View allAll Photos Tagged iteration

3rd iteration of "Counter Intelligence" project. For best results with Maxbotic rangefinders I'd recommend the Lilypad. Parts from Sparkfun. Backlit 2x17 driven from serial interface of Lilypad.

Iteration 5 Enhanced Preview (Iteration 5, Included VTOL Inlet Doors and Inlet Ducts) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane

 

www.ioaircraft.com/hypersonic/ranger.php

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (7,000+ non vtol). Fuel H2, reducing fuel weight 95%.

 

Length, 35ft (10.67m), span 18ft (6m).

 

Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.

 

Estimated market price, $25-$30 million in production. New York to Dubai in an hour.

 

All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.

-------------

 

glide breaker, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

  

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.

 

The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

SAVUSAVU, Fiji (June 14, 2015) Hospital Corpsman 2nd Class Phu Ly (left), originally from Sacramento, California, and Hospital Corpsman 3rd Class Ko Nauai (right), from Kanehoe, Hawaii, push Mosese Jioki, a double amputee patient, up a ramp after disembarking a tender boat during Pacific Partnership 2015. The hospital ship USNS Mercy (T-AH 19) is currently in Savusavu, Fiji for PP15. Pacific Partnership is in its tenth iteration and is the largest annual multilateral humanitarian assistance and disaster relief preparedness mission conducted in the Indo-Asia-Pacific region. While training for crisis conditions, Pacific Partnership missions to date have provided real world medical care to approximately 270,000 patients and veterinary services to more than 38,000 animals. Additionally, the mission has provided critical infrastructure development to host nations through more than 180 engineering projects. (U.S. Marine Corps photo by Sgt. Valerie Eppler/RELEASED)

The fourth iteration of the Sierpinski Pyramid made from Duplos for a math project.

Iterate of z_{n+1}=tanh(z_n)*exp(0.821*i)+0.1*z_n^2, colored by argument (hue) and magnitude (brightness).

 

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

The second iteration of the BMW M4 (codenamed G82) is largely based on the standard 4 Series (G22 generation), which was previewed by the BMW Concept 4. It is a high performance version of the standard G22 4 Series

 

The more notable upgrades for the G82 M4 is a 35 kW increase over the previous M4, as well as adopting the twin-kidney grille from the 4 Series.

 

M4 Competition

 

At launch in 2020, the M4 Competition model was unveiled alongside the standard M4 model. Compared to the standard M4, the M4 Competition increases power output by 22 kW to a total of 375 kW and torque is increased by 100 N⋅m to 650 N⋅m, and it is offered exclusively with an 8-speed M Steptronic Sport automatic transmission. The M4 Competition also features a separate transmission oil cooler, black chrome exhaust tips, forged M light-alloy wheels, automatic brake hold function, and high-gloss black mirrors.

 

xDrive

 

Competition models equipped with xDrive are significantly quicker from 0-60 mph when compared to RWD models, clocking in at just 2.8 seconds, as compared to 3.6 seconds for RWD.

#architecture #design #designer #architect #axonometric #isometric #drawing #study #iteration #exploration #wuarch #woodbury #archilovers #architexture #archschool

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

Created using FractalWorks

Fractalworks plot Mar24lma1f

Fractal type:mandelbrot

Plot size (w,h):1250,1250

Maximum iterations:21000

Center Point (real, imaginary):-0.757690767,-0.0699693038 i

Plot Width (real):2.88E-07

 

Color scheme name:ColorColorWheel

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center.

More tinkering with my knight. Think I've made his face worse, but his body and mane better. Think its time to stop...

Fractal type:julia

Plot size (w,h):2500,2500

Maximum iterations:50000

Center Point (real, imaginary):1.05042e-07,-1.05042e-07 i

Plot Width (real):0.000175

Julia origin (real, imaginary):-0.4994282919320107,0.5208905679611714 i

Source mandelbrot width:3.75E-12

 

Color scheme name:YeloPupr

 

Fractalworks plot Feb26wja1a

At the veterantræf, Græsted, North Zealand, Denmark, 4th June 2022.

