View allAll Photos Tagged polymorph

Andreu, Carolina, Lost, Ninor, Eduard, Sofia, Daniel y Luci are back! Can you recognise them? They were Volks BJD and are now Aileendoll BJD. I am really happy with the change, I love the Aileendoll proportions way better (they look so mature!)

 

Now they will need eyes, and maybe a couple of new wigs as the Volks kids had HUGE heads!

 

I will post more - and far better - photos if them soon, promise!

Diamonds from Africa. (crystal at lower left is ~2.5 mm across)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5200 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

Elements are fundamental substances of matter - matter that is composed of the same types of atoms. At present, 118 elements are known (four of them are still unnamed). Of these, 98 occur naturally on Earth (hydrogen to californium). Most of these occur in rocks & minerals, although some occur in very small, trace amounts. Only some elements occur in their native elemental state as minerals.

 

To find a native element in nature, it must be relatively non-reactive and there must be some concentration process. Metallic, semimetallic (metalloid), and nonmetallic elements are known in their native state.

 

The element carbon occurs principally in its native state as graphite (C) and diamond (C). Graphite is the common & far less valuable polymorph of carbon. A scarce polymorph of carbon is diamond. The physical properties of diamond and graphite couldn’t be more different, considering they have the same chemistry. Diamond has a nonmetallic, adamantine luster, typically occurs in cubic or octahedral (double-pyramid) crystals, or subspherical to irregularly-shaped masses, and is extremely hard (H≡10). Diamonds can be almost any color, but are typically clearish, grayish, or yellowish. Many diamonds are noticeably fluorescent under black light (ultraviolet light), but the color and intensity of fluorescence varies. Some diamonds are phosphorescent - under certain conditions, they glow for a short interval on their own.

 

Very rarely, diamond is a rock-forming mineral (see diamondite - www.flickr.com/photos/jsjgeology/14618393527).

 

The rough African diamonds shown above display the two common crystal forms - cubes and octahedrons (= double pyramids). The yellowish-gray specimens are cubes to slightly mis-shapen cubes. The two clearish specimens are octahedral diamond crystals with inclusions.

Zonotrichia albicollis has two genetically-determined but behaviorally distinct color-morphs: tan-striped and white-striped. These white-striped individuals, who are typically more aggressive and prone to polyamory, typically mate with more restrained, monogamous tan-stripes, producing both types of offspring and thus maintaining a balanced polymorphism in a regional population. Keene, NH (April 29, 2017)

As borboletas são insectos da ordem Lepidoptera classificados nas super-famílias Hesperioidea e Papilionoidea, que constituem o grupo informal Rhopalocera.

 

As borboletas têm dois pares de asas membranosas cobertas de escamas e peças bucais adaptadas a sucção. Distinguem-se das traças (mariposas) pelas antenas rectilíneas que terminam numa bola, pelos hábitos de vida diurnos, pela metamorfose que decorre dentro de uma crisálida rígida e pelo abdómen fino e alongado. Quando em repouso, as borboletas dobram as suas asas para cima.

 

As borboletas são importantes polinizadores de diversas espécies de plantas.

 

O ciclo de vida das borboletas engloba as seguintes etapas:

 

1) ovo→ fase pré-larval

2) larva→ chamada também de lagarta ou taturana,

3) pupa→ que se desenvolve dentro da crisálida (ou casulo)

4) imago→ fase adulta

_______________________

 

A butterfly is any of several groups of mainly day-flying insects of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, butterflies' life cycle consists of four parts, egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.

 

Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. The caterpillars of some butterflies eat harmful insects. A few species are pests because in their larval stages they can damage domestic crops or trees. Culturally, butterflies are a popular motif in the visual and literary arts.

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Un hommage à Norman Spinrad

 

Comédienne : Élora Bessey

Effets pyrotechniques : Thierry Loir

Images, textes et montage : Laurent Courau

Photographe de plateau : Kurt Ehrmann

Bande-son originale : Cheerleader 69

 

Remerciements à Jolan Bessey, Carine Dubois, Rodolphe Bessey et Vincent Kindred Véhixe.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Ipê Amarelo, Tabebuia [chrysotricha or ochracea].

Ipê-amarelo em Brasília, Brasil.

This tree is in Brasília, Capital of Brazil.

 

Text, in english, from Wikipedia, the free encyclopedia

"Trumpet tree" redirects here. This term is occasionally used for the Shield-leaved Pumpwood (Cecropia peltata).

Tabebuia

Flowering Araguaney or ipê-amarelo (Tabebuia chrysantha) in central Brazil

Scientific classification

Kingdom: Plantae

(unranked): Angiosperms

(unranked): Eudicots

(unranked): Asterids

Order: Lamiales

Family: Bignoniaceae

Tribe: Tecomeae

Genus: Tabebuia

Gomez

Species

Nearly 100.

Tabebuia is a neotropical genus of about 100 species in the tribe Tecomeae of the family Bignoniaceae. The species range from northern Mexico and the Antilles south to northern Argentina and central Venezuela, including the Caribbean islands of Hispaniola (Dominican Republic and Haiti) and Cuba. Well-known common names include Ipê, Poui, trumpet trees and pau d'arco.

They are large shrubs and trees growing to 5 to 50 m (16 to 160 ft.) tall depending on the species; many species are dry-season deciduous but some are evergreen. The leaves are opposite pairs, complex or palmately compound with 3–7 leaflets.

Tabebuia is a notable flowering tree. The flowers are 3 to 11 cm (1 to 4 in.) wide and are produced in dense clusters. They present a cupular calyx campanulate to tubular, truncate, bilabiate or 5-lobed. Corolla colors vary between species ranging from white, light pink, yellow, lavender, magenta, or red. The outside texture of the flower tube is either glabrous or pubescentThe fruit is a dehiscent pod, 10 to 50 cm (4 to 20 in.) long, containing numerous—in some species winged—seeds. These pods often remain on the tree through dry season until the beginning of the rainy.

Species in this genus are important as timber trees. The wood is used for furniture, decking, and other outdoor uses. It is increasingly popular as a decking material due to its insect resistance and durability. By 2007, FSC-certified ipê wood had become readily available on the market, although certificates are occasionally forged.

Tabebuia is widely used as ornamental tree in the tropics in landscaping gardens, public squares, and boulevards due to its impressive and colorful flowering. Many flowers appear on still leafless stems at the end of the dry season, making the floral display more conspicuous. They are useful as honey plants for bees, and are popular with certain hummingbirds. Naturalist Madhaviah Krishnan on the other hand once famously took offense at ipé grown in India, where it is not native.

Lapacho teaThe bark of several species has medical properties. The bark is dried, shredded, and then boiled making a bitter or sour-tasting brownish-colored tea. Tea from the inner bark of Pink Ipê (T. impetiginosa) is known as Lapacho or Taheebo. Its main active principles are lapachol, quercetin, and other flavonoids. It is also available in pill form. The herbal remedy is typically used during flu and cold season and for easing smoker's cough. It apparently works as expectorant, by promoting the lungs to cough up and free deeply embedded mucus and contaminants. However, lapachol is rather toxic and therefore a more topical use e.g. as antibiotic or pesticide may be advisable. Other species with significant folk medical use are T. alba and Yellow Lapacho (T. serratifolia)

Tabebuia heteropoda, T. incana, and other species are occasionally used as an additive to the entheogenic drink Ayahuasca.

Mycosphaerella tabebuiae, a plant pathogenic sac fungus, was first discovered on an ipê tree.

Tabebuia alba

Tabebuia anafensis

Tabebuia arimaoensis

Tabebuia aurea – Caribbean Trumpet Tree

Tabebuia bilbergii

Tabebuia bibracteolata

Tabebuia cassinoides

Tabebuia chrysantha – Araguaney, Yellow Ipê, tajibo (Bolivia), ipê-amarelo (Brazil), cañaguate (N Colombia)

Tabebuia chrysotricha – Golden Trumpet Tree

Tabebuia donnell-smithii Rose – Gold Tree, "Prima Vera", Cortez blanco (El Salvador), San Juan (Honduras), palo blanco (Guatemala),duranga (Mexico)

A native of Mexico and Central Americas, considered one of the most colorful of all Central American trees. The leaves are deciduous. Masses of golden-yellow flowers cover the crown after the leaves are shed.

Tabebuia dubia

Tabebuia ecuadorensis

Tabebuia elongata

Tabebuia furfuracea

Tabebuia geminiflora Rizz. & Mattos

Tabebuia guayacan (Seem.) Hemsl.

Tabebuia haemantha

Tabebuia heptaphylla (Vell.) Toledo – tajy

Tabebuia heterophylla – roble prieto

Tabebuia heteropoda

Tabebuia hypoleuca

Tabebuia impetiginosa – Pink Ipê, Pink Lapacho, ipê-cavatã, ipê-comum, ipê-reto, ipê-rosa, ipê-roxo-damata, pau d'arco-roxo, peúva, piúva (Brazil), lapacho negro (Spanish); not "brazilwood"

Tabebuia incana

Tabebuia jackiana

Tabebuia lapacho – lapacho amarillo

Tabebuia orinocensis A.H. Gentry[verification needed]

Tabebuia ochracea

Tabebuia oligolepis

Tabebuia pallida – Cuban Pink Trumpet Tree

Tabebuia platyantha

Tabebuia polymorpha

Tabebuia rosea (Bertol.) DC.[verification needed] (= T. pentaphylla (L.) Hemsley) – Pink Poui, Pink Tecoma, apama, apamate, matilisguate

A popular street tree in tropical cities because of its multi-annular masses of light pink to purple flowers and modest size. The roots are not especially destructive for roads and sidewalks. It is the national tree of El Salvador and the state tree of Cojedes, Venezuela

Tabebuia roseo-alba – White Ipê, ipê-branco (Brazil), lapacho blanco

Tabebuia serratifolia – Yellow Lapacho, Yellow Poui, ipê-roxo (Brazil)

Tabebuia shaferi

Tabebuia striata

Tabebuia subtilis Sprague & Sandwith

Tabebuia umbellata

Tabebuia vellosoi Toledo

 

Ipê-do-cerrado

Texto, em português, da Wikipédia, a enciclopédia livre.

Ipê-do-cerrado

Classificação científica

Reino: Plantae

Divisão: Magnoliophyta

Classe: Magnoliopsida

Subclasse: Asteridae

Ordem: Lamiales

Família: Bignoniaceae

Género: Tabebuia

Espécie: T. ochracea

Nome binomial

Tabebuia ochracea

(Cham.) Standl. 1832

Sinónimos

Bignonia tomentosa Pav. ex DC.

Handroanthus ochraceus (Cham.) Mattos

Tabebuia chrysantha (Jacq.) G. Nicholson

Tabebuia hypodictyon A. DC.) Standl.

Tabebuia neochrysantha A.H. Gentry

Tabebuia ochracea subsp. heteropoda (A. DC.) A.H. Gentry

Tabebuia ochracea subsp. neochrysantha (A.H. Gentry) A.H. Gentry

Tecoma campinae Kraenzl.

ecoma grandiceps Kraenzl.

Tecoma hassleri Sprague

Tecoma hemmendorffiana Kraenzl.

Tecoma heteropoda A. DC.

Tecoma hypodictyon A. DC.

Tecoma ochracea Cham.

Ipê-do-cerrado é um dos nomes populares da Tabebuia ochracea (Cham.) Standl. 1832, nativa do cerrado brasileiro, no estados de Amazonas, Pará, Maranhão, Piauí, Ceará, Pernambuco, Bahia, Espírito Santo, Goiás, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Rio de Janeiro, São Paulo e Paraná.

Está na lista de espécies ameaçadas do estado de São Paulo, onde é encontrda também no domínio da Mata Atlântica[1].

Ocorre também na Argentina, Paraguai, Bolívia, Equador, Peru, Venezuela, Guiana, El Salvador, Guatemala e Panamá[2].

Há uma espécie homônima descrita por A.H. Gentry em 1992.

Outros nomes populares: ipê-amarelo, ipê-cascudo, ipê-do-campo, ipê-pardo, pau-d'arco-do-campo, piúva, tarumã.

Características

Altura de 6 a 14 m. Tronco tortuso com até 50 cm de diâmetro. Folhas pilosas em ambas as faces, mais na inferior, que é mais clara.

Planta decídua, heliófita, xerófita, nativa do cerrado em solos bem drenados.

Floresce de julho a setembro. Os frutos amadurecem de setembro a outubro.

