the carriages of Train or seat in floor between two carriages, canteen, beside door area every where.
--------------------------------------------------------------------------------------------------------------------------------------
All rights reserved. Do not use any of the images in this stream without my permission.
A wrecking yard (Australian, New Zealand, and Canadian English), scrapyard (Irish and British English) or junkyard (American English) is the location of a business in dismantling where wrecked or decommissioned vehicles are brought, their usable parts are sold for use in operating vehicles, while the unusable metal parts, known as scrap metal parts, are sold to metal-recycling companies.
Other terms include wreck yard, wrecker's yard, salvage yard, breakers yard, dismantler and scrapheap. In the United Kingdom, car salvage yards are known as car breakers, while motorcycle salvage yards are known as bike breakers. In Australia, they are often referred to as 'Wreckers'.
The most common type of wreck yards are automobile wreck yards, but junkyards for motorcycles, bicycles, small airplanes and boats exist too.
Many salvage yards operate on a local level—when an automobile is severely damaged, has malfunctioned beyond repair, or not worth the repair, the owner may sell it to a junkyard; in some cases—as when the car has become disabled in a place where derelict cars are not allowed to be left—the car owner will pay the wrecker to haul the car away.
Salvage yards also buy most of the wrecked, derelict and abandoned vehicles that are sold at auction from police impound storage lots,and often buy vehicles from insurance tow yards as well.
The salvage yard will usually tow the vehicle from the location of its purchase to the yard, but occasionally vehicles are driven in. At the salvage yard the automobiles are typically arranged in rows, often stacked on top of one another.
Some yards keep inventories in their offices, as to the usable parts in each car, as well as the car's location in the yard. Many yards have computerized inventory systems. About 75% of any given vehicle can be recycled and used for other goods.
In recent years it is becoming increasingly common to use satellite part finder services to contact multiple salvage yards from a single source.
In the 20th century these were call centres that charged a premium rate for calls and compiled a facsimile that was sent to various salvage yards so they could respond directly if the part was in stock. Many of these are now Web-based with requests for parts being e-mailed instantly.
Two Lockheed Martin F-35B Lightning II fighter jets have successfully landed on board HMS Queen Elizabeth for the first time, laying the foundations for the next 50 years of fixed wing aviation in support of the UK’s Carrier Strike Capability.
Royal Navy Commander, Nathan Gray, 41, made history by being the first to land on board HMS Queen Elizabeth, carefully maneuvering his stealth jet onto the thermal coated deck. He was followed by Royal Navy Squadron Leader Andy Edgell, RAF, both of whom are test pilots, operating with the Integrated Test Force (ITF) based at Naval Air Station Patuxent River, Maryland.
Shortly afterwards, once a deck inspection has been conducted and the all-clear given, Cmdr Gray became the first pilot to take off using the ship’s ski-ramp.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
Two Lockheed Martin F-35B "Lightning II" fighter jets have successfully landed on board HMS Queen Elizabeth for the first time, laying the foundations for the next 50 years of fixed wing aviation in support of the UK’s Carrier Strike Capability.
Royal Navy Commander, Nathan Gray, 41, made history by being the first to land on board HMS Queen Elizabeth, carefully maneuvering his stealth jet onto the thermal coated deck. He was followed by Squadron Leader Andy Edgell, RAF, both of whom are test pilots, operating with the Integrated Test Force (ITF) based at Naval Air Station Patuxent River, Maryland.
Shortly afterwards, once a deck inspection has been conducted and the all-clear given, Cmdr Gray became the first pilot to take off using the ship’s ski-ramp.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
The Trust Building is of State significance as one of the major buildings erected in Sydney in the pre-World War I period. It is an unsurpassed example of architecture in the Interwar Commercial Palazzo style. The exterior of the building is the leading example of the first generation skyscrapers in Sydney. It is also a rare commercial purpose built building surviving in Sydney from the Edwardian Period.
The Trust Building is the site of the former Daily Telegraph offices, the highest circulating daily newspaper of the time. This building is one of four surviving newspaper offices built between 1900 and 1930.
Source: NSW Govt website
Karaoke World
Fully air-conditioned, stylish private rooms, brand new surround sound system with over 120,000+ songs to choose from and many more!
At Karaoke World we pride ourselves on having the most up-to-date and popular songs. With over 120,000+ songs in our computerized Karaoke System, we have songs in English, Chinese, Japanese, Thai, Vietnamese, Indonesian and Korean.
Source: Karaoke World website
The Chinese Ministry of Education has a reasonably massive push underway to put computers in schools. A recent and interesting study seems to contra-indicate accepted beliefs about the value of such initiatives.
An article in the Sunday Telegraph neatly summarizes the Royal Economic Society Study. The study abstract says:
"We estimate the relationship between students’ educational achievement and the availability and use of computers at home and at school in the international student-level PISA database. Bivariate analyses show a positive correlation between student achievement and the availability of computers both at home and at schools. However, once we control extensively for family background and school characteristics, the relationship gets negative for home computers and insignificant for school computers. Thus, the mere availability of computers at home seems to distract students from effective learning. But measures of computer use for education and communication at home show a positive conditional relationship with student achievement. The conditional relationship between student achievement and computer and internet use at school has an inverted U-shape, which may reflect either ability bias combined with negative effects of computerized instruction or a low optimal level of computerized instruction."
*explore -september 18, 2008. thank you all for the views, comments and faves*
in this day of nearly everything digital and computerized i still love my pencils! respectively hb, 2b and 8b =) here's a little reminder on what a pencil is from wikipedia...
A pencil is a writing or drawing instrument consisting of a thin stick of pigment (usually graphite, but can also be coloured pigment or charcoal) and clay, usually encased in a thin wood cylinder, though paper and plastic sheaths are also used. Pencils are distinct from pens, which use a liquid marking material.
The archetypal pencil may have been the stylus, which was a thin metal stick, often made from lead and used for scratching on papyrus, a form of early paper. They were used extensively by the ancient Egyptians and Romans. The word pencil comes from the Latin word pencillus which means "little tail."
have a great start on the weekend, my friends!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.