 

"The final iteration of the P5 appeared in September 1967.[7] Now powered by the 3,528-cubic-centimetre (215.3 cu in) Rover V8 engine also used in the 3500, the car was badged as the "3.5 Litre", and commonly known as the 3½ Litre. The final letter in the "P5B" model name came from Buick, the engine's originator. Rover did not have the budget to develop a new engine, hence they chose to redevelop the lightweight aluminium Buick engine, making it considerably stronger. While this added some weight, it still maintained the engine's light and compact features. The Borg Warner Type-35 automatic transmission, hydrosteer variable ratio power steering and front Lucas fog lights were now standard.

 

Output of 160 metric horsepower (120 kW) was claimed along with improved torque. When introduced in 1967 the Buick-designed V8 produced 160 PS (118 kW; 158 hp) at 5,200 rpm and 210 lb⋅ft (280 N⋅m) of torque at 2,600 rpm. The greater power of the engine, along with its lower weight, provided improved performance as well as fuel economy.

 

The exterior was mostly unchanged, apart from bold "3.5 Litre" badging, a pair of fog lights which were added below the headlights, creating a striking four-light array, and the fitting of chrome Rostyle wheels with black painted inserts. The P5B existed as both the 4-door coupé and saloon body style until end of production. Production ended in 1973, by when 9,099 coupés and 11,501 saloons had been built.

  

1971 Rover P5B owned by Queen Elizabeth II

The 3½ Litre saloon variant was a favourite of high-ranking government ministers, and served as Prime Ministerial transport for Harold Wilson, Edward Heath, James Callaghan, and Margaret Thatcher. As testament to their suitability, the last batch of P5Bs to roll off the Rover line in June 1973 was purchased by the British government and placed in storage, to be released for government use as required. For that reason, registered relatively new-looking P5s were therefore still familiar sights in Westminster for more than a decade after production had ended.

 

When Margaret Thatcher entered Downing Street in 1979 after her election victory, she was driven in a 1972 model. It was during Thatcher's eleven-year tenure that the P5 was eventually phased out as a Prime-Ministerial car, in favour of the Jaguar XJ.

 

Queen Elizabeth II also owns an Arden Green Rover P5B Saloon "JGY 280", which is on display at the Heritage Motor Centre, Gaydon, Warwickshire and was seen in the 18 May 2003 episode of BBC motoring show, Top Gear."

 

source: Wikipedia

Raven - B Model - Mach 8-10 - Supersonic / Hypersonic Business Jet - Iteration 6 Integration Perspective

 

Seating: 22 | Crew 2+1

Length: 100ft | Span: 45ft 8in

Engines: 2 U-TBCC (Unified Turbine Based Combined Cycle)

 

Fuel: H2 (Compressed Hydrogen)

Cruising Altitude: 100,000-125,000 ft @ Mach 8-10

Air frame: 75% Proprietary Composites

Operating Costs, Similar to the hourly operating costs of a Gulfstream G650 or Bombardier Global Express 7000 Series

  

IO Aircraft www.ioaircraft.com

Drew Blair www.linkedin.com/in/drew-b-25485312/

 

-----------------------------

supersonic business jet, hypersonic business jet, hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, Aerion, Aerion Supersonic, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Raven - Model B Mach 8-10 - Supersonic / Hypersonic Business Jet - Iteration 6

 

Seating: 22 | Crew 2+1

Length: 100ft | Span: 45ft 8in

Engines: 2 U-TBCC (Unified Turbine Based Combined Cycle)

 

Fuel: H2 (Compressed Hydrogen)

Cruising Altitude: 100,000-125,000 ft @ Mach 8-10

Air frame: 75% Proprietary Composites

Operating Costs, Similar to the hourly operating costs of a Gulfstream G650 or Bombardier Global Express 7000 Series