FloresProduz grande quantidade de sementes leves, aladas com pequenas reservas, e que perdem a viabilidade em menos de 90 dias após coleta. A sua conservação vem sendo estudada em termos de determinação da condição ideal de armazenamento, e tem demonstrado a importância de se conhecer o comportamento da espécie quando armazenada com diferentes teores de umidade inicial, e a umidade de equilíbrio crítica para a espécie (KANO; MÁRQUEZ & KAGEYAMA, 1978). As levíssimas sementes aladas da espécie não necessitam de quebra de dormência. Podem apenas ser expostas ao sol por cerca de 6 horas e semeadas diretamente nos saquinhos. A germinação ocorre após 30 dias e de 80%. As sementes são ortodoxas e há aproximadamente 72 000 sementes em cada quilo.

O desenvolvimento da planta é rápido.

Como outros ipês, a madeira é usada em tacos, assoalhos, e em dormentes e postes. Presta-se também para peças torneadas e instrumento musicais.

 

Tabebuia alba (Ipê-Amarelo)

Texto, em português, produzido pela Acadêmica Giovana Beatriz Theodoro Marto

Supervisão e orientação do Prof. Luiz Ernesto George Barrichelo e do Eng. Paulo Henrique Müller

Atualizado em 10/07/2006

 

O ipê amarelo é a árvore brasileira mais conhecida, a mais cultivada e, sem dúvida nenhuma, a mais bela. É na verdade um complexo de nove ou dez espécies com características mais ou menos semelhantes, com flores brancas, amarelas ou roxas. Não há região do país onde não exista pelo menos uma espécie dele, porém a existência do ipê em habitat natural nos dias atuais é rara entre a maioria das espécies (LORENZI,2000).

A espécie Tabebuia alba, nativa do Brasil, é uma das espécies do gênero Tabebuia que possui “Ipê Amarelo” como nome popular. O nome alba provém de albus (branco em latim) e é devido ao tomento branco dos ramos e folhas novas.

As árvores desta espécie proporcionam um belo espetáculo com sua bela floração na arborização de ruas em algumas cidades brasileiras. São lindas árvores que embelezam e promovem um colorido no final do inverno. Existe uma crença popular de que quando o ipê-amarelo floresce não vão ocorrer mais geadas. Infelizmente, a espécie é considerada vulnerável quanto à ameaça de extinção.

A Tabebuia alba, natural do semi-árido alagoano está adaptada a todas as regiões fisiográficas, levando o governo, por meio do Decreto nº 6239, a transformar a espécie como a árvore símbolo do estado, estando, pois sob a sua tutela, não mais podendo ser suprimida de seus habitats naturais.

Taxonomia

Família: Bignoniaceae

Espécie: Tabebuia Alba (Chamiso) Sandwith

Sinonímia botânica: Handroanthus albus (Chamiso) Mattos; Tecoma alba Chamisso

Outros nomes vulgares: ipê-amarelo, ipê, aipê, ipê-branco, ipê-mamono, ipê-mandioca, ipê-ouro, ipê-pardo, ipê-vacariano, ipê-tabaco, ipê-do-cerrado, ipê-dourado, ipê-da-serra, ipezeiro, pau-d’arco-amarelo, taipoca.

Aspectos Ecológicos

O ipê-amarelo é uma espécie heliófita (Planta adaptada ao crescimento em ambiente aberto ou exposto à luz direta) e decídua (que perde as folhas em determinada época do ano). Pertence ao grupo das espécies secundárias iniciais (DURIGAN & NOGUEIRA, 1990).

Abrange a Floresta Pluvial da Mata Atlântica e da Floresta Latifoliada Semidecídua, ocorrendo principalmente no interior da Floresta Primária Densa. É característica de sub-bosques dos pinhais, onde há regeneração regular.

Informações Botânicas

Morfologia

As árvores de Tabebuia alba possuem cerca de 30 metros de altura. O tronco é reto ou levemente tortuoso, com fuste de 5 a 8 m de altura. A casca externa é grisáceo-grossa, possuindo fissuras longitudinais esparas e profundas. A coloração desta é cinza-rosa intenso, com camadas fibrosas, muito resistentes e finas, porém bem distintas.

Com ramos grossos, tortuosos e compridos, o ipê-amarelo possui copa alongada e alargada na base. As raízes de sustentação e absorção são vigorosas e profundas.

As folhas, deciduais, são opostas, digitadas e compostas. A face superior destas folhas é verde-escura, e, a face inferior, acinzentada, sendo ambas as faces tomentosas. Os pecíolos das folhas medem de 2,5 a 10 cm de comprimento. Os folíolos, geralmente, apresentam-se em número de 5 a 7, possuindo de 7 a 18 cm de comprimento por 2 a 6 cm de largura. Quando jovem estes folíolos são densamente pilosos em ambas as faces. O ápice destes é pontiagudo, com base arredondada e margem serreada.

As flores, grandes e lanceoladas, são de coloração amarelo-ouro. Possuem em média 8X15 cm.

Quanto aos frutos, estes possuem forma de cápsula bivalvar e são secos e deiscentes. Do tipo síliqua, lembram uma vagem. Medem de 15 a 30 cm de comprimento por 1,5 a 2,5 cm de largura. As valvas são finamente tomentosas com pêlos ramificados. Possuem grande quantidade de sementes.

As sementes são membranáceas brilhantes e esbranquiçadas, de coloração marrom. Possuem de 2 a 3 cm de comprimento por 7 a 9 mm de largura e são aladas.

Reprodução

A espécie é caducifólia e a queda das folhas coincide com o período de floração. A floração inicia-se no final de agosto, podendo ocorrer alguma variação devido a fenômenos climáticos. Como a espécie floresce no final do inverno é influenciada pela intensidade do mesmo. Quanto mais frio e seco for o inverno, maior será a intensidade da florada do ipê amarelo.

As flores por sua exuberância, atraem abelhas e pássaros, principalmente beija-flores que são importantes agentes polinizadores. Segundo CARVALHO (2003), a espécie possui como vetor de polinização a abelha mamangava (Bombus morio).

As sementes são dispersas pelo vento.

A planta é hermafrodita, e frutifica nos meses de setembro, outubro, novembro, dezembro, janeiro e fevereiro, dependendo da sua localização. Em cultivo, a espécie inicia o processo reprodutivo após o terceiro ano.

Ocorrência Natural

Ocorre naturalmente na Floresta Estaciobal Semidecicual, Floresta de Araucária e no Cerrado.

Segundo o IBGE, a Tabebuia alba (Cham.) Sandw. é uma árvore do Cerrado, Cerradão e Mata Seca. Apresentando-se nos campos secos (savana gramíneo-lenhosa), próximo às escarpas.

Clima

Segundo a classificação de Köppen, o ipê-amarelo abrange locais de clima tropical (Aw), subtropical úmido (Cfa), sutropical de altitude (Cwa e Cwb) e temperado.

A T.alba pode tolerar até 81 geadas em um ano. Ocorre em locais onde a temperatura média anual varia de 14,4ºC como mínimo e 22,4ºC como máximo.

Solo

A espécie prefere solos úmidos, com drenagem lenta e geralmente não muito ondulados (LONGHI, 1995).

Aparece em terras de boa à média fertilidade, em solos profundos ou rasos, nas matas e raramente cerradões (NOGUEIRA, 1977).

Pragas e Doenças

De acordo com CARVALHO (2003), possui como praga a espécie de coleópteros Cydianerus bohemani da família Curculionoideae e um outro coleóptero da família Chrysomellidae. Apesar da constatação de elevados índices populacionais do primeiro, os danos ocasionados até o momento são leves. Nas praças e ruas de Curitiba - PR, 31% das árvores foram atacadas pela Cochonilha Ceroplastes grandis.

ZIDKO (2002), ao estudar no município de Piracicaba a associação de coleópteros em espécies arbóreas, verificou a presença de insetos adultos da espécie Sitophilus linearis da família de coleópteros, Curculionidae, em estruturas reprodutivas. Os insetos adultos da espécie emergiram das vagens do ipê, danificando as sementes desta espécie nativa.

ANDRADE (1928) assinalou diversas espécies de Cerambycidae atacando essências florestais vivas, como ingazeiro, cinamomo, cangerana, cedro, caixeta, jacarandá, araribá, jatobá, entre outras como o ipê amarelo.

A Madeira

A Tabebuia alba produz madeira de grande durabilidade e resistência ao apodrecimento (LONGHI,1995).

MANIERI (1970) caracteriza o cerne desta espécie como de cor pardo-havana-claro, pardo-havan-escuro, ou pardo-acastanhado, com reflexos esverdeados. A superfície da madeira é irregularmente lustrosa, lisa ao tato, possuindo textura media e grã-direita.

Com densidade entre 0,90 e 1,15 grama por centímetro cúbico, a madeira é muito dura (LORENZI, 1992), apresentando grande dificuldade ao serrar.

A madeira possui cheiro e gosto distintos. Segundo LORENZI (1992), o cheiro característico é devido à presença da substância lapachol, ou ipeína.

Usos da Madeira

Sendo pesada, com cerne escuro, adquire grande valor comercial na marcenaria e carpintaria. Também é utilizada para fabricação de dormentes, moirões, pontes, postes, eixos de roda, varais de carroça, moendas de cana, etc.

Produtos Não-Madeireiros

A entrecasca do ipê-amarelo possui propriedades terapêuticas como adstringente, usada no tratamento de garganta e estomatites. É também usada como diurético.

O ipê-amarelo possui flores melíferas e que maduras podem ser utilizadas na alimentação humana.

Outros Usos

É comumente utilizada em paisagismo de parques e jardins pela beleza e porte. Além disso, é muito utilizada na arborização urbana.

Segundo MOREIRA & SOUZA (1987), o ipê-amarelo costuma povoar as beiras dos rios sendo, portanto, indicado para recomposição de matas ciliares. MARTINS (1986), também cita a espécie para recomposição de matas ciliares da Floresta Estacional Semidecidual, abrangendo alguns municípios das regiões Norte, Noroeste e parte do Oeste do Estado do Paraná.

Aspectos Silviculturais

Possui a tendência a crescer reto e sem bifurcações quando plantado em reflorestamento misto, pois é espécie monopodial. A desrrama se faz muito bem e a cicatrização é boa. Sendo assim, dificilmente encopa quando nova, a não ser que seja plantado em parques e jardins.

Ao ser utilizada em arborização urbana, o ipê amarelo requer podas de condução com freqüência mediana.

Espécie heliófila apresenta a pleno sol ramificação cimosa, registrando-se assim dicotomia para gema apical. Deve ser preconizada, para seu melhor aproveitamento madeireiro, podas de formação usuais (INQUE et al., 1983).

Produção de Mudas

A propagação deve realizada através de enxertia.

Os frutos devem ser coletados antes da dispersão, para evitar a perda de sementes. Após a coleta as sementes são postas em ambiente ventilado e a extração é feita manualmente. As sementes do ipê amarelo são ortodoxas, mantendo a viabilidade natural por até 3 meses em sala e por até 9 meses em vidro fechado, em câmara fria.

A condução das mudas deve ser feita a pleno sol. A muda atinge cerca de 30 cm em 9 meses, apresentando tolerância ao sol 3 semanas após a germinação.

Sementes

Os ipês, espécies do gênero Tabebuia, produzem uma grande quantidade de sementes leves, aladas com pequenas reservas, e que perdem a viabilidade em poucos dias após a sua coleta. A sua conservação vem sendo estudada em termos de determinação da condição ideal de armazenamento, e tem demonstrado a importância de se conhecer o comportamento da espécie quando armazenada com diferentes teores de umidade inicial, e a umidade de equilíbrio crítica para a espécie (KANO; MÁRQUEZ & KAGEYAMA, 1978).

As levíssimas sementes aladas da espécie não necessitam de quebra de dormência. Podem apenas ser expostas ao sol por cerca de 6 horas e semeadas diretamente nos saquinhos. A quebra natural leva cerca de 3 meses e a quebra na câmara leva 9 meses. A germinação ocorre após 30 dias e de 80%.

As sementes são ortodoxas e há aproximadamente 87000 sementes em cada quilo.

Preço da Madeira no Mercado

O preço médio do metro cúbico de pranchas de ipê no Estado do Pará cotado em Julho e Agosto de 2005 foi de R$1.200,00 o preço mínimo, R$ 1509,35 o médio e R$ 2.000,00 o preço máximo (CEPEA,2005).