In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.
The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).
For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.
The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.
In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.
Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.
Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.
Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.
Specifications:
Crew: 4 (commander, driver, gunner, radio operator/second driver)
Weight: 22.6 t
Length: 7.74 m (25 ft 4 ¼ in)
Width: 2.98 m ( 9 ft 9 in)
Height: XXX
Ground clearance: 440 mm (1 ft 4 in)
Suspension: hydraulic all-wheel drive and steering
Armor:
Unknown, but sufficient to withstand 14.5 mm AP rounds
Performance:
Speed: 90 km/h (56 mph) on roads
Operational range: 720 km (445 mi)
Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel
Engine:
1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,
delivering 300 hp with petrol, 390 hp with diesel
Armament:
1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)
1× co-axial 7.92 mm M3 machine gun with 2.000 rounds
Two groups of four Wegmann 76 mm smoke mortars
The kit and its assembly:
I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.
This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.
Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).
An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!
Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.
Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.
Painting and markings:
The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).
Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.
Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
Remodel, Week 32
If you looked very closely in the previous photo, you may have seen an employee casually leaning against the wall just to the left of the café counter. I want to be sure to point out she wasn’t goofing off: instead, she was standing there to help café customers at the café’s new computerized order units, shown here! Unfortunately, you can no longer order at the café counter itself; you can only order by computer now. Thankfully, though, the interface isn’t too difficult to navigate at all (at least in my opinion), and this admittedly does help keep the line low and frees up the café staff to assemble orders rather than just take them.
Inset bottom left is a shot of the new, standard Walmart style “cameras in use” signs in the parking lot.
(c) 2018 Retail Retell
These places are public so these photos are too, but just as I tell where they came from, I'd appreciate if you'd say who :)
MITSUBISHI END OF YEAR AWARD
formand@nauticat.dk
MITSUBISHI MOTORS WORLDWIDE LTD.
Head Office, Shinagawa
16-5 Konan 2-chome,
Minato-ku, Tokyo,
108-8215, Japan.
MITSUBISHI END OF YEAR AWARD
We are officially announcing to you the result of Mitsubishi Motors Email Lottery Promotion held on the 29th of November 2013 as part of our International end of year promotion award. Your email was attached to reference number MITSUBISHI4-C/XNVP/2013 with draw number P7013MMWL which consequently won you in the 2nd category prize, your email address was extracted from our electronic email extraction system which randomly selected Ten (10) Lucky Winners of which your email address was among one of the lucky winner. You have therefore been approved for a payout of a total sum Ј450,000 GBP (FOUR HUNDRED & FIFTY THOUSAND POUNDS STERLING).
CONGRATULATIONS!!!
We also advise that you keep your winning information very confidential as our security policy demands to avoid double claims/impersonation and unwarranted abuse of this program by some individuals. The selection process was carried our through our computerized Email Selection System (ESS) which selects email from a database of over 600,000 email address was drawn from all over the continents of the World. This promotions being the first of its kind will now take place annually. To file your claim, you are to contact our Customer Service Unit authorized to conduct the necessary Verification to enable you receive your Cash Prize.(You will receive more email upon acknowledgement of this email).
Customer Service Unit
CONTRACTED AGENCY: MS KIN ATSUSHI & ASSOCIATES
CONTACT PERSON
Mitsubishi Promotion Claims Department.
Ms Kin Atsushi.
Email: mitsubishiunit001@yahoo.co.jp
20 Queens land Road, London
SW2 3JB ENGLAND. U.K
You are to send an email to your claims agent and also provide the below under listed information as soon as possible:
1. NAME IN FULL:
2. ADDRESS (IN FULL):
3. NATIONALITY:
4. AGE:
5. SEX
6. OCCUPATION (POSITION HELD):
7. HOME PHONE & MOBILE NUMBER:
Please specify your mode of price remittance/Mode of Collection.
(1) Through Bank Wire Transfer
(2) Through Courier Delivery of Certified Cheque.
This program is promoted and sponsored by Microsoft, Emirates Airline and the Shell Group and we intend to use this medium to help individuals generate fortunes, which would encourage them to expand their business frontiers thereby creating more opportunities and assisting with humanitarian Concerns within their immediate environment. All winning must be claimed not later than one Week of Acknowledgment. After this date all unclaimed funds will be returned to Mitsubishi Corporation Treasury as Unclaimed.
Yours in service,
Isabella Gregory
(Programs & Events).
MITSUBISHI MOTORS WORLDWIDE LTD.
Chairman of the Board
Yorihiko Kojima
Material Copyright © 2013 The Mitsubishi Corporation Ltd
Thank you Yorihiko Kojima MITSUBISH for
FOUR HUNDRED & FIFTY THOUSAND POUNDS STERLING)
I finally feel like a king...i had earlier lost my voice ..now
rejuvenated i can sing..master of the cosmic rings ..
i feel like a hawk.. with overlapping overgrown wings
this over generous prize money..i shall share with
my flickr followers friends above all thing..a new
real estate agency for anthony posey ..i shall buy
in new orleans , an innova for anuj nair ,,for meld
a precious diamond ring.. for linda schaefer
my lovely friend an opulent pearl string
for fred miller in texas an elixir for non aging
for roland a platinum pen for his writings
for my good friend thomas hawk.. an all
paid course for bollywood in acting
for eric a round trip to ladakh in spring
there are other friends too on twitter
i will give them something
for angel, benn bell laurent
simon ,mystic muse shankar
aaron,, danbruel sukhi hontu
and others at flickr some
surprise gifts i will bring
a message from akbar simonse
You lucky guy, take your private plane and come to Holland for a short visit!
a thought to my liking
away from beggars homeless
dull drudgery to the
land of windmills
to visit the home of vikings
an old ex flame in norway
some hiking...some biking...
but money the greatest evil
the curse of humanity
is what i think ..no
i will return the prize money
to mitsubishi it sucks it stinks
The Lockheed Martin F-35A Lightning II "Joint Strike Fighter" sits in a hangar loaded with dummy external munitions, Feb. 13, 2019 at Luke Air Force Base, Ariz. After completing the external pylon installation training, the weapons loading standardization crew, a team of three Airmen, became the first team at Luke to be certified on external GBU-12 bomb and AIM-9 missile loading.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system.