  

IO Aircraft www.ioaircraft.com

Drew Blair www.linkedin.com/in/drew-b-25485312/

 

-----------------------------

supersonic business jet, hypersonic business jet, hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, Aerion, Aerion Supersonic, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

16 and 20 inch barrel AR15s built for reduced weight and reduced recoil. The stock is the heavier Magpul UBR stock, while the barrel is a thin "pencil" barrel. The muzzle brake is a SureFire MB556k recoil compensator. I also envision that this rifle would use a heavier buffer which also has the effect of reducing a rifle's "kick" (The SCAR's bolt carrier was designed heavy specifically for this reason).

 

Iron sights are KAC rear sight because of the great unobscured view, and the front sight is the PRI hooded flip up sight which is a style I prefer over the standard M16 "flanged" sight.

 

The optics are Aimpoint T1 red dot with EOTech magnifier on a quick flip mount, making this the perfect weapon for close to medium range.

 

**Credits**

Aimpoint T1 and SureFire suppressors by Shockwave

EOTech 3x FTS by Mike

Handguards by trapezoidCQC

Fractal type:mandelbrot

Plot size (w,h):2210,2210

Maximum iterations:20000

Center Point (real, imaginary):-0.097248652543884,0.65024132722605 i

Plot Width (real):9.38E-12

 

Color scheme name:POP0

Fractalworks plot Feb27wma1h

Raven - Model B Mach 8-10 - Supersonic / Hypersonic Business Jet - Iteration 6

 

Seating: 22 | Crew 2+1

Length: 100ft | Span: 45ft 8in

Engines: 2 U-TBCC (Unified Turbine Based Combined Cycle)

 

Fuel: H2 (Compressed Hydrogen)

Cruising Altitude: 100,000-125,000 ft @ Mach 8-10

Air frame: 75% Proprietary Composites

Operating Costs, Similar to the hourly operating costs of a Gulfstream G650 or Bombardier Global Express 7000 Series

  

IO Aircraft www.ioaircraft.com

Drew Blair www.linkedin.com/in/drew-b-25485312/

 

-----------------------------

supersonic business jet, hypersonic business jet, hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, Aerion, Aerion Supersonic, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

The second iteration of the Cray supercomputer, this time released in 1985, could run a staggering twelve times faster than the originial, while taking up less space.

- Originally only available to Ferrari's racing driver clients

- Ultimate iteration of Ferrari's award-winning V8

- Finished in elegant Argento Nürburgring 101/C

 

Bonhams : The Zoute Sale

Important Collectors' Motor Cars

The Zoute Grand Prix Gallery

Estimated : € 540.000 - 580.000

Not sold

 

Zoute Grand Prix Car Week 2025

Knokke - Zoute

België - Belgium

October 2025

 

Unveiled on the eve of the 2018 24 Hours of Le Mans, the 488 Pista Piloti Ferrari was conceived by Ferrari's Tailor Made department as a tribute to the AF Corse racing team's FIA WEC GTE Pro titles in 2017. The Pista's design was influenced by the 488 GTE and 488 Challenge racing variants. Available exclusively to Ferrari's racing driver clients, ensuring its extreme rarity and desirability, the Piloti Ferrari featured a bespoke livery inspired by the No.51 488 GTE, along with a host of unique interior and exterior details. Among the four colours offered, Argento Nürburgring, which this car has, is by far the most elegant and understated, perfectly accentuating the model's racing lines.