  

Knowledge of genetic diversity is one of the important tools used for genetic management of quinoa accessions for plant breeding. This research aimed to molecularly characterize five quinoa genotypes using ISSR markers to reveal genetic polymorphism and identify unique markers for each genotype. Analysis of inter-simple sequence repeats (ISSR) revealed that 10 ISSR primers produced 53 amplicons, out of them 33 were polymorphic and the average percentage of polymorphism was 61.83%. The number of amplicons per primer ranged from 3 (HB-13, HB-10, HB-8 and 17898A) to 10 (HB-15) with an average of 5.3 fragments/primer across the different quinoa genotypes. Data showed a total number of unique ISSR markers of 24; eleven of them were positive and 13 were negative. Using ISSR analysis, we were able to identify some unique bands associated with quinoa genotypes. The genetic similarity ranged from 49% (between Ollague and each of QL-3 and Chipaya) to 76% (between CICA-17 and CO-407). The results indicated that all the five quinoa genotypes differ from each other at the DNA level where the average of genetic similarity (GS) between them was about 59%. The dendrogram separated the quinoa genotypes into two clusters; the first cluster included two genotypes (QL-3 and Chipaya). The second cluster was divided into two groups; the first group included two genotypes (CICA-17 and CO-407) and the second group included only one genotype (Ollague). Our results indicated that ISSR technique is useful in the establishment of the genetic fingerprinting and estimation of genetic relationships among quinoa genotypes. Also, this technique could detect enough polymorphism in the studied quinoa genotypes to distinguish each genotype from the others. Furthermore, the use of these results in the future is important for quinoa germplasm management and improvement as well as for the selection strategies of parental lines that facilitate the prediction of crosses in order to produce hybrids with higher performance. Using ISSR analysis, we were able to identify unique bands associated with quinoa genotypes. These bands might also be used in breeding programs for differentiating among Chinopodium quinoa varieties.

 

Author(s) Details

 

A. M. M. Al-Naggar

Department of Agronomy, Faculty of Agriculture, Cairo University, Egypt.

 

R. M. Abd El-Salam

Department of Agronomy, Faculty of Agriculture, Cairo University, Egypt.

 

A. E. E. Badran

Plant Breeding Unit, Department of Genetic Resources, Desert Research Center, Cairo, Egypt.

 

Mai M. A. El-Moghazi

Plant Breeding Unit, Department of Genetic Resources, Desert Research Center, Cairo, Egypt.

 

Read full article: bp.bookpi.org/index.php/bpi/catalog/view/54/599/485-2

View More: www.youtube.com/watch?v=ZhiRynfypug

Faceted diamonds - "Cumulus" brooch with 8 carat diamond at top. (public display, Field Museum of Natural History, Chicago, Illinois, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5200 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

Elements are fundamental substances of matter - matter that is composed of the same types of atoms. At present, 118 elements are known (four of them are still unnamed). Of these, 98 occur naturally on Earth (hydrogen to californium). Most of these occur in rocks & minerals, although some occur in very small, trace amounts. Only some elements occur in their native elemental state as minerals.

 

To find a native element in nature, it must be relatively non-reactive and there must be some concentration process. Metallic, semimetallic (metalloid), and nonmetallic elements are known in their native state.

 

The element carbon occurs principally in its native state as graphite (C) and diamond (C). Graphite is the common & far less valuable polymorph of carbon. A scarce polymorph of carbon is diamond. The physical properties of diamond and graphite couldn’t be more different, considering they have the same chemistry. Diamond has a nonmetallic, adamantine luster, typically occurs in cubic or octahedral (double-pyramid) crystals, or subspherical to irregularly-shaped masses, and is extremely hard (H≡10). Diamonds can be almost any color, but are typically clearish, grayish, or yellowish. Many diamonds are noticeably fluorescent under black light (ultraviolet light), but the color and intensity of fluorescence varies. Some diamonds are phosphorescent - under certain conditions, they glow for a short interval on their own.

 

Very rarely, diamond is a rock-forming mineral (see diamondite - www.flickr.com/photos/jsjgeology/14618393527).

 

(field of view ~6.4 centimeters across)

-----------------------------------

Igneous rocks form by the cooling and crystallization of hot, molten rock (magma and lava). If this happens at or near the land surface, or on the seafloor, they are extrusive igneous rocks. If this happens deep underground, they are intrusive igneous rocks. Most igneous rocks have a crystalline texture, but some are clastic, vesicular, frothy, or glassy.

 

Obsidian is readily identifiable. It is a glassy-textured, extrusive igneous rock. Obsidian is natural glass - it lacks crystals, and therefore lacks minerals. Obsidian is typically black in color, but most obsidians have a felsic to intermediate chemistry. Felsic igneous rocks are generally light-colored, so a felsic obsidian seems a paradox. Mafic obsidians are scarce, but they are also black and glassy. Obsidian is sometimes referred to "glassy rhyolite".

 

Obsidian is an uncommon rock, but can be examined at several famous localities in America, such as Obsidian Cliff at the Yellowstone Hotspot (northwestern Wyoming, USA) and Big Obsidian Flow at the Newberry Volcano (central Oregon, USA).

 

Obsidian is moderately hard and has a conchoidal fracture (smooth and curved fracture surface), with sharp broken edges. Freshly-broken obsidian has the sharpest edges of any material known, natural or man-made (as seen under a scanning electron microscope).

 

Obsidian forms two ways: 1) very rapid cooling of lava, which prevents the formation of crystals; 2) cooling of high-viscosity lava, which prevents easy movement of atoms to form crystals. An example of obsidian that formed the first way is along the margins of basaltic lava flows at Kilaeua Volcano (Hawaii Hotspot, central Pacific Ocean). The obsidian sample seen here formed the second way.

 

Obsidian is unstable on geologic time scales - it will slowly convert to material that is not obsidian. A partially-converted obsidian is a distinctive rock called snowflake obsidian. The black portions of the rock seen here are rhyolitic obsidian (glass). The white patches ("snowflakes") are devitrification spots composed of cristobalite (SiO2, a polymorph of quartz).

 

Locality: unrecorded / undisclosed, but possibly from Twin Peaks, Utah, USA

 

Erzbergite, attributed to Slovenia. (public display, Minnesota Discovery Center, Chisholm, Minnesota, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 6100 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

The carbonate minerals all contain one or more carbonate (CO3-2) anions.

 

Aragonite has the same chemistry as calcite - it is calcium carbonate (CaCO3). Why is it a different mineral? Aragonite has a different molecular structure - the atoms are packed differently. Different minerals having the same chemical formula are called polymorphs (another good example is graphite & diamond - both C).

 

The difference in atomic-level packing between calcite and aragonite can be seen at the level of mineral hand samples. Aragonite forms crystals in the orthorhombic class. Many aragonite crystals are acicular (needle-like). Many aragonites form pseudohexagonal crystals, the result of 6 orthorhombic prisms growing parallel to each other.

 

Aragonite is slightly harder than calcite, at H=3.5 to 4, occurs in many colors, and easily bubbles in acid. Aragonite is a little bit heavier than calcite, due to closer packing of atoms.

 

Most modern seashells & coral skeletons are composed of the aragonite. Whitish-colored lime sand beaches in the world are aragonitic. Occasionally, "whitings" are seen in shallow, warm ocean environments. Whitings (cloudy, milky seawater) turn out to be loaded with tiny hair-like needles of aragonite.

 

In the rock record, aragonitic or aragonite-rich sediments convert to calcite over time. Cenozoic-aged carbonate sedimentary rocks are often aragonitic. Mesozoic- and Paleozoic-aged carbonates are almost always calcitic. Many ancient fossils have had their aragonitic shells dissolved away. Ancient shells that were originally calcitic are often still well preserved.

 

The sample shown above is a "variety" of aragonite called erzbergite, which is actually interlayered aragonite and calcite. It appears to be a variety of travertine (?).

-----------------

Photo gallery of aragonite:

www.mindat.org/gallery.php?min=307

 

Vugs with aragonite & calcite crystals in arenaceous, ferruginous, fossiliferous limestone from the Mississippian of Ohio, USA (6.1 centimeters across at its widest).

 

This unusual sedimentary rock has small vugs containing clear to whitish aragonite crystals (CaCO3 - calcium carbonate), plus some whitish calcite (also CaCO3). Aragonite is a less common polymorph of calcite. Aragonite is rarely found in Ohio. The host rock is a fossiiferous limestone. Its brownish coloration is due to significant iron oxide impurity, so it's a ferruginous fossiliferous limestone. Samples subjected to acid dissolution leave behind quartz sand-rich residues, so it's an arenaceous, ferruginous, fossiliferous limestone. The light brown-colored structures are principally crinoid stem columnals. Crinoid skeletal pieces are composed of calcite, but in this sample, the crinoid fossils have been dolomitized.

 

Stratigraphy: Vinton Member (horizon occurs at the boundary between massive, thick-bedded Vinton below & thin-bedded, flaggy Vinton above), upper Logan Formation, Osagean Stage, upper Lower Mississippian

 

Locality: Mt. Calvary Cemetery Outcrop - roadcut along eastern side of Jacksontown Road (Rt. 13), immediately adjacent to (east of) Mt. Calvary Catholic Cemetery, ~0.15 miles south of intersection with Hopewell Drive, Heath, south-central Licking County, east-central Ohio, USA (40° 02’ 00.8” North, 82° 24” 10.5” West)

 

Cuculus canorus

[order] Cuculiformes | [family] Cuculidae | [latin] Cuculus canorus | [UK] Cuckoo | [FR] Coucou gris | [DE] Kuckuck | [ES] Cuco Europeo | [IT] Cuculo eurasiatico | [NL] Koekoek | [IRL] Cuach

 

Status: Widespread summer visitor to Ireland from April to August.

 

Conservation Concern: Green-listed in Ireland. The European population is currently evaluated as secure.

 

Identification: Despite its obvious song, relatively infrequently seen. In flight, can be mistaken for a bird of prey such as Sparrowhawk, but has rapid wingbeats below the horizontal plane - ie. the wings are not raised above the body. Adult male Cuckoos are a uniform grey on the head, neck, back, wings and tail. The underparts are white with black barring. Adult females can appear in one of two forms. The so-called grey-morph resembles the adult male plumage, but has throat and breast barred black and white with yellowish wash. The rufous-morph has the grey replaced by rufous, with strong black barring on the wings, back and tail. Juvenile Cuckoos resemble the female rufous-morph, but are darker brown above.

 

Similar Species: Sparrowhawk

 

Call: The song is probably one of the most recognisable and well-known of all Irish bird species. The male gives a distinctive “wuck-oo”, which is occasionally doubled “wuck-uck-ooo”. The female has a distinctive bubbling “pupupupu”. The song period is late April to late June.

 

Diet: Mainly caterpillars and other insects.

 

Breeding: Widespread in Ireland, favouring open areas which hold their main Irish host species – Meadow Pipit. Has a remarkable breeding biology unlike any other Irish breeding species.

 

Wintering: Cuckoos winter in central and southern Africa.

 

To minimise the chance of being recognised and thus attacked by the birds they are trying to parasitize, female cuckoos have evolved different guises.

 

The common cuckoo (Cuculus canorus) lays its eggs in the nests of other birds. On hatching, the young cuckoo ejects the host's eggs and chicks from the nest, so the hosts end up raising a cuckoo chick rather than a brood of their own. To fight back, reed warblers (a common host across Europe) have a first line of defence: they attack, or ‘mob’, the female cuckoo, which reduces the chance that their nest is parasitized.

 

To deter the warbler from attacking, the colouring of the grey cuckoo mimics sparrow hawks, a common predator of reed warblers. However, other females are bright rufous (brownish-red). The presence of alternate colour morphs in the same species is rare in birds, but frequent among the females of parasitic cuckoo species. The new research shows that this is another cuckoo trick: cuckoos combat reed warbler mobbing by coming in different guises.

 

In the study, the researchers manipulated local frequencies of the more common grey colour cuckoo and the less common (in the United Kingdom) rufous colour cuckoo by placing models of the birds at neighbouring nests. They then recorded how the experience of watching their neighbours mob changed reed warbler responses to both cuckoos and a sparrow hawk at their own nest.

 

They found that reed warblers increased their mobbing, but only to the cuckoo morph that their neighbours had mobbed. Therefore, as one cuckoo morph increases in frequency, local host populations will become alerted specifically to that morph. This means the alternate morph will be more likely to slip past host defences and lay undetected. This is the first time that ‘social learning’ has been documented in the evolution of mimicry as well as the evolution of different observable characteristics - such as colour - in the same species (called polymorphism).

 

From the University of Cambridge “When mimicry becomes less effective, evolving to look completely different can be a successful trick. Our research shows that individuals assess disguises not only from personal experience, but also by observing others. However, because their learning is so specific, this social learning then selects for alternative cuckoo disguises and the arms race continues.”.

“It’s well known that cuckoos have evolved various egg types which mimic those of their hosts in order to combat rejection. This research shows that cuckoos have also evolved alternate female morphs to sneak through the hosts' defenses. This explains why many species which use mimicry, such as the cuckoo, evolve different guises.”

Chairlift @ Lollapalooza 2016, Grant Park, Chicago, IL, on Saturday, July 30, 2016.