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
Seeking a domestic aircraft manufacturer, the Brazilian government made several investments in this area during the 1940s and '50s, but it was not until 1969 that Empresa Brasileira de Aeronáutica (EMBRAER) was created as a government-owned corporation. Born from a Brazilian government plan and having been state-run from the beginning, EMBRAER began a privatization process alongside many other state-controlled companies during the government of Fernando Henrique Cardoso. This privatization effort saw EMBRAER sold on December 7, 1994, and helped it avoid a looming bankruptcy.
The company's first product was a turboprop transport, the EMBRAER EMB 110 Bandeirante. In the course of years, both civil and military aircraft were developed, the focus shifted more and more to airliners, but the military work was never abandoned. The company continued to win government contracts, which included the EMB 314/T-27 Tucano trainer or the EMB 324/A-29 ground attack aircraft.
The EMB 320 was a bigger aircraft, though, and conceived in the early 2000s, when, with renewed economic stability, the Brazilian Air Force (Força Aérea Brasileira, FAB) underwent an extensive renewal of its inventory through several acquisition programs. The most ambitious of which was the acquisition of 36 new front-line interceptor aircraft to replace its aging Mirage III, known as the “F-X Project”.
In parallel, a supplement to the relatively new AMX fighter bomber (designated A-1 in Brazil) was needed, too, and this program ran under the handle “A-X Project”. While the F-X program was postponed several times until 2005, the A-X program made, thanks to its smaller budget needs, quick progress and resulted in the EMB 320 'Libélula' (Hornet), a dedicated ground attack, COIN and observation/FAC aircraft which would fill the gap between the AMX jets and various helicopters, e. g. the Mi-35M4 attack helicopter.
The EMB 320 was a straightforward design: a mid-wing two-turboprop-engined all-metal monoplane with retractable landing gear. Conceptually it was very similar to the Argentinian FMA IA-58 Pucara, but more sophisticated and with more compact dimensions. The aircraft was designed to operate from forward bases, in high temperature and humidity conditions in extremely rugged terrain. Repairs could be made with ordinary tools, and no ground equipment was required to start the engines.
The EMB 320 had a tandem cockpit arrangement; the crew of two were seated under an extensively glazed canopy on Martin-Baker Mk 6AP6A zero/zero ejection seats and were provided with dual controls. The pilot sat in front, while the rear seat would, if the mission called for it, be occupied by an observer, WSO or a flight teacher for training purposes. Armor plating was fitted to protect the crew and engines from hostile ground fire.
The retractable tricycle landing gear, with a double nose wheel and twin main wheels retracting into the engine nacelles, was fitted with low pressure tires to suit operations on rough ground and unprepared air strips, while the undercarriage legs were tall to give good clearance for underslung weapon loads. The undercarriage, flaps and brakes are operated hydraulically, with no pneumatic systems.
Through powerful high lift devices the EMB 320 could perform short takeoffs and landings, even on aircraft carriers and large deck amphibious assault ships without using catapults or arresting wires. Additionally, three JATO rockets could be fitted under the fuselage to allow extra-short take-off.
The aircraft was powered by a pair of Garrett T76-G turboprops, 1,040 hp (775.5 kW) each, driving sets of contra-rotating, three-bladed Hamilton-Standard propellers which were also capable of being used as air brakes. The engines were modified for operating on soy-derived bio-jet fuel. Alternatively the engines would operate on high-octane automobile fuel with only a slight loss of power, too.
Fuel was fed from two fuselage tanks of combined capacity of 800 l (180 imp gal; 210 US gal) and two self-sealing tanks of 460 l (100 imp gal; 120 US gal) in the wings.
The “Libélula”, quickly christened this way due to its slender fuselage, straight wings and the large cockpit glazing, was highly maneuverable at low altitude, had a low heat signature and incorporated 4th generation avionics and weapons system to deliver precision guided munitions at all weather conditions, day and night.
Armament consisted of two fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots and a total of nine external weapon hardpoints; these included a pair of launch rails at the wingtips for AIM-9 Sidewinder AAMs (or ECM pods), four underwing pylons outside of the propeller radius and three underfuselage hardpoints. Chaff/flare dispensers in the tail section provided passive safety. The EMB 320 could carry more than 3.5 tons of external munitions, and loiter for three or more hours.
Avionics included:
● MIL-STD-1553 standards
● NVG ANVIS-9 (Night Vision)
● CCIP / CCRP / CCIL / DTOS / LCOS / SSLC (Computerized Attack Modes)
● R&S{RT} M3AR VHF/UHF airborne transceiver (two-way encrypted Data Link provision)
● HUD / HOTAS
● HMD with UFCP(Up Front Control Panel)
● Laser INS with GPS Navigational System
● CMFD (Colored Multi-Function Display) liquid crystal active matrix
● Integrated Radio Communication and Navigation
● Video Camera/Recorder
● Automatic Pilot with embedded mission planning capability
● Stormscope WX-1000E (Airborne weather mapping system)
● Laser Range Finder
● WiPak Support – (Wi-Fi integration for Paveway bombs)
● Training and Operation Support System (TOSS)
The prototype made its maiden flight on 2nd of April 2000. In August 2001, the Brazilian Air Force awarded EMBRAER a contract for 52 A-27 Libélula aircraft with options for a further 23, acquired from a contract estimated to be worth around $320 USD millions. The first aircraft was delivered in December 2003. By September 2007, 50 aircraft had entered service. The 75th, and last, aircraft was delivered to the FAB in June 2012.
While the Libélula has not been used in foreign conflicts the aircraft already fired in anger: One of the main missions of the aircraft was and is border patrol under the SIVAM program, and this resulted in several incidents in which weapons were fired.