 

At the heart of the Ferrari 488 Pista is a strengthened version of the celebrated 3.9-litre twin-turbocharged V8 producing 720 PS (710 bhp) and 770 Nm of torque, which was voted 'International Engine of the Year' in 2018. The 488's performance remains astonishing: 0-100 km/h in 2.85 seconds, 0-200 km/h in 7.6 seconds, and a top speed exceeding 340 km/h. With 50 PS more power and significant weight savings over the 488 GTB; advanced aerodynamics derived from Ferrari's GTE programme (S-duct, vortex generators, revised underbody); and the availability of carbon-fibre wheels for the first time on a Ferrari road car, the Pista represents the pinnacle of the Special Series lineage. In short: this is the ultimate iteration of Ferrari's award-winning V8, incorporating advanced aerodynamics and chassis technology lifted directly from the 488 GTE racer.

 

Highlights of this car's exceptional specification include the following:

 

- Exterior: full Piloti Ferrari Tailor Made livery, tricolore stripes, '18' race number, WEC/PRO logos, black S-duct, Tailor Made plaque

- Carbon exterior pack: splitter, diffuser, air intakes, rear bumper and engine covers

- 20" carbon-fibre wheels, ultra-light and highly sought after

- Titanium exhaust system, suspension lifter, electrochromic mirrors, HELE system

- Interior: Alcantara Nero 9440, extended carbon fibre trim in matte finish (dashboard, console, sills, luggage compartment)

- Piloti Ferrari detailing: tricolore paddle 'dreamlines', bespoke stitching in Rosso 0504, Cavallino stitched on headrests, Tailor Made dedication plate

- Track-focused options: Ferrari telemetry system, Track inner camera kit, 4-point harnesses, racing seats (Medium size), fire extinguisher, white rev counter

- Additional convenience: Apple CarPlay, Hi-Power Hi-Fi, navigation with Bluetooth, rear parking camera

 

The 488 Pista Piloti Ferrari remains one of the most exclusive modern Ferraris: a direct motor sport homage, a Tailor Made creation, and a peak of the Special Series bloodline that includes the 360 Challenge Stradale, 430 Scuderia and 458 Speciale. Rarely seen on the open market, one-owner examples of this calibre, especially those finished in elegant Argento Nürburgring and with the most desirable options, represent a singular opportunity for the discerning collector.

The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.

 

The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

This is yet another iteration of the CC. I didn't like the mtb bars, so I pulled the ones off the old blue three-speed and today picked up these Big Cheese grips at Elliot's request. She has good taste that one.

I just procured a studio in Center City, so I bought another Cross Check last week that I'll be building up to be this one's twin, but with On-One's Mungo bars and maybe higher gearing since I won't have the hills to deal with. This set-up really works for me.

{"id":"NewtonPoly", "maxIter":50, "trapFunction":{"id":"RingFunction", "thickness":0.15, "radius":0.5, "color":"ffffff"}, "coefficients":[1,0,0,3,0,0,1,1]}

VTOL - Hypersonic Plane - High Supersonic - Scramjet - IO Aircraft - Iteration 4

 

Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane

 

www.ioaircraft.com/hypersonic/ranger.php

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.

 

Length, 35ft (10.67m), span 18ft (6m).

 

Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.

 

Estimated market price, $25-$30 million in production. New York to Dubai in an hour.

 

All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.

-------------

 

boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

  

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

70 Ton Payload, Single Stage to Orbit Fixed Wing Aircraft - Hypersonic Plane - Space Plane

 

Earlier, pre Iteration 1, Just felt like posting this online, working out the physics/geometries/energy requirements and contruction.

 

Mach 8-10 in amtmosphere, 195ft long, Heavy Lift Single Stage To Orbit Fixed Wing Aircraft. 70 TONS, ie 140,000 LBS, 60 ft X 15ft X 15ft payload bay. Up in the Falcon Heavy and Delta IV class, except not $400 million to launch giant payloads into orbit, but below $250 per lbs, or about $28 million to launch giant payloads, and normalized orbital flight, as normal as a 737 commercial flight. Load up, refuel, take off in an afternoon. I estimate this aircraft would cost about $750 million each for space capable. In atmosphere commercial, roughly $300 million each for a 200 passenger M8-10 (not designed yet)