 

Lollapalooza 2016 Setlist:

 

Look Up

Polymorphing

Amanaemonesia

I Belong in Your Arms

Show U Off

Romeo

Crying In Public

Moth to the Flame

Ch-Ching

Get Real

This photograph shows multiple assay plates containing single nucleotide polymorphism (SNP) assay products produced from DNA obtained from people with rheumatoid arthritis and from controls in a mixer. These samples are mixed before the assay plates are loaded into the nanodispenser which then transfers a small amount of the SNP sample onto a chip to be read by the mass spectrometry system, a part of the high throughput SNP genotyping system. The purpose of this research is to identify genetic factors that would increase susceptibility to rheumatoid arthritis. The principal investigator for this work was Daniel L. Kastner, M.D., Ph.D., who was the NIAMS Clinical Director and Chief of the Genetics and Genomics Branch when the photo was taken.

 

Photographer: Rhoda Baer

As borboletas são insectos da ordem Lepidoptera classificados nas super-famílias Hesperioidea e Papilionoidea, que constituem o grupo informal Rhopalocera.

 

As borboletas têm dois pares de asas membranosas cobertas de escamas e peças bucais adaptadas a sucção. Distinguem-se das traças (mariposas) pelas antenas rectilíneas que terminam numa bola, pelos hábitos de vida diurnos, pela metamorfose que decorre dentro de uma crisálida rígida e pelo abdómen fino e alongado. Quando em repouso, as borboletas dobram as suas asas para cima.

 

As borboletas são importantes polinizadores de diversas espécies de plantas.

 

O ciclo de vida das borboletas engloba as seguintes etapas:

 

1) ovo→ fase pré-larval

2) larva→ chamada também de lagarta ou taturana,

3) pupa→ que se desenvolve dentro da crisálida (ou casulo)

4) imago→ fase adulta

_______________________

 

A butterfly is any of several groups of mainly day-flying insects of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, butterflies' life cycle consists of four parts, egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.

 

Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. The caterpillars of some butterflies eat harmful insects. A few species are pests because in their larval stages they can damage domestic crops or trees. Culturally, butterflies are a popular motif in the visual and literary arts.

Faceted diamonds - "Cumulus" brooch with 8 carat diamond at top. (public display, Field Museum of Natural History, Chicago, Illinois, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5200 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

Elements are fundamental substances of matter - matter that is composed of the same types of atoms. At present, 118 elements are known (four of them are still unnamed). Of these, 98 occur naturally on Earth (hydrogen to californium). Most of these occur in rocks & minerals, although some occur in very small, trace amounts. Only some elements occur in their native elemental state as minerals.

 

To find a native element in nature, it must be relatively non-reactive and there must be some concentration process. Metallic, semimetallic (metalloid), and nonmetallic elements are known in their native state.

 

The element carbon occurs principally in its native state as graphite (C) and diamond (C). Graphite is the common & far less valuable polymorph of carbon. A scarce polymorph of carbon is diamond. The physical properties of diamond and graphite couldn’t be more different, considering they have the same chemistry. Diamond has a nonmetallic, adamantine luster, typically occurs in cubic or octahedral (double-pyramid) crystals, or subspherical to irregularly-shaped masses, and is extremely hard (H≡10). Diamonds can be almost any color, but are typically clearish, grayish, or yellowish. Many diamonds are noticeably fluorescent under black light (ultraviolet light), but the color and intensity of fluorescence varies. Some diamonds are phosphorescent - under certain conditions, they glow for a short interval on their own.

 

Very rarely, diamond is a rock-forming mineral (see diamondite - www.flickr.com/photos/jsjgeology/14618393527).

 

Blijdorp, Rotterdam, Zoo

  

Butterflies are part of the class of Insects in the order Lepidoptera. Moths are also included in this order. Adults butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. The group comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). Other families within Lepidoptera are referred to as moths. Butterfly fossils date to the mid Eocene epoch, 40–50 million years ago.[1]

 

Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have and parasitic relationships with organisms including protozoans, flies, ants, other invertebrates, and vertebrates. [2] [3] Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies (e.g., Harvesters) eat harmful insects. Culturally, butterflies are a popular motif in the visual and literary arts.

  

en.wikipedia.org/wiki/Butterfly

Anthodites in a cave in Virginia, USA.

 

"Cave formations" in caves are technically called speleothem. Most speleothem is composed of travertine, a crystalline-textured chemical sedimentary rock composed of calcite (CaCO3). Travertine forms in most caves and at some springs by precipitation of crystals from water. Travertine speleothem occurs in a wide variety of forms. The most common variety of travertine speleothem is dripstone, which forms by the action of dripping water. The second-most common type of travertine speleothem is flowstone, which forms by precipitation of crystals from relatively thin films of flowing water. Flowstone typically has the appearance of a frozen waterfalls.

 

Shown above are anthodites, a scarce variety of speleothem that was first described from this very cave - Skyline Caverns in Virginia. Anthodites are radiating clusters of quill-like to slightly vermiform structures. Individual anthodite quills are hollow. Mineral analysis by White (1994) has shown that they are composed of aragonite (CaCO3), which is a polymorph of calcite. Some have recrystallized to calcite. The anthodites of Skyline Caverns were originally in sealed chambers in a mostly-sediment filled cave passage. During tourist trail construction, workers dug out sediments and encountered small chambers having common anthodites. They were subsequently named and described in the literature in 1949. The anthodite-bearing chambers were unusual in having near-vacuum conditions. Upon opening one chamber, a worker's hat was sucked in by the low air pressure.

 

When pure calcium carbonate, anthodites are white-colored. The yellows and reddish-browns seen above are from iron oxides. The green coloration is from algae that grows in tourist trail lighting.

 

Skyline Caverns is developed in structurally tilted carbonates (mixed dolostones and limestones) of the Rockdale Run Formation (Beekmantown Group, Lower Ordovician).

 

Locality: Skyline Caverns, Front Royal, central Warren County, northern Virginia, USA

-------------------

Reference cited:

 

White (1994) - The anthodites from Skyline Caverns, Virginia: the type locality. National Speleological Society Bulletin (Journal of Caves and Karst Studies) 56: 23-26.

 

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3 (the other forms being the minerals calcite and vaterite). It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

  

Aragonite Crystal Structure

The crystal lattice of aragonite differs from that of calcite, resulting in a different crystal shape, an orthorhombic crystal system with acicular crystal.[5] Repeated twinning results in pseudo-hexagonal forms. Aragonite may be columnar or fibrous, occasionally in branching helictitic forms called flos-ferri ("flowers of iron") from their association with the ores at the Carinthian iron mines.[6]

 

Occurrence

The type location for aragonite is Molina de Aragón in the Province of Guadalajara in Castilla-La Mancha, Spain, for which it was named in 1797.[7] Aragonite is found in this locality as cyclic twins inside gypsum and marls of the Keuper facies of the Triassic.[8] This type of aragonite deposit is very common in Spain, and there are also some in France.[6]

 

An aragonite cave, the Ochtinská Aragonite Cave, is situated in Slovakia.[9]

 

In the US, aragonite in the form of stalactites and "cave flowers" (anthodite) is known from Carlsbad Caverns and other caves.[10] For a few years in the early 1900s, aragonite was mined at Aragonite, Utah (now a ghost town).[11]

 

Massive deposits of oolitic aragonite sand are found on the seabed in the Bahamas.[12]

 

Aragonite is the high pressure polymorph of calcium carbonate. As such, it occurs in high pressure metamorphic rocks such as those formed at subduction zones.[13]

 

Aragonite forms naturally in almost all mollusk shells, and as the calcareous endoskeleton of warm- and cold-water corals (Scleractinia). Several serpulids have aragonitic tubes.[14] Because the mineral deposition in mollusk shells is strongly biologically controlled,[15] some crystal forms are distinctively different from those of inorganic aragonite.[16] In some mollusks, the entire shell is aragonite;[17] in others, aragonite forms only discrete parts of a bimineralic shell (aragonite plus calcite).[15] The nacreous layer of the aragonite fossil shells of some extinct ammonites forms an iridescent material called ammolite.[18]

 

Aragonite also forms naturally in the endocarp of Celtis occidentalis.[19]

 

Aragonite also forms in the ocean inorganic precipitates called marine cements (in the sediment) or as free crystals (in the water column).[20][21] Inorganic precipitation of aragonite in caves can occur in the form of speleothems.[22] Aragonite is common in serpentinites where magnesium-rich pore solutions apparently inhibit calcite growth and promote aragonite precipitation.[23]

 

Aragonite is metastable at the low pressures near the Earth's surface and is thus commonly replaced by calcite in fossils. Aragonite older than the Carboniferous is essentially unknown.[24] It can also be synthesized by adding a calcium chloride solution to a sodium carbonate solution at temperatures above 60 °C (140 °F) or in water-ethanol mixtures at ambient temperatures.[25]

 

Physical properties

Aragonite is not the thermodynamically stable phase of calcium carbonate at any pressure below about 3,000 bars (300,000 kPa) at any temperature.[26] Aragonite nonetheless frequently forms in near-surface environments at ambient temperatures. The weak Van der Waals forces inside aragonite give an important contribution to both the crystallographic and elastic properties of this mineral.[27] The difference in stability between aragonite and calcite, as measured by the Gibbs free energy of formation, is small, and effects of grain size and impurities can be important. The formation of aragonite at temperatures and pressures where calcite should be the stable polymorph may be an example of Ostwald's step rule, where a less stable phase is the first to form.[28] The presence of magnesium ions may inhibit calcite formation in favor of aragonite.[29] Once formed, aragonite tends to alter to calcite on scales of 107 to 108 years.[30] Comparing to the calcite, aragonite

 

The mineral vaterite, also known as μ-CaCO3, is another phase of calcium carbonate that is metastable at ambient conditions typical of Earth's surface, and decomposes even more readily than aragonite.[31][32]

 

Uses

In aquaria, aragonite is considered essential for the replication of reef conditions. Aragonite provides the materials necessary for much sea life and also keeps the pH of the water close to its natural level, to prevent the dissolution of biogenic calcium carbonate.[33]

 

Aragonite has been successfully tested for the removal of pollutants like zinc, cobalt and lead from contaminated wastewaters.[34]

 

Claims that magnetic water treatment can reduce scaling, by converting calcite to aragonite, have been met with skepticism,[35] but continue to be investigated.[36][37]

 

References

Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.

pubmed.ncbi.nlm.nih.gov/34876711/

geologyscience.com/minerals/aragonite/

www.mindat.org/min-307.html

Bragg, William Lawrence (1924-01-01). "The structure of aragonite". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 105 (729): 16–39. Bibcode:1924RSPSA.105...16B. doi:10.1098/rspa.1924.0002. ISSN 0950-1207.

Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. pp. 371–372. ISBN 0442276249.

Cairncross, B.; McCarthy, T. (2015). Understanding Minerals & Crystals. Cape Town: Struik Nature. p. 187. ISBN 978-1-43170-084-4.

Calvo, Miguel (2012). Minerales y Minas de España. Vol. V. Carbonatos y Nitratos. Madrid: Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. pp. 314–398. ISBN 978-84-95063-98-4.

Pukanská, Katarína; Bartoš, Karol; Bella, Pavel; Gašinec, Juraj; Blistan, Peter; Kovanič, Ľudovít (4 July 2020). "Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry". Applied Sciences. 10 (13): 4633. doi:10.3390/app10134633.

Gonzalez, Luis A.; Lohmann, Kyger C. (1988). "Controls on Mineralogy and Composition of Spelean Carbonates: Carlsbad Caverns, New Mexico". In James, Noel P.; Choquette, Philip W. (eds.). Paleokarst. New York: Springer-Verlag. pp. 81–101. doi:10.1007/978-1-4612-3748-8. ISBN 978-1-4612-3748-8.

Balaz, Christine (2009). An Explorer's Guide: Utah. Vermont: The Countryman Press. p. 368. ISBN 978-0-88150-738-6.

Newell, Norman D.; Purdy, Edward G.; Imbrie, John (1960). "Bahamian Oölitic Sand". The Journal of Geology. 68 (5): 481–497. Bibcode:1960JG.....68..481N. doi:10.1086/626683. ISSN 0022-1376. S2CID 129571671.

Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. pp. 336–337. ISBN 9780195106916.

Boggs, Sam (2006). Principles of sedimentology and stratigraphy (4th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall. pp. 161–164. ISBN 0131547283.

Belcher, A. M.; Wu, X. H.; Christensen, R. J.; Hansma, P. K.; Stucky, G. D.; Morse, D. E. (May 1996). "Control of crystal phase switching and orientation by soluble mollusc-shell proteins". Nature. 381 (6577): 56–58. Bibcode:1996Natur.381...56B. doi:10.1038/381056a0. S2CID 4285912.