On 3 June 2009, two BAF A-27A Libélulas, guided by an EMBRAER E-99, intercepted a Cessna U206G engaged in drug trafficking activities. Inbound from Bolivia, the Cessna was intercepted in the region of Alta Floresta d'Oeste and, after exhausting all procedures, one of the Moscarsos fired a warning shot from its 30mm cannons, after which the aircraft followed the Libélulas to Cacoal airport.
This incident was the first use of powers granted under the Shoot-Down Act, which was enacted in October 2004 in order to legislate for the downing of illegal flights. A total of 176 kg of pure cocaine base paste, enough to produce almost a ton of cocaine, was discovered on board the Cessna; the aircraft's two occupants attempted a ground escape before being arrested by Federal Police in Pimenta Bueno.
On 5 August 2011, Brazil started “Operation Ágata”, part of a major "Frontiers Strategic Plan" launched by President Dilma Rousseff in June, with almost 30 continuous days of rigorous military activity in the region of Brazil’s border with Colombia. It mobilized 35 aircraft and more than 3,000 military personnel of the Brazilian Army, Brazilian Navy and Brazilian Air Force surveillance against drug trafficking, illegal mining and logging, and trafficking of wild animals.
A-29s of 1°/3º Aviation Group (GAv), Squadron Scorpion, as well as six A-27A’s from 4°/3° GAv launched a strike upon an illicit airstrip, deploying eight 230 kg (500 lb) computer-guided Mk 82 bombs to render the airstrip unusable.
Multiple EMB 320 were assigned for night operations, locating remote jungle airstrips used by drug smuggling gangs along the border, and were typically guarded by several E-99 aircraft. The Libélulas also located targets for the A-29 Super Tucanos, allowing them to bomb the airstrips with an extremely high level of accuracy, making use of night-vision systems and computer systems calculating the impact points of munitions.
General characteristics
Crew: 2
Length (w/o pitot): 41 ft 10 in (12.76 m)
Wingspan: 40 ft 9 1/2 in (12.45 m)
Height: 13 ft 6 2/3 in (4.14 m)
Wing area: 203.4 ft² (18.9 m²)
Empty weight: 8.920 lb (4.050 kg)
Max. take-off weight: 16.630 lb (7.550 kg)
Powerplant:
2× Garrett T76-G410/411 turboprops, 1,040 hp (775.5 kW) each
Performance:
Maximum speed: 307 mph (267 kn, 495 km/h)
Range: 1.860 mi (1.620 nmi, 3.000 km)
Service ceiling: 30.160 ft (9.150 m)
Rate of climb: 2.966 ft/min (15 m/s)
Armament:
2× fixed 30 mm (1.181 in) Bernardini Mk-164 cannons in the wing roots with 200 RPG
9× external hardpoints for an ordnance load of 8.000 lb (3.630 kg), including smart weapons (e. g. Paveway GBUs, AGM-65B,C or D Maverick, AGM-114 Hellfire), iron bombs, cluster bombs, napalm tanks, unguided rocket pods and AIM-9 Sidewinder AAMs as well as drop tanks.
The kit and its assembly:
This whif model is a remake of an idea I had/did many years ago from the remains of an Airfix OV-10D Bronco: converting it into a "normal" aircraft. While one could argue that this is not really exciting, I found this project pretty challenging as I wanted to make the result as plausible as possible, not just glue some leftover parts together (what I did years ago). And doing so turned a simple idea into major surgery and sculpting – or, how flickr fellow user Franclab called it, “it makes the Bronco look like the whif and the Libélula the real aircraft”.
The basis was a NiB OV-10A Bronco from Academy, a very good kit with a nice cockpit and lots or ordnance. Great value for the money. Design benchmark for what I had in mind was the FMA IA-58 Pucara, as it was designed for the exact same job as my EMB 320 - but details would differ.
The rear of the Bronco's central cabin was cut off and mated with the rear fuselage of a Matchbox Bf 110, which has a similar diameter - but the intersection between the square front of the Bronco and the oval Bf 110 fuselage was tricky (= requiring lots of putty work).
When these basic elements were fitted together, I finally decided to raise the spine. The mated fuselage parts would have had worked, but since the original high wings were missing, the EMB 320 would have had a distinctive and pointless hunchback - actually, with a rotor added, it could have become a helicopter, too!
Well, I went for the big solution, also in order to make the fuselage seam less obvious, and the whole upper rear fuselage was sculpted from 2C and NC putty. In the same process the tail was integrated into the fuselage. As a drawback, this shifted the kit's CG so far back that the lead load in the nose could not keep the front wheel down. Well, it's the price to pay for a better overall look.
The twin fins come from a 1:100 A-10, leftover from a Revell SnapFit kit, while the horizontal stabilizers were taken from the OV-10A, but had to be re-engraved in order to make the flap geometry plausible.
The wings were taken OOB and, relative to the Bronco, placed in a lower position, their original attachment point on top of the fuselage was faired over. The original plan had been to place them completely low, right where the OV-10's wing stubs would be located. But due to the engine nacelles under the wings I finally set them at mid height - otherwise, ground clearance and/or landing gear length had become a big issue - and the thing still looks stalky!
Moving the nacelles into a different (higher) wing position would have been an option, too, but that was IMHO too complicated. Since the EMD 320 would not have storage space behind the cockpit, a wing spar right through the fuselage would not be implausible. As a side effect I had to close the complete belly gap under the Bronco fuselage, again with 2C putty.
The Bronco’s tail booms were cut off and pointed end covers added, so that classic engine nacelles which also carry the main landing gear were created. The engine exhausts were relocated towards the nacelle’s end, and the propeller attachment modified, so that the propeller could turn freely on a metal axis and the overall look would be changed.
The cockpit tub was taken OOB, but armored seats from an Italeri AH-1 were used (with added headrests), as well as two crew figures, which come IIRC from a Hasegawa RA-5C Vigilante.
A new nose section with a sensor turret was built from scratch. It consists of parts from an AH-64 attack helicopter, mated with some styrene sheets for appropriate length. The shape was sculpted from massive material, and the result looks mean and menacing. The pitots were made from scratch, as well as the radar warning sensors on the hull.