 

--------------

 

www.ioaircraft.com/hypersonic/ranger.php

 

Drew Blair

www.linkedin.com/in/drew-b-25485312/

 

--------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

  

-------------

 

tbcc, glide breaker, fighter plane, hyperonic fighter, stealth fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

  

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

The final iteration of the P5 appeared in September 1967. Now powered by the 3,528-cubic-centimetre (215.3 cu in) Rover V8 engine also used in the 3500, the car was badged as the "3.5 Litre", and commonly known as the 3½ Litre. The final letter in the "P5B" model name came from Buick, the engine's originator. Rover did not have the budget to develop a new engine, hence they chose to redevelop the lightweight aluminium engine available from Buick.

 

Output of 160 hp (120 kW) was claimed along with improved torque. When introduced in 1967 the Buick designed V8 produced 160 PS (118 kW; 158 hp) at 5,200 rpm and 210 lb⋅ft (280 N⋅m) of torque at 2,600 rpm.

 

The exterior was mostly unchanged, apart from bold '3.5 Litre' badging, a pair of fog lights which were added below the head lights, creating a striking 4 light array, and the fitting of chrome Rostyle wheels with black painted inserts. The P5B existed as both the 4-door coupé and saloon body style until end of production. Production ended in 1973, by when 9,099 coupés and 11,501 saloons had been built.

 

The 3½ Litre saloon variant was a favourite of high-ranking Government Ministers, and served as Prime Ministerial transport for Harold Wilson, Edward Heath, James Callaghan and Margaret Thatcher. As testament to their suitability, the last batch of P5Bs to roll off the Rover line in June 1973 was purchased by the British government and placed in storage, to be released for government use as required.

 

As for most of the models built his November, the Rover P5B 3.5 Litre is a major redesign of a previously created model. In LUGNuts there was a build challenge named 'Redo or Redemption' just for this type of build.

The first (and interim) iteration of the living room (2005): WORKING WITH WHATCHA GOT!

 

Given the existing carpet color, we kept the existing window treatments; but we put up a new border (with the hope of picking up some of that carpet color, which was not in their old border at all nor in our couch, etc.), a new colored lamp (I watched it for over 2 years), a whitewashed lamp, natural maple TV stand and a maple CD stand, and custom floral arrangement by Mikka Designs.

 

Apparently, this carpet is in dire need of replacement (almost all of the carpets in the house are in dire need of replacement), and it was in that condition when we bought the house. It is a solid-color cut-pile textured carpet. The prior owners used this as the formal living room and the room on the lower level as a family room (as intended). However, we use the lower level as an office and studio; so, this is our ' ' family room' ' (which means heavy traffic).

 

----------------------------------------------------------------------------------------------------------------

 

This month we are getting berber carpet installed--a light, neutral off-white/bone kind of color with dark flecks. New entryway tiles were installed last week.

 

I imagined this room's color palette remaining very light and airy; thus I said I wanted a new (silvertone) television set and stereo...trying to eliminate the black in this room. (We already have a new [maple] clock.)

HOWEVER, the couch that we chose has taupe microfiber upholstery (decided ultimately based on the kitchen palette as-is and how it's probably going to end up)...and out of the test pillows that I had found and brought home, my husband gravitated to the one that has a rosy taupe (matched the upholstery of another sectional which we had decided on but opted not to buy; this couch is a true taupe, so we have yet to see if these pillows will actually match), a cool gold, and a copper kind of color...

So! With that color palette I will not want a silvertone TV and stereo...

 

{early June 2008}

 

------------------------------------------------------------------------------------------------

  

See AFTER

Here's the latest iteration of my version of the Xenomorph Queen.

 

Changes since the first version:

- I made the arms longer,

- modified the tail to make sure it won't bend in unnatural ways,

- added two protuberances on her back so there are now six as it should be,

- changed the small arms so they look a little more like arms,

- modified the pelvis to use ball joints which greatly increases the stability,

- and finally modified the legs so their shape is now much more similar to the original.

 

Some other minor cosmetic and solidity-related changes were made, but there's really no need to detail them. ^^'

Nearly 150 cadets marked the end of the first iteration of Cadet Field Training (CFT), with the traditional Run Back from Camp Buckner Military Reservation​, June 15, 2015. They were joined on the 7.5 mile route by Brig. Gen. John C. Thomson III, Commandant of the U.S. Corps of Cadets, Brig. Gen. Timothy Trainor, U.S. Military Academy Dean of Academics, Command Sgt. Maj. Dawn Rippelmeyer, U.S. Corps of Cadets Command Sergeant Major, Command Sgt. Maj. David M. Clark, U.S. Military Academy Command Sergeant Major and various other members of the West Point staff.

CFT is a three-to-four week program of instruction that emphasizes general military skills, individual preparedness training, preparations for extended field operations, and leading, participating in, and conducting small unit tactical operations. (U.S. Army photo by John Pellino, West Point DPTMS Visual Information)

During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.

This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.

JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.

Some photos in this set have been redacted for security purposes.

(U.S. Army Photo by Michael Beaton/Released).

 

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

Date: May, 2017

Medium: Digital Photomontage

Location: Tokyo, Japan

Dimensions: 20" x 26.75"

©2017 Tony DeVarco and Mayako Nakamura

 

Part of the new series Bonnie DeVarco is calling "Figure | Ground" in collaboration with the Japanese Artist Mayako Nakamura and showing detail of her "Playground I" Series". www.flickr.com/photos/ma85/albums/72157681102919935

 

The 10th iteration of ximeraLabs, which started life as my primary website in 2000-2001 — part graphic playground, part portfolio.

 

Its quite a nice coincidence that I’m updating this site at *roughly* (give or take 2 weeks) the same time period when I launched the site initially back in 2001. A lot has obviously changed since then, but one of the things that hasn’t is that I produce a lot of work that doesn’t always find a specific outlet.

 

In previous versions I have used the idea of “randomly” collecting freeform work and building a site around that, instead of creating editions that work around a specific theme or concept (which is how the site started its life). That idea of a ‘random’ mix of work, an online visual diary if you will is something that has stuck with me — and after much to-ing and fro-ing I finally decided to use this online space as a repository, a (hopefully) ongoing archive of work that exists between freeform experimentation and client brief: the images interesting to me that might not necessarily end somewhere predetermined. Think of this site as a sketchbook, and like the ones I have scattered on my desk and stored on my shelves, I hope it will be filled with equal parts of nonsense and interesting ideas…

 

ximeralabs.com

In its second iteration at the U.S. Military Academy, the Department of Military Instruction hosts Branch Week Sept. 9-14 at West Point, N.Y. With roughly 180 Army officers and non-commissioned officers, representing all 16 commissionable branches, the weeklong Corps of Cadets “career fair” presented cadets will hands-on, face-to-face career guidance and counseling from branch representatives across the nation. Several hundred tons of equipment, tanks, attack helicopters and armored vehicles were on display throughout Central Area, to include a functional tactical operations center. U.S. Army photo by Mike Strasser/USMA PAO

Here is the final iteration of my Crab MBT. I have decided to scrap my fleet of six Crabs and two super crabs in favor of newer designs. I am taking many pictures of them before they are scrapped. I will be taking enough photos to make instructions for them at some point. A few elements of the Crab will be used in an upcoming tank moc, so the design will live on in a way.

 

Here are some more pics. If anyone wants to try and build a Crab of their own, go for it.

 

rear view

 

side view

 

side view without side skirts

 

top view

 

top view without turret

 

turret cutaway

 

bottom view

  

1 2 ••• 13 14 16 18 19 ••• 79 80