Chateigner, D.; Ouhenia, S.; Krauss, C.; Belkhir, M.; Morales, M. (February 2010). "Structural distortion of biogenic aragonite in strongly textured mollusc shell layers". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268 (3–4): 341–345. Bibcode:2010NIMPB.268..341C. doi:10.1016/j.nimb.2009.07.007.

Loftus, Emma; Rogers, Keith; Lee-Thorp, Julia (November 2015). "A simple method to establish calcite:aragonite ratios in archaeological mollusc shells: CALCITE:ARAGONITE IN ARCHAEOLOGICAL SHELLS". Journal of Quaternary Science. 30 (8): 731–735. doi:10.1002/jqs.2819. S2CID 130591343.

Mychaluk, Keith A.; Levinson, Alfred A.; Hall, Russel L. (Spring 2001). "Ammolite: Iridescent fossilized ammonite from southern Alberta, Canada" (PDF). Gems & Gemology. 37 (1): 4–25. doi:10.5741/GEMS.37.1.4. Retrieved 1 August 2021.

Wang, Jang; Jahren, A. Hope; Amundsen, Ronald (1996). "Potential For [Carbon 14] Dating Of Biogenic Carbon In Hackberry (Celtis) Endocarps" (PDF). Quaternary Research. 47: 337–343. doi:10.1006/qres.1997.1894. S2CID 49232599.[permanent dead link]

Bialik, Or M.; Sisma-Ventura, Guy; Vogt-Vincent, Noam; Silverman, Jacob; Katz, Timor (24 September 2022). "Role of oceanic abiotic carbonate precipitation in future atmospheric CO2 regulation". Scientific Reports. 12 (1): 15970. doi:10.1038/s41598-022-20446-7. PMC 9509385. PMID 36153366.

Tucker, Maurice E. (1990). Carbonate sedimentology. Oxford [England]: Blackwell Scientific Publications. ISBN 9781444314175.

Nesse 2000, p. 337.

Bonatti, E.; Lawrence, J.R.; Hamlyn, P.R.; Breger, D. (August 1980). "Aragonite from deep sea ultramafic rocks". Geochimica et Cosmochimica Acta. 44 (8): 1207–1214. Bibcode:1980GeCoA..44.1207B. doi:10.1016/0016-7037(80)90074-5.

Runnegar, B. (1987). "Shell microstructures of Cambrian molluscs replicated by phosphate". Alcheringa: An Australasian Journal of Palaeontology. 9 (4): 245–257. doi:10.1080/03115518508618971.

Sand, K.K., Rodriguez-Blanco, J.D., Makovicky, E., Benning, L.G. and Stipp, S. (2012) Crystallization of CaCO3 in water-ethanol mixtures: spherulitic growth, polymorph stabilization and morphology change. Crystal Growth & Design, 12, 842-853. doi:10.1021/cg2012342.

Carlson, W.D. (1980). "The calcite–aragonite equilibrium: effects of Sr substitution and anion orientational disorder". American Mineralogist. 65 (11–12): 1252–1262. Retrieved 31 July 2021.

Ulian, Gianfranco; Valdrè, Giovanni (2022-09-01). "Structural and elastic behaviour of aragonite at high-pressure: A contribution from first-principle simulations". Computational Materials Science. 212: 111600. doi:10.1016/j.commatsci.2022.111600. ISSN 0927-0256. S2CID 250059382.

Fyfe, W.S. (1964). "Calcite aragonite problem" (PDF). AAPG Bulletin. 48 (4): 526. Retrieved 31 July 2021.

Kitano, Yasushi; Park, Kilho; Hood, Donald W. (November 1962). "Pure aragonite synthesis". Journal of Geophysical Research. 67 (12): 4873–4874. Bibcode:1962JGR....67.4873K. doi:10.1029/JZ067i012p04873.

Blatt, Harvey; Middleton, Gerard; Murray, Raymond (1980). Origin of sedimentary rocks (2d ed.). Englewood Cliffs, N.J.: Prentice-Hall. ISBN 0136427103.

Ni, M.; Ratner, B.D. (2008). "Differentiation of Calcium Carbonate Polymorphs by Surface Analysis Techniques – An XPS and TOF-SIMS study". Surf. Interface Anal. 40 (10): 1356–1361. doi:10.1002/sia.2904. PMC 4096336. PMID 25031482.

Kamiya, Kanichi; Sakka, Sumio; Terada, Katsuyuki (November 1977). "Aragonite formation through precipitation of calcium carbonate monohydrate". Materials Research Bulletin. 12 (11): 1095–1102. doi:10.1016/0025-5408(77)90038-1.

Orr, J. C., et al. (2005) Anthropogenic ocean acidification over the 21st century and its impact on calcifying organisms. Nature 437: 681-686

Köhler, S., Cubillas, et al. (2007) Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental Science and Technology, 41, 112-118. doi:10.1021/es060756j

Krauter, PW; Harrar, JE; Orloff, SP; Bahowick, SM (1996). "Test of a Magnetic Device for Amelioration of Scale Formation at Treatment Facility D" (PDF). Internal Report. Lawrence Livermore National Laboratory. doi:10.2172/567404. OSTI 567404. Retrieved 2009-12-11.

Coey, J.M.D. (November 2012). "Magnetic water treatment – how might it work?". Philosophical Magazine. 92 (31): 3857–3865. Bibcode:2012PMag...92.3857C. doi:10.1080/14786435.2012.685968. S2CID 96367372.

Kozic, Viljem; Hamler, Anton; Ban, Irena; Lipus, Lucija C. (October 2010). "Magnetic water treatment for scale control in heating and alkaline conditions". Desalination and Water Treatment. 22 (1–3): 65–71. doi:10.5004/dwt.2010.1549.

Zonabre polymorphe (Hycleus polymorphus) dégustant en compagnie d'un Cryptocéphalus une fleur d'astéracée dans une prairie bordant les pistes du Stade Raphaël Poirée (Drôme - Rhône-Alpes).

Maximum parsimony phylogeny based on concatenates of 89 gene sequences from 108 MTBC strains from global sources as previously reported [31].

Six main lineages can be observed within the human MTBC (numbered 1 to 6 and indicated in different colours). As shown previously, these lineages are highly congruent to the ones defined based on genomic deletions or large sequence polymorphisms (LSPs) [31], [33], [34]. Corresponding spoligotyping data for each strain are shown on the right, where black squares indicate the presence of a particular spacer and a white square the absence of a particular spacer (see Figure 1 for details on the methodology). Because the various typing techniques have classified MTBC strains into several lineages and strain families using differing nomenclatures, some of the traditional names are also shown. Some of the traditional groupings defined by spoligotyping correlate with SNP-based lineages (see also Table S1). For example, EAI (East-African-Indian) corresponds to the pink lineage, AFR1 and AFR2 correspond to the green and brown lineage, respectively (these strains are also known as M. africanum), and CAS (Central-Asian) corresponds to the purple lineage. However, other strain groupings defined by spoligotyping should be regarded as sub-lineages within the main lineages. For example, the ‘Beijing’ strain family is part of the blue lineage, and the five spoligotyping groups ‘Cameroon’, ‘Uganda’ ‘X’, ‘Haarlem’, and ‘LAM (Latin-American-Mediterranean)’ are sub-lineages within the main red lineage. This highlights another limitation of spoligotyping, which is that phylogenetic relationships between strain groupings cannot be defined. In addition, asterisks indicate spoligotyping patterns that cannot be classified at all using standard ‘signature patterns’ [26]. PGG1, PGG2, and PGG3 indicate Principal Genetic Group 1, 2, and 3, respectively. The PGG nomenclature is based on two SNPs originally described by Sreevatsan at al. [7]. Comparison to the MLSA data shows these groups are not phylogenetically equivalent as most of the MTBC diversity groups within PGG1, and PGG3 includes only a small subset of strains.

Anthodites in a cave in Virginia, USA.

 

"Cave formations" in caves are technically called speleothem. Most speleothem is composed of travertine, a crystalline-textured chemical sedimentary rock composed of calcite (CaCO3). Travertine forms in most caves and at some springs by precipitation of crystals from water. Travertine speleothem occurs in a wide variety of forms. The most common variety of travertine speleothem is dripstone, which forms by the action of dripping water. The second-most common type of travertine speleothem is flowstone, which forms by precipitation of crystals from relatively thin films of flowing water. Flowstone typically has the appearance of a frozen waterfalls.

 

Shown above are anthodites, a scarce variety of speleothem that was first described from this very cave - Skyline Caverns in Virginia. Anthodites are radiating clusters of quill-like to slightly vermiform structures. Individual anthodite quills are hollow. Mineral analysis by White (1994) has shown that they are composed of aragonite (CaCO3), which is a polymorph of calcite. Some have recrystallized to calcite. The anthodites of Skyline Caverns were originally in sealed chambers in a mostly-sediment filled cave passage. During tourist trail construction, workers dug out sediments and encountered small chambers having common anthodites. They were subsequently named and described in the literature in 1949. The anthodite-bearing chambers were unusual in having near-vacuum conditions. Upon opening one chamber, a worker's hat was sucked in by the low air pressure.

 

When pure calcium carbonate, anthodites are white-colored. The yellows and browns seen above are from iron oxides. The slightly green coloration is from algae that grows in tourist trail lighting.

 

Skyline Caverns is developed in structurally tilted carbonates (mixed dolostones and limestones) of the Rockdale Run Formation (Beekmantown Group, Lower Ordovician).

 

Locality: Skyline Caverns, Front Royal, central Warren County, northern Virginia, USA

-------------------

Reference cited:

 

White (1994) - The anthodites from Skyline Caverns, Virginia: the type locality. National Speleological Society Bulletin (Journal of Caves and Karst Studies) 56: 23-26.

 

From the famous Hupe meteorite collection. Purchased on eBay March 4, 2017. 1 oz.

 

About This World Record Setting Meteorite From The Moon:

 

Northwest Africa 5000 is the largest meteorite from the ancient Lunar Highlands ever found. Originally weighing in at 25 lbs 6.6 ounces (11,528 grams), it was massive. Although the weight is very impressive, its presence is tremendous.

 

When trying to portray Northwest Africa 5000, one may be at a loss for words -- it is simply too beautiful to properly describe. It is the most handsome meteorite from the moon ever found -- the contrast is incredible. The matrix looks like a black and white intaglio print of the universe rendered by a spirited yet masterful artist.

 

This stone contains breccias within breccias, and the preferential orientation of clasts lends a unique 3-D appearance to flat surfaces. Generous amounts of shiny metal are present in almost every piece, adding yet another impressive element to nature’s artwork.

 

Northwest Africa 5000 is by far the most spectacular meteorite from the Moon, and has become legendary, establishing new benchmarks for excellence!

 

From the eBay website:

 

Northwest Africa 5000 is not only from the Moon, it actually takes on the appearance of our nearest celestial neighbor unlike any other lunar meteorite in existence. There can only be one, number one and Northwest Africa 5000 is it.

 

This celestial masterpiece lay undisturbed for millennia in the world’s largest and hottest desert, the Sahara, until it was liberated by some very fortunate hunters of treasure in July of 2007. After lengthy, emotional and expensive negotiations, it was acquired by The Hupe Planetary Collection in October of the same year.

 

Northwest Africa 5000

Morocco

Find: July 2007

Achondrite (lunar, feldspathic breccia)

 

History: Found in July 2007 in southern Morocco and provided to Adam Hupé in October 2007.

 

Physical characteristics: A single, large cuboidal stone (11.528 kg) with approximate dimensions 27 cm × 24 cm × 20 cm. One side (which appears to have been embedded downward in light brown mud) has preserved regmaglypts and is partially covered by translucent, pale greenish fusion crust with fine contraction cracks.

 

Abundant large beige to white, coarse-grained clasts up to 8 cm across (some of which have been eroded out on exterior surfaces of the stone, likely by eolian sand blasting) and sparse black, vitreous clasts up to 2 cm across (containing irregular small white inclusions) are set in a dark gray to black, partially glassy breccia matrix.

 

One partially eroded clast exposed on an exterior surface contains both the coarse grained beige lithology and the more resistant black, vitreous lithology in sharp contact.

 

Petrography: (A. Irving and S. Kuehner, UWS) Almost monomict fragmental breccia dominated by Mg-suite olivine gabbro clasts consisting predominantly of coarse-grained (0.5-2 mm) calcic plagioclase, pigeonite (some with fine exsolution lamellae), and olivine with accessory merrillite, Mg-bearing ilmenite, Ti-bearing chromite, baddeleyite, rare zirconolite, silica polymorph, K-feldspar, kamacite, and troilite.