The landing gear was improvised. The front strut actually belongs to a 1:200 Concorde(!) from Revell, the respective front wheels belong to an ESCI Ka-34 helicopter. For the main landing gear I used the struts from the Bronco kit, but the twin wheels are donations from the scrap box: these come from two Italeri Hawker Hawk kits.
The ordnance was puzzled together from the scrap box, too, as well as from Hasegawa Weapon sets. As the aircraft was supposed to have taken part in the real world “Operation Ágata”, I decided to add four light Paveway gliding bombs. Two Sidewinders and a pair of M260 rocket launchers (for seven 2.75"/70mm target marking missiles with phosphorous warheads) complete the full load.
The wing pylons come from two Italeri Tornados, those under the fuselage belong to a Matchbox Viggen and an Italeri Kfir.
As a final note: originally I wanted to call the aircraft “Moscardo” (= Hornet), but when it took shape its overall lines and potential agility made the dragonfly (Libélula in Portuguese) a much more appropriate namesake. So it goes... ^^
Painting and markings:
The reason why this turned out to be a Brazilian aircraft is the fact that I have been wanting to use the current FAB paint scheme for some time - it's basically made up from only two colors, FS 34092 (Dark Green) and FS 36176 (“F-15 Gray”, used on USAF F-15Es), paired with low-viz markings. Looks strange at first glance, like a poor man's Europe One/Lizard scheme, but over a typical rain forest scenery, low altitude and with hazy clouds around it is VERY effective, check the beauty pics which are based on BAF press releases. And it simply looks cool.
The pattern is based on current BAF F-5E fighters, the markings come from an FCM decal sheet and actually belong to a BAF Mirage 2000. 4º/3º GAv of the Brazilian Air Force is fictional, though, and some warning stencils were taken from the Academy kit.
The cockpit interior was painted in Dark Gull Gray (Humbrol 140), the landing gear wells in a yellow zinc chromate primer (Humbrol 225, Mid Stone) while the landing gear struts remained blank Aluminum, The outer wheel disks are white, while the inside is red - a detail I incorporated from some USN aircraft.
Painting was not spectacular - since the cockpit has a lot of glass to offer, I painted the windscreen with translucent light blue, and the observer on the rear seat received a similar sun blocker in deep blue. Translucent paint (yellow and black) was also used on the optical sensors at the nose turret as well as for position lights, all on a silver base.
The model was only slightly weathered thorough a black ink wash and some dry-brushing with Humbrol 140 and Testors 2076 (RLM 62) in order to emphasize panels - some panel lines were also painted onto the fuselage with thinned black ink, as the "new" rear body is devoid of any detail and difficult to engrave.
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Boeing B-29 Superfortress "Enola Gay":
Boeing's B-29 Superfortress was the most sophisticated propeller-driven bomber of World War II and the first bomber to house its crew in pressurized compartments. Although designed to fight in the European theater, the B-29 found its niche on the other side of the globe. In the Pacific, B-29s delivered a variety of aerial weapons: conventional bombs, incendiary bombs, mines, and two nuclear weapons.
On August 6, 1945, this Martin-built B-29-45-MO dropped the first atomic weapon used in combat on Hiroshima, Japan. Three days later, Bockscar (on display at the U.S. Air Force Museum near Dayton, Ohio) dropped a second atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. A third B-29, The Great Artiste, flew as an observation aircraft on both missions.
Transferred from the United States Air Force.
Manufacturer:
Date:
1945
Country of Origin:
United States of America
Dimensions:
Overall: 900 x 3020cm, 32580kg, 4300cm (29ft 6 5/16in. x 99ft 1in., 71825.9lb., 141ft 15/16in.)
Materials:
Polished overall aluminum finish
Physical Description:
Four-engine heavy bomber with semi-monoqoque fuselage and high-aspect ratio wings. Polished aluminum finish overall, standard late-World War II Army Air Forces insignia on wings and aft fuselage and serial number on vertical fin; 509th Composite Group markings painted in black; "Enola Gay" in black, block letters on lower left nose.
Long Description:
Boeing's B-29 Superfortress was the most sophisticated, propeller-driven, bomber to fly during World War II, and the first bomber to house its crew in pressurized compartments. Boeing installed very advanced armament, propulsion, and avionics systems into the Superfortress. During the war in the Pacific Theater, the B-29 delivered the first nuclear weapons used in combat. On August 6, 1945, Colonel Paul W. Tibbets, Jr., in command of the Superfortress Enola Gay, dropped a highly enriched uranium, explosion-type, "gun-fired," atomic bomb on Hiroshima, Japan. Three days later, Major Charles W. Sweeney piloted the B-29 Bockscar and dropped a highly enriched plutonium, implosion-type atomic bomb on Nagasaki, Japan. Enola Gay flew as the advance weather reconnaissance aircraft that day. On August 14, 1945, the Japanese accepted Allied terms for unconditional surrender.
In the late 1930s, U. S. Army Air Corps leaders recognized the need for very long-range bombers that exceeded the performance of the B-17 Flying Fortress. Several years of preliminary studies paralleled a continuous fight against those who saw limited utility in developing such an expensive and unproven aircraft but the Air Corps issued a requirement for the new bomber in February 1940. It described an airplane that could carry a maximum bomb load of 909 kg (2,000 lb) at a speed of 644 kph (400 mph) a distance of at least 8,050 km (5,000 miles). Boeing, Consolidated, Douglas, and Lockheed responded with design proposals. The Army was impressed with the Boeing design and issued a contract for two flyable prototypes in September 1940. In April 1941, the Army issued another contract for 250 aircraft plus spare parts equivalent to another 25 bombers, eight months before Pearl Harbor and nearly a year-and-a-half before the first Superfortress would fly.
Among the design's innovations was a long, narrow, high-aspect ratio wing equipped with large Fowler-type flaps. This wing design allowed the B-29 to fly very fast at high altitudes but maintained comfortable handling characteristics during takeoff and landing. More revolutionary was the size and sophistication of the pressurized sections of the fuselage: the flight deck forward of the wing, the gunner's compartment aft of the wing, and the tail gunner's station. For the crew, flying at extreme altitudes became much more comfortable as pressure and temperature could be regulated. To protect the Superfortress, Boeing designed a remote-controlled, defensive weapons system. Engineers placed five gun turrets on the fuselage: a turret above and behind the cockpit that housed two .50 caliber machine guns (four guns in later versions), and another turret aft near the vertical tail equipped with two machine guns; plus two more turrets beneath the fuselage, each equipped with two .50 caliber guns. One of these turrets fired from behind the nose gear and the other hung further back near the tail. Another two .50 caliber machine guns and a 20-mm cannon (in early versions of the B-29) were fitted in the tail beneath the rudder. Gunners operated these turrets by remote control--a true innovation. They aimed the guns using computerized sights, and each gunner could take control of two or more turrets to concentrate firepower on a single target.
Boeing also equipped the B-29 with advanced radar equipment and avionics. Depending on the type of mission, a B-29 carried the AN/APQ-13 or AN/APQ-7 Eagle radar system to aid bombing and navigation. These systems were accurate enough to permit bombing through cloud layers that completely obscured the target. The B-29B was equipped with the AN/APG-15B airborne radar gun sighting system mounted in the tail, insuring accurate defense against enemy fighters attacking at night. B-29s also routinely carried as many as twenty different types of radios and navigation devices.
The first XB-29 took off at Boeing Field in Seattle on September 21, 1942. By the end of the year the second aircraft was ready for flight. Fourteen service-test YB-29s followed as production began to accelerate. Building this advanced bomber required massive logistics. Boeing built new B-29 plants at Renton, Washington, and Wichita, Kansas, while Bell built a new plant at Marietta, Georgia, and Martin built one in Omaha, Nebraska. Both Curtiss-Wright and the Dodge automobile company vastly expanded their manufacturing capacity to build the bomber's powerful and complex Curtiss-Wright R-3350 turbo supercharged engines. The program required thousands of sub-contractors but with extraordinary effort, it all came together, despite major teething problems. By April 1944, the first operational B-29s of the newly formed 20th Air Force began to touch down on dusty airfields in India. By May, 130 B-29s were operational. In June, 1944, less than two years after the initial flight of the XB-29, the U. S. Army Air Forces (AAF) flew its first B-29 combat mission against targets in Bangkok, Thailand. This mission (longest of the war to date) called for 100 B-29s but only 80 reached the target area. The AAF lost no aircraft to enemy action but bombing results were mediocre. The first bombing mission against the Japanese main islands since Lt. Col. "Jimmy" Doolittle's raid against Tokyo in April 1942, occurred on June 15, again with poor results. This was also the first mission launched from airbases in China.
With the fall of Saipan, Tinian, and Guam in the Mariana Islands chain in August 1944, the AAF acquired airbases that lay several hundred miles closer to mainland Japan. Late in 1944, the AAF moved the XXI Bomber Command, flying B-29s, to the Marianas and the unit began bombing Japan in December. However, they employed high-altitude, precision, bombing tactics that yielded poor results. The high altitude winds were so strong that bombing computers could not compensate and the weather was so poor that rarely was visual target acquisition possible at high altitudes. In March 1945, Major General Curtis E. LeMay ordered the group to abandon these tactics and strike instead at night, from low altitude, using incendiary bombs. These firebombing raids, carried out by hundreds of B-29s, devastated much of Japan's industrial and economic infrastructure. Yet Japan fought on. Late in 1944, AAF leaders selected the Martin assembly line to produce a squadron of B-29s codenamed SILVERPLATE. Martin modified these Superfortresses by removing all gun turrets except for the tail position, removing armor plate, installing Curtiss electric propellers, and modifying the bomb bay to accommodate either the "Fat Man" or "Little Boy" versions of the atomic bomb. The AAF assigned 15 Silverplate ships to the 509th Composite Group commanded by Colonel Paul Tibbets. As the Group Commander, Tibbets had no specific aircraft assigned to him as did the mission pilots. He was entitled to fly any aircraft at any time. He named the B-29 that he flew on 6 August Enola Gay after his mother. In the early morning hours, just prior to the August 6th mission, Tibbets had a young Army Air Forces maintenance man, Private Nelson Miller, paint the name just under the pilot's window.
Enola Gay is a model B-29-45-MO, serial number 44-86292. The AAF accepted this aircraft on June 14, 1945, from the Martin plant at Omaha (Located at what is today Offut AFB near Bellevue), Nebraska. After the war, Army Air Forces crews flew the airplane during the Operation Crossroads atomic test program in the Pacific, although it dropped no nuclear devices during these tests, and then delivered it to Davis-Monthan Army Airfield, Arizona, for storage. Later, the U. S. Air Force flew the bomber to Park Ridge, Illinois, then transferred it to the Smithsonian Institution on July 4, 1949. Although in Smithsonian custody, the aircraft remained stored at Pyote Air Force Base, Texas, between January 1952 and December 1953. The airplane's last flight ended on December 2 when the Enola Gay touched down at Andrews Air Force Base, Maryland. The bomber remained at Andrews in outdoor storage until August 1960. By then, concerned about the bomber deteriorating outdoors, the Smithsonian sent collections staff to disassemble the Superfortress and move it indoors to the Paul E. Garber Facility in Suitland, Maryland.
The staff at Garber began working to preserve and restore Enola Gay in December 1984. This was the largest restoration project ever undertaken at the National Air and Space Museum and the specialists anticipated the work would require from seven to nine years to complete. The project actually lasted nearly two decades and, when completed, had taken approximately 300,000 work-hours to complete. The B-29 is now displayed at the National Air and Space Museum, Steven F. Udvar-Hazy Center.
the Mamiya ZE (some were also designated ZE Quartz) was introduced in July 1980. It has a metal, quartz-controlled, focal-plane shutter and a center-weighted photo diode. An aperture-priority AE, exposure can be corrected ± two stops, and a previously-metered exposure can be locked in "AEL" position. The bayonet-mount lenses (E or EF series) have gold electronic contacts. It is interesting to note the body of the Mamiya ZE had only three electrical contacts, while the interchangeable lenses introduced with the camera had ten. They were already potentially capable of transmitting information about aperture requirements, shutter speed, and more, to subsequent generations of cameras beyond the ZE. A sophisticated central processor was incorporated into the ZE series, an indicator of the changing direction of cameras, from simple mechanical devices, to small, computerized machinery.
