View allAll Photos Tagged synthesizing

Basalt lava flow in the Holocene of New Mexico, USA.

 

This is part of the McCartys Flow, the youngest lava flow in New Mexico's Zuni-Bandera Volcanic Field. The rocks are basalt, a mafic, aphanitic, extrusive igneous rock dominated by plagioclase feldspar and pyroxene, plus sometimes noticeable olivine. Seen here is a distal part of the flow - the lava originated 37 to 38 kilometers ~southwest of this site, from a shield volcano now capped by a cinder cone. Pahoehoe and aa lavas are present

 

The lithology is vesicular, porphyritic, tholeiitic basalt with olivine phenocrysts. In areas proximal to the vent, plagioclase feldspar phenocrysts are present instead. Glassy basalt (tachylite) is present along flow tops.

 

Stratigraphy: McCartys Flow, upper Holocene, ~2.4 to 3.9 ka

 

Locality: roadside exposures along the northern side of westbound Interstate 40's exit 89, Cibola County, northwestern New Mexico, USA (35° 05.045’ North latitude, 107° 46.071’ West longitude)

--------------------------------------------

Mostly synthesized from info. at:

geoinfo.nmt.edu/tour/federal/monuments/el_malpais/zuni-ba...

 

The Sultan Ahmed Mosque is an historical mosque in Istanbul. The mosque is popularly known as the Blue Mosque for the blue tiles adorning the walls of its interior.

  

It was built from 1609 to 1616, during the rule of Ahmed I. Like many other mosques, it also comprises a tomb of the founder, a madrasah and a hospice. While still used as a mosque, the Sultan Ahmed Mosque has also become a popular tourist attraction.

  

Architecture

  

The design of the Sultan Ahmed Mosque is the culmination of two centuries of both Ottoman mosque and Byzantine church development. It incorporates some Byzantine elements of the neighboring Hagia Sophia with traditional Islamic architecture and is considered to be the last great mosque of the classical period. The architect has ably synthesized the ideas of his master Sinan, aiming for overwhelming size, majesty and splendour. It has one main dome, six minarets, and other eight secondary domes.

  

Interior

  

At its lower levels and at every pier, the interior of the mosque is lined with more than 20,000 handmade ceramic tiles, made at Iznik (the ancient Nicaea) in more than fifty different tulip designs. The tiles at lower levels are traditional in design, while at gallery level their design becomes flamboyant with representations of flowers, fruit and cypresses. More than 20,000 tiles were made under the supervision of the Iznik master potter Kasap Haci and Baris Efendi from Avanos (Cappadocia). The price to be paid for each tile was fixed by the sultan's decree, while tile prices in general increased over time. As a result, the quality of the tiles used in the building decreased gradually. Their colours have faded and changed (red turning into brown and green into blue, mottled whites) and the glazes have dulled. The tiles on the back balcony wall are recycled tiles from the harem in the Topkapı Palace, when it was damaged by fire in 1574. [Wikipedia.org]

New York Times

November 4, 1994

  

ARCHITECTURE REVIEW

 

Rem Koolhaas's New York State of Mind

 

By HERBERT MUSCHAMP

 

NEW YORK CITY'S most inspiring architect lives in London, works in Rotterdam and has yet to build a thing on the North American continent. But for the next three months, Rem Koolhaas has the stage at the Museum of Modern Art, where New Yorkers can see for themselves how their city continues to shape the world even as their own architecture has slipped below world-class standards. Considering all the fanfare this show has generated, including lavish spreads in the fashion glossies, "O.M.A. at MOMA: Rem Koolhaas and the Place of Public Architecture" turns out to be relatively modest in scale. Confined to one top- floor gallery in the Modern's department of architecture and design, the show presents models and drawings for five projects designed in the last five years by Mr. Koolhaas and his Office for Metropolitan Architecture (O.M.A.). Three additional models, depicting urban plans, are displayed on the landing outside.

(Models for three private houses are on view in the museum's Education Center on the ground floor.)

 

But anticipation for this show, which was first scheduled to open more than a year ago, has been mounting for some time. And the hoopla is not incidental to the work on view. This is a show about buildings and cities, but it is also a show about aura: the aura of the city, the role buildings play in creating that aura and the glamour that occasionally surrounds an architect of promise, leading excitable critics to plunge recklessly overboard with extravagant words of praise.

 

Mr. Koolhaas, who was born in the Netherlands in 1944 and educated at the Architectural Association in London, first achieved public attention with the 1978 publication of his book "Delirious New York," an ecstatic love poem to Manhattan that challenged conventional thinking in urban design. While planners and urban designers struggled to bring logic, sanity and order to the built environment, Mr. Koolhaas argued that the glory of the city lies in the exceptional, the excessive, the extreme. A champion of what he called "the culture of congestion," Mr. Koolhaas viewed the Manhattan skyline as a kind of euphoric party, as if architecture had been squeezed vertically not by real- estate values but by the eagerness of people to get together on a small island and laugh it up.

 

Since that colorful debut, Mr. Koolhaas has accumulated an impressive body of built work, including apartment buildings in the Netherlands and Japan, the Netherlands Dance Theater in the Hague and the Kunsthal, an art exhibition center in Rotterdam. He has also pushed the limits of architecture with provocative designs for projects that so far remain unbuilt, like the Jussieu Library in Paris. But the achievement that has established him most solidly on the international map is Mr. Koolhaas's master plan for Euralille, a commercial project now nearing completion in northern France. Designed to exploit Lille's position as a major hub for Europe's high-speed trains, Euralille includes buildings by the architects Christian de Portzamparc and Jean Nouvel, in addition to a trade and convention center designed by Mr. Koolhaas.

 

These projects, too, display Mr. Koolhaas's enduring passion for New York: the glass-curtain-wall skyscrapers pioneered by Mies van der Rohe; the bustling street life of places like Times Square, where peril and pleasure jostle each other in a synergistic mix. But Mr. Koolhaas's most highly burnished New York touchstone is the work of the architect Wallace K. Harrison. Harrison, the subject of a show organized by Mr. Koolhaas in 1980 at the Institute for Architecture and Urban Studies in Manhattan, designed such fabled New York landmarks as the United Nations Headquarters, the Trylon and Perisphere at the 1939 New York World's Fair, and the Hall of Science at the 1964-65 World's Fair. For Mr. Koolhaas, these projects represent the ideal of an architecture at once modern and romantic; they defined an urban mythology for changing times.

 

Organized by Terence Riley, chief curator of the Modern's architecture and design department, the Koolhaas show was at one point scheduled to run concurrently with last season's mammoth show on Frank Lloyd Wright. The two would have made an illuminating pair, for Mr. Koolhaas's vision of the city is nearly the antithesis of Wright's. Wright, at the threshold of the automobile age, championed the centrifugal city, dispersed into the suburban landscape by the car, the highway and the romantic ideal of individual autonomy. Mr. Koolhaas stands, by contrast, for the centripetal city: for the urban center that, at the end of the century, continues to act as a cultural magnet and an incubator for ideas. Mr. Koolhaas's designs for archetypal urban institutions - - two libraries, a museum, a school, a marketplace -- are the core of the Modern's show.

 

On a certain level, these buildings are about coping. Mr. Riley writes in the exhibition brochure that Mr. Koolhaas and O.M.A "perceive the city as a survivor." Survivors are not victims. They have earned the right to set their own terms. Cities shouldn't be competing with the suburbs by trying to become more like them. They don't have to turn themselves into theme parks. They have better things to do than indulge the fear that their best days are behind them by encouraging architects to design new buildings that look old.

 

Mr. Koolhaas is undoubtedly right to question current urban shibboleths. But are the terms he proposes the right ones for the city today? Essentially, Mr. Koolhaas asks us to believe that spectacular public buildings, or spectacular groupings of them, contribute at least as much to the vitality of the city as do the systematic designs of urban planners. Those who crave urban life, he insists, want something more than safe, clean streets, trains that run and contextual design guidelines for new development. They're looking to be part of a legend in the making. Just as it is the business of music, film and physics to produce spectacular singers, directors and theorists, so it is the job of the city to produce wonderful, fabulous places: buildings we'd walk blocks out of our way to see.

 

This is an odd time to be staking out this position. In the aftermath of the 1980's building boom, a widespread reaction has set in against stand-alone, signature buildings by star architects. The movement today is toward urban systems, social responsibility and the connective tissue that integrates buildings into community life. If there is any validity to Mr. Koolhaas's position, it must hinge on whether his designs are stronger, architecturally and urbanistically, than the solo performances we've already seen.

 

I believe that his designs are indeed stronger, and that their strength lies mainly in their forms. After all, any properly run library, school, museum or convention center should be able to gather crowds. If there's a larger urban dimension in Mr. Koolhaas's designs for these institutions, it is because his forms vibrate on some urban frequency other architects have not yet tuned in to. But how to analyze those vibrations?

 

Mr. Riley refers to the "marked sense of formlessness" of Mr. Koolhaas's projects, and the visitor to the show is confronted by a dizzying array of forms: ovals, cloud shapes, diagonals, grids, screens of perforated steel and corrugated glass, undulating ramps, elongated triangles, tilted ramps, media projections. These forms are seemingly haphazard in their purpose if not in their skillful composition. And one hesitates to analyze the logic of that composition, not only because it is elusive, but also because Mr. Koolhaas's clear intention is to provide pleasure through the appearance of spontaneity.

 

Still, one of the major advantages of seeing these projects in a single gallery is that a unifying design concept does emerge. In most of the projects, the defining form arises from Mr. Koolhaas's attempt to loosely reconcile a spiral or pinwheel shape with a square or a rectilinear grid. The spiral harks back to Wright's Guggenheim Museum, the unbuilt "endless museum" project of Le Corbusier, the pinwheel plan of Mies van der Rohe's early villas, the ramp of Harrison's Trylon and Perisphere. But some may feel that Mr. Koolhaas's most pertinent historical precedent is Bruegel's "Tower of Babel," with its vertiginous terror, its breathtaking hubris and its iconic image of a polyglot metropolis housed within one monumental coil.

 

Occasionally, as in his 1989 design for the French National Library in Paris, Mr. Koolhaas places a conventional spiral within a rectangular volume. More often, the spiral is discernible only in the whirling organization of interior spaces. For the Kunsthal in Rotterdam, completed in 1992, the spiral takes the form of a series of squared-off interior ramps. For the Jussieu Library in Paris, entire floors of the high-rise building are sliced and tilted to create a free-form, continuous ramp, dotted with auditoriums, classrooms and cafes, as if an entire Parisian boulevard had been carefully folded up and placed inside a gleaming crystal box.

 

At Congrexpo, the oval convention center shortly to open in Lille, visitors will whirl through time and sensibility as well as space. From an auditorium shaped like a Roman amphitheater, they will pass to an erotic fantasy of a theater lined with gold-studded black leatherette. The building's ovoid exterior is clad with a rectilinear collage of flashy finishes: shingled glass, concrete in a tacky black pebble texture and corrugated glass shot through with metallic filaments, an effect at once gossamer and garish.

 

For Wright, the spiral was an anti-urban symbol. It signified not only organic growth, but also spatial freedom, particularly the mobility made possible by the car. For Mr. Koolhaas, the spiral also signifies growth, but of an urban, artificial kind. Where Wright summoned up images of trees, hills, the highway unrolling across the prairie to escape urban congestion, Mr. Koolhaas ushers us into a tight coil densely packed with shapes, colors, materials, solids and voids that emulate the city in its complexity, variety, social condensation and insatiable appetite for spectacle.

 

But Mr. Koolhaas's designs are not mindless merry-go-rounds. His attempt to merge the grid with the spiral conveys a philosophical message. The square is a symbol of reason, the spiral a sign of romance. In synthesizing these forms, Mr. Koolhaas shows that clarity and reason are not the enemies of romanticism; they are the essential preconditions for it. A clear-eyed view of the contemporary city and a pragmatic grasp of what architects can reasonably achieve within it form the foundation from which a truly lyrical expression can arise.

 

This idea sets Mr. Koolhaas apart from modernists and post-modernists alike. Orthodox modern architects banished romantic myth-making in favor of objective truth. Post-modernists hoped to restore a more romantic view of the city, but alas, they saw romance as a restoration, a feeling that could be recaptured only by looking backward to a sepia-tinted past.

 

Mr. Koolhaas, by contrast, seeks a lyrical mythology for the city as it exists today, with its electronic information circuits gaily humming amid brutal physical decay, its enduring glamour improbably compounded from money, fashion, ambition, fear, destitution, tackiness and profound hope. He is not the only architect of his generation engaged in that search. But none have carried it further, sustained it with greater inventiveness and poise, or arrived at such rich results. Now that's coping.

 

In his first-rate design for the show, Mr. Riley had the happy inspiration of using bus-stop poster boxes to organize the gallery space. The boxes are arranged in pinwheel fashion, recalling the free-standing planes of the classic Miesian villa, and each contains a blowup picture of the project displayed beside it. This witty synthesis of the Bauhaus and the Gap elegantly mirrors Mr. Koolhaas's street-smart sensibility as it teases out the logic of his forms.

 

Don't miss this bus.

 

"O.M.A. at MOMA: Rem Koolhaas and the Place of Public Architecture" remains at the Museum of Modern Art, 11 West 53d Street, through Jan. 31. It then travels to the Canadian Center for Architecture in Montreal (Feb. 21 to April 21) and the Wexner Center for the Arts in Columbus, Ohio (opening May).

Diploria clivosa - fossil knobby brain coral colony in the reef facies of the Cockburn Town Member, upper Grotto Beach Formation at the Cockburn Town Fossil Reef, western margin of San Salvador Island.

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene).

 

Fossil reefs formed during the MIS 5e sea level highstand are exposed in several places in the Bahamas. This succession of fossiliferous reefal limestones is subdivided into a lower "Reef 1" and an upper "Reef 2", separated by a disconformity. That erosion surface formed during a brief, ~4000 year long regression called the Devil's Point Event (the unconformity is very well developed at Devil's Point on Great Inagua Island). The fossil brain coral shown above is from Reef 2 at the Cockburn Town Fossil Reef, and is the youngest dated specimen at the site. Isotopic dating has been done on 122 coral samples from this locality. The oldest is 127 ka and the youngest (= the above Diploria clivosa) is 114.3 ka. Including dates from San Salvador Island to Great Inagua Island, Reef 1 has an average age of 123.5 ka, and Reef 2 has an average age of 119.5 ka.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

 

This is Wushu

 

As a traditional sport, Wushu is a cultural heritage of the Chinese people,

which has been enriched down through the ages. With its graceful movements

and salubrious effects on health, it has a strong appeal to a vast multitude

of people. In New China, Wushu has been studied and edited on the principle

of weeding through the old to bring forth the new, and that it may better

improve the people's health.

 

Odd as it may seem, the term "Kung Fu" is strictly a Western expression. In

Chinese it denotes ability or proficiency, but not much more. One can be

said to have "good Kung Fu" if one's handwriting or cooking or needlepoint is

exemplary. The proper term for martial arts is Wushu (War Art).

 

Legend has that the Shaolin temple in China developed a unique exercise,

Wushu, "to promote health and discourage bandits." In fact, however, the art

extends much further into Chinese antiquity than does the Shaolin temple -

Back, in fact, to the very roots of Chinese culture.

 

Through hundreds of years Wushu changed, shaped by time and varying cultural

emphasis. It absorbed new techniques, branched into numerous styles and

eventually became the foundation of martial arts systems throughout East Asia.

Despite the art's changing outward appearance, however, it remained

underpinned by three basic goals - to promote health, to produce an

art - form of aesthetic value and to produce fighting ability.

 

The new government established the people's Republic of China (PRC) brought

about drastic cultural changes. Basically, the Chinese retained their

traditional heritage in Wushu but shifted the major emphasis to making it

available to as many people as possible. The Chinese pooled their resources,

revamped the Wushu styles and edited the traditional routines according to

the needs of the new society. Blinding dance; Chinese acrobatic; Peking Opera;

gymnastics; philosophy; medicine; and several of boxing styles makes this

resulted in a hybrid art form with distinctive qualities of its own. In the

PRC Wushu soon became a highly standardized national sport.

 

Wushu is usually classified into three main categories: a) shadow boxing or

barehanded exercises, b) exercises with weapons and c) combat exercises.

 

A. Shadow boxing

Shadow boxing is a spectacular, acrobatic martial art, generally

suitable for young people in good physical condition who wish to

challenge their athletic capabilities. Its leaping kicks, punches,

stamps and turnovers are a remarkable visual and physical experience.

There are over hundred different kinds of boxing.

 

1. External boxing

a) Northern Styles: People are bigger than southerner and

also, have to fight in the field; therefore, they rely on

long rang and high jumps. As a result, long shadow boxing

is most suitable for them. Changquan (long shadow boxing)

is the general term for several styles of Chinese boxing

including Cha Quan, Hua Quan, Pao Quan, Liu Ho Quan, and

Northern Shaolin Quan. It synthesizes chief features and

movements of these styles. New changquan routines have

been devised, combining the chief features of these

schools - sweeping hand movements, high jumps, quick body

turns and powerful kicks and blows. Vigorous and

demanding, they have found great favor with young people.

 

b) Southern Styles: People are smaller than northern and

often fight on the boat; jungle; etc. Therefore, people

rely on shorter range. Nanquan, mostly for a great variety

of hand forms, steady footwork, low body position and

closely - knit combination of vigorous and rhythmic

movements is popular in China's southern provinces of the

Yangtze River, including Guangdong, Fujian, Hunan,

Zhejiang, Jiangsu and Sichuan Provinces. Occasionally,

the performer utters a cry to accentuate an explosive

action.

 

c) Traditional boxing: Noncontemperary styles.

 

d) Imitation boxing: Boxing that has blinded with animal

imitations.

1. Houquan (monkey shadow boxing) bears striking

resemblance to a frolicking monkey both in form

and spirit. To ape this witty yet mischievous

animal, the performer walks on tiptoe or skips

about with his back rounded, shoulders relaxed,

body drawn up, hands hooked and eyes blinking

alertly.

 

2. Shequan (snake shadow boxing) is performed with

one hand cupped like a snake's head. With a

series of movements that blend "hardness" with

"softness," the performer brings out the image of

a snake now sticking out its forked tongue, now

coiling round a tree, now raising its head to

defy an approaching enemy.

 

3. Tanglanquan (mantis shadow boxing), created in

the 17th century on the basis of the Shaolin

School, is characterized by a quick succession of

aggressive, springy actions involving both arms

and legs.

 

4. Zuiquaqn (drunkard's shadow boxing) describes a

drunken man engaged in a fight - now wobbling to

dodge a blow,now faking left to hit right, now

falling on his back only to spring up with a

powerful kick against his foe. He is said to be

"intoxicated in body but not in mind."

 

5. Others: Eagle; Tiger; and five animal boxing.

 

e) Optional boxing

1. Fanqiquan (continuous-attack shadow boxing) is

made up of eight main postures in which blows are

delivered at lightning speed. It was first

mentioned in the Book of Martial Arts written by

Qi Jiguang (1528 - 1587), a famous general of the

Ming Dynasty.

 

2. Ditangquan (tumbling shadow boxing) is composed

of falls,dives, rolls and somersaults, which are

used as feints in striking an adversary.

 

3. Piguaquan (arm swing shadow boxing) dates back to

the Ming Dynasty. Composed of circular arm

movements and quick blows and parries, the routine

calls for regulated breathing which helps to

summon up strength and qi(vital energy).

 

4. Ba Ji contains uppercuts, elbows, holds, circular

parries and bent elbow-locks.

 

5. Fan Zi is characterized by short routines with a

series of simultaneous, consecutive movements.

 

6. Tung Bi is popular in the northern provinces. It

consists of five basic movements: the backhand

blow, the slap, the thrust, the palm cut and the

corkscrew blow - all closely interwoven with each

other. Executed with the shoulders relaxed, the

movements are quick and powerful.

 

7. Qin Na is a set of movements based on the method

of twisting locks, including holds, counter-holds

and escapes. Locks and holds are applied on the

wrist,throat, elbow, neck, etc.

 

2. Internal boxing

 

a) Taijiquan (Grand fist boxing), one of the major forms of

Chinese traditional boxing, is especially popular in China

today. Taiji is popular for its health promoting

qualities; the movements are practiced slowly and

smoothly. Attention is given to proper control of the

breath. The style moves in intricate patterns of circular

motion. Originated in Wenxian County, Henan Province,

more than tree centuries ago. With slow and gentle

movements done in circular paths, it is suitable for the

aged and the weak. Taijiquan may be practiced individually

or in-groups. Finally,Taiji was born when both combination

of Chinese boxing, wresting, and chi-qong blinded in one.

5 major schools: Yang, Wu, Woo, Sun, and Chen. Yang is

easy to learn. However, it's hard to master. Chen is an

original tijiquan and it's very hard to perform. Overall,

yang style is the most popular in China and other nations

today.

 

Tuishow (Push-hands), its auxiliary form, it meant for two

persons who stand face to face while performing circular arm

movements in an effort to throw each other off his balance.

Based on the theory of "overcoming the hard with the soft,"

this seemingly easy exercise involves both strength and

skills.

 

Tiji Sword: Short tasseled-sword, is played in tiji mode.

 

b) Xingyiquan (five-element boxing) has a dual meaning:

"form and will shadow boxing" in which all body movements

are guided by the mind, and "imitative exercises" that

describe the movements of the dragon, tiger, monkey,

chicken, bear and other animals with 5 element fists. It

emphasizes speed, vigor, simplicity and compact structure.

Finally, Xingyi was born when the spear technique was

converted in the fist form.

   

c) Baguazhang (eight-diagram shadow boxing): has 8 different

fundamental palms involves walking movements in eight

directions as marked out in the Eight Diagrams described

in the Book of Changes, a classic work on divination.

Also, there are front leading kick and palm strikes.

The performer is required to "move like a swimming dragon,

stare like a watchful monkey, sit like a crouching tiger

and turn like a hovering eagle."

 

STYLES PHILOSOPHY FOOTWORK (DIRECTIONS)

 

Tijiquan TaoismBack and forth

Heal to toes

 

XingyiquanFive elements & Straight and zigzag.

twelve animal postersShovel digging steps

 

BaguazhangI-Ching Jet landing steps.

Walking the circles

 

Also, Qi Gong(meditation and exercise) and Liu He Ba Fa is another internal

excercises. Qi Gong (Chinese Yoga): (Qi) is a form of energy. The ancients

considered Qi to be the vital energy of life. (Gong) is defined as method,

way, skill, technique, capability, attainment, theory or science.

Qi Gong is a comprehensive science of the way to nurture life. It is a

collection of mental and physical exercises and techniques for gathering,

nurturing, focusing and directing Qi. By utilizing breathing, movement and

visualization one can collect manipulate and regulate the Qi.

Qi Gong is practiced to improve health, resist illness, and increase

longevity. Interest in Qi Gong is developing rapidly throughout the world.

By combining discipline of mind, body and spirit, one can reduce stress,

generate more energy, and increase well being and confidence. In China and

many other parts of the world Qi Gong is used to treat disease and to develop

wisdom.

 

B. Exercise with weapons

 

1. Short weapons

a) Straight sword: is known as the mother of weapons and

traditionally includes some sixteen methods of use.

Wushu styles traditionally adapt the sword to their own

principles of boxing, making the weapon an extenuation of

their particular techniques. Sword techniques fall into

four general categories: single sword, double sword, long

tasseled sword, and short tasseled sword.

 

b) Broad sword: is primarily a slashing or cutting weapon.

Its maneuvers consist of series of cuts, swings, blows,

thrusts and parries worked through an intricate set of

footwork patterns. Single broad sword and double broad

sword with two flags at the end of the handles.

 

2. Long weapons (Both sticks are made with flexible wax wood)

a) Spear: is traditionally referred to as the "king of

weapons." It is as old as China herself. Spear

techniques teach strength, agility, grace and balance,

and consist of a series of outward and inward parries and

thrusts.

b) Cudgel Stick: consists of swings, cuts, upward thrusts,

parries and rotations of the weapon.

 

3. Flexible weapons: contains three-section cudgel; rope dart;

nine-section whip; and etc.

 

4. Heavy weapons: Scimitar; double rings; double handed straight

sword; meteor hammer and etc.

 

5. Others: double dagger; spade; double hooks; and etc.

 

C. Combat exercises

 

Performed by two or more partners according to pre-arranged patterns,

the combat exercises fall into three classes: a) bare hand fight,

b) combat with weapons and c) bare hand against weapons. Whether on

the offensive or defensive, the movements in any combat exercise must

be as life-like as possible and be executed with machine like

precision and unerring collaboration between the performers. The

slightest mistake may spoil the whole thing and cause serious

injuries. That's why the combat exercises are always watched with

bated breath. So, you could see. A sword duel; the three section

cudgel versus cudgel stick; scimitar versus spear; cudgel against

broadsword plus shield; spear versus bare hands; bare hands fight

against two spears; bare hands versus two opponent, one armed with a

spear and the other with broad sword and shield and etc.

 

The different exercises are:

Individual Changquan - individually choreographed barehanded routines

based on Changquan style techniques, with defined required movements

and restrictions.

 

Compulsory Changquan - routine of Changquan defined by the All-China

Sports Federation, competitor performs this exercise without addition

or deletion of any movements.

 

Short Apparatus - individually choreographed routine of sword or

broadsword techniques.

 

Long Apparatus - individually choreographed spear or cudgel

techniques.

 

Nanquan (southern style) and Taijiquan - like individual Changquan,

these two exercises are self-choreographed to their own technical

requirements and restrictions.

 

Traditional Barehanded Exercise - all other barehanded styles, i.e.

Praying Mantis, Eagle Claw, Fanzi, etc.

 

Traditional Apparatus - all other weapons, i.e. double hooks, long

tasseled sword, 9-section whip, double spears, etc.

 

Paired Exercise - prearranged sparring routine involving two or more

persons, barehanded or with apparatus.

 

Time Requirement - The time requirement of Changquan, Nanquan and the

four main apparatuses is minimum of one minute 20 seconds for senior,

junior men and women, and minimum of one minute for boys' and girls'

divisions; Taijiquan is between five to six minutes; traditional is

minimum of one minute; paired is minimum of three minutes.

 

International Wushu Competition Routines: Designed for world standard;

therefore, it's easier than Chinese national standard scale. Wushu, as an

international competitive sport is truly developing on a worldwide scale in

leaps and bounds. There is an urgent need to standardize wushu competition

routines in order that Chinese and foreign competitors may compete on equal

footing. Thus, the Chinese Wushu Research Institute of China organized a

group of professors, specialists, famous wushu trainers and top level artists

to develop a set of seven standard competition routines.

 

Bare hands:

Changquan (Long Fist Boxing): Northern Styles including Chaquan;

Huaquan; Paoquan; LiuHoquan; and Northern Shoalinquan.

Nanquan (Southern Style Boxing): South shadow boxing.

42 Taijiquan: 5 major styles including Yang; Chen; Sun; Woo; and Wu.

 

Short weapons:

Daoshu (Broadsword Play)

Jianshu (Sword Play)

 

Long weapons:

Qiangshu (Spear Play)

Gunshu (Cudgel Play)

 

Sanshou (Fighting):

This isn't part of 7 competition routines. But, it part of

wushu. In sanshou, there are variety of techniques as such

as kicking; punching; throwing; and grappling. It looks like

combination of kickboxing; throws and takedowns. It also,

looks like a street fighting.

 

These seven competition routines, which are improved in content,

specification of movements, compact structure, routine layout, number of

movements and series of movements and competition time limits, all conform

with the international wushu competition rules.Overall, internal styles

including Tiji, Xingyi, and Bagua are the best Chinese representing martial

arts of all.

 

These contemporary art form that is aesthetically pleasing, visually

exciting, and physically demanding. Each individual styles of Wushu

performs and interpretates the flavor and spirit of each particular style

of Wushu. Often, the movements are choreographed to music to create a truly

exciting art form. Because there exists such a multitude of forms to study,

Wushu may be practiced and performed by persons of any age.

 

www.omei-wushu.com/

  

. . . look at the faces: every soldier has a different face! Not two are similar!

______________________________________

 

The Terracotta Army is a collection of terracotta sculptures depicting the armies of Qin Shi Huang, the first Emperor of China. It is a form of funerary art buried with the emperor in 210–209 BCE with the purpose of protecting the emperor in his afterlife.

 

The figures, dating from approximately the late third century BCE, were discovered in 1974 by local farmers in Lintong County, outside Xi'an, Shaanxi, China. The figures vary in height according to their roles, with the tallest being the generals. The figures include warriors, chariots and horses. Estimates from 2007 were that the three pits containing the Terracotta Army held more than 8,000 soldiers, 130 chariots with 520 horses, and 150 cavalry horses, the majority of which remained buried in the pits near Qin Shi Huang's mausoleum. Other terracotta non-military figures were found in other pits, including officials, acrobats, strongmen, and musicians.

 

HISTORY

The construction of the tomb was described by historian Sima Qian (145–90 BCE) in his most noted work Shiji, written a century after the mausoleum's completion. Work on the mausoleum began in 246 BCE soon after Emperor Qin (then aged 13) ascended the throne, and the project eventually involved 700,000 workers. Geographer Li Daoyuan, writing six centuries after the First Emperor's death, recorded in Shui Jing Zhu that Mount Li was a favoured location due to its auspicious geology, "famed for its jade mines, its northern side was rich in gold, and its southern side rich in beautiful jade; the First Emperor, covetous of its fine reputation, therefore chose to be buried there". Sima Qian wrote that the First Emperor was buried with palaces, towers, officials, valuable artifacts and wondrous objects. According to this account, 100 flowing rivers were simulated using mercury, and above them the ceiling was decorated with heavenly bodies below which were the features of the land. Some translations of this passage refer to "models" or "imitations"; however, those words were not used in the original text, which makes no mention of the terracotta army. High levels of mercury were found in the soil of the tomb mound, giving credence to Sima Qian's account. Later historical accounts suggested that the tomb had been looted by Xiang Yu, a contender for the throne after the death of the first emperor. However, there are indications that the tomb may not have been plundered.

 

DISCOVERY

The Terracotta Army was discovered on 29 March 1974 by farmers digging a water well approximately 1.5 kilometres east of the Qin Emperor's tomb mound at Mount Li (Lishan), a region riddled with underground springs and watercourses. For centuries, occasional reports mentioned pieces of terracotta figures and fragments of the Qin necropolis – roofing tiles, bricks and chunks of masonry. This discovery prompted Chinese archaeologists, including Zhao Kangmin, to investigate, revealing the largest pottery figurine group ever found. A museum complex has since been constructed over the area, the largest pit being enclosed by a roofed structure.

 

NECROPOLIS

The Terracotta Army is part of a much larger necropolis. Ground-penetrating radar and core sampling have measured the area to be approximately 98 square kilometers.

 

The necropolis was constructed as a microcosm of the emperor's imperial palace or compound, and covers a large area around the tomb mound of the first emperor. The earthen tomb mound is located at the foot of Mount Li and built in a pyramidal shape, and is surrounded by two solidly built rammed earth walls with gateway entrances. The necropolis consists of several offices, halls, stables, other structures as well as an imperial park placed around the tomb mound.

 

The warriors stand guard to the east of the tomb. Up to 5 metres of reddish, sandy soil had accumulated over the site in the two millennia following its construction, but archaeologists found evidence of earlier disturbances at the site. During the excavations near the Mount Li burial mound, archaeologists found several graves dating from the eighteenth and nineteenth centuries, where diggers had apparently struck terracotta fragments. These were discarded as worthless and used along with soil to back fill the excavations.

 

TOMB

The tomb appears to be a hermetically sealed space roughly the size of a football pitch (c. 100 × 75 m). The tomb remains unopened, possibly due to concerns over preservation of its artifacts. For example, after the excavation of the Terracotta Army, the painted surface present on some terracotta figures began to flake and fade. The lacquer covering the paint can curl in fifteen seconds once exposed to Xi'an's dry air and can flake off in just four minutes.

 

EXCAVATION S'ITE

PITS

Four main pits approximately 7 metres deep have been excavated. These are located approximately 1.5 kilometres east of the burial mound. The soldiers within were laid out as if to protect the tomb from the east, where the Qin Emperor's conquered states lay.

 

PIT 1

Pit 1, which is 230 metres long and 62 metres wide, contains the main army of more than 6,000 figures. Pit 1 has eleven corridors, most more than 3 metres wide and paved with small bricks with a wooden ceiling supported by large beams and posts. This design was also used for the tombs of nobles and would have resembled palace hallways when built. The wooden ceilings were covered with reed mats and layers of clay for waterproofing, and then mounded with more soil raising them about 2 to 3 metres above the surrounding ground level when completed.