 

Some gabbro clasts have shock injection veins composed mostly of glass containing myriad fine troilite blebs and engulfed mineral fragments. Black, vitreous impact melt clasts consist of sporadic, small angular fragments (apparently surviving relics) of gabbro and related mineral phases in a very fine grained, non-vesicular, ophitic-textured matrix of pigeonite laths (up to 20 microns long × 2 microns wide) and interstitial plagioclase with tiny spherical grains of kamacite, irregular grains of schreibersite and rare troilite.

 

Geochemistry: Gabbro clasts: plagioclase (An96.1-98.0Or<0.1), pigeonite (Fs32.0-64.5Wo6.7-13.1; FeO/MnO = 51.1-62.0), olivine in different clasts range from Fa23.9-24.2, Fa40.4 to Fa58.8 (with FeO/MnO = 81-100), chromite [(Cr/(Cr + Al) = 0.737, Mg/(Mg + Fe) = 0.231, TiO2 = 5.9 wt%], ilmenite (4.1 wt% MgO). Bulk composition: (R. Korotev, WUSL) INAA of 6 subsamples gave mean values of 5.3 wt% FeO and 0.4 ppm Th.

 

Classification: Achondrite (lunar, feldspathic breccia). Specimens: A total of 40.2 g of sample, two polished mounts and one large polished thin section are on deposit at UWS. AHupé hold the main mass.

 

Submitted by: A. Irving, UWS.

This photograph shows Elaine Remmers, Ph.D. a staff scientist in the Genetics and Genomics Branch, Genomics Section. She is using the mass spectrometry system, a component of the high throughput single nucleotide polymorphism (SNP) genotyping system, to genotype specimens from people with rheumatoid arthritis and control subjects to identify factors that would increase susceptibility to rheumatoid arthritis. The principal investigator for this work was Daniel L. Kastner, M.D., Ph.D., who was the NIAMS Clinical Director and Chief of the Genetics and Genomics Branch when the photo was taken.

 

Photographer: Rhoda Baer

Chairlift @ Lollapalooza 2016, Grant Park, Chicago, IL, on Saturday, July 30, 2016.

 

Lollapalooza 2016 Setlist:

 

Look Up

Polymorphing

Amanaemonesia

I Belong in Your Arms

Show U Off

Romeo

Crying In Public

Moth to the Flame

Ch-Ching

Get Real

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Réalisation : Laurent Courau

Scénario : Thierry Ehrmann

Comédienne : Elora Bessey

Artificier : Thierry Loir

 

Remerciements à Jolan Bessey, Carine Dubois et Rodolphe Bessey.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Fascinating fact of the day … from, “The Geneticist Who Played Hoops with My DNA ... And Other Masterminds from the Frontiers of Biotech" by David Ewing Duncan. p.41

  

To summarize: Morphogens are proteins that control the development of organs in embryonic cells. Doug Melton and Hemmati Brivanlou were working on an experiment with frog eggs. They discovered that when a morphogen called activin was deactivated, normal cell development stopped. Instead of developing normally into the mesoderm, (a layer of tissue which later evolves into muscle, bone and connective tissue) most of the cells developed into brain cells!

 

Brain cells were the default!

 

That’s my fascinating fact of the day!

 

(~4.7 centimeters across at its widest)

-----------------------------------

Igneous rocks form by the cooling and crystallization of hot, molten rock (magma and lava). If this happens at or near the land surface, or on the seafloor, they are extrusive igneous rocks. If this happens deep underground, they are intrusive igneous rocks. Most igneous rocks have a crystalline texture, but some are clastic, vesicular, frothy, or glassy.

 

Obsidian is readily identifiable. It is a glassy-textured, extrusive igneous rock. Obsidian is natural glass - it lacks crystals, and therefore lacks minerals. Obsidian is typically black in color, but most obsidians have a felsic to intermediate chemistry. Felsic igneous rocks are generally light-colored, so a felsic obsidian seems a paradox. Mafic obsidians are scarce, but they are also black and glassy. Obsidian is sometimes referred to "glassy rhyolite".

 

Obsidian is an uncommon rock, but can be examined at several famous localities in America, such as Obsidian Cliff at the Yellowstone Hotspot (northwestern Wyoming, USA) and Big Obsidian Flow at the Newberry Volcano (central Oregon, USA).

 

Obsidian is moderately hard and has a conchoidal fracture (smooth and curved fracture surface), with sharp broken edges. Freshly-broken obsidian has the sharpest edges of any material known, natural or man-made (as seen under a scanning electron microscope).

 

Obsidian forms two ways: 1) very rapid cooling of lava, which prevents the formation of crystals; 2) cooling of high-viscosity lava, which prevents easy movement of atoms to form crystals. An example of obsidian that formed the first way is along the margins of basaltic lava flows at Kilaeua Volcano (Hawaii Hotspot, central Pacific Ocean). The obsidian sample seen here formed the second way.

 

Obsidian is unstable on geologic time scales - it will slowly convert to material that is not obsidian. A partially-converted obsidian is a distinctive rock called snowflake obsidian. The black portions of the rock seen here are rhyolitic obsidian (glass). The white patches ("snowflakes") are devitrification spots composed of cristobalite (SiO2, a polymorph of quartz).

 

Locality: unrecorded / undisclosed, but possibly from Twin Peaks, Utah, USA

 

Diamonds from the Wyoming-Colorado border area, USA. (public display, Wyoming Geological Survey, Laramie, Wyoming, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5400 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

Elements are fundamental substances of matter - matter that is composed of the same types of atoms. At present, 118 elements are known. Of these, 98 occur naturally on Earth (hydrogen to californium). Most of these occur in rocks & minerals, although some occur in very small, trace amounts. Only some elements occur in their native elemental state as minerals.

 

To find a native element in nature, it must be relatively non-reactive and there must be some concentration process. Metallic, semimetallic (metalloid), and nonmetallic elements are known in their native state.

 

The element carbon occurs principally in its native state as graphite (C) and diamond (C). Graphite is the common & far less valuable polymorph of carbon. A scarce polymorph of carbon is diamond. The physical properties of diamond and graphite couldn’t be more different, considering they have the same chemistry. Diamond has a nonmetallic, adamantine luster, typically occurs in cubic or octahedral (double-pyramid) crystals, or subspherical to irregularly-shaped masses, and is extremely hard (H≡10). Diamonds can be almost any color, but are typically clearish, grayish, or yellowish. Many diamonds are noticeably fluorescent under black light (ultraviolet light), but the color and intensity of fluorescence varies. Some diamonds are phosphorescent - under certain conditions, they glow for a short interval on their own.

 

Very rarely, diamond is a rock-forming mineral (see diamondite - www.flickr.com/photos/jsjgeology/14618393527).

 

A decent number of kimberlite bodies have been identified in the Rocky Mountains along the Colorado-Wyoming border, forming the State Line Kimberlite Field. The field is traditionally considered to represent many kimberlite bodies emplaced at about the same time. Recent isotopic dating has indicated this is not the case.

 

Locality: undisclosed site accessible to Cominco American Incorporated

 

Les Sources Occultes - Teaser /999

 

Réalisation Laurent Courau sur un scénario de thierry Ehrmann

blog.ehrmann.org/films2/les-sources-occultes-teaser.html

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers... Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offre aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'Esprit de la Salamandre...

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Faceted diamonds - "Cumulus" brooch with 8 carat diamond at top. (public display, Field Museum of Natural History, Chicago, Illinois, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5200 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

Elements are fundamental substances of matter - matter that is composed of the same types of atoms. At present, 118 elements are known (four of them are still unnamed). Of these, 98 occur naturally on Earth (hydrogen to californium). Most of these occur in rocks & minerals, although some occur in very small, trace amounts. Only some elements occur in their native elemental state as minerals.

 

To find a native element in nature, it must be relatively non-reactive and there must be some concentration process. Metallic, semimetallic (metalloid), and nonmetallic elements are known in their native state.

 

The element carbon occurs principally in its native state as graphite (C) and diamond (C). Graphite is the common & far less valuable polymorph of carbon. A scarce polymorph of carbon is diamond. The physical properties of diamond and graphite couldn’t be more different, considering they have the same chemistry. Diamond has a nonmetallic, adamantine luster, typically occurs in cubic or octahedral (double-pyramid) crystals, or subspherical to irregularly-shaped masses, and is extremely hard (H≡10). Diamonds can be almost any color, but are typically clearish, grayish, or yellowish. Many diamonds are noticeably fluorescent under black light (ultraviolet light), but the color and intensity of fluorescence varies. Some diamonds are phosphorescent - under certain conditions, they glow for a short interval on their own.

 

Very rarely, diamond is a rock-forming mineral (see diamondite - www.flickr.com/photos/jsjgeology/14618393527).

 

Pyrite concretions in black shale from the Pennsylvanian of Illinois, USA. (SDSMT 131, South Dakota School of Mines and Technology, Museum of Geology, Rapid City, South Dakota, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5500 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

The sulfide minerals contain one or more sulfide anions (S-2). The sulfides are usually considered together with the arsenide minerals, the sulfarsenide minerals, and the telluride minerals. Many sulfides are economically significant, as they occur commonly in ores. The metals that combine with S-2 are mainly Fe, Cu, Ni, Ag, etc. Most sulfides have a metallic luster, are moderately soft, and are noticeably heavy for their size. These minerals will not form in the presence of free oxygen. Under an oxygen-rich atmosphere, sulfide minerals tend to chemically weather to various oxide and hydroxide minerals.

 

Pyrite is a common iron sulfide mineral (FeS2). It’s nickname is “fool's gold”. Pyrite has a metallic luster, brassy gold color (in contrast to the deep rich yellow gold color of true gold - www.flickr.com/photos/jsjgeology/sets/72157651325153769/), dark gray to black streak, is hard (H=6 to 6.5), has no cleavage, and is moderately heavy for its size. It often forms cubic crystals or pyritohedrons (crystals having pentagonal faces).

 

Pyrite is common in many hydrothermal veins, shales, coals, various metamorphic rocks, and massive sulfide deposits.

 

The pyrite specimens shown above are "pyrite suns" - discoidal concretions developed along a bedding plane in black shale (which is probably restored or reconstructed or fabricated for the retail market). Texturally, the concretions have outward-radiating crystals with moderately-developed concentricity. Mineralogically, they are principally composed of pyrite, plus minor marcasite (also FeS2 - iron sulfide; marcasite is a polymorph of pyrite).

 

Stratigraphy: Anna Shale (= roof shale of the Herrin Coal), upper Carbondale Formation, Desmoinesian Series, upper Middle Pennsylvanian

 

Locality: coal mine near Sparta, Randolph County, southwestern Illinois, USA

------------------------

Photo gallery of pyrite:

www.mindat.org/gallery.php?min=3314

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Un hommage à Norman Spinrad

 

Comédienne : Élora Bessey

Effets pyrotechniques : Thierry Loir

Images, textes et montage : Laurent Courau

Photographe de plateau : Kurt Ehrmann

Bande-son originale : Cheerleader 69

 

Remerciements à Jolan Bessey, Carine Dubois, Rodolphe Bessey et Vincent Kindred Véhixe.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Récolté par Jules Cimon

Date de récolte : 2013.06.20

Substrat : débris ligneux à demi submergés (feuillu?) d’une forêt mixte

Ascome 7 mm de hauteur totale

Apothécie 1 mm de hauteur, 2 mm de diam.

 

Asques à 8 spores partiellement bisériées, avec crochetés à la base et appareil apical amyloïde, jusqu’à 76 x 9 um

Paraphyses cylindriques, septées, parfois à une petite ramification cylindrique au tiers inférieur, légèrement élargies et parfois couvertes d’une substance hyaline (gélifiée?) à l’apex, pigmentées de brun ochracé olivâtre à ocre doré, à contenu jaunâtre > 80%, jusqu’à 75 x 3,5 µm, dépassant les asques de 3-6 µm

Réaction négative dans le KOH

 

Spores ellipsoïdes, lisses, non septées, avec 2 petites ou moyennes guttules, hyalines à jaunâtres, 7-12 x 2,5-3,3 µm, 8,4 x 2,9 µm en moyenne, Q = 2,89

Medulla en textura epidermoidea / intricata, ± ascendant, à cellules hyphoïdes polymorphes, hyalines, de taille variable, 25-90 x 5-30 µm

Excipulum ectal en textura globulosa / globulosa-angularis, à cellules à paroi légèrement épaissie, 15-34 x 13-32 µm

Revêtement externe formé de cellules globuleuses à ellipsoïdes en chaîne (?), à pigment brun à olivâtre, 16-18 x 12-15 um

Cellules marginales cylindriques à l’apex et à segments progressivement plus gros vers la base

Revêtement caulinaire brun olivâtre à brun foncé, avec cellulules terminales sinueuses, cylindriques à clavées

 

Micrographie: J. Labrecque

Recherche: R. Labbé

Identification: Hans O. Baral

 

www.flickr.com/photos/23151213@N03/9096421446/in/photolis...