- I fell in love with this amazing camera,from the first moment i picked her up,and after developing the first roll. sometimes im finding myself staring at her just standing there on the shelf......she's a true beauty,and takes some seriously amazing pictures.
Ford Escort (MkIII) RS1600i (1984-90) Engine 1597 cc S4 OC 115PS
Registration Number YWX 88- - (last 2 digits unclear)
FORD EUROPE ALBUM
www.flickr.com/photos/45676495@N05/sets/72157623665118181...
The Mark III Escort was developed under the code name Erika, and launched in 1980, unlike the Mark II the new car was more than a reskin of the previous generation Escort. The Mark III was a departure from the two previous models, the biggest changes being the adoption of front-wheel drive, and the new hatchback body. The car used Ford's contemporary design language of the period with the black louvred radiator grille and straked rear lamp clusters, as well as introducing the aerodynamic bustle-back; bootlid stump. Sales in the United Kingdom increased, and by 1982 it had overtaken the ageing Cortina as the nation's best-selling car, beginning an eight-year run as Britain's best selling car.
New were the overhead camshaft CVH engines in 1.3 L and 1.6 L formats, with the older Ford Kent-based Valencia engine from the Fiesta powering the 1.1 L. From launch, the car was available in base (Popular), L, GL, Ghia and XR3 trim.
A convertible version, made by coachbuilder Karmann, appeared the same year as the five-door estate (1983). It was the first drop-top car produced by Ford Europe since the Corsair of the 1960s. The Escort Cabriolet was initially available in both XR3i and Ghia specification, but the Ghia variant was later dropped.
To compete with Volkswagen's Golf GTI, a hot hatch version of the Mark III was developed – the XR3. Initially this featured a tuned version of the 1.6 L CVH engine of 96bhp
fitted with a twin-choke Weber carburettor, uprated suspension and numerous cosmetic alterations.
The car lacked the five speed transmission and fuel injection of its Volkswagen rival a situation addressed in October 1982 for the 1983 model year with the arrival of the XR3i with 105bhp eight months behind the limited edition (8,659 examples), racetrack-influenced RS 1600i. The Cologne-developed RS received a more powerful engine with 115 PS (85 kW), thanks to computerized ignition and a modified head as well as the fuel injection
Diolch am 83,664,099 o olygfeydd anhygoel, mae pob un yn 90cael ei werthfawrogi'n fawr.
Thanks for 83,664,099 amazing views, every one is greatly appreciated.
Shot 25.07.2021 at Beaumanor Hall, Woodhouse, Leic. 148-079
LEMOORE, California (June 5, 2019) The first Marine Fighter Attack Squadron (VMFA) 314 "Black Knights" Lockheed Martin F-35C Lightning II aircraft from Naval Air Station (NAS) Lemoore flown by CAPT Tommy Beau Locke from Strike Fighter Squadron (VFA) 125 "Rough Raiders" flies in formation over the Sierra's with the VFMA-314 squadron F/A-18A++, flown by LtCol Cedar Hinton aircraft "passing the lead" as part of the F/A-18 Sundown with the Black Knights.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
LEMOORE, California (June 5, 2019) The first Marine Fighter Attack Squadron (VMFA) 314 "Black Knights" Lockheed Martin F-35C Lightning II aircraft from Naval Air Station (NAS) Lemoore flown by CAPT Tommy Beau Locke from Strike Fighter Squadron (VFA) 125 "Rough Raiders" flies in formation over the Sierra's with the VFMA-314 squadron F/A-18A++, flown by LtCol Cedar Hinton aircraft "passing the lead" as part of the F/A-18 Sundown with the Black Knights.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
T-98K Косилка MBT (Косилка - Kosilka - Cutter)
--------------------
A high tech medium tank.
The Косилка MBT is the newest installation in the UT armoury. Developed by the famous IC, this MBT is to be used among various members of the KWA and others around the globe. Designed to be a multirole platform.
It is armed with a 3-barreled mounted minigun (Mолния), a main gun, and a twin missile system (1 ATGM, 1 SAM, reloadable from hatch).
As with most UT tanks, it features a three-tier protection system.
The first tier is the composite armour. It consists of basic armour shell with an insert of alternating layers of aluminum and plastics and a controlled deformation section.
The second tier is the Kontakt-5 ERA (explosive reactive armor). It severely reduces the blow from kinetic projectiles. They are in the form of blocks on the turret and body or as ERA plates underneath steel outer covering. It results in much better protection than simple steel armour as featured on many other non-UT tanks.
The third tier is a Shtora countermeasures suite. This system includes two IR "dazzlers" on the front of the turret in the shape of blocks, four Laser warning receivers, two 3D6 aerosol grenade discharging systems and a computerized control system. The Shtora-1 warns the tank's crew when the tank has been 'painted' by a weapon-guidance laser and automatically activates the aerosol grenade launchers, effectively jamming the incoming missile. The aerosol grenades are used to mask the tank from laser rangefinders and designators as well as the optics of other weapons systems.
For passive guidance rocket systems, IR dazzlers create a blinding field of infrared light, "blinding" the rocket as it's IR isn't visible anymore.
The Arena active countermeasures suite consist of a computer, incoming projectile warning sensors, and shrapnel launchers all around the tank hull. It detects an incoming projectile, and sends out a stream of shrapnel to meet the incoming projectile. It destroys the projectile while leaving the armour intact.
Over time, seperate systems are upgraded. Tracks to hover, machineguns to laser weapons, stealth armour, railgun main cannon.
Powered by a hybrid diesel/electric engine. Fast, has good suspension, and is able to submerge completely into water without leaks. Employs an autoloader.
It has it's own air search radar, allowing it to use SAMs standalone. 3 kilometer range.
The tanks are also fitted with nuclear, biological and chemical (NBC) protection equipment. It includes a mine disabling kit. The EMT-7 electromagnetic-counter mine system is installed: the EMT-7 emits an electromagnetic pulse to disable magnetic mines and disrupt electronics before the tank reaches them. The Nakidka signature reduction suite is also equipped. Nakidka is designed to reduce the probabilities of an object to be detected by Infrared, Thermal, Radar-Thermal, and Radar bands.
All tanks are installed with night vision and infrared cameras, with direct feed into screens inside the tank.
--------------------
Cost: 6,000 GC Credits (7,200 GC Credits - Tier 1)
--------------------
Credits:
Shark - Inspiration
Domoappo - Rotary Machinegun
Magnus - Workspace
--------------------
Import Code (Use with credit to above persons):
Three small pieces, of similar design and fabric..... original designs...and all figments of my imagination...nothing more.
Machine stitched,...not computerized.... and no handwork.
Saudi Arabia was interested in acquiring the F-15E for its air force, but the aircraft was deemed too sensitive for export. As an alternative, Saudi Arabia requested the delivery of 24 F-15Fs, which were similar to the F-15E but without the second crew member and without some of the more advanced avionics deemed too sensitive for export. However, in 1993, the Royal Saudi Air Force was given permission to purchase 72 slightly downgraded versions of the F-15E Strike Eagle, initially designated F-15XP but now known as F-15S. The F-15S has an APG-70S radar that is "detuned" from the capabilities of the APG-63 of the F-15C/D and does not have the ability to do computerized ground mapping. It has only 60 percent of the bandwidth of the APG-63 and is limited to only 16 rather than 32 channels. The AWG-27 programmable armament control set was reprogrammed to prevent the carriage of certain weapons systems, and the hands-off automatic terrain following mode was deleted from the ASW-51 autopilot. A ring laser gyro INS was provided, but the military-grade GPS system was eliminated, although the Saudis have added a commercial-grade GPS system.
Some sensitive ECM systems are replaced with older equipment or are deleted altogether. The nuclear weapon wiring fitted to USAF F-15Es was deleted. Some initial reports indicated that the F-15S would not be provided with the ability to carry conformal fuel tanks and their associated weapons pylons, but this turned out not to be the case. Saudi Arabia received 48 downgraded versions of the Martin Marietta LANTIRN system known as AAQ-19 Sharpshooter, as well as the AAQ-20 Pathfinder, which is a simplified version of the AAQ-13 Nav-Pod. The AAQ-20 is not compatible with the AGM-65 Maverick air-to-ground missile and has some air-to-air features deleted.
In this image, an F-15S (F-15S-59-MC, serial number 93-0913 reserialed to 9225) from the 6 Squadron, Wing 5 stationed at King Khalid AB near Khamis Mushait flies over the western Arabian desert. A total of 72 were placed on order under Peace Sun IX. The first example took off on its maiden flight on 19 June 1995. Production was planned at a rate of one per month, with the 72nd and last F-15S being delivered in 1999. A new variant, the F-15SA (Saudi Advanced), is under development and will have a new fly-by-wire flight control system and the APG-63(v)3 active electronically scanned array (AESA) radar, digital electronic warfare systems (DEWS), and infrared search and track (IRST) systems. It will also have a redesigned cockpit, once intended for the F-15SE Silent Eagle.
Wow, the familiar ferris wheel had a new look this year with constantly changing computerized patterns...every second it was a new view...and I took quite a few!!!
The said we never loved you,
those with condescending eyes,
who press their fingers together over polished desks,
and smile benignly under framed degrees,
who tap their pipes and collect their fees.
Where were they the day you came?
Did they hear as I gave birth,
or watch as I put you to my breast,
weeping in sweet relief that you were safe?
Yet they said we were cold,
and did not care for you,
oh little girls with baby curls,
and velvet skin,
and eyes so blue,
that gazed in rapture after things we could not see,
and issued racking sob for things we could not know.
Those with MDs and PhDs,
looked politely over their glasses and smiled,
they sent their bills in computerized window notes,
and pronounced we did not love,
and when bad times came they sat in paneled offices,
and wrote hard words in confidential files.
They did not see the daisies or daffodils,
you plucked with smiling zeal,
little hand held up for us to see,
or hear while riding sister piggyback,
you enthusiastic squeals of glee.
They drove new cars and went on holidays,
and played sophisticated mind games,
while we who did not love,
knelt down to you and held your limbs,
and fought your fright,
and stifled inward cries and tried not to hear,
as tormented screams wrenched days and hearts,
and twisted sweet features into a mask of fear.
One afternoon your Dad held you to him,
and felt your blood soak to his skin,
feeling his tears go with it.
How could they know of the pleasure and pain,
they were not there.
They never watched you run along the beach,
or heard your laughter in the waves and rain,
or knew the blessed peace in watching you sleep.
Still...
those with letters after their names.
are due respect my daughter,
and we should give it.
Well...
They said we never loved you dear,
God knows and you,
and they can go to hell.
BF-4 Flt 508 Mr. Peter Wilson and BF-5 Flt 370 Sqn Ldr Andy Adgell fly from HMS Queen Elizabeth on 27 Sep 2018
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
Two Lockheed Martin F-35B Lightning II fighter jets have successfully landed on board HMS Queen Elizabeth for the first time, laying the foundations for the next 50 years of fixed wing aviation in support of the UK’s Carrier Strike Capability.
Royal Navy Commander, Nathan Gray, 41, made history by being the first to land on board HMS Queen Elizabeth, carefully maneuvering his stealth jet onto the thermal coated deck. He was followed by Squadron Leader Andy Edgell, RAF, both of whom are test pilots, operating with the Integrated Test Force (ITF) based at Naval Air Station Patuxent River, Maryland.
Shortly afterwards, once a deck inspection has been conducted and the all-clear given, Cmdr Gray became the first pilot to take off using the ship’s ski-ramp.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.