 

OTHERS

Pit 2 has cavalry and infantry units as well as war chariots and is thought to represent a military guard. Pit 3 is the command post, with high-ranking officers and a war chariot. Pit 4 is empty, perhaps left unfinished by its builders.

 

Some of the figures in Pits 1 and 2 show fire damage, while remains of burnt ceiling rafters have also been found. These, together with the missing weapons, have been taken as evidence of the reported looting by Xiang Yu and the subsequent burning of the site, which is thought to have caused the roof to collapse and crush the army figures below. The terracotta figures currently on display have been restored from the fragments.

 

Other pits that formed the necropolis have also been excavated. These pits lie within and outside the walls surrounding the tomb mound. They variously contain bronze carriages, terracotta figures of entertainers such as acrobats and strongmen, officials, stone armour suits, burial sites of horses, rare animals and labourers, as well as bronze cranes and ducks set in an underground park.

 

WARRIOR FIGURES

TYPES AND APPEARANCE

The terracotta figures are life-sized. They vary in height, uniform, and hairstyle in accordance with rank. Their faces appear to be different for each individual figure; scholars, however, have identified 10 basic face shapes. The figures are of these general types: armored warriors; unarmored infantrymen; cavalrymen who wear a pillbox hat; helmeted drivers of chariots with more armor protection; spear-carrying charioteers; kneeling archers who are armored; standing archers who are not; as well as generals and other lower-ranking officers. There are, however, many variations in the uniforms within the ranks: for example, some may wear shin pads while others not; they may wear either long or short trousers, some of which may be padded; and their body armors vary depending on rank, function, and position in formation. There are also terracotta horses placed among the warrior figures.

 

Originally, the figures were painted with bright pigments, variously coloured pink, red, green, blue, black, brown, white and lilac. The coloured lacquer finish and individual facial features would have given the figures a realistic feel. However, much of the colour coating had flaked off or become greatly faded.

 

Some scholars have speculated a possible Hellenistic link to these sculptures, because of the lack of life-sized and realistic sculptures before the Qin dynasty. They argued that potential Greek influence is particularly evident in some terracotta figures such as those of acrobats, combined with findings of European DNA and rare bronze artifacts made with a lost wax technique known in Greece and Egypt.. However, this idea is disputed by scholars who claim that there is "no substantial evidence at all" for contact between ancient Greeks and Chinese builders of the tomb. They argue that such speculations rest on flawed and old "Eurocentric" ideas that assumed other civilizations were incapable of sophisticated artistry and thus foreign artistry must be seen through western traditions.

 

CONSTRUCTION

The terracotta army figures were manufactured in workshops by government laborers and local craftsmen using local materials. Heads, arms, legs, and torsos were created separately and then assembled by luting the pieces together. When completed, the terracotta figures were placed in the pits in precise military formation according to rank and duty.

 

The faces were created using molds, and at least ten face molds may have been used. Clay was then added after assembly to provide individual facial features to make each figure appear different. It is believed that the warriors' legs were made in much the same way that terracotta drainage pipes were manufactured at the time. This would classify the process as assembly line production, with specific parts manufactured and assembled after being fired, as opposed to crafting one solid piece and subsequently firing it. In those times of tight imperial control, each workshop was required to inscribe its name on items produced to ensure quality control. This has aided modern historians in verifying which workshops were commandeered to make tiles and other mundane items for the terracotta army.

 

WEAPONRY

Most of the figures originally held real weapons, which would have increased their realism. The majority of these weapons were looted shortly after the creation of the army or have rotted away. Despite this, over 40,000 bronze items of weaponry have been recovered, including swords, daggers, spears, lances, battle-axes, scimitars, shields, crossbows, and crossbow triggers. Most of the recovered items are arrowheads, which are usually found in bundles of 100 units. Studies of these arrowheads suggests that they were produced by self-sufficient, autonomous workshops using a process referred to as cellular production or Toyotism. Some weapons were coated with a 10–15 micrometer layer of chromium dioxide before burial that has protected them from any form of decay for the last 2200 years. The swords contain an alloy of copper, tin, and other elements including nickel, magnesium, and cobalt. Some carry inscriptions that date their manufacture to between 245 and 228 BCE, indicating that they were used before burial.

 

SCIENTIFIC RESEARCH

In 2007, scientists at Stanford University and the Advanced Light Source facility in Berkeley, California reported that powder diffraction experiments combined with energy-dispersive X-ray spectroscopy and micro-X-ray fluorescence analysis showed that the process of producing terracotta figures colored with Chinese purple dye consisting of barium copper silicate was derived from the knowledge gained by Taoist alchemists in their attempts to synthesize jade ornaments.

 

Since 2006, an international team of researchers at the UCL Institute of Archaeology have been using analytical chemistry techniques to uncover more details about the production techniques employed in the creation of the Terracotta Army. Using X-ray fluorescence spectrometry of 40,000 bronze arrowheads bundled in groups of 100, the researchers reported that the arrowheads within a single bundle formed a relatively tight cluster that was different from other bundles. In addition, the presence or absence of metal impurities was consistent within bundles. Based on the arrows’ chemical compositions, the researchers concluded that a cellular manufacturing system similar to the one used in a modern Toyota factory, as opposed to a continuous assembly line in the early days of the automobile industry, was employed.

 

Grinding and polishing marks visible under a scanning electron microscope provide evidence for the earliest industrial use of lathes for polishing.

 

EXHIBITIONS

The first exhibition of the figures outside of China was held at National Gallery of Victoria (NGV) in Melbourne in 1982.

 

A collection of 120 objects from the mausoleum and 12 terracotta warriors were displayed at the British Museum in London as its special exhibition "The First Emperor: China's Terracotta Army" from 13 September 2007 to April 2008. This exhibition made 2008 the British Museum's most successful year and made the British Museum the United Kingdom's top cultural attraction between 2007 and 2008. The exhibition brought the most visitors to the museum since the King Tutankhamun exhibition in 1972. It was reported that the 400,000 advance tickets sold out so fast that the museum extended its opening hours until midnight. According to The Times, many people had to be turned away, despite the extended hours. During the day of events to mark the Chinese New Year, the crush was so intense that the gates to the museum had to be shut. The Terracotta Army has been described as the only other set of historic artifacts (along with the remnants of wreck of the RMS Titanic) that can draw a crowd by the name alone.

 

Warriors and other artifacts were exhibited to the public at the Forum de Barcelona in Barcelona between 9 May and 26 September 2004. It was their most successful exhibition ever. The same exhibition was presented at the Fundación Canal de Isabel II in Madrid between October 2004 and January 2005, their most successful ever. From December 2009 to May 2010, the exhibition was shown in the Centro Cultural La Moneda in Santiago de Chile.

 

The exhibition traveled to North America and visited museums such as the Asian Art Museum of San Francisco, Bowers Museum in Santa Ana, California, Houston Museum of Natural Science, High Museum of Art in Atlanta, National Geographic Society Museum in Washington, D.C. and the Royal Ontario Museum in Toronto. Subsequently, the exhibition traveled to Sweden and was hosted in the Museum of Far Eastern Antiquities between 28 August 2010 and 20 January 2011. An exhibition entitled 'The First Emperor – China's Entombed Warriors', presenting 120 artifacts was hosted at the Art Gallery of New South Wales, between 2 December 2010 and 13 March 2011. An exhibition entitled "L'Empereur guerrier de Chine et son armée de terre cuite" ("The Warrior-Emperor of China and his terracotta army"), featuring artifacts including statues from the mausoleum, was hosted by the Montreal Museum of Fine Arts from 11 February 2011 to 26 June 2011. In Italy, from July 2008 to 16 November 2008, five of the warriors of the terracotta army were displayed in Turin at the Museum of Antiquities, and from 16 April 2010 to 5 September 2010 were exposed nine warriors in Milan, at the Royal Palace, at the exhibition entitled "The Two Empires". The group consisted of a horse, a counselor, an archer and six lancers. The "Treasures of Ancient China" exhibition, showcasing two terracotta soldiers and other artifacts, including the Longmen Grottoes Buddhist statues, was held between 19 February 2011 and 7 November 2011 in four locations in India: National Museum of New Delhi, Prince of Wales Museum in Mumbai, Salar Jung Museum in Hyderabad and National Library of India in Kolkata.

 

Soldiers and related items were on display from 15 March 2013 to 17 November 2013, at the Historical Museum of Bern.

 

Several Terracotta Army figures were on display, along with many other objects, in an exhibit entitled "Age of Empires: Chinese Art of the Qin and Han Dynasties" at The Metropolitan Museum of Art in New York City from 3 April 2017, to 16 July 2017 An exhibition featuring ten Terracotta Army figures and other artifacts, "Terracotta Warriors of the First Emperor," was on display at the Pacific Science Center in Seattle, Washington, from 8 April 2017 to 4 September 2017 before traveling to The Franklin Institute in Philadelphia, Pennsylvania, to be exhibited from 30 September 2017 to 4 March 2018 with the addition of augmented reality.

 

An exhibition entitled "China's First Emperor and the Terracotta Warriors" is at the World Museum in Liverpool from 9 February 2018 to 28 October 2018. This is the first time in more than 10 years that the warriors have travelled to the UK.

 

WIKIPEDIA

Paired Triangles Tessellation

Molecule detail.

I have always wanted to refold this- the concept is relatively simple, but very cool.

It collapses cleanly into a square grid, so it could easily be synthesized with other square based concepts.

Designed by me.

Folded out of 31 x 31 grid of 12" tant.

(Left, wall)

 

Amy Balkin

Baltimore, Maryland, 1967. Lives in San Francisco.

 

Today’s CO2 Spot Price

Le prix journalier du CO2

2009

Print on Dibond

100 × 44 cm chaque panneau / each panel

Courtesy the artist

 

During the course of the exhibition, Today’s CO2 Spot Price charts the daily price of carbon dioxide emissions allowances in the world’s largest carbon market, the EU Emissions Trading Scheme. A numbering system is manually updated every morning to show the price in Euros of an entitlement to legally emit one metric tonne of CO2. Polluters—power plants or factories—receive or buy emissions allowances at auctions and trade them as needed to minimize costs. A product of the increasing dominance of the finance sector and the expansion of financial derivatives that emerged in the 1970s, the carbon market ‘fix’ has abstracted the qualitative problem of climate change mitigation into a commodity market based on a molecule treated as the singular cause. There is a trend towards emissions that can be lucratively ‘avoided’, while there has been little effect on structural fossil fuel dependence. In this perspective, global warming is a market failure that can be corrected by governing the atmosphere via an economic instrument with no real material or historical reference.

 

(Floor)

 

Pep Vidal

Barcelona, 1980. Lives there.

 

Árbol de 19 metros cortado en 7 volúmenes iguales

Arbre de 19 mètres coupé en 7 volumes égaux

19 metre tree cut in 7 equal volumes

2015

Dimensions variables / Variable dimensions

 

Algunos cambios infinitesimales en un sistema

Quelques infimes changements dans un système

Some infinitesimal changes in a sysrtem

2017

Dessin sur papier / Drawing on paper

21 × 29,7 cm

 

Courtesy of the artist and adn galeria

 

Pep Vidal is an artist and a mathematician with a special interest in infinitesimals (things that are so small that it is not possible for humans to measure them) and false randomness (things that only seem variable and unpredictable, yet can be explained by very complex or as yet unknown laws). A poplar tree had been cut down on the property of a friend of the artist near Lleida, Catalunya, as it was at risk of falling onto the house. Surprised by the sheer mass and intricacy of the tree’s forms, Vidal decided to develop a more reasoned way to perceive it—by ‘knowing’ it as rigorously as possible from a do-it-yourself empirical perspective. During six days, Vidal and a colleague calculated the volume of every branch of the tree using measuring tapes and calipers, accepting an allowable 3% error. This information was fed into software to create a 3D model of the tree that was used to determine the position of six cuts that divided its bulk into precisely equal volumes.

 

This somewhat absurd exercise addresses the paradox that the practices of standardization, quantification and mathematization that have given rise to extraordinary value and knowledge over the last centuries, also represent the advance of a perspective that has allowed the commodification and management of nature. Vidal’s wooden sculpture exhibits the results of applying classical geometry to nevertheless try to compute something largely immeasurable and unexplainable. His analysis of an otherwise unremarkable tree ends up confronting the plant’s utter uniqueness. The cleft poplar was first exhibited in a gallery in Barcelona in 2015, and has since been lying in the open air in a woodland near Girona, Catalunya, before being transported to Bordeaux for this exhibition.

 

(Background, wall)

 

Lucas Ihlein and Louise Kate Anderson

Sydney, 1975. Lives in Wollongong, New South Wales; Sydney, 1987. Lives there.

 

“MCA 3rd floor power usage audit” from Environmental Audit

“Audit sur la consommation énergétique du deuxième étage de MCA” de Audit environemental

2010

Impression lithographique Offset / Offset lithographic print

70 × 100 cm

 

Lucas Ihlein

“Ins and Outs”, from Environmental Audit

“Les tenants et les aboutissants” de Audit environemental

2010

Impression lithographique Offset / Offset lithographic print

70 × 100 cm

 

Lucas Ihlein and Louise Kate Anderson

“3rd Floor Power Usage 2” from Environmental Audit

“Consommation énergétique 2 du deuxième étage” de Audit environemental

2010

Impression lithographique Offset / Offset lithographic print

70 × 100 cm

 

Lucas Ihlein

Under Ground

Sous Terre

2010

Lithographie Offset sur papier / Offset lithography on paper

37 × 39 cm

 

Courtesy the artist and Big Fag Press, Sydney

 

As his contribution to the 2010 exhibition In the Balance: Art for a Changing World at the Museum of Contemporary Art Australia in Sydney, Lucas Ihlein set out to conduct an informal environmental audit of the same exhibition, described as a survey of artists “engaged with pressing environmental issues and debates”. Ihlein was curious about the ecological footprint of the exhibition itself—the energy and resources required to stage and sustain it—and more elusively, whether its benefits outweighed its costs. Working from a black-board lined ‘audit room’ in the galleries, and roaming the museum to converse with staff and visitors over a period of four months, Ihlein approached the process, not as a professional consultant, but as an artist-layman who was learning as well as doubting in public.

 

The process of Environmental Audit was documented via a succession of blog posts by the artist (at www.environmental-audit.net), and ten diagrammatic posters, made in collaboration with Louise Kate Anderson, that attempted to visually synthesize the complexities of the exhibition as a series of material and immaterial flows. Extending beyond energy calculations and efforts to optimize the institution’s recycling practices, the project also came up against some of the ambiguities of green economics. How can knowledge be valued or the ‘services’ rendered by natural systems be accounted for? Moreover, do audits that assess carbon emissions and put a price on them carelessly repackage the biosphere as a financial market?

 

UNDER GROUND was drawn for the cover of the June 2010 edition of the Australian art magazine Artlink that was guest-edited by Ihlein. It maps the historical and symbolic crossovers of ‘the underground’ as a term describing both unofficial, illicit, anti-establishment culture, as well as a literal subterranean space or network.

 

(Right, wall)

 

Lara Almarcegui

Zaragoza, 1972. Lives in Rotterdam.

 

Construction materials / Matériaux de construction, MAC Santiago de Chile, 2005

Construction materials / Matériaux de construction, IFEMA Fair, Madrid, 2007

Construction materials / Matériaux de construction, Fondazione Sandretto Re Rebaudengo, Turin, 2008

Construction materials / Matériaux de construction, MARCO Vigo, 2008

Construction materials / Matériaux de construction, Centre d’Art la Galerie, Noisy-le-Sec, 2008

Impression noir et blanc sur papier vinyl / Black and white print on vinyl paper

118,9 × 168,2 cm chaque / each

Courtesy the artist and Ellen de Bruijne Projects, Amsterdam

 

Lara Almarcegui has made a series of inventories that involve studying and calculating the weights of the principal construction materials that comprise whole museum and art-fair buildings, as well as entire cities. Calculations are made by compiling known measurements from district plans and architectural drawings; when this information has not been readily available, structures have been surveyed directly and inventoried systematically. The resultant material enumerations are ordered by descending total weight, as if the raw ingredients of the particular building before it was built, or an indication of its return to primary components on its destruction.

 

Text: Latitudes

Photo courtesy: Latitudes/RK.

Bombyx mori, the domestic silkmoth, is an insect from the moth family Bombycidae. It is the closest relative of Bombyx mandarina, the wild silkmoth. The silkworm is the larva or caterpillar of a silkmoth. It is an economically important insect, being a primary producer of silk. A silkworm's preferred food is white mulberry leaves, though they may eat other mulberry species and even osage orange. Domestic silkmoths are closely dependent on humans for reproduction, as a result of millennia of selective breeding. Wild silkmoths are different from their domestic cousins as they have not been selectively bred; they are not as commercially viable in the production of silk.

 

Sericulture, the practice of breeding silkworms for the production of raw silk, has been under way for at least 5,000 years in China, whence it spread to India, Korea, Japan, and the West. The silkworm was domesticated from the wild silkmoth Bombyx mandarina, which has a range from northern India to northern China, Korea, Japan, and the far eastern regions of Russia. The domesticated silkworm derives from Chinese rather than Japanese or Korean stock.

 

Silkworms were unlikely to have been domestically bred before the Neolithic age. Before then, the tools to manufacture quantities of silk thread had not been developed. The domesticated B. mori and the wild B. mandarina can still breed and sometimes produce hybrids.

 

Domestic silkmoths are very different from most members in the genus Bombyx; not only have they lost the ability to fly, but their color pigments are also lost.

 

TYPES

Mulberry silkworms can be categorized into three different but connected groups or types. The major groups of silkworms fall under the univoltine ("uni-"=one, "voltine"=brood frequency) and bivoltine categories. The univoltine breed is generally linked with the geographical area within greater Europe. The eggs of this type hibernate during winter due to the cold climate, and cross-fertilize only by spring, generating silk only once annually. The second type is called bivoltine and is normally found in China, Japan, and Korea. The breeding process of this type takes place twice annually, a feat made possible through the slightly warmer climates and the resulting two life cycles. The polyvoltine type of mulberry silkworm can only be found in the tropics. The eggs are laid by female moths and hatch within nine to 12 days, so the resulting type can have up to eight separate life cycles throughout the year.

 

PROCESS

Eggs take about 14 days to hatch into larvae, which eat continuously. They have a preference for white mulberry, having an attraction to the mulberry odorant cis-jasmone. They are not monophagous since they can eat other species of Morus, as well as some other Moraceae, mostly Osage orange. They are covered with tiny black hairs. When the color of their heads turns darker, it indicates they are about to molt. After molting, the larval phase of the silkworms emerge white, naked, and with little horns on their backs.

 

After they have molted four times, their bodies become slightly yellow, and the skin becomes tighter. The larvae then prepare to enter the pupal phase of their lifecycle, and enclose themselves in a cocoon made up of raw silk produced by the salivary glands. The final molt from larva to pupa takes place within the cocoon, which provides a vital layer of protection during the vulnerable, almost motionless pupal state. Many other Lepidoptera produce cocoons, but only a few — the Bombycidae, in particular the genus Bombyx, and the Saturniidae, in particular the genus Antheraea — have been exploited for fabric production.

 

If the animal is allowed to survive after spinning its cocoon and through the pupal phase of its lifecycle, it releases proteolytic enzymes to make a hole in the cocoon so it can emerge as an adult moth. These enzymes are destructive to the silk and can cause the silk fibers to break down from over a mile in length to segments of random length, which seriously reduces the value of the silk threads, but not silk cocoons used as "stuffing" available in China and elsewhere for doonas, jackets etc. To prevent this, silkworm cocoons are boiled. The heat kills the silkworms and the water makes the cocoons easier to unravel. Often, the silkworm itself is eaten.

 

As the process of harvesting the silk from the cocoon kills the larva, sericulture has been criticized by animal welfare and rights activists. Mahatma Gandhi was critical of silk production based on the Ahimsa philosophy "not to hurt any living thing". This led to Gandhi's promotion of cotton spinning machines, an example of which can be seen at the Gandhi Institute. He also promoted Ahimsa silk, wild silk made from the cocoons of wild and semi-wild silk moths.

The moth – the adult phase of the lifecycle – is not capable of functional flight, in contrast to the wild B. mandarina and other Bombyx species, whose males fly to meet females and for evasion from predators. Some may emerge with the ability to lift off and stay airborne, but sustained flight cannot be achieved. This is because their bodies are too big and heavy for their small wings. However, some silkmoths can still fly. Silkmoths have a wingspan of 3–5 cm and a white, hairy body. Females are about two to three times bulkier than males (for they are carrying many eggs) but are similarly colored. Adult Bombycidae have reduced mouthparts and do not feed, though a human caretaker can feed them.

 

COCOON

The cocoon is made of a thread of raw silk from 300 to about 900 m long. The fibers are very fine and lustrous, about 10 μm in diameter. About 2,000 to 3,000 cocoons are required to make a pound of silk (0.4 kg). At least 70 million pounds of raw silk are produced each year, requiring nearly 10 billion cocoons.

 

RESEARCH

Due to its small size and ease of culture, the silkworm has become a model organism in the study of lepidopteran and arthropod biology. Fundamental findings on pheromones, hormones, brain structures, and physiology have been made with the silkworm. One example of this was the molecular identification of the first known pheromone, bombykol, which required extracts from 500,000 individuals, due to the very small quantities of pheromone produced by any individual worm.

 

Currently, research is focusing on genetics of silkworms and the possibility of genetic engineering. Many hundreds of strains are maintained, and over 400 Mendelian mutations have been described. Another source suggests 1,000 inbred domesticated strains are kept worldwide. One useful development for the silk industry is silkworms that can feed on food other than mulberry leaves, including an artificial diet. Research on the genome also raises the possibility of genetically engineering silkworms to produce proteins, including pharmacological drugs, in the place of silk proteins. Bombyx mori females are also one of the few organisms with homologous chromosomes held together only by the synaptonemal complex (and not crossovers) during meiosis.

 

Kraig Biocraft Laboratories has used research from the Universities of Wyoming and Notre Dame in a collaborative effort to create a silkworm that is genetically altered to produce spider silk. In September 2010, the effort was announced as successful.

 

Researchers at Tufts developed scaffolds made of spongy silk that feel and look similar to human tissue. They are implanted during reconstructive surgery to support or restructure damaged ligaments, tendons, and other tissue. They also created implants made of silk and drug compounds which can be implanted under the skin for steady and gradual time release of medications.

 

Researchers at the MIT Media Lab experimented with silkworms to see what they would weave when left on surfaces with different curvatures. They found that on particularly straight webs of lines, the worms would connect neighboring lines with silk, weaving directly onto the given shape. Using this knowledge they built a silk pavilion with 6,500 silkworms over a number of days.

 

Silkworms have been used in antibiotics discovery as they have several advantageous traits compared to other invertebrate models. Antibiotics such as lysocin E, a non-ribosomal peptide synthesized by Lysobacter sp. RH2180-5 and GPI0363 are among the notable antibiotics discovered using silkworms.

 

ON THE MOON

As of January 2, 2019, China's Chang'e-4 lander brought silkworms to the moon. A small microcosm 'tin' in the lander contained A. thaliana, seeds of potatoes, as well as silkworm eggs. As plants would support the silkworms with oxygen, and the silkworms would in turn provide the plants with necessary carbon dioxide and nutrients through their waste, researchers will evaluate whether plants successfully perform photosynthesis, and grow and bloom in the lunar environment.

 

DOMESTICATION

The domesticated form, compared to the wild form, has increased cocoon size, body size, growth rate, and efficiency of its digestion. It has gained tolerance to human presence and handling, and also to living in crowded conditions. The domesticated moth cannot fly, so it needs human assistance in finding a mate, and it lacks fear of potential predators. The native color pigments are also lost, so the domesticated moths are leucistic since camouflage isn't useful when they only live in captivity. These changes have made the domesticated strains entirely dependent upon humans for survival. The eggs are kept in incubators to aid in their hatching.

 

SILKWORM BREEDING

Silkworms were first domesticated in China over 5,000 years ago. Since then, the silk production capacity of the species has increased nearly tenfold. The silkworm is one of the few organisms wherein the principles of genetics and breeding were applied to harvest maximum outpu. It is second only to maize in exploiting the principles of heterosis and cross breeding.Silkworm breeding is aimed at the overall improvement of silkworm from a commercial point of view. The major objectives are improving fecundity (the egg-laying capacity of a breed), the health of larvae, quantity of cocoon and silk production, and disease resistance. Healthy larvae lead to a healthy cocoon crop. Health is dependent on factors such as better pupation rate, fewer dead larvae in the mountage, shorter larval duration (shorter larval duration lessens the chance of infection) and bluish-tinged fifth-instar larvae (which are healthier than the reddish-brown ones). Quantity of cocoon and silk produced are directly related to the pupation rate and larval weight. Healthier larvae have greater pupation rates and cocoon weights. Quality of cocoon and silk depends on a number of factors including genetics.

Hobby raising and school projects

 

In the US, teachers may sometimes introduce the insect life cycle to their students by raising silkworms in the classroom as a science project. Students have a chance to observe complete life cycles of insect from egg stage to larvae, pupa, moth.

 

The silkworm has been raised as a hobby in countries such as China, South Africa, Zimbabwe, and Iran. Children often pass on the eggs, creating a non-commercial population. The experience provides children with the opportunity to witness the life cycle of silkworms. The practice of raising silkworms by children as pets has, in non-silk farming South Africa, led to the development of extremely hardy landraces of silkworms, because they are invariably subjected to hardships not encountered by commercially farmed members of the species. However, these worms, not being selectively bred as such, are possibly inferior in silk production and may exhibit other undesirable traits.

 

GENOME

The full genome of the silkworm was published in 2008 by the International Silkworm Genome Consortium. Draft sequences were published in 2004.

 

The genome of the silkworm is mid-range with a genome size around 432 megabase pairs.

 

High genetic variability has been found in domestic lines of silkworms, though this is less than that among wild silkmoths (about 83 percent of wild genetic variation). This suggests a single event of domestication, and that it happened over a short period of time, with a large number of wild worms having been collected for domestication. Major questions, however, remain unanswered: "Whether this event was in a single location or in a short period of time in several locations cannot be deciphered from the data". Research also has yet to identify the area in China where domestication arose.

 

CUISINE

Silkworm pupae are eaten in some cultures.

 

In Assam, they are boiled for extracting silk and the boiled pupae are eaten directly with salt or fried with chilli pepper or herbs as a snack or dish.

In Korea, they are boiled and seasoned to make a popular snack food known as beondegi (번데기).

In China, street vendors sell roasted silkworm pupae.

In Japan, silkworms are usually served as a tsukudani (佃煮), i.e., boiled in a sweet-sour sauce made with soy sauce and sugar.

In Vietnam, this is known as con nhộng.

In Thailand, roasted silkworm is often sold at open markets. They are also sold as packaged snacks.

Silkworms have also been proposed for cultivation by astronauts as space food on long-term missions.

 

SILKWORM LEGENDS

In China, a legend indicates the discovery of the silkworm's silk was by an ancient empress Lei Zu, the wife of the Yellow Emperor and the daughter of XiLing-Shi. She was drinking tea under a tree when a silk cocoon fell into her tea. As she picked it out and started to wrap the silk thread around her finger, she slowly felt a warm sensation. When the silk ran out, she saw a small larva. In an instant, she realized this caterpillar larva was the source of the silk. She taught this to the people and it became widespread. Many more legends about the silkworm are told.

 

The Chinese guarded their knowledge of silk, but, according to one story, a Chinese princess given in marriage to a Khotan prince brought to the oasis the secret of silk manufacture, "hiding silkworms in her hair as part of her dowry", probably in the first half of the first century AD. About AD 550, Christian monks are said to have smuggled silkworms, in a hollow stick, out of China and sold the secret to the Byzantine Empire.

 

SILKWORM DISEASES

Beauveria bassiana, a fungus, destroys the entire silkworm body. This fungus usually appears when silkworms are raised under cold conditions with high humidity. This disease is not passed on to the eggs from moths, as the infected silkworms cannot survive to the moth stage. This fungus can spread to other insects.

Grasserie, also known as nuclear polyhedrosis, milky disease, or hanging disease, is caused by infection with the Bombyx mori nuclear polyhedrosis virus. If grasserie is observed in the chawkie stage, then the chawkie larvae must have been infected while hatching or during chawkie rearing. Infected eggs can be disinfected by cleaning their surfaces prior to hatching. Infections can occur as a result of improper hygiene in the chawkie rearing house. This disease develops faster in early instar rearing.

Pébrine is a disease caused by a parasitic microsporidian, N. bombycis. Diseased larvae show slow growth, undersized, pale and flaccid bodies, and poor appetite. Tiny black spots appear on larval integument. Additionally, dead larvae remain rubbery and do not undergo putrefaction after death. N. bombycis kills 100% of silkworms hatched from infected eggs. This disease can be carried over from worms to moths, then eggs and worms again. This microsporidium comes from the food the silkworms eat. Mother moths pass the disease to the eggs, and 100% of worms hatching from the diseased eggs will die in their worm stage. To prevent this disease, it is extremely important to rule out all eggs from infected moths by checking the moth's body fluid under a microscope.

Flacherie infected silkworms look weak and are colored dark brown before they die. The disease destroys the larva's gut and is caused by viruses or poisonous food.

Several diseases caused by a variety of funguses are collectively named Muscardine.

 

WIKIPEDIA

. . . look at the faces: every soldier has a different face! Not two are similar!

______________________________________

 

The Terracotta Army is a collection of terracotta sculptures depicting the armies of Qin Shi Huang, the first Emperor of China. It is a form of funerary art buried with the emperor in 210–209 BCE with the purpose of protecting the emperor in his afterlife.

 

The figures, dating from approximately the late third century BCE, were discovered in 1974 by local farmers in Lintong County, outside Xi'an, Shaanxi, China. The figures vary in height according to their roles, with the tallest being the generals. The figures include warriors, chariots and horses. Estimates from 2007 were that the three pits containing the Terracotta Army held more than 8,000 soldiers, 130 chariots with 520 horses, and 150 cavalry horses, the majority of which remained buried in the pits near Qin Shi Huang's mausoleum. Other terracotta non-military figures were found in other pits, including officials, acrobats, strongmen, and musicians.

 

HISTORY

The construction of the tomb was described by historian Sima Qian (145–90 BCE) in his most noted work Shiji, written a century after the mausoleum's completion. Work on the mausoleum began in 246 BCE soon after Emperor Qin (then aged 13) ascended the throne, and the project eventually involved 700,000 workers. Geographer Li Daoyuan, writing six centuries after the First Emperor's death, recorded in Shui Jing Zhu that Mount Li was a favoured location due to its auspicious geology, "famed for its jade mines, its northern side was rich in gold, and its southern side rich in beautiful jade; the First Emperor, covetous of its fine reputation, therefore chose to be buried there". Sima Qian wrote that the First Emperor was buried with palaces, towers, officials, valuable artifacts and wondrous objects. According to this account, 100 flowing rivers were simulated using mercury, and above them the ceiling was decorated with heavenly bodies below which were the features of the land. Some translations of this passage refer to "models" or "imitations"; however, those words were not used in the original text, which makes no mention of the terracotta army. High levels of mercury were found in the soil of the tomb mound, giving credence to Sima Qian's account. Later historical accounts suggested that the tomb had been looted by Xiang Yu, a contender for the throne after the death of the first emperor. However, there are indications that the tomb may not have been plundered.

 

DISCOVERY

The Terracotta Army was discovered on 29 March 1974 by farmers digging a water well approximately 1.5 kilometres east of the Qin Emperor's tomb mound at Mount Li (Lishan), a region riddled with underground springs and watercourses. For centuries, occasional reports mentioned pieces of terracotta figures and fragments of the Qin necropolis – roofing tiles, bricks and chunks of masonry. This discovery prompted Chinese archaeologists, including Zhao Kangmin, to investigate, revealing the largest pottery figurine group ever found. A museum complex has since been constructed over the area, the largest pit being enclosed by a roofed structure.

 

NECROPOLIS

The Terracotta Army is part of a much larger necropolis. Ground-penetrating radar and core sampling have measured the area to be approximately 98 square kilometers.

 

The necropolis was constructed as a microcosm of the emperor's imperial palace or compound, and covers a large area around the tomb mound of the first emperor. The earthen tomb mound is located at the foot of Mount Li and built in a pyramidal shape, and is surrounded by two solidly built rammed earth walls with gateway entrances. The necropolis consists of several offices, halls, stables, other structures as well as an imperial park placed around the tomb mound.

 

The warriors stand guard to the east of the tomb. Up to 5 metres of reddish, sandy soil had accumulated over the site in the two millennia following its construction, but archaeologists found evidence of earlier disturbances at the site. During the excavations near the Mount Li burial mound, archaeologists found several graves dating from the eighteenth and nineteenth centuries, where diggers had apparently struck terracotta fragments. These were discarded as worthless and used along with soil to back fill the excavations.

 

TOMB

The tomb appears to be a hermetically sealed space roughly the size of a football pitch (c. 100 × 75 m). The tomb remains unopened, possibly due to concerns over preservation of its artifacts. For example, after the excavation of the Terracotta Army, the painted surface present on some terracotta figures began to flake and fade. The lacquer covering the paint can curl in fifteen seconds once exposed to Xi'an's dry air and can flake off in just four minutes.

 

EXCAVATION S'ITE

PITS

Four main pits approximately 7 metres deep have been excavated. These are located approximately 1.5 kilometres east of the burial mound. The soldiers within were laid out as if to protect the tomb from the east, where the Qin Emperor's conquered states lay.

 

PIT 1

Pit 1, which is 230 metres long and 62 metres wide, contains the main army of more than 6,000 figures. Pit 1 has eleven corridors, most more than 3 metres wide and paved with small bricks with a wooden ceiling supported by large beams and posts. This design was also used for the tombs of nobles and would have resembled palace hallways when built. The wooden ceilings were covered with reed mats and layers of clay for waterproofing, and then mounded with more soil raising them about 2 to 3 metres above the surrounding ground level when completed.

 

OTHERS

Pit 2 has cavalry and infantry units as well as war chariots and is thought to represent a military guard. Pit 3 is the command post, with high-ranking officers and a war chariot. Pit 4 is empty, perhaps left unfinished by its builders.

 

Some of the figures in Pits 1 and 2 show fire damage, while remains of burnt ceiling rafters have also been found. These, together with the missing weapons, have been taken as evidence of the reported looting by Xiang Yu and the subsequent burning of the site, which is thought to have caused the roof to collapse and crush the army figures below. The terracotta figures currently on display have been restored from the fragments.

 

Other pits that formed the necropolis have also been excavated. These pits lie within and outside the walls surrounding the tomb mound. They variously contain bronze carriages, terracotta figures of entertainers such as acrobats and strongmen, officials, stone armour suits, burial sites of horses, rare animals and labourers, as well as bronze cranes and ducks set in an underground park.

 

WARRIOR FIGURES

TYPES AND APPEARANCE

The terracotta figures are life-sized. They vary in height, uniform, and hairstyle in accordance with rank. Their faces appear to be different for each individual figure; scholars, however, have identified 10 basic face shapes. The figures are of these general types: armored warriors; unarmored infantrymen; cavalrymen who wear a pillbox hat; helmeted drivers of chariots with more armor protection; spear-carrying charioteers; kneeling archers who are armored; standing archers who are not; as well as generals and other lower-ranking officers. There are, however, many variations in the uniforms within the ranks: for example, some may wear shin pads while others not; they may wear either long or short trousers, some of which may be padded; and their body armors vary depending on rank, function, and position in formation. There are also terracotta horses placed among the warrior figures.

 

Originally, the figures were painted with bright pigments, variously coloured pink, red, green, blue, black, brown, white and lilac. The coloured lacquer finish and individual facial features would have given the figures a realistic feel. However, much of the colour coating had flaked off or become greatly faded.

 

Some scholars have speculated a possible Hellenistic link to these sculptures, because of the lack of life-sized and realistic sculptures before the Qin dynasty. They argued that potential Greek influence is particularly evident in some terracotta figures such as those of acrobats, combined with findings of European DNA and rare bronze artifacts made with a lost wax technique known in Greece and Egypt.. However, this idea is disputed by scholars who claim that there is "no substantial evidence at all" for contact between ancient Greeks and Chinese builders of the tomb. They argue that such speculations rest on flawed and old "Eurocentric" ideas that assumed other civilizations were incapable of sophisticated artistry and thus foreign artistry must be seen through western traditions.

 

CONSTRUCTION

The terracotta army figures were manufactured in workshops by government laborers and local craftsmen using local materials. Heads, arms, legs, and torsos were created separately and then assembled by luting the pieces together. When completed, the terracotta figures were placed in the pits in precise military formation according to rank and duty.

 

The faces were created using molds, and at least ten face molds may have been used. Clay was then added after assembly to provide individual facial features to make each figure appear different. It is believed that the warriors' legs were made in much the same way that terracotta drainage pipes were manufactured at the time. This would classify the process as assembly line production, with specific parts manufactured and assembled after being fired, as opposed to crafting one solid piece and subsequently firing it. In those times of tight imperial control, each workshop was required to inscribe its name on items produced to ensure quality control. This has aided modern historians in verifying which workshops were commandeered to make tiles and other mundane items for the terracotta army.

 

WEAPONRY

Most of the figures originally held real weapons, which would have increased their realism. The majority of these weapons were looted shortly after the creation of the army or have rotted away. Despite this, over 40,000 bronze items of weaponry have been recovered, including swords, daggers, spears, lances, battle-axes, scimitars, shields, crossbows, and crossbow triggers. Most of the recovered items are arrowheads, which are usually found in bundles of 100 units. Studies of these arrowheads suggests that they were produced by self-sufficient, autonomous workshops using a process referred to as cellular production or Toyotism. Some weapons were coated with a 10–15 micrometer layer of chromium dioxide before burial that has protected them from any form of decay for the last 2200 years. The swords contain an alloy of copper, tin, and other elements including nickel, magnesium, and cobalt. Some carry inscriptions that date their manufacture to between 245 and 228 BCE, indicating that they were used before burial.

 

SCIENTIFIC RESEARCH

In 2007, scientists at Stanford University and the Advanced Light Source facility in Berkeley, California reported that powder diffraction experiments combined with energy-dispersive X-ray spectroscopy and micro-X-ray fluorescence analysis showed that the process of producing terracotta figures colored with Chinese purple dye consisting of barium copper silicate was derived from the knowledge gained by Taoist alchemists in their attempts to synthesize jade ornaments.

 

Since 2006, an international team of researchers at the UCL Institute of Archaeology have been using analytical chemistry techniques to uncover more details about the production techniques employed in the creation of the Terracotta Army. Using X-ray fluorescence spectrometry of 40,000 bronze arrowheads bundled in groups of 100, the researchers reported that the arrowheads within a single bundle formed a relatively tight cluster that was different from other bundles. In addition, the presence or absence of metal impurities was consistent within bundles. Based on the arrows’ chemical compositions, the researchers concluded that a cellular manufacturing system similar to the one used in a modern Toyota factory, as opposed to a continuous assembly line in the early days of the automobile industry, was employed.

 

Grinding and polishing marks visible under a scanning electron microscope provide evidence for the earliest industrial use of lathes for polishing.

 

EXHIBITIONS

The first exhibition of the figures outside of China was held at National Gallery of Victoria (NGV) in Melbourne in 1982.

 

A collection of 120 objects from the mausoleum and 12 terracotta warriors were displayed at the British Museum in London as its special exhibition "The First Emperor: China's Terracotta Army" from 13 September 2007 to April 2008. This exhibition made 2008 the British Museum's most successful year and made the British Museum the United Kingdom's top cultural attraction between 2007 and 2008. The exhibition brought the most visitors to the museum since the King Tutankhamun exhibition in 1972. It was reported that the 400,000 advance tickets sold out so fast that the museum extended its opening hours until midnight. According to The Times, many people had to be turned away, despite the extended hours. During the day of events to mark the Chinese New Year, the crush was so intense that the gates to the museum had to be shut. The Terracotta Army has been described as the only other set of historic artifacts (along with the remnants of wreck of the RMS Titanic) that can draw a crowd by the name alone.

 

Warriors and other artifacts were exhibited to the public at the Forum de Barcelona in Barcelona between 9 May and 26 September 2004. It was their most successful exhibition ever. The same exhibition was presented at the Fundación Canal de Isabel II in Madrid between October 2004 and January 2005, their most successful ever. From December 2009 to May 2010, the exhibition was shown in the Centro Cultural La Moneda in Santiago de Chile.

 

The exhibition traveled to North America and visited museums such as the Asian Art Museum of San Francisco, Bowers Museum in Santa Ana, California, Houston Museum of Natural Science, High Museum of Art in Atlanta, National Geographic Society Museum in Washington, D.C. and the Royal Ontario Museum in Toronto. Subsequently, the exhibition traveled to Sweden and was hosted in the Museum of Far Eastern Antiquities between 28 August 2010 and 20 January 2011. An exhibition entitled 'The First Emperor – China's Entombed Warriors', presenting 120 artifacts was hosted at the Art Gallery of New South Wales, between 2 December 2010 and 13 March 2011. An exhibition entitled "L'Empereur guerrier de Chine et son armée de terre cuite" ("The Warrior-Emperor of China and his terracotta army"), featuring artifacts including statues from the mausoleum, was hosted by the Montreal Museum of Fine Arts from 11 February 2011 to 26 June 2011. In Italy, from July 2008 to 16 November 2008, five of the warriors of the terracotta army were displayed in Turin at the Museum of Antiquities, and from 16 April 2010 to 5 September 2010 were exposed nine warriors in Milan, at the Royal Palace, at the exhibition entitled "The Two Empires". The group consisted of a horse, a counselor, an archer and six lancers. The "Treasures of Ancient China" exhibition, showcasing two terracotta soldiers and other artifacts, including the Longmen Grottoes Buddhist statues, was held between 19 February 2011 and 7 November 2011 in four locations in India: National Museum of New Delhi, Prince of Wales Museum in Mumbai, Salar Jung Museum in Hyderabad and National Library of India in Kolkata.

 

Soldiers and related items were on display from 15 March 2013 to 17 November 2013, at the Historical Museum of Bern.

 

Several Terracotta Army figures were on display, along with many other objects, in an exhibit entitled "Age of Empires: Chinese Art of the Qin and Han Dynasties" at The Metropolitan Museum of Art in New York City from 3 April 2017, to 16 July 2017 An exhibition featuring ten Terracotta Army figures and other artifacts, "Terracotta Warriors of the First Emperor," was on display at the Pacific Science Center in Seattle, Washington, from 8 April 2017 to 4 September 2017 before traveling to The Franklin Institute in Philadelphia, Pennsylvania, to be exhibited from 30 September 2017 to 4 March 2018 with the addition of augmented reality.

 

An exhibition entitled "China's First Emperor and the Terracotta Warriors" is at the World Museum in Liverpool from 9 February 2018 to 28 October 2018. This is the first time in more than 10 years that the warriors have travelled to the UK.

 

WIKIPEDIA

. . . the second most expensive spice after saffron

___________________

 

Vanilla is a flavor derived from orchids of the genus Vanilla, primarily from the Mexican species, flat-leaved vanilla (V. planifolia). The word vanilla, derived from the diminutive of the Spanish word vaina (vaina itself meaning sheath or pod), translates simply as "little pod". Pre-Columbian Mesoamerican people cultivated the vine of the vanilla orchid, called tlilxochitl by the Aztecs. Spanish conquistador Hernán Cortés is credited with introducing both vanilla and chocolate to Europe in the 1520s.

 

Initial attempts to cultivate vanilla outside Mexico and Central America proved futile because of the symbiotic relationship between the vanilla orchid and its natural pollinator, the local species of Melipona bee. Pollination is required to set the fruit from which the flavoring is derived. In 1837, Belgian botanist Charles François Antoine Morren discovered this fact and pioneered a method of artificially pollinating the plant. The method proved financially unworkable and was not deployed commercially. In 1841, Edmond Albius, a slave who lived on the French island of Réunion in the Indian Ocean, discovered at the age of 12 that the plant could be hand-pollinated. Hand-pollination allowed global cultivation of the plant.

 

Three major species of vanilla currently are grown globally, all of which derive from a species originally found in Mesoamerica, including parts of modern-day Mexico. The various subspecies are Vanilla planifolia (syn. V. fragrans), grown on Madagascar, Réunion, and other tropical areas along the Indian Ocean; V. tahitensis, grown in the South Pacific; and V. pompona, found in the West Indies, and Central and South America. The majority of the world's vanilla is the V. planifolia species, more commonly known as Bourbon vanilla (after the former name of Réunion, Île Bourbon) or Madagascar vanilla, which is produced in Madagascar and neighboring islands in the southwestern Indian Ocean, and in Indonesia. Leptotes bicolor is used in the same way in South America.

 

Vanilla is the second most expensive spice after saffron, because growing the vanilla seed pods is labor-intensive. Despite the expense, vanilla is highly valued for its flavor, which author Frederic Rosengarten, Jr. described in The Book of Spices as "pure, spicy, and delicate"; he called its complex floral aroma a "peculiar bouquet". As a result, vanilla is widely used in both commercial and domestic baking, perfume manufacture and aromatherapy.

 

HISTORY

The Totonac people, who inhabit the East Coast of Mexico in the present-day state of Veracruz, were the first to cultivate vanilla. According to Totonac mythology, the tropical orchid was born when Princess Xanat, forbidden by her father from marrying a mortal, fled to the forest with her lover. The lovers were captured and beheaded. Where their blood touched the ground, the vine of the tropical orchid grew.

 

In the 15th century, Aztecs invading from the central highlands of Mexico conquered the Totonacs, and soon developed a taste for the vanilla pods. They named the fruit tlilxochitl, or "black flower", after the matured fruit, which shrivels and turns black shortly after it is picked. Subjugated by the Aztecs, the Totonacs paid tribute by sending vanilla fruit to the Aztec capital, Tenochtitlan.

 

Until the mid-19th century, Mexico was the chief producer of vanilla. In 1819, however, French entrepreneurs shipped vanilla fruits to the islands of Réunion and Mauritius in hopes of producing vanilla there. After Edmond Albius discovered how to pollinate the flowers quickly by hand, the pods began to thrive. Soon, the tropical orchids were sent from Réunion Island to the Comoros Islands Seychelles and Madagascar, along with instructions for pollinating them. By 1898, Madagascar, Réunion, and the Comoros Islands produced 200 metric tons of vanilla beans, about 80% of world production. According to the United Nations Food and Agriculture Organisation, Indonesia is currently responsible for the vast majority of the world's Bourbon vanilla production and 58% of the world total vanilla fruit production.

 

The market price of vanilla rose dramatically in the late 1970s after a tropical cyclone ravaged key croplands. Prices remained high through the early 1980s despite the introduction of Indonesian vanilla. In the mid-1980s, the cartel that had controlled vanilla prices and distribution since its creation in 1930 disbanded. Prices dropped 70% over the next few years, to nearly US$20 per kilogram; prices rose sharply again after tropical cyclone Hudah struck Madagascar in April 2000. The cyclone, political instability, and poor weather in the third year drove vanilla prices to an astonishing US$500 per kilogram in 2004, bringing new countries into the vanilla industry. A good crop, coupled with decreased demand caused by the production of imitation vanilla, pushed the market price down to the $40 per kilogram range in the middle of 2005. By 2010, prices were down to US$20/per kilo.

 

Madagascar (especially the fertile Sava region) accounts for much of the global production of vanilla. Mexico, once the leading producer of natural vanilla with an annual yield of 500 tons, produced only 10 tons of vanilla in 2006. An estimated 95% of "vanilla" products are artificially flavored with vanillin derived from lignin instead of vanilla fruits.

 

ETYMOLOGY

Vanilla was completely unknown in the Old World before Cortés. Spanish explorers arriving on the Gulf Coast of Mexico in the early 16th century gave vanilla its current name. Spanish and Portuguese sailors and explorers brought vanilla into Africa and Asia later that century. They called it vainilla, or "little pod". The word vanilla entered the English language in 1754, when the botanist Philip Miller wrote about the genus in his Gardener’s Dictionary. Vainilla is from the diminutive of vaina, from the Latin vagina (sheath) to describe the shape of the pods.

 

BIOLOGY

VANILLA ORCHID

The main species harvested for vanilla is Vanilla planifolia. Although it is native to Mexico, it is now widely grown throughout the tropics. Indonesia and Madagascar are the world's largest producers. Additional sources include Vanilla pompona and Vanilla tahitiensis (grown in Niue and Tahiti), although the vanillin content of these species is much less than Vanilla planifolia.

 

Vanilla grows as a vine, climbing up an existing tree (also called a tutor), pole, or other support. It can be grown in a wood (on trees), in a plantation (on trees or poles), or in a "shader", in increasing orders of productivity. Its growth environment is referred to as its terroir, and includes not only the adjacent plants, but also the climate, geography, and local geology. Left alone, it will grow as high as possible on the support, with few flowers. Every year, growers fold the higher parts of the plant downward so the plant stays at heights accessible by a standing human. This also greatly stimulates flowering.

 

The distinctively flavored compounds are found in the fruit, which results from the pollination of the flower. These seed pods are roughly a third of an inch by six inches, and brownish red to black when ripe. Inside of these pods are an oily liquid full of tiny seeds. One flower produces one fruit. V. planifolia flowers are hermaphroditic: They carry both male (anther) and female (stigma) organs; however, to avoid self-pollination, a membrane separates those organs. The flowers can be naturally pollinated only by bees of the Melipona genus found in Mexico (abeja de monte or mountain bee). This bee provided Mexico with a 300-year-long monopoly on vanilla production, from the time it was first discovered by Europeans. The first vanilla orchid to flower in Europe was in the London collection of the Honourable Charles Greville in 1806. Cuttings from that plant went to Netherlands and Paris, from which the French first transplanted the vines to their overseas colonies. The vines would grow, but would not fruit outside Mexico. Growers tried to bring this bee into other growing locales, to no avail. The only way to produce fruits without the bees is artificial pollination. And today, even in Mexico, hand pollination is used extensively.

 

In 1836, botanist Charles François Antoine Morren was drinking coffee on a patio in Papantla (in Veracruz, Mexico) and noticed black bees flying around the vanilla flowers next to his table. He watched their actions closely as they would land and work their way under a flap inside the flower, transferring pollen in the process. Within hours, the flowers closed and several days later, Morren noticed vanilla pods beginning to form. Morren immediately began experimenting with hand pollination. A few years later in 1841, a simple and efficient artificial hand-pollination method was developed by a 12-year-old slave named Edmond Albius on Réunion, a method still used today. Using a beveled sliver of bamboo, an agricultural worker lifts the membrane separating the anther and the stigma, then, using the thumb, transfers the pollinia from the anther to the stigma. The flower, self-pollinated, will then produce a fruit. The vanilla flower lasts about one day, sometimes less, so growers have to inspect their plantations every day for open flowers, a labor-intensive task.

 

The fruit, a seed capsule, if left on the plant, will ripen and open at the end; as it dries, the phenolic compounds crystallize, giving the fruits a diamond-dusted appearance, which the French call givre (hoarfrost). It will then release the distinctive vanilla smell. The fruit contains tiny, black seeds. In dishes prepared with whole natural vanilla, these seeds are recognizable as black specks. Both the pod and the seeds are used in cooking.

 

Like other orchids' seeds, vanilla seeds will not germinate without the presence of certain mycorrhizal fungi. Instead, growers reproduce the plant by cutting: they remove sections of the vine with six or more leaf nodes, a root opposite each leaf. The two lower leaves are removed, and this area is buried in loose soil at the base of a support. The remaining upper roots will cling to the support, and often grow down into the soil. Growth is rapid under good conditions.

 

CULTIVARS

Bourbon vanilla or Bourbon-Madagascar vanilla, produced from V. planifolia plants introduced from the Americas, is the term used for vanilla from Indian Ocean islands such as Madagascar, the Comoros, and Réunion, formerly the Île Bourbon. It is also used to describe the distinctive vanilla flavor derived from V. planifolia grown successfully in tropical countries such as India.

Mexican vanilla, made from the native V. planifolia, is produced in much less quantity and marketed as the vanilla from the land of its origin. Vanilla sold in tourist markets around Mexico is sometimes not actual vanilla extract, but is mixed with an extract of the tonka bean, which contains coumarin. Tonka bean extract smells and tastes like vanilla, but coumarin has been shown to cause liver damage in lab animals and is banned in food in the US by the Food and Drug Administration since 1954.

Tahitian vanilla is the name for vanilla from French Polynesia, made with the V. tahitiensis strain. Genetic analysis shows this species is possibly a cultivar from a hybrid-cross of V. planifolia and V. odorata. The species was introduced by French Admiral François Alphonse Hamelin to French Polynesia from the Philippines, where it was introduced from Guatemala by the Manila Galleon trade.

West Indian vanilla is made from V. pompona grown in the Caribbean and Central and South America.

 

The term French vanilla is often used to designate preparations with a strong vanilla aroma, containing vanilla grains and sometimes also containing eggs (especially egg yolks). The appellation originates from the French style of making vanilla ice cream with a custard base, using vanilla pods, cream, and egg yolks. Inclusion of vanilla varietals from any of the former French dependencies or overseas France noted for their exports may in fact be a part of the flavoring, though it may often be coincidental. Alternatively, French vanilla is taken to refer to a vanilla-custard flavor. Syrup labeled as French vanilla may include custard, hazelnut, caramel or butterscotch flavors in addition to vanilla.

 

CHEMISTRY

Vanilla essence comes in two forms. Real seedpod extract is an extremely complicated mixture of several hundred different compounds, including vanillin, acetaldehyde, acetic acid, furfural, hexanoic acid, 4-hydroxybenzaldehyde, eugenol, methyl cinnamate, and isobutyric acid. Synthetic essence consists of a solution of synthetic vanillin in ethanol.

 

The chemical compound vanillin (4-hydroxy-3-methoxybenzaldehyde) is a major contributor to the characteristic flavor and aroma of real vanilla, but hundreds of compounds contribute to a complex flavor that vanillin can only approximate. Another minor component of vanilla extract is piperonal (heliotropin). Vanillin was first isolated from vanilla pods by Gobley in 1858. By 1874, it had been obtained from glycosides of pine tree sap, temporarily causing a depression in the natural vanilla industry. Vanillin can be easily synthesized from various raw materials, but the majority of food grade (>99% pure) vanillin is made from guaiacol.

 

PRODUCTION

GENERAL GUIDELINES

In general, quality vanilla will only come from good vines and through careful production methods. Commercial vanilla production can be performed under open field and "greenhouse" operations. Both production systems share the following similarities:

 

Plant height and number of years before producing the first grains

Shade necessities

Amount of organic matter needed

A tree or frame to grow around (bamboo, coconut or Erythrina lanceolata)

Labor intensity (pollination and harvest activities)

 

Vanilla grows best in a hot, humid climate from sea level to an elevation of 1500 m. The ideal climate has moderate rainfall, 1500–3000 mm, evenly distributed through 10 months of the year. Optimum temperatures for cultivation are 15–30 °C during the day and 15–20 °C during the night. Ideal humidity is around 80%, and under normal greenhouse conditions, it can be achieved by an evaporative cooler. However, since greenhouse vanilla is grown near the equator and under polymer (HDPE) netting (shading of 50%), this humidity can be achieved by the environment. Most successful vanilla growing and processing is done in the region within 10 to 20° of the equator.

 

Soils for vanilla cultivation should be loose, with high organic matter content and loamy texture. They must be well drained, and a slight slope helps in this condition. Soil pH has not been well documented, but some researchers have indicated an optimum soil pH of around 5.3. Mulch is very important for proper growth of the vine, and a considerable portion of mulch should be placed in the base of the vine. Fertilization varies with soil conditions, but general recommendations are: 40 to 60 g of N, 20 to 30 g of P2O5 and 60 to 100 g of K2O should be applied to each plant per year besides organic manures, such as vermicompost, oil cakes, poultry manure and wood ash. Foliar applications are also good for vanilla, and a solution of 1% NPK (17:17:17) can be sprayed on the plant once a month. Vanilla requires organic matter, so three or four applications of mulch a year are adequate for the plant.

 

PROPAGATION, PREPARATION AND TYPE OF STOCK

Dissemination of vanilla can be achieved either by stem cutting or by tissue culture. For stem cutting, a progeny garden needs to be established. Recommendations for establishing this garden vary, but in general, trenches of 60 cm in width, 45 cm in depth and 60 cm spacing for each plant are necessary. All plants need to grow under 50% shade, as well as the rest of the crop. Mulching the trenches with coconut husk and micro irrigation provide an ideal microclimate for vegetative growth. Cuttings between 60 and 120 cm should be selected for planting in the field or greenhouse. Cuttings below 60 to 120 cm need to be rooted and raised in a separate nursery before planting. Planting material should always come from unflowered portions of the vine. Wilting of the cuttings before planting provides better conditions for root initiation and establishment.

 

Before planting the cuttings, trees to support the vine must be planted at least three months before sowing the cuttings. Pits of 30 x 30 x 30 cm are dug 30 cm away from the tree and filled with farm yard manure (vermicompost), sand and top soil mixed well. An average of 2000 cuttings can be planted per hectare. One important consideration is that when planting the cuttings from the base, four leaves should be pruned and the pruned basal point must be pressed into the soil in a way such that the nodes are in close contact with the soil, and are placed at a depth of 15 to 20 cm. The top portion of the cutting is tied to the tree using natural fibers such as banana or hemp.

 

TISSUE CULTURE

Tissue culture was first used as a means of creating vanilla plants during the 1980s at Tamil Nadu University. This was the part of the first project to grow V. planifolia in India. At that time, a shortage of vanilla planting stock was occurring in India. The approach was inspired by the work going on to tissue culture other flowering plants. Several methods have been proposed for vanilla tissue culture, but all of them begin from axillary buds of the vanilla vine. In vitro multiplication has also been achieved through culture of callus masses, protocorns, root tips and stem nodes. Description of any of these processes can be obtained from the references listed before, but all of them are successful in generation of new vanilla plants that first need to be grown up to a height of at least 30 cm before they can be planted in the field or greenhouse.

 

SCHEDULING CONSIDERATIONS

In the tropics, the ideal time for planting vanilla is from September to November, when the weather is neither too rainy nor too dry, but this recommendation varies with growing conditions. Cuttings take one to eight weeks to establish roots, and show initial signs of growth from one of the leaf axils. A thick mulch of leaves should be provided immediately after planting as an additional source of organic matter. Three years are required for cuttings to grow enough to produce flowers and subsequent pods. As with most orchids, the blossoms grow along stems branching from the main vine. The buds, growing along the 15 to 25 cm stems, bloom and mature in sequence, each at a different interval.

 

POLLINATION

Flowering normally occurs every spring, and without pollination, the blossom wilts and falls, and no vanilla bean can grow. Each flower must be hand-pollinated within 12 hours of opening. In the wild, very few natural pollinators exist, with most pollination being carried out by bees of the genus Melipona.[citation needed] These pollinators do not exist outside the orchid's home range, and even within that range, vanilla orchids have only a 1% chance of successful pollination. As a result, all vanilla grown today is pollinated by hand. A small splinter of wood or a grass stem is used to lift the rostellum or move the flap upward, so the overhanging anther can be pressed against the stigma and self-pollinate the vine. Generally, one flower per raceme opens per day, so the raceme may be in flower for over 20 days. A healthy vine should produce about 50 to 100 beans per year, but growers are careful to pollinate only five or six flowers from the 20 on each raceme. The first flowers that open per vine should be pollinated, so the beans are similar in age. These agronomic practices facilitate harvest and increases bean quality. It takes the fruits five to six weeks to develop, but it takes around six months for the bean to mature. Over-pollination will result in diseases and inferior bean quality. A vine remains productive between 12 and 14 years.

 

PEST AND DISEASE MANAGEMENT

Most diseases come from the uncharacteristic growing conditions of vanilla. Therefore, conditions such as excess water, insufficient drainage, heavy mulch, overpollination and too much shade favor disease development. Vanilla is susceptible to many fungal and viral diseases. Fusarium, Sclerotium, Phytophthora, and Colletrotrichum species cause rots of root, stem, leaf, bean and shoot apex. These diseases can be controlled by spraying Bordeaux mixture (1%), carbendazim (0.2%) and copper oxychloride (0.2%).

 

Biological control of the spread of such diseases can be managed by applying to the soil Trichoderma (0.5 kg) per plant in the rhizosphere) and foliar application of pseudomonads (0.2%). Mosaic virus, leaf curl and cymbidium mosaic potex virus are the common viral diseases. These diseases are transmitted through the sap, so affected plants must be destroyed. The insect pests of vanilla include beetles and weevils that attack the flower, caterpillars, snakes and slugs that damage the tender parts of shoot, flower buds and immature fruit, and grasshoppers that affect cutting shoot tips. If organic agriculture is practiced, insecticides are avoided, and mechanical measures are adopted for pest management. Most of these practices are implemented under greenhouse cultivation, since such field conditions are very difficult to achieve.

 

ARTIFICIAL VANILLA

Most artificial vanilla products contain vanillin, which can be produced synthetically from lignin, a natural polymer found in wood. Most synthetic vanillin is a byproduct from the pulp used in papermaking, in which the lignin is broken down using sulfites or sulfates. However, vanillin is only one of 171 identified aromatic components of real vanilla fruits.

 

The orchid species Leptotes bicolor is used as a natural vanilla replacement in Paraguay and southern Brazil.

 

NONPLANT VANILLA FLAVORING

In the United States, castoreum, the exudate from the castor sacs of mature beavers, has been approved by the Food and Drug Administration (FDA) as a food additive, often referenced simply as a "natural flavoring" in the product's list of ingredients. It is used in both food and beverages, especially as vanilla and raspberry flavoring. It is also used to flavor some cigarettes and in perfume-making.

 

STAGES OF PRODUCTION

HARVEST

The vanilla fruit grows quickly on the vine, but is not ready for harvest until maturity - approximately six months. Harvesting vanilla fruits is as labor-intensive as pollinating the blossoms. Immature dark green pods are not harvested. Pale yellow discoloration that commences at the distal end of the fruits is an indication of the maturity of pods. Each fruit ripens at its own time, requiring a daily harvest. To ensure the finest flavor from every fruit, each individual pod must be picked by hand just as it begins to split on the end. Overmatured fruits are likely to split, causing a reduction in market value. Its commercial value is fixed based on the length and appearance of the pod.

 

If the fruit is more than 15 cm in length, it belongs to first-quality product. The largest fruits greater than 16 cm and up to as much as 21 cm are usually reserved for the gourmet vanilla market, for sale to top chefs and restaurants. If the fruits are between 10 and 15 cm long, pods are under the second-quality category, and fruits less than 10 cm in length are under the third-quality category. Each fruit contains thousands of tiny black vanilla seeds. Vanilla fruit yield depends on the care and management given to the hanging and fruiting vines. Any practice directed to stimulate aerial root production has a direct effect on vine productivity. A five-year-old vine can produce between 1.5 and 3 kg pods, and this production can increase up to 6 kg after a few years. The harvested green fruit can be commercialized as such or cured to get a better market price.

 

CURING

Several methods exist in the market for curing vanilla; nevertheless, all of them consist of four basic steps: killing, sweating, slow-drying, and conditioning of the beans.

 

KILLING

The vegetative tissue of the vanilla pod is killed to stop the vegetative growth of the pods and disrupt the cells and tissue of the fruits, which initiates enzymatic reactions responsible for the aroma. The method of killing varies, but may be accomplished by heating in hot water, freezing, or scratching, or killing by heating in an oven or exposing the beans to direct sunlight. The different methods give different profiles of enzymatic activity.

 

Testing has shown mechanical disruption of fruit tissues can cause curing processes,[40] including the degeneration of glucovanillin to vanillin, so the reasoning goes that disrupting the tissues and cells of the fruit allow enzymes and enzyme substrates to interact.

 

Hot-water killing may consist of dipping the pods in hot water (63–65 °C) for three minutes, or at 80 °C for 10 seconds. In scratch killing, fruits are scratched along their length. Frozen or quick-frozen fruits must be thawed again for the subsequent sweating stage. Tied in bundles and rolled in blankets, fruits may be placed in an oven at 60 °C for 36 to 48 hours. Exposing the fruits to sunlight until they turn brown is a method originating in Mexico that was practiced by the Aztecs.

 

SWEATING

Sweating is a hydrolytic and oxidative process. Traditionally, it consists of keeping fruits, for seven to 10 days, densely stacked and insulated in wool or other cloth. This retains a temperature of 45–65 °C and high humidity. Daily exposure to the sun may also be used, or dipping the fruits in hot water. The fruits are brown and have attained much of the characteristic vanilla flavor and aroma by the end of this process, but still retain a 60-70% moisture content by weight.

 

DRYING

Reduction of the beans to 25–30% moisture by weight, to prevent rotting and to lock the aroma in the pods, is always achieved by some exposure of the beans to air, and usually (and traditionally) intermittent shade and sunlight. Fruits may be laid out in the sun during the mornings and returned to their boxes in the afternoons, or spread on a wooden rack in a room for three to four weeks, sometimes with periods of sun exposure. Drying is the most problematic of the curing stages; unevenness in the drying process can lead to the loss of vanillin content of some fruits by the time the others are cured.

 

CONDITIONING

Conditioning is performed by storing the pods for five to six months in closed boxes, where the fragrance develops. The processed fruits are sorted, graded, bundled, and wrapped in paraffin paper and preserved for the development of desired bean qualities, especially flavor and aroma. The cured vanilla fruits contain an average of 2.5% vanillin.

 

GRADING

Once fully cured, the vanilla fruits are sorted by quality and graded.

 

Several vanilla fruit grading systems are in use. Each country which produces vanilla has its own grading system, and individual vendors, in turn, sometimes use their own criteria for describing the quality of the fruits they offer for sale.

 

In general, vanilla fruit grade is based on the length, appearance (color, sheen, presence of any splits, presence of blemishes), and moisture content of the fruit. Whole, dark, plump and oily pods that are visually attractive, with no blemishes, and that have a higher moisture content are graded most highly. Such pods are particularly prized by chefs for their appearance and can be featured in gourmet dishes. Beans that show localized signs of disease or other physical defects are cut to remove the blemishes; the shorter fragments left are called “cuts” and are assigned lower grades, as are fruits with lower moisture contents. Lower-grade fruits tend to be favored for uses in which the appearance is not as important, such as in the production of vanilla flavoring extract and in the fragrance industry.

 

Higher-grade fruits command higher prices in the market. However, because grade is so dependent on visual appearance and moisture content, fruits with the highest grade do not necessarily contain the highest concentration of characteristic flavor molecules such as vanillin, and are not necessarily the most flavorful.

 

USAGE

CULINARY USES

There are four main commercial preparations of natural vanilla:

 

- whole pod

- powder (ground pods, kept pure or blended with sugar, starch, or other ingredients)

- extract (in alcoholic or occasionally glycerol solution; both pure and imitation forms of vanilla contain at least 35% alcohol)

- vanilla sugar, a pre-packaged mix of sugar and vanilla extract

 

Vanilla flavoring in food may be achieved by adding vanilla extract or by cooking vanilla pods in the liquid preparation. A stronger aroma may be attained if the pods are split in two, exposing more of a pod's surface area to the liquid. In this case, the pods' seeds are mixed into the preparation. Natural vanilla gives a brown or yellow color to preparations, depending on the concentration. Good-quality vanilla has a strong aromatic flavor, but food with small amounts of low-quality vanilla or artificial vanilla-like flavorings are far more common, since true vanilla is much more expensive.

 

A major use of vanilla is in flavoring ice cream. The most common flavor of ice cream is vanilla, and thus most people consider it to be the "default" flavor. By analogy, the term "vanilla" is sometimes used as a synonym for "plain". Although vanilla is a prized flavoring agent on its own, it is also used to enhance the flavor of other substances, to which its own flavor is often complementary, such as chocolate, custard, caramel, coffee, cakes, and others.

 

The food industry uses methyl and ethyl vanillin. Ethyl vanillin is more expensive, but has a stronger note. Cook's Illustrated ran several taste tests pitting vanilla against vanillin in baked goods and other applications, and, to the consternation of the magazine editors, tasters could not differentiate the flavor of vanillin from vanilla; however, for the case of vanilla ice cream, natural vanilla won out. A more recent and thorough test by the same group produced a more interesting variety of results; namely, high-quality artificial vanilla flavoring is best for cookies, while high-quality real vanilla is very slightly better for cakes and significantly better for unheated or lightly heated foods.

 

It was once believed that the liquid extracted from vanilla pods had medical properties, helping with various stomach ailments.

 

WIKIPEDIA

“Creativity is just connecting things. When you ask creative people how they did something, they feel a little guilty because they didn’t really do it, they just saw something. It seemed obvious to them after a while. That’s because they were able to connect experiences they’ve had and synthesize new things.” – Steve Jobs

Western Arabia Terra imaged by the Mars Express HRSC instrument. This image captures the transition from the rugged equatorial highland terrain of Arabia Terra as it transitions into the relatively featureless northern lowland region of Acidalia Planitia. Although this region is among the oldest locations on the Martian surface, the geology is unspectacular, consisting of generally unmodified craters, few tectonic features, and relatively few channels carved by water. In the absence of attention from geologists, very few of the craters in this region have been named.

 

This image was captured in the middle of Martian summer, when Mars is near its furthest from the Sun. During this period, the Martian atmosphere cools substantially, allowing daytime water ice clouds to form at equatorial latitudes across the entire planet for a few months. This phenomenon, called the Aphelion Cloud Belt, was active in this photo, although the clouds associated with it were beginning to thin for the season when this image was taken.

 

This image was created using two limb-scan images taken through Mars Express' blue and green filters. These sequences are designed to study Martian atmospheric layers. These sequences require a complex geometric correction to resemble what a human eye might see. In addition, a red channel has been synthesized by subtracting blue channel data from the green channel data.

 

This image was taken during Mars Express' 15569th orbit of the red planet, April 13, 2016.

 

Image Credit: ESA/DLR/FU Berlin/J. Cowart, CC BY-SA 3.0 IGO

Georgia O'Keefe is an artist I first became aware of when I visited America in 1982, she is not so well known in Europe. However in U.S.A. her art has taken on a great status and reproductions of her work are very common. Most of her paintings are small in scale, indeed the only O'Keefe on display at Chicago's Art Institute that I did not photograph was her huge panoramic view through clouds...this to me seemed less successful than the more intimate and smaller works. Her paintings are for the most part flatly painted with little in the way of impasto or surface texture, one could even say the paint application has something of a detached graphic like poster quality. Perhaps she is best known for her paintings in and around Taos New Mexico, she paints these landscapes very well and each image seems very well composed and full of taught power. Her paintings are indeed an American assertion that their art can be different and not reliant upon European Academic traditions. she seemed well aware of the art movements around her, and there are aspects of her work in Dove or Hartley and perhaps Marin. Her work shows the clear influence of photography upon painting in their tonality. Her best works have an almost hypnotic spiritual power, and her art was an enormous influence upon my first paintings of the American west. It was good to see so many together at Chicago's Art Institute. I do hope you enjoy this group, sadly I can add no more until I return to another american art gallery.

Georgia Totto O'Keeffe (November 15, 1887 – March 6, 1986) Born near Sun Prairie, Wisconsin, O'Keeffe was a major figure in American art from the 1920s.She received widespread recognition for her technical contributions, as well as for challenging the boundaries of modern American artistic style. She is chiefly known for paintings of flowers, rocks, shells, animal bones, and landscapes in which she synthesized abstraction and representation. Her paintings present crisply contoured forms that are replete with subtle tonal transitions of varying colors. She often transformed her subject matter into powerful abstract images. New York Times critic Jed Perl in 2004 described her paintings as both "bold and hermetic, immediately appealing and unnervingly impassive." (Wikipedia)

Based loosely on Shakespeare's The Tempest, this classic sci-fi thriller explores the power of the mind. Creatures from the Id attack a party of spacemen who've come to check up on a reclusive scientist and his daughter. Forbidden Planet was influential on a wide variety of media, and particularly on the subsequent Star Trek TV series, which cribbed a lot of details from the film.

Opening scene

 

It is late in the 22nd Century. United Planet cruiser C57D a year out from Earth base on the way to Altair for a special mission. Commander J.J Adams (Leslie Neilsen) orders the crew to the deceleration booths as the ship drops from light speed to normal space.

 

Adams orders pilot Jerry Farman (Jack Kelly) to lay in a course for the fourth planet. The captain then briefs the crew that they are at their destination, and that they are to look for survivors from the Bellerophon expedition 20 years earlier.

 

As they orbit the planet looking for signs of life, the ship is scanned by a radar facility some 20 square miles in area. Morbius (Walter Pigeon) contacts the ship from the planet asking why the ship is here. Morbius goes on to explain he requires nothing, no rescue is required and he can't guarantee the safety of the ship or its crew.

 

Adams confirms that Morbius was a member of the original crew, but is puzzled at the cryptic warning Morbius realizes the ship is going to land regardless, and gives the pilot coordinates in a desert region of the planet. The ship lands and security details deploy. Within minutes a high speed dust cloud approaches the ship. Adams realizes it is a vehicle, and as it arrives the driver is discovered to be a robot (Robby). Robby welcomes the crew to Altair 4 and invites members of the crew to Morbious residence.

 

Adams, Farman and Doc Ostrow (Warren Stevens) arrive at the residence and are greeted by Morbius. They sit down to a meal prepared by Robbys food synthesizer and Morbius shows the visitors Robbys other abilities, including his unwavering obedience. Morbius then gives Robby a blaster with orders to shoot Adams. Robby refuses and goes into a mechanical mind lock, disabling him till the order is changed.

 

Morbius then shows the men the defense system of the house (A series of steel shutters). When questioned, Morbius admits that the Belleraphon crew is dead, Morbius and his wife being the only original survivors. Morbius's wife has also died, but months after the others and from natural causes. Morbius goes on to explain many of the crew were torn limb from limb by a strange creature or force living on the planet. The Belleraphon herself was destroyed when the final three surviving members tried to take off for Earth.

 

Adams wonders why this force has remained dormant all these years and never attacked Morbius. As discussions continue, a young woman Altaira (Anne Francis) introduces herself as Morbius daughter. Farman takes an immediate interest in Altaira, and begins to flirt with her . Altaira then shows the men her ability to control wild animals by petting a wild tiger. During this display the ship checks in on the safety of the away party. Adams explains he will need to check in with Earth for further orders and begins preparations for sending a signal. Because of the power needed the ship will be disabled for up to 10 days. Morbius is mortified by this extended period and offers Robby's services in building the communication facility

 

The next day Robby arrives at ship as the crew unloads the engine to power the transmitter. To lighten the tense moment the commander instructs the crane driver to pick up Cookie (Earl Holliman) and move him out of the way. Quinn interrupts the practical joke to report that the assembly is complete and they can transmit in the morning.

 

Meanwhile Cookie goes looking for Robby and organizes for the robot to synthesize some bourbon. Robby takes a sample and tells Cookie he can have 60 gallons ready the next morning for him.

 

Farman continues to court Altair by teaching her how to kiss, and the health benefits of kissing. Adams interrupts the exercise, and is clearly annoyed with a mix of jealous. He then explains to Altair that the clothes she wears are inappropriate around his crew. Altair tries to argue till Adams looses patience and order Altair to leave the area.

 

That night, Altair, still furious, explains to her father what occurred. Altair takes Adams advice to heart and orders Robby to run up a less revealing dress. Meanwhile back at the ship two security guards think they hear breathing in the darkness but see nothing.

 

Inside the ship, one of the crew half asleep sees the inner hatch opened and some material moved around. Next morning the Captain holds court on the events of the night before. Quinn advises the captain that most of the missing and damaged equipment can be replaced except for the Clystron monitor. Angry the Capt and Doc go back to Morbius to confront him about what has occurred.

 

Morbius is unavailable, so the two men settle in to wait. Outside Adams sees Altair swimming and goes to speak to her. Thinking she is naked, Adams becomes flustered and unsettled till he realizes she wants him to see her new dress. Altair asks why Adams wont kiss her like everyone else has. He gives in and plants one on her. Behind them a tiger emerges from the forest and attacks Altair, Adams reacts by shooting it. Altair is badly troubled by the incident, the tiger had been her friend, but she can't understand why acted as if she was an enemy.

 

Returning to the house, Doc and Adams accidently open Morbius office. They find a series of strange drawings but no sign of Morbius. He appears through a secret door and is outraged at the intrusion. Adams explains the damage done to the ship the previous night and his concern that Morbius was behind the attack.

 

Morbius admits it is time for explanations. He goes on to tell them about a race of creatures that lived on the planet called the Krell. In the past they had visited Earth, which explains why there are Earth animals on the planet. Morbius believes the Krell civilization collapsed in a single night, right on the verge of their greatest discovery. Today 2000 centuries later, nothing of their cities exists above ground.

 

Morbius then takes them on a tour of the Krell underground installation. Morbius first shows them a device for projecting their knowledge; he explains how he began to piece together information. Then an education device that projects images formed in the mind. Finally he explains what the Krell were expected to do, and how much lower human intelligence is in comparison.

 

Doc tries the intelligence tester but is confused when it does not register as high as Morbius. Morbius then explains it can also boost intelligence, and that the captain of the Belleraphon died using it. Morbius himself was badly injured but when he recovered his IQ had doubled.

 

Adams questions why all the equipment looks brand new. It is explained that all the machines left on the planet are self repairing and Morbius takes them on a tour of the rest of the installation. First they inspect a giant air vent that leads to the core of the planet. There are 400 other such shafts in the area and 9200 thermal reactors spread through the facilities 8000 cubic miles.

 

Later that night the crew has completed the security arrangements and tests the force field fence. Cookie asks permission to go outside the fence. He meets Robby who gives him the 60 gallons of bourbon. Outside, something hits the fence and shorts it out. The security team checks the breach but finds nothing. A series of foot like depressions begin forming leading to the ship. Something unseen enters the ship. A scream echos through the compound.

 

Back at the Morbius residence he argues that only he should be allowed to control the flow of Krell technology back to Earth. In the middle of the discussion, Adams is paged and told that the Chief Quinn has been murdered. Adams breaks of his discussions and heads back to the ship.

 

Later that night Doc finds the footprints and makes a cast. The foot makes no evolutionary sense. It seems to have elements of a four footed and biped creature; also it seems a predator and herbivore. Adams questions Cookie who was with the robot during the test and decides the robot was not responsible.

 

The next day at the funeral for Chief Morbius again warns him of impending doom facing the ship and crew. Adams considers this a challenge and spends the day fortifying the position around the ship. After testing the weapons and satisfied all that could be done has, the radar station suddenly reports movement in the distance moving slowly towards the ship.

 

No one sees anything despite the weapons being under radar fire control. The controller confirms a direct hit, but the object is still moving towards the ship. Suddenly something hits the force field fence, and a huge monster appears outlined in the energy flux. The crew open fire, but seem to do little good. A number of men move forward but a quickly killed.

 

Morbious wakes hearing the screams of Altair. Shes had a dream mimicking the attack that has just occurred. As Morbious is waking the creature in the force field disappears. Doc theories that the creature is made of some sort of energy, renewing itself second by second.

 

Adams takes Doc in the tractor to visit Morbius intending to evacuate him from the planet. He leaves orders for the ship to be readied for lift off. If he and Doc dont get back, the ship is to leave without them. They also want to try and break into Morbious office and take the brain booster test.

 

They are met at the door by Robby, who disarms them. Altair appears and countermands the orders given to Robby by her father. Seeing a chance Doc sneaks into the office. Altair argues with Adams about trying to make Morbius return home, she ultimately declares her love for him.

 

Robby appears carrying the injured Doc. Struggling to speak and heavy pain, Doc explains that the Krell succeeded in their great experiment. However they forgot about the sub conscious monsters they would release. Monsters from the id.

 

Morbius sees the dead body of Doc, and makes a series of ugly comments. His daughter reminds him that Doc is dead. Morbius lack of care convinces Altair she is better off going with Adams. Morbius tries to talk Adams out of taking Altair.

 

Adams demands an explanation of the id. Morbius realizes he is the source of the creature killing everyone. The machine the Krell built was able to release his inner beast, the sub conscious monster dwelling deep inside his ancestral mind.

 

Robby interrupts the debate to report something approaching the house. Morbius triggers the defensive shields of the house, which the creature begins to destroy. Morbius then orders Robby to destroy the creature, however Robby short circuits. Adams explained that it was useless; Robby knew it was Morbius self.

 

Adams, Altair and Morbius retreat to the Krell lab and sealed themselves in by sealing a special indestructible door. Adams convinces Morbius that he is really the monster, and that Morbius can not actually control his subconscious desires.

 

The group watch as the creature beings the slow process of burning through the door. Panicked Morbius implores Altair to say it is not so. Suddenly the full realization comes, and he understands that he could endanger or even kill Altair.

 

As the creature breaks through Morbius rushes forward and denies its existence. Suddenly the creature disappears but Morbius is mortally wounded. With his dying breath he instructs Adams to trigger a self destruct mechanism linked to the reactors of the great machine. The ship and crew have 24 hours to get as far away from the planet as possible

 

The next day we see the ship deep in space. Robby and Altair are onboard watching as the planet brightens and is destroyed. Adams assures Altair that her fathers memory will shine like a beacon.

Te Papa

The Terracotta Army is a collection of terracotta sculptures depicting the armies of Qin Shi Huang, the first Emperor of China. It is a form of funerary art buried with the emperor in 210–209 BCE with the purpose of protecting the emperor in his afterlife.

The figures, dating from approximately the late third century BCE,[1] were discovered in 1974 by local farmers in Lintong County, outside Xi'an, Shaanxi, China. The figures vary in height according to their roles, with the tallest being the generals. The figures include warriors, chariots and horses. Estimates from 2007 were that the three pits containing the Terracotta Army held more than 8,000 soldiers, 130 chariots with 520 horses, and 150 cavalry horses, the majority of which remained buried in the pits near Qin Shi Huang's mausoleum.[2] Other terracotta non-military figures were found in other pits, including officials, acrobats, strongmen, and musicians.

 

History

  

The construction of the tomb was described by historian Sima Qian (145–90 BCE) in his most noted work Shiji, written a century after the mausoleum's completion. Work on the mausoleum began in 246 BCE soon after Emperor Qin (then aged 13) ascended the throne, and the project eventually involved 700,000 workers.[3] Geographer Li Daoyuan, writing six centuries after the First Emperor's death, recorded in Shui Jing Zhu that Mount Li was a favoured location due to its auspicious geology, "famed for its jade mines, its northern side was rich in gold, and its southern side rich in beautiful jade; the First Emperor, covetous of its fine reputation, therefore chose to be buried there".[4][5] Sima Qian wrote that the First Emperor was buried with palaces, towers, officials, valuable artifacts and wondrous objects. According to this account, 100 flowing rivers were simulated using mercury, and above them the ceiling was decorated with heavenly bodies below which were the features of the land. Some translations of this passage refer to "models" or "imitations"; however, those words were not used in the original text, which makes no mention of the terracotta army.[3][6] High levels of mercury were found in the soil of the tomb mound, giving credence to Sima Qian's account.[7] Later historical accounts suggested that the tomb had been looted by Xiang Yu, a contender for the throne after the death of the first emperor.[8][9][10] However, there are indications that the tomb may not have been plundered.[11]

Discovery

The Terracotta Army was discovered on 29 March 1974[12] by farmers digging a water well approximately 1.5 kilometres (0.93 mi) east of the Qin Emperor's tomb mound at Mount Li (Lishan),[13][14] a region riddled with underground springs and watercourses. For centuries, occasional reports mentioned pieces of terracotta figures and fragments of the Qin necropolis – roofing tiles, bricks and chunks of masonry.[15] This discovery prompted Chinese archaeologists, including Zhao Kangmin, to investigate,[16] revealing the largest pottery figurine group ever found. A museum complex has since been constructed over the area, the largest pit being enclosed by a roofed structure.[17]

Necropolis

  

The Terracotta Army is part of a much larger necropolis. Ground-penetrating radar and core sampling have measured the area to be approximately 98 square kilometers (38 square miles).[18]

The necropolis was constructed as a microcosm of the emperor's imperial palace or compound, and covers a large area around the tomb mound of the first emperor. The earthen tomb mound is located at the foot of Mount Li and built in a pyramidal shape,[19] and is surrounded by two solidly built rammed earth walls with gateway entrances. The necropolis consists of several offices, halls, stables, other structures as well as an imperial park placed around the tomb mound.

The warriors stand guard to the east of the tomb. Up to 5 metres (16 ft) of reddish, sandy soil had accumulated over the site in the two millennia following its construction, but archaeologists found evidence of earlier disturbances at the site. During the excavations near the Mount Li burial mound, archaeologists found several graves dating from the eighteenth and nineteenth centuries, where diggers had apparently struck terracotta fragments. These were discarded as worthless and used along with soil to back fill the excavations.[20]

Tomb

Main article: Mausoleum of the First Qin Emperor

The tomb appears to be a hermetically sealed space roughly the size of a football pitch (c. 100 × 75 m).[21][22] The tomb remains unopened, possibly due to concerns over preservation of its artifacts.[21] For example, after the excavation of the Terracotta Army, the painted surface present on some terracotta figures began to flake and fade.[23] The lacquer covering the paint can curl in fifteen seconds once exposed to Xi'an's dry air and can flake off in just four minutes.[24]

 

Excavation site

 

T

Pits

 

Four main pits approximately 7 metres (23 ft) deep have been excavated.[25][26] These are located approximately 1.5 kilometres (0.93 mi) east of the burial mound. The soldiers within were laid out as if to protect the tomb from the east, where the Qin Emperor's conquered states lay.

Pit 1

Pit 1, which is 230 metres (750 ft) long and 62 metres (203 ft) wide,[27] contains the main army of more than 6,000 figures.[28] Pit 1 has eleven corridors, most more than 3 metres (10 ft) wide and paved with small bricks with a wooden ceiling supported by large beams and posts. This design was also used for the tombs of nobles and would have resembled palace hallways when built. The wooden ceilings were covered with reed mats and layers of clay for waterproofing, and then mounded with more soil raising them about 2 to 3 metres (6 ft 7 in to 9 ft 10 in) above the surrounding ground level when completed.[29]

Others

Pit 2 has cavalry and infantry units as well as war chariots and is thought to represent a military guard. Pit 3 is the command post, with high-ranking officers and a war chariot. Pit 4 is empty, perhaps left unfinished by its builders.

Some of the figures in Pits 1 and 2 show fire damage, while remains of burnt ceiling rafters have also been found.[30] These, together with the missing weapons, have been taken as evidence of the reported looting by Xiang Yu and the subsequent burning of the site, which is thought to have caused the roof to collapse and crush the army figures below. The terracotta figures currently on display have been restored from the fragments.

Other pits that formed the necropolis have also been excavated.[31] These pits lie within and outside the walls surrounding the tomb mound. They variously contain bronze carriages, terracotta figures of entertainers such as acrobats and strongmen, officials, stone armour suits, burial sites of horses, rare animals and labourers, as well as bronze cranes and ducks set in an underground park.[32]

Warrior figures

Types and appearance

  

The terracotta figures are life-sized. They vary in height, uniform, and hairstyle in accordance with rank. Their faces appear to be different for each individual figure; scholars, however, have identified 10 basic face shapes.[33] The figures are of these general types: armored warriors; unarmored infantrymen; cavalrymen who wear a pillbox hat; helmeted drivers of chariots with more armor protection; spear-carrying charioteers; kneeling archers who are armored; standing archers who are not; as well as generals and other lower-ranking officers.[34] There are, however, many variations in the uniforms within the ranks: for example, some may wear shin pads while others not; they may wear either long or short trousers, some of which may be padded; and their body armors vary depending on rank, function, and position in formation.[35]There are also terracotta horses placed among the warrior figures.

 

Originally, the figures were painted with bright pigments, variously coloured pink, red, green, blue, black, brown, white and lilac.[36][37] The coloured lacquer finish and individual facial features would have given the figures a realistic feel. However, much of the colour coating had flaked off or become greatly faded.

Some scholars have speculated a possible Hellenistic link to these sculptures, because of the lack of life-sized and realistic sculptures before the Qin dynasty.[38][39] They argued that potential Greek influence is particularly evident in some terracotta figures such as those of acrobats, combined with findings of European DNA in Xinjiang and rare bronze artifacts made with a lost wax technique known in Greece and Egypt.[40][41] However, this idea is disputed by scholars who claim that there is "no substantial evidence at all" for contact between ancient Greeks and Chinese builders of the tomb.[42] They argue that such speculations rest on flawed and old "Eurocentric" ideas that assumed other civilizations were incapable of sophisticated artistry and thus foreign artistry must be seen through western traditions.[42] The European DNA found in Xinjiang is also not evidence of Greek influence, because Indo-European civilizations such as the Tocharians had already existed in Xinjiang since 2000 BCE. [43] Furthermore, the lost wax technique has existed in some parts of ancient China since 1500 BCE, [44][45], and has existed in northern China since the 6th century BCE - some four (4) centuries before the construction of the terracotta warriors and several centuries before Alexander the Great spread Greek influences to the Near East and Central Asia through his conquests.[46]

Construction

The terracotta army figures were manufactured in workshops by government laborers and local craftsmen using local materials. Heads, arms, legs, and torsos were created separately and then assembled by luting the pieces together. When completed, the terracotta figures were placed in the pits in precise military formation according to rank and duty.[47]

The faces were created using molds, and at least ten face molds may have been used.[33] Clay was then added after assembly to provide individual facial features to make each figure appear different.[48] It is believed that the warriors' legs were made in much the same way that terracotta drainage pipes were manufactured at the time. This would classify the process as assembly line production, with specific parts manufactured and assembled after being fired, as opposed to crafting one solid piece and subsequently firing it. In those times of tight imperial control, each workshop was required to inscribe its name on items produced to ensure quality control. This has aided modern historians in verifying which workshops were commandeered to make tiles and other mundane items for the terracotta army.

Weaponry

  

Most of the figures originally held real weapons, which would have increased their realism. The majority of these weapons were looted shortly after the creation of the army or have rotted away. Despite this, over 40,000 bronze items of weaponry have been recovered, including swords, daggers, spears, lances, battle-axes, scimitars, shields, crossbows, and crossbow triggers. Most of the recovered items are arrowheads, which are usually found in bundles of 100 units.[25][49][50][51] Studies of these arrowheads suggests that they were produced by self-sufficient, autonomous workshops using a process referred to as cellular production or Toyotism.[52] Some weapons were coated with a 10–15 micrometer layer of chromium dioxide before burial that was believed to have protected them from any form of decay for the last 2200 years.[53][54] However, research in 2019 indicated that the chromium was merely contamination from nearby lacquer, not a means of protecting the weapons. The slightly alkaline pH and small particle size of the burial soil most likely preserved the weapons.[55]

The swords contain an alloy of copper, tin, and other elements including nickel, magnesium, and cobalt.[56] Some carry inscriptions that date their manufacture to between 245 and 228 BCE, indicating that they were used before burial.[57]

Scientific research

In 2007, scientists at Stanford University and the Advanced Light Source facility in Berkeley, California reported that powder diffraction experiments combined with energy-dispersive X-ray spectroscopy and micro-X-ray fluorescence analysis showed that the process of producing terracotta figures colored with Chinese purple dye consisting of barium coppersilicate was derived from the knowledge gained by Taoist alchemists in their attempts to synthesize jade ornaments.[58][59]

Since 2006, an international team of researchers at the UCL Institute of Archaeology have been using analytical chemistry techniques to uncover more details about the production techniques employed in the creation of the Terracotta Army. Using X-ray fluorescence spectrometry of 40,000 bronze arrowheads bundled in groups of 100, the researchers reported that the arrowheads within a single bundle formed a relatively tight cluster that was different from other bundles. In addition, the presence or absence of metal impurities was consistent within bundles. Based on the arrows’ chemical compositions, the researchers concluded that a cellular manufacturing system similar to the one used in a modern Toyotafactory, as opposed to a continuous assembly line in the early days of the automobile industry, was employed.[60][61]

Grinding and polishing marks visible under a scanning electron microscope provide evidence for the earliest industrial use of lathes for polishing.[60]

 

North Point Member of the lower Rice Bay Formation at Cut Cay. This is the second-youngest bedrock unit on San Salvador Island.

 

These well-sorted limestones consist of sand-sized grains of aragonite (CaCO3). On the continents, many quartz sandstones are technically called quartz arenites. Because the sand grains making up these Bahamian rocks are calcareous (composed of calcium carbonate), the limestones are called calcarenites. When examined microscopically, the calcareous sand grains can be seen touching each other - the rock is grain-supported. This results in an alternative name for these Bahamian limestones - grainstones. “Calcarenite” seems to be a more useful, more thoroughly descriptive term for these particular rocks, so I use that, versus “grainstone” (although “calcarenitic grainstone” could be used as well). The little-used petrologic term aragonitite could also be applied to these aragonitic limestones. The aragonite sand grains in North Point Member limestones are principally bioclasts and peloids.

 

The outcrop shown above has horizontally bedded and steeply-dipping cross-bedded, well-sorted calcarenites, indicating deposition in an ancient sand dune environment. In such settings, sediments are moved and deposited by winds. Calcarenites deposited in ancient dune facies are called eolianites (“eolian” means “wind”).

 

The cross-bedding extends below modern sea level at least two meters, indicating that these sand dunes were originally deposited when sea level was lower than now. This means that the North Point Member limestones are older than the Hanna Bay Member limestones (see elsewhere in this photo album) - this is consistent with the more or less steady sea level rise throughout the Holocene.

 

Age: middle Holocene (MIS 1), ~5300 years old

 

Locality: shoreline outcrop along the southwestern margin of Cut Cay, just north of North Point Peninsula, northeastern corner of San Salvador Island, eastern Bahamas

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

. . . look at the faces: every soldier has a different face! Not two are similar!

______________________________________

 

The Terracotta Army is a collection of terracotta sculptures depicting the armies of Qin Shi Huang, the first Emperor of China. It is a form of funerary art buried with the emperor in 210–209 BCE with the purpose of protecting the emperor in his afterlife.

 

The figures, dating from approximately the late third century BCE, were discovered in 1974 by local farmers in Lintong County, outside Xi'an, Shaanxi, China. The figures vary in height according to their roles, with the tallest being the generals. The figures include warriors, chariots and horses. Estimates from 2007 were that the three pits containing the Terracotta Army held more than 8,000 soldiers, 130 chariots with 520 horses, and 150 cavalry horses, the majority of which remained buried in the pits near Qin Shi Huang's mausoleum. Other terracotta non-military figures were found in other pits, including officials, acrobats, strongmen, and musicians.

 

HISTORY

The construction of the tomb was described by historian Sima Qian (145–90 BCE) in his most noted work Shiji, written a century after the mausoleum's completion. Work on the mausoleum began in 246 BCE soon after Emperor Qin (then aged 13) ascended the throne, and the project eventually involved 700,000 workers. Geographer Li Daoyuan, writing six centuries after the First Emperor's death, recorded in Shui Jing Zhu that Mount Li was a favoured location due to its auspicious geology, "famed for its jade mines, its northern side was rich in gold, and its southern side rich in beautiful jade; the First Emperor, covetous of its fine reputation, therefore chose to be buried there". Sima Qian wrote that the First Emperor was buried with palaces, towers, officials, valuable artifacts and wondrous objects. According to this account, 100 flowing rivers were simulated using mercury, and above them the ceiling was decorated with heavenly bodies below which were the features of the land. Some translations of this passage refer to "models" or "imitations"; however, those words were not used in the original text, which makes no mention of the terracotta army. High levels of mercury were found in the soil of the tomb mound, giving credence to Sima Qian's account. Later historical accounts suggested that the tomb had been looted by Xiang Yu, a contender for the throne after the death of the first emperor. However, there are indications that the tomb may not have been plundered.

 

DISCOVERY

The Terracotta Army was discovered on 29 March 1974 by farmers digging a water well approximately 1.5 kilometres east of the Qin Emperor's tomb mound at Mount Li (Lishan), a region riddled with underground springs and watercourses. For centuries, occasional reports mentioned pieces of terracotta figures and fragments of the Qin necropolis – roofing tiles, bricks and chunks of masonry. This discovery prompted Chinese archaeologists, including Zhao Kangmin, to investigate, revealing the largest pottery figurine group ever found. A museum complex has since been constructed over the area, the largest pit being enclosed by a roofed structure.

 

NECROPOLIS

The Terracotta Army is part of a much larger necropolis. Ground-penetrating radar and core sampling have measured the area to be approximately 98 square kilometers.

 

The necropolis was constructed as a microcosm of the emperor's imperial palace or compound, and covers a large area around the tomb mound of the first emperor. The earthen tomb mound is located at the foot of Mount Li and built in a pyramidal shape, and is surrounded by two solidly built rammed earth walls with gateway entrances. The necropolis consists of several offices, halls, stables, other structures as well as an imperial park placed around the tomb mound.

 

The warriors stand guard to the east of the tomb. Up to 5 metres of reddish, sandy soil had accumulated over the site in the two millennia following its construction, but archaeologists found evidence of earlier disturbances at the site. During the excavations near the Mount Li burial mound, archaeologists found several graves dating from the eighteenth and nineteenth centuries, where diggers had apparently struck terracotta fragments. These were discarded as worthless and used along with soil to back fill the excavations.

 

TOMB

The tomb appears to be a hermetically sealed space roughly the size of a football pitch (c. 100 × 75 m). The tomb remains unopened, possibly due to concerns over preservation of its artifacts. For example, after the excavation of the Terracotta Army, the painted surface present on some terracotta figures began to flake and fade. The lacquer covering the paint can curl in fifteen seconds once exposed to Xi'an's dry air and can flake off in just four minutes.

 

EXCAVATION S'ITE

PITS

Four main pits approximately 7 metres deep have been excavated. These are located approximately 1.5 kilometres east of the burial mound. The soldiers within were laid out as if to protect the tomb from the east, where the Qin Emperor's conquered states lay.

 

PIT 1

Pit 1, which is 230 metres long and 62 metres wide, contains the main army of more than 6,000 figures. Pit 1 has eleven corridors, most more than 3 metres wide and paved with small bricks with a wooden ceiling supported by large beams and posts. This design was also used for the tombs of nobles and would have resembled palace hallways when built. The wooden ceilings were covered with reed mats and layers of clay for waterproofing, and then mounded with more soil raising them about 2 to 3 metres above the surrounding ground level when completed.

 

OTHERS

Pit 2 has cavalry and infantry units as well as war chariots and is thought to represent a military guard. Pit 3 is the command post, with high-ranking officers and a war chariot. Pit 4 is empty, perhaps left unfinished by its builders.

 

Some of the figures in Pits 1 and 2 show fire damage, while remains of burnt ceiling rafters have also been found. These, together with the missing weapons, have been taken as evidence of the reported looting by Xiang Yu and the subsequent burning of the site, which is thought to have caused the roof to collapse and crush the army figures below. The terracotta figures currently on display have been restored from the fragments.

 

Other pits that formed the necropolis have also been excavated. These pits lie within and outside the walls surrounding the tomb mound. They variously contain bronze carriages, terracotta figures of entertainers such as acrobats and strongmen, officials, stone armour suits, burial sites of horses, rare animals and labourers, as well as bronze cranes and ducks set in an underground park.

 

WARRIOR FIGURES

TYPES AND APPEARANCE

The terracotta figures are life-sized. They vary in height, uniform, and hairstyle in accordance with rank. Their faces appear to be different for each individual figure; scholars, however, have identified 10 basic face shapes. The figures are of these general types: armored warriors; unarmored infantrymen; cavalrymen who wear a pillbox hat; helmeted drivers of chariots with more armor protection; spear-carrying charioteers; kneeling archers who are armored; standing archers who are not; as well as generals and other lower-ranking officers. There are, however, many variations in the uniforms within the ranks: for example, some may wear shin pads while others not; they may wear either long or short trousers, some of which may be padded; and their body armors vary depending on rank, function, and position in formation. There are also terracotta horses placed among the warrior figures.

 

Originally, the figures were painted with bright pigments, variously coloured pink, red, green, blue, black, brown, white and lilac. The coloured lacquer finish and individual facial features would have given the figures a realistic feel. However, much of the colour coating had flaked off or become greatly faded.

 

Some scholars have speculated a possible Hellenistic link to these sculptures, because of the lack of life-sized and realistic sculptures before the Qin dynasty. They argued that potential Greek influence is particularly evident in some terracotta figures such as those of acrobats, combined with findings of European DNA and rare bronze artifacts made with a lost wax technique known in Greece and Egypt.. However, this idea is disputed by scholars who claim that there is "no substantial evidence at all" for contact between ancient Greeks and Chinese builders of the tomb. They argue that such speculations rest on flawed and old "Eurocentric" ideas that assumed other civilizations were incapable of sophisticated artistry and thus foreign artistry must be seen through western traditions.

 

CONSTRUCTION

The terracotta army figures were manufactured in workshops by government laborers and local craftsmen using local materials. Heads, arms, legs, and torsos were created separately and then assembled by luting the pieces together. When completed, the terracotta figures were placed in the pits in precise military formation according to rank and duty.

 

The faces were created using molds, and at least ten face molds may have been used. Clay was then added after assembly to provide individual facial features to make each figure appear different. It is believed that the warriors' legs were made in much the same way that terracotta drainage pipes were manufactured at the time. This would classify the process as assembly line production, with specific parts manufactured and assembled after being fired, as opposed to crafting one solid piece and subsequently firing it. In those times of tight imperial control, each workshop was required to inscribe its name on items produced to ensure quality control. This has aided modern historians in verifying which workshops were commandeered to make tiles and other mundane items for the terracotta army.

 

WEAPONRY

Most of the figures originally held real weapons, which would have increased their realism. The majority of these weapons were looted shortly after the creation of the army or have rotted away. Despite this, over 40,000 bronze items of weaponry have been recovered, including swords, daggers, spears, lances, battle-axes, scimitars, shields, crossbows, and crossbow triggers. Most of the recovered items are arrowheads, which are usually found in bundles of 100 units. Studies of these arrowheads suggests that they were produced by self-sufficient, autonomous workshops using a process referred to as cellular production or Toyotism. Some weapons were coated with a 10–15 micrometer layer of chromium dioxide before burial that has protected them from any form of decay for the last 2200 years. The swords contain an alloy of copper, tin, and other elements including nickel, magnesium, and cobalt. Some carry inscriptions that date their manufacture to between 245 and 228 BCE, indicating that they were used before burial.

 

SCIENTIFIC RESEARCH

In 2007, scientists at Stanford University and the Advanced Light Source facility in Berkeley, California reported that powder diffraction experiments combined with energy-dispersive X-ray spectroscopy and micro-X-ray fluorescence analysis showed that the process of producing terracotta figures colored with Chinese purple dye consisting of barium copper silicate was derived from the knowledge gained by Taoist alchemists in their attempts to synthesize jade ornaments.

 

Since 2006, an international team of researchers at the UCL Institute of Archaeology have been using analytical chemistry techniques to uncover more details about the production techniques employed in the creation of the Terracotta Army. Using X-ray fluorescence spectrometry of 40,000 bronze arrowheads bundled in groups of 100, the researchers reported that the arrowheads within a single bundle formed a relatively tight cluster that was different from other bundles. In addition, the presence or absence of metal impurities was consistent within bundles. Based on the arrows’ chemical compositions, the researchers concluded that a cellular manufacturing system similar to the one used in a modern Toyota factory, as opposed to a continuous assembly line in the early days of the automobile industry, was employed.

 

Grinding and polishing marks visible under a scanning electron microscope provide evidence for the earliest industrial use of lathes for polishing.

 

EXHIBITIONS

The first exhibition of the figures outside of China was held at National Gallery of Victoria (NGV) in Melbourne in 1982.

 

A collection of 120 objects from the mausoleum and 12 terracotta warriors were displayed at the British Museum in London as its special exhibition "The First Emperor: China's Terracotta Army" from 13 September 2007 to April 2008. This exhibition made 2008 the British Museum's most successful year and made the British Museum the United Kingdom's top cultural attraction between 2007 and 2008. The exhibition brought the most visitors to the museum since the King Tutankhamun exhibition in 1972. It was reported that the 400,000 advance tickets sold out so fast that the museum extended its opening hours until midnight. According to The Times, many people had to be turned away, despite the extended hours. During the day of events to mark the Chinese New Year, the crush was so intense that the gates to the museum had to be shut. The Terracotta Army has been described as the only other set of historic artifacts (along with the remnants of wreck of the RMS Titanic) that can draw a crowd by the name alone.

 

Warriors and other artifacts were exhibited to the public at the Forum de Barcelona in Barcelona between 9 May and 26 September 2004. It was their most successful exhibition ever. The same exhibition was presented at the Fundación Canal de Isabel II in Madrid between October 2004 and January 2005, their most successful ever. From December 2009 to May 2010, the exhibition was shown in the Centro Cultural La Moneda in Santiago de Chile.

 

The exhibition traveled to North America and visited museums such as the Asian Art Museum of San Francisco, Bowers Museum in Santa Ana, California, Houston Museum of Natural Science, High Museum of Art in Atlanta, National Geographic Society Museum in Washington, D.C. and the Royal Ontario Museum in Toronto. Subsequently, the exhibition traveled to Sweden and was hosted in the Museum of Far Eastern Antiquities between 28 August 2010 and 20 January 2011. An exhibition entitled 'The First Emperor – China's Entombed Warriors', presenting 120 artifacts was hosted at the Art Gallery of New South Wales, between 2 December 2010 and 13 March 2011. An exhibition entitled "L'Empereur guerrier de Chine et son armée de terre cuite" ("The Warrior-Emperor of China and his terracotta army"), featuring artifacts including statues from the mausoleum, was hosted by the Montreal Museum of Fine Arts from 11 February 2011 to 26 June 2011. In Italy, from July 2008 to 16 November 2008, five of the warriors of the terracotta army were displayed in Turin at the Museum of Antiquities, and from 16 April 2010 to 5 September 2010 were exposed nine warriors in Milan, at the Royal Palace, at the exhibition entitled "The Two Empires". The group consisted of a horse, a counselor, an archer and six lancers. The "Treasures of Ancient China" exhibition, showcasing two terracotta soldiers and other artifacts, including the Longmen Grottoes Buddhist statues, was held between 19 February 2011 and 7 November 2011 in four locations in India: National Museum of New Delhi, Prince of Wales Museum in Mumbai, Salar Jung Museum in Hyderabad and National Library of India in Kolkata.

 

Soldiers and related items were on display from 15 March 2013 to 17 November 2013, at the Historical Museum of Bern.

 

Several Terracotta Army figures were on display, along with many other objects, in an exhibit entitled "Age of Empires: Chinese Art of the Qin and Han Dynasties" at The Metropolitan Museum of Art in New York City from 3 April 2017, to 16 July 2017 An exhibition featuring ten Terracotta Army figures and other artifacts, "Terracotta Warriors of the First Emperor," was on display at the Pacific Science Center in Seattle, Washington, from 8 April 2017 to 4 September 2017 before traveling to The Franklin Institute in Philadelphia, Pennsylvania, to be exhibited from 30 September 2017 to 4 March 2018 with the addition of augmented reality.

 

An exhibition entitled "China's First Emperor and the Terracotta Warriors" is at the World Museum in Liverpool from 9 February 2018 to 28 October 2018. This is the first time in more than 10 years that the warriors have travelled to the UK.

 

WIKIPEDIA

ABERDEEN PROVING GROUND, Md. (May 3, 2016) -- Army scientists are on the trail of new high-performing energetic materials.

 

Scientists at the U.S. Army Research Laboratory recently synthesized a new material called bis-isoxazole tetranitrate, or BITN, with potential applications in propulsion and lethality.

 

"BITN has a strong potential for improving insensitive munitions characteristics for gun and rocket propellants" said Dr. Jesse J. Sabatini, team leader of the Energetics Synthesis Team within ARL's Weapons and Materials Research Directorate.

 

Read more:

www.army.mil/article/167237

Photovoltaics, research done at Pacific Northwest National Laboratory (PNNL), is the process of directly converting sunlight to electricity. This field of energy technology is one of the fastest growing areas of scientific research in recent years. The work at PNNL is focused on enabling durable, cost-effective solar technology through use of unique materials, and unique thin film deposition technology. Our goal is to produce highly efficient, durable, cost-effective photovoltaic thin film devices to meet the world’s growing demand for clean, green energy. Here, a researcher holds a bulk compound semi-conductor synthesized for photovoltaic devices.

 

In this photo: PNNL Scientist Brian Riley

 

For more information, visit www.pnl.gov/news

 

Terms of Use: Our images are freely and publicly available for use with the credit line, "Courtesy of Pacific Northwest National Laboratory." Please use provided caption information for use in appropriate context.

Opening scene

 

It is late in the 22nd Century. United Planet cruiser C57D a year out from Earth base on the way to Altair for a special mission. Commander J.J Adams (Leslie Neilsen) orders the crew to the deceleration booths as the ship drops from light speed to normal space.

 

Adams orders pilot Jerry Farman (Jack Kelly) to lay in a course for the fourth planet. The captain then briefs the crew that they are at their destination, and that they are to look for survivors from the Bellerophon expedition 20 years earlier.

 

As they orbit the planet looking for signs of life, the ship is scanned by a radar facility some 20 square miles in area. Morbius (Walter Pigeon) contacts the ship from the planet asking why the ship is here. Morbius goes on to explain he requires nothing, no rescue is required and he can't guarantee the safety of the ship or its crew.

 

Adams confirms that Morbius was a member of the original crew, but is puzzled at the cryptic warning Morbius realizes the ship is going to land regardless, and gives the pilot coordinates in a desert region of the planet. The ship lands and security details deploy. Within minutes a high speed dust cloud approaches the ship. Adams realizes it is a vehicle, and as it arrives the driver is discovered to be a robot (Robby). Robby welcomes the crew to Altair 4 and invites members of the crew to Morbious residence.

 

Adams, Farman and Doc Ostrow (Warren Stevens) arrive at the residence and are greeted by Morbius. They sit down to a meal prepared by Robbys food synthesizer and Morbius shows the visitors Robbys other abilities, including his unwavering obedience. Morbius then gives Robby a blaster with orders to shoot Adams. Robby refuses and goes into a mechanical mind lock, disabling him till the order is changed.

 

Morbius then shows the men the defense system of the house (A series of steel shutters). When questioned, Morbius admits that the Belleraphon crew is dead, Morbius and his wife being the only original survivors. Morbius's wife has also died, but months after the others and from natural causes. Morbius goes on to explain many of the crew were torn limb from limb by a strange creature or force living on the planet. The Belleraphon herself was destroyed when the final three surviving members tried to take off for Earth.

 

Adams wonders why this force has remained dormant all these years and never attacked Morbius. As discussions continue, a young woman Altaira (Anne Francis) introduces herself as Morbius daughter. Farman takes an immediate interest in Altaira, and begins to flirt with her . Altaira then shows the men her ability to control wild animals by petting a wild tiger. During this display the ship checks in on the safety of the away party. Adams explains he will need to check in with Earth for further orders and begins preparations for sending a signal. Because of the power needed the ship will be disabled for up to 10 days. Morbius is mortified by this extended period and offers Robby's services in building the communication facility

 

The next day Robby arrives at ship as the crew unloads the engine to power the transmitter. To lighten the tense moment the commander instructs the crane driver to pick up Cookie (Earl Holliman) and move him out of the way. Quinn interrupts the practical joke to report that the assembly is complete and they can transmit in the morning.

 

Meanwhile Cookie goes looking for Robby and organizes for the robot to synthesize some bourbon. Robby takes a sample and tells Cookie he can have 60 gallons ready the next morning for him.

 

Farman continues to court Altair by teaching her how to kiss, and the health benefits of kissing. Adams interrupts the exercise, and is clearly annoyed with a mix of jealous. He then explains to Altair that the clothes she wears are inappropriate around his crew. Altair tries to argue till Adams looses patience and order Altair to leave the area.

 

That night, Altair, still furious, explains to her father what occurred. Altair takes Adams advice to heart and orders Robby to run up a less revealing dress. Meanwhile back at the ship two security guards think they hear breathing in the darkness but see nothing.

 

Inside the ship, one of the crew half asleep sees the inner hatch opened and some material moved around. Next morning the Captain holds court on the events of the night before. Quinn advises the captain that most of the missing and damaged equipment can be replaced except for the Clystron monitor. Angry the Capt and Doc go back to Morbius to confront him about what has occurred.

 

Morbius is unavailable, so the two men settle in to wait. Outside Adams sees Altair swimming and goes to speak to her. Thinking she is naked, Adams becomes flustered and unsettled till he realizes she wants him to see her new dress. Altair asks why Adams wont kiss her like everyone else has. He gives in and plants one on her. Behind them a tiger emerges from the forest and attacks Altair, Adams reacts by shooting it. Altair is badly troubled by the incident, the tiger had been her friend, but she can't understand why acted as if she was an enemy.

 

Returning to the house, Doc and Adams accidently open Morbius office. They find a series of strange drawings but no sign of Morbius. He appears through a secret door and is outraged at the intrusion. Adams explains the damage done to the ship the previous night and his concern that Morbius was behind the attack.

 

Morbius admits it is time for explanations. He goes on to tell them about a race of creatures that lived on the planet called the Krell. In the past they had visited Earth, which explains why there are Earth animals on the planet. Morbius believes the Krell civilization collapsed in a single night, right on the verge of their greatest discovery. Today 2000 centuries later, nothing of their cities exists above ground.

 

Morbius then takes them on a tour of the Krell underground installation. Morbius first shows them a device for projecting their knowledge; he explains how he began to piece together information. Then an education device that projects images formed in the mind. Finally he explains what the Krell were expected to do, and how much lower human intelligence is in comparison.

 

Doc tries the intelligence tester but is confused when it does not register as high as Morbius. Morbius then explains it can also boost intelligence, and that the captain of the Belleraphon died using it. Morbius himself was badly injured but when he recovered his IQ had doubled.

 

Adams questions why all the equipment looks brand new. It is explained that all the machines left on the planet are self repairing and Morbius takes them on a tour of the rest of the installation. First they inspect a giant air vent that leads to the core of the planet. There are 400 other such shafts in the area and 9200 thermal reactors spread through the facilities 8000 cubic miles.

 

Later that night the crew has completed the security arrangements and tests the force field fence. Cookie asks permission to go outside the fence. He meets Robby who gives him the 60 gallons of bourbon. Outside, something hits the fence and shorts it out. The security team checks the breach but finds nothing. A series of foot like depressions begin forming leading to the ship. Something unseen enters the ship. A scream echos through the compound.

 

Back at the Morbius residence he argues that only he should be allowed to control the flow of Krell technology back to Earth. In the middle of the discussion, Adams is paged and told that the Chief Quinn has been murdered. Adams breaks of his discussions and heads back to the ship.

 

Later that night Doc finds the footprints and makes a cast. The foot makes no evolutionary sense. It seems to have elements of a four footed and biped creature; also it seems a predator and herbivore. Adams questions Cookie who was with the robot during the test and decides the robot was not responsible.

 

The next day at the funeral for Chief Morbius again warns him of impending doom facing the ship and crew. Adams considers this a challenge and spends the day fortifying the position around the ship. After testing the weapons and satisfied all that could be done has, the radar station suddenly reports movement in the distance moving slowly towards the ship.

 

No one sees anything despite the weapons being under radar fire control. The controller confirms a direct hit, but the object is still moving towards the ship. Suddenly something hits the force field fence, and a huge monster appears outlined in the energy flux. The crew open fire, but seem to do little good. A number of men move forward but a quickly killed.

 

Morbious wakes hearing the screams of Altair. Shes had a dream mimicking the attack that has just occurred. As Morbious is waking the creature in the force field disappears. Doc theories that the creature is made of some sort of energy, renewing itself second by second.

 

Adams takes Doc in the tractor to visit Morbius intending to evacuate him from the planet. He leaves orders for the ship to be readied for lift off. If he and Doc dont get back, the ship is to leave without them. They also want to try and break into Morbious office and take the brain booster test.

 

They are met at the door by Robby, who disarms them. Altair appears and countermands the orders given to Robby by her father. Seeing a chance Doc sneaks into the office. Altair argues with Adams about trying to make Morbius return home, she ultimately declares her love for him.

 

Robby appears carrying the injured Doc. Struggling to speak and heavy pain, Doc explains that the Krell succeeded in their great experiment. However they forgot about the sub conscious monsters they would release. Monsters from the id.

 

Morbius sees the dead body of Doc, and makes a series of ugly comments. His daughter reminds him that Doc is dead. Morbius lack of care convinces Altair she is better off going with Adams. Morbius tries to talk Adams out of taking Altair.

 

Adams demands an explanation of the id. Morbius realizes he is the source of the creature killing everyone. The machine the Krell built was able to release his inner beast, the sub conscious monster dwelling deep inside his ancestral mind.

 

Robby interrupts the debate to report something approaching the house. Morbius triggers the defensive shields of the house, which the creature begins to destroy. Morbius then orders Robby to destroy the creature, however Robby short circuits. Adams explained that it was useless; Robby knew it was Morbius self.

 

Adams, Altair and Morbius retreat to the Krell lab and sealed themselves in by sealing a special indestructible door. Adams convinces Morbius that he is really the monster, and that Morbius can not actually control his subconscious desires.

 

The group watch as the creature beings the slow process of burning through the door. Panicked Morbius implores Altair to say it is not so. Suddenly the full realization comes, and he understands that he could endanger or even kill Altair.

 

As the creature breaks through Morbius rushes forward and denies its existence. Suddenly the creature disappears but Morbius is mortally wounded. With his dying breath he instructs Adams to trigger a self destruct mechanism linked to the reactors of the great machine. The ship and crew have 24 hours to get as far away from the planet as possible

 

The next day we see the ship deep in space. Robby and Altair are onboard watching as the planet brightens and is destroyed. Adams assures Altair that her fathers memory will shine like a beacon.

 

Hanna Bay Member of the upper Rice Bay Formation at Graham's Harbour. This is the youngest bedrock unit on San Salvador Island.

 

These well-sorted limestones consist of sand-sized grains of aragonite (CaCO3). On the continents, many quartz sandstones are technically called quartz arenites. Because the sand grains making up these Bahamian rocks are calcareous (composed of calcium carbonate), the limestones are called calcarenites. When examined microscopically, the calcareous sand grains can be seen touching each other - the rock is grain-supported. This results in an alternative name for these Bahamian limestones - grainstones. “Calcarenite” seems to be a more useful, more thoroughly descriptive term for these particular rocks, so I use that, versus “grainstone” (although “calcarenitic grainstone” could be used as well). The little-used petrologic term aragonitite could also be applied to these aragonitic limestones.

 

Sedimentary structures indicate that the calcarenites shown above were deposited in an ancient back-beach sand dune environment. In such settings, sediments are moved and deposited by winds. Wind-deposited sedimentary rocks are often referred to as eolianites. Most ancient sand dune deposits in the rock record are composed of quartzose and/or lithic sand. The dune deposits in the Bahamas are composed of calcium carbonate - this results in the term "calcarenitic eolianite".

 

Hanna Bay Member limestones gently dip toward the modern ocean (= to the right in the above photo) and include sediments deposited in beach environments and back-beach dune environments. The latter facies is represented by the locality shown above. Beach facies limestones are more or less planar-bedded, while back-beach dune limestones (eolianites) have steeper and more varied dips.

 

The aragonite sand grains in the Hanna Bay Member are principally bioclasts (worn mollusc shell fragments & coral skeleton fragments & calcareous algae fragments, etc.) and peloids (tiny, pellet-shaped masses composed of micrite/very fine-grained carbonate - some are likely microcoprolites, others are of uncertain origin).

 

Age: Holocene (MIS 1)

 

Locality: shoreline outcrop along the eastern part of the southern margin of Graham's Harbour, between Singer Bar Point and the Bahamas Field Station, northeastern San Salvador Island, eastern Bahamas

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

SAW = the book SMALL ARMS OF THE WORLD. It is the seminal authority on military firearms of the 20th Century, and the most credible.

 

BM62 and BM69 seem to be commercial fabrications, concocted and synthesized for the American market, the '62 originally flowing from the mother firm in Italy, but the sleazebag closers produced bootlegs semi-clones, often made of demilitarized Garand receivers, reconfigured.

 

No, internet rumors, assertions, random drivel, and vague reminiscences are NOT credible sources. For the most part, they're not even information.

 

The nomenclature applied to civilian-only specimens floating around the United States is nothing to do with the military versions, and indeed, there may not be a dozen actual military BM.59 specimens extant in the entire U.S. There was NO military BM.62. EVER. That's official.

 

Adapted from a re-machined M1 Garand forging, the BM.59 was a superb interim, selective-fire (in most military versions, and in ALL support versions) and controlled-burst full power interim rifle in the splendid 7.62x51mm. NATO cartridge.

 

Many--"mother" sources say ALL!!-- which saw Italian service were produced from salvaged, extant U.S. M1 Garand rifles, albeit Beretta also produced outside permutations of them NEW and sold these units throughout NATO and for export.

 

A very few, including a smattering of selective-fire specimens, legal and registered, were imported before GCA 68. Just what versions? Probably doesn't matter. Most of those in the U.S. were neither used as nor marked like actual military rifles.

 

Those marked with the Beretta name are the actual products of the mother firm in Gardone Val Trompia (Lombardy), but that has NOTHING TO DO with whether they are or ever were military rifles.

  

The selector switch on these was nothing like that on the M14. It was located on the receiver left, in a position similar to the position but not configuration on the M2 Carbine.

 

Manuals ARE available, but most who spew internet nonsense have never viewed one. Or read any of the literature.

 

These drawings are crude adaptations of some of the work from SMALL ARMS OF THE WORLD, which describes this series in detail. The titles here will not usually coordinate to the made up crap of merchants in the U.S.

 

Most of the "information" about these rifles floating around the internet is rumor, hogwash, commercially-planted hyperbole, and based upon the un-crested specimens brought in by Santa Fe, Golden State, SAI/Reese and others, some of it true, most of it third or fourth hand, and a lot of it wrong. Some of it is dangerous.

 

Most BM59's in this country NEVER saw military service, but Beretta did sell some stock in the United States.

 

As far as the literature can determine, the BM62 and BM69 NEVER were produced with those names by Beretta or Breda, or converted. Those are commercially manufacture specimens assembled in the United States.

 

I suspect the ones I saw at Interarms ca.1966 or so were the only actual military specimens in the U.S. But I do not KNOW that. At the time, it seemed the flow of real merchandise might never end.

 

I have fired actual selective fire versions.

 

Drawings from SAW, credited.

Glacier Bay, Alaska.

Best Viewed Large

 

I'm kinda feeling the mountain's anguish. I'm still working on my research paper and pretty miserable about it. It's not like a REAL research paper since it's for Art History and I have to respond to the art work as well as personally analyze it for style. UGH. I definitely prefer classic research papers when you can synthesize other opinions and facts and make a well reasoned argument. This? This is a whole different ball game.

Anyways, thanks for stopping by. The paper is due Monday night, so I'm hoping to be away from Flickr until Tuesday, although my addict runs deep and keeping away will be a challenge.

Chlorite-sericite schist from the Precambrian of Minnesota, USA. (public display, Soudan Underground Mine State Park visitor center, Soudan, Minnesota, USA)

 

This is a chlorite-sericite schist from a shear zone in the deep subsurface of Minnesota's Soudan Mine. The mine targeted high-grade iron ores (specularites) from the Neoarchean-aged Soudan Iron-Formation (see: www.flickr.com/photos/jsjgeology/albums/72157652553006284). The site is now a state park and underground tours are offered to the mine's 27th Level. Mapping of the Soudan Mine's 27th Level (see Vallowe et al., 2010) shows that iron-formation is "interbedded" with various schists that occur along old shear zones (fault zones). These shear zone schists are Neoarchean in age and may be related to (just predating or coeval with) the development of the ~2.68 billion year old Murray Shear Zone.

 

Vallowe et al. (2010) provides this description of the sheared zone rocks and chlorite-sericite schist in particular: ". . . curvilinear bands of schistose rocks found along discrete ductile to brittle-ductile structures. Sheared rock units typically have anastomosing fabric composed of discrete foliation and shear banding (C-S structures)." and "Chlorite-Sericite Schist - Yellowish-green, fine-grained, highly foliated chlorite sericite schist. A very distinctive map unit underground recognized by its color and high degree of deformation."

 

Locality: 27th Level of the Soudan Mine, Soudan Underground Mine State Park, Soudan, northeastern Minnesota, USA

--------------------

Site-specific geologic info. synthesized from:

 

Vallowe et al. (2010) - Surface and subsurface geologic maps of the Soudan Underground Mine State Park, St. Louis County, northeastern Minnesota. Precambrian Research Center Map Series Map-2010-01.

 

Steel Pulse

Steel Pulse is a roots reggae musical band. They originally formed at Handsworth Wood Boys School, in Birmingham, England, composed of David Hinds (lead vocals, guitar), Basil Gabbidon (born Basil Glendon Gabbidon, 29 October 1955, Buff Bay, Jamaica - lead guitar, vocals), and Ronald McQueen (bass). Hinds, as songwriter, has always been the engine behind Steel Pulse, from their early days establishing themselves in the Birmingham club scene onwards.Originally produced by Pete King

Formed in 1975, their debut release, Kibudu, Mansetta And Abuku arrived on the small independent label Dip, and linked the plight of urban black youth with the image of a greater African homeland. They followed it with Nyah Love for Anchor. Surprisingly, they were initially refused live dates in Caribbean venues in the Midlands because of their Rastafarian beliefs. Aligning themselves closely with the Rock Against Racism organisation and featuring in its first music festival in the spring of 1978, they chose to tour with sympathetic elements of the punk movement, including the Stranglers, XTC etc.: "Punks had a way of enjoying themselves - throw hordes at you, beer, spit at you, that kind of thing". Eventually they found a more natural home in support slots for Burning Spear, which brought them to the attention of Island Records.

Their first release for Island was the Ku Klux Klan 45, a considered tilt at the evils of racism, and one often accompanied by a visual parody of the sect on stage. By this time their ranks had swelled to include Selwyn 'Bumbo' Brown (keyboards), Steve 'Grizzly' Nisbett (drums), Alphonso Martin (vocals, percussion) and Mykaell Riley (vocals). Handsworth Revolution was an accomplished long playing debut and one of the major landmarks in the evolution of British Reggae (Executive Producer Pete King). However, despite critical and moderate commercial success over three albums, the relationship with Island Records had soured by the advent of Caught You (released in the US as Reggae Fever).

Tom Terrell, who would later serve as their manager, was instrumental in masterminding the U.S. premiere of Steel Pulse on the night of Bob Marley's funeral, which was broadcast live around the world from the 9:30 Club, 930 F Street, N.W., Washington, D.C. on May 21, 1981.

They switched to Elektra Records, and unveiled their most consistent collection of songs since their debut with True Democracy, distinguished by the Garvey-eulogising 'Rally Round' cut. A further definitive set arrived in Earth Crisis. Unfortunately, Elektra chose to take a leaf out of Island's book in trying to coerce Steel Pulse into a more mainstream vein, asking them to emulate the pop-reggae stance of Eddy Grant. Babylon The Bandit was consequently weakened, but did contain the anthemic "Not King James Version", which was a powerful indictment on the omission of black people and history from certain versions of the Bible.

Their next move was of Hinds of Steel Pulse to MCA for State Of Emergency, which retained some of the synthesized dance elements of its predecessor. Though it was a significantly happier compromise, it still paled before any of their earlier albums. Centennial was recorded live at the Elysee Montmartre in Paris, and dedicated to the hundred year anniversary of the birth of Haile Selassie. It was the first recording since the defection of Alphonso Martin, leaving the trio of Hinds, Nisbett and Selwyn. While they still faced stern criticism at the hands of British Reggae fans, in the United States their reputation was growing, becoming the first ever reggae band to appear on the Tonight television show. Their profile was raised further when, in 1992, Hinds challenged the New York City Taxi & Limousine Commission in the Supreme Court, asserting that their cab drivers discriminated against black people in general and Rastafarians in particular.

The Steel Pulse message of hope, education and activism has struck a chord with music lovers worldwide. Their international success has resulted in a Grammy award for their 1986 classic Babylon The Bandit, and nominations for subsequent albums Victims (1991) and Rastafari Centennial (1992). In 1989, the group contributed I Can't Stand it to the soundtrack of Spike Lee's film Do The Right Thing.

In 1994, the group headlined some of the world's biggest reggae festivals including Reggae Sunsplash USA, Jamaican Sunsplash, Japan Splash and Northern California annual Reggae on the River Festival. In 1986, Steel Pulse contributed an ethereal version of Franklin's Tower on Pow Wow Records' Fire on the Mountain: Reggae Celebrates the Grateful Dead compilation. They recently covered The Police's Can't Stand Losing You for a reggae compilation of Police tunes that will appear on the Ark 21 label. The band is particularly proud of "Rastanthology," a 17-song collection of Steel Pulse classics (the 1996 compilation was released on the band's own Wise Man Doctrine label).

"We're not here to start a physical revolution, we're just here to open everybody's eyes and let them check themselves and continue in a very educational mode to change things on that tip", Hinds explains. "We're losing ourselves and I think it's very important for us to realize that. Too many of our youths have been lost to drugs, or by the gun, or not having the education needed to persevere and move in an upward direction. I think RAGE & FURY will contribute to their enlightenment."

In 2007, The band released their music video for 'Door Of No Return', a track taken from their latest studio album "African Holocaust", which explores themes of the Trans-Atlantic Slave Trade. Shot on location in Senegal and New York City by Driftwood Pictures Ltd.

Steel Pulse played Friday night on the Jazz World Stage at the 2009 Glastonbury Festival.

Steel Pulse are collaborating with Driftwood Pictures to create a definitive feature length documentary on the band's thirty year history.

The band is currently working on a new album due out in 2010 and has released the single Barack Obama Song.

Original member Basil Gabbidon released the album Reggae Rockz in 2008.

Discography Studio albums

•Handsworth Revolution (1978)

•Tribute to the Martyrs (1979)

•Caught You (1980)

•True Democracy (1982)

•Earth Crisis (1984)

•Babylon the Bandit (1986) Grammy Award Winner - Best Reggae Band

•State of Emergency (1988)

•Victims (1991)

•Vex (1994)

•Rage and Fury (1997)

•African Holocaust (2004)

 

Borings in the Devil's Point Hardground (reef facies of the Cockburn Town Member, upper Grotto Beach Formation at the Cockburn Town Fossil Reef, western margin of San Salvador Island).

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene).

 

The subcircular borings shown above are incised into a limestone hardground surface that represents an unconformity traceable throughout the outcrop. The surface formed during a short-lived, mid-5e regression called the Devil's Point Event, dated to somewhere between 120 and 123 ka. After the event, high sea level returned. The Devil's Point Unconformity is present on most Bahamian islands and is traceable to Florida and Mexico. The more deeply flooded carbonate platforms in the Bahamas, such as Mayaguana Island, were not significantly affected by the mid-5e regression.

 

The rocks and fossils below the unconformity are referred to as "Reef 1". The rocks and fossils above are called "Reef 2". Isotopic dating has been done on 122 coral samples from the Cockburn Town Fossil Reef. The oldest is 127 ka and the youngest is 114.3 ka. Including dates from San Salvador Island to Great Inagua Island, Reef 1 has an average age of 123.5 ka, and Reef 2 has an average age of 119.5 ka.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

In-situ fossil scleractinian coral colony on the Devil's Point Hardground in the reef facies of the Cockburn Town Member, upper Grotto Beach Formation at the Cockburn Town Fossil Reef, western margin of San Salvador Island.

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene).

 

The fossil coral seen here is encrusting an irregular surface. This surface is an unconformity and is traceable throughout the outcrop. It represents a limestone hardground surface that formed during a short-lived, mid-5e regression called the Devil's Point Event, dated to somewhere between 120 and 123 ka. After the event, high sea level returned. This coral was one of the earliest inhabitants of this locality’s shallow seafloor after the mid-5e regression. The Devil's Point Unconformity is present on most Bahamian islands and is traceable to Florida and Mexico. The more deeply flooded carbonate platforms in the Bahamas, such as Mayaguana Island, were not significantly affected by the mid-5e regression.

 

The rocks and fossils below the unconformity are referred to as "Reef 1". The rocks and fossils above are called "Reef 2". Isotopic dating has been done on 122 coral samples from the Cockburn Town Fossil Reef. The oldest is 127 ka and the youngest is 114.3 ka. Including dates from San Salvador Island to Great Inagua Island, Reef 1 has an average age of 123.5 ka, and Reef 2 has an average age of 119.5 ka.

 

The shadowed, subcircular pits on the hardground surface surrounding the fossil coral are borings, incised when the hardground was a seafloor substrate.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

Hanna Bay Member of the upper Rice Bay Formation at Graham's Harbour. This is the youngest bedrock unit on San Salvador Island.

 

These well-sorted limestones consist of sand-sized grains of aragonite (CaCO3). On the continents, many quartz sandstones are technically called quartz arenites. Because the sand grains making up these Bahamian rocks are calcareous (composed of calcium carbonate), the limestones are called calcarenites. When examined microscopically, the calcareous sand grains can be seen touching each other - the rock is grain-supported. This results in an alternative name for these Bahamian limestones - grainstones. “Calcarenite” seems to be a more useful, more thoroughly descriptive term for these particular rocks, so I use that, versus “grainstone” (although “calcarenitic grainstone” could be used as well). The little-used petrologic term aragonitite could also be applied to these aragonitic limestones.

 

Sedimentary structures indicate that the calcarenites shown above were deposited in an ancient back-beach sand dune environment. In such settings, sediments are moved and deposited by winds. Wind-deposited sedimentary rocks are often referred to as eolianites. Most ancient sand dune deposits in the rock record are composed of quartzose and/or lithic sand. The dune deposits in the Bahamas are composed of calcium carbonate - this results in the term "calcarenitic eolianite".

 

Hanna Bay Member limestones gently dip toward the modern ocean (= behind the photographer in the above photo) and include sediments deposited in beach environments and back-beach dune environments. The latter facies is represented by the locality shown above. Beach facies limestones are more or less planar-bedded, while back-beach dune limestones (eolianites) have steeper and more varied dips.

 

The aragonite sand grains in the Hanna Bay Member are principally bioclasts (worn mollusc shell fragments & coral skeleton fragments & calcareous algae fragments, etc.) and peloids (tiny, pellet-shaped masses composed of micrite/very fine-grained carbonate - some are likely microcoprolites, others are of uncertain origin).

 

Age: Holocene (MIS 1)

 

Locality: shoreline outcrop along the eastern part of the southern margin of Graham's Harbour, between Singer Bar Point and the Bahamas Field Station, northeastern San Salvador Island, eastern Bahamas

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

Kimberlite from the Jurassic of Sierra Leone, Africa. (Scale: the large, rounded serpentinized olivine crystal at upper left is just over 4 mm across)

 

Kimberlites and lamproites have tremendous economic importance because they are host rocks for gem-grade and industrial-grade diamonds. Kimberlites & lamproites are unusual igneous bodies having overall pipe-shaped geometries. Their mode of formation is only moderately understood because they have not been observed forming. Kimberlites & lamproites are known from scattered localities throughout the world - only some are significantly diamondiferous. Classic localities for diamonds are India and Brazil. Africa was also discovered to have many kimberlites and is world-famous for producing large numbers of diamonds. Other notable diamondiferous kimberlite-lamproite occurrences include Russia, China, northwestern Australia, and northwestern Canada.

 

Kimberlites are named for the town of Kimberley, South Africa. Several kimberlite pipes occur in the Kimberley area. Kimberlites have a gently tapering-downward, pipe-shaped cross-section. Lamproites have a cross-section more closely resembling that of a martini glass.

 

The bluish-green kimberlite shown above is from the diamondiferous Koidu Kimberlite Complex of Jurassic age in eastern Sierra Leone, West Africa. The rounded, whitish- to pale green-colored grains are serpentinized olivine crystals having a mesh texture (reticulate texture) (just discernible in the photo). The sample is probably from one of the kimberlite dikes in the area (Dike Zone B, C, or D of Tompkins & Haggerty, 1984).

 

Location: Yengema-Koidu (Sefadu) area, eastern Sierra Leone, West Africa (approximately 8° ~35-40’ North latitude, ~11° West longitude)

---------------------

Info. mostly synthesized from:

 

Linda Tompkins (pers. comm.)

 

Stuart McRae (pers. comm.)

 

Tompkins & Haggerty (1984 - Kimberlites I: kimberlites and related rocks, Proceedings of the “Third International Kimberlite Conference”, volume 1, Developments in Petrology 11A).

 

The Commander doesn't trust this man made being. Based loosely on Shakespeare's The Tempest, this classic sci-fi thriller explores the power of the mind. Creatures from the Id attack a party of spacemen who've come to check up on a reclusive scientist and his daughter. Forbidden Planet was influential on a wide variety of media, and particularly on the subsequent Star Trek TV series, which cribbed a lot of details from the film.

Opening scene

 

It is late in the 22nd Century. United Planet cruiser C57D a year out from Earth base on the way to Altair for a special mission. Commander J.J Adams (Leslie Neilsen) orders the crew to the deceleration booths as the ship drops from light speed to normal space.

 

Adams orders pilot Jerry Farman (Jack Kelly) to lay in a course for the fourth planet. The captain then briefs the crew that they are at their destination, and that they are to look for survivors from the Bellerophon expedition 20 years earlier.

 

As they orbit the planet looking for signs of life, the ship is scanned by a radar facility some 20 square miles in area. Morbius (Walter Pigeon) contacts the ship from the planet asking why the ship is here. Morbius goes on to explain he requires nothing, no rescue is required and he can't guarantee the safety of the ship or its crew.

 

Adams confirms that Morbius was a member of the original crew, but is puzzled at the cryptic warning Morbius realizes the ship is going to land regardless, and gives the pilot coordinates in a desert region of the planet. The ship lands and security details deploy. Within minutes a high speed dust cloud approaches the ship. Adams realizes it is a vehicle, and as it arrives the driver is discovered to be a robot (Robby). Robby welcomes the crew to Altair 4 and invites members of the crew to Morbious residence.

 

Adams, Farman and Doc Ostrow (Warren Stevens) arrive at the residence and are greeted by Morbius. They sit down to a meal prepared by Robbys food synthesizer and Morbius shows the visitors Robbys other abilities, including his unwavering obedience. Morbius then gives Robby a blaster with orders to shoot Adams. Robby refuses and goes into a mechanical mind lock, disabling him till the order is changed.

 

Morbius then shows the men the defense system of the house (A series of steel shutters). When questioned, Morbius admits that the Belleraphon crew is dead, Morbius and his wife being the only original survivors. Morbius's wife has also died, but months after the others and from natural causes. Morbius goes on to explain many of the crew were torn limb from limb by a strange creature or force living on the planet. The Belleraphon herself was destroyed when the final three surviving members tried to take off for Earth.

 

Adams wonders why this force has remained dormant all these years and never attacked Morbius. As discussions continue, a young woman Altaira (Anne Francis) introduces herself as Morbius daughter. Farman takes an immediate interest in Altaira, and begins to flirt with her . Altaira then shows the men her ability to control wild animals by petting a wild tiger. During this display the ship checks in on the safety of the away party. Adams explains he will need to check in with Earth for further orders and begins preparations for sending a signal. Because of the power needed the ship will be disabled for up to 10 days. Morbius is mortified by this extended period and offers Robby's services in building the communication facility

 

The next day Robby arrives at ship as the crew unloads the engine to power the transmitter. To lighten the tense moment the commander instructs the crane driver to pick up Cookie (Earl Holliman) and move him out of the way. Quinn interrupts the practical joke to report that the assembly is complete and they can transmit in the morning.

 

Meanwhile Cookie goes looking for Robby and organizes for the robot to synthesize some bourbon. Robby takes a sample and tells Cookie he can have 60 gallons ready the next morning for him.

 

Farman continues to court Altair by teaching her how to kiss, and the health benefits of kissing. Adams interrupts the exercise, and is clearly annoyed with a mix of jealous. He then explains to Altair that the clothes she wears are inappropriate around his crew. Altair tries to argue till Adams looses patience and order Altair to leave the area.

 

That night, Altair, still furious, explains to her father what occurred. Altair takes Adams advice to heart and orders Robby to run up a less revealing dress. Meanwhile back at the ship two security guards think they hear breathing in the darkness but see nothing.

 

Inside the ship, one of the crew half asleep sees the inner hatch opened and some material moved around. Next morning the Captain holds court on the events of the night before. Quinn advises the captain that most of the missing and damaged equipment can be replaced except for the Clystron monitor. Angry the Capt and Doc go back to Morbius to confront him about what has occurred.

 

Morbius is unavailable, so the two men settle in to wait. Outside Adams sees Altair swimming and goes to speak to her. Thinking she is naked, Adams becomes flustered and unsettled till he realizes she wants him to see her new dress. Altair asks why Adams wont kiss her like everyone else has. He gives in and plants one on her. Behind them a tiger emerges from the forest and attacks Altair, Adams reacts by shooting it. Altair is badly troubled by the incident, the tiger had been her friend, but she can't understand why acted as if she was an enemy.

 

Returning to the house, Doc and Adams accidently open Morbius office. They find a series of strange drawings but no sign of Morbius. He appears through a secret door and is outraged at the intrusion. Adams explains the damage done to the ship the previous night and his concern that Morbius was behind the attack.

 

Morbius admits it is time for explanations. He goes on to tell them about a race of creatures that lived on the planet called the Krell. In the past they had visited Earth, which explains why there are Earth animals on the planet. Morbius believes the Krell civilization collapsed in a single night, right on the verge of their greatest discovery. Today 2000 centuries later, nothing of their cities exists above ground.

 

Morbius then takes them on a tour of the Krell underground installation. Morbius first shows them a device for projecting their knowledge; he explains how he began to piece together information. Then an education device that projects images formed in the mind. Finally he explains what the Krell were expected to do, and how much lower human intelligence is in comparison.

 

Doc tries the intelligence tester but is confused when it does not register as high as Morbius. Morbius then explains it can also boost intelligence, and that the captain of the Belleraphon died using it. Morbius himself was badly injured but when he recovered his IQ had doubled.

 

Adams questions why all the equipment looks brand new. It is explained that all the machines left on the planet are self repairing and Morbius takes them on a tour of the rest of the installation. First they inspect a giant air vent that leads to the core of the planet. There are 400 other such shafts in the area and 9200 thermal reactors spread through the facilities 8000 cubic miles.

 

Later that night the crew has completed the security arrangements and tests the force field fence. Cookie asks permission to go outside the fence. He meets Robby who gives him the 60 gallons of bourbon. Outside, something hits the fence and shorts it out. The security team checks the breach but finds nothing. A series of foot like depressions begin forming leading to the ship. Something unseen enters the ship. A scream echos through the compound.

 

Back at the Morbius residence he argues that only he should be allowed to control the flow of Krell technology back to Earth. In the middle of the discussion, Adams is paged and told that the Chief Quinn has been murdered. Adams breaks of his discussions and heads back to the ship.

 

Later that night Doc finds the footprints and makes a cast. The foot makes no evolutionary sense. It seems to have elements of a four footed and biped creature; also it seems a predator and herbivore. Adams questions Cookie who was with the robot during the test and decides the robot was not responsible.

 

The next day at the funeral for Chief Morbius again warns him of impending doom facing the ship and crew. Adams considers this a challenge and spends the day fortifying the position around the ship. After testing the weapons and satisfied all that could be done has, the radar station suddenly reports movement in the distance moving slowly towards the ship.

 

No one sees anything despite the weapons being under radar fire control. The controller confirms a direct hit, but the object is still moving towards the ship. Suddenly something hits the force field fence, and a huge monster appears outlined in the energy flux. The crew open fire, but seem to do little good. A number of men move forward but a quickly killed.

 

Morbious wakes hearing the screams of Altair. Shes had a dream mimicking the attack that has just occurred. As Morbious is waking the creature in the force field disappears. Doc theories that the creature is made of some sort of energy, renewing itself second by second.

 

Adams takes Doc in the tractor to visit Morbius intending to evacuate him from the planet. He leaves orders for the ship to be readied for lift off. If he and Doc dont get back, the ship is to leave without them. They also want to try and break into Morbious office and take the brain booster test.

 

They are met at the door by Robby, who disarms them. Altair appears and countermands the orders given to Robby by her father. Seeing a chance Doc sneaks into the office. Altair argues with Adams about trying to make Morbius return home, she ultimately declares her love for him.

 

Robby appears carrying the injured Doc. Struggling to speak and heavy pain, Doc explains that the Krell succeeded in their great experiment. However they forgot about the sub conscious monsters they would release. Monsters from the id.

 

Morbius sees the dead body of Doc, and makes a series of ugly comments. His daughter reminds him that Doc is dead. Morbius lack of care convinces Altair she is better off going with Adams. Morbius tries to talk Adams out of taking Altair.

 

Adams demands an explanation of the id. Morbius realizes he is the source of the creature killing everyone. The machine the Krell built was able to release his inner beast, the sub conscious monster dwelling deep inside his ancestral mind.

 

Robby interrupts the debate to report something approaching the house. Morbius triggers the defensive shields of the house, which the creature begins to destroy. Morbius then orders Robby to destroy the creature, however Robby short circuits. Adams explained that it was useless; Robby knew it was Morbius self.

 

Adams, Altair and Morbius retreat to the Krell lab and sealed themselves in by sealing a special indestructible door. Adams convinces Morbius that he is really the monster, and that Morbius can not actually control his subconscious desires.

 

The group watch as the creature beings the slow process of burning through the door. Panicked Morbius implores Altair to say it is not so. Suddenly the full realization comes, and he understands that he could endanger or even kill Altair.

 

As the creature breaks through Morbius rushes forward and denies its existence. Suddenly the creature disappears but Morbius is mortally wounded. With his dying breath he instructs Adams to trigger a self destruct mechanism linked to the reactors of the great machine. The ship and crew have 24 hours to get as far away from the planet as possible

 

The next day we see the ship deep in space. Robby and Altair are onboard watching as the planet brightens and is destroyed. Adams assures Altair that her fathers memory will shine like a beacon.

The Terracotta Army or the "Terracotta Warriors and Horses" is a collection of terracotta sculptures depicting the armies of Qin Shi Huang, the first Emperor of China. It is a form of funerary art buried with the emperor in 210–209 BCE and whose purpose was to protect the emperor in his afterlife.The figures, dating from approximately the late third century BCE, were discovered in 1974 by local farmers in Lintong District, Xi'an, Shaanxi province. The figures vary in height according to their roles, with the tallest being the generals. The figures include warriors, chariots and horses. Estimates from 2007 were that the three pits containing the Terracotta Army held more than 8,000 soldiers, 130 chariots with 520 horses and 150 cavalry horses, the majority of which remained buried in the pits nearby Qin Shi Huang's mausoleum. Other terracotta non-military figures were found in other pits, including officials, acrobats, strongmen and musicians.

 

BACKGROUND

The Terracotta Army was discovered on 29 March 1974 to the east of Xi'an in Shaanxi province by farmers digging a water well approximately 1.6 kilometres east of the Qin Emperor's tomb mound at Mount Li (Lishan), a region riddled with underground springs and watercourses. For centuries, occasional reports mentioned pieces of terracotta figures and fragments of the Qin necropolis – roofing tiles, bricks and chunks of masonry. This discovery prompted Chinese archaeologists to investigate, revealing the largest pottery figurine group ever found in China.

 

NECROPROLIS

In addition to the warriors, an entire necropolis built for the emperor was found surrounding the first emperor's tomb mound. The earthen tomb mound is located at the foot of Mount Li and built in a pyramidal shape with Qin Shi Huang’s necropolis complex constructed as a microcosm of his imperial palace or compound.

 

It consists of several offices, halls, stables, and other structures placed around the tomb mound, which is surrounded by two solidly built rammed earth walls with gateway entrances. Up to 5 metres of reddish, sandy soil had accumulated over the site in the two millennia following its construction, but archaeologists found evidence of earlier disturbances at the site. During the excavations near the Mount Li burial mound, archaeologists found several graves dating from the eighteenth and nineteenth centuries, where diggers had apparently struck terracotta fragments. These were discarded as worthless and used along with soil to back fill the excavations.

 

HISTORY

According to the writings of historian Sima Qian (145–90 BCE), work on the mausoleum began in 246 BCE soon after Emperor Qin (then aged 13) ascended the throne. The project eventually involved 700,000 workers. Geographer Li Daoyuan, writing six centuries after the First Emperor's death, recorded in Shui Jing Zhu that Mount Li was a favoured location due to its auspicious geology, "famed for its jade mines, its northern side was rich in gold, and its southern side rich in beautiful jade; the First Emperor, covetous of its fine reputation, therefore chose to be buried there". Sima Qian, in his most noted work, Shiji, finished a century after the mausoleum's completion, wrote that the First Emperor was buried with palaces, towers, officials, valuable artifacts and wondrous objects. According to this account, 100 rivers had their flow simulated by mercury, and above them the ceiling was decorated with heavenly bodies below which were the features of the land. Some translations of this passage refer to "models" or "imitations," however those words were not used in the original text, which makes no mention of the terracotta army.

 

High levels of mercury were found in the soil of the tomb mound, giving credence to Sima Qian's account.

 

Later historical accounts suggested that the tomb had been looted by Xiang Yu, a contender for the throne after the death of the first emperor, however, there are indications that the tomb may not have been plundered.

 

CONSTRUCTION

The terracotta army figures were manufactured in workshops by government laborers and local craftsmen using local materials. Heads, arms, legs, and torsos were created separately and then assembled. Eight face moulds were most likely used, with clay added after assembly to provide individual facial features.

 

It is believed that the warriors' legs were made in much the same way that terracotta drainage pipes were manufactured at the time. This would classify the process as assembly line production, with specific parts manufactured and assembled after being fired, as opposed to crafting one solid piece and subsequently firing it. In those times of tight imperial control, each workshop was required to inscribe its name on items produced to ensure quality control. This has aided modern historians in verifying which workshops were commandeered to make tiles and other mundane items for the terracotta army. Upon completion, the terracotta figures were placed in the pits in precise military formation according to rank and duty.

 

The terracotta figures are life-sized. They vary in height, uniform, and hairstyle in accordance with rank. Most originally held real weapons such as spears, swords, or crossbows. Originally, the figures were also painted with bright pigments, variously coloured pink, red, green, blue, black, brown, white and lilac. The coloured lacquer finish, individual facial features, and weapons used in producing these figures increased the figures' realism. Most of the original weapons were looted shortly after the creation of the army, or have rotted away, while the colour coating flaked off or greatly faded.

 

THE TOMB

The tomb appears to be a hermetically-sealed space the size of a football pitch. The tomb remains unopened, given concerns about preserving its artifacts. For example, after their excavation, the painted surface present on some terracotta figures began to flake and fade. The lacquer covering the paint can curl in fifteen seconds once exposed to Xi'an's dry air and can flake off in just four minutes. There is speculation of a possible Hellenistic link to these sculptures, due to the lack of life-sized and realistic sculptures prior to the Qin dynasty according to some scholars.

 

EXCAVATION SITE

PITS

Four main pits approximately 7 metres deep have been excavated. These are located approximately 1.5 kilometres east of the burial mound. The soldiers within were laid out as if to protect the tomb from the east, where all the Qin Emperor's conquered states lay.

 

PIT ONE

Pit one, which is 230 metres long and 62 metres wide,contains the main army of more than 6,000 figures. Pit one has 11corridors, most of which are more than 3 metres wide and paved with small bricks with a wooden ceiling supported by large beams and posts. This design was also used for the tombs of nobles and would have resembled palace hallways when built. The wooden ceilings were covered with reed mats and layers of clay for waterproofing, and then mounded with more soil raising them about 2 to 3 metres above the surrounding ground level when completed.

 

OTHERS

Pit two has cavalry and infantry units as well as war chariots and is thought to represent a military guard. Pit three is the command post, with high-ranking officers and a war chariot. Pit four is empty, perhaps left unfinished by its builders.

 

Some of the figures in pit one and two show fire damage, while remains of burnt ceiling rafters have also been found.

These, together with the missing weapons, have been taken as evidence of the reported looting by Xiang Yu and the subsequent burning of the site, which is thought to have caused the roof to collapse and crush the army figures below. The terracotta figures currently on display have been restored from the fragments.Other pits that formed the necropolis also have been excavated. These pits lie within and outside the walls surrounding the tomb mound. They variously contain bronze carriages, terracotta figures of entertainers such as acrobats and strongmen, officials, stone armour suits, burials sites of horses, rare animals and labourers, as well as bronze cranes and ducks set in an underground park.

 

WEAPONRY

Weapons such as swords, spears, battle-axes, scimitars, shields, crossbows, and arrowheads were found in the pits. Some of these weapons, such as the swords are sharp and were coated with a 10–15 micrometre layer of chromium dioxide and kept the swords rust-free for 2,000 years. The swords contain an alloy of copper, tin, and other elements including nickel, magnesium, and cobalt. Some carry inscriptions that date manufacture between 245 and 228 BCE, indicating they were used as weapons before their burials.

 

An important element of the army is the chariot, of which four types were found. In battle the fighting chariots form pairs at the head of a unit of infantry. The principal weapon of the charioteers was the ge or dagger-axe, an L-shaped bronze blade mounted on a long shaft used for sweeping and hooking at the enemy. Infantrymen also carried ge on shorter shafts, ji or halberds and spears and lances. For close fighting and defence, both charioteers and infantrymen carried double-edged straight swords. The archers carried crossbows, with sophisticated trigger mechanisms, capable of firing arrows farther than 800 metres.

 

EXHIBITIONS

A collection of 120 objects from the mausoleum and 20 terracotta warriors were displayed at the British Museum in London as its special exhibition "The First Emperor: China's Terracotta Army" from 13 September 2007 to April 2008. This exhibition made 2008 the British Museum's most successful year and made the British Museum the United Kingdom's top cultural attraction between 2007 and 2008. The exhibition brought the most visitors to the museum since the King Tutankhamun exhibition in 1972. It was reported that the initial batch of tickets sold out so fast that the museum extended its opening hours until midnight on Thursdays to Sundays. According to The Times, many people had to be turned away, despite the extended hours. During the day of events to mark the Chinese New Year, the crush was so intense that the gates to the museum had to be shut. The Terracotta Army has been described as the only other set of historic artifacts (along with the remnants of wreck of the RMS Titanic) that can draw a crowd by the name alone.

 

Warriors and other artifacts were exhibited to the public at the Forum de Barcelona in Barcelona between 9 May and 26 September 2004. It was their most successful exhibition ever. The same exhibition was presented at the Fundación Canal de Isabel II in Madrid between October 2004 and January 2005, their most successful ever. From December 2009 to May 2010 the exhibition was shown in the Centro Cultural La Moneda in Santiago de Chile.

 

The exhibition traveled to North America and visited museums such as the Asian Art Museum of San Francisco, Bowers Museum in Santa Ana, California, Houston Museum of Natural Science, High Museum of Art in Atlanta, National Geographic Society Museum in Washington, D.C. and the Royal Ontario Museum in Toronto. Subsequently the exhibition traveled to Sweden and was hosted in the Museum of Far Eastern Antiquities between 28 August 2010 and 20 January 2011. An exhibition entitled 'The First Emperor – China's Entombed Warriors', presenting 120 artifacts was hosted at the Art Gallery of New South Wales, between 2 December 2010 and 13 March 2011. An exhibition entitled "L'Empereur guerrier de Chine et son armée de terre cuite" ("The Warrior-Emperor of China and his terracotta army"), featuring artifacts including statues from the mausoleum, was hosted by the Montreal Museum of Fine Arts from 11 February 2011 to 26 June 2011. In Italy, from July 2008 to November 16, 2008, five of the warriors of the terracotta army were exposed in Turin at the Museum of Antiquities, and from 16 April 2010 to 5 September 2010 were exposed nine warriors in Milan, at the Royal Palace, at the exhibition entitled "The Two Empires". The group consisted of a horse, a counselor, an archer and 6 Lancers. The "Treasures of Ancient China" exhibition, showcasing two terracotta soldiers and other artifacts, including the Longmen Grottoes Buddhist statues, was held between 19 February 2011 and 7 November 2011 in four locations in India: National Museum of New Delhi, Prince of Wales Museum in Mumbai, Salar Jung Museum in Hyderabad and National Library of India in Kolkata.

 

Soldiers and related items were on display from March 15, 2013, to November 17, 2013, at the Historical Museum of Bern.

 

SCIENTIFIC RESEARCH

In 2007, scientists at Stanford University and the Advanced Light Source facility in Berkeley, California reported that powder diffraction experiments combined with energy-dispersive X-ray spectroscopy and micro-X-ray fluorescence analysis showed that the process of producing Terracotta figures colored with Chinese purple dye consisting of barium copper silicate was derived from the knowledge gained by Taoist alchemists in their attempts to synthesize jade ornaments.

 

Since 2006, an international team of researchers at the UCL Institute of Archaeology have been using analytical chemistry techniques to uncover more details about the production techniques employed in the creation of the Terracotta Army. Using X-ray fluorescence spectrometry of 40,000 bronze arrowheads bundled in groups of 100, the researchers reported that the arrowheads within a single bundle formed a relatively tight cluster that was different from other bundles. In addition, the presence or absence of metal impurities was consistent within bundles. Based on the arrows’ chemical compositions, the researchers concluded that a cellular manufacturing system similar to the one used in a modern Toyota factory, as opposed to a continuous assembly line in the early days of automobile industry, was employed.

 

Grinding and polishing marks visible under a scanning electron microscope provide evidence for the earliest industrial use of lathes for polishing.

ART AND CULTURE CENTER OF HOLLYWOOD TO PRESENT TALK

WITH ARTIST SRI PRABHA

 

FOR IMMEDIATE RELEASE Oct. 14, 2014

Contact: Charmain Yobbi, Manager, Public Relations and Community Partnerships

954.921.3274 x235

 

Art and Culture Center of Hollywood to Present Talk With Artist Sri Prabha

 

Hollywood, Fla. – On Tuesday, Oct. 21, the Art and Culture Center of Hollywood will present a reception and conversation with artist Sri Prabha along with South Florida art critic Margery Gordon and astronomer Jorge Perez-Gallego. Reception is at 6:30 p.m. and the talk starts at 7 p.m. at the Center, 1650 Harrison St.

 

Prabha will illuminate the multifaceted ideas and influences that inspired Outpost, his site-specific installation. This otherworldly campsite is bathed in Prabha’s signature video projections, enigmatic reflections and rhythmic soundtrack layering celestial, biological, electronic and instrumental sources. Among the eclectic objects assembled are geological artifacts Prabha borrowed from the Patricia and Phillip Frost Museum of Science through an ongoing collaboration.

 

Gordon will discuss with Prabha how his artistic process synthesizes timeless stimuli with cutting-edge technology, exploring how humans relate to the natural world and provoking visceral reactions to intellectual discoveries.

 

Prabha lives in Hollywood and works at a studio in FAT Village, Fort Lauderdale. He was raised in India by a family of doctors and engineers who sparked an interest in science that deepened with the master’s degree in psychology he pursued after studying at the Cornish College of the Arts in Seattle.

 

Gordon is a freelance journalist, curator and educator who grew up amid Miami’s burgeoning art community. As founder and director of Arts Encounters, she organizes cultural tours throughout South Florida as well as public programs, exhibitions, and group travel for arts organizations, institutions, and businesses.

 

Born in Spain, Perez-Gallego is a multifaceted astronomer, designer and educator. An exhibition developer at the Patricia and Phillip Frost Museum of Science, he holds a Ph.D. and an M.F.A. from the University of Florida; has worked for NASA and Telefónica; and co-founded ODDS, an award-winning Asheville, NC-based design studio. His work and research has appeared in astronomy and design journals.

 

Concurrently with Sri Prabha: Outpost, the group show Echos Myron and photos by Monica Uszerowicz are also on display. All three exhibitions will be shown through Sunday, Nov. 2 at the Center.

 

Curated by Beatriz Monteavaro and Priyadarsini Ray, Echos Myron features musicians who make art alongside artists who make music. The participants in this exhibition collectively reflect the creativity and cross-currents at play in the Miami music scene from the early ‘90s to the present.

 

Echos Myron showcases a wide array of processes and practices, including sculpture, painting, flyer art, photographs, installation, and more. Given the individuals whose work is included in this eclectic exhibit, a broad diversity of aesthetics come together to reveal the fertile and dynamic underpinnings of a creative scene thriving in Miami for the past two decades.

 

Artists participating in Echos Myron include Kevin Arrow, Eddy Alvarez, Greg Alvarez, Rene Barge, Dorys Bellow, David Alexander Bennett, Bleedingpalm, Dirk Brandon, David Brieske, Brian Butler, Autumn Casey, Amanda Castillo, Clifton Childree, Rick Diaz, Daniel Fiorda, Chris Garcia, Daniel Gorostiaga, Ricardo Guerrero, Jason Handelsman, Dave Kudzma, Chuck Loose, Paul Lewin, Niuvis Martin, Gustavo Matamoros, Ivy McClelland, Juan Montoya, Beatriz Monteavaro, Gavin Perry, Priyadarsini Ray, Jean Saiz, Christian Salazar, Rick Smith, Teajay Smith, Natalie Spargo, 3PQ, Maitejosume Urrechaga, Janette Valentine, Viking Funeral, and Janese Weingarten.

 

Monica Uszerowicz is a photographer and writer living in Miami. Guided by the process of individuation as explained by Carl Jung, she uses her work to understand both the physical and subconscious components in her subjects, as well as their place in a collective narrative. In this way, even the redundant and the dull, whether overwrought or unseen, contains depths worth capturing and a weight that connects each individual to a larger story based in the collective unconscious.

 

Gallery hours are Tuesday-Friday, 10 a.m. to 5 p.m. and Saturday-Sunday, noon to 4 p.m. Free parking is available at the Center, which is located at 1650 Harrison St. General admission to the Center’s galleries is $7 for adults; $4 for students, seniors, and children ages 4 to 17; and free to Center members as well as children under the age of 4. For more information on these exhibitions, please call 954.921.3274 or visit ArtAndCultureCenter.org.

 

The Art and Culture Center of Hollywood presents contemporary gallery exhibitions, artist lectures, live stage performances, and high-quality education programs for adults and children. It is the third oldest arts non-profit in Broward County and serves more than 60,000 people annually at three venues. The Center fosters a creative environment where new and challenging work can flourish through programs that reflect the highest standards of artistry and diversity.

 

The Art and Culture Center of Hollywood is a 501(c)(3) non-profit organization supported in part by its members, admissions, private entities, the City of Hollywood, the Broward County Board of County Commissioners as recommended by the Broward Cultural Council; the State of Florida, Department of State, Division of Cultural Affairs, the Florida Council on Arts and Culture; and The Kresge Foundation. We welcome donations from all members of the community who wish to support our work.

 

Caption: On Tuesday, Oct. 21, the Art and Culture Center of Hollywood will present a reception and conversation with artist Sri Prabha.

 

- 30 -

 

Steel Pulse

Steel Pulse is a roots reggae musical band. They originally formed at Handsworth Wood Boys School, in Birmingham, England, composed of David Hinds (lead vocals, guitar), Basil Gabbidon (born Basil Glendon Gabbidon, 29 October 1955, Buff Bay, Jamaica - lead guitar, vocals), and Ronald McQueen (bass). Hinds, as songwriter, has always been the engine behind Steel Pulse, from their early days establishing themselves in the Birmingham club scene onwards.Originally produced by Pete King

Formed in 1975, their debut release, Kibudu, Mansetta And Abuku arrived on the small independent label Dip, and linked the plight of urban black youth with the image of a greater African homeland. They followed it with Nyah Love for Anchor. Surprisingly, they were initially refused live dates in Caribbean venues in the Midlands because of their Rastafarian beliefs. Aligning themselves closely with the Rock Against Racism organisation and featuring in its first music festival in the spring of 1978, they chose to tour with sympathetic elements of the punk movement, including the Stranglers, XTC etc.: "Punks had a way of enjoying themselves - throw hordes at you, beer, spit at you, that kind of thing". Eventually they found a more natural home in support slots for Burning Spear, which brought them to the attention of Island Records.

Their first release for Island was the Ku Klux Klan 45, a considered tilt at the evils of racism, and one often accompanied by a visual parody of the sect on stage. By this time their ranks had swelled to include Selwyn 'Bumbo' Brown (keyboards), Steve 'Grizzly' Nisbett (drums), Alphonso Martin (vocals, percussion) and Mykaell Riley (vocals). Handsworth Revolution was an accomplished long playing debut and one of the major landmarks in the evolution of British Reggae (Executive Producer Pete King). However, despite critical and moderate commercial success over three albums, the relationship with Island Records had soured by the advent of Caught You (released in the US as Reggae Fever).

Tom Terrell, who would later serve as their manager, was instrumental in masterminding the U.S. premiere of Steel Pulse on the night of Bob Marley's funeral, which was broadcast live around the world from the 9:30 Club, 930 F Street, N.W., Washington, D.C. on May 21, 1981.

They switched to Elektra Records, and unveiled their most consistent collection of songs since their debut with True Democracy, distinguished by the Garvey-eulogising 'Rally Round' cut. A further definitive set arrived in Earth Crisis. Unfortunately, Elektra chose to take a leaf out of Island's book in trying to coerce Steel Pulse into a more mainstream vein, asking them to emulate the pop-reggae stance of Eddy Grant. Babylon The Bandit was consequently weakened, but did contain the anthemic "Not King James Version", which was a powerful indictment on the omission of black people and history from certain versions of the Bible.

Their next move was of Hinds of Steel Pulse to MCA for State Of Emergency, which retained some of the synthesized dance elements of its predecessor. Though it was a significantly happier compromise, it still paled before any of their earlier albums. Centennial was recorded live at the Elysee Montmartre in Paris, and dedicated to the hundred year anniversary of the birth of Haile Selassie. It was the first recording since the defection of Alphonso Martin, leaving the trio of Hinds, Nisbett and Selwyn. While they still faced stern criticism at the hands of British Reggae fans, in the United States their reputation was growing, becoming the first ever reggae band to appear on the Tonight television show. Their profile was raised further when, in 1992, Hinds challenged the New York City Taxi & Limousine Commission in the Supreme Court, asserting that their cab drivers discriminated against black people in general and Rastafarians in particular.

The Steel Pulse message of hope, education and activism has struck a chord with music lovers worldwide. Their international success has resulted in a Grammy award for their 1986 classic Babylon The Bandit, and nominations for subsequent albums Victims (1991) and Rastafari Centennial (1992). In 1989, the group contributed I Can't Stand it to the soundtrack of Spike Lee's film Do The Right Thing.

In 1994, the group headlined some of the world's biggest reggae festivals including Reggae Sunsplash USA, Jamaican Sunsplash, Japan Splash and Northern California annual Reggae on the River Festival. In 1986, Steel Pulse contributed an ethereal version of Franklin's Tower on Pow Wow Records' Fire on the Mountain: Reggae Celebrates the Grateful Dead compilation. They recently covered The Police's Can't Stand Losing You for a reggae compilation of Police tunes that will appear on the Ark 21 label. The band is particularly proud of "Rastanthology," a 17-song collection of Steel Pulse classics (the 1996 compilation was released on the band's own Wise Man Doctrine label).

"We're not here to start a physical revolution, we're just here to open everybody's eyes and let them check themselves and continue in a very educational mode to change things on that tip", Hinds explains. "We're losing ourselves and I think it's very important for us to realize that. Too many of our youths have been lost to drugs, or by the gun, or not having the education needed to persevere and move in an upward direction. I think RAGE & FURY will contribute to their enlightenment."

In 2007, The band released their music video for 'Door Of No Return', a track taken from their latest studio album "African Holocaust", which explores themes of the Trans-Atlantic Slave Trade. Shot on location in Senegal and New York City by Driftwood Pictures Ltd.

Steel Pulse played Friday night on the Jazz World Stage at the 2009 Glastonbury Festival.

Steel Pulse are collaborating with Driftwood Pictures to create a definitive feature length documentary on the band's thirty year history.

The band is currently working on a new album due out in 2010 and has released the single Barack Obama Song.

Original member Basil Gabbidon released the album Reggae Rockz in 2008.

Discography Studio albums

•Handsworth Revolution (1978)

•Tribute to the Martyrs (1979)

•Caught You (1980)

•True Democracy (1982)

•Earth Crisis (1984)

•Babylon the Bandit (1986) Grammy Award Winner - Best Reggae Band

•State of Emergency (1988)

•Victims (1991)

•Vex (1994)

•Rage and Fury (1997)

•African Holocaust (2004)

 

Morbius battles his creature from the Id. Based loosely on Shakespeare's The Tempest, this classic sci-fi thriller explores the power of the mind. Creatures from the Id attack a party of spacemen who've come to check up on a reclusive scientist and his daughter. Forbidden Planet was influential on a wide variety of media, and particularly on the subsequent Star Trek TV series, which cribbed a lot of details from the film.

Opening scene

 

It is late in the 22nd Century. United Planet cruiser C57D a year out from Earth base on the way to Altair for a special mission. Commander J.J Adams (Leslie Neilsen) orders the crew to the deceleration booths as the ship drops from light speed to normal space.

 

Adams orders pilot Jerry Farman (Jack Kelly) to lay in a course for the fourth planet. The captain then briefs the crew that they are at their destination, and that they are to look for survivors from the Bellerophon expedition 20 years earlier.

 

As they orbit the planet looking for signs of life, the ship is scanned by a radar facility some 20 square miles in area. Morbius (Walter Pigeon) contacts the ship from the planet asking why the ship is here. Morbius goes on to explain he requires nothing, no rescue is required and he can't guarantee the safety of the ship or its crew.

 

Adams confirms that Morbius was a member of the original crew, but is puzzled at the cryptic warning Morbius realizes the ship is going to land regardless, and gives the pilot coordinates in a desert region of the planet. The ship lands and security details deploy. Within minutes a high speed dust cloud approaches the ship. Adams realizes it is a vehicle, and as it arrives the driver is discovered to be a robot (Robby). Robby welcomes the crew to Altair 4 and invites members of the crew to Morbious residence.

 

Adams, Farman and Doc Ostrow (Warren Stevens) arrive at the residence and are greeted by Morbius. They sit down to a meal prepared by Robbys food synthesizer and Morbius shows the visitors Robbys other abilities, including his unwavering obedience. Morbius then gives Robby a blaster with orders to shoot Adams. Robby refuses and goes into a mechanical mind lock, disabling him till the order is changed.

 

Morbius then shows the men the defense system of the house (A series of steel shutters). When questioned, Morbius admits that the Belleraphon crew is dead, Morbius and his wife being the only original survivors. Morbius's wife has also died, but months after the others and from natural causes. Morbius goes on to explain many of the crew were torn limb from limb by a strange creature or force living on the planet. The Belleraphon herself was destroyed when the final three surviving members tried to take off for Earth.

 

Adams wonders why this force has remained dormant all these years and never attacked Morbius. As discussions continue, a young woman Altaira (Anne Francis) introduces herself as Morbius daughter. Farman takes an immediate interest in Altaira, and begins to flirt with her . Altaira then shows the men her ability to control wild animals by petting a wild tiger. During this display the ship checks in on the safety of the away party. Adams explains he will need to check in with Earth for further orders and begins preparations for sending a signal. Because of the power needed the ship will be disabled for up to 10 days. Morbius is mortified by this extended period and offers Robby's services in building the communication facility

 

The next day Robby arrives at ship as the crew unloads the engine to power the transmitter. To lighten the tense moment the commander instructs the crane driver to pick up Cookie (Earl Holliman) and move him out of the way. Quinn interrupts the practical joke to report that the assembly is complete and they can transmit in the morning.

 

Meanwhile Cookie goes looking for Robby and organizes for the robot to synthesize some bourbon. Robby takes a sample and tells Cookie he can have 60 gallons ready the next morning for him.

 

Farman continues to court Altair by teaching her how to kiss, and the health benefits of kissing. Adams interrupts the exercise, and is clearly annoyed with a mix of jealous. He then explains to Altair that the clothes she wears are inappropriate around his crew. Altair tries to argue till Adams looses patience and order Altair to leave the area.

 

That night, Altair, still furious, explains to her father what occurred. Altair takes Adams advice to heart and orders Robby to run up a less revealing dress. Meanwhile back at the ship two security guards think they hear breathing in the darkness but see nothing.

 

Inside the ship, one of the crew half asleep sees the inner hatch opened and some material moved around. Next morning the Captain holds court on the events of the night before. Quinn advises the captain that most of the missing and damaged equipment can be replaced except for the Clystron monitor. Angry the Capt and Doc go back to Morbius to confront him about what has occurred.

 

Morbius is unavailable, so the two men settle in to wait. Outside Adams sees Altair swimming and goes to speak to her. Thinking she is naked, Adams becomes flustered and unsettled till he realizes she wants him to see her new dress. Altair asks why Adams wont kiss her like everyone else has. He gives in and plants one on her. Behind them a tiger emerges from the forest and attacks Altair, Adams reacts by shooting it. Altair is badly troubled by the incident, the tiger had been her friend, but she can't understand why acted as if she was an enemy.

 

Returning to the house, Doc and Adams accidently open Morbius office. They find a series of strange drawings but no sign of Morbius. He appears through a secret door and is outraged at the intrusion. Adams explains the damage done to the ship the previous night and his concern that Morbius was behind the attack.

 

Morbius admits it is time for explanations. He goes on to tell them about a race of creatures that lived on the planet called the Krell. In the past they had visited Earth, which explains why there are Earth animals on the planet. Morbius believes the Krell civilization collapsed in a single night, right on the verge of their greatest discovery. Today 2000 centuries later, nothing of their cities exists above ground.

 

Morbius then takes them on a tour of the Krell underground installation. Morbius first shows them a device for projecting their knowledge; he explains how he began to piece together information. Then an education device that projects images formed in the mind. Finally he explains what the Krell were expected to do, and how much lower human intelligence is in comparison.

 

Doc tries the intelligence tester but is confused when it does not register as high as Morbius. Morbius then explains it can also boost intelligence, and that the captain of the Belleraphon died using it. Morbius himself was badly injured but when he recovered his IQ had doubled.

 

Adams questions why all the equipment looks brand new. It is explained that all the machines left on the planet are self repairing and Morbius takes them on a tour of the rest of the installation. First they inspect a giant air vent that leads to the core of the planet. There are 400 other such shafts in the area and 9200 thermal reactors spread through the facilities 8000 cubic miles.

 

Later that night the crew has completed the security arrangements and tests the force field fence. Cookie asks permission to go outside the fence. He meets Robby who gives him the 60 gallons of bourbon. Outside, something hits the fence and shorts it out. The security team checks the breach but finds nothing. A series of foot like depressions begin forming leading to the ship. Something unseen enters the ship. A scream echos through the compound.

 

Back at the Morbius residence he argues that only he should be allowed to control the flow of Krell technology back to Earth. In the middle of the discussion, Adams is paged and told that the Chief Quinn has been murdered. Adams breaks of his discussions and heads back to the ship.

 

Later that night Doc finds the footprints and makes a cast. The foot makes no evolutionary sense. It seems to have elements of a four footed and biped creature; also it seems a predator and herbivore. Adams questions Cookie who was with the robot during the test and decides the robot was not responsible.

 

The next day at the funeral for Chief Morbius again warns him of impending doom facing the ship and crew. Adams considers this a challenge and spends the day fortifying the position around the ship. After testing the weapons and satisfied all that could be done has, the radar station suddenly reports movement in the distance moving slowly towards the ship.

 

No one sees anything despite the weapons being under radar fire control. The controller confirms a direct hit, but the object is still moving towards the ship. Suddenly something hits the force field fence, and a huge monster appears outlined in the energy flux. The crew open fire, but seem to do little good. A number of men move forward but a quickly killed.

 

Morbious wakes hearing the screams of Altair. Shes had a dream mimicking the attack that has just occurred. As Morbious is waking the creature in the force field disappears. Doc theories that the creature is made of some sort of energy, renewing itself second by second.

 

Adams takes Doc in the tractor to visit Morbius intending to evacuate him from the planet. He leaves orders for the ship to be readied for lift off. If he and Doc dont get back, the ship is to leave without them. They also want to try and break into Morbious office and take the brain booster test.

 

They are met at the door by Robby, who disarms them. Altair appears and countermands the orders given to Robby by her father. Seeing a chance Doc sneaks into the office. Altair argues with Adams about trying to make Morbius return home, she ultimately declares her love for him.

 

Robby appears carrying the injured Doc. Struggling to speak and heavy pain, Doc explains that the Krell succeeded in their great experiment. However they forgot about the sub conscious monsters they would release. Monsters from the id.

 

Morbius sees the dead body of Doc, and makes a series of ugly comments. His daughter reminds him that Doc is dead. Morbius lack of care convinces Altair she is better off going with Adams. Morbius tries to talk Adams out of taking Altair.

 

Adams demands an explanation of the id. Morbius realizes he is the source of the creature killing everyone. The machine the Krell built was able to release his inner beast, the sub conscious monster dwelling deep inside his ancestral mind.

 

Robby interrupts the debate to report something approaching the house. Morbius triggers the defensive shields of the house, which the creature begins to destroy. Morbius then orders Robby to destroy the creature, however Robby short circuits. Adams explained that it was useless; Robby knew it was Morbius self.

 

Adams, Altair and Morbius retreat to the Krell lab and sealed themselves in by sealing a special indestructible door. Adams convinces Morbius that he is really the monster, and that Morbius can not actually control his subconscious desires.

 

The group watch as the creature beings the slow process of burning through the door. Panicked Morbius implores Altair to say it is not so. Suddenly the full realization comes, and he understands that he could endanger or even kill Altair.

 

As the creature breaks through Morbius rushes forward and denies its existence. Suddenly the creature disappears but Morbius is mortally wounded. With his dying breath he instructs Adams to trigger a self destruct mechanism linked to the reactors of the great machine. The ship and crew have 24 hours to get as far away from the planet as possible

 

The next day we see the ship deep in space. Robby and Altair are onboard watching as the planet brightens and is destroyed. Adams assures Altair that her fathers memory will shine like a beacon.

Cockburn Town Member (reef facies) of the upper Grotto Beach Formation at the type locality, Cockburn Town Fossil Reef, western margin of San Salvador Island.

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene). Dated corals in the Cockburn Town Fossil Reef range in age from 114 to 127 ka.

 

The outcrop shown above principally consists of bivalve packstone, dominated by Chione elevata (fossil cross-barred venus clam shells).

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

The Terracotta Army or the "Terracotta Warriors and Horses" is a collection of terracotta sculptures depicting the armies of Qin Shi Huang, the first Emperor of China. It is a form of funerary art buried with the emperor in 210–209 BCE and whose purpose was to protect the emperor in his afterlife.The figures, dating from approximately the late third century BCE, were discovered in 1974 by local farmers in Lintong District, Xi'an, Shaanxi province. The figures vary in height according to their roles, with the tallest being the generals. The figures include warriors, chariots and horses. Estimates from 2007 were that the three pits containing the Terracotta Army held more than 8,000 soldiers, 130 chariots with 520 horses and 150 cavalry horses, the majority of which remained buried in the pits nearby Qin Shi Huang's mausoleum. Other terracotta non-military figures were found in other pits, including officials, acrobats, strongmen and musicians.

 

BACKGROUND

The Terracotta Army was discovered on 29 March 1974 to the east of Xi'an in Shaanxi province by farmers digging a water well approximately 1.6 kilometres east of the Qin Emperor's tomb mound at Mount Li (Lishan), a region riddled with underground springs and watercourses. For centuries, occasional reports mentioned pieces of terracotta figures and fragments of the Qin necropolis – roofing tiles, bricks and chunks of masonry. This discovery prompted Chinese archaeologists to investigate, revealing the largest pottery figurine group ever found in China.

 

NECROPROLIS

In addition to the warriors, an entire necropolis built for the emperor was found surrounding the first emperor's tomb mound. The earthen tomb mound is located at the foot of Mount Li and built in a pyramidal shape with Qin Shi Huang’s necropolis complex constructed as a microcosm of his imperial palace or compound.

 

It consists of several offices, halls, stables, and other structures placed around the tomb mound, which is surrounded by two solidly built rammed earth walls with gateway entrances. Up to 5 metres of reddish, sandy soil had accumulated over the site in the two millennia following its construction, but archaeologists found evidence of earlier disturbances at the site. During the excavations near the Mount Li burial mound, archaeologists found several graves dating from the eighteenth and nineteenth centuries, where diggers had apparently struck terracotta fragments. These were discarded as worthless and used along with soil to back fill the excavations.

 

HISTORY

According to the writings of historian Sima Qian (145–90 BCE), work on the mausoleum began in 246 BCE soon after Emperor Qin (then aged 13) ascended the throne. The project eventually involved 700,000 workers. Geographer Li Daoyuan, writing six centuries after the First Emperor's death, recorded in Shui Jing Zhu that Mount Li was a favoured location due to its auspicious geology, "famed for its jade mines, its northern side was rich in gold, and its southern side rich in beautiful jade; the First Emperor, covetous of its fine reputation, therefore chose to be buried there". Sima Qian, in his most noted work, Shiji, finished a century after the mausoleum's completion, wrote that the First Emperor was buried with palaces, towers, officials, valuable artifacts and wondrous objects. According to this account, 100 rivers had their flow simulated by mercury, and above them the ceiling was decorated with heavenly bodies below which were the features of the land. Some translations of this passage refer to "models" or "imitations," however those words were not used in the original text, which makes no mention of the terracotta army.

 

High levels of mercury were found in the soil of the tomb mound, giving credence to Sima Qian's account.

 

Later historical accounts suggested that the tomb had been looted by Xiang Yu, a contender for the throne after the death of the first emperor, however, there are indications that the tomb may not have been plundered.

 

CONSTRUCTION

The terracotta army figures were manufactured in workshops by government laborers and local craftsmen using local materials. Heads, arms, legs, and torsos were created separately and then assembled. Eight face moulds were most likely used, with clay added after assembly to provide individual facial features.

 

It is believed that the warriors' legs were made in much the same way that terracotta drainage pipes were manufactured at the time. This would classify the process as assembly line production, with specific parts manufactured and assembled after being fired, as opposed to crafting one solid piece and subsequently firing it. In those times of tight imperial control, each workshop was required to inscribe its name on items produced to ensure quality control. This has aided modern historians in verifying which workshops were commandeered to make tiles and other mundane items for the terracotta army. Upon completion, the terracotta figures were placed in the pits in precise military formation according to rank and duty.

 

The terracotta figures are life-sized. They vary in height, uniform, and hairstyle in accordance with rank. Most originally held real weapons such as spears, swords, or crossbows. Originally, the figures were also painted with bright pigments, variously coloured pink, red, green, blue, black, brown, white and lilac. The coloured lacquer finish, individual facial features, and weapons used in producing these figures increased the figures' realism. Most of the original weapons were looted shortly after the creation of the army, or have rotted away, while the colour coating flaked off or greatly faded.

 

THE TOMB

The tomb appears to be a hermetically-sealed space the size of a football pitch. The tomb remains unopened, given concerns about preserving its artifacts. For example, after their excavation, the painted surface present on some terracotta figures began to flake and fade. The lacquer covering the paint can curl in fifteen seconds once exposed to Xi'an's dry air and can flake off in just four minutes. There is speculation of a possible Hellenistic link to these sculptures, due to the lack of life-sized and realistic sculptures prior to the Qin dynasty according to some scholars.

 

EXCAVATION SITE

PITS

Four main pits approximately 7 metres deep have been excavated. These are located approximately 1.5 kilometres east of the burial mound. The soldiers within were laid out as if to protect the tomb from the east, where all the Qin Emperor's conquered states lay.

 

PIT ONE

Pit one, which is 230 metres long and 62 metres wide,contains the main army of more than 6,000 figures. Pit one has 11corridors, most of which are more than 3 metres wide and paved with small bricks with a wooden ceiling supported by large beams and posts. This design was also used for the tombs of nobles and would have resembled palace hallways when built. The wooden ceilings were covered with reed mats and layers of clay for waterproofing, and then mounded with more soil raising them about 2 to 3 metres above the surrounding ground level when completed.

 

OTHERS

Pit two has cavalry and infantry units as well as war chariots and is thought to represent a military guard. Pit three is the command post, with high-ranking officers and a war chariot. Pit four is empty, perhaps left unfinished by its builders.

 

Some of the figures in pit one and two show fire damage, while remains of burnt ceiling rafters have also been found.

These, together with the missing weapons, have been taken as evidence of the reported looting by Xiang Yu and the subsequent burning of the site, which is thought to have caused the roof to collapse and crush the army figures below. The terracotta figures currently on display have been restored from the fragments.Other pits that formed the necropolis also have been excavated. These pits lie within and outside the walls surrounding the tomb mound. They variously contain bronze carriages, terracotta figures of entertainers such as acrobats and strongmen, officials, stone armour suits, burials sites of horses, rare animals and labourers, as well as bronze cranes and ducks set in an underground park.

 

WEAPONRY

Weapons such as swords, spears, battle-axes, scimitars, shields, crossbows, and arrowheads were found in the pits. Some of these weapons, such as the swords are sharp and were coated with a 10–15 micrometre layer of chromium dioxide and kept the swords rust-free for 2,000 years. The swords contain an alloy of copper, tin, and other elements including nickel, magnesium, and cobalt. Some carry inscriptions that date manufacture between 245 and 228 BCE, indicating they were used as weapons before their burials.

 

An important element of the army is the chariot, of which four types were found. In battle the fighting chariots form pairs at the head of a unit of infantry. The principal weapon of the charioteers was the ge or dagger-axe, an L-shaped bronze blade mounted on a long shaft used for sweeping and hooking at the enemy. Infantrymen also carried ge on shorter shafts, ji or halberds and spears and lances. For close fighting and defence, both charioteers and infantrymen carried double-edged straight swords. The archers carried crossbows, with sophisticated trigger mechanisms, capable of firing arrows farther than 800 metres.

 

EXHIBITIONS

A collection of 120 objects from the mausoleum and 20 terracotta warriors were displayed at the British Museum in London as its special exhibition "The First Emperor: China's Terracotta Army" from 13 September 2007 to April 2008. This exhibition made 2008 the British Museum's most successful year and made the British Museum the United Kingdom's top cultural attraction between 2007 and 2008. The exhibition brought the most visitors to the museum since the King Tutankhamun exhibition in 1972. It was reported that the initial batch of tickets sold out so fast that the museum extended its opening hours until midnight on Thursdays to Sundays. According to The Times, many people had to be turned away, despite the extended hours. During the day of events to mark the Chinese New Year, the crush was so intense that the gates to the museum had to be shut. The Terracotta Army has been described as the only other set of historic artifacts (along with the remnants of wreck of the RMS Titanic) that can draw a crowd by the name alone.

 

Warriors and other artifacts were exhibited to the public at the Forum de Barcelona in Barcelona between 9 May and 26 September 2004. It was their most successful exhibition ever. The same exhibition was presented at the Fundación Canal de Isabel II in Madrid between October 2004 and January 2005, their most successful ever. From December 2009 to May 2010 the exhibition was shown in the Centro Cultural La Moneda in Santiago de Chile.

 

The exhibition traveled to North America and visited museums such as the Asian Art Museum of San Francisco, Bowers Museum in Santa Ana, California, Houston Museum of Natural Science, High Museum of Art in Atlanta, National Geographic Society Museum in Washington, D.C. and the Royal Ontario Museum in Toronto. Subsequently the exhibition traveled to Sweden and was hosted in the Museum of Far Eastern Antiquities between 28 August 2010 and 20 January 2011. An exhibition entitled 'The First Emperor – China's Entombed Warriors', presenting 120 artifacts was hosted at the Art Gallery of New South Wales, between 2 December 2010 and 13 March 2011. An exhibition entitled "L'Empereur guerrier de Chine et son armée de terre cuite" ("The Warrior-Emperor of China and his terracotta army"), featuring artifacts including statues from the mausoleum, was hosted by the Montreal Museum of Fine Arts from 11 February 2011 to 26 June 2011. In Italy, from July 2008 to November 16, 2008, five of the warriors of the terracotta army were exposed in Turin at the Museum of Antiquities, and from 16 April 2010 to 5 September 2010 were exposed nine warriors in Milan, at the Royal Palace, at the exhibition entitled "The Two Empires". The group consisted of a horse, a counselor, an archer and 6 Lancers. The "Treasures of Ancient China" exhibition, showcasing two terracotta soldiers and other artifacts, including the Longmen Grottoes Buddhist statues, was held between 19 February 2011 and 7 November 2011 in four locations in India: National Museum of New Delhi, Prince of Wales Museum in Mumbai, Salar Jung Museum in Hyderabad and National Library of India in Kolkata.

 

Soldiers and related items were on display from March 15, 2013, to November 17, 2013, at the Historical Museum of Bern.

 

SCIENTIFIC RESEARCH

In 2007, scientists at Stanford University and the Advanced Light Source facility in Berkeley, California reported that powder diffraction experiments combined with energy-dispersive X-ray spectroscopy and micro-X-ray fluorescence analysis showed that the process of producing Terracotta figures colored with Chinese purple dye consisting of barium copper silicate was derived from the knowledge gained by Taoist alchemists in their attempts to synthesize jade ornaments.

 

Since 2006, an international team of researchers at the UCL Institute of Archaeology have been using analytical chemistry techniques to uncover more details about the production techniques employed in the creation of the Terracotta Army. Using X-ray fluorescence spectrometry of 40,000 bronze arrowheads bundled in groups of 100, the researchers reported that the arrowheads within a single bundle formed a relatively tight cluster that was different from other bundles. In addition, the presence or absence of metal impurities was consistent within bundles. Based on the arrows’ chemical compositions, the researchers concluded that a cellular manufacturing system similar to the one used in a modern Toyota factory, as opposed to a continuous assembly line in the early days of automobile industry, was employed.

 

Grinding and polishing marks visible under a scanning electron microscope provide evidence for the earliest industrial use of lathes for polishing.

Hanna Bay Member of the upper Rice Bay Formation at Graham's Harbour. This is the youngest bedrock unit on San Salvador Island.

 

These well-sorted limestones consist of sand-sized grains of aragonite (CaCO3). On the continents, many quartz sandstones are technically called quartz arenites. Because the sand grains making up these Bahamian rocks are calcareous (composed of calcium carbonate), the limestones are called calcarenites. When examined microscopically, the calcareous sand grains can be seen touching each other - the rock is grain-supported. This results in an alternative name for these Bahamian limestones - grainstones. “Calcarenite” seems to be a more useful, more thoroughly descriptive term for these particular rocks, so I use that, versus “grainstone” (although “calcarenitic grainstone” could be used as well). The little-used petrologic term aragonitite could also be applied to these aragonitic limestones.

 

Sedimentary structures indicate that the calcarenites shown above were deposited in an ancient back-beach sand dune environment. In such settings, sediments are moved and deposited by winds. Wind-deposited sedimentary rocks are often referred to as eolianites. Most ancient sand dune deposits in the rock record are composed of quartzose and/or lithic sand. The dune deposits in the Bahamas are composed of calcium carbonate - this results in the term "calcarenitic eolianite".

 

Hanna Bay Member limestones gently dip toward the modern ocean (= to the right in the above photo) and include sediments deposited in beach environments and back-beach dune environments. The latter facies is represented by the locality shown above. Beach facies limestones are more or less planar-bedded, while back-beach dune limestones (eolianites) have steeper and more varied dips.

 

The aragonite sand grains in the Hanna Bay Member are principally bioclasts (worn mollusc shell fragments & coral skeleton fragments & calcareous algae fragments, etc.) and peloids (tiny, pellet-shaped masses composed of micrite/very fine-grained carbonate - some are likely microcoprolites, others are of uncertain origin).

 

Age: Holocene (MIS 1)

 

Locality: shoreline outcrop along the eastern part of the southern margin of Graham's Harbour, between Singer Bar Point and the Bahamas Field Station, northeastern San Salvador Island, eastern Bahamas

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

Developer effect on wet plate: below - developer according to publication (www.alternativephotography.com/say-goodbye-to-cyanide-a-l...), above - same developer, but with sugar instead of nitric acid.

Ambrotype on black plastic 13х18 cm. Collodion on basis self-synthesized nitrocellulose and zinc salts.

  

Steel Pulse

Steel Pulse is a roots reggae musical band. They originally formed at Handsworth Wood Boys School, in Birmingham, England, composed of David Hinds (lead vocals, guitar), Basil Gabbidon (born Basil Glendon Gabbidon, 29 October 1955, Buff Bay, Jamaica - lead guitar, vocals), and Ronald McQueen (bass). Hinds, as songwriter, has always been the engine behind Steel Pulse, from their early days establishing themselves in the Birmingham club scene onwards.Originally produced by Pete King

Formed in 1975, their debut release, Kibudu, Mansetta And Abuku arrived on the small independent label Dip, and linked the plight of urban black youth with the image of a greater African homeland. They followed it with Nyah Love for Anchor. Surprisingly, they were initially refused live dates in Caribbean venues in the Midlands because of their Rastafarian beliefs. Aligning themselves closely with the Rock Against Racism organisation and featuring in its first music festival in the spring of 1978, they chose to tour with sympathetic elements of the punk movement, including the Stranglers, XTC etc.: "Punks had a way of enjoying themselves - throw hordes at you, beer, spit at you, that kind of thing". Eventually they found a more natural home in support slots for Burning Spear, which brought them to the attention of Island Records.

Their first release for Island was the Ku Klux Klan 45, a considered tilt at the evils of racism, and one often accompanied by a visual parody of the sect on stage. By this time their ranks had swelled to include Selwyn 'Bumbo' Brown (keyboards), Steve 'Grizzly' Nisbett (drums), Alphonso Martin (vocals, percussion) and Mykaell Riley (vocals). Handsworth Revolution was an accomplished long playing debut and one of the major landmarks in the evolution of British Reggae (Executive Producer Pete King). However, despite critical and moderate commercial success over three albums, the relationship with Island Records had soured by the advent of Caught You (released in the US as Reggae Fever).

Tom Terrell, who would later serve as their manager, was instrumental in masterminding the U.S. premiere of Steel Pulse on the night of Bob Marley's funeral, which was broadcast live around the world from the 9:30 Club, 930 F Street, N.W., Washington, D.C. on May 21, 1981.

They switched to Elektra Records, and unveiled their most consistent collection of songs since their debut with True Democracy, distinguished by the Garvey-eulogising 'Rally Round' cut. A further definitive set arrived in Earth Crisis. Unfortunately, Elektra chose to take a leaf out of Island's book in trying to coerce Steel Pulse into a more mainstream vein, asking them to emulate the pop-reggae stance of Eddy Grant. Babylon The Bandit was consequently weakened, but did contain the anthemic "Not King James Version", which was a powerful indictment on the omission of black people and history from certain versions of the Bible.

Their next move was of Hinds of Steel Pulse to MCA for State Of Emergency, which retained some of the synthesized dance elements of its predecessor. Though it was a significantly happier compromise, it still paled before any of their earlier albums. Centennial was recorded live at the Elysee Montmartre in Paris, and dedicated to the hundred year anniversary of the birth of Haile Selassie. It was the first recording since the defection of Alphonso Martin, leaving the trio of Hinds, Nisbett and Selwyn. While they still faced stern criticism at the hands of British Reggae fans, in the United States their reputation was growing, becoming the first ever reggae band to appear on the Tonight television show. Their profile was raised further when, in 1992, Hinds challenged the New York City Taxi & Limousine Commission in the Supreme Court, asserting that their cab drivers discriminated against black people in general and Rastafarians in particular.

The Steel Pulse message of hope, education and activism has struck a chord with music lovers worldwide. Their international success has resulted in a Grammy award for their 1986 classic Babylon The Bandit, and nominations for subsequent albums Victims (1991) and Rastafari Centennial (1992). In 1989, the group contributed I Can't Stand it to the soundtrack of Spike Lee's film Do The Right Thing.

In 1994, the group headlined some of the world's biggest reggae festivals including Reggae Sunsplash USA, Jamaican Sunsplash, Japan Splash and Northern California annual Reggae on the River Festival. In 1986, Steel Pulse contributed an ethereal version of Franklin's Tower on Pow Wow Records' Fire on the Mountain: Reggae Celebrates the Grateful Dead compilation. They recently covered The Police's Can't Stand Losing You for a reggae compilation of Police tunes that will appear on the Ark 21 label. The band is particularly proud of "Rastanthology," a 17-song collection of Steel Pulse classics (the 1996 compilation was released on the band's own Wise Man Doctrine label).

"We're not here to start a physical revolution, we're just here to open everybody's eyes and let them check themselves and continue in a very educational mode to change things on that tip", Hinds explains. "We're losing ourselves and I think it's very important for us to realize that. Too many of our youths have been lost to drugs, or by the gun, or not having the education needed to persevere and move in an upward direction. I think RAGE & FURY will contribute to their enlightenment."

In 2007, The band released their music video for 'Door Of No Return', a track taken from their latest studio album "African Holocaust", which explores themes of the Trans-Atlantic Slave Trade. Shot on location in Senegal and New York City by Driftwood Pictures Ltd.

Steel Pulse played Friday night on the Jazz World Stage at the 2009 Glastonbury Festival.

Steel Pulse are collaborating with Driftwood Pictures to create a definitive feature length documentary on the band's thirty year history.

The band is currently working on a new album due out in 2010 and has released the single Barack Obama Song.

Original member Basil Gabbidon released the album Reggae Rockz in 2008.

Discography Studio albums

•Handsworth Revolution (1978)

•Tribute to the Martyrs (1979)

•Caught You (1980)

•True Democracy (1982)

•Earth Crisis (1984)

•Babylon the Bandit (1986) Grammy Award Winner - Best Reggae Band

•State of Emergency (1988)

•Victims (1991)

•Vex (1994)

•Rage and Fury (1997)

•African Holocaust (2004)

Diploria strigosa - fossil symmetrical brain coral colony in the reef facies of the Cockburn Town Member, upper Grotto Beach Formation at the Cockburn Town Fossil Reef, western margin of San Salvador Island.

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene). Dated corals in the Cockburn Town Fossil Reef range in age from 114 to 127 ka.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

Calcrete paleosol capping Pleistocene limestone at Green Cay, offshore-northwestern San Salvador Island, eastern Bahamas.

 

The dominant paleosol type on San Salvador Island (& other Bahamian islands) consists of hard, reddish-brown to orangish-brown colored, irregularly-sculpted crusts. These are referred to as calcretes or caliches or terra rosas. Calcrete paleosols cap all of the Pleistocene-aged stratigraphic units, except where removed by erosion. The Holocene-aged units (Hanna Bay Member & North Point Member of the Rice Bay Formation) haven’t been around long enough to develop calcrete paleosols atop their outcrops.

 

The calcrete horizon shown above has been dated to 9.2 ka (early Holocene). It caps a Pleistocene limestone unit that is probably the Owl's Hole Formation, according to John Mylroie.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

Borings in the Devil's Point Hardground (reef facies of the Cockburn Town Member, upper Grotto Beach Formation at the Cockburn Town Fossil Reef, western margin of San Salvador Island).

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene).

 

The subcircular borings shown above are incised into a limestone hardground surface that represents an unconformity traceable throughout the outcrop. The surface formed during a short-lived, mid-5e regression called the Devil's Point Event, dated to somewhere between 120 and 123 ka. After the event, high sea level returned. The Devil's Point Unconformity is present on most Bahamian islands and is traceable to Florida and Mexico. The more deeply flooded carbonate platforms in the Bahamas, such as Mayaguana Island, were not significantly affected by the mid-5e regression.

 

The rocks and fossils below the unconformity are referred to as "Reef 1". The rocks and fossils above are called "Reef 2". Isotopic dating has been done on 122 coral samples from the Cockburn Town Fossil Reef. The oldest is 127 ka and the youngest is 114.3 ka. Including dates from San Salvador Island to Great Inagua Island, Reef 1 has an average age of 123.5 ka, and Reef 2 has an average age of 119.5 ka.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

"Spaghetti encrusters" on the Devil's Point Hardground (reef facies of the Cockburn Town Member, upper Grotto Beach Formation at the Cockburn Town Fossil Reef, western margin of San Salvador Island).

 

The Cockburn Town Fossil Reef is a well-preserved, well-exposed Pleistocene fossil reef. It consists of non-bedded to poorly-bedded, poorly-sorted, very coarse-grained, aragonitic fossiliferous limestones (grainstones and rubblestones), representing shallow marine deposition in reef and peri-reef facies. Cockburn Town Member reef facies rocks date to the MIS 5e sea level highstand event (early Late Pleistocene).

 

The vermiform fossils shown above are encrusting a limestone hardground surface that represents an unconformity traceable throughout the outcrop. The surface formed during a short-lived, mid-5e regression called the Devil's Point Event, dated to somewhere between 120 and 123 ka. After the event, high sea level returned. The Devil's Point Unconformity is present on most Bahamian islands and is traceable to Florida and Mexico. The more deeply flooded carbonate platforms in the Bahamas, such as Mayaguana Island, were not significantly affected by the mid-5e regression.

 

The rocks and fossils below the unconformity are referred to as "Reef 1". The rocks and fossils above are called "Reef 2". Isotopic dating has been done on 122 coral samples from the Cockburn Town Fossil Reef. The oldest is 127 ka and the youngest is 114.3 ka. Including dates from San Salvador Island to Great Inagua Island, Reef 1 has an average age of 123.5 ka, and Reef 2 has an average age of 119.5 ka.

 

The encrusting fossils shown above are unidentified and have been nicknamed "spaghetti encrusters". This organism is not known from modern shallow marine environments around San Salvador Island. One geologist has speculated that they might be agglutinated foraminifera.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

Freeze frame from video shot by Linden Hudson. (amateur photographer, cheap cameras, photo fluorescent lights, just having fun)

 

Who is Linden Hudson?

 

CLASSICBANDS DOT COM said: “According to former roadie David Blayney in his book SHARP DRESSED MEN: sound engineer Linden Hudson co-wrote much of the material on the ZZ Top ELIMINATOR album.” (end quote)

 

(ZZ Top never opted to give Linden credit, which would have been THE decent thing to do. It would have helped Linden's career as well. The band and management worked ruthlessly to take FULL credit for the hugely successful album which Linden had spent a good deal of time working on. Linden works daily to tell this story. Also, the band did not opt to pay Linden, they worked to keep all the money and they treated Linden like dirt. It was abuse. Linden launched a limited lawsuit, brought about using his limited resources which brought limited results and took years. No one should treat the co-writer of their most successful album like this. It's just deeply fucked up.)

+++

Hear the original ZZ Top ELIMINATOR writing/rehearsal tapes made by Linden Hudson and Billy Gibbons at: youtu.be/2QZ8WUTaS18

+++

Read Linden's story of the making of the super-famous ZZ Top ELIMINATOR album at: www.flickr.com/people/152350852@N02/

+++

Follow this Wikipedia link and find Linden's name throughout the article & read the album songwriter credits about halfway down at: en.wikipedia.org/wiki/Eliminator_%28album%29

+++

LICKLIBRARY DOT COM (2013 Billy Gibbons interview) ZZ TOP'S BILLY GIBBONS FINALLY ADMITTED: “the Eliminator sessions in 1983 were guided largely by another one of our associates, Linden Hudson, a gifted engineer, during the development of those compositions.” (end quote) (Gibbons admits this after 30 years, but offers Linden no apology or reparations for lack of credit/royalties)

+++

MUSICRADAR DOT COM (2013 interview with ZZ Top's guitarist Billy Gibbons broke 30 years of silence about Linden Hudson introducing synthesizers into ZZ Top's sound.) Gibbons said: “This was a really interesting turning point. We had befriended somebody who would become an influential associate, a guy named Linden Hudson. He was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing, starting in the studio and eventually to the live stage. Linden had no fear and was eager to experiment in ways that would frighten most bands. But we followed suit, and the synthesizers started to show up on record.” (once again, there was no apology from ZZ Top or Billy Gibbons after this revelation).

+++

TEXAS MONTHLY MAGAZINE (Dec 1996, By Joe Nick Patoski): "Linden Hudson floated the notion that the ideal dance music had 124 beats per minute; then he and Gibbons conceived, wrote, and recorded what amounted to a rough draft of an album before the band had set foot inside Ardent Studios."

+++

FROM THE BOOK: SHARP DRESSED MEN - ZZ TOP (By David Blayney) : "Probably the most dramatic development in ZZ Top recording approaches came about as Eliminator was constructed. What had gone on before evolutionary; this change was revolutionary. ZZ Top got what amounted to a new bandsman (Linden) for the album, unknown to the world at large and at first even to Dusty and Frank."

+++

CNET DOT COM: (question posed to ZZ Top): Sound engineer Linden Hudson was described as a high-tech music teacher on your highly successful "Eliminator" album. How much did the band experiment with electronic instruments prior to that album?

+++

THE HOUSTON CHRONICLE, MARCH 2018: "Eliminator" had a tremendous impact on us and the people who listen to us," says ZZ Top’s bass player. Common band lore points to production engineer Linden Hudson suggesting that 120 beats per minute was the perfect rock tempo, or "the people's tempo" as it came to be known.

+++

FROM THE BOOK: SHARP DRESSED MEN - ZZ TOP by David Blayney: (page 227): "...the song LEGS Linden Hudson introduced the pumping synthesizer effect."

+++

(Search Linden Hudson in the various ZZ Top Wikipedia pages which are related to the ELIMINATOR album and you will find bits about Linden. Also the main ZZ Top Wikipedia page mentions Linden. He's mentioned in at least 7 ZZ Top related Wikipedia pages.)

+++

FROM THE BOOK: SHARP DRESSED MEN - ZZ TOP By David Blayney: "Linden found himself in the position of being Billy's (Billy Gibbons, ZZ Top guitarist) closest collaborator on Eliminator. In fact, he wound up spending more time on the album than anybody except Billy. While the two of them spent day after day in the studio, they were mostly alone with the equipment and the ideas."

+++

FROM THE BOOK: BEER DRINKERS & HELL RAISERS: A ZZ TOP GUIDE (By Neil Daniels, released 2014): "Hudson reportedly had a significant role to play during the planning stages of the release (ELIMINATOR)."

+++

FROM THE BOOK: ZZ TOP - BAD AND WORLDWIDE (ROLLING STONE PRESS, WRITTEN BY DEBORAH FROST): "Linden was always doing computer studies. It was something that fascinated him, like studio technology. He thought he might understand the components of popular songs better if he fed certain data into his computer. It might help him understand what hits (song releases) of any given period share. He first found out about speed; all the songs he studied deviated no more than one beat from 120 beats per minute. Billy immediately started to write some songs with 120 beats per minute. Linden helped out with a couple, like UNDER PRESSURE and SHARP DRESSED MAN. Someone had to help Billy out. Dusty and Frank didn't even like to rehearse much. Their studio absence wasn't really a problem though. The bass and drum parts were easily played with a synthesizer or Linn drum machine." (end quote)

+++

FROM THE BOOK: "SHARP DRESSED MEN - ZZ TOP" BY DAVID BLAYNEY: "After his quantitative revelations, Linden informally but instantly became ZZ Top's rehearsal hall theoretician, producer, and engineer." (end quote)

+++

FROM THE BOOK: "ZZ TOP - BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST): "With the release of their ninth album, ELIMINATOR, in 1983, these hairy, unlikely rock heroes had become a pop phenomenon. This had something to do with the discoveries of a young preproduction engineer (Linden Hudson) whose contributions, like those of many associated with the band over the years, were never acknowledged."

+++

FROM THE BOOK: ​SHARP DRESSED MEN - ZZ TOP (By DAVID BLAYNEY) : "The integral position Linden occupied in the process of building El​iminator was demonstrated eloquently in the case of song Under Pressure. Billy and Linden, the studio wizards, did the whole song all in one afternoon without either the bass player or drummer even knowing it had been written and recorded on a demo tape. Linden synthesized the bass and drums and helped write the lyrics; Billy did the guitars and vocals."

+++

FROM THE BOOK: "TRES HOMBRES - THE STORY OF ZZ TOP" BY DAVID SINCLAIR (Writer for the Times Of London): "Linden Hudson, the engineer/producer who lived at Beard's house (ZZ's drummer) had drawn their attention to the possibilities of the new recording technology and specifically to the charms of the straight drumming pattern, as used on a programmed drum machine. On ELIMINATOR ZZ Top unveiled a simple new musical combination that cracked open a vast worldwide market.

+++

FROM THE BOOK: "SHARP DRESS MEN - ZZ TOP" BY DAVID BLAYNEY: "ELIMINATOR went on to become a multi-platinum album, just as Linden had predicted when he and Billy were setting up the 124-beat tempos and arranging all the material. Rolling Stone eventually picked the album as number 39 out of the top 100 of the 80's. Linden Hudson in a fair world shoud have had his name all over ELIMINATOR and gotten the just compensation he deserved. Instead he got ostracized."

+++

FROM THE BOOK: ​SHARP DRESSED MEN - ZZ TOP by DAVID BLAYNEY: "He (Linden) went back with the boys to 1970 when he was working as a radio disc jocky aliased Jack Smack. He was emcee for a show ZZ did around that time, and even sang an encore tune with the band, perhaps the only person ever to have that honor." (side note: this was ZZ Top's very first show).

+++

FROM THE BOOK: "SHARP DRESSED MEN - ZZ TOP" BY DAVID BLAYNEY: "Linden remained at Frank's (ZZ Top drummer) place as ZZ's live-in engineer throughout the whole period of ELIMINATOR rehearsals, and was like one of the family... as he (Linden) worked at the controls day after day, watching the album (ELIMINATOR) take shape, his hopes for a big step forward in his production career undoubtably soared. ELIMINATOR marked the first time that ZZ Top was able to rehearse an entire album with the recording studio gadgetry that Billy so loved. With Linden Hudson around all the time, it also was the first time the band could write, rehearse, and record with someone who knew the men and the machines. ZZ Top was free to go musically crazy, but also musically crazy like a fox. Linden made that possible too."

+++

FROM THE BOOK "ZZ TOP - BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST, WRITER FOR ROLLING STONE MAGAZINE): "... SHARP DRESSED MAN which employed Hudson's 120 beat-per-minute theory. The feel, the enthusiasm, the snappy beat and crisp clean sound propelled ELIMINATOR into the ears and hearts of 5 million people who previously could have cared less about the boogie band of RIO GRANDE MUD."

+++

THE GREATEST ROCK REBRAND OF ALL TIME (by Jason Miller): "Sound engineer Linden Hudson researched the tempos at which the most popular rock tracks in the charts had been recorded. His data showed that there was something very special about 120 beats to a minute. Gibbons decided to record pretty much the whole of ZZ Top’s new album at that tempo. The result? 1983’s Eliminator. It was named after Gibbons’ Ford Coupé; it had been created through a unique combination of creative collaboration and data mining. And it was about to take the world by storm."

+++

ULTIMATECLASSICROCK DOT COM: "This new melding of styles was encouraged by Hudson, who served as a kind of pre-producer for ​EL LOCO ... ... Hudson helped construct ZZ Top drummer Frank Beard's home studio, and had lived with him for a time. That led to these initial sessions, and then a closer collaboration on 1983's ​ELIMINATOR.

+++

FIREDOGLAKE DOT COM: "I like Billy Gibbons' guitar tone quite a lot, but I lost all respect for them after reading how badly they fucked over Linden Hudson (the guy who was the brains behind their move to include synthesizers and co-wrote most of their career-defining Eliminator record)."

+++

EMAIL FROM A ZZ TOP FAN TO LINDEN (One Of Many): "I write you today about broken hearts, one is mine and one is for you. I have been a ZZ Top fan since I was 6 years old. I purchased ELIMINATOR vinyl from Caldors in Connecticut with the $20 my grandma gave me for my birthday. I will spare the #1 fan epic saga of tee shirts, harassing Noreen at the fan club via phone weekly for years, over 40 shows attended. Posters, non stop conversation about the time I have spent idolizing this band, but more Billy G, as he has seemed to break free of the Lone Wolf shackles and it became more clear this was his baby. In baseball I was Don Mattingly's #1 fan, Hershel Walker in football, Billy Gibbons in music. What do these individuals have in common? They were role models. Not a DUI, not a spousal abuse, not a drug overdose, not a cheater. Until I read your web page. I read Blayney's book around 1992 or so, I was in middle school and I was familiar with your name for a long time. I didn't realize you suffered so greatly or that your involvement was so significant. It pains me to learn my idol not only cheated but did something so wrong to another being. I now know this is where tall tales and fun loving bullshit and poor morals and ethics are distinguished and where I would no longer consider myself to look up to Billy. I love to joke and I love credit but I have always prided myself on ethics and principles... I hold them dear. I wanted to say, the snippet of UNDER PRESSURE you played sounded very new wave and I may like it more than the finished product. Well that's all. You have reached ZZ Top's biggest fan and I can let others know. Bummer. Cheers and good luck. James."​

+++

VINYLSTYLUS DOT COM: Much of Eliminator was recorded at 124bpm, the tempo that considered perfect for dance music by the band’s associate Linden Hudson. An aspiring songwriter, former DJ and – at the time – drummer Frank Beard’s house-sitter, Hudson’s involvement in the recording of the album would come back to haunt them. Despite assisting Gibbons with the pre-production and developing of the material that would end up on both El Loco and Eliminator, his contribution wasn’t credited when either record was released.

+++

INFOMORY DOT COM: ‘Eliminator’ is a studio album of the American rock band ZZ Top. It was released on March 23, 1983 and topped the charts worldwide. Its lyrics were co-written by the band’s sound engineer Linden Hudson while the band denied it.

+++

MUSICMISCELLANEOUS DOT COM: (ELIMINATOR ALBUM):

However, despite the album credits bass-player Dusty Hill and drummer Frank Beard were replaced during the recording process by synthesizers and a drum machine programmed by engineer Linden Hudson, who allegedly co-wrote much of the music with Gibbons despite receiving no credit at the time. Gibbons would later say of Hudson that “he was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing”. Hudson did no less than show the band how to stay relevant in an age where three guys from Texas with long beards (except famously for Frank Beard) and blues licks were one of the last things the contemporary market was demanding.

 

This is not your typical runway show...

 

© 2009 2018 Photo by Lloyd Thrap Photography for Halo Media Group

All works subject to applicable copyright laws. This intellectual property MAY NOT BE DOWNLOADED except by normal viewing process of the browser. The intellectual property may not be copied to another computer, transmitted , published, reproduced, stored, manipulated, projected, or altered in any way, including without limitation any digitization or synthesizing of the images, alone or with any other material, by use of computer or other electronic means or any other method or means now or hereafter known, without the written permission of Lloyd Thrap and payment of a fee or arrangement thereof.

 

No images are within Public Domain. Use of any image as the basis for another photographic concept or illustration is a violation of copyright.

Lloyd Thrap's Public Portfolio

Calcrete paleosol capping Pleistocene limestone at Green Cay, offshore-northwestern San Salvador Island, eastern Bahamas.

 

The dominant paleosol type on San Salvador Island (& other Bahamian islands) consists of hard, reddish-brown to orangish-brown colored, irregularly-sculpted crusts. These are referred to as calcretes or caliches or terra rosas. Calcrete paleosols cap all of the Pleistocene-aged stratigraphic units, except where removed by erosion. The Holocene-aged units (Hanna Bay Member & North Point Member of the Rice Bay Formation) haven’t been around long enough to develop calcrete paleosols atop their outcrops.

 

The calcrete horizon shown above has been dated to 9.2 ka (early Holocene). It caps a Pleistocene limestone unit that is probably the Owl's Hole Formation, according to John Mylroie.

---------------------------------------

The surface bedrock geology of San Salvador consists entirely of Pleistocene and Holocene limestones. Thick and relatively unforgiving vegetation covers most of the island’s interior (apart from inland lakes). Because of this, the most easily-accessible rock outcrops are along the island’s shorelines.

------------------------------

Stratigraphic Succession in the Bahamas:

 

Rice Bay Formation (Holocene, <10 ka), subdivided into two members (Hanna Bay Member over North Point Member)

--------------------

Grotto Beach Formation (lower Upper Pleistocene, 119-131 ka), subdivided into two members (Cockburn Town Member over French Bay Member)

--------------------

Owl's Hole Formation (Middle Pleistocene, ~215-220 ka & ~327-333 ka & ~398-410 ka & older)

------------------------------

San Salvador’s surface bedrock can be divided into two broad lithologic categories:

1) LIMESTONES

2) PALEOSOLS

 

The limestones were deposited during sea level highstands (actually, only during the highest of the highstands). During such highstands (for example, right now), the San Salvador carbonate platform is partly flooded by ocean water. At such times, the “carbonate factory” is on, and abundant carbonate sediment grains are generated by shallow-water organisms living on the platform. The abundance of carbonate sediment means there will be abundant carbonate sedimentary rock formed after burial and cementation (diagenesis). These sea level highstands correspond with the climatically warm interglacials during the Pleistocene Ice Age.

 

Based on geochronologic dating on various Bahamas islands, and based on a modern understanding of the history of Pleistocene-Holocene global sea level changes, surficial limestones in the Bahamas are known to have been deposited at the following times (expressed in terms of marine isotope stages, “MIS” - these are the glacial-interglacial climatic cycles determined from δ18O analysis):

 

1) MIS 1 - the Holocene, <10 k.y. This is the current sea level highstand.

 

2) MIS 5e - during the Sangamonian Interglacial, in the early Late Pleistocene, from 119 to 131 k.y. (sea level peaked at ~125 k.y.)

 

3) MIS 7 - ~215 to 220 k.y. - late Middle Pleistocene

 

4) MIS 9 - ~327-333 k.y. - late Middle Pleistocene

 

5) MIS 11 - ~398-410 k.y. - late Middle Pleistocene

 

Bahamian limestones deposited during MIS 1 are called the Rice Bay Formation. Limestones deposited during MIS 5e are called the Grotto Beach Formation. Limestones deposited during MIS 7, 9, 11, and perhaps as old as MIS 13 and 15, are called the Owl’s Hole Formation. These stratigraphic units were first established on San Salvador Island (the type sections are there), but geologic work elsewhere has shown that the same stratigraphic succession also applies to the rest of the Bahamas.

 

During times of lowstands (= times of climatically cold glacial intervals of the Pleistocene Ice Age), weathering and pedogenesis results in the development of soils. With burial and diagenesis, these soils become paleosols. The most common paleosol type in the Bahamas is calcrete (a.k.a. caliche; a.k.a. terra rosa). Calcrete horizons cap all Pleistocene-aged stratigraphic units in the Bahamas, except where erosion has removed them. Calcretes separate all major stratigraphic units. Sometimes, calcrete-looking horizons are encountered in the field that are not true paleosols.

----------------------------

Subsurface Stratigraphy of San Salvador Island:

 

The island’s stratigraphy below the Owl’s Hole Formation was revealed by a core drilled down ~168 meters (~550-feet) below the surface (for details, see Supko, 1977). The well site was at 3 meters above sea level near Graham’s Harbour beach, between Line Hole Settlement and Singer Bar Point (northern margin of San Salvador Island). The first 37 meters were limestones. Below that, dolostones dominate, alternating with some mixed dolostone-limestone intervals. Reddish-brown calcretes separate major units. Supko (1977) infers that the lowest rocks in the core are Upper Miocene to Lower Pliocene, based on known Bahamas Platform subsidence rates.

 

In light of the successful island-to-island correlations of Middle Pleistocene, Upper Pleistocene, and Holocene units throughout the Bahamas (see the Bahamas geologic literature list below), it seems reasonable to conclude that San Salvador’s subsurface dolostones may correlate well with sub-Pleistocene dolostone units exposed in the far-southeastern portions of the Bahamas Platform.

 

Recent field work on Mayaguana Island has resulted in the identification of Miocene, Pliocene, and Lower Pleistocene surface outcrops (see: www2.newark.ohio-state.edu/facultystaff/personal/jstjohn/...). On Mayaguana, the worked-out stratigraphy is:

- Rice Bay Formation (Holocene)

- Grotto Beach Formation (Upper Pleistocene)

- Owl’s Hole Formation (Middle Pleistocene)

- Misery Point Formation (Lower Pleistocene)

- Timber Bay Formation (Pliocene)

- Little Bay Formation (Upper Miocene)

- Mayaguana Formation (Lower Miocene)

 

The Timber Bay Fm. and Little Bay Fm. are completely dolomitized. The Mayaguana Fm. is ~5% dolomitized. The Misery Point Fm. is nondolomitized, but the original aragonite mineralogy is absent.

----------------------------

The stratigraphic information presented here is synthesized from the Bahamian geologic literature.

----------------------------

Supko, P.R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology 47: 1063-1077.

 

Bowman, P.A. & J.W. Teeter. 1982. The distribution of living and fossil Foraminifera and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador, Bahamas. San Salvador Field Station Occasional Papers 1982(2). 21 pp.

 

Sanger, D.B. & J.W. Teeter. 1982. The distribution of living and fossil Ostracoda and their use in the interpretation of the post-Pleistocene history of Little Lake, San Salvador Island, Bahamas. San Salvador Field Station Occasional Papers 1982(1). 26 pp.

 

Gerace, D.T., R.W. Adams, J.E. Mylroie, R. Titus, E.E. Hinman, H.A. Curran & J.L. Carew. 1983. Field Guide to the Geology of San Salvador (Third Edition). 172 pp.

 

Curran, H.A. 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology 58: 312-321.

 

Anderson, C.B. & M.R. Boardman. 1987. Sedimentary gradients in a high-energy carbonate lagoon, Snow Bay, San Salvador, Bahamas. CCFL Bahamian Field Station Occasional Paper 1987(2). (31) pp.

 

1988. Bahamas Project. pp. 21-48 in First Keck Research Symposium in Geology (Abstracts Volume), Beloit College, Beloit, Wisconsin, 14-17 April 1988.

 

1989. Proceedings of the Fourth Symposium on the Geology of the Bahamas, June 17-22, 1988. 381 pp.

 

1989. Pleistocene and Holocene carbonate systems, Bahamas. pp. 18-51 in Second Keck Research Symposium in Geology (Abstracts Volume), Colorado College, Colorado Springs, Colorado, 14-16 April 1989.

 

Curran, H.A., J.L. Carew, J.E. Mylroie, B. White, R.J. Bain & J.W. Teeter. 1989. Pleistocene and Holocene carbonate environments on San Salvador Island, Bahamas. 28th International Geological Congress Field Trip Guidebook T175. 46 pp.

 

1990. The 5th Symposium on the Geology of the Bahamas, June 15-19, 1990, Abstracts and Programs. 29 pp.

 

1991. Proceedings of the Fifth Symposium on the Geology of the Bahamas. 247 pp.

 

1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Abstracts and Program. 26 pp.

 

1992. Proceedings of the 4th Symposium on the Natural History of the Bahamas, June 7-11, 1991. 123 pp.

 

Boardman, M.R., C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The geology of Columbus' landfall: a field guide to the Holcoene geology of San Salvador, Bahamas, Field trip 3 for the annual meeting of the Geological Society of America, Cincinnati, Ohio, October 26-29, 1992. Ohio Division of Geological Survey Miscellaneous Report 2. 49 pp.

 

Carew, J.L., J.E. Mylroie, N.E. Sealey, M. Boardman, C. Carney, B. White, H.A. Curran & D.T. Gerace. 1992. The 6th Symposium on the Geology of the Bahamas, June 11-15, 1992, Field Trip Guidebook. 56 pp.

 

1993. Proceedings of the 6th Symposium on the Geology of the Bahamas, June 11-15, 1992. 222 pp.

 

Lawson, B.M. 1993. Shelling San Sal, an Illustrated Guide to Common Shells of San Salvador Island, Bahamas. San Salvador, Bahamas. Bahamian Field Station. 63 pp.

 

1994. The 7th Symposium on the Geology of the Bahamas, June 16-20, 1994, Abstracts and Program. 26 pp.

 

1994. Proceedings of the 5th Symposium on the Natural History of the Bahamas, June 11-14, 1993. 107 pp.

 

Carew, J.L. & J.E. Mylroie. 1994. Geology and Karst of San Salvador Island, Bahamas: a Field Trip Guidebook. 32 pp.

 

Godfrey, P.J., R.L. Davis, R.R. Smtih & J.A. Wells. 1994. Natural History of Northeastern San Salvador Island: a "New World" Where the New World Began, Bahamian Field Station Trail Guide. 28 pp.

 

Hinman, G. 1994. A Teacher's Guide to the Depositional Environments on San Salvador Island, Bahamas. 64 pp.

 

Mylroie, J.E. & J.L. Carew. 1994. A Field Trip Guide Book of Lighthouse Cave, San Salvador Island, Bahamas. 10 pp.

 

1995. Proceedings of the Seventh Symposium on the Geology of the Bahamas, June 16-20, 1994. 134 pp.

 

1995. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300.

 

1996. The 8th Symposium on the Geology of the Bahamas, May 30-June 3, 1996, Abstracts and Program. 21 pp.

 

1996. Proceedings of the 6th Symposium on the Natural History of the Bahamas, June 9-13, 1995. 165 pp.

 

1997. Proceedings of the 8th Symposium on the Geology of the Bahamas and Other Carbonate Regions, May 30-June 3, 1996. 213 pp.

 

Curran, H.A., B. White & M.A. Wilson. 1997. Guide to Bahamian Ichnology: Pleistocene, Holocene, and Modern Environments. San Salvador, Bahamas. Bahamian Field Station. 61 pp.

 

1998. The 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-June 8, 1998, Abstracts and Program. 25 pp.

 

Wilson, M.A., H.A. Curran & B. White. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

 

1999. Proceedings of the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 4-8, 1998. 142 pp.

 

2000. The 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2000, Abstracts and Program. 29+(1) pp.

 

2001. Proceedings of the 10th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2000. 200 pp.

 

Bishop, D. & B.J. Greenstein. 2001. The effects of Hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: does a hurricane leave a signature in the fossil record? Geological Society of America Abstracts with Programs 33(4): 51.

 

Gamble, V.C., S.J. Carpenter & L.A. Gonzalez. 2001. Using carbon and oxygen isotopic values from acroporid corals to interpret temperature fluctuations around an unconformable surface on San Salvador Island, Bahamas. Geological Society of America Abstracts with Programs 33(4): 52.

 

Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Island, Bahamas. Palaios 16: 372-386.

 

Ogarek, S.A., C.K. Carney & M.R. Boardman. 2001. Paleoenvironmental analysis of the Holocene sediments of Pigeon Creek, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 17.

 

Schmidt, D.A., C.K. Carney & M.R. Boardman. 2001. Pleistocene reef facies diagenesis within two shallowing-upward sequences at Cockburntown, San Salvador, Bahamas. Geological Society of America Abstracts with Programs 33(4): 42.

 

2002. The 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6th-June 10, 2002, Abstracts and Program. 29 pp.

 

2004. The 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-June 7, 2004, Abstracts and Program. 33 pp.

 

2004. Proceedings of the 11th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 6-10, 2002. 240 pp.

 

Martin, A.J. 2006. Trace Fossils of San Salvador. 80 pp.

 

2006. Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 3-7, 2004. 249 pp.

 

2006. The 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-June 12, 2006, Abstracts and Program. 27 pp.

 

Mylroie, J.E. & J.L. Carew. 2008. Field Guide to the Geology and Karst Geomorphology of San Salvador Island. 88 pp.

 

2008. Proceedings of the 13th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 8-12, 2006. 223 pp.

 

2008. The 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-June 16, 2006, Abstracts and Program. 26 pp.

 

2010. Proceedings of the 14th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 12-16, 2008. 249 pp.

 

2010. The 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-June 21, 2010, Abstracts and Program. 36 pp.

 

2012. Proceedings of the 15th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 17-21, 2010. 183 pp.

 

2012. The 16th Symposium on the Geology of the Bahamas and Other Carbonate Regions, June 14-June 18, 2012, Abstracts with Program. 45 pp.

 

1 2 ••• 32 33 35 37 38 ••• 79 80