The Term Morph Is Inappropriate

 

As if we didn’t know, we asked a solitary roadside birder, “Looking for something?”

“The Gyrfalcon.”

“Have you seen it?”

“No.”

“Why isn’t anybody else looking?”

“They’re all at Grace Lake, waiting and hoping.”

 

Well, Maggie and I spent a little time in the parking lot overlooking Grace Lake from the southwest side. There were gulls: Herrings, Ring-bills and Lesser Black-backs, as well as some Canadas, Mallards and Common Mergs, but no falcon, just distant birders standing with their scopes on the east side of the lake.

 

A falcon of the tundra, one that perches on the ground or on low human-made objects, needs extensive unobstructed views, a place with wide open spaces, low-cut grass. So we went to the airport.

 

It was about 3:20 PM. We couldn’t ask for better timing. On the airport’s south side, we immediately drove up to a juvenile Gyrfalcon, a brown bird, perched on the snow not more than 50-60 feet from the road. Though the direction of light was almost just right, photography was not ideal. The falcon was on the other side of the airport’s chain-linked fence. Nevertheless, my camera knew what it had to do.

 

Seemingly indifferent to us, the Gyr was leaning over, using its beak to clean its toes, followed by facial combing with its talons. Afterwards it gazed in all directions as though seeking something, perhaps out of hunger. Then lifting its wings, it took to the air, keeping just a few feet above the ground and was quickly lost in the airport’s distant expanse of snow shadow and glare--my fourth Gyr in southeast Michigan, my ninth in the State as of today, 16 November 2019.

Alan

 

Tom J. Cade (1928-2019, a world renowned conservationist and co-founder of the Peregrine Fund, had this to say: “In the old literature naturalists wrote about white, grey and black ‘color phases’ of the gyrfalcon and even different species of gyrs. In fact, the different plumage types grade imperceptibly into one another, with every kind of intermediate condition represented in different individuals. . . . The Ungava region of northern Quebec is especially interesting as the whitest and blackest varieties breed together in the same area along with every kind of grey intermediate. (p. 76, The Falcons of the World, 1980).”

 

Eugene Potapov, assistant professor, Bryn Athyn College, is a raptor specialist and the notable author of The Gyrfalcon 2005, a definitive work: “Cade et al quite rightly state that . . . the Gyrfalcon has complete gradation rendering the term ‘morph’ inappropriate (p. 23).”

 

“Gyrfalcons also have shades of brown and gray in their feathers, and worn plumage may be tan-brown; Gyrs may or may not have a barred tail and moustachial stripes (p. 47).

 

“. . . some authors classify the birds on the basis of their background color (Cade et al. 1998). Gray form can then be a bird with gray color in the background or bird with a white background but with a lot of dark gray or brown streaks, spots or bars. The degree of the coverage of these spots can then divide the white and gray morphs. As a consequence, it is often difficult to classify Gyrs with excessive numbers or spots and a true white background ( p. 47)

 

“. . . Palmer (1988) considered that the division of the Gyrfalcons ‘into two or three color morphs . . . is misleading, and ‘any attempt to categorize Gyrs is subjective’, ‘because of variations from nearly (entirely?) white to almost or entirely black. Flann (2003) suggested that the Gyrfalcon has ‘continuous polymorphism’ and so does not have morphs (p.47).

 

“Another process is the coloration of the background, which may perhaps be independent of, but is parallel with, the variation in coloration and size of dark spots. So, . . . we have two axes of variation in coloration. One is the color as such, including both the color of the background and the color of dark spots. The second axis is the size and pattern of the dark/light spots. Interestingly, there have been no attempts to analyze this two-dimensional variation using objective criteria. In the following section we make an attempt to measure Gyrfalcon colors using a new approach (p. 47).”

 

To those who wish to pursue this new approach to the color patterns of the Gyrfalcon, I suggest read Potapov’s book.

 

www.globalraptors.org/grin/ResearcherResults.asp?lresID=412

Here's a preview of the upcoming new skybox from Polymorph.

The Dreamer's skybox is inspired by The Sandman tv show and it features a light control HUD that allows the owner to set the light intensity and color.

The skybox will come as a single prefab, or as a fatpack including the throne.

Professor Liwei Lin

  

Liwei Lin

Professor

Specialist of the Organization Department of the Central Committee of the CPC“Thousand Talents Program”, professor of Yangtze river scholars, Mechanical Engineering School professor of the University of California, Berkeley, co-director of the Berkeley Sensor and Executive Component Research Center, president of the American Society of Mechanical Engineers Micro-Electro-Mechanical Systems Branch, published about 130 theses on many international well-known journals, such as IEEE/ASME Journal of Microelectromechanical Systems, Nano Letters, Advanced Materials, ACS Nano, Nanotechnology Review etc, published about 200 theses on many main conference in this area, such as IEEE-MEMS, Transducer etc, co-authoring 4 monographs, authorized 17 invention patents, relative achievements were highlighted reported by many well-known medias, such as Science, LA Times, NHK Japan and Science Channel TV, had a wide international response. Now he hold a concurrent post of the chief editor of IEEE/ASME Journal of Microelectromechanical Systems and Chinese Journal of Sensors and Actuators, the editor of the ASME Journal of Micro- and Nano-Manufacturing , Chinese Journal of Sensors and Actuators, the reviewer of more than 20 journals, such as Science, Nature Nanotechnology, Nano Letters and Advanced Materials etc, the co-chair of the IEEE-MEMS 2011 Conference, the program committee chair of IEEE-NEMS 2010 and many other IEEE-NEMS, was well-known in the micro nano technology area.

Research Area

 

MEMS/NEMS, micro nano sensor and actuator, micro nano integration and encapsulation, polymer nano structure and its application, flexible electronic manufacturing technology, nanofiber manufacturing and application, micro nano 3D printing technology etc.

 

Part of Treatises

Yifang Liu,Daner Chen,Liwei Lin,Gaofeng Zheng, Jianyi Zheng, Lingyun Wang*,Daoheng Sun*,Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure, Journal of Micromechanics and Microengineering, 2016, 26: 035018-035026.

Lei Xu*, Wen Han, Gaofeng Zheng, Dezhi Wu, Xiang Wang, Daoheng Sun*, Initial jet before the onset of effective electrospinning of polymeric nanofibers, The Open Mechanical Engineering Journal, 2015, 9: 666-669.

Dezhi Wu, Shaohua Huang, Zhiqin Xu, Zhiming Xiao, Chuan Shi, Jinbao Zhao, Rui Zhu, Daoheng Sun*, Liwei Lin, Polyethylene terephthalate/poly (vinylidene fluoride) composite separator for Li-ion battery, Journal of Physics D:Applied Physics, 2015, 48: 285305-285312.

[6] Tingping Lei, Lingke Yu, Lingyun Wang, Fan Yang, Daoheng Sun*, Predicting polymorphism of electrospun polyvinylidene fluoride membranes by their morphologies, Journal of Macromolecular Science, 2015, 54: 91-101.

Xiang Wang, Xingwang Hu, Xiaochun Qiu, Xiangyu Huang, Dezhi Wu*, Daoheng Sun*, Strip-distributed polymer solution on tip-less electrospinning for uniform nanofibers, Materials Letters, 2013, 99: 21-23.

Lei Xu, Daoheng Sun*, Electrohydrodynamic printing under applied pole-type nozzle configuration, Applied Physics Letters, 2013,102(2): 024101.

WangLingyun, DuJiang, Luo Zhiwei, Du Xiaohui, Li Yipan, Liu Juan, Daoheng Sun*. Design and Experiment of a Jetting Dispenser Driven by Piezostack Actuator [J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2013, 3(1): 147-156.

Xiang Wang, Gaofeng Zheng, Lei Xu, Wei Cheng, Bulei Xu, Yongfang Huang, Daoheng Sun*, Fabrication of nanochannels via near-field electrospinning, Appled Physics A, 2012, 108(4): 825-828.

Wang Linyun, Qiu Yongrong, Pei Yanbo, Su Yuanzhe, Zhan Zhan, Lv Wenlong, Daoheng Sun*. A novel electrohydrodynamic printing jet head with retractable needle[J]. Proceedings of the Institution

Zheng Gaofeng, Wang Xiang, Li Wenwang, Lei Tingping, Tao Wei, Du Jiang, Qiu QiYan, Chi XinGuo, Daoheng Sun*. Single step fabrication of organic nanofibrous membrane for piezoelectric vibration sensor [C]. Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International Conference: 2782-2785.

Daoheng Sun*, Chieh Chang, Sha Li, and Liwei Lin*,Near-Field Electrospinning, Nano Letters,Department of Mechanical Engineering and Berkeley Sensor and Actuator Center,Received February 6, 2006; Revised Manuscript Received March 9, 2006

Part of Patents

 

A polymer solar battery light trapping structure manufacturing method.

A micro devices movable structure manufacturing method which based on silicon/glass anode bonding.

A horizontal array carbon nanotube manufacturing method.

 

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Un hommage à Norman Spinrad

 

Comédienne : Élora Bessey

Effets pyrotechniques : Thierry Loir

Images, textes et montage : Laurent Courau

Photographe de plateau : Kurt Ehrmann

Bande-son originale : Cheerleader 69

 

Remerciements à Jolan Bessey, Carine Dubois, Rodolphe Bessey et Vincent Kindred Véhixe.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Vugs with aragonite crystals in arenaceous, ferruginous, fossiliferous limestone from the Mississippian of Ohio, USA (6.8 centimeters across at its widest).

 

This unusual sedimentary rock has small vugs containing clear to whitish aragonite crystals (CaCO3 - calcium carbonate), plus some whitish calcite (also CaCO3). Aragonite is a less common polymorph of calcite. Aragonite is rarely found in Ohio. The host rock is a fossiiferous limestone. Its brownish coloration is due to significant iron oxide impurity, so it's a ferruginous fossiliferous limestone. Samples subjected to acid dissolution leave behind quartz sand-rich residues, so it's an arenaceous, ferruginous, fossiliferous limestone. The light brown-colored structures are principally crinoid stem columnals. Crinoid skeletal pieces are composed of calcite, but in this sample, the crinoid fossils have been dolomitized.

 

Stratigraphy: Vinton Member (horizon occurs at the boundary between massive, thick-bedded Vinton below & thin-bedded, flaggy Vinton above), upper Logan Formation, Osagean Stage, upper Lower Mississippian

 

Locality: Mt. Calvary Cemetery Outcrop - roadcut along eastern side of Jacksontown Road (Rt. 13), immediately adjacent to (east of) Mt. Calvary Catholic Cemetery, ~0.15 miles south of intersection with Hopewell Drive, Heath, south-central Licking County, east-central Ohio, USA (40° 02’ 00.8” North, 82° 24” 10.5” West)

 

View On Black

I loved the book Cats Cradle when I was a young lad, the concept of Ice Nine is scary and fascinating.

 

From Wikipedia:

 

Ice-nine is a fictional material conceived by writer Kurt Vonnegut in his novel Cat's Cradle. It is supposed to be a more stable polymorph of water than common ice (Ice Ih) which instead of melting at 0 degrees Celsius (32 degrees Fahrenheit), melts at 45.8 °C (114.4 °F). When ice-nine comes into contact with liquid water below 45.8 °C (which is thus effectively supercooled), it acts as a seed crystal, and causes the solidification of the entire body of water which quickly crystallizes as ice-nine. A global catastrophe involving freezing the Earth's oceans by simple contact with ice-nine is used as a plot device in Vonnegut's novel.

Faceted diamonds - "Cumulus" brooch with 8 carat diamond at top. (public display, Field Museum of Natural History, Chicago, Illinois, USA)

 

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are over 5200 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

 

Elements are fundamental substances of matter - matter that is composed of the same types of atoms. At present, 118 elements are known (four of them are still unnamed). Of these, 98 occur naturally on Earth (hydrogen to californium). Most of these occur in rocks & minerals, although some occur in very small, trace amounts. Only some elements occur in their native elemental state as minerals.

 

To find a native element in nature, it must be relatively non-reactive and there must be some concentration process. Metallic, semimetallic (metalloid), and nonmetallic elements are known in their native state.

 

The element carbon occurs principally in its native state as graphite (C) and diamond (C). Graphite is the common & far less valuable polymorph of carbon. A scarce polymorph of carbon is diamond. The physical properties of diamond and graphite couldn’t be more different, considering they have the same chemistry. Diamond has a nonmetallic, adamantine luster, typically occurs in cubic or octahedral (double-pyramid) crystals, or subspherical to irregularly-shaped masses, and is extremely hard (H≡10). Diamonds can be almost any color, but are typically clearish, grayish, or yellowish. Many diamonds are noticeably fluorescent under black light (ultraviolet light), but the color and intensity of fluorescence varies. Some diamonds are phosphorescent - under certain conditions, they glow for a short interval on their own.

 

Very rarely, diamond is a rock-forming mineral (see diamondite - www.flickr.com/photos/jsjgeology/14618393527).

 

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Un hommage à Norman Spinrad

 

Comédienne : Élora Bessey

Effets pyrotechniques : Thierry Loir

Images, textes et montage : Laurent Courau

Photographe de plateau : Kurt Ehrmann

Bande-son originale : Cheerleader 69

 

Remerciements à Jolan Bessey, Carine Dubois, Rodolphe Bessey et Vincent Kindred Véhixe.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Réalisation : Laurent Courau

Scénario : Thierry Ehrmann

Comédienne : Elora Bessey

Artificier : Thierry Loir

 

Remerciements à Jolan Bessey, Carine Dubois et Rodolphe Bessey.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Les Sources Occultes 008/999

 

Un film de Laurent Courau, d'après un scénario de Thierry Ehrmann.

 

Un hommage à Norman Spinrad

 

Comédienne : Élora Bessey

Effets pyrotechniques : Thierry Loir

Images, textes et montage : Laurent Courau

Photographe de plateau : Kurt Ehrmann

Bande-son originale : Cheerleader 69

 

Remerciements à Jolan Bessey, Carine Dubois, Rodolphe Bessey et Vincent Kindred Véhixe.

 

© Les Amis de l'Esprit de la Salamandre 1999

 

Entre effroi et merveilles, une zone mouvante aux portes du futur et des enfers...

 

Les Sources Occultes vous entraînent au coeur d'un univers polymorphe dont les clés et les motifs se révéleront au fur et à mesure des épisodes de cette série de fictions. En attendant un final apocalyptique, au sens premier du terme, qui révélera la structure générale sous la forme d'un long-métrage...

 

Les Sources Occultes offrent aussi une nouvelle porte d'entrée dans le labyrinthe multidimensionnel de la Demeure du Chaos à celles et ceux qui postulent à notre casting, une occasion unique de pénétrer les arcanes de l'esprit de la Salamandre.

 

Secrets revealed of the Abode of Chaos (112 pages, adult only) >>>

Kyanite is a typically blue aluminosilicate mineral, found in aluminium-rich metamorphic pegmatites and sedimentary rock. It is the high pressure polymorph of andalusite and sillimanite, and the presence of kyanite in metamorphic rocks generally indicates metamorphism deep in the Earth's crust. Kyanite is also known as disthene or cyanite.[5]

 

Kyanite is strongly anisotropic, in that its hardness varies depending on its crystallographic direction. In kyanite, this anisotropism can be considered an identifying characteristic, along with its characteristic blue color. Its name comes from the same origin as that of the color cyan, being derived from the Ancient Greek word κύανος. This is typically rendered into English as kyanos or kuanos and means "dark blue."

 

Kyanite is used as a raw material in the manufacture of ceramics and abrasives, and it is an important index mineral used by geologists to trace metamorphic zones.

 

Properties

 

Deep blue kyanite

 

Kyanite within quartz, Hunterian Museum, Glasgow

Kyanite is an aluminum silicate mineral, with the chemical formula Al2SiO5. It is typically patchy blue in color, though it can range from pale to deep blue[6] and can also be gray or white or, infrequently, light green.[7] It typically forms sprays of bladed crystals, but is less commonly found as distinct euhedral (well-shaped) crystals, which are particularly prized by collectors.[6] It has a perfect {100} cleavage plane, parallel to the long axis of the crystal, and a second good cleavage plane {010} that is at an angle of 79 degrees to the {100} cleavage plane. Kyanite also shows a parting on {001} at an angle of about 85 degrees to the long axis of the crystal.[7] Cleavage surfaces typically display a pearly luster. The crystals are slightly flexible.[6]

 

Kyanite's elongated, columnar crystals are usually a good first indication of the mineral, as well as its color (when the specimen is blue). Associated minerals are useful as well, especially the presence of the polymorphs of staurolite, which occurs frequently with kyanite. However, the most useful characteristic in identifying kyanite is its anisotropism. If one suspects a specimen to be kyanite, verifying that it has two distinctly different hardness values on perpendicular axes is a key to identification; it has a hardness of 5.5 parallel to {001} and 7 parallel to {100}.[2][3] Thus, a steel needle will easily scratch a kyanite crystal parallel to its long axis, but the crystal is impervious to being scratched by a steel needle perpendicular to the long axis.[6]

 

Structure

The kyanite structure can be visualized as a distorted face centered cubic lattice of oxygen ions, with aluminium ions occupying 40% of the octahedral sites and silicon occupying 10% of the tetrahedral sites. The aluminium octahedra form chains along the length of the crystal, half of which are straight and half of which are zigzag, with silica tetrahedra linking the chains together. There is no direct linkage between the silica tetrahedra, making kyanite a member of the nesoilicate class of silicate minerals.[8][9]

 

Occurrence

 

KyaniteAndalusiteSillimanite

Phase diagram of Al2SiO5

(aluminosilicates).[10]

Kyanite occurs in biotite gneiss, mica schist, and hornfels, which are metamorphic rocks formed at high pressure during regional metamorphism of a protolith which is rich in aluminium (a pelitic protolith). Kyanite is also occasionally found in granite and pegmatites[9][11] and associated quartz veins,[12] and is infrequently found in eclogites. It occurs as detrital grains in sedimentary rocks, although it tends to weather rapidly.[7][11] It is associated with staurolite, andalusite, sillimanite, talc, hornblende, gedrite, mullite and corundum.[2]

 

Kyanite is one of the most common minerals, having the composition Al2SiO5. Minerals with identical compositions but a different, distinct crystal structure are called polymorphs. There are two polymorphs of kyanite: andalusite and sillimanite. Kyanite is the most stable at high pressure, andalusite is the most stable at lower temperature and pressure, and sillimanite is the most stable at higher temperature and lower pressure.[13] They are all equally stable at the triple point near 4.2 kbar and 530 °C (986 °F).[14] This makes the presence of kyanite in a metamorphic rock an indication of metamorphism at high pressure.

 

Kyanite is often used as an index mineral to define and trace a metamorphic zone that was subject to a particular degree of metamorphism at great depth in the crust. For example, G. M. Barrow defined kyanite zones and sillimanite zones in his pioneering work on the mineralogy of metamorphic rocks. Barrow was characterizing a region of Scotland that had experienced regional metamorphism at depth. By contrast, the metamorphic zones surrounding the Fanad pluton of Ireland, which formed by contact metamorphism at a shallower depth in the crust, include andalusite and sillimanite zones but no kyanite zone.[15]

 

Kyanite is potentially stable at low temperature and pressure. However, under these conditions, the reactions that produce kyanite, such as:

 

muscovite + staurolite + quartz → biotite + kyanite + H2O

never take place, and hydrous aluminosilicate minerals such as muscovite, pyrophyllite, or kaolinite are found instead of kyanite.[16]

 

Bladed crystals of kyanite are very common, but individual euhedral crystals are prized by collectors.[6] Kyanite occurs in Manhattan schist, formed under extreme pressure as a result of a continental collision during the assembly of the supercontinent of Pangaea.[17] It is also found in pegmatites of the Appalachian Mountains and in Minas Gerais, Brazil. Splendid specimens are found at Pizzo Forno in Switzerland.[6]

 

Kyanite can take on an orange color, which notably occurs in Loliondo, Tanzania.[18] The orange color is due to inclusions of small amounts of manganese (Mn3+) in the structure.

 

Uses

Kyanite is used primarily in refractory and ceramic products, including porcelain plumbing and dishware. It is also used in electronics, electrical insulators and abrasives.[19]

 

At temperatures above 1100 °C, kyanite decomposes into mullite and vitreous silica via the following reaction:

 

3(Al2O3·SiO2) → 3Al2O3·2SiO2 + SiO2

This transformation results in an expansion.[20] Mullitized kyanite is used to manufacture refractory materials.[19]

 

Kyanite has been used as a semiprecious gemstone, which may display cat's eye chatoyancy, though this effect is limited by its anisotropism and perfect cleavage. Color varieties include orange kyanite from Tanzania.[18] The orange color is due to inclusions of small amounts of manganese (Mn3+) in the structure.[21]

 

References

Specific citations

Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.

"Kyanite" (PDF). Handbook of Mineralogy. 2001. Retrieved 2018-01-01.

"Kyanite". MinDat. Retrieved 2013-06-14.

"Kyanite Mineral Data". Webmineral.com. Retrieved 2013-06-14.

Jackson, Julia A., ed. (1997). Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.

Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. pp. 528–529. ISBN 0442276249.

Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. p. 319. ISBN 9780195106916.

Winter, J.K.; Ghose, S. (1979). "Thermal expansion and high-temperature crystal chemistry of the Al 2 SiO 5 polymorphs". American Mineralogist. 64 (5–6): 573–586. Retrieved 28 August 2021.

Nesse 2000, p. 315.

Whitney, D.L. (2002). "Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey". American Mineralogist. 87 (4): 405–416. doi:10.2138/am-2002-0404.

"Geology Page - Kyanite". Geology Page. 2014-05-16. Retrieved 2020-02-20.

Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. p. 529. ISBN 0442276249.

Nesse 2000, p. 76.

Bohlen, S.R.; Montana, A.; Kerrick, D.M. (1991). "Precise determinations of the equilibria kyanite⇌ sillimanite and kyanite⇌ andalusite and a revised triple point for Al2SiO5 polymorphs". American Mineralogist. 76 (3–4): 677–680. Retrieved 28 August 2021.

Yardley, B. W. D. (1989). An introduction to metamorphic petrology. Harlow, Essex, England: Longman Scientific & Technical. pp. 8–10. ISBN 0582300967.

Yardley 1989, p. 68-69.

Quinn, Helen (6 June 2013). "How ancient collision shaped New York skyline". BBC Science. BBC.co.uk. Retrieved 2013-06-13. Prof Stewart was keeping an eye out for a mineral known as kyanite, a beautiful blue specimen commonly seen in the Manhattan schist. 'Kyanite is a key mineral to identify, we know it only forms at very deep depths and under extensive pressure,' he said. 'It's like a fingerprint, revealing a wealth of information.' The presence of this mineral reveals that the Manhattan schist was compressed under incredibly high pressure over 300 million years ago. The schist formed as a result of two enormous landmasses coming together to form a supercontinent, known as Pangaea.

M. Chadwick, Karen; R. Rossman, George (2009-01-01). "Orange kyanite from Tanzania". Gems and Gemology. 45.

Nesse 2000, p. 316.

Speyer, Robert (1993). Thermal Analysis of Materials. CRC Press. p. 166. ISBN 0-8247-8963-6.

M. Gaft; L. Nagli; G. Panczer; G. R. Rossman; R. Reisfeld (August 2011). "Laser-induced time-resolved luminescence of orange kyanite Al2SiO5". Optical Materials. 33 (10): 1476–1480. Bibcode:2011OptMa..33.1476G. doi:10.1016/j.optmat.2011.03.052.

As borboletas são insectos da ordem Lepidoptera classificados nas super-famílias Hesperioidea e Papilionoidea, que constituem o grupo informal Rhopalocera.

 

As borboletas têm dois pares de asas membranosas cobertas de escamas e peças bucais adaptadas a sucção. Distinguem-se das traças (mariposas) pelas antenas rectilíneas que terminam numa bola, pelos hábitos de vida diurnos, pela metamorfose que decorre dentro de uma crisálida rígida e pelo abdómen fino e alongado. Quando em repouso, as borboletas dobram as suas asas para cima.

 

As borboletas são importantes polinizadores de diversas espécies de plantas.

 

O ciclo de vida das borboletas engloba as seguintes etapas:

 

1) ovo→ fase pré-larval

2) larva→ chamada também de lagarta ou taturana,

3) pupa→ que se desenvolve dentro da crisálida (ou casulo)

4) imago→ fase adulta

_______________________

 

A butterfly is any of several groups of mainly day-flying insects of the order Lepidoptera, the butterflies and moths. Like other holometabolous insects, butterflies' life cycle consists of four parts, egg, larva, pupa and adult. Most species are diurnal. Butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. Butterflies comprise the true butterflies (superfamily Papilionoidea), the skippers (superfamily Hesperioidea) and the moth-butterflies (superfamily Hedyloidea). All the many other families within the Lepidoptera are referred to as moths.

 

Butterflies exhibit polymorphism, mimicry and aposematism. Some, like the Monarch, will migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. The caterpillars of some butterflies eat harmful insects. A few species are pests because in their larval stages they can damage domestic crops or trees. Culturally, butterflies are a popular motif in the visual and literary arts.

1 2 ••• 22 23 25 27 28 ••• 79 80