View allAll Photos Tagged polynomials
Histograms demonstrating the calculation of the R iso, sky (E, L) function. Top left: amount of time Fermi spent while at each L bin; top
right: number of events in the
θ< 50◦subset of the isotropic-component data set detected while Fermi was inside each of the L bins; bottom: ratio
of these two histograms showing the detection rate of such events while at some
L bin. We fit the rate histogram with a fifth degree polynomial,
shown with the black curve. The histograms shown here correspond to log-energy bin #1 (energy≃100 MeV).
"MOM WAIT!! This is the infamous Babbage Difference Engine! It's a giant mechanical calculator designed to tabulate polynomial functions. It's also the reason why my math books don't have calculation errors"
Polynomial Diffusion Models for Life Insurance Liabilities. Biagini, Zhang arxiv.org/abs/1602.07910 #q-fin
We did this lame shit in Algebra II with graphing of polynomials, reducing them to prime factors, and then graphing them. This was my response.
SIMPLE = T / file does conform to FITS standard
BITPIX = -32 / number of bits per data pixel
NAXIS = 3 / number of data axes
NAXIS1 = 6036 / length of data axis 1
NAXIS2 = 4020 / length of data axis 2
NAXIS3 = 3 / length of data axis 3
EXTEND = T / FITS dataset may contain extensions
COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy
COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H
BZERO = 0. / Offset data range to that of unsigned short
BSCALE = 1. / Default scaling factor
PROGRAM = 'Siril 1.4.0-beta4' / Software that created this HDU
FILENAME= 'img_0011.nef'
DATE = '2025-11-01T10:06:59' / UTC date that FITS file was created
DATE-OBS= '2017-08-20T22:39:36' / YYYY-MM-DDThh🇲🇲ss observation start, UT
ROWORDER= 'BOTTOM-UP' / Order of the rows in image array
EXPTIME = 123. / [s] Exposure time duration
ISOSPEED= 250. / ISO camera setting
FOCALLEN= 1158.489 / [mm] Focal length
XBINNING= 1 / Camera binning mode
YBINNING= 1 / Camera binning mode
XPIXSZ = 5. / [um] Pixel X axis size
YPIXSZ = 5. / [um] Pixel Y axis size
INSTRUME= 'Nikon D5200' / Instrument name
STACKCNT= 78 / Stack frames
LIVETIME= 9529.5998916626 / [s] Exposure time after deadtime correction
EXPSTART= 2457986.43081019 / [JD] Exposure start time (standard Julian date)
EXPEND = 2457986.61906943 / [JD] Exposure end time (standard Julian date)
OBJCTRA = '00 42 26.189' / [H M S] Image center Right Ascension
OBJCTDEC= '+41 19 38.552' / [D M S] Image center Declination
RA = 10.6091190843413 / [deg] Image center Right Ascension
DEC = 41.3273755778947 / [deg] Image center Declination
CTYPE1 = 'RA---TAN-SIP' / TAN (gnomic) projection + SIP distortions
CTYPE2 = 'DEC--TAN-SIP' / TAN (gnomic) projection + SIP distortions
CUNIT1 = 'deg ' / Unit of coordinates
CUNIT2 = 'deg ' / Unit of coordinates
EQUINOX = 2000. / Equatorial equinox
CRPIX1 = 3018.5 / Axis1 reference pixel
CRPIX2 = 2010.5 / Axis2 reference pixel
CRVAL1 = 10.6091190843413 / [deg] Axis1 reference value
CRVAL2 = 41.3273755778947 / [deg] Axis2 reference value
LONPOLE = 180. / Native longitude of celestial pole
CDELT1 = -0.000247277488832208 / [deg] X pixel size
CDELT2 = 0.000247295686311149 / [deg] Y pixel size
PC1_1 = 0.723517411000228 / Linear transformation matrix (1, 1)
PC1_2 = 0.690306132074406 / Linear transformation matrix (1, 2)
PC2_1 = -0.690449231186407 / Linear transformation matrix (2, 1)
PC2_2 = 0.723380853461094 / Linear transformation matrix (2, 2)
A_ORDER = 3 / SIP polynomial degree, axis 1, pixel-to-sky
A_0_0 = 0.
A_1_0 = 0.
A_0_1 = 0.
A_2_0 = 2.60771910752349E-08
A_1_1 = -1.86634136428528E-08
A_0_2 = 4.06674834757682E-08
A_3_0 = -6.05931488148592E-10
A_2_1 = 2.56883210469854E-11
A_1_2 = -6.53524530828069E-10
A_0_3 = 7.25083282937301E-11
B_ORDER = 3 / SIP polynomial degree, axis 2, pixel-to-sky
B_0_0 = 0.
B_1_0 = 0.
B_0_1 = 0.
B_2_0 = 1.50276602598993E-07
B_1_1 = -1.6434617742354E-08
B_0_2 = -1.98369209680245E-08
B_3_0 = 3.90050019482281E-11
B_2_1 = -5.74875020546825E-10
B_1_2 = -4.68060214532268E-11
B_0_3 = -5.39125306836144E-10
AP_ORDER= 3 / SIP polynomial degree, axis 1, sky-to-pixel
AP_0_0 = 0.00466628178056705
AP_1_0 = -5.77783443298507E-05
AP_0_1 = 2.46590735907731E-06
AP_2_0 = -2.7642869210866E-08
AP_1_1 = 1.86261052482085E-08
AP_0_2 = -4.20836666275435E-08
AP_3_0 = 6.23033563027215E-10
AP_2_1 = -2.72709576667416E-11
AP_1_2 = 6.74726273410097E-10
AP_0_3 = -7.40353685585022E-11
BP_ORDER= 3 / SIP polynomial degree, axis 2, sky-to-pixel
BP_0_0 = 0.00238839704565799
BP_1_0 = 7.02212940738368E-08
BP_0_1 = -3.74149093612663E-05
BP_2_0 = -1.52984415511728E-07
BP_1_1 = 1.54068935989443E-08
BP_0_2 = 1.95356304418592E-08
BP_3_0 = -3.98923175670779E-11
BP_2_1 = 5.90706303502153E-10
BP_1_2 = 4.75457974444921E-11
BP_0_3 = 5.5121324303925E-10
PLTSOLVD= T / Siril internal solver
HISTORY Extraction du gradient (Correction : Subtraction)
HISTORY R solution astrom trique
HISTORY Photom trie CC (algorithme : PCC)
HISTORY D convolution
HISTORY Transf. histogramme (mid=0.001, lo=0.100, hi=1.000)
HISTORY SCNR (type=neutre moyen, qt =1.00, pr serve=true)
HISTORY Rehaussement de la saturation (quantit =0.25)
END
Polynomial Diffusion Models for Life Insurance Liabilities. Biagini, Zhang arxiv.org/abs/1602.07910 #q-fin
knitting projects - an ipod cover which I made too large so now it's a camera case, a polynomial camera bag (video camera), and the robot toy (in progress) for Amelie. plus my pattern book with notes
The Ultimate Cheat Sheet
...
...
...
...
...
...
...
...
...
...
domain restrictions, polynomial, fraction, radical l... inverse functions asymptotes, holes, graphs
The Ultimate Cheat Sheet for STEM Majors
...
...
...
...
...
...
...
...
...
...
jondt.com/domain-restrictions-polynomial-fraction-